
HPX Documentation
master

The STE | |AR Group

June 29, 2025

USER DOCUMENTATION

1 What is HPX? 3

2 What’s so special about HPX? 5
2.1 Quick start . 5
2.2 Examples . 10
2.3 Manual . 45
2.4 Terminology . 284
2.5 Why HPX? . 285
2.6 Additional material . 290
2.7 Overview . 291
2.8 API reference . 317
2.9 Contributing to HPX . 1542
2.10 Releases . 1551
2.11 Citing HPX . 1846
2.12 HPX users . 1846
2.13 About HPX . 1846

3 Index 1855

i

ii

HPX Documentation, master

Welcome to the HPX documentation!

If you’re new to HPX you can get started with the Quick start guide. Don’t forget to read the Terminology section
to learn about the most important concepts in HPX. The Examples give you a feel for how it is to write real HPX
applications and the Manual contains detailed information about everything from building HPX to debugging it. There
are links to blog posts and videos about HPX in Additional material.

You can find a comprehensive list of contact options on Support for deploying and using HPX1. Do not hesitate to
contact us if you can’t find what you are looking for in the documentation!

See Citing HPX for details on how to cite HPX in publications. See HPX users for a list of institutions and projects
using HPX.

There are also available a PDF version of this documentation as well as a Single HTML Page.

1 https://github.com/STEllAR-GROUP/hpx/blob/master/.github/SUPPORT.md

USER DOCUMENTATION 1

https://github.com/STEllAR-GROUP/hpx/blob/master/.github/SUPPORT.md
../singlehtml/index.html

HPX Documentation, master

2 USER DOCUMENTATION

CHAPTER

ONE

WHAT IS HPX?

HPX is a C++ Standard Library for Concurrency and Parallelism. It implements all of the corresponding facilities
as defined by the C++ Standard. Additionally, in HPX we implement functionalities proposed as part of the ongoing
C++ standardization process. We also extend the C++ Standard APIs to the distributed case. HPX is developed by the
STE||AR group (see People).

The goal of HPX is to create a high quality, freely available, open source implementation of a new programming model
for conventional systems, such as classic Linux based Beowulf clusters or multi-socket highly parallel SMP nodes. At
the same time, we want to have a very modular and well designed runtime system architecture which would allow us to
port our implementation onto new computer system architectures. We want to use real-world applications to drive the
development of the runtime system, coining out required functionalities and converging onto a stable API which will
provide a smooth migration path for developers.

The API exposed by HPX is not only modeled after the interfaces defined by the C++11/14/17/20 ISO standard. It also
adheres to the programming guidelines used by the Boost collection of C++ libraries. We aim to improve the scalability
of today’s applications and to expose new levels of parallelism which are necessary to take advantage of the exascale
systems of the future.

3

HPX Documentation, master

4 Chapter 1. What is HPX?

CHAPTER

TWO

WHAT’S SO SPECIAL ABOUT HPX?

• HPX exposes a uniform, standards-oriented API for ease of programming parallel and distributed applications.

• It enables programmers to write fully asynchronous code using hundreds of millions of threads.

• HPX provides unified syntax and semantics for local and remote operations.

• HPX makes concurrency manageable with dataflow and future based synchronization.

• It implements a rich set of runtime services supporting a broad range of use cases.

• HPX exposes a uniform, flexible, and extendable performance counter framework which can enable runtime
adaptivity

• It is designed to solve problems conventionally considered to be scaling-impaired.

• HPX has been designed and developed for systems of any scale, from hand-held devices to very large scale
systems.

• It is the first fully functional implementation of the ParalleX execution model.

• HPX is published under a liberal open-source license and has an open, active, and thriving developer community.

2.1 Quick start

The following steps will help you get started with HPX. Before getting started, make sure you have all the necessary
prerequisites, which are listed in _prerequisites. After Installing HPX, you can check how to run a simple example
Hello, World!. Writing task-based applications explains how you can get started with HPX. You can refer to our
Migration guide if you use other APIs for parallelism (like OpenMP, MPI or Intel Threading Building Blocks (TBB))
and you would like to convert your code to HPX code.

2.1.1 Installing HPX

The easiest way to install HPX on your system is by choosing one of the steps below:

1. vcpkg

You can download and install HPX using the vcpkg2 dependency manager:

$ vcpkg install hpx

2. Spack

Another way to install HPX is using Spack3:
2 https://github.com/Microsoft/vcpkg
3 https://spack.readthedocs.io/en/latest/

5

https://github.com/Microsoft/vcpkg
https://spack.readthedocs.io/en/latest/

HPX Documentation, master

$ spack install hpx

3. Fedora

Installation can be done with Fedora4 as well:

$ dnf install hpx*

4. Arch Linux

HPX is available in the Arch User Repository (AUR)5 as hpx too.

More information or alternatives regarding the installation can be found in the Building HPX, a detailed guide with
thorough explanation of ways to build and use HPX.

2.1.2 Hello, World!

To get started with this minimal example you need to create a new project directory and a file CMakeLists.txt with
the contents below in order to build an executable using CMake6 and HPX:

cmake_minimum_required(VERSION 3.19)
project(my_hpx_project CXX)
find_package(HPX REQUIRED)
add_executable(my_hpx_program main.cpp)
target_link_libraries(my_hpx_program HPX::hpx HPX::wrap_main HPX::iostreams_component)

The next step is to create a main.cpp with the contents below:

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.
#include <hpx/hpx_main.hpp>
#include <hpx/iostream.hpp>

int main()
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << std::flush;
return 0;

}

Then, in your project directory run the following:

$ mkdir build && cd build
$ cmake -DHPX_DIR=</path/to/hpx/installation> ..
$ make all
$./my_hpx_program

$./my_hpx_program
Hello World!

The program looks almost like a regular C++ hello world with the exception of the two includes and hpx::cout.
4 https://fedoraproject.org/wiki/DNF
5 https://wiki.archlinux.org/title/Arch_User_Repository
6 https://www.cmake.org

6 Chapter 2. What’s so special about HPX?

https://fedoraproject.org/wiki/DNF
https://wiki.archlinux.org/title/Arch_User_Repository
https://www.cmake.org

HPX Documentation, master

• When you include hpx_main.hpp HPX makes sure that main actually gets launched on the HPX runtime. So
while it looks almost the same you can now use futures, async, parallel algorithms and more which make use
of the HPX runtime with lightweight threads.

• hpx::cout is a replacement for std::cout to make sure printing never blocks a lightweight thread. You can
read more about hpx::cout in The HPX I/O-streams component.

Note:

• You will most likely have more than one main.cpp file in your project. See the section on Using HPX with
CMake-based projects for more details on how to use add_hpx_executable.

• HPX::wrap_main is required if you are implicitly using main() as the runtime entry point. See Re-use the
main() function as the main HPX entry point for more information.

• HPX::iostreams_component is optional for a minimal project but lets us use the HPX equivalent of
std::cout, i.e., the HPX The HPX I/O-streams component functionality in our application.

• You do not have to let HPX take over your main function like in the example. See Starting the HPX runtime for
more details on how to initialize and run the HPX runtime.

Caution: Ensure that HPX is installed with HPX_WITH_DISTRIBUTED_RUNTIME=ON to prevent encountering an
error indicating that the HPX::iostreams_component target is not found.

When including hpx_main.hpp the user-defined main gets renamed and the real main function is defined by HPX.
This means that the user-defined main must include a return statement, unlike the real main. If you do not include
the return statement, you may end up with confusing compile time errors mentioning user_main or even runtime
errors.

2.1.3 Writing task-based applications

So far we haven’t done anything that can’t be done using the C++ standard library. In this section we will give a short
overview of what you can do with HPX on a single node. The essence is to avoid global synchronization and break up
your application into small, composable tasks whose dependencies control the flow of your application. Remember,
however, that HPX allows you to write distributed applications similarly to how you would write applications for a
single node (see Why HPX? and Writing distributed applications).

If you are already familiar with async and future from the C++ standard library, the same functionality is available
in HPX.

The following terminology is essential when talking about task-based C++ programs:

• lightweight thread: Essential for good performance with task-based programs. Lightweight refers to smaller
stacks and faster context switching compared to OS threads. Smaller overheads allow the program to be broken
up into smaller tasks, which in turns helps the runtime fully utilize all processing units.

• async: The most basic way of launching tasks asynchronously. Returns a future<T>.

• future<T>: Represents a value of type T that will be ready in the future. The value can be retrieved with get
(blocking) and one can check if the value is ready with is_ready (non-blocking).

• shared_future<T>: Same as future<T> but can be copied (similar to std::unique_ptr vs
std::shared_ptr).

• continuation: A function that is to be run after a previous task has run (represented by a future). then is a
method of future<T> that takes a function to run next. Used to build up dataflow DAGs (directed acyclic

2.1. Quick start 7

HPX Documentation, master

graphs). shared_futures help you split up nodes in the DAG and functions like when_all help you join nodes
in the DAG.

The following example is a collection of the most commonly used functionality in HPX:

#include <hpx/algorithm.hpp>
#include <hpx/future.hpp>
#include <hpx/init.hpp>

#include <iostream>
#include <random>
#include <vector>

void final_task(hpx::future<hpx::tuple<hpx::future<double>, hpx::future<void>>>)
{

std::cout << "in final_task" << std::endl;
}

int hpx_main()
{

// A function can be launched asynchronously. The program will not block
// here until the result is available.
hpx::future<int> f = hpx::async([]() { return 42; });
std::cout << "Just launched a task!" << std::endl;

// Use get to retrieve the value from the future. This will block this task
// until the future is ready, but the HPX runtime will schedule other tasks
// if there are tasks available.
std::cout << "f contains " << f.get() << std::endl;

// Let's launch another task.
hpx::future<double> g = hpx::async([]() { return 3.14; });

// Tasks can be chained using the then method. The continuation takes the
// future as an argument.
hpx::future<double> result = g.then([](hpx::future<double>&& gg) {

// This function will be called once g is ready. gg is g moved
// into the continuation.
return gg.get() * 42.0 * 42.0;

});

// You can check if a future is ready with the is_ready method.
std::cout << "Result is ready? " << result.is_ready() << std::endl;

// You can launch other work in the meantime. Let's sort a vector.
std::vector<int> v(1000000);

// We fill the vector synchronously and sequentially.
hpx::generate(hpx::execution::seq, std::begin(v), std::end(v), &std::rand);

// We can launch the sort in parallel and asynchronously.
hpx::future<void> done_sorting =

hpx::sort(hpx::execution::par(// In parallel.
hpx::execution::task), // Asynchronously.

(continues on next page)

8 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

std::begin(v), std::end(v));

// We launch the final task when the vector has been sorted and result is
// ready using when_all.
auto all = hpx::when_all(result, done_sorting).then(&final_task);

// We can wait for all to be ready.
all.wait();

// all must be ready at this point because we waited for it to be ready.
std::cout << (all.is_ready() ? "all is ready!" : "all is not ready...")

<< std::endl;

return hpx::local::finalize();
}

int main(int argc, char* argv[])
{

return hpx::local::init(hpx_main, argc, argv);
}

Try copying the contents to your main.cpp file and look at the output. It can be a good idea to go through the program
step by step with a debugger. You can also try changing the types or adding new arguments to functions to make sure
you can get the types to match. The type of the then method can be especially tricky to get right (the continuation
needs to take the future as an argument).

Note: HPX programs accept command line arguments. The most important one is --hpx:threads=N to set the
number of OS threads used by HPX. HPX uses one thread per core by default. Play around with the example above
and see what difference the number of threads makes on the sort function. See Launching and configuring HPX
applications for more details on how and what options you can pass to HPX.

Tip: The example above used the construction hpx::when_all(...).then(...). For convenience and perfor-
mance it is a good idea to replace uses of hpx::when_all(...).then(...) with dataflow. See Dataflow for more
details on dataflow.

Tip: If possible, try to use the provided parallel algorithms instead of writing your own implementation. This can
save you time and the resulting program is often faster.

2.1. Quick start 9

HPX Documentation, master

2.1.4 Next steps

If you haven’t done so already, reading the Terminology section will help you get familiar with the terms used in HPX.

The Examples section contains small, self-contained walkthroughs of example HPX programs. The Local to remote
example is a thorough, realistic example starting from a single node implementation and going stepwise to a distributed
implementation.

The Manual contains detailed information on writing, building and running HPX applications.

2.2 Examples

The following sections analyze some examples to help you get familiar with the HPX style of programming. We start
off with simple examples that utilize basic HPX elements and then begin to expose the reader to the more complex and
powerful HPX concepts. Section Building tests and examples shows how you can build the examples.

2.2.1 Asynchronous execution

The Fibonacci sequence is a sequence of numbers starting with 0 and 1 where every subsequent number is the sum of
the previous two numbers. In this example, we will use HPX to calculate the value of the n-th element of the Fibonacci
sequence. In order to compute this problem in parallel, we will use a facility known as a future.

As shown in the Fig. 2.1 below, a future encapsulates a delayed computation. It acts as a proxy for a result initially
not known, most of the time because the computation of the result has not completed yet. The future synchronizes the
access of this value by optionally suspending any HPX-threads requesting the result until the value is available. When
a future is created, it spawns a new HPX-thread (either remotely with a parcel or locally by placing it into the thread
queue) which, when run, will execute the function associated with the future. The arguments of the function are bound
when the future is created.

Fig. 2.1: Schematic of a future execution.

10 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Once the function has finished executing, a write operation is performed on the future. The write operation marks the
future as completed, and optionally stores data returned by the function. When the result of the delayed computation
is needed, a read operation is performed on the future. If the future’s function hasn’t completed when a read operation
is performed on it, the reader HPX-thread is suspended until the future is ready. The future facility allows HPX to
schedule work early in a program so that when the function value is needed it will already be calculated and available.
We use this property in our Fibonacci example below to enable its parallel execution.

Setup

The source code for this example can be found here: fibonacci_local.cpp.

To compile this program, go to your HPX build directory (see Building HPX for information on configuring and building
HPX) and enter:

$ make examples.quickstart.fibonacci_local

To run the program type:

$./bin/fibonacci_local

This should print (time should be approximate):

fibonacci(10) == 55
elapsed time: 0.002430 [s]

This run used the default settings, which calculate the tenth element of the Fibonacci sequence. To declare which
Fibonacci value you want to calculate, use the --n-value option. Additionally you can use the --hpx:threads
option to declare how many OS-threads you wish to use when running the program. For instance, running:

$./bin/fibonacci --n-value 20 --hpx:threads 4

Will yield:

fibonacci(20) == 6765
elapsed time: 0.062854 [s]

Walkthrough

Now that you have compiled and run the code, let’s look at how the code works. Since this code is written in C++, we will
begin with the main() function. Here you can see that in HPX, main() is only used to initialize the runtime system. It is
important to note that application-specific command line options are defined here. HPX uses Boost.Program_options7

for command line processing. You can see that our programs --n-value option is set by calling the add_options()
method on an instance of hpx::program_options::options_description. The default value of the variable is
set to 10. This is why when we ran the program for the first time without using the --n-value option the program
returned the 10th value of the Fibonacci sequence. The constructor argument of the description is the text that appears
when a user uses the --hpx:help option to see what command line options are available. HPX_APPLICATION_STRING
is a macro that expands to a string constant containing the name of the HPX application currently being compiled.

In HPX main() is used to initialize the runtime system and pass the command line arguments to the program. If you
wish to add command line options to your program you would add them here using the instance of the Boost class
options_description, and invoking the public member function .add_options() (see Boost Documentation8 for
more details). hpx::init calls hpx_main() after setting up HPX, which is where the logic of our program is encoded.

7 https://www.boost.org/doc/html/program_options.html
8 https://www.boost.org/doc/

2.2. Examples 11

https://www.boost.org/doc/html/program_options.html
https://www.boost.org/doc/

HPX Documentation, master

int main(int argc, char* argv[])
{

// Configure application-specific options
hpx::program_options::options_description desc_commandline(

"Usage: " HPX_APPLICATION_STRING " [options]");

// clang-format off
desc_commandline.add_options()

("n-value",
hpx::program_options::value<std::uint64_t>()->default_value(10),
"n value for the Fibonacci function")

;
// clang-format on

// Initialize and run HPX
hpx::local::init_params init_args;
init_args.desc_cmdline = desc_commandline;

return hpx::local::init(hpx_main, argc, argv, init_args);
}

The hpx::init function in main() starts the runtime system, and invokes hpx_main() as the first HPX-thread.
Below we can see that the basic program is simple. The command line option --n-value is read in, a timer
(hpx::chrono::high_resolution_timer) is set up to record the time it takes to do the computation, the
fibonacci function is invoked synchronously, and the answer is printed out.

int hpx_main(hpx::program_options::variables_map& vm)
{

hpx::threads::add_scheduler_mode(
hpx::threads::policies::scheduler_mode::fast_idle_mode);

// extract command line argument, i.e. fib(N)
std::uint64_t n = vm["n-value"].as<std::uint64_t>();

{
// Keep track of the time required to execute.
hpx::chrono::high_resolution_timer t;

std::uint64_t r = fibonacci(n);

char const* fmt = "fibonacci({1}) == {2}\nelapsed time: {3} [s]\n";
hpx::util::format_to(std::cout, fmt, n, r, t.elapsed());

}

return hpx::local::finalize(); // Handles HPX shutdown
}

The fibonacci function itself is synchronous as the work done inside is asynchronous. To understand what is hap-
pening we have to look inside the fibonacci function:

std::uint64_t fibonacci(std::uint64_t n)
{

if (n < 2)
(continues on next page)

12 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

return n;

hpx::future<std::uint64_t> n1 = hpx::async(fibonacci, n - 1);
std::uint64_t n2 = fibonacci(n - 2);

return n1.get() + n2; // wait for the Future to return their values
}

This block of code looks similar to regular C++ code. First, if (n < 2), meaning n is 0 or 1, then we return 0 or 1
(recall the first element of the Fibonacci sequence is 0 and the second is 1). If n is larger than 1 we spawn two new
tasks whose results are contained in n1 and n2. This is done using hpx::async which takes as arguments a function
(function pointer, object or lambda) and the arguments to the function. Instead of returning a std::uint64_t like
fibonacci does, hpx::async returns a future of a std::uint64_t, i.e. hpx::future<std::uint64_t>. Each of
these futures represents an asynchronous, recursive call to fibonacci. After we’ve created the futures, we wait for
both of them to finish computing, we add them together, and return that value as our result. We get the values from the
futures using the get method. The recursive call tree will continue until n is equal to 0 or 1, at which point the value
can be returned because it is implicitly known. When this termination condition is reached, the futures can then be
added up, producing the n-th value of the Fibonacci sequence.

Note that calling get potentially blocks the calling HPX-thread, and lets other HPX-threads run in the meantime. There
are, however, more efficient ways of doing this. examples/quickstart/fibonacci_futures.cpp contains many
more variations of locally computing the Fibonacci numbers, where each method makes different tradeoffs in where
asynchrony and parallelism is applied. To get started, however, the method above is sufficient and optimizations can
be applied once you are more familiar with HPX. The example Dataflow presents dataflow, which is a way to more
efficiently chain together multiple tasks.

2.2.2 Parallel algorithms

This program will perform a matrix multiplication in parallel. The output will look something like this:

Matrix A is :
4 9 6
1 9 8

Matrix B is :
4 9
6 1
9 8

Resultant Matrix is :
124 93
130 82

2.2. Examples 13

HPX Documentation, master

Setup

The source code for this example can be found here: matrix_multiplication.cpp.

To compile this program, go to your HPX build directory (see Building HPX for information on configuring and building
HPX) and enter:

$ make examples.quickstart.matrix_multiplication

To run the program type:

$./bin/matrix_multiplication

or:

$./bin/matrix_multiplication --n 2 --m 3 --k 2 --s 100 --l 0 --u 10

where the first matrix is n x m and the second m x k, s is the seed for creating the random values of the matrices and
the range of these values is [l,u]

This should print:

Matrix A is :
4 9 6
1 9 8

Matrix B is :
4 9
6 1
9 8

Resultant Matrix is :
124 93
130 82

Notice that the numbers may be different because of the random initialization of the matrices.

Walkthrough

Now that you have compiled and run the code, let’s look at how the code works.

First, main() is used to initialize the runtime system and pass the command line arguments to the program. hpx::init
calls hpx_main() after setting up HPX, which is where our program is implemented.

int main(int argc, char* argv[])
{

using namespace hpx::program_options;
options_description cmdline("usage: " HPX_APPLICATION_STRING " [options]");
// clang-format off
cmdline.add_options()

("n",
hpx::program_options::value<std::size_t>()->default_value(2),
"Number of rows of first matrix")
("m",
hpx::program_options::value<std::size_t>()->default_value(3),

(continues on next page)

14 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

"Number of columns of first matrix (equal to the number of rows of "
"second matrix)")
("k",
hpx::program_options::value<std::size_t>()->default_value(2),
"Number of columns of second matrix")
("seed,s",
hpx::program_options::value<unsigned int>(),
"The random number generator seed to use for this run")
("l",
hpx::program_options::value<int>()->default_value(0),
"Lower limit of range of values")
("u",
hpx::program_options::value<int>()->default_value(10),
"Upper limit of range of values");

// clang-format on
hpx::local::init_params init_args;
init_args.desc_cmdline = cmdline;

return hpx::local::init(hpx_main, argc, argv, init_args);
}

Proceeding to the hpx_main() function, we can see that matrix multiplication can be done very easily.

int hpx_main(hpx::program_options::variables_map& vm)
{

using element_type = int;

// Define matrix sizes
std::size_t const rowsA = vm["n"].as<std::size_t>();
std::size_t const colsA = vm["m"].as<std::size_t>();
std::size_t const rowsB = colsA;
std::size_t const colsB = vm["k"].as<std::size_t>();
std::size_t const rowsR = rowsA;
std::size_t const colsR = colsB;

// Initialize matrices A and B
std::vector<int> A(rowsA * colsA);
std::vector<int> B(rowsB * colsB);
std::vector<int> R(rowsR * colsR);

// Define seed
unsigned int seed = std::random_device{}();
if (vm.count("seed"))

seed = vm["seed"].as<unsigned int>();

gen.seed(seed);
std::cout << "using seed: " << seed << std::endl;

// Define range of values
int const lower = vm["l"].as<int>();
int const upper = vm["u"].as<int>();

(continues on next page)

2.2. Examples 15

HPX Documentation, master

(continued from previous page)

// Matrices have random values in the range [lower, upper]
std::uniform_int_distribution<element_type> dis(lower, upper);
auto generator = std::bind(dis, gen);
hpx::ranges::generate(A, generator);
hpx::ranges::generate(B, generator);

// Perform matrix multiplication
hpx::experimental::for_loop(hpx::execution::par, 0, rowsA, [&](auto i) {

hpx::experimental::for_loop(0, colsB, [&](auto j) {
R[i * colsR + j] = 0;
hpx::experimental::for_loop(0, rowsB, [&](auto k) {

R[i * colsR + j] += A[i * colsA + k] * B[k * colsB + j];
});

});
});

// Print all 3 matrices
print_matrix(A, rowsA, colsA, "A");
print_matrix(B, rowsB, colsB, "B");
print_matrix(R, rowsR, colsR, "R");

return hpx::local::finalize();
}

First, the dimensions of the matrices are defined. If they were not given as command-line arguments, their default
values are 2 x 3 for the first matrix and 3 x 2 for the second. We use standard vectors to define the matrices to be
multiplied as well as the resultant matrix.

To give some random initial values to our matrices, we use std::uniform_int_distribution9. Then, std::bind() is used
along with hpx::ranges::generate() to yield two matrices A and B, which contain values in the range of [0, 10]
or in the range defined by the user at the command-line arguments. The seed to generate the values can also be defined
by the user.

The next step is to perform the matrix multiplication in parallel. This can be done by just using an
hpx::experimental::for_loop combined with a parallel execution policy hpx::execution::par as the outer
loop of the multiplication. Note that the execution of hpx::experimental::for_loop without specifying an execu-
tion policy is equivalent to specifying hpx::execution::seq as the execution policy.

Finally, the matrices A, B that are multiplied as well as the resultant matrix R are printed using the following function.

void print_matrix(std::vector<int> const& M, std::size_t rows, std::size_t cols,
char const* message)

{
std::cout << "\nMatrix " << message << " is:" << std::endl;
for (std::size_t i = 0; i < rows; i++)
{

for (std::size_t j = 0; j < cols; j++)
std::cout << M[i * cols + j] << " ";

std::cout << "\n";
}

}

9 https://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution

16 Chapter 2. What’s so special about HPX?

https://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution

HPX Documentation, master

2.2.3 Asynchronous execution with actions

This example extends the previous example by introducing actions: functions that can be run remotely. In this example,
however, we will still only run the action locally. The mechanism to execute actions stays the same: hpx::async. Later
examples will demonstrate running actions on remote localities (e.g. Remote execution with actions).

Setup

The source code for this example can be found here: fibonacci.cpp.

To compile this program, go to your HPX build directory (see Building HPX for information on configuring and building
HPX) and enter:

$ make examples.quickstart.fibonacci

To run the program type:

$./bin/fibonacci

This should print (time should be approximate):

fibonacci(10) == 55
elapsed time: 0.00186288 [s]

This run used the default settings, which calculate the tenth element of the Fibonacci sequence. To declare which
Fibonacci value you want to calculate, use the --n-value option. Additionally you can use the --hpx:threads
option to declare how many OS-threads you wish to use when running the program. For instance, running:

$./bin/fibonacci --n-value 20 --hpx:threads 4

Will yield:

fibonacci(20) == 6765
elapsed time: 0.233827 [s]

Walkthrough

The code needed to initialize the HPX runtime is the same as in the previous example:

int main(int argc, char* argv[])
{

// Configure application-specific options
hpx::program_options::options_description desc_commandline(

"Usage: " HPX_APPLICATION_STRING " [options]");

desc_commandline.add_options()("n-value",
hpx::program_options::value<std::uint64_t>()->default_value(10),
"n value for the Fibonacci function");

// Initialize and run HPX
hpx::init_params init_args;
init_args.desc_cmdline = desc_commandline;

(continues on next page)

2.2. Examples 17

HPX Documentation, master

(continued from previous page)

return hpx::init(argc, argv, init_args);
}

The hpx::init function in main() starts the runtime system, and invokes hpx_main() as the first HPX-thread. The
command line option --n-value is read in, a timer (hpx::chrono::high_resolution_timer) is set up to record
the time it takes to do the computation, the fibonacci action is invoked synchronously, and the answer is printed out.

int hpx_main(hpx::program_options::variables_map& vm)
{

// extract command line argument, i.e. fib(N)
std::uint64_t n = vm["n-value"].as<std::uint64_t>();

{
// Keep track of the time required to execute.
hpx::chrono::high_resolution_timer t;

// Wait for fib() to return the value
fibonacci_action fib;
std::uint64_t r = fib(hpx::find_here(), n);

char const* fmt = "fibonacci({1}) == {2}\nelapsed time: {3} [s]\n";
hpx::util::format_to(std::cout, fmt, n, r, t.elapsed());

}

return hpx::finalize(); // Handles HPX shutdown
}

Upon a closer look we see that we’ve created a std::uint64_t to store the result of invoking our fibonacci_action
fib. This action will launch synchronously (as the work done inside of the action will be asynchronous itself) and
return the result of the Fibonacci sequence. But wait, what is an action? And what is this fibonacci_action? For
starters, an action is a wrapper for a function. By wrapping functions, HPX can send packets of work to different
processing units. These vehicles allow users to calculate work now, later, or on certain nodes. The first argument to
our action is the location where the action should be run. In this case, we just want to run the action on the machine
that we are currently on, so we use hpx::find_here. To further understand this we turn to the code to find where
fibonacci_action was defined:

// forward declaration of the Fibonacci function
std::uint64_t fibonacci(std::uint64_t n);

// This is to generate the required boilerplate we need for the remote
// invocation to work.
HPX_PLAIN_ACTION(fibonacci, fibonacci_action)

A plain action is the most basic form of action. Plain actions wrap simple global functions which are not associated
with any particular object (we will discuss other types of actions in Components and actions). In this block of code
the function fibonacci() is declared. After the declaration, the function is wrapped in an action in the declaration
HPX_PLAIN_ACTION. This function takes two arguments: the name of the function that is to be wrapped and the name
of the action that you are creating.

This picture should now start making sense. The function fibonacci() is wrapped in an action fibonacci_action,
which was run synchronously but created asynchronous work, then returns a std::uint64_t representing the result
of the function fibonacci(). Now, let’s look at the function fibonacci():

18 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::uint64_t fibonacci(std::uint64_t n)
{

if (n < 2)
return n;

// We restrict ourselves to execute the Fibonacci function locally.
hpx::id_type const locality_id = hpx::find_here();

// Invoking the Fibonacci algorithm twice is inefficient.
// However, we intentionally demonstrate it this way to create some
// heavy workload.

fibonacci_action fib;
hpx::future<std::uint64_t> n1 = hpx::async(fib, locality_id, n - 1);
hpx::future<std::uint64_t> n2 = hpx::async(fib, locality_id, n - 2);

return n1.get() +
n2.get(); // wait for the Futures to return their values

}

This block of code is much more straightforward and should look familiar from the previous example. First, if (n <
2), meaning n is 0 or 1, then we return 0 or 1 (recall the first element of the Fibonacci sequence is 0 and the second
is 1). If n is larger than 1 we spawn two tasks using hpx::async. Each of these futures represents an asynchronous,
recursive call to fibonacci. As previously we wait for both futures to finish computing, get the results, add them
together, and return that value as our result. The recursive call tree will continue until n is equal to 0 or 1, at which
point the value can be returned because it is implicitly known. When this termination condition is reached, the futures
can then be added up, producing the n-th value of the Fibonacci sequence.

2.2.4 Remote execution with actions

This program will print out a hello world message on every OS-thread on every locality. The output will look something
like this:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 1 on locality 1
hello world from OS-thread 0 on locality 0
hello world from OS-thread 0 on locality 1

Setup

The source code for this example can be found here: hello_world_distributed.cpp.

To compile this program, go to your HPX build directory (see Building HPX for information on configuring and building
HPX) and enter:

$ make examples.quickstart.hello_world_distributed

To run the program type:

$./bin/hello_world_distributed

This should print:

2.2. Examples 19

HPX Documentation, master

hello world from OS-thread 0 on locality 0

To use more OS-threads use the command line option --hpx:threads and type the number of threads that you wish
to use. For example, typing:

$./bin/hello_world_distributed --hpx:threads 2

will yield:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0

Notice how the ordering of the two print statements will change with subsequent runs. To run this program on multiple
localities please see the section How to use HPX applications with PBS.

Walkthrough

Now that you have compiled and run the code, let’s look at how the code works, beginning with main():

// Here is the main entry point. By using the include 'hpx/hpx_main.hpp' HPX
// will invoke the plain old C-main() as its first HPX thread.
int main()
{

// Get a list of all available localities.
std::vector<hpx::id_type> localities = hpx::find_all_localities();

// Reserve storage space for futures, one for each locality.
std::vector<hpx::future<void>> futures;
futures.reserve(localities.size());

for (hpx::id_type const& node : localities)
{

// Asynchronously start a new task. The task is encapsulated in a
// future, which we can query to determine if the task has
// completed.
typedef hello_world_foreman_action action_type;
futures.push_back(hpx::async<action_type>(node));

}

// The non-callback version of hpx::wait_all takes a single parameter,
// a vector of futures to wait on. hpx::wait_all only returns when
// all of the futures have finished.
hpx::wait_all(futures);
return 0;

}

In this excerpt of the code we again see the use of futures. This time the futures are stored in a vector so that they can
easily be accessed. hpx::wait_all is a family of functions that wait on for an std::vector<> of futures to become
ready. In this piece of code, we are using the synchronous version of hpx::wait_all, which takes one argument
(the std::vector<> of futures to wait on). This function will not return until all the futures in the vector have been
executed.

In Asynchronous execution with actions we used hpx::find_here to specify the target of our actions. Here, we instead
use hpx::find_all_localities, which returns an std::vector<> containing the identifiers of all the machines

20 Chapter 2. What’s so special about HPX?

HPX Documentation, master

in the system, including the one that we are on.

As in Asynchronous execution with actions our futures are set using hpx::async<>. The
hello_world_foreman_action is declared here:

// Define the boilerplate code necessary for the function 'hello_world_foreman'
// to be invoked as an HPX action.
HPX_PLAIN_ACTION(hello_world_foreman, hello_world_foreman_action)

Another way of thinking about this wrapping technique is as follows: functions (the work to be done) are wrapped in
actions, and actions can be executed locally or remotely (e.g. on another machine participating in the computation).

Now it is time to look at the hello_world_foreman() function which was wrapped in the action above:

void hello_world_foreman()
{

// Get the number of worker OS-threads in use by this locality.
std::size_t const os_threads = hpx::get_os_thread_count();

// Populate a set with the OS-thread numbers of all OS-threads on this
// locality. When the hello world message has been printed on a particular
// OS-thread, we will remove it from the set.
std::set<std::size_t> attendance;
for (std::size_t os_thread = 0; os_thread < os_threads; ++os_thread)

attendance.insert(os_thread);

// As long as there are still elements in the set, we must keep scheduling
// HPX-threads. Because HPX features work-stealing task schedulers, we have
// no way of enforcing which worker OS-thread will actually execute
// each HPX-thread.
while (!attendance.empty())
{

// Each iteration, we create a task for each element in the set of
// OS-threads that have not said "Hello world". Each of these tasks
// is encapsulated in a future.
std::vector<hpx::future<std::size_t>> futures;
futures.reserve(attendance.size());

for (std::size_t worker : attendance)
{

// Asynchronously start a new task. The task is encapsulated in a
// future that we can query to determine if the task has completed.
//
// We give the task a hint to run on a particular worker thread
// (core) and suggest binding the scheduled thread to the given
// core, but no guarantees are given by the scheduler that the task
// will actually run on that worker thread. It will however try as
// hard as possible to place the new task on the given worker
// thread.
hpx::execution::parallel_executor exec(

hpx::threads::thread_priority::bound);

hpx::threads::thread_schedule_hint hint(
hpx::threads::thread_schedule_hint_mode::thread,
static_cast<std::int16_t>(worker));

(continues on next page)

2.2. Examples 21

HPX Documentation, master

(continued from previous page)

futures.push_back(
hpx::async(hpx::execution::experimental::with_hint(exec, hint),

hello_world_worker, worker));
}

// Wait for all of the futures to finish. The callback version of the
// hpx::wait_each function takes two arguments: a vector of futures,
// and a binary callback. The callback takes two arguments; the first
// is the index of the future in the vector, and the second is the
// return value of the future. hpx::wait_each doesn't return until
// all the futures in the vector have returned.
hpx::spinlock mtx;
hpx::wait_each(hpx::unwrapping([&](std::size_t t) {

if (std::size_t(-1) != t)
{

std::lock_guard<hpx::spinlock> lk(mtx);
attendance.erase(t);

}
}),

futures);
}

}

Now, before we discuss hello_world_foreman(), let’s talk about the hpx::wait_each function. The version of
hpx::wait_each invokes a callback function provided by the user, supplying the callback function with the result of
the future.

In hello_world_foreman(), an std::set<> called attendance keeps track of which OS-threads have printed
out the hello world message. When the OS-thread prints out the statement, the future is marked as ready, and
hpx::wait_each in hello_world_foreman(). If it is not executing on the correct OS-thread, it returns a value
of -1, which causes hello_world_foreman() to leave the OS-thread id in attendance.

std::size_t hello_world_worker(std::size_t desired)
{

// Returns the OS-thread number of the worker that is running this
// HPX-thread.
std::size_t current = hpx::get_worker_thread_num();
if (current == desired)
{

// The HPX-thread has been run on the desired OS-thread.
char const* msg = "hello world from OS-thread {1} on locality {2}\n";

hpx::util::format_to(hpx::cout, msg, desired, hpx::get_locality_id())
<< std::flush;

return desired;
}

// This HPX-thread has been run by the wrong OS-thread, make the foreman
// try again by rescheduling it.
return std::size_t(-1);

}

22 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Because HPX features work stealing task schedulers, there is no way to guarantee that an action will be scheduled on
a particular OS-thread. This is why we must use a guess-and-check approach.

2.2.5 Components and actions

The accumulator examples demonstrate the use of components. Components are C++ classes that expose methods as a
type of HPX action. These actions are called component actions. There are three examples: - accumulator - template
accumulator - template function accumulator

Components are globally named, meaning that a component action can be called remotely (e.g., from another machine).
There are two accumulator examples in HPX.

In the Asynchronous execution with actions and the Remote execution with actions, we introduced plain actions, which
wrapped global functions. The target of a plain action is an identifier which refers to a particular machine involved in
the computation. For plain actions, the target is the machine where the action will be executed.

Component actions, however, do not target machines. Instead, they target component instances. The instance may live
on the machine that we’ve invoked the component action from, or it may live on another machine.

The components in these examples expose three different functions:

• reset() - Resets the accumulator value to 0.

• add(arg) - Adds arg to the accumulators value.

• query() - Queries the value of the accumulator.

These examples create an instance of the (template or template function) accumulator, and then allow the user to enter
commands at a prompt, which subsequently invoke actions on the accumulator instance.

Accumulator

Setup

The source code for this example can be found here: accumulator_client.cpp.

To compile this program, go to your HPX build directory (see Building HPX for information on configuring and building
HPX) and enter:

$ make examples.accumulators.accumulator

To run the program type:

$./bin/accumulator_client

Once the program starts running, it will print the following prompt and then wait for input. An example session is given
below:

commands: reset, add [amount], query, help, quit
> add 5
> add 10
> query
15
> add 2
> query
17

(continues on next page)

2.2. Examples 23

HPX Documentation, master

(continued from previous page)

> reset
> add 1
> query
1
> quit

Walkthrough

Now, let’s take a look at the source code of the accumulator example. This example consists of two parts: an
HPX component library (a library that exposes an HPX component) and a client application which uses the library.
This walkthrough will cover the HPX component library. The code for the client application can be found here:
accumulator_client.cpp.

An HPX component is represented by two C++ classes:

• A server class - The implementation of the component’s functionality.

• A client class - A high-level interface that acts as a proxy for an instance of the component.

Typically, these two classes both have the same name, but the server class usually lives in different sub-namespaces
(server). For example, the full names of the two classes in accumulator are:

• examples::server::accumulator (server class)

• examples::accumulator (client class)

The server class

The following code is from server/accumulator.hpp10.

All HPX component server classes must inherit publicly from the HPX component base class:
hpx::components::component_base

The accumulator component inherits from hpx::components::locking_hook. This allows the runtime system to
ensure that all action invocations are serialized. That means that the system ensures that no two actions are invoked at
the same time on a given component instance. This makes the component thread safe and no additional locking has
to be implemented by the user. Moreover, an accumulator component is a component because it also inherits from
hpx::components::component_base (the template argument passed to locking_hook is used as its base class). The
following snippet shows the corresponding code:

class accumulator
: public hpx::components::locking_hook<

hpx::components::component_base<accumulator>>

Our accumulator class will need a data member to store its value in, so let’s declare a data member:

argument_type value_;

The constructor for this class simply initializes value_ to 0:

10 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/server/accumulator.
hpp

24 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/server/accumulator.hpp

HPX Documentation, master

accumulator()
: value_(0)

{
}

Next, let’s look at the three methods of this component that we will be exposing as component actions:

Here are the action types. These types wrap the methods we’re exposing. The wrapping technique is very similar to
the one used in the Asynchronous execution with actions and the Remote execution with actions:

HPX_DEFINE_COMPONENT_ACTION(accumulator, reset)
HPX_DEFINE_COMPONENT_ACTION(accumulator, add)
HPX_DEFINE_COMPONENT_ACTION(accumulator, query)

The last piece of code in the server class header is the declaration of the action type registration code:

HPX_REGISTER_ACTION_DECLARATION(
examples::server::accumulator::reset_action, accumulator_reset_action)

HPX_REGISTER_ACTION_DECLARATION(
examples::server::accumulator::add_action, accumulator_add_action)

HPX_REGISTER_ACTION_DECLARATION(
examples::server::accumulator::query_action, accumulator_query_action)

Note: The code above must be placed in the global namespace.

The rest of the registration code is in accumulator.cpp11

///
// Add factory registration functionality.
HPX_REGISTER_COMPONENT_MODULE()

///
typedef hpx::components::component<examples::server::accumulator>

accumulator_type;

HPX_REGISTER_COMPONENT(accumulator_type, accumulator)

///
// Serialization support for accumulator actions.
HPX_REGISTER_ACTION(

accumulator_type::wrapped_type::reset_action, accumulator_reset_action)
HPX_REGISTER_ACTION(

accumulator_type::wrapped_type::add_action, accumulator_add_action)
HPX_REGISTER_ACTION(

accumulator_type::wrapped_type::query_action, accumulator_query_action)

Note: The code above must be placed in the global namespace.

11 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/accumulator.cpp

2.2. Examples 25

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/accumulator.cpp

HPX Documentation, master

The client class

The following code is from accumulator.hpp12

The client class is the primary interface to a component instance. Client classes are used to create components:

// Create a component on this locality.
examples::accumulator c = hpx::new_<examples::accumulator>(hpx::find_here());

and to invoke component actions:

c.add(hpx::launch::apply, 4);

Clients, like servers, need to inherit from a base class, this time, hpx::components::client_base:

class accumulator
: public hpx::components::client_base<accumulator, server::accumulator>

For readability, we typedef the base class like so:

typedef hpx::components::client_base<accumulator, server::accumulator>
base_type;

Here are examples of how to expose actions through a client class:

There are a few different ways of invoking actions:

• Non-blocking: For actions that don’t have return types, or when we do not care about the result of an action,
we can invoke the action using fire-and-forget semantics. This means that once we have asked HPX to compute
the action, we forget about it completely and continue with our computation. We use hpx::post to invoke an
action in a non-blocking fashion.

void reset(hpx::launch::apply_policy)
{

HPX_ASSERT(this->get_id());

typedef server::accumulator::reset_action action_type;
hpx::post(action_type(), this->get_id());

}

• Asynchronous: Futures, as demonstrated in Asynchronous execution, Asynchronous execution with actions,
and the Remote execution with actions, enable asynchronous action invocation. Here’s an example from the
accumulator client class:

hpx::future<argument_type> query(hpx::launch::async_policy)
{

HPX_ASSERT(this->get_id());

typedef server::accumulator::query_action action_type;
return hpx::async(action_type(), this->get_id());

}

• Synchronous: To invoke an action in a fully synchronous manner, we can simply call hpx::sync which is
semantically equivalent to hpx::async().get() (i.e., create a future and immediately wait on it to be ready).
Here’s an example from the accumulator client class:

12 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/accumulator.hpp

26 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/accumulator.hpp

HPX Documentation, master

void add(argument_type arg)
{

HPX_ASSERT(this->get_id());

typedef server::accumulator::add_action action_type;
action_type()(this->get_id(), arg);

}

Note that this->get_id() references a data member of the hpx::components::client_base base class which
identifies the server accumulator instance.

hpx::id_type is a type which represents a global identifier in HPX. This type specifies the target of an action. This
is the type that is returned by hpx::find_here in which case it represents the locality the code is running on.

Template accumulator

Walkthrough

The server class

The following code is from server/template_accumulator.hpp13.

Similarly to the accumulator example, the component server class inherits publicly from
hpx::components::component_base and from hpx::components::locking_hook ensuring thread-safe
method invocations.

template <typename T>
class template_accumulator
: public hpx::components::locking_hook<

hpx::components::component_base<template_accumulator<T>>>

The body of the template accumulator class remains mainly the same as the accumulator with the difference that it uses
templates in the data types.

typedef T argument_type;

template_accumulator()
: value_(0)

{
}

///
// Exposed functionality of this component.

/// Reset the components value to 0.
void reset()
{

// set value_ to 0.
value_ = 0;

}
(continues on next page)

13 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/server/template_
accumulator.hpp

2.2. Examples 27

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/server/template_accumulator.hpp

HPX Documentation, master

(continued from previous page)

/// Add the given number to the accumulator.
void add(argument_type arg)
{

// add value_ to arg, and store the result in value_.
value_ += arg;

}

/// Return the current value to the caller.
argument_type query() const
{

// Get the value of value_.
return value_;

}

///
// Each of the exposed functions needs to be encapsulated into an
// action type, generating all required boilerplate code for threads,
// serialization, etc.
HPX_DEFINE_COMPONENT_ACTION(template_accumulator, reset)
HPX_DEFINE_COMPONENT_ACTION(template_accumulator, add)
HPX_DEFINE_COMPONENT_ACTION(template_accumulator, query)

The last piece of code in the server class header is the declaration of the action type registration code. REGIS-
TER_TEMPLATE_ACCUMULATOR_DECLARATION(type) declares actions for the specified type, while REGIS-
TER_TEMPLATE_ACCUMULATOR(type) registers the actions and the component for the specified type, using macros
to handle boilerplate code.

#define REGISTER_TEMPLATE_ACCUMULATOR_DECLARATION(type) \
HPX_REGISTER_ACTION_DECLARATION(\

examples::server::template_accumulator<type>::reset_action, \
HPX_PP_CAT(__template_accumulator_reset_action_, type)) \

\
HPX_REGISTER_ACTION_DECLARATION(\

examples::server::template_accumulator<type>::add_action, \
HPX_PP_CAT(__template_accumulator_add_action_, type)) \

\
HPX_REGISTER_ACTION_DECLARATION(\

examples::server::template_accumulator<type>::query_action, \
HPX_PP_CAT(__template_accumulator_query_action_, type)) \

/**/

#define REGISTER_TEMPLATE_ACCUMULATOR(type) \
HPX_REGISTER_ACTION(\

examples::server::template_accumulator<type>::reset_action, \
HPX_PP_CAT(__template_accumulator_reset_action_, type)) \

\
HPX_REGISTER_ACTION(\

examples::server::template_accumulator<type>::add_action, \
HPX_PP_CAT(__template_accumulator_add_action_, type)) \

\
HPX_REGISTER_ACTION(\

(continues on next page)

28 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

examples::server::template_accumulator<type>::query_action, \
HPX_PP_CAT(__template_accumulator_query_action_, type)) \

\
typedef ::hpx::components::component< \

examples::server::template_accumulator<type>> \
HPX_PP_CAT(__template_accumulator_, type); \

HPX_REGISTER_COMPONENT(HPX_PP_CAT(__template_accumulator_, type)) \
/**/

Note: The code above must be placed in the global namespace.

Finally, HPX_REGISTER_COMPONENT_MODULE() in file server/template_accumulator.cpp14 adds the factory reg-
istration functionality.

The client class

The client class of the template accumulator can be found in template_accumulator.hpp15 and is very similar to the
client class of the accumulator with the only difference that it uses templates and hence can work with different types.

Template function accumulator

Walkthrough

The server class

The following code is from server/template_function_accumulator.hpp16.

The component server class inherits publicly from hpx::components::component_base.

class template_function_accumulator
: public hpx::components::component_base<template_function_accumulator>

typedef hpx::spinlock mutex_type defines a mutex_type as hpx::spinlock for thread safety, while the code that follows
exposes the functionality of this component.

///
// Exposed functionality of this component.

/// Reset the value to 0.
void reset()
{

// Atomically set value_ to 0.
std::lock_guard<mutex_type> l(mtx_);

(continues on next page)

14 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/server/template_
accumulator.cpp

15 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/template_
accumulator.hpp

16 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/server/template_
function_accumulator.hpp

2.2. Examples 29

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/server/template_accumulator.cpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/template_accumulator.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/server/template_function_accumulator.hpp

HPX Documentation, master

(continued from previous page)

value_ = 0;
}

/// Add the given number to the accumulator.
template <typename T>
void add(T arg)
{

// Atomically add value_ to arg, and store the result in value_.
std::lock_guard<mutex_type> l(mtx_);
value_ += static_cast<double>(arg);

}

/// Return the current value to the caller.
double query() const
{

// Get the value of value_.
std::lock_guard<mutex_type> l(mtx_);
return value_;

}

• reset(): Resets the accumulator value to 0 in a thread-safe manner using std::lock_guard.

• add(): Adds a value to the accumulator, allowing any type T that can be cast to double.

• query(): Returns the current value of the accumulator in a thread-safe manner.

To define the actions for reset() and query() we can use the macro HPX_DEFINE_COMPONENT_ACTION. However,
actions with template arguments require special type definitions. Therefore, we use make_action() to define add().

///
// Each of the exposed functions needs to be encapsulated into an
// action type, generating all required boilerplate code for threads,
// serialization, etc.

HPX_DEFINE_COMPONENT_ACTION(template_function_accumulator, reset)
HPX_DEFINE_COMPONENT_ACTION(template_function_accumulator, query)

// Actions with template arguments (see add<>() above) require special
// type definitions. The simplest way to define such an action type is
// by deriving from the HPX facility make_action.
template <typename T>
struct add_action
: hpx::actions::make_action<void (template_function_accumulator::*)(

T),
&template_function_accumulator::template add<T>,
add_action<T>>::type

{
};

The last piece of code in the server class header is the action registration:

HPX_REGISTER_ACTION_DECLARATION(
examples::server::template_function_accumulator::reset_action,
managed_accumulator_reset_action)

(continues on next page)

30 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

HPX_REGISTER_ACTION_DECLARATION(
examples::server::template_function_accumulator::query_action,
managed_accumulator_query_action)

Note: The code above must be placed in the global namespace.

The rest of the registration code is in accumulator.cpp17

///
// Add factory registration functionality.
HPX_REGISTER_COMPONENT_MODULE()

///
typedef hpx::components::component<

examples::server::template_function_accumulator>
accumulator_type;

HPX_REGISTER_COMPONENT(accumulator_type, template_function_accumulator)

///
// Serialization support for managed_accumulator actions.
HPX_REGISTER_ACTION(accumulator_type::wrapped_type::reset_action,

managed_accumulator_reset_action)
HPX_REGISTER_ACTION(accumulator_type::wrapped_type::query_action,

managed_accumulator_query_action)

Note: The code above must be placed in the global namespace.

The client class

The client class of the template accumulator can be found in template_function_accumulator.hpp18 and is very similar
to the client class of the accumulator with the only difference that it uses templates and hence can work with different
types.

17 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/accumulator.cpp
18 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/template_function_

accumulator.hpp

2.2. Examples 31

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/accumulator.cpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/examples/accumulators/template_function_accumulator.hpp

HPX Documentation, master

2.2.6 Dataflow

HPX provides its users with several different tools to simply express parallel concepts. One of these tools is a local
control object (LCO) called dataflow. An LCO is a type of component that can spawn a new thread when triggered.
They are also distinguished from other components by a standard interface that allow users to understand and use them
easily. A Dataflow, being an LCO, is triggered when the values it depends on become available. For instance, if you
have a calculation X that depends on the results of three other calculations, you could set up a dataflow that would
begin the calculation X as soon as the other three calculations have returned their values. Dataflows are set up to
depend on other dataflows. It is this property that makes dataflow a powerful parallelization tool. If you understand the
dependencies of your calculation, you can devise a simple algorithm that sets up a dependency tree to be executed. In
this example, we calculate compound interest. To calculate compound interest, one must calculate the interest made in
each compound period, and then add that interest back to the principal before calculating the interest made in the next
period. A practical person would, of course, use the formula for compound interest:

𝐹 = 𝑃 (1 + 𝑖)𝑛

where 𝐹 is the future value, 𝑃 is the principal value, 𝑖 is the interest rate, and 𝑛 is the number of compound periods.

However, for the sake of this example, we have chosen to manually calculate the future value by iterating:

𝐼 = 𝑃𝑖

and

𝑃 = 𝑃 + 𝐼

Setup

The source code for this example can be found here: interest_calculator.cpp.

To compile this program, go to your HPX build directory (see Building HPX for information on configuring and building
HPX) and enter:

$ make examples.quickstart.interest_calculator

To run the program type:

$./bin/interest_calculator --principal 100 --rate 5 --cp 6 --time 36
Final amount: 134.01
Amount made: 34.0096

Walkthrough

Let us begin with main. Here we can see that we again are using Boost.Program_options to set our command line
variables (see Asynchronous execution with actions for more details). These options set the principal, rate, compound
period, and time. It is important to note that the units of time for cp and time must be the same.

int main(int argc, char** argv)
{

options_description cmdline("Usage: " HPX_APPLICATION_STRING " [options]");

cmdline.add_options()("principal", value<double>()->default_value(1000),
"The principal [$]")("rate", value<double>()->default_value(7),

(continues on next page)

32 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

"The interest rate [%]")("cp", value<int>()->default_value(12),
"The compound period [months]")("time",
value<int>()->default_value(12 * 30),
"The time money is invested [months]");

hpx::init_params init_args;
init_args.desc_cmdline = cmdline;

return hpx::init(argc, argv, init_args);
}

Next we look at hpx_main.

int hpx_main(variables_map& vm)
{

{
using hpx::dataflow;
using hpx::make_ready_future;
using hpx::shared_future;
using hpx::unwrapping;
hpx::id_type here = hpx::find_here();

double init_principal =
vm["principal"].as<double>(); //Initial principal

double init_rate = vm["rate"].as<double>(); //Interest rate
int cp = vm["cp"].as<int>(); //Length of a compound period
int t = vm["time"].as<int>(); //Length of time money is invested

init_rate /= 100; //Rate is a % and must be converted
t /= cp; //Determine how many times to iterate interest calculation:

//How many full compound periods can fit in the time invested

// In non-dataflow terms the implemented algorithm would look like:
//
// int t = 5; // number of time periods to use
// double principal = init_principal;
// double rate = init_rate;
//
// for (int i = 0; i < t; ++i)
// {
// double interest = calc(principal, rate);
// principal = add(principal, interest);
// }
//
// Please note the similarity with the code below!

shared_future<double> principal = make_ready_future(init_principal);
shared_future<double> rate = make_ready_future(init_rate);

for (int i = 0; i < t; ++i)
{

shared_future<double> interest =
(continues on next page)

2.2. Examples 33

HPX Documentation, master

(continued from previous page)

dataflow(unwrapping(calc), principal, rate);
principal = dataflow(unwrapping(add), principal, interest);

}

// wait for the dataflow execution graph to be finished calculating our
// overall interest
double result = principal.get();

std::cout << "Final amount: " << result << std::endl;
std::cout << "Amount made: " << result - init_principal << std::endl;

}

return hpx::finalize();
}

Here we find our command line variables read in, the rate is converted from a percent to a decimal, the number of
calculation iterations is determined, and then our shared_futures are set up. Notice that we first place our principal and
rate into shares futures by passing the variables init_principal and init_rate using hpx::make_ready_future.

In this way hpx::shared_future<double> principal and rate will be initialized to init_principal and
init_ratewhen hpx::make_ready_future<double> returns a future containing those initial values. These shared
futures then enter the for loop and are passed to interest. Next principal and interest are passed to the reassign-
ment of principal using a hpx::dataflow. A dataflow will first wait for its arguments to be ready before launching
any callbacks, so add in this case will not begin until both principal and interest are ready. This loop continues
for each compound period that must be calculated. To see how interest and principal are calculated in the loop,
let us look at calc_action and add_action:

// Calculate interest for one period
double calc(double principal, double rate)
{

return principal * rate;
}

///
// Add the amount made to the principal
double add(double principal, double interest)
{

return principal + interest;
}

After the shared future dependencies have been defined in hpx_main, we see the following statement:

double result = principal.get();

This statement calls hpx::future::get on the shared future principal which had its value calculated by our for loop.
The program will wait here until the entire dataflow tree has been calculated and the value assigned to result. The
program then prints out the final value of the investment and the amount of interest made by subtracting the final value
of the investment from the initial value of the investment.

34 Chapter 2. What’s so special about HPX?

HPX Documentation, master

2.2.7 Local to remote

When developers write code they typically begin with a simple serial code and build upon it until all of the required
functionality is present. The following set of examples were developed to demonstrate this iterative process of evolving
a simple serial program to an efficient, fully-distributed HPX application. For this demonstration, we implemented a
1D heat distribution problem. This calculation simulates the diffusion of heat across a ring from an initialized state to
some user-defined point in the future. It does this by breaking each portion of the ring into discrete segments and using
the current segment’s temperature and the temperature of the surrounding segments to calculate the temperature of the
current segment in the next timestep as shown by Fig. 2.2 below.

Fig. 2.2: Heat diffusion example program flow.

We parallelize this code over the following eight examples:

• Example 1

• Example 2

• Example 3

• Example 4

• Example 5

• Example 6

• Example 7

• Example 8

The first example is straight serial code. In this code we instantiate a vector U that contains two vectors of doubles as
seen in the structure stepper.

struct stepper
{

// Our partition type
typedef double partition;

// Our data for one time step
typedef std::vector<partition> space;

// Our operator
static double heat(double left, double middle, double right)
{

return middle + (k * dt / (dx * dx)) * (left - 2 * middle + right);
}

(continues on next page)

2.2. Examples 35

HPX Documentation, master

(continued from previous page)

// do all the work on 'nx' data points for 'nt' time steps
space do_work(std::size_t nx, std::size_t nt)
{

// U[t][i] is the state of position i at time t.
std::vector<space> U(2);
for (space& s : U)

s.resize(nx);

// Initial conditions: f(0, i) = i
for (std::size_t i = 0; i != nx; ++i)

U[0][i] = double(i);

// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{

space const& current = U[t % 2];
space& next = U[(t + 1) % 2];

next[0] = heat(current[nx - 1], current[0], current[1]);

for (std::size_t i = 1; i != nx - 1; ++i)
next[i] = heat(current[i - 1], current[i], current[i + 1]);

next[nx - 1] = heat(current[nx - 2], current[nx - 1], current[0]);
}

// Return the solution at time-step 'nt'.
return U[nt % 2];

}
};

Each element in the vector of doubles represents a single grid point. To calculate the change in heat distribution, the
temperature of each grid point, along with its neighbors, is passed to the function heat. In order to improve readability,
references named current and next are created which, depending on the time step, point to the first and second vector
of doubles. The first vector of doubles is initialized with a simple heat ramp. After calling the heat function with the
data in the current vector, the results are placed into the next vector.

In example 2 we employ a technique called futurization. Futurization is a method by which we can easily transform a
code that is serially executed into a code that creates asynchronous threads. In the simplest case this involves replacing
a variable with a future to a variable, a function with a future to a function, and adding a .get() at the point where a
value is actually needed. The code below shows how this technique was applied to the struct stepper.

struct stepper
{

// Our partition type
typedef hpx::shared_future<double> partition;

// Our data for one time step
typedef std::vector<partition> space;

// Our operator
static double heat(double left, double middle, double right)
{

(continues on next page)

36 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

return middle + (k * dt / (dx * dx)) * (left - 2 * middle + right);
}

// do all the work on 'nx' data points for 'nt' time steps
hpx::future<space> do_work(std::size_t nx, std::size_t nt)
{

using hpx::dataflow;
using hpx::unwrapping;

// U[t][i] is the state of position i at time t.
std::vector<space> U(2);
for (space& s : U)

s.resize(nx);

// Initial conditions: f(0, i) = i
for (std::size_t i = 0; i != nx; ++i)

U[0][i] = hpx::make_ready_future(double(i));

auto Op = unwrapping(&stepper::heat);

// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{

space const& current = U[t % 2];
space& next = U[(t + 1) % 2];

// WHEN U[t][i-1], U[t][i], and U[t][i+1] have been computed, THEN we
// can compute U[t+1][i]
for (std::size_t i = 0; i != nx; ++i)
{

next[i] =
dataflow(hpx::launch::async, Op, current[idx(i, -1, nx)],

current[i], current[idx(i, +1, nx)]);
}

}

// Now the asynchronous computation is running; the above for-loop does not
// wait on anything. There is no implicit waiting at the end of each timestep;
// the computation of each U[t][i] will begin as soon as its dependencies
// are ready and hardware is available.

// Return the solution at time-step 'nt'.
return hpx::when_all(U[nt % 2]);

}
};

In example 2, we redefine our partition type as a shared_future and, in main, create the object result, which is
a future to a vector of partitions. We use result to represent the last vector in a string of vectors created for each
timestep. In order to move to the next timestep, the values of a partition and its neighbors must be passed to heat once
the futures that contain them are ready. In HPX, we have an LCO (Local Control Object) named Dataflow that assists
the programmer in expressing this dependency. Dataflow allows us to pass the results of a set of futures to a specified
function when the futures are ready. Dataflow takes three types of arguments, one which instructs the dataflow on how
to perform the function call (async or sync), the function to call (in this case Op), and futures to the arguments that will

2.2. Examples 37

HPX Documentation, master

be passed to the function. When called, dataflow immediately returns a future to the result of the specified function.
This allows users to string dataflows together and construct an execution tree.

After the values of the futures in dataflow are ready, the values must be pulled out of the future container to be passed
to the function heat. In order to do this, we use the HPX facility unwrapping, which underneath calls .get() on
each of the futures so that the function heat will be passed doubles and not futures to doubles.

By setting up the algorithm this way, the program will be able to execute as quickly as the dependencies of each future
are met. Unfortunately, this example runs terribly slow. This increase in execution time is caused by the overheads
needed to create a future for each data point. Because the work done within each call to heat is very small, the overhead
of creating and scheduling each of the three futures is greater than that of the actual useful work! In order to amortize
the overheads of our synchronization techniques, we need to be able to control the amount of work that will be done
with each future. We call this amount of work per overhead grain size.

In example 3, we return to our serial code to figure out how to control the grain size of our program. The strategy that
we employ is to create “partitions” of data points. The user can define how many partitions are created and how many
data points are contained in each partition. This is accomplished by creating the struct partition, which contains
a member object data_, a vector of doubles that holds the data points assigned to a particular instance of partition.

In example 4, we take advantage of the partition setup by redefining space to be a vector of shared_futures with each
future representing a partition. In this manner, each future represents several data points. Because the user can define
how many data points are in each partition, and, therefore, how many data points are represented by one future, a user
can control the grainsize of the simulation. The rest of the code is then futurized in the same manner as example 2. It
should be noted how strikingly similar example 4 is to example 2.

Example 4 finally shows good results. This code scales equivalently to the OpenMP version. While these results are
promising, there are more opportunities to improve the application’s scalability. Currently, this code only runs on one
locality, but to get the full benefit of HPX, we need to be able to distribute the work to other machines in a cluster. We
begin to add this functionality in example 5.

In order to run on a distributed system, a large amount of boilerplate code must be added. Fortunately, HPX provides us
with the concept of a component, which saves us from having to write quite as much code. A component is an object that
can be remotely accessed using its global address. Components are made of two parts: a server and a client class. While
the client class is not required, abstracting the server behind a client allows us to ensure type safety instead of having to
pass around pointers to global objects. Example 5 renames example 4’s struct partition to partition_data and
adds serialization support. Next, we add the server side representation of the data in the structure partition_server.
Partition_server inherits from hpx::components::component_base, which contains a server-side component
boilerplate. The boilerplate code allows a component’s public members to be accessible anywhere on the machine
via its Global Identifier (GID). To encapsulate the component, we create a client side helper class. This object allows
us to create new instances of our component and access its members without having to know its GID. In addition,
we are using the client class to assist us with managing our asynchrony. For example, our client class partition‘s
member function get_data() returns a future to partition_data get_data(). This struct inherits its boilerplate
code from hpx::components::client_base.

In the structure stepper, we have also had to make some changes to accommodate a distributed environment. In
order to get the data from a particular neighboring partition, which could be remote, we must retrieve the data from all
of the neighboring partitions. These retrievals are asynchronous and the function heat_part_data, which, amongst
other things, calls heat, should not be called unless the data from the neighboring partitions have arrived. Therefore, it
should come as no surprise that we synchronize this operation with another instance of dataflow (found in heat_part).
This dataflow receives futures to the data in the current and surrounding partitions by calling get_data() on each
respective partition. When these futures are ready, dataflow passes them to the unwrapping function, which extracts
the shared_array of doubles and passes them to the lambda. The lambda calls heat_part_data on the locality, which
the middle partition is on.

Although this example could run distributed, it only runs on one locality, as it always uses hpx::find_here() as the
target for the functions to run on.

In example 6, we begin to distribute the partition data on different nodes. This is accomplished in

38 Chapter 2. What’s so special about HPX?

HPX Documentation, master

stepper::do_work() by passing the GID of the locality where we wish to create the partition to the partition con-
structor.

for (std::size_t i = 0; i != np; ++i)
U[0][i] = partition(localities[locidx(i, np, nl)], nx, double(i));

We distribute the partitions evenly based on the number of localities used, which is described in the function locidx.
Because some of the data needed to update the partition in heat_part could now be on a new locality, we must devise
a way of moving data to the locality of the middle partition. We accomplished this by adding a switch in the function
get_data() that returns the end element of the buffer data_ if it is from the left partition or the first element of
the buffer if the data is from the right partition. In this way only the necessary elements, not the whole buffer, are
exchanged between nodes. The reader should be reminded that this exchange of end elements occurs in the function
get_data() and, therefore, is executed asynchronously.

Now that we have the code running in distributed, it is time to make some optimizations. The function heat_part
spends most of its time on two tasks: retrieving remote data and working on the data in the middle partition. Because
we know that the data for the middle partition is local, we can overlap the work on the middle partition with that of
the possibly remote call of get_data(). This algorithmic change, which was implemented in example 7, can be seen
below:

// The partitioned operator, it invokes the heat operator above on all elements
// of a partition.
static partition heat_part(

partition const& left, partition const& middle, partition const& right)
{

using hpx::dataflow;
using hpx::unwrapping;

hpx::shared_future<partition_data> middle_data =
middle.get_data(partition_server::middle_partition);

hpx::future<partition_data> next_middle = middle_data.then(
unwrapping([middle](partition_data const& m) -> partition_data {

HPX_UNUSED(middle);

// All local operations are performed once the middle data of
// the previous time step becomes available.
std::size_t size = m.size();
partition_data next(size);
for (std::size_t i = 1; i != size - 1; ++i)

next[i] = heat(m[i - 1], m[i], m[i + 1]);
return next;

}));

return dataflow(hpx::launch::async,
unwrapping([left, middle, right](partition_data next,

partition_data const& l, partition_data const& m,
partition_data const& r) -> partition {

HPX_UNUSED(left);
HPX_UNUSED(right);

// Calculate the missing boundary elements once the
// corresponding data has become available.
std::size_t size = m.size();

(continues on next page)

2.2. Examples 39

HPX Documentation, master

(continued from previous page)

next[0] = heat(l[size - 1], m[0], m[1]);
next[size - 1] = heat(m[size - 2], m[size - 1], r[0]);

// The new partition_data will be allocated on the same locality
// as 'middle'.
return partition(middle.get_id(), std::move(next));

}),
std::move(next_middle),
left.get_data(partition_server::left_partition), middle_data,
right.get_data(partition_server::right_partition));

}

Example 8 completes the futurization process and utilizes the full potential of HPX by distributing the program flow
to multiple localities, usually defined as nodes in a cluster. It accomplishes this task by running an instance of HPX
main on each locality. In order to coordinate the execution of the program, the struct stepper is wrapped into a
component. In this way, each locality contains an instance of stepper that executes its own instance of the function
do_work(). This scheme does create an interesting synchronization problem that must be solved. When the program
flow was being coordinated on the head node, the GID of each component was known. However, when we distribute
the program flow, each partition has no notion of the GID of its neighbor if the next partition is on another locality. In
order to make the GIDs of neighboring partitions visible to each other, we created two buffers to store the GIDs of the
remote neighboring partitions on the left and right respectively. These buffers are filled by sending the GID of newly
created edge partitions to the right and left buffers of the neighboring localities.

In order to finish the simulation, the solution vectors named result are then gathered together on locality 0 and added
into a vector of spaces overall_result using the HPX functions gather_id and gather_here.

Example 8 completes this example series, which takes the serial code of example 1 and incrementally morphs it into
a fully distributed parallel code. This evolution was guided by the simple principles of futurization, the knowledge
of grainsize, and utilization of components. Applying these techniques easily facilitates the scalable parallelization of
most applications.

2.2.8 Serializing user-defined types

In order to facilitate the sending and receiving of complex datatypes HPX provides a serialization abstraction.

Just like boost, hpx allows users to serialize user-defined types by either providing the serializer as a member function
or defining the serialization as a free function.

Unlike Boost HPX doesn’t acknowledge second unsigned int parameter, it is solely there to preserve API com-
patibility with Boost Serialization

This is tutorial was heavily inspired by Boost’s serialization concepts19.
19 https://www.boost.org/doc/libs/1_79_0/libs/serialization/doc/serialization.html

40 Chapter 2. What’s so special about HPX?

https://www.boost.org/doc/libs/1_79_0/libs/serialization/doc/serialization.html

HPX Documentation, master

Setup

The source code for this example can be found here: custom_serialization.cpp.

To compile this program, go to your HPX build directory (see Building HPX for information on configuring and building
HPX) and enter:

$ make examples.quickstart.custom_serialization

To run the program type:

$./bin/custom_serialization

This should print:

Rectangle(Point(x=0,y=0),Point(x=0,y=5))
gravity.g = 9.81%

Serialization Requirements

In order to serialize objects in HPX, at least one of the following criteria must be met:

In the case of default constructible objects:

• The object is an empty type.

• Has a serialization function as shown in this tutorial.

• All members are accessible publicly and they can be used in structured binding contexts.

Otherwise:

• They need to have special serialization support.

Member function serialization

struct point_member_serialization
{

int x{0};
int y{0};

// Required when defining the serialization function as private
// In this case it isn't
// Provides serialization access to HPX
friend class hpx::serialization::access;

// Second argument exists solely for compatibility with boost serialize
// it is NOT processed by HPX in any way.
template <typename Archive>
void serialize(Archive& ar, const unsigned int)
{

// clang-format off
ar & x & y;
// clang-format on

}
(continues on next page)

2.2. Examples 41

HPX Documentation, master

(continued from previous page)

};

// Allow bitwise serialization
HPX_IS_BITWISE_SERIALIZABLE(point_member_serialization)

Notice that point_member_serialization is defined as bitwise serializable (see Bitwise serialization for bitwise
copyable data for more details). HPX is also able to recursively serialize composite classes and structs given that its
members are serializable.

struct rectangle_member_serialization
{

point_member_serialization top_left;
point_member_serialization lower_right;

template <typename Archive>
void serialize(Archive& ar, const unsigned int)
{

// clang-format off
ar & top_left & lower_right;
// clang-format on

}
};

Free function serialization

In order to decouple your models from HPX, HPX also allows for the definition of free function serializers.

struct rectangle_free
{

point_member_serialization top_left;
point_member_serialization lower_right;

};

template <typename Archive>
void serialize(Archive& ar, rectangle_free& pt, const unsigned int)
{

// clang-format off
ar & pt.lower_right & pt.top_left;
// clang-format on

}

Even if you can’t modify a class to befriend it, you can still be able to serialize your class provided that your class is
default constructable and you are able to reconstruct it yourself.

class point_class
{
public:

point_class(int x, int y)
: x(x)
, y(y)

{
(continues on next page)

42 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

}

point_class() = default;

[[nodiscard]] int get_x() const noexcept
{

return x;
}

[[nodiscard]] int get_y() const noexcept
{

return y;
}

private:
int x;
int y;

};

template <typename Archive>
void load(Archive& ar, point_class& pt, const unsigned int)
{

int x, y;
ar >> x >> y;
pt = point_class(x, y);

}

template <typename Archive>
void save(Archive& ar, point_class const& pt, const unsigned int)
{

ar << pt.get_x() << pt.get_y();
}

// This tells HPX that you have spilt your serialize function into
// load and save
HPX_SERIALIZATION_SPLIT_FREE(point_class)

Serializing non default constructable classes

Some classes don’t provide any default constructor.

class planet_weight_calculator
{
public:

explicit planet_weight_calculator(double g)
: g(g)

{
}

template <class Archive>
friend void save_construct_data(

(continues on next page)

2.2. Examples 43

HPX Documentation, master

(continued from previous page)

Archive&, planet_weight_calculator const*, unsigned int);

[[nodiscard]] double get_g() const
{

return g;
}

private:
// Provides serialization access to HPX
friend class hpx::serialization::access;
template <class Archive>
void serialize(Archive&, const unsigned int)
{

// Serialization will be done in the save_construct_data
// Still needs to be defined

}

double g;
};

In this case you have to define a save_construct_data and load_construct_data in which you do the serialization
yourself.

template <class Archive>
inline void save_construct_data(Archive& ar,

planet_weight_calculator const* weight_calc, const unsigned int)
{

ar << weight_calc->g; // Do all of your serialization here
}

template <class Archive>
inline void load_construct_data(

Archive& ar, planet_weight_calculator* weight_calc, const unsigned int)
{

double g;
ar >> g;

// ::new(ptr) construct new object at given address
hpx::construct_at(weight_calc, g);

}

Bitwise serialization for bitwise copyable data

When sending non arithmetic types not defined by std::is_arithmetic20, HPX has to (de)serialize each object sepa-
rately. However, if the class you are trying to send classes consists only of bitwise copyable datatypes, you may
mark your class as such. Then HPX will serialize your object bitwise instead of element wise. This has enor-
mous benefits, especially when sending a vector/array of your class. To define your class as such you need to call
HPX_IS_BITWISE_SERIALIZABLE(T) with your desired custom class.

20 https://en.cppreference.com/w/cpp/types/is_arithmetic

44 Chapter 2. What’s so special about HPX?

https://en.cppreference.com/w/cpp/types/is_arithmetic

HPX Documentation, master

struct point_member_serialization
{

int x{0};
int y{0};

// Required when defining the serialization function as private
// In this case it isn't
// Provides serialization access to HPX
friend class hpx::serialization::access;

// Second argument exists solely for compatibility with boost serialize
// it is NOT processed by HPX in any way.
template <typename Archive>
void serialize(Archive& ar, const unsigned int)
{

// clang-format off
ar & x & y;
// clang-format on

}
};

// Allow bitwise serialization
HPX_IS_BITWISE_SERIALIZABLE(point_member_serialization)

2.3 Manual

The manual is your comprehensive guide to HPX. It contains detailed information on how to build and use HPX in
different scenarios.

2.3.1 Prerequisites

Supported platforms

At this time, HPX supports the following platforms. Other platforms may work, but we do not test HPX with other
platforms, so please be warned.

Table 2.1: Supported Platforms for HPX
Name Minimum Version Architectures
Linux 2.6 x86-32, x86-64, k1om
BlueGeneQ V1R2M0 PowerPC A2
Windows Any Windows system x86-32, x86-64
Mac OSX Any OSX system x86-64
ARM Any ARM system Any architecture
RISC-V Any RISC-V system Any architecture

2.3. Manual 45

HPX Documentation, master

Supported compilers

The table below shows the supported compilers for HPX.

Table 2.2: Supported Compilers for HPX
Name Minimum Version Latest tested
GNU Compiler Collection (g++)21 11.0 15.0
clang: a C language family frontend for LLVM22 16.0 20.0
Visual C++23 (x64) 2019 2022

Software and libraries

The table below presents all the necessary prerequisites for building HPX.

Table 2.3: Software prerequisites for HPX
Name Minimum Version Latest tested

Build System CMake24 3.18 4.0
Required Libraries Boost25 1.71.0 1.88.0

Portable Hardware Locality (HWLOC)26 1.5 2.4

The most important dependencies are Boost27 and Portable Hardware Locality (HWLOC)28. The installation of Boost
is described in detail in Boost’s Getting Started29 document. A recent version of hwloc is required in order to support
thread pinning and NUMA awareness and can be found in Hwloc Downloads30.

HPX is written in 99.99% Standard C++ (the remaining 0.01% is platform specific assembly code). As such, HPX is
compilable with almost any standards compliant C++ compiler. The code base takes advantage of C++ language and
standard library features when available.

Note: When building Boost using gcc, please note that it is required to specify a cxxflags=-std=c++17 command
line argument to b2 (bjam).

Note: In most configurations, HPX depends only on header-only Boost. Boost.Filesystem is required if the standard
library does not support filesystem. The following are not needed by default, but are required in certain configurations:
Boost.Chrono, Boost.DateTime, Boost.Log, Boost.LogSetup, Boost.Regex, and Boost.Thread.

Depending on the options you chose while building and installing HPX, you will find that HPX may depend on several
other libraries such as those listed below.

21 https://gcc.gnu.org
22 https://clang.llvm.org/
23 https://msdn.microsoft.com/en-us/visualc/default.aspx
24 https://www.cmake.org
25 https://www.boost.org/
26 https://www.open-mpi.org/projects/hwloc/
27 https://www.boost.org/
28 https://www.open-mpi.org/projects/hwloc/
29 https://www.boost.org/more/getting_started/index.html
30 https://www.open-mpi.org/software/hwloc/v1.11

46 Chapter 2. What’s so special about HPX?

https://gcc.gnu.org
https://clang.llvm.org/
https://msdn.microsoft.com/en-us/visualc/default.aspx
https://www.cmake.org
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://www.boost.org/more/getting_started/index.html
https://www.open-mpi.org/software/hwloc/v1.11

HPX Documentation, master

Note: In order to use a high speed parcelport, we currently recommend configuring HPX to use MPI so that MPI can
be used for communication between different localities. Please set the CMake variable MPI_CXX_COMPILER to your
MPI C++ compiler wrapper if not detected automatically.

Table 2.4: Optional software prerequisites for HPX
Name Minimum version
google-perftools31 1.7.1
jemalloc32 2.1.0
mi-malloc33 1.0.0
Performance Application Programming Interface (PAPI)

2.3.2 Getting HPX

Download a tarball of the latest release from HPX Downloads34 and unpack it or clone the repository directly using
git:

$ git clone https://github.com/STEllAR-GROUP/hpx.git

It is also recommended that you check out the latest stable tag:

$ cd hpx

$ git checkout v2.0.0

2.3.3 Building HPX

Basic information

The build system for HPX is based on CMake35, a cross-platform build-generator tool which is not responsible for
building the project but rather generates the files needed by your build tool (GNU make, Visual Studio, etc.) for building
HPX. If CMake is not already installed in your system, you can download it and install it here: CMake Downloads36.

Once CMake37 has been run, the build process can be started. The build process consists of the following parts:

• The HPX core libraries (target core): This forms the basic set of HPX libraries.

• HPX Examples (target examples): This target is enabled by default and builds all HPX examples (disable by
setting HPX_WITH_EXAMPLES:BOOL=Off). HPX examples are part of the all target and are included in the
installation if enabled.

• HPX Tests (target tests): This target builds the HPX test suite and is enabled by default (disable by setting
HPX_WITH_TESTS:BOOL =Off). They are not built by the all target and have to be built separately.

• HPX Documentation (target docs): This target builds the documentation, and is not enabled by default (enable
by setting HPX_WITH_DOCUMENTATION:BOOL=On. For more information see Documentation.

31 https://code.google.com/p/gperftools
32 http://jemalloc.net
33 http://microsoft.github.io/mimalloc/
34 https://hpx.stellar-group.org/downloads/
35 https://www.cmake.org
36 https://www.cmake.org/cmake/resources/software.html
37 https://www.cmake.org

2.3. Manual 47

https://code.google.com/p/gperftools
http://jemalloc.net
http://microsoft.github.io/mimalloc/
https://hpx.stellar-group.org/downloads/
https://www.cmake.org
https://www.cmake.org/cmake/resources/software.html
https://www.cmake.org

HPX Documentation, master

The HPX build process is highly configurable through CMake38, and various CMake39 variables influence the build
process. A list with the most important CMake40 variables can be found in the section that follows, while the complete
list of available CMake41 variables is in CMake options. These variables can be used to refine the recipes that can
be found at Platform specific build recipes, a section that shows some basic steps on how to build HPX for a specific
platform.

In order to use HPX, only the core libraries are required. In order to use the optional libraries, you need to specify them
as link dependencies in your build (See Creating HPX projects).

Most important CMake options

While building HPX, you are provided with multiple CMake options which correspond to different configurations.
Below, there is a set of the most important and frequently used CMake options.

HPX_WITH_MALLOC

Use a custom allocator. Using a custom allocator tuned for multithreaded applications is very important for the
performance of HPX applications. When debugging applications, it’s useful to set this to system, as custom
allocators can hide some memory-related bugs. Note that setting this to something other than system requires
an external dependency.

HPX_WITH_CUDA

Enable support for CUDA. Use CMAKE_CUDA_COMPILER to set the CUDA compiler. This is a standard CMake42

variable, like CMAKE_CXX_COMPILER.

HPX_WITH_PARCELPORT_MPI

Enable the MPI parcelport. This enables the use of MPI for the networking operations in the HPX runtime. The
default value is OFF because it’s not available on all systems and/or requires another dependency. However, it is
the recommended parcelport.

HPX_WITH_PARCELPORT_TCP

Enable the TCP parcelport. Enables the use of TCP for networking in the runtime. The default value is ON.
However, it’s only recommended for debugging purposes, as it is slower than the MPI parcelport.

HPX_WITH_PARCELPORT_LCI

Enable the LCI parcelport. This enables the use of LCI for the networking operations in the HPX runtime. The
default value is OFF because it’s not available on all systems and/or requires another dependency. However, this
experimental parcelport may provide better performance than the MPI parcelport. Please refer to Using the LCI
parcelport for more information about the LCI parcelport.

HPX_WITH_APEX

Enable APEX integration. APEX43 can be used to profile HPX applications. In particular, it provides information
about individual tasks in the HPX runtime.

HPX_WITH_GENERIC_CONTEXT_COROUTINES

Enable Boost. Context for task context switching. It must be enabled for non-x86 architectures such as ARM
and Power.

HPX_WITH_MAX_CPU_COUNT

Set the maximum CPU count supported by HPX. The default value is 64, and should be set to a number at least
as high as the number of cores on a system including virtual cores such as hyperthreads.

38 https://www.cmake.org
39 https://www.cmake.org
40 https://www.cmake.org
41 https://www.cmake.org
42 https://www.cmake.org
43 https://uo-oaciss.github.io/apex/quickstarthpx/

48 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://uo-oaciss.github.io/apex/quickstarthpx/

HPX Documentation, master

HPX_WITH_CXX_STANDARD

Set a specific C++ standard version e.g. HPX_WITH_CXX_STANDARD=20. The default and minimum value is 17.

HPX_WITH_EXAMPLES

Build examples.

HPX_WITH_TESTS

Build tests.

For a complete list of available CMake44 variables that influence the build of HPX, see CMake options.

Build types

CMake45 can be configured to generate project files suitable for builds that have enabled debugging support or for an
optimized build (without debugging support). The CMake46 variable used to set the build type is CMAKE_BUILD_TYPE
(for more information see the CMake Documentation47). Available build types are:

• Debug: Full debug symbols are available as well as additional assertions to help debugging. To enable the debug
build type for the HPX API, the C++ Macro HPX_DEBUG is defined.

• RelWithDebInfo: Release build with debugging symbols. This is most useful for profiling applications

• Release: Release build. This disables assertions and enables default compiler optimizations.

• RelMinSize: Release build with optimizations for small binary sizes.

Important: We currently don’t guarantee ABI compatibility between Debug and Release builds. Please make sure
that applications built against HPX use the same build type as you used to build HPX. For CMake builds, this means
that the CMAKE_BUILD_TYPE variables have to match and for projects not using CMake48, the HPX_DEBUG macro has
to be set in debug mode.

Platform specific build recipes

Unix variants

Once you have the source code and the dependencies and assuming all your dependencies are in paths known to
CMake49, the following gets you started:

1. First, set up a separate build directory to configure the project:

$ mkdir build && cd build

2. To configure the project you have the following options:

• To build the core HPX libraries and examples, and install them to your chosen location (recommended):

$ cmake -DCMAKE_INSTALL_PREFIX=/install/path ..

44 https://www.cmake.org
45 https://www.cmake.org
46 https://www.cmake.org
47 https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
48 https://www.cmake.org
49 https://www.cmake.org

2.3. Manual 49

https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
https://www.cmake.org
https://www.cmake.org

HPX Documentation, master

Tip: If you want to change CMake50 variables for your build, it is usually a good idea to start with a
clean build directory to avoid configuration problems. It is especially important that you use a clean
build directory when changing between Release and Debug modes.

• To install HPX to the default system folders, simply leave out the CMAKE_INSTALL_PREFIX option:

$ cmake ..

• If your dependencies are in custom locations, you may need to tell CMake51 where to find them by passing
one or more options to CMake52 as shown below:

$ cmake -DBoost_ROOT=/path/to/boost
-DHwloc_ROOT=/path/to/hwloc
-DTcmalloc_ROOT=/path/to/tcmalloc
-DJemalloc_ROOT=/path/to/jemalloc
[other CMake variable definitions]
/path/to/source/tree

For instance:

$ cmake -DBoost_ROOT=~/packages/boost -DHwloc_ROOT=/packages/hwloc -DCMAKE_
→˓INSTALL_PREFIX=~/packages/hpx ~/downloads/hpx_1.5.1

• If you want to try HPX without using a custom allocator pass -DHPX_WITH_MALLOC=system to CMake53:

$ cmake -DCMAKE_INSTALL_PREFIX=/install/path -DHPX_WITH_MALLOC=system ..

Note: Please pay special attention to the section about HPX_WITH_MALLOC:STRING as this is crucial
for getting decent performance.

Important: If you are building HPX for a system with more than 64 processing units, you must change the
CMake54 variable HPX_WITH_MAX_CPU_COUNT (to a value at least as big as the number of (virtual) cores on
your system). Note that the default value is 64.

Caution: Compiling and linking HPX needs a considerable amount of memory. It is advisable that at least
2 GB of memory per parallel process is available.

3. Once the configuration is complete, to build the project you run:

$ cmake --build . --target install

50 https://www.cmake.org
51 https://www.cmake.org
52 https://www.cmake.org
53 https://www.cmake.org
54 https://www.cmake.org

50 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org

HPX Documentation, master

Windows

Note: The following build recipes are mostly user-contributed and may be outdated. We always welcome updated and
new build recipes.

To build HPX under Windows 10 x64 with Visual Studio 2015:

• Download the CMake V3.19 installer (or latest version) from here55

• Download the hwloc V1.11.0 (or the latest version) from here56 and unpack it.

• Download the latest Boost libraries from here57 and unpack them.

• Build the Boost DLLs and LIBs by using these commands from Command Line (or PowerShell). Open
CMD/PowerShell inside the Boost dir and type in:

.\bootstrap.bat

This batch file will set up everything needed to create a successful build. Now execute:

.\b2.exe link=shared variant=release,debug architecture=x86 address-model=64␣
→˓threading=multi --build-type=complete install

This command will start a (very long) build of all available Boost libraries. Please, be patient.

• Open CMake-GUI.exe and set up your source directory (input field ‘Where is the source code’) to the base
directory of the source code you downloaded from HPX’s GitHub pages. Here’s an example of CMake path
settings, which point to the Documents/GitHub/hpx folder:

Inside ‘Where is the source-code’ enter the base directory of your HPX source directory (do not enter the “src”
sub-directory!). Inside ‘Where to build the binaries’ you should put in the path where all the building processes
will happen. This is important because the building machinery will do an “out-of-tree” build. CMake will not
touch or change the original source files in any way. Instead, it will generate Visual Studio Solution Files, which
will build HPX packages out of the HPX source tree.

• Set new configuration variables (in CMake, not in Windows environment): Boost_ROOT, Hwloc_ROOT,
Asio_ROOT, CMAKE_INSTALL_PREFIX. The meaning of these variables is as follows:

– Boost_ROOT the HPX root directory of the unpacked Boost headers/cpp files.

– Hwloc_ROOT the HPX root directory of the unpacked Portable Hardware Locality files.

– Asio_ROOT the HPX root directory of the unpacked ASIO files. Alternatively use HPX_WITH_FETCH_ASIO
with value True.

– CMAKE_INSTALL_PREFIX the HPX root directory where the future builds of HPX should be installed.

Note: HPX is a very large software collection, so it is not recommended to use the default C:\Program
Files\hpx. Many users may prefer to use simpler paths without whitespace, like C:\bin\hpx or D:\
bin\hpx etc.

To insert new env-vars click on “Add Entry” and then insert the name inside “Name”, select PATH as Type and
put the path-name in the “Path” text field. Repeat this for the first three variables.

This is how variable insertion will look:
55 https://blog.kitware.com/cmake-3-19-0-available-for-download/
56 https://www.open-mpi.org/software/hwloc/v2.11/
57 https://www.boost.org/users/download/

2.3. Manual 51

https://blog.kitware.com/cmake-3-19-0-available-for-download/
https://www.open-mpi.org/software/hwloc/v2.11/
https://www.boost.org/users/download/

HPX Documentation, master

Fig. 2.3: Example CMake path settings.

52 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Fig. 2.4: Example CMake adding entry.

2.3. Manual 53

HPX Documentation, master

Alternatively, users could provide Boost_LIBRARYDIR instead of Boost_ROOT; the difference is that
Boost_LIBRARYDIR should point to the subdirectory inside Boost root where all the compiled DLLs/LIBs are.
For example, Boost_LIBRARYDIR may point to the bin.v2 subdirectory under the Boost rootdir. It is important
to keep the meanings of these two variables separated from each other: Boost_DIR points to the ROOT folder
of the Boost library. Boost_LIBRARYDIR points to the subdir inside the Boost root folder where the compiled
binaries are.

• Click the ‘Configure’ button of CMake-GUI. You will be immediately presented with a small window where you
can select the C++ compiler to be used within Visual Studio. This has been tested using the latest v14 (a.k.a C++
2015) but older versions should be sufficient too. Make sure to select the 64Bit compiler.

• After the generate process has finished successfully, click the ‘Generate’ button. Now, CMake will put new VS
Solution files into the BUILD folder you selected at the beginning.

• Open Visual Studio and load the HPX.sln from your build folder.

• Go to CMakePredefinedTargets and build the INSTALL project:

Fig. 2.5: Visual Studio INSTALL target.

It will take some time to compile everything, and in the end you should see an output similar to this one:

2.3.4 CMake options

In order to configure HPX, you can set a variety of options to allow CMake to generate your specific makefiles/project
files. A list of the most important CMake options can be found in Most important CMake options, while this section
includes the comprehensive list.

54 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Fig. 2.6: Visual Studio build output.

Variables that influence how HPX is built

The options are split into these categories:

• Generic options

• Build Targets options

• Thread Manager options

• AGAS options

• Parcelport options

• Profiling options

• Debugging options

• Modules options

2.3. Manual 55

HPX Documentation, master

Generic options

• HPX_WITH_AUTOMATIC_SERIALIZATION_REGISTRATION:BOOL

• HPX_WITH_BENCHMARK_SCRIPTS_PATH:PATH

• HPX_WITH_BUILD_BINARY_PACKAGE:BOOL

• HPX_WITH_CHECK_MODULE_DEPENDENCIES:BOOL

• HPX_WITH_COMPILER_WARNINGS:BOOL

• HPX_WITH_COMPILER_WARNINGS_AS_ERRORS:BOOL

• HPX_WITH_COMPRESSION_BZIP2:BOOL

• HPX_WITH_COMPRESSION_SNAPPY:BOOL

• HPX_WITH_COMPRESSION_ZLIB:BOOL

• HPX_WITH_CUDA:BOOL

• HPX_WITH_CXX_STANDARD:STRING

• HPX_WITH_DATAPAR:BOOL

• HPX_WITH_DATAPAR_BACKEND:STRING

• HPX_WITH_DATAPAR_VC_NO_LIBRARY:BOOL

• HPX_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS:BOOL

• HPX_WITH_DYNAMIC_HPX_MAIN:BOOL

• HPX_WITH_FAULT_TOLERANCE:BOOL

• HPX_WITH_FULL_RPATH:BOOL

• HPX_WITH_GCC_VERSION_CHECK:BOOL

• HPX_WITH_GENERIC_CONTEXT_COROUTINES:BOOL

• HPX_WITH_HIDDEN_VISIBILITY:BOOL

• HPX_WITH_HIP:BOOL

• HPX_WITH_HIPSYCL:BOOL

• HPX_WITH_IGNORE_COMPILER_COMPATIBILITY:BOOL

• HPX_WITH_LOGGING:BOOL

• HPX_WITH_MALLOC:STRING

• HPX_WITH_MODULES_AS_STATIC_LIBRARIES:BOOL

• HPX_WITH_NICE_THREADLEVEL:BOOL

• HPX_WITH_PARCEL_COALESCING:BOOL

• HPX_WITH_PKGCONFIG:BOOL

• HPX_WITH_PRECOMPILED_HEADERS:BOOL

• HPX_WITH_RUN_MAIN_EVERYWHERE:BOOL

• HPX_WITH_STACKOVERFLOW_DETECTION:BOOL

• HPX_WITH_STATIC_LINKING:BOOL

56 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• HPX_WITH_SUPPORT_NO_UNIQUE_ADDRESS_ATTRIBUTE:BOOL

• HPX_WITH_SYCL:BOOL

• HPX_WITH_SYCL_FLAGS:STRING

• HPX_WITH_UNITY_BUILD:BOOL

• HPX_WITH_VIM_YCM:BOOL

• HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD:STRING

HPX_WITH_AUTOMATIC_SERIALIZATION_REGISTRATION:BOOL

Use automatic serialization registration for actions and functions. This affects compatibility between HPX ap-
plications compiled with different compilers (default ON)

HPX_WITH_BENCHMARK_SCRIPTS_PATH:PATH

Directory to place batch scripts in

HPX_WITH_BUILD_BINARY_PACKAGE:BOOL

Build HPX on the build infrastructure on any LINUX distribution (default: OFF).

HPX_WITH_CHECK_MODULE_DEPENDENCIES:BOOL

Verify that no modules are cross-referenced from a different module category (default: OFF)

HPX_WITH_COMPILER_WARNINGS:BOOL

Enable compiler warnings (default: ON)

HPX_WITH_COMPILER_WARNINGS_AS_ERRORS:BOOL

Turn compiler warnings into errors (default: OFF)

HPX_WITH_COMPRESSION_BZIP2:BOOL

Enable bzip2 compression for parcel data (default: OFF).

HPX_WITH_COMPRESSION_SNAPPY:BOOL

Enable snappy compression for parcel data (default: OFF).

HPX_WITH_COMPRESSION_ZLIB:BOOL

Enable zlib compression for parcel data (default: OFF).

HPX_WITH_CUDA:BOOL

Enable support for CUDA (default: OFF)

HPX_WITH_CXX_STANDARD:STRING

Set the C++ standard to use when compiling HPX itself. (default: 17)

HPX_WITH_DATAPAR:BOOL

Enable data parallel algorithm support using Vc library (default: ON)

HPX_WITH_DATAPAR_BACKEND:STRING

Define which vectorization library should be used. Options are: VC, EVE, STD_EXPERIMENTAL_SIMD,
SVE; NONE

HPX_WITH_DATAPAR_VC_NO_LIBRARY:BOOL

Don’t link with the Vc static library (default: OFF)

HPX_WITH_DEPRECATION_WARNINGS:BOOL

Enable warnings for deprecated facilities (default: ON).

2.3. Manual 57

HPX Documentation, master

HPX_WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS:BOOL

Disables the mechanism that produces debug output for caught signals and unhandled exceptions (default: OFF)

HPX_WITH_DYNAMIC_HPX_MAIN:BOOL

Enable dynamic overload of system main() (Linux and Apple only, default: ON)

HPX_WITH_FAULT_TOLERANCE:BOOL

Build HPX to tolerate failures of nodes, i.e. ignore errors in active communication channels (default: OFF)

HPX_WITH_FULL_RPATH:BOOL

Build and link HPX libraries and executables with full RPATHs (default: ON)

HPX_WITH_GCC_VERSION_CHECK:BOOL

Don’t ignore version reported by gcc (default: ON)

HPX_WITH_GENERIC_CONTEXT_COROUTINES:BOOL

Use Boost.Context as the underlying coroutines context switch implementation.

HPX_WITH_HIDDEN_VISIBILITY:BOOL

Use -fvisibility=hidden for builds on platforms which support it (default OFF)

HPX_WITH_HIP:BOOL

Enable compilation with HIPCC (default: OFF)

HPX_WITH_HIPSYCL:BOOL

Use hipsycl cmake integration (default: OFF)

HPX_WITH_IGNORE_COMPILER_COMPATIBILITY:BOOL

Ignore compiler incompatibility in dependent projects (default: ON).

HPX_WITH_LOGGING:BOOL

Build HPX with logging enabled (default: ON).

HPX_WITH_MALLOC:STRING

Define which allocator should be linked in. Options are: system, tcmalloc, jemalloc, mimalloc, tbbmalloc, and
custom (default is: tcmalloc)

HPX_WITH_MODULES_AS_STATIC_LIBRARIES:BOOL

Compile HPX modules as STATIC (whole-archive) libraries instead of OBJECT libraries (Default: ON)

HPX_WITH_NICE_THREADLEVEL:BOOL

Set HPX worker threads to have high NICE level (may impact performance) (default: OFF)

HPX_WITH_PARCEL_COALESCING:BOOL

Enable the parcel coalescing plugin (default: ON).

HPX_WITH_PKGCONFIG:BOOL

Enable generation of pkgconfig files (default: ON on Linux without CUDA/HIP, otherwise OFF)

HPX_WITH_PRECOMPILED_HEADERS:BOOL

Enable precompiled headers for certain build targets (experimental) (default OFF)

HPX_WITH_RUN_MAIN_EVERYWHERE:BOOL

Run hpx_main by default on all localities (default: OFF, deprecated, will be removed).

HPX_WITH_STACKOVERFLOW_DETECTION:BOOL

Enable stackoverflow detection for HPX threads/coroutines (default: OFF, debug: ON).

58 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX_WITH_STATIC_LINKING:BOOL

Compile HPX statically linked libraries (Default: OFF)

HPX_WITH_SUPPORT_NO_UNIQUE_ADDRESS_ATTRIBUTE:BOOL

Enable the use of the [[no_unique_address]] attribute (default: ON)

HPX_WITH_SYCL:BOOL

Enable support for Sycl (default: OFF)

HPX_WITH_SYCL_FLAGS:STRING

Sycl compile flags for selecting specific targets (default: empty)

HPX_WITH_UNITY_BUILD:BOOL

Enable unity build for certain build targets (default OFF)

HPX_WITH_VIM_YCM:BOOL

Generate HPX completion file for VIM YouCompleteMe plugin

HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD:STRING

The threshold in bytes to when perform zero copy optimizations (default: 8192)

Build Targets options

• HPX_WITH_ASIO_TAG:STRING

• HPX_WITH_COMPILE_ONLY_TESTS:BOOL

• HPX_WITH_DISTRIBUTED_RUNTIME:BOOL

• HPX_WITH_DOCUMENTATION:BOOL

• HPX_WITH_DOCUMENTATION_OUTPUT_FORMATS:STRING

• HPX_WITH_EXAMPLES:BOOL

• HPX_WITH_EXAMPLES_HDF5:BOOL

• HPX_WITH_EXAMPLES_OPENMP:BOOL

• HPX_WITH_EXAMPLES_QT4:BOOL

• HPX_WITH_EXAMPLES_QTHREADS:BOOL

• HPX_WITH_EXAMPLES_TBB:BOOL

• HPX_WITH_EXECUTABLE_PREFIX:STRING

• HPX_WITH_FAIL_COMPILE_TESTS:BOOL

• HPX_WITH_FETCH_APEX:BOOL

• HPX_WITH_FETCH_ASIO:BOOL

• HPX_WITH_FETCH_BOOST:BOOL

• HPX_WITH_FETCH_GASNET:BOOL

• HPX_WITH_FETCH_HWLOC:BOOL

• HPX_WITH_FETCH_LCI:BOOL

• HPX_WITH_IO_COUNTERS:BOOL

• HPX_WITH_LCI_TAG:STRING

2.3. Manual 59

HPX Documentation, master

• HPX_WITH_NANOBENCH:BOOL

• HPX_WITH_PARALLEL_LINK_JOBS:STRING

• HPX_WITH_TESTS:BOOL

• HPX_WITH_TESTS_BENCHMARKS:BOOL

• HPX_WITH_TESTS_EXAMPLES:BOOL

• HPX_WITH_TESTS_EXTERNAL_BUILD:BOOL

• HPX_WITH_TESTS_HEADERS:BOOL

• HPX_WITH_TESTS_REGRESSIONS:BOOL

• HPX_WITH_TESTS_UNIT:BOOL

• HPX_WITH_TOOLS:BOOL

HPX_WITH_ASIO_TAG:STRING

Asio repository tag or branch

HPX_WITH_COMPILE_ONLY_TESTS:BOOL

Create build system support for compile time only HPX tests (default ON)

HPX_WITH_DISTRIBUTED_RUNTIME:BOOL

Enable the distributed runtime (default: ON). Turning off the distributed runtime completely disallows the cre-
ation and use of components and actions. Turning this option off is experimental!

HPX_WITH_DOCUMENTATION:BOOL

Build the HPX documentation (default OFF).

HPX_WITH_DOCUMENTATION_OUTPUT_FORMATS:STRING

List of documentation output formats to generate. Valid options are html;singlehtml;latexpdf;man. Multiple
values can be separated with semicolons. (default html).

HPX_WITH_EXAMPLES:BOOL

Build the HPX examples (default ON)

HPX_WITH_EXAMPLES_HDF5:BOOL

Enable examples requiring HDF5 support (default: OFF).

HPX_WITH_EXAMPLES_OPENMP:BOOL

Enable examples requiring OpenMP support (default: OFF).

HPX_WITH_EXAMPLES_QT4:BOOL

Enable examples requiring Qt4 support (default: OFF).

HPX_WITH_EXAMPLES_QTHREADS:BOOL

Enable examples requiring QThreads support (default: OFF).

HPX_WITH_EXAMPLES_TBB:BOOL

Enable examples requiring TBB support (default: OFF).

HPX_WITH_EXECUTABLE_PREFIX:STRING

Executable prefix (default none), ‘hpx_’ useful for system install.

HPX_WITH_FAIL_COMPILE_TESTS:BOOL

Create build system support for fail compile HPX tests (default ON)

60 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX_WITH_FETCH_APEX:BOOL

Use FetchContent to fetch APEX. By default an installed APEX will be used. (default: OFF)

HPX_WITH_FETCH_ASIO:BOOL

Use FetchContent to fetch Asio. By default an installed Asio will be used. (default: OFF)

HPX_WITH_FETCH_BOOST:BOOL

Use FetchContent to fetch Boost. By default an installed Boost will be used. (default: OFF)

HPX_WITH_FETCH_GASNET:BOOL

Use FetchContent to fetch GASNET. By default an installed GASNET will be used. (default: OFF).

HPX_WITH_FETCH_HWLOC:BOOL

Use FetchContent to fetch Hwloc. By default an installed Hwloc will be used. (default: OFF)

HPX_WITH_FETCH_LCI:BOOL

Use FetchContent to fetch LCI. By default an installed LCI will be used. (default: OFF)

HPX_WITH_IO_COUNTERS:BOOL

Enable IO counters (default: ON)

HPX_WITH_LCI_TAG:STRING

LCI repository tag or branch

HPX_WITH_NANOBENCH:BOOL

Use Nanobench for performance tests. Nanobench will be fetched using FetchContent (default: OFF)

HPX_WITH_PARALLEL_LINK_JOBS:STRING

Number of Parallel link jobs while building hpx (only for Ninja as generator) (default 2)

HPX_WITH_TESTS:BOOL

Build the HPX tests (default ON)

HPX_WITH_TESTS_BENCHMARKS:BOOL

Build HPX benchmark tests (default: ON)

HPX_WITH_TESTS_EXAMPLES:BOOL

Add HPX examples as tests (default: ON)

HPX_WITH_TESTS_EXTERNAL_BUILD:BOOL

Build external cmake build tests (default: ON)

HPX_WITH_TESTS_HEADERS:BOOL

Build HPX header tests (default: OFF)

HPX_WITH_TESTS_REGRESSIONS:BOOL

Build HPX regression tests (default: ON)

HPX_WITH_TESTS_UNIT:BOOL

Build HPX unit tests (default: ON)

HPX_WITH_TOOLS:BOOL

Build HPX tools (default: OFF)

2.3. Manual 61

HPX Documentation, master

Thread Manager options

• HPX_COROUTINES_WITH_SWAP_CONTEXT_EMULATION:BOOL

• HPX_COROUTINES_WITH_THREAD_SCHEDULE_HINT_RUNS_AS_CHILD:BOOL

• HPX_WITH_COROUTINE_COUNTERS:BOOL

• HPX_WITH_IO_POOL:BOOL

• HPX_WITH_MAX_CPU_COUNT:STRING

• HPX_WITH_MAX_NUMA_DOMAIN_COUNT:STRING

• HPX_WITH_SCHEDULER_LOCAL_STORAGE:BOOL

• HPX_WITH_SPINLOCK_DEADLOCK_DETECTION:BOOL

• HPX_WITH_SPINLOCK_POOL_NUM:STRING

• HPX_WITH_STACKTRACES:BOOL

• HPX_WITH_STACKTRACES_DEMANGLE_SYMBOLS:BOOL

• HPX_WITH_STACKTRACES_STATIC_SYMBOLS:BOOL

• HPX_WITH_THREAD_BACKTRACE_DEPTH:STRING

• HPX_WITH_THREAD_BACKTRACE_ON_SUSPENSION:BOOL

• HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES:BOOL

• HPX_WITH_THREAD_CUMULATIVE_COUNTS:BOOL

• HPX_WITH_THREAD_IDLE_RATES:BOOL

• HPX_WITH_THREAD_LOCAL_STORAGE:BOOL

• HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF:BOOL

• HPX_WITH_THREAD_QUEUE_WAITTIME:BOOL

• HPX_WITH_THREAD_STACK_MMAP:BOOL

• HPX_WITH_THREAD_STEALING_COUNTS:BOOL

• HPX_WITH_THREAD_TARGET_ADDRESS:BOOL

• HPX_WITH_TIMER_POOL:BOOL

• HPX_WITH_WORK_REQUESTING_SCHEDULERS:BOOL

HPX_COROUTINES_WITH_SWAP_CONTEXT_EMULATION:BOOL

Emulate SwapContext API for coroutines (Windows only, default: OFF)

HPX_COROUTINES_WITH_THREAD_SCHEDULE_HINT_RUNS_AS_CHILD:BOOL

Futures attempt to run associated threads directly if those have not been started (default: OFF)

HPX_WITH_COROUTINE_COUNTERS:BOOL

Enable keeping track of coroutine creation and rebind counts (default: OFF)

HPX_WITH_IO_POOL:BOOL

Disable internal IO thread pool, do not change if not absolutely necessary (default: ON)

HPX_WITH_MAX_CPU_COUNT:STRING

HPX applications will not use more that this number of OS-Threads (empty string means dynamic) (default: “”)

62 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX_WITH_MAX_NUMA_DOMAIN_COUNT:STRING

HPX applications will not run on machines with more NUMA domains (default: 8)

HPX_WITH_SCHEDULER_LOCAL_STORAGE:BOOL

Enable scheduler local storage for all HPX schedulers (default: OFF)

HPX_WITH_SPINLOCK_DEADLOCK_DETECTION:BOOL

Enable spinlock deadlock detection (default: OFF)

HPX_WITH_SPINLOCK_POOL_NUM:STRING

Number of elements a spinlock pool manages (default: 128)

HPX_WITH_STACKTRACES:BOOL

Attach backtraces to HPX exceptions (default: ON)

HPX_WITH_STACKTRACES_DEMANGLE_SYMBOLS:BOOL

Thread stack back trace symbols will be demangled (default: ON)

HPX_WITH_STACKTRACES_STATIC_SYMBOLS:BOOL

Thread stack back trace will resolve static symbols (default: OFF)

HPX_WITH_THREAD_BACKTRACE_DEPTH:STRING

Thread stack back trace depth being captured (default: 20)

HPX_WITH_THREAD_BACKTRACE_ON_SUSPENSION:BOOL

Enable thread stack back trace being captured on suspension (default: OFF)

HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES:BOOL

Enable measuring thread creation and cleanup times (default: OFF)

HPX_WITH_THREAD_CUMULATIVE_COUNTS:BOOL

Enable keeping track of cumulative thread counts in the schedulers (default: ON)

HPX_WITH_THREAD_IDLE_RATES:BOOL

Enable measuring the percentage of overhead times spent in the scheduler (default: OFF)

HPX_WITH_THREAD_LOCAL_STORAGE:BOOL

Enable thread local storage for all HPX threads (default: OFF)

HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF:BOOL

HPX scheduler threads do exponential backoff on idle queues (default: ON)

HPX_WITH_THREAD_QUEUE_WAITTIME:BOOL

Enable collecting queue wait times for threads (default: OFF)

HPX_WITH_THREAD_STACK_MMAP:BOOL

Use mmap for stack allocation on appropriate platforms

HPX_WITH_THREAD_STEALING_COUNTS:BOOL

Enable keeping track of counts of thread stealing incidents in the schedulers (default: OFF)

HPX_WITH_THREAD_TARGET_ADDRESS:BOOL

Enable storing target address in thread for NUMA awareness (default: OFF)

HPX_WITH_TIMER_POOL:BOOL

Disable internal timer thread pool, do not change if not absolutely necessary (default: ON)

HPX_WITH_WORK_REQUESTING_SCHEDULERS:BOOL

Enable work requesting scheduler (default: ON)

2.3. Manual 63

HPX Documentation, master

AGAS options

• HPX_WITH_AGAS_DUMP_REFCNT_ENTRIES:BOOL

HPX_WITH_AGAS_DUMP_REFCNT_ENTRIES:BOOL

Enable dumps of the AGAS refcnt tables to logs (default: OFF)

Parcelport options

• HPX_WITH_NETWORKING:BOOL

• HPX_WITH_PARCELPORT_ACTION_COUNTERS:BOOL

• HPX_WITH_PARCELPORT_COUNTERS:BOOL

• HPX_WITH_PARCELPORT_GASNET:BOOL

• HPX_WITH_PARCELPORT_LCI:BOOL

• HPX_WITH_PARCELPORT_LCI_LOG:STRING

• HPX_WITH_PARCELPORT_LCI_PCOUNTER:STRING

• HPX_WITH_PARCELPORT_LIBFABRIC:BOOL

• HPX_WITH_PARCELPORT_MPI:BOOL

• HPX_WITH_PARCELPORT_TCP:BOOL

• HPX_WITH_PARCEL_PROFILING:BOOL

HPX_WITH_NETWORKING:BOOL

Enable support for networking and multi-node runs (default: ON)

HPX_WITH_PARCELPORT_ACTION_COUNTERS:BOOL

Enable performance counters reporting parcelport statistics on a per-action basis.

HPX_WITH_PARCELPORT_COUNTERS:BOOL

Enable performance counters reporting parcelport statistics.

HPX_WITH_PARCELPORT_GASNET:BOOL

Enable the GASNET based parcelport.

HPX_WITH_PARCELPORT_LCI:BOOL

Enable the LCI based parcelport.

HPX_WITH_PARCELPORT_LCI_LOG:STRING

Enable the LCI-parcelport-specific logger

HPX_WITH_PARCELPORT_LCI_PCOUNTER:STRING

Enable the LCI-parcelport-specific performance counter

HPX_WITH_PARCELPORT_LIBFABRIC:BOOL

Enable the libfabric based parcelport. This is currently an experimental feature

HPX_WITH_PARCELPORT_MPI:BOOL

Enable the MPI based parcelport.

HPX_WITH_PARCELPORT_TCP:BOOL

Enable the TCP based parcelport.

64 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX_WITH_PARCEL_PROFILING:BOOL

Enable profiling data for parcels

Profiling options

• HPX_WITH_APEX:BOOL

• HPX_WITH_ITTNOTIFY:BOOL

• HPX_WITH_PAPI:BOOL

HPX_WITH_APEX:BOOL

Enable APEX instrumentation support.

HPX_WITH_ITTNOTIFY:BOOL

Enable Amplifier (ITT) instrumentation support.

HPX_WITH_PAPI:BOOL

Enable the PAPI based performance counter.

Debugging options

• HPX_WITH_ATTACH_DEBUGGER_ON_TEST_FAILURE:BOOL

• HPX_WITH_PARALLEL_TESTS_BIND_NONE:BOOL

• HPX_WITH_SANITIZERS:BOOL

• HPX_WITH_TESTS_COMMAND_LINE:STRING

• HPX_WITH_TESTS_DEBUG_LOG:BOOL

• HPX_WITH_TESTS_DEBUG_LOG_DESTINATION:STRING

• HPX_WITH_TESTS_MAX_THREADS_PER_LOCALITY:STRING

• HPX_WITH_THREAD_DEBUG_INFO:BOOL

• HPX_WITH_THREAD_DESCRIPTION_FULL:BOOL

• HPX_WITH_THREAD_GUARD_PAGE:BOOL

• HPX_WITH_VALGRIND:BOOL

• HPX_WITH_VERIFY_LOCKS:BOOL

• HPX_WITH_VERIFY_LOCKS_BACKTRACE:BOOL

HPX_WITH_ATTACH_DEBUGGER_ON_TEST_FAILURE:BOOL

Break the debugger if a test has failed (default: OFF)

HPX_WITH_PARALLEL_TESTS_BIND_NONE:BOOL

Pass –hpx:bind=none to tests that may run in parallel (cmake -j flag) (default: OFF)

HPX_WITH_SANITIZERS:BOOL

Configure with sanitizer instrumentation support.

HPX_WITH_TESTS_COMMAND_LINE:STRING

Add given command line options to all tests run

2.3. Manual 65

HPX Documentation, master

HPX_WITH_TESTS_DEBUG_LOG:BOOL

Turn on debug logs (–hpx:debug-hpx-log) for tests (default: OFF)

HPX_WITH_TESTS_DEBUG_LOG_DESTINATION:STRING

Destination for test debug logs (default: cout)

HPX_WITH_TESTS_MAX_THREADS_PER_LOCALITY:STRING

Maximum number of threads to use for tests (default: 0, use the number of threads specified by the test)

HPX_WITH_THREAD_DEBUG_INFO:BOOL

Enable thread debugging information (default: OFF, implicitly enabled in debug builds)

HPX_WITH_THREAD_DESCRIPTION_FULL:BOOL

Use function address for thread description (default: OFF)

HPX_WITH_THREAD_GUARD_PAGE:BOOL

Enable thread guard page (default: ON)

HPX_WITH_VALGRIND:BOOL

Enable Valgrind instrumentation support.

HPX_WITH_VERIFY_LOCKS:BOOL

Enable lock verification code (default: OFF, enabled in debug builds)

HPX_WITH_VERIFY_LOCKS_BACKTRACE:BOOL

Enable thread stack back trace being captured on lock registration (to be used in combination with
HPX_WITH_VERIFY_LOCKS=ON, default: OFF)

Modules options

• HPX_ALLOCATOR_SUPPORT_WITH_CACHING:BOOL

• HPX_COMMAND_LINE_HANDLING_LOCAL_WITH_JSON_CONFIGURATION_FILES:BOOL

• HPX_DATASTRUCTURES_WITH_ADAPT_STD_TUPLE:BOOL

• HPX_DATASTRUCTURES_WITH_ADAPT_STD_VARIANT:BOOL

• HPX_FILESYSTEM_WITH_BOOST_FILESYSTEM_COMPATIBILITY:BOOL

• HPX_ITERATOR_SUPPORT_WITH_BOOST_ITERATOR_TRAVERSAL_TAG_COMPATIBILITY:BOOL

• HPX_LOGGING_WITH_SEPARATE_DESTINATIONS:BOOL

• HPX_SERIALIZATION_WITH_ALLOW_CONST_TUPLE_MEMBERS:BOOL

• HPX_SERIALIZATION_WITH_ALLOW_RAW_POINTER_SERIALIZATION:BOOL

• HPX_SERIALIZATION_WITH_ALL_TYPES_ARE_BITWISE_SERIALIZABLE:BOOL

• HPX_SERIALIZATION_WITH_BOOST_TYPES:BOOL

• HPX_SERIALIZATION_WITH_SUPPORTS_ENDIANESS:BOOL

• HPX_TOPOLOGY_WITH_ADDITIONAL_HWLOC_TESTING:BOOL

• HPX_WITH_POWER_COUNTER:BOOL

HPX_ALLOCATOR_SUPPORT_WITH_CACHING:BOOL

Enable caching allocator. (default: ON)

66 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX_COMMAND_LINE_HANDLING_LOCAL_WITH_JSON_CONFIGURATION_FILES:BOOL

Enable reading JSON formatted configuration files on the command line.

(default: On)

HPX_DATASTRUCTURES_WITH_ADAPT_STD_TUPLE:BOOL

Enable compatibility of hpx::get with std::tuple. (default: ON)

HPX_DATASTRUCTURES_WITH_ADAPT_STD_VARIANT:BOOL

Enable compatibility of hpx::get with std::variant.

(default: OFF)

HPX_FILESYSTEM_WITH_BOOST_FILESYSTEM_COMPATIBILITY:BOOL

Enable Boost.FileSystem compatibility. (default: OFF)

HPX_ITERATOR_SUPPORT_WITH_BOOST_ITERATOR_TRAVERSAL_TAG_COMPATIBILITY:BOOL

Enable Boost.Iterator traversal tag compatibility. (default: OFF)

HPX_LOGGING_WITH_SEPARATE_DESTINATIONS:BOOL

Enable separate logging channels for AGAS, timing, and parcel transport. (default: ON)

HPX_SERIALIZATION_WITH_ALLOW_CONST_TUPLE_MEMBERS:BOOL

Enable serializing std::tuple with const members. (default: OFF)

HPX_SERIALIZATION_WITH_ALLOW_RAW_POINTER_SERIALIZATION:BOOL

Enable serializing raw pointers. (default: OFF)

HPX_SERIALIZATION_WITH_ALL_TYPES_ARE_BITWISE_SERIALIZABLE:BOOL

Assume all types are bitwise serializable. (default: OFF)

HPX_SERIALIZATION_WITH_BOOST_TYPES:BOOL

Enable serialization of certain Boost types. (default: OFF)

HPX_SERIALIZATION_WITH_SUPPORTS_ENDIANESS:BOOL

Support endian conversion on inout and output archives. (default: OFF)

HPX_TOPOLOGY_WITH_ADDITIONAL_HWLOC_TESTING:BOOL

Enable HWLOC filtering that makes it report no cores, this is purely an

option supporting better testing - do not enable under normal circumstances. (default: OFF)

HPX_WITH_POWER_COUNTER:BOOL

Enable use of performance counters based on pwr library (default: OFF)

Additional tools and libraries used by HPX

Here is a list of additional libraries and tools that are either optionally supported by the build system or are optionally
required for certain examples or tests. These libraries and tools can be detected by the HPX build system.

Each of the tools or libraries listed here will be automatically detected if they are installed in some standard location. If
a tool or library is installed in a different location, you can specify its base directory by appending _ROOT to the variable
name as listed below. For instance, to configure a custom directory for Boost, specify Boost_ROOT=/custom/boost/
root.

2.3. Manual 67

HPX Documentation, master

Boost_ROOT:PATH

Specifies where to look for the Boost installation to be used for compiling HPX. Set this if CMake is not able
to locate a suitable version of Boost. The directory specified here can be either the root of an installed Boost
distribution or the directory where you unpacked and built Boost without installing it (with staged libraries).

Hwloc_ROOT:PATH

Specifies where to look for the hwloc library. Set this if CMake is not able to locate a suitable version of hwloc.
Hwloc provides platform- independent support for extracting information about the used hardware architecture
(number of cores, number of NUMA domains, hyperthreading, etc.). HPX utilizes this information if available.

Papi_ROOT:PATH

Specifies where to look for the PAPI library. The PAPI library is needed to compile a special component exposing
PAPI hardware events and counters as HPX performance counters. This is not available on the Windows platform.

Amplifier_ROOT:PATH

Specifies where to look for one of the tools of the Intel Parallel Studio product, either Intel Amplifier or Intel
Inspector. This should be set if the CMake variable HPX_USE_ITT_NOTIFY is set to ON. Enabling ITT support in
HPX will integrate any application with the mentioned Intel tools, which customizes the generated information
for your application and improves the generated diagnostics.

In addition, some of the examples may need the following variables:

Hdf5_ROOT:PATH

Specifies where to look for the Hierarchical Data Format V5 (HDF5) include files and libraries.

2.3.5 Migration guide

The Migration Guide serves as a valuable resource for developers seeking to transition their parallel computing appli-
cations from different APIs (i.e. OpenMP, Intel Threading Building Blocks (TBB), MPI) to HPX. HPX, an advanced
C++ library, offers a versatile and high-performance platform for parallel and distributed computing, providing a wide
range of features and capabilities. This guide aims to assist developers in understanding the key differences between
different APIs and HPX, and it provides step-by-step instructions for converting code to HPX code effectively.

Some general steps that can be used to migrate code to HPX code are the following:

1. Install HPX using the Quick start guide.

2. Include the HPX header files:

Add the necessary header files for HPX at the beginning of your code, such as:

#include <hpx/init.hpp>

3. Replace your code with HPX code using the guide that follows.

4. Use HPX-specific features and APIs:

HPX provides additional features and APIs that can be used to take advantage of the library’s capabilities. For
example, you can use the HPX asynchronous execution to express fine-grained tasks and dependencies, or utilize
HPX’s distributed computing features for distributed memory systems.

5. Compile and run the HPX code:

Compile the converted code with the HPX library and run it using the appropriate HPX runtime environment.

68 Chapter 2. What’s so special about HPX?

HPX Documentation, master

OpenMP

The OpenMP API supports multi-platform shared-memory parallel programming in C/C++. Typically it is used for
loop-level parallelism, but it also supports function-level parallelism. Below are some examples on how to convert
OpenMP to HPX code:

OpenMP parallel for loop

Parallel for loop

OpenMP code:

#pragma omp parallel for
for (int i = 0; i < n; ++i) {

// loop body
}

HPX equivalent:

#include <hpx/algorithm.hpp>

hpx::experimental::for_loop(hpx::execution::par, 0, n, [&](int i) {
// loop body

});

In the above code, the OpenMP #pragma omp parallel for directive is replaced with hpx::experimental::for_loop
from the HPX library. The loop body within the lambda function will be executed in parallel for each iteration.

Private variables

OpenMP code:

int x = 0;

#pragma omp parallel for private(x)
for (int i = 0; i < n; ++i) {

// loop body
}

HPX equivalent:

#include <hpx/algorithm.hpp>

hpx::experimental::for_loop(hpx::execution::par, 0, n, [&](int i) {
int x = 0; // Declare 'x' as a local variable inside the loop body
// loop body

});

The variable x is declared as a local variable inside the loop body, ensuring that it is private to each thread.

2.3. Manual 69

HPX Documentation, master

Shared variables

OpenMP code:

int x = 0;

#pragma omp parallel for shared(x)
for (int i = 0; i < n; ++i) {

// loop body
}

HPX equivalent:

#include <hpx/algorithm.hpp>

std::atomic<int> x = 0; // Declare 'x' as a shared variable outside the loop

hpx::experimental::for_loop(hpx::execution::par, 0, n, [&](int i) {
// loop body

});

To ensure variable x is shared among all threads, you simply have to declare it as an atomic variable outside the for_loop.

Number of threads

OpenMP code:

#pragma omp parallel for num_threads(2)
for (int i = 0; i < n; ++i) {

// loop body
}

HPX equivalent:

#include <hpx/algorithm.hpp>
#include <hpx/execution.hpp>

hpx::execution::experimental::num_cores nc(2);

hpx::experimental::for_loop(hpx::execution::par.with(nc), 0, n, [&](int i) {
// loop body

});

To declare the number of threads to be used for the parallel region, you can use
hpx::execution::experimental::num_cores and pass the number of cores (nc) to hpx::experimental::for_loop
using hpx::execution::par.with(nc). This example uses 2 threads for the parallel loop.

70 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Reduction

OpenMP code:

int s = 0;

#pragma omp parallel for reduction(+: s)
for (int i = 0; i < n; ++i) {

s += i;
// loop body

}

HPX equivalent:

#include <hpx/algorithm.hpp>
#include <hpx/execution.hpp>

int s = 0;

hpx::experimental::for_loop(hpx::execution::par, 0, n, reduction(s, 0, plus<>()), [&
→˓](int i, int& accum) {

accum += i;
// loop body

});

The reduction clause specifies that the variable s should be reduced across iterations using the plus<> operation. It
initializes s to 0 at the beginning of the loop and accumulates the values of s from each iteration using the + operator.
The lambda function representing the loop body takes two parameters: i, which represents the loop index, and accum,
which is the reduction variable s. The lambda function is executed for each iteration of the loop. The reduction ensures
that the accum value is correctly accumulated across different iterations and threads.

Schedule

OpenMP code:

int s = 0;

// static scheduling with chunk size 1000
#pragma omp parallel for schedule(static, 1000)
for (int i = 0; i < n; ++i) {

// loop body
}

HPX equivalent:

#include <hpx/algorithm.hpp>
#include <hpx/execution.hpp>

hpx::execution::experimental::static_chunk_size cs(1000);

hpx::experimental::for_loop(hpx::execution::par.with(cs), 0, n, [&](int i) {
// loop body

});

2.3. Manual 71

HPX Documentation, master

To define the scheduling type, you can use the corresponding execution policy from hpx::execution::experimental,
define the chunk size (cs, here declared as 1000) and pass it to the to hpx::experimental::for_loop using
hpx::execution::par.with(cs).

Accordingly, other types of scheduling are available and can be used in a similar manner:

#include <hpx/execution.hpp>
hpx::execution::experimental::dynamic_chunk_size cs(1000);

#include <hpx/execution.hpp>
hpx::execution::experimental::guided_chunk_size cs(1000);

#include <hpx/execution.hpp>
hpx::execution::experimental::auto_chunk_size cs(1000);

OpenMP single thread

OpenMP code:

{ // parallel code
#pragma omp single
{

// single-threaded code
}
// more parallel code

}

HPX equivalent:

#include <hpx/mutex.hpp>

hpx::mutex mtx;

{ // parallel code
{ // single-threaded code

std::scoped_lock l(mtx);
}
// more parallel code

}

To make sure that only one thread accesses a specific code within a parallel section you can use hpx::mutex and
std::scoped_lock to take ownership of the given mutex mtx. For more information about mutexes please refer to Mutex.

72 Chapter 2. What’s so special about HPX?

HPX Documentation, master

OpenMP tasks

Simple tasks

OpenMP code:

// executed asynchronously by any available thread
#pragma omp task
{

// task code
}

HPX equivalent:

#include <hpx/future.hpp>

auto future = hpx::async([](){
// task code

});

or

#include <hpx/future.hpp>

hpx::post([](){
// task code

}); // fire and forget

The tasks in HPX can be defined simply by using the async function and passing as argument the code you wish to
run asynchronously. Another alternative is to use post which is a fire-and-forget method.

Tip: If you think you will like to synchronize your tasks later on, we suggest you use hpx::async which provides
synchronization options, while hpx::post explicitly states that there is no return value or way to synchronize with the
function execution. Synchronization options are listed below.

Task wait

OpenMP code:

#pragma omp task
{

// task code
}

#pragma omp taskwait
// code after completion of task

HPX equivalent:

#include <hpx/future.hpp>

(continues on next page)

2.3. Manual 73

HPX Documentation, master

(continued from previous page)

hpx::async([](){
// task code

}).get(); // wait for the task to complete

// code after completion of task

The get() function can be used to ensure that the task created with hpx::async is completed before the code continues
executing beyond that point.

Multiple tasks synchronization

OpenMP code:

#pragma omp task
{

// task 1 code
}

#pragma omp task
{

// task 2 code
}

#pragma omp taskwait
// code after completion of both tasks 1 and 2

HPX equivalent:

#include <hpx/future.hpp>

auto future1 = hpx::async([](){
// task 1 code

});

auto future2 = hpx::async([](){
// task 2 code

});

auto future = hpx::when_all(future1, future2).then([](auto&&){
// code after completion of both tasks 1 and 2

});

If you would like to synchronize multiple tasks, you can use the hpx::when_all function to define which futures have
to be ready and the then() function to declare what should be executed once these futures are ready.

74 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Dependencies

OpenMP code:

int a = 10;
int b = 20;
int c = 0;

#pragma omp task depend(in: a, b) depend(out: c)
{

// task code
c = 100;

}

HPX equivalent:

#include <hpx/future.hpp>

int a = 10;
int b = 20;
int c = 0;

// Create a future representing 'a'
auto future_a = hpx::make_ready_future(a);

// Create a future representing 'b'
auto future_b = hpx::make_ready_future(b);

// Create a task that depends on 'a' and 'b' and executes 'task_code'
auto future_c = hpx::dataflow(

[]() {
// task code
return 100;

},
future_a, future_b);

c = future_c.get();

If one of the arguments of hpx::dataflow is a future, then it will wait for the future to be ready to launch the thread.
Hence, to define the dependencies of tasks you have to create futures representing the variables that create dependencies
and pass them as arguments to hpx::dataflow. get() is used to save the result of the future to the desired variable.

Nested tasks

OpenMP code:

#pragma omp task
{

// Outer task code
#pragma omp task
{

// Inner task code
(continues on next page)

2.3. Manual 75

HPX Documentation, master

(continued from previous page)

}
}

HPX equivalent:

#include <hpx/future.hpp>

auto future_outer = hpx::async([](){
// Outer task code

hpx::async([](){
// Inner task code

});
});

or

#include <hpx/future.hpp>

auto future_outer = hpx::post([](){ // fire and forget
// Outer task code

hpx::post([](){ // fire and forget
// Inner task code

});
});

If you have nested tasks, you can simply use nested hpx::async or hpx::post calls. The implementation is similar
if you want to take care of synchronization:

OpenMP code:

#pragma omp taskwait
{

// Outer task code
#pragma omp taskwait
{

// Inner task code
}

}

HPX equivalent:

#include <hpx/future.hpp>

auto future_outer = hpx::async([]() {
// Outer task code

hpx::async([]() {
// Inner task code

}).get(); // Wait for the inner task to complete
});

future_outer.get(); // Wait for the outer task to complete

76 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Task yield

OpenMP code:

#pragma omp task
{

// code before yielding
#pragma omp taskyield
// code after yielding

}

HPX equivalent:

#include <hpx/future.hpp>
#include <hpx/thread.hpp>

auto future = hpx::async([](){
// code before yielding

});

// yield execution to potentially allow other tasks to run
hpx::this_thread::yield();

// code after yielding

After creating a task using hpx::async, hpx::this_thread::yield can be used to reschedule the execution of
threads, allowing other threads to run.

Task group

OpenMP code:

#pragma omp taskgroup
{

#pragma omp task
{

// task 1 code
}

#pragma omp task
{

// task 2 code
}

}

HPX equivalent:

#include <hpx/task_group.hpp>

// Declare a task group
hpx::experimental::task_group tg;

// Run the tasks
(continues on next page)

2.3. Manual 77

HPX Documentation, master

(continued from previous page)

tg.run([](){
// task 1 code

});
tg.run(

// task 2 code
});

// Wait for the task group
tg.wait();

To create task groups, you can use hpx::experimental::task_group. The function run() can be used to run each
task within the task group, while wait() can be used to achieve synchronization. If you do not care about waiting for
the task group to complete its execution, you can simply remove the wait() function.

OpenMP sections

OpenMP code:

#pragma omp sections
{

#pragma omp section
// section 1 code
#pragma omp section
// section 2 code

} // implicit synchronization

HPX equivalent:

#include <hpx/future.hpp>

auto future_section1 = hpx::async([](){
// section 1 code

});
auto future_section2 = hpx::async([](){

// section 2 code
);

// synchronization: wait for both sections to complete
hpx::wait_all(future_section1, future_section2);

Unlike tasks, there is an implicit synchronization barrier at the end of each sections directive in OpenMP. This syn-
chronization is achieved using hpx::wait_all function.

Note: If the nowait clause is used in the sections directive, then you can just remove the hpx::wait_all function
while keeping the rest of the code as it is.

78 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Intel Threading Building Blocks (TBB)

Intel Threading Building Blocks (TBB) provides a high-level interface for parallelism and concurrent programming
using standard ISO C++ code. Below are some examples on how to convert Intel Threading Building Blocks (TBB) to
HPX code:

parallel_for

Intel Threading Building Blocks (TBB) code:

auto values = std::vector<double>(10000);

tbb::parallel_for(tbb::blocked_range<int>(0,values.size()),
[&](tbb::blocked_range<int> r)

{
for (int i=r.begin(); i<r.end(); ++i)
{

// loop body
}

});

HPX equivalent:

#include <hpx/algorithm.hpp>

auto values = std::vector<double>(10000);

hpx::experimental::for_loop(hpx::execution::par, 0, values.size(), [&](int i) {
// loop body

});

In the above code, tbb::parallel_for is replaced with hpx::experimental::for_loop from the HPX library. The
loop body within the lambda function will be executed in parallel for each iteration.

parallel_for_each

Intel Threading Building Blocks (TBB) code:

auto values = std::vector<double>(10000);

tbb::parallel_for_each(values.begin(), values.end(), [&](){
// loop body

});

HPX equivalent:

#include <hpx/algorithm.hpp>

auto values = std::vector<double>(10000);

hpx::for_each(hpx::execution::par, values.begin(), values.end(), [&](){
(continues on next page)

2.3. Manual 79

HPX Documentation, master

(continued from previous page)

// loop body
});

By utilizing hpx::for_each and specifying a parallel execution policy with hpx::execution::par, it is possible to
transform tbb::parallel_for_each into its equivalent counterpart in HPX.

parallel_invoke

Intel Threading Building Blocks (TBB) code:

tbb::parallel_invoke(task1, task2, task3);

HPX equivalent:

#include <hpx/future.hpp>

hpx::wait_all(hpx::async(task1), hpx::async(task2), hpx::async(task3));

To convert tbb::parallel_invoke to HPX, we use hpx::async to asynchronously execute each task, which returns a
future representing the result of each task. We then pass these futures to hpx::when_all, which waits for all the
futures to complete before returning.

parallel_pipeline

Intel Threading Building Blocks (TBB) code:

tbb::parallel_pipeline(4,
tbb::make_filter<void, int>(tbb::filter::serial_in_order,

[](tbb::flow_control& fc) -> int {
// Generate numbers from 1 to 10
static int i = 1;
if (i <= 10) {

return i++;
}
else {

fc.stop();
return 0;

}
}) &

tbb::make_filter<int, int>(tbb::filter::parallel,
[](int num) -> int {

// Multiply each number by 2
return num * 2;

}) &
tbb::make_filter<int, void>(tbb::filter::serial_in_order,

[](int num) {
// Print the results
std::cout << num << " ";

})
);

80 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX equivalent:

#include <iostream>
#include <vector>
#include <ranges>
#include <hpx/algorithm.hpp>

// generate the values
auto range = std::views::iota(1) | std::views::take(10);

// materialize the output vector
std::vector<int> results(10);

// in parallel execution of pipeline and transformation
hpx::ranges::transform(

hpx::execution::par, range, result.begin(), [](int i) { return 2 * i; });

// print the modified vector
for (int i : result)
{

std::cout << i << " ";
}
std::cout << std::endl;

The line auto range = std::views::iota(1) | std::views::take(10); generates a range of values using the std::views::iota
function. It starts from the value 1 and generates an infinite sequence of incrementing values. The std::views::take(10)
function is then applied to limit the sequence to the first 10 values. The result is stored in the range variable.

Hint: A view is a lightweight object that represents a particular view of a sequence or range. It acts as a read-
only interface to the original data, providing a way to query and traverse the elements without making any copies or
modifications.

Views can be composed and chained together to form complex pipelines of operations. These operations are evaluated
lazily, meaning that the actual computation is performed only when the result is needed or consumed.

Since views perform lazy evaluation, we use std::vector<int> results(10); to meterialize the vector that will store the
transformed values. The hpx::ranges::transform function is then used to perform a parallel transformation on the range.
The transformed values will be written to the results vector.

Hint: Ranges enable loop fusion by combining multiple operations into a single parallel loop, eliminating waiting time
and reducing overhead. Using ranges, you can express these operations as a pipeline of transformations on a sequence
of elements. This pipeline is evaluated in a single pass, performing all the desired operations in parallel without the
need to wait between them.

In addition, HPX enhances the benefits of range fusion by offering parallel execution policies, which can be used to
optimize the execution of the fused loop across multiple threads.

2.3. Manual 81

HPX Documentation, master

parallel_reduce

Reduction

Intel Threading Building Blocks (TBB) code:

auto values = std::vector<double>{1,2,3,4,5,6,7,8,9};

auto total = tbb::parallel_reduce(
tbb::blocked_range<int>(0,values.size()),
0.0,
[&](tbb::blocked_range<int> r, double running_total)
{

for (int i=r.begin(); i<r.end(); ++i)
{

running_total += values[i];
}

return running_total;
},
std::plus<double>());

HPX equivalent:

#include <hpx/numeric.hpp>

auto values = std::vector<double>{1,2,3,4,5,6,7,8,9};

auto total = hpx::reduce(
hpx::execution::par, values.begin(), values.end(), 0, std::plus{});

By utilizing hpx::reduce and specifying a parallel execution policy with hpx::execution::par, it is possible to trans-
form tbb::parallel_reduce into its equivalent counterpart in HPX. As demonstrated in the previous example, the man-
agement of intermediate results is seamlessly handled internally by HPX, eliminating the need for explicit consideration.

Transformation & Reduction

Intel Threading Building Blocks (TBB) code:

auto values = std::vector<double>{1,2,3,4,5,6,7,8,9};

auto transform_function(double current_value){
// transformation code

}

auto total = tbb::parallel_reduce(
tbb::blocked_range<int>(0,values.size()),
0.0,
[&](tbb::blocked_range<int> r, double transformed_val)
{

for (int i=r.begin(); i<r.end(); ++i)
(continues on next page)

82 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

{
transformed_val += transform_function(values[i]);

}
return transformed_val;

},
std::plus<double>());

HPX equivalent:

#include <hpx/numeric.hpp>

auto values = std::vector<double>{1,2,3,4,5,6,7,8,9};

auto transform_function(double current_value)
{

// transformation code
}

auto total = hpx::transform_reduce(hpx::execution::par, values.begin(),
values.end(), 0, std::plus{},
[&](double current_value) { return transform_function(current_value); });

In situations where certain values require transformation before the reduction process, HPX provides a straightfor-
ward solution through hpx::transform_reduce. The transform_function() allows for the application of the desired
transformation to each value.

parallel_scan

Intel Threading Building Blocks (TBB) code:

tbb::parallel_scan(tbb::blocked_range<size_t>(0, input.size()),
0,
[&input, &output](const tbb::blocked_range<size_t>& range, int& partial_sum, bool is_

→˓final_scan) {
for (size_t i = range.begin(); i != range.end(); ++i) {

partial_sum += input[i];
if (is_final_scan) {

output[i] = partial_sum;
}

}
return partial_sum;

},
[](int left_sum, int right_sum) {

return left_sum + right_sum;
}

);

HPX equivalent:

#include <hpx/numeric.hpp>

hpx::inclusive_scan(hpx::execution::par, input.begin(), input.end(),
(continues on next page)

2.3. Manual 83

HPX Documentation, master

(continued from previous page)

output.begin(),
[](const int& left, const int& right) { return left + right; });

hpx::inclusive_scan with hpx::execution::par as execution policy can be used to perform a prefix scan in parallel.
The management of intermediate results is seamlessly handled internally by HPX, eliminating the need for explicit
consideration. input.begin() and input.end() refer to the beginning and end of the sequence of elements the algorithm
will be applied to respectively. output.begin() refers to the beginning of the destination, while the last argument specifies
the function which will be invoked for each of the values of the input sequence.

Apart from hpx::inclusive_scan, HPX provides its users with hpx::exclusive_scan. The key difference be-
tween inclusive scan and exclusive scan lies in the treatment of the current element during the scan operation. In an
inclusive scan, each element in the output sequence includes the contribution of the corresponding element in the input
sequence, while in an exclusive scan, the current element in the input sequence does not contribute to the corresponding
element in the output sequence.

parallel_sort

Intel Threading Building Blocks (TBB) code:

std::vector<int> numbers = {9, 2, 7, 1, 5, 3};

tbb::parallel_sort(numbers.begin(), numbers.end());

HPX equivalent:

#include <hpx/algorithm.hpp>

std::vector<int> numbers = {9, 2, 7, 1, 5, 3};

hpx::sort(hpx::execution::par, numbers.begin(), numbers.end());

hpx::sort provides an equivalent functionality to tbb::parallel_sort. When given a parallel execution policy with
hpx::execution::par, the algorithm employs parallel execution, allowing for efficient sorting across available threads.

task_group

Intel Threading Building Blocks (TBB) code:

// Declare a task group
tbb::task_group tg;

// Run the tasks
tg.run(task1);
tg.run(task2);

// Wait for the task group
tg.wait();

HPX equivalent:

84 Chapter 2. What’s so special about HPX?

HPX Documentation, master

#include <hpx/task_group.hpp>

// Declare a task group
hpx::experimental::task_group tg;

// Run the tasks
tg.run(task1);
tg.run(task2);

// Wait for the task group
tg.wait();

HPX drew inspiration from Intel Threading Building Blocks (TBB) to introduce the
hpx::experimental::task_group feature. Therefore, utilizing hpx::experimental::task_group provides an
equivalent functionality to tbb::task_group.

MPI

MPI is a standardized communication protocol and library that allows multiple processes or nodes in a parallel com-
puting system to exchange data and coordinate their execution.

List of MPI-HPX functions

MPI function HPX equivalent
MPI_Allgather hpx::collectives::all_gather
MPI_Allreduce hpx::collectives::all_reduce
MPI_Alltoall hpx::collectives::all_to_all
MPI_Barrier hpx::distributed::barrier
MPI_Bcast hpx::collectives::broadcast_to() and hpx::collectives::broadcast_from()

used with get()
MPI_Comm_sizehpx::get_num_localities
MPI_Comm_rankhpx::get_locality_id()
MPI_Exscan hpx::collectives::exclusive_scan() used with get()
MPI_Gather hpx::collectives::gather_here() and hpx::collectives::gather_there()

used with get()
MPI_Irecv hpx::collectives::get()
MPI_Isend hpx::collectives::set()
MPI_Reduce hpx::collectives::reduce_here and hpx::collectives::reduce_there

used with get()
MPI_Scan hpx::collectives::inclusive_scan() used with get()
MPI_Scatter hpx::collectives::scatter_to() and hpx::collectives::scatter_from()
MPI_Wait hpx::collectives::get() used with a future i.e. setf.get()

2.3. Manual 85

HPX Documentation, master

MPI_Send & MPI_Recv

Let’s assume we have the following simple message passing code where each process sends a message to the next
process in a circular manner. The exchanged message is modified and printed to the console.

MPI code:

#include <cstddef>
#include <cstdint>
#include <iostream>
#include <mpi.h>
#include <vector>

constexpr int times = 2;

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);

int num_localities;
MPI_Comm_size(MPI_COMM_WORLD, &num_localities);

int this_locality;
MPI_Comm_rank(MPI_COMM_WORLD, &this_locality);

int next_locality = (this_locality + 1) % num_localities;
std::vector<int> msg_vec = {0, 1};

int cnt = 0;
int msg = msg_vec[this_locality];

int recv_msg;
MPI_Request request_send, request_recv;
MPI_Status status;

while (cnt < times) {
cnt += 1;

MPI_Isend(&msg, 1, MPI_INT, next_locality, cnt, MPI_COMM_WORLD,
&request_send);

MPI_Irecv(&recv_msg, 1, MPI_INT, next_locality, cnt, MPI_COMM_WORLD,
&request_recv);

MPI_Wait(&request_send, &status);
MPI_Wait(&request_recv, &status);

std::cout << "Time: " << cnt << ", Locality " << this_locality
<< " received msg: " << recv_msg << "\n";

recv_msg += 10;
msg = recv_msg;

}

MPI_Finalize();
(continues on next page)

86 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

return 0;
}

HPX equivalent:

#include <hpx/config.hpp>

#if !defined(HPX_COMPUTE_DEVICE_CODE)
#include <hpx/algorithm.hpp>
#include <hpx/hpx_init.hpp>
#include <hpx/modules/collectives.hpp>

#include <cstddef>
#include <cstdint>
#include <iostream>
#include <utility>
#include <vector>

using namespace hpx::collectives;

constexpr char const* channel_communicator_name =
"/example/channel_communicator/";

// the number of times
constexpr int times = 2;

int hpx_main()
{

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);
std::uint32_t this_locality = hpx::get_locality_id();

// allocate channel communicator
auto comm = create_channel_communicator(hpx::launch::sync,

channel_communicator_name, num_sites_arg(num_localities),
this_site_arg(this_locality));

std::uint32_t next_locality = (this_locality + 1) % num_localities;
std::vector<int> msg_vec = {0, 1};

int cnt = 0;
int msg = msg_vec[this_locality];

// send values to another locality
auto setf = set(comm, that_site_arg(next_locality), msg, tag_arg(cnt));
auto got_msg = get<int>(comm, that_site_arg(next_locality), tag_arg(cnt));

setf.get();

while (cnt < times)
{

cnt += 1;

(continues on next page)

2.3. Manual 87

HPX Documentation, master

(continued from previous page)

auto done_msg = got_msg.then([&](auto&& f) {
int rec_msg = f.get();
std::cout << "Time: " << cnt << ", Locality " << this_locality

<< " received msg: " << rec_msg << "\n";

// change msg by adding 10
rec_msg += 10;

// start next round
setf =

set(comm, that_site_arg(next_locality), rec_msg, tag_arg(cnt));
got_msg =

get<int>(comm, that_site_arg(next_locality), tag_arg(cnt));
setf.get();

});

done_msg.get();
}

return hpx::finalize();
}
#endif

int main(int argc, char* argv[])
{
#if !defined(HPX_COMPUTE_DEVICE_CODE)

hpx::init_params params;
params.cfg = {"--hpx:run-hpx-main"};
return hpx::init(argc, argv, params);

#else
(void) argc;
(void) argv;
return 0;

#endif
}

To perform message passing between different processes in HPX we can use a channel communicator. To understand
this example, let’s focus on the hpx_main() function:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

• create_channel_communicator function is used to create a channel to serve the communication. This function
takes several arguments, including the launch policy (hpx::launch::sync), the name of the communicator (chan-
nel_communicator_name), the number of localities, and the ID of the current locality.

• The communication follows a ring pattern, where each process (or locality) sends a message to its neighbor in a
circular manner. This means that the messages circulate around the localities, ensuring that the communication
wraps around when reaching the end of the locality sequence. To achieve this, the next_locality variable is
calculated as the ID of the next locality in the ring.

• The initial values for the communication are set (msg_vec, cnt, msg).

• The set() function is called to send the message to the next locality in the ring. The message is sent asynchronously
and is associated with a tag (cnt).

88 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• The get() function is called to receive a message from the next locality. It is also associated with the same tag as
the set() operation.

• The setf.get() call blocks until the message sending operation is complete.

• A continuation is set up using the function then() to handle the received message. Inside the continuation:

– The received message value (rec_msg) is retrieved using f.get().

– The received message is printed to the console and then modified by adding 10.

– The set() and get() operations are repeated to send and receive the modified message to the next locality.

– The setf.get() call blocks until the new message sending operation is complete.

• The done_msg.get() call blocks until the continuation is complete for the current loop iteration.

Having said that, we conclude to the following table:

MPI_Gather

The following code gathers data from all processes to the root process and verifies the gathered data in the root process.

MPI code:

#include <iostream>
#include <mpi.h>
#include <numeric>
#include <vector>

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);

int num_localities, this_locality;
MPI_Comm_size(MPI_COMM_WORLD, &num_localities);
MPI_Comm_rank(MPI_COMM_WORLD, &this_locality);

std::vector<int> local_data; // Data to be gathered

if (this_locality == 0) {
local_data.resize(num_localities); // Resize the vector on the root process

}

// Each process calculates its local data value
int my_data = 42 + this_locality;

for (std::uint32_t i = 0; i != 10; ++i) {

// Gather data from all processes to the root process (process 0)
MPI_Gather(&my_data, 1, MPI_INT, local_data.data(), 1, MPI_INT, 0,

MPI_COMM_WORLD);

// Only the root process (process 0) will print the gathered data
if (this_locality == 0) {
std::cout << "Gathered data on the root: ";
for (int i = 0; i < num_localities; ++i) {

std::cout << local_data[i] << " ";
(continues on next page)

2.3. Manual 89

HPX Documentation, master

(continued from previous page)

}
std::cout << std::endl;
}

}
std::cout << std::endl;

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);
std::uint32_t this_locality = hpx::get_locality_id();

// test functionality based on immediate local result value
auto gather_direct_client = create_communicator(gather_direct_basename,

num_sites_arg(num_localities), this_site_arg(this_locality));

for (std::uint32_t i = 0; i != 10; ++i)
{

if (this_locality == 0)
{

hpx::future<std::vector<std::uint32_t>> overall_result =
gather_here(gather_direct_client, std::uint32_t(42));

std::vector<std::uint32_t> sol = overall_result.get();
std::cout << "Gathered data on the root:";

for (std::size_t j = 0; j != sol.size(); ++j)
{

HPX_TEST(j + 42 == sol[j]);
std::cout << " " << sol[j];

}
std::cout << std::endl;

}
else
{

hpx::future<void> overall_result =
gather_there(gather_direct_client, this_locality + 42);

overall_result.get();
}

}

This code will print 10 times the following message:

Gathered data on the root: 42 43

HPX uses two functions to implement the functionality of MPI_Gather: gather_here and gather_there. gather_here
is gathering data from all localities to the locality with ID 0 (root locality). gather_there allows non-root localities to
participate in the gather operation by sending data to the root locality. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-

90 Chapter 2. What’s so special about HPX?

HPX Documentation, master

turns the ID of the current locality.

• The function create_communicator() is used to create a communicator called gather_direct_client.

• If the current locality is the root (its ID is equal to 0):

– The gather_here function is used to perform the gather operation. It collects data from all other localities
into the overall_result future object. The function arguments provide the necessary information, such as the
base name for the gather operation (gather_direct_basename), the value to be gathered (value), the number
of localities (num_localities), the current locality ID (this_locality), and the generation number (related to
the gather operation).

– The get() member function of the overall_result future is used to retrieve the gathered data.

– The next for loop is used to verify the correctness of the gathered data (sol). HPX_TEST is a macro provided
by the HPX testing utilities to perform similar testing with the Standard C++ macro assert.

• If the current locality is not the root:

– The gather_there function is used to participate in the gather operation initiated by the root locality. It sends
the data (in this case, the value this_locality + 42) to the root locality, indicating that it should be included
in the gathering.

– The get() member function of the overall_result future is used to wait for the gather operation to complete
for this locality.

MPI_Scatter

The following code gathers data from all processes to the root process and verifies the gathered data in the root process.

MPI code:

#include <iostream>
#include <mpi.h>
#include <vector>

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);

int num_localities, this_locality;
MPI_Comm_size(MPI_COMM_WORLD, &num_localities);
MPI_Comm_rank(MPI_COMM_WORLD, &this_locality);

int num_localities = num_localities;
std::vector<int> data(num_localities);

if (this_locality == 0) {
// Fill the data vector on the root locality (locality 0)
for (int i = 0; i < num_localities; ++i) {
data[i] = 42 + i;
}

}

int local_data; // Variable to store the received data

// Scatter data from the root locality to all other localities
MPI_Scatter(&data[0], 1, MPI_INT, &local_data, 1, MPI_INT, 0, MPI_COMM_WORLD);

(continues on next page)

2.3. Manual 91

HPX Documentation, master

(continued from previous page)

// Now, each locality has its own local_data

// Print the local_data on each locality
std::cout << "Locality " << this_locality << " received " << local_data

<< std::endl;

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);
HPX_TEST_LTE(std::uint32_t(2), num_localities);

std::uint32_t this_locality = hpx::get_locality_id();

auto scatter_direct_client =
hpx::collectives::create_communicator(scatter_direct_basename,

num_sites_arg(num_localities), this_site_arg(this_locality));

// test functionality based on immediate local result value
for (std::uint32_t i = 0; i != 10; ++i)
{

if (this_locality == 0)
{

std::vector<std::uint32_t> data(num_localities);
std::iota(data.begin(), data.end(), 42 + i);

hpx::future<std::uint32_t> result =
scatter_to(scatter_direct_client, std::move(data));

HPX_TEST_EQ(i + 42 + this_locality, result.get());
}
else
{

hpx::future<std::uint32_t> result =
scatter_from<std::uint32_t>(scatter_direct_client);

HPX_TEST_EQ(i + 42 + this_locality, result.get());

std::cout << "Locality " << this_locality << " received "
<< i + 42 + this_locality << std::endl;

}
}

For num_localities = 2 and since we run for 10 iterations this code will print the following message:

Locality 1 received 43
Locality 1 received 44
Locality 1 received 45

(continues on next page)

92 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

Locality 1 received 46
Locality 1 received 47
Locality 1 received 48
Locality 1 received 49
Locality 1 received 50
Locality 1 received 51
Locality 1 received 52

HPX uses two functions to implement the functionality of MPI_Scatter: hpx::scatter_to and hpx::scatter_from.
hpx::scatter_to is distributing the data from the locality with ID 0 (root locality) to all other localities. hpx::scatter_from
allows non-root localities to receive the data from the root locality. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

• The function hpx::collectives::create_communicator() is used to create a communicator called scat-
ter_direct_client.

• If the current locality is the root (its ID is equal to 0):

– The data vector is filled with values ranging from 42 + i to 42 + i + num_localities - 1.

– The hpx::scatter_to function is used to perform the scatter operation using the communicator scat-
ter_direct_client. This scatters the data vector to other localities and returns a future representing the result.

– HPX_TEST_EQ is a macro provided by the HPX testing utilities to test the distributed values.

• If the current locality is not the root:

– The hpx::scatter_from function is used to collect the data by the root locality.

– HPX_TEST_EQ is a macro provided by the HPX testing utilities to test the collected values.

MPI_Allgather

The following code gathers data from all processes and sends the data to all processes.

MPI code:

#include <cstdint>
#include <iostream>
#include <mpi.h>
#include <vector>

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);

int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

// Get the number of MPI processes
int num_localities = size;

// Get the MPI process rank
int here = rank;

(continues on next page)

2.3. Manual 93

HPX Documentation, master

(continued from previous page)

std::uint32_t value = here;

std::vector<std::uint32_t> r(num_localities);

// Perform an all-gather operation to gather values from all processes.
MPI_Allgather(&value, 1, MPI_UINT32_T, r.data(), 1, MPI_UINT32_T,

MPI_COMM_WORLD);

// Print the result.
std::cout << "Locality " << here << " has values:";
for (size_t j = 0; j < r.size(); ++j) {

std::cout << " " << r[j];
}
std::cout << std::endl;

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);
std::uint32_t here = hpx::get_locality_id();

// test functionality based on immediate local result value
auto all_gather_direct_client =

create_communicator(all_gather_direct_basename,
num_sites_arg(num_localities), this_site_arg(here));

std::uint32_t value = here;

hpx::future<std::vector<std::uint32_t>> overall_result =
all_gather(all_gather_direct_client, value);

std::vector<std::uint32_t> r = overall_result.get();

std::cout << "Locality " << here << " has values:";
for (std::size_t j = 0; j != r.size(); ++j)
{

std::cout << " " << j;
}
std::cout << std::endl;

For num_localities = 2 this code will print the following message:

Locality 0 has values: 0 1
Locality 1 has values: 0 1

HPX uses the function all_gather to implement the functionality of MPI_Allgather. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

94 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• The function hpx::collectives::create_communicator() is used to create a communicator called
all_gather_direct_client.

• The values that the localities exchange with each other are equal to each locality’s ID.

• The gather operation is performed using all_gather. The result is stored in an hpx::future object called over-
all_result, which represents a future result that can be retrieved later when needed.

• The get() function waits until the result is available and then stores it in the vector called r.

MPI_Allreduce

The following code combines values from all processes and distributes the result back to all processes.

MPI code:

#include <cstdint>
#include <iostream>
#include <mpi.h>

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);

int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

// Get the number of MPI processes
int num_localities = size;

// Get the MPI process rank
int here = rank;

// Create a communicator for the all reduce operation.
MPI_Comm all_reduce_direct_client;
MPI_Comm_split(MPI_COMM_WORLD, 0, rank, &all_reduce_direct_client);

// Perform the all reduce operation to calculate the sum of 'here' values.
std::uint32_t value = here;
std::uint32_t res = 0;
MPI_Allreduce(&value, &res, 1, MPI_UINT32_T, MPI_SUM,

all_reduce_direct_client);

std::cout << "Locality " << rank << " has value: " << res << std::endl;

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t const num_localities =
hpx::get_num_localities(hpx::launch::sync);

std::uint32_t const here = hpx::get_locality_id();

(continues on next page)

2.3. Manual 95

HPX Documentation, master

(continued from previous page)

auto const all_reduce_direct_client =
create_communicator(all_reduce_direct_basename,

num_sites_arg(num_localities), this_site_arg(here));

std::uint32_t value = here;

hpx::future<std::uint32_t> overall_result =
all_reduce(all_reduce_direct_client, value, std::plus<std::uint32_t>{});

std::uint32_t res = overall_result.get();
std::cout << "Locality " << here << " has value: " << res << std::endl;

For num_localities = 2 this code will print the following message:

Locality 0 has value: 1
Locality 1 has value: 1

HPX uses the function all_reduce to implement the functionality of MPI_Allreduce. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

• The function hpx::collectives::create_communicator() is used to create a communicator called
all_reduce_direct_client.

• The value of each locality is equal to its ID.

• The reduce operation is performed using all_reduce. The result is stored in an hpx::future object called over-
all_result, which represents a future result that can be retrieved later when needed.

• The get() function waits until the result is available and then stores it in the variable res.

MPI_Alltoall

The following code gathers data from and scatters data to all processes.

MPI code:

#include <algorithm>
#include <cstdint>
#include <iostream>
#include <mpi.h>
#include <vector>

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);

int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

// Get the number of MPI processes
int num_localities = size;

(continues on next page)

96 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

// Get the MPI process rank
int this_locality = rank;

// Create a communicator for all-to-all operation.
MPI_Comm all_to_all_direct_client;
MPI_Comm_split(MPI_COMM_WORLD, 0, rank, &all_to_all_direct_client);

std::vector<std::uint32_t> values(num_localities);
std::fill(values.begin(), values.end(), this_locality);

// Create vectors to store received values.
std::vector<std::uint32_t> r(num_localities);

// Perform an all-to-all operation to exchange values with other localities.
MPI_Alltoall(values.data(), 1, MPI_UINT32_T, r.data(), 1, MPI_UINT32_T,

all_to_all_direct_client);

// Print the results.
std::cout << "Locality " << this_locality << " has values:";
for (std::size_t j = 0; j != r.size(); ++j) {

std::cout << " " << r[j];
}
std::cout << std::endl;

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);
std::uint32_t this_locality = hpx::get_locality_id();

auto all_to_all_direct_client =
create_communicator(all_to_all_direct_basename,

num_sites_arg(num_localities), this_site_arg(this_locality));

std::vector<std::uint32_t> values(num_localities);
std::fill(values.begin(), values.end(), this_locality);

hpx::future<std::vector<std::uint32_t>> overall_result =
all_to_all(all_to_all_direct_client, std::move(values));

std::vector<std::uint32_t> r = overall_result.get();
std::cout << "Locality " << this_locality << " has values:";

for (std::size_t j = 0; j != r.size(); ++j)
{

std::cout << " " << r[j];
}
std::cout << std::endl;

For num_localities = 2 this code will print the following message:

2.3. Manual 97

HPX Documentation, master

Locality 0 has values: 0 1
Locality 1 has values: 0 1

HPX uses the function all_to_all to implement the functionality of MPI_Alltoall. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

• The function hpx::collectives::create_communicator() is used to create a communicator called
all_to_all_direct_client.

• The value each locality sends is equal to its ID.

• The all-to-all operation is performed using all_to_all. The result is stored in an hpx::future object called over-
all_result, which represents a future result that can be retrieved later when needed.

• The get() function waits until the result is available and then stores it in the variable r.

MPI_Barrier

The following code shows how barrier is used to synchronize multiple processes.

MPI code:

#include <cstdlib>
#include <iostream>
#include <mpi.h>

int main(int argc, char **argv) {
MPI_Init(&argc, &argv);

std::size_t iterations = 5;

int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

for (std::size_t i = 0; i != iterations; ++i) {
MPI_Barrier(MPI_COMM_WORLD);
if (rank == 0) {
std::cout << "Iteration " << i << " completed." << std::endl;
}

}

MPI_Finalize();
return 0;

}

HPX equivalent:

std::size_t iterations = 5;
std::uint32_t this_locality = hpx::get_locality_id();

char const* const barrier_test_name = "/test/barrier/multiple";

(continues on next page)

98 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

hpx::distributed::barrier b(barrier_test_name);
for (std::size_t i = 0; i != iterations; ++i)
{

b.wait();
if (this_locality == 0)
{

std::cout << "Iteration " << i << " completed." << std::endl;
}

}

This code will print the following message:

Iteration 0 completed.
Iteration 1 completed.
Iteration 2 completed.
Iteration 3 completed.
Iteration 4 completed.

HPX uses the function barrier to implement the functionality of MPI_Barrier. In more detail:

• After defining the number of iterations, we use hpx::get_locality_id() to get the ID of the current locality.

• char const* const barrier_test_name = “/test/barrier/multiple”: This line defines a constant character array as
the name of the barrier. This name is used to identify the barrier across different localities. All participating
threads that use this name will synchronize at this barrier.

• Using hpx::distributed::barrier b(barrier_test_name), we create an instance of the distributed barrier with the
previously defined name. This barrier will be used to synchronize the execution of threads across different
localities.

• Running for all the desired iterations, we use b.wait() to synchronize the threads. Each thread waits until all other
threads also reach this point before any of them can proceed further.

MPI_Bcast

The following code broadcasts data from one process to all other processes.

MPI code:

#include <iostream>
#include <mpi.h>

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);

int num_localities;
MPI_Comm_size(MPI_COMM_WORLD, &num_localities);

int here;
MPI_Comm_rank(MPI_COMM_WORLD, &here);

int value;

for (int i = 0; i < 5; ++i) {
(continues on next page)

2.3. Manual 99

HPX Documentation, master

(continued from previous page)

if (here == 0) {
value = i + 42;

}

// Broadcast the value from process 0 to all other processes
MPI_Bcast(&value, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (here != 0) {
std::cout << "Locality " << here << " received " << value << std::endl;

}

}

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);

std::uint32_t here = hpx::get_locality_id();

auto broadcast_direct_client =
create_communicator(broadcast_direct_basename,

num_sites_arg(num_localities), this_site_arg(here));

// test functionality based on immediate local result value
for (std::uint32_t i = 0; i != 5; ++i)
{

if (here == 0)
{

hpx::future<std::uint32_t> result =
broadcast_to(broadcast_direct_client, i + 42);

result.get();
}
else
{

hpx::future<std::uint32_t> result =
hpx::collectives::broadcast_from<std::uint32_t>(

broadcast_direct_client);

uint32_t r = result.get();

std::cout << "Locality " << here << " received " << r << std::endl;
}

}

For num_localities = 2 this code will print the following message:

Locality 1 received 42
(continues on next page)

100 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

Locality 1 received 43
Locality 1 received 44
Locality 1 received 45
Locality 1 received 46

HPX uses two functions to implement the functionality of MPI_Bcast: broadcast_to and broadcast_from. broadcast_to
is broadcasting the data from the root locality to all other localities. broadcast_from allows non-root localities to collect
the data sent by the root locality. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

• The function create_communicator() is used to create a communicator called broadcast_direct_client.

• If the current locality is the root (its ID is equal to 0):

– The broadcast_to function is used to perform the broadcast operation using the communicator broad-
cast_direct_client. This sends the data to other localities and returns a future representing the result.

– The get() member function of the result future is used to wait for and retrieve the result.

• If the current locality is not the root:

– The broadcast_from function is used to collect the data by the root locality.

– The get() member function of the result future is used to wait for the result.

MPI_Exscan

The following code computes the exclusive scan (partial reductions) of data on a collection of processes.

MPI code:

#include <iostream>
#include <mpi.h>
#include <numeric>
#include <vector>

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);

int num_localities;
MPI_Comm_size(MPI_COMM_WORLD, &num_localities);

int here;
MPI_Comm_rank(MPI_COMM_WORLD, &here);

// Calculate the value for this locality (here)
int value = here;

// Perform an exclusive scan
std::vector<int> result(num_localities);
MPI_Exscan(&value, &result[0], 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

if (here != 0) {
int r = result[here - 1]; // Result is in the previous rank's slot

(continues on next page)

2.3. Manual 101

HPX Documentation, master

(continued from previous page)

std::cout << "Locality " << here << " has value " << r << std::endl;
}

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);
std::uint32_t here = hpx::get_locality_id();

auto exclusive_scan_client = create_communicator(exclusive_scan_basename,
num_sites_arg(num_localities), this_site_arg(here));

// test functionality based on immediate local result value
std::uint32_t value = here;

hpx::future<std::uint32_t> overall_result = exclusive_scan(
exclusive_scan_client, value, std::plus<std::uint32_t>{});

uint32_t r = overall_result.get();

if (here != 0)
{

std::cout << "Locality " << here << " has value " << r << std::endl;
}

For num_localities = 2 this code will print the following message:

Locality 1 has value 0

HPX uses the function exclusive_scan to implement MPI_Exscan. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

• The function create_communicator() is used to create a communicator called exclusive_scan_client.

• The exclusive_scan function is used to perform the exclusive scan operation using the communicator exclu-
sive_scan_client. std::plus<std::uint32_t>{} specifies the binary associative operator to use for the scan. In this
case, it’s addition for summing values.

• The get() member function of the overall_result future is used to wait for the result.

102 Chapter 2. What’s so special about HPX?

HPX Documentation, master

MPI_Scan

The following code Computes the inclusive scan (partial reductions) of data on a collection of processes.

MPI code:

#include <iostream>
#include <mpi.h>
#include <numeric>
#include <vector>

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);

int num_localities;
MPI_Comm_size(MPI_COMM_WORLD, &num_localities);

int here;
MPI_Comm_rank(MPI_COMM_WORLD, &here);

// Calculate the value for this locality (here)
int value = here;

std::vector<int> result(num_localities);

MPI_Scan(&value, &result[0], 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

std::cout << "Locality " << here << " has value " << result[0] << std::endl;

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);
std::uint32_t here = hpx::get_locality_id();

auto inclusive_scan_client = create_communicator(inclusive_scan_basename,
num_sites_arg(num_localities), this_site_arg(here));

std::uint32_t value = here;

hpx::future<std::uint32_t> overall_result = inclusive_scan(
inclusive_scan_client, value, std::plus<std::uint32_t>{});

uint32_t r = overall_result.get();

std::cout << "Locality " << here << " has value " << r << std::endl;

For num_localities = 2 this code will print the following message:

Locality 0 has value 0
Locality 1 has value 1

2.3. Manual 103

HPX Documentation, master

HPX uses the function inclusive_scan to implement MPI_Scan. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

• The function create_communicator() is used to create a communicator called inclusive_scan_client.

• The inclusive_scan function is used to perform the exclusive scan operation using the communicator inclu-
sive_scan_client. std::plus<std::uint32_t>{} specifies the binary associative operator to use for the scan. In
this case, it’s addition for summing values.

• The get() member function of the overall_result future is used to wait for the result.

MPI_Reduce

The following code performs a global reduce operation across all processes.

MPI code:

#include <iostream>
#include <mpi.h>

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);

int num_processes;
MPI_Comm_size(MPI_COMM_WORLD, &num_processes);

int this_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &this_rank);

int value = this_rank;

int result = 0;

// Perform the reduction operation
MPI_Reduce(&value, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// Print the result for the root process (process 0)
if (this_rank == 0) {

std::cout << "Locality " << this_rank << " has value " << result
<< std::endl;

}

MPI_Finalize();
return 0;

}

HPX equivalent:

std::uint32_t num_localities = hpx::get_num_localities(hpx::launch::sync);
std::uint32_t this_locality = hpx::get_locality_id();

auto reduce_direct_client = create_communicator(reduce_direct_basename,
num_sites_arg(num_localities), this_site_arg(this_locality));

(continues on next page)

104 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

std::uint32_t value = hpx::get_locality_id();

if (this_locality == 0)
{

hpx::future<std::uint32_t> overall_result = reduce_here(
reduce_direct_client, value, std::plus<std::uint32_t>{});

uint32_t r = overall_result.get();

std::cout << "Locality " << this_locality << " has value " << r
<< std::endl;

}
else
{

hpx::future<void> overall_result =
reduce_there(reduce_direct_client, std::move(value));

overall_result.get();
}

This code will print the following message:

Locality 0 has value 1

HPX uses two functions to implement the functionality of MPI_Reduce: reduce_here and reduce_there. reduce_here
is gathering data from all localities to the locality with ID 0 (root locality) and then performs the defined reduction
operation. reduce_there allows non-root localities to participate in the reduction operation by sending data to the root
locality. In more detail:

• hpx::get_num_localities(hpx::launch::sync) retrieves the number of localities, while hpx::get_locality_id() re-
turns the ID of the current locality.

• The function create_communicator() is used to create a communicator called reduce_direct_client.

• If the current locality is the root (its ID is equal to 0):

– The reduce_here function initiates a reduction operation with addition (std::plus) as the reduction operator.
The result is stored in overall_result.

– The get() member function of the overall_result future is used to wait for the result.

• If the current locality is not the root:

– The reduce_there initiates a remote reduction operation.

– The get() member function of the overall_result future is used to wait for the remote reduction operation to
complete. This is done to ensure synchronization among localities.

2.3. Manual 105

HPX Documentation, master

2.3.6 Building tests and examples

Tests

To build the tests:

$ cmake --build . --target tests

To control which tests to run use ctest:

• To run single tests, for example a test for for_loop:

$ ctest --output-on-failure -R tests.unit.modules.algorithms.algorithms.for_loop

• To run a whole group of tests:

$ ctest --output-on-failure -R tests.unit

Examples

• To build (and install) all examples invoke:

$ cmake -DHPX_WITH_EXAMPLES=On .
$ make examples
$ make install

• To build the hello_world_1 example run:

$ make hello_world_1

HPX executables end up in the bin directory in your build directory. You can now run hello_world_1 and should
see the following output:

$./bin/hello_world_1
Hello World!

You’ve just run an example which prints Hello World! from the HPX runtime. The source for the example is in
examples/quickstart/hello_world_1.cpp. The hello_world_distributed example (also available in the
examples/quickstart directory) is a distributed hello world program, which is described in Remote execution with
actions. It provides a gentle introduction to the distributed aspects of HPX.

Tip: Most build targets in HPX have two names: a simple name and a hierarchical name corresponding to what type
of example or test the target is. If you are developing HPX it is often helpful to run make help to get a list of available
targets. For example, make help | grep hello_world outputs the following:

... examples.quickstart.hello_world_2

... hello_world_2

... examples.quickstart.hello_world_1

... hello_world_1

... examples.quickstart.hello_world_distributed

... hello_world_distributed

It is also possible to build, for instance, all quickstart examples using make examples.quickstart.

106 Chapter 2. What’s so special about HPX?

HPX Documentation, master

2.3.7 Creating HPX projects

Using HPX with pkg-config

How to build HPX applications with pkg-config

After you are done installing HPX, you should be able to build the following program. It prints Hello World! on the
locality you run it on.

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.
#include <hpx/hpx_main.hpp>
#include <hpx/iostream.hpp>

int main()
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << std::flush;
return 0;

}

Copy the text of this program into a file called hello_world.cpp.

Now, in the directory where you put hello_world.cpp, issue the following commands (where $HPX_LOCATION is the
build directory or CMAKE_INSTALL_PREFIX you used while building HPX):

$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HPX_LOCATION/lib/pkgconfig
$ c++ -o hello_world hello_world.cpp \
`pkg-config --cflags --libs hpx_application`\
-lhpx_iostreams -DHPX_APPLICATION_NAME=hello_world

Important: When using pkg-config with HPX, the pkg-config flags must go after the -o flag.

Note: HPX libraries have different names in debug and release mode. If you want to link against a debug HPX
library, you need to use the _debug suffix for the pkg-config name. That means instead of hpx_application or
hpx_component, you will have to use hpx_application_debug or hpx_component_debug Moreover, all refer-
enced HPX components need to have an appended d suffix. For example, instead of -lhpx_iostreams you will need
to specify -lhpx_iostreamsd.

Important: If the HPX libraries are in a path that is not found by the dynamic linker, you will need to add the path
$HPX_LOCATION/lib to your linker search path (for example LD_LIBRARY_PATH on Linux).

To test the program, type:

$./hello_world

which should print Hello World! and exit.

2.3. Manual 107

HPX Documentation, master

How to build HPX components with pkg-config

Let’s try a more complex example involving an HPX component. An HPX component is a class that exposes HPX
actions. HPX components are compiled into dynamically loaded modules called component libraries. Here’s the
source code:

hello_world_component.cpp

#include <hpx/config.hpp>
#if !defined(HPX_COMPUTE_DEVICE_CODE)
#include <hpx/iostream.hpp>
#include "hello_world_component.hpp"

#include <iostream>

namespace examples { namespace server {
void hello_world::invoke()
{

hpx::cout << "Hello HPX World!" << std::endl;
}

}} // namespace examples::server

HPX_REGISTER_COMPONENT_MODULE()

typedef hpx::components::component<examples::server::hello_world>
hello_world_type;

HPX_REGISTER_COMPONENT(hello_world_type, hello_world)

HPX_REGISTER_ACTION(
examples::server::hello_world::invoke_action, hello_world_invoke_action)

#endif

hello_world_component.hpp

#pragma once

#include <hpx/config.hpp>
#if !defined(HPX_COMPUTE_DEVICE_CODE)
#include <hpx/hpx.hpp>
#include <hpx/include/actions.hpp>
#include <hpx/include/components.hpp>
#include <hpx/include/lcos.hpp>
#include <hpx/serialization.hpp>

#include <utility>

namespace examples { namespace server {
struct HPX_COMPONENT_EXPORT hello_world
: hpx::components::component_base<hello_world>

{
void invoke();
HPX_DEFINE_COMPONENT_ACTION(hello_world, invoke)

};
(continues on next page)

108 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

}} // namespace examples::server

HPX_REGISTER_ACTION_DECLARATION(
examples::server::hello_world::invoke_action, hello_world_invoke_action)

namespace examples {
struct hello_world
: hpx::components::client_base<hello_world, server::hello_world>

{
typedef hpx::components::client_base<hello_world, server::hello_world>

base_type;

hello_world(hpx::future<hpx::id_type>&& f)
: base_type(std::move(f))

{
}

hello_world(hpx::id_type&& f)
: base_type(std::move(f))

{
}

void invoke()
{

hpx::async<server::hello_world::invoke_action>(this->get_id())
.get();

}
};

} // namespace examples

#endif

hello_world_client.cpp

#include <hpx/config.hpp>
#if defined(HPX_COMPUTE_HOST_CODE)
#include <hpx/wrap_main.hpp>

#include "hello_world_component.hpp"

int main()
{

{
// Create a single instance of the component on this locality.
examples::hello_world client =

hpx::new_<examples::hello_world>(hpx::find_here());

// Invoke the component's action, which will print "Hello World!".
client.invoke();

}

return 0;
(continues on next page)

2.3. Manual 109

HPX Documentation, master

(continued from previous page)

}
#endif

Copy the three source files above into three files (called hello_world_component.cpp, hello_world_component.
hpp and hello_world_client.cpp, respectively).

Now, in the directory where you put the files, run the following command to build the component library. (where
$HPX_LOCATION is the build directory or CMAKE_INSTALL_PREFIX you used while building HPX):

$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HPX_LOCATION/lib/pkgconfig
$ c++ -o libhpx_hello_world.so hello_world_component.cpp \
`pkg-config --cflags --libs hpx_component` \
-lhpx_iostreams -DHPX_COMPONENT_NAME=hpx_hello_world

Now pick a directory in which to install your HPX component libraries. For this example, we’ll choose a directory
named my_hpx_libs:

$ mkdir ~/my_hpx_libs
$ mv libhpx_hello_world.so ~/my_hpx_libs

Note: HPX libraries have different names in debug and release mode. If you want to link against a debug HPX
library, you need to use the _debug suffix for the pkg-config name. That means instead of hpx_application or
hpx_component you will have to use hpx_application_debug or hpx_component_debug. Moreover, all refer-
enced HPX components need to have a appended d suffix, e.g. instead of -lhpx_iostreams you will need to specify
-lhpx_iostreamsd.

Important: If the HPX libraries are in a path that is not found by the dynamic linker. You need to add the path
$HPX_LOCATION/lib to your linker search path (for example LD_LIBRARY_PATH on Linux).

Now, to build the application that uses this component (hello_world_client.cpp), we do:

$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HPX_LOCATION/lib/pkgconfig
$ c++ -o hello_world_client hello_world_client.cpp \
``pkg-config --cflags --libs hpx_application``\
-L${HOME}/my_hpx_libs -lhpx_hello_world -lhpx_iostreams

Important: When using pkg-config with HPX, the pkg-config flags must go after the -o flag.

Finally, you’ll need to set your LD_LIBRARY_PATH before you can run the program. To run the program, type:

$ export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$HOME/my_hpx_libs"
$./hello_world_client

which should print Hello HPX World! and exit.

110 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Using HPX with CMake-based projects

In addition to the pkg-config support discussed on the previous pages, HPX comes with full CMake support. In order
to integrate HPX into existing or new CMakeLists.txt, you can leverage the find_package58 command integrated into
CMake. Following, is a Hello World component example using CMake.

Let’s revisit what we have. We have three files that compose our example application:

• hello_world_component.hpp

• hello_world_component.cpp

• hello_world_client.hpp

The basic structure to include HPX into your CMakeLists.txt is shown here:

Require a recent version of cmake
cmake_minimum_required(VERSION 3.18 FATAL_ERROR)

This project is C++ based.
project(your_app CXX)

Instruct cmake to find the HPX settings
find_package(HPX)

In order to have CMake find HPX, it needs to be told where to look for the HPXConfig.cmake file that is generated
when HPX is built or installed. It is used by find_package(HPX) to set up all the necessary macros needed to use
HPX in your project. The ways to achieve this are:

• Set the HPX_DIR CMake variable to point to the directory containing the HPXConfig.cmake script on the com-
mand line when you invoke CMake:

$ cmake -DHPX_DIR=$HPX_LOCATION/lib/cmake/HPX ...

where $HPX_LOCATION is the build directory or CMAKE_INSTALL_PREFIX you used when building/configuring
HPX.

• Set the CMAKE_PREFIX_PATH variable to the root directory of your HPX build or install location on the command
line when you invoke CMake:

$ cmake -DCMAKE_PREFIX_PATH=$HPX_LOCATION ...

The difference between CMAKE_PREFIX_PATH and HPX_DIR is that CMake will add common postfixes, such as
lib/cmake/<project, to the CMAKE_PREFIX_PATH and search in these locations too. Note that if your project
uses HPX as well as other CMake-managed projects, the paths to the locations of these multiple projects may be
concatenated in the CMAKE_PREFIX_PATH.

• The variables above may be set in the CMake GUI or curses ccmake interface instead of the command line.

Additionally, if you wish to require HPX for your project, replace the find_package(HPX) line with
find_package(HPX REQUIRED).

You can check if HPX was successfully found with the HPX_FOUND CMake variable.
58 https://www.cmake.org/cmake/help/latest/command/find_package.html

2.3. Manual 111

https://www.cmake.org/cmake/help/latest/command/find_package.html

HPX Documentation, master

Using CMake targets

The recommended way of setting up your targets to use HPX is to link to the HPX::hpx CMake59 target:

target_link_libraries(hello_world_component PUBLIC HPX::hpx)

This requires that you have already created the target like this:

add_library(hello_world_component SHARED hello_world_component.cpp)
target_include_directories(hello_world_component PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

When you link your library to the HPX::hpx CMake60 target, you will be able use HPX functionality in your library.
To use main() as the implicit entry point in your application you must additionally link your application to the CMake
target HPX::wrap_main. This target is automatically linked to executables if you are using the macros described below
(Using macros to create new targets). See Re-use the main() function as the main HPX entry point for more information
on implicitly using main() as the entry point.

Creating a component requires setting two additional compile definitions:

target_compile_options(hello_world_component
HPX_COMPONENT_NAME=hello_world
HPX_COMPONENT_EXPORTS)

Instead of setting these definitions manually you may link to the HPX::component target, which sets
HPX_COMPONENT_NAME to hpx_<target_name>, where <target_name> is the target name of your library. Note
that these definitions should be PRIVATE to make sure these definitions are not propagated transitively to dependent
targets.

In addition to making your library a component you can make it a plugin. To do so link to the HPX::plugin target.
Similarly to HPX::component this will set HPX_PLUGIN_NAME to hpx_<target_name>. This definition should also
be PRIVATE. Unlike regular shared libraries, plugins are loaded at runtime from certain directories and will not be found
without additional configuration. Plugins should be installed into a directory containing only plugins. For example, the
plugins created by HPX itself are installed into the hpx subdirectory in the library install directory (typically lib or
lib64). When using the HPX::plugin target you need to install your plugins into an appropriate directory. You may
also want to set the location of your plugin in the build directory with the *_OUTPUT_DIRECTORY* CMake target prop-
erties to be able to load the plugins in the build directory. Once you’ve set the install or output directory of your plugin
you need to tell your executable where to find it at runtime. You can do this either by setting the environment variable
HPX_COMPONENT_PATHS or the ini setting hpx.component_paths (see --hpx:ini) to the directory containing your
plugin.

Using macros to create new targets

In addition to the targets described above, HPX provides convenience macros to hide optional boilerplate code that
may be useful for your project. The link to the targets described above. We recommend that you use the targets directly
whenever possible as they tend to compose better with other targets.

The macro for adding an HPX component is add_hpx_component. It can be used in your CMakeLists.txt file like
this:

build your application using HPX
add_hpx_component(hello_world

SOURCES hello_world_component.cpp
(continues on next page)

59 https://www.cmake.org
60 https://www.cmake.org

112 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://www.cmake.org

HPX Documentation, master

(continued from previous page)

HEADERS hello_world_component.hpp
COMPONENT_DEPENDENCIES iostreams)

Note: add_hpx_component adds a _component suffix to the target name. In the example above, a
hello_world_component target will be created.

The available options to add_hpx_component are:

• SOURCES: The source files for that component

• HEADERS: The header files for that component

• DEPENDENCIES: Other libraries or targets this component depends on

• COMPONENT_DEPENDENCIES: The components this component depends on

• PLUGIN: Treats this component as a plugin-able library

• COMPILE_FLAGS: Additional compiler flags

• LINK_FLAGS: Additional linker flags

• FOLDER: Adds the headers and source files to this Source Group folder

• EXCLUDE_FROM_ALL: Do not build this component as part of the all target

After adding the component, the way you add the executable is as follows:

build your application using HPX
add_hpx_executable(hello_world

SOURCES hello_world_client.cpp
COMPONENT_DEPENDENCIES hello_world)

Note: add_hpx_executable automatically adds a _component suffix to dependencies specified in
COMPONENT_DEPENDENCIES, meaning you can directly use the name given when adding a component using
add_hpx_component.

When you configure your application, all you need to do is set the HPX_DIR variable to point to the installation of HPX.

Note: All library targets built with HPX are exported and readily available to be used as arguments to tar-
get_link_libraries61 in your targets. The HPX include directories are available with the HPX_INCLUDE_DIRS CMake
variable.

61 https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html

2.3. Manual 113

https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html
https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html

HPX Documentation, master

Using the HPX compiler wrapper hpxcxx

The hpxcxx compiler wrapper helps to compile a HPX component, application, or object file, based on the arguments
passed to it.

$ hpxcxx [--exe=<APPLICATION_NAME> | --comp=<COMPONENT_NAME> | -c] FLAGS FILES

The hpxcxx command requires that either an application or a component is built or -c flag is specified. If the build
is against a debug build, the -g is to be specified while building.

Optional FLAGS

• -l <LIBRARY> | -l<LIBRARY>: Links <LIBRARY> to the build

• -g: Specifies that the application or component build is against a debug build

• -rd: Sets release-with-debug-info option

• -mr: Sets minsize-release option

All other flags (like -o OUTPUT_FILE) are directly passed to the underlying C++ compiler.

Using macros to set up existing targets to use HPX

In addition to the add_hpx_component and add_hpx_executable, you can use the hpx_setup_target macro to
have an already existing target to be used with the HPX libraries:

hpx_setup_target(target)

Optional parameters are:

• EXPORT: Adds it to the CMake export list HPXTargets

• INSTALL: Generates an install rule for the target

• PLUGIN: Treats this component as a plugin-able library

• TYPE: The type can be: EXECUTABLE, LIBRARY or COMPONENT

• DEPENDENCIES: Other libraries or targets this component depends on

• COMPONENT_DEPENDENCIES: The components this component depends on

• COMPILE_FLAGS: Additional compiler flags

• LINK_FLAGS: Additional linker flags

If you do not use CMake, you can still build against HPX, but you should refer to the section on How to build HPX
components with pkg-config.

Note: Since HPX relies on dynamic libraries, the dynamic linker needs to know where to look for them. If
HPX isn’t installed into a path that is configured as a linker search path, external projects need to either set RPATH
or adapt LD_LIBRARY_PATH to point to where the HPX libraries reside. In order to set RPATHs, you can include
HPX_SetFullRPATH in your project after all libraries you want to link against have been added. Please also consult
the CMake documentation here62.

62 https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/RPATH-handling

114 Chapter 2. What’s so special about HPX?

https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/RPATH-handling

HPX Documentation, master

Using HPX with Makefile

A basic project building with HPX is through creating makefiles. The process of creating one can get complex depend-
ing upon the use of cmake parameter HPX_WITH_HPX_MAIN (which defaults to ON).

How to build HPX applications with makefile

If HPX is installed correctly, you should be able to build and run a simple Hello World program. It prints Hello
World! on the locality you run it on.

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.
#include <hpx/hpx_main.hpp>
#include <hpx/iostream.hpp>

int main()
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << std::flush;
return 0;

}

Copy the content of this program into a file called hello_world.cpp.

Now, in the directory where you put hello_world.cpp, create a Makefile. Add the following code:

CXX=(CXX) # Add your favourite compiler here or let makefile choose default.

CXXFLAGS=-O3 -std=c++17

Boost_ROOT=/path/to/boost
Hwloc_ROOT=/path/to/hwloc
Tcmalloc_ROOT=/path/to/tcmalloc
HPX_ROOT=/path/to/hpx

INCLUDE_DIRECTIVES=$(HPX_ROOT)/include $(Boost_ROOT)/include $(Hwloc_ROOT)/include

LIBRARY_DIRECTIVES=-L$(HPX_ROOT)/lib $(HPX_ROOT)/lib/libhpx_init.a $(HPX_ROOT)/lib/
→˓libhpx.so $(Boost_ROOT)/lib/libboost_atomic-mt.so $(Boost_ROOT)/lib/libboost_
→˓filesystem-mt.so $(Boost_ROOT)/lib/libboost_program_options-mt.so $(Boost_ROOT)/lib/
→˓libboost_regex-mt.so $(Boost_ROOT)/lib/libboost_system-mt.so -lpthread $(Tcmalloc_
→˓ROOT)/libtcmalloc_minimal.so $(Hwloc_ROOT)/libhwloc.so -ldl -lrt

LINK_FLAGS=$(HPX_ROOT)/lib/libhpx_wrap.a -Wl,-wrap=main # should be left empty for HPX_
→˓WITH_HPX_MAIN=OFF

hello_world: hello_world.o
$(CXX) $(CXXFLAGS) -o hello_world hello_world.o $(LIBRARY_DIRECTIVES) $(LINK_FLAGS)

hello_world.o:
$(CXX) $(CXXFLAGS) -c -o hello_world.o hello_world.cpp $(INCLUDE_DIRECTIVES)

Important: LINK_FLAGS should be left empty if HPX_WITH_HPX_MAIN is set to OFF. Boost in the above example

2.3. Manual 115

HPX Documentation, master

is build with --layout=tagged. Actual Boost flags may vary on your build of Boost.

To build the program, type:

$ make

A successful build should result in hello_world binary. To test, type:

$./hello_world

How to build HPX components with makefile

Let’s try a more complex example involving an HPX component. An HPX component is a class that exposes HPX
actions. HPX components are compiled into dynamically-loaded modules called component libraries. Here’s the
source code:

hello_world_component.cpp

#include <hpx/config.hpp>
#if !defined(HPX_COMPUTE_DEVICE_CODE)
#include <hpx/iostream.hpp>
#include "hello_world_component.hpp"

#include <iostream>

namespace examples { namespace server {
void hello_world::invoke()
{

hpx::cout << "Hello HPX World!" << std::endl;
}

}} // namespace examples::server

HPX_REGISTER_COMPONENT_MODULE()

typedef hpx::components::component<examples::server::hello_world>
hello_world_type;

HPX_REGISTER_COMPONENT(hello_world_type, hello_world)

HPX_REGISTER_ACTION(
examples::server::hello_world::invoke_action, hello_world_invoke_action)

#endif

hello_world_component.hpp

#pragma once

#include <hpx/config.hpp>
#if !defined(HPX_COMPUTE_DEVICE_CODE)
#include <hpx/hpx.hpp>
#include <hpx/include/actions.hpp>
#include <hpx/include/components.hpp>

(continues on next page)

116 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

#include <hpx/include/lcos.hpp>
#include <hpx/serialization.hpp>

#include <utility>

namespace examples { namespace server {
struct HPX_COMPONENT_EXPORT hello_world
: hpx::components::component_base<hello_world>

{
void invoke();
HPX_DEFINE_COMPONENT_ACTION(hello_world, invoke)

};
}} // namespace examples::server

HPX_REGISTER_ACTION_DECLARATION(
examples::server::hello_world::invoke_action, hello_world_invoke_action)

namespace examples {
struct hello_world
: hpx::components::client_base<hello_world, server::hello_world>

{
typedef hpx::components::client_base<hello_world, server::hello_world>

base_type;

hello_world(hpx::future<hpx::id_type>&& f)
: base_type(std::move(f))

{
}

hello_world(hpx::id_type&& f)
: base_type(std::move(f))

{
}

void invoke()
{

hpx::async<server::hello_world::invoke_action>(this->get_id())
.get();

}
};

} // namespace examples

#endif

hello_world_client.cpp

#include <hpx/config.hpp>
#if defined(HPX_COMPUTE_HOST_CODE)
#include <hpx/wrap_main.hpp>

#include "hello_world_component.hpp"

(continues on next page)

2.3. Manual 117

HPX Documentation, master

(continued from previous page)

int main()
{

{
// Create a single instance of the component on this locality.
examples::hello_world client =

hpx::new_<examples::hello_world>(hpx::find_here());

// Invoke the component's action, which will print "Hello World!".
client.invoke();

}

return 0;
}
#endif

Now, in the directory, create a Makefile. Add the following code:

CXX=(CXX) # Add your favourite compiler here or let makefile choose default.

CXXFLAGS=-O3 -std=c++17

Boost_ROOT=/path/to/boost
Hwloc_ROOT=/path/to/hwloc
Tcmalloc_ROOT=/path/to/tcmalloc
HPX_ROOT=/path/to/hpx

INCLUDE_DIRECTIVES=$(HPX_ROOT)/include $(Boost_ROOT)/include $(Hwloc_ROOT)/include

LIBRARY_DIRECTIVES=-L$(HPX_ROOT)/lib $(HPX_ROOT)/lib/libhpx_init.a $(HPX_ROOT)/lib/
→˓libhpx.so $(Boost_ROOT)/lib/libboost_atomic-mt.so $(Boost_ROOT)/lib/libboost_
→˓filesystem-mt.so $(Boost_ROOT)/lib/libboost_program_options-mt.so $(Boost_ROOT)/lib/
→˓libboost_regex-mt.so $(Boost_ROOT)/lib/libboost_system-mt.so -lpthread $(Tcmalloc_
→˓ROOT)/libtcmalloc_minimal.so $(Hwloc_ROOT)/libhwloc.so -ldl -lrt

LINK_FLAGS=$(HPX_ROOT)/lib/libhpx_wrap.a -Wl,-wrap=main # should be left empty for HPX_
→˓WITH_HPX_MAIN=OFF

hello_world_client: libhpx_hello_world hello_world_client.o
$(CXX) $(CXXFLAGS) -o hello_world_client $(LIBRARY_DIRECTIVES) libhpx_hello_world

→˓$(LINK_FLAGS)

hello_world_client.o: hello_world_client.cpp
$(CXX) $(CXXFLAGS) -o hello_world_client.o hello_world_client.cpp $(INCLUDE_DIRECTIVES)

libhpx_hello_world: hello_world_component.o
$(CXX) $(CXXFLAGS) -o libhpx_hello_world hello_world_component.o $(LIBRARY_DIRECTIVES)

hello_world_component.o: hello_world_component.cpp
$(CXX) $(CXXFLAGS) -c -o hello_world_component.o hello_world_component.cpp $(INCLUDE_

→˓DIRECTIVES)

To build the program, type:

118 Chapter 2. What’s so special about HPX?

HPX Documentation, master

$ make

A successful build should result in hello_world binary. To test, type:

$./hello_world

Note: Due to high variations in CMake flags and library dependencies, it is recommended to build HPX applications
and components with pkg-config or CMakeLists.txt. Writing Makefile may result in broken builds if due care is not
taken. pkg-config files and CMake systems are configured with CMake build of HPX. Hence, they are stable when
used together and provide better support overall.

2.3.8 Starting the HPX runtime

In order to write an application that uses services from the HPX runtime system, you need to initialize the HPX library
by inserting certain calls into the code of your application. Depending on your use case, this can be done in 3 different
ways:

• Minimally invasive: Re-use the main() function as the main HPX entry point.

• Balanced use case: Supply your own main HPX entry point while blocking the main thread.

• Most flexibility: Supply your own main HPX entry point while avoiding blocking the main thread.

• Suspend and resume: As above but suspend and resume the HPX runtime to allow for other runtimes to be used.

Re-use the main() function as the main HPX entry point

This method is the least intrusive to your code. However, it provides you with the smallest flexibility in terms of
initializing the HPX runtime system. The following code snippet shows what a minimal HPX application using this
technique looks like:

#include <hpx/hpx_main.hpp>

int main(int argc, char* argv[])
{

return 0;
}

The only change to your code you have to make is to include the file hpx/hpx_main.hpp. In this case the function
main() will be invoked as the first HPX thread of the application. The runtime system will be initialized behind the
scenes before the function main() is executed and will automatically stop after main() has returned. For this method
to work you must link your application to the CMake63 target HPX::wrap_main. This is done automatically if you are
using the provided macros (Using macros to create new targets) to set up your application, but must be done explicitly
if you are using targets directly (Using CMake targets). All HPX API functions can be used from within the main()
function now.

Note: The function main() does not need to expect receiving argc and argv as shown above, but could expose
the signature int main(). This is consistent with the usually allowed prototypes for the function main() in C++
applications.

63 https://www.cmake.org

2.3. Manual 119

https://www.cmake.org

HPX Documentation, master

All command line arguments specific to HPX will still be processed by the HPX runtime system as usual. However,
those command line options will be removed from the list of values passed to argc/argv of the function main(). The
list of values passed to main() will hold only the commandline options that are not recognized by the HPX runtime
system (see the section HPX Command Line Options for more details on what options are recognized by HPX).

Note: In this mode all one-letter shortcuts that are normally available on the HPX command line are disabled (such as
-t or -l see HPX Command Line Options). This is done to minimize any possible interaction between the command
line options recognized by the HPX runtime system and any command line options defined by the application.

The value returned from the function main() as shown above will be returned to the operating system as usual.

Important: To achieve this seamless integration, the header file hpx/hpx_main.hpp defines a macro:

#define main hpx_startup::user_main

which could result in unexpected behavior.

Important: To achieve this seamless integration, we use different implementations for different operating systems. In
case of Linux or macOS, the code present in hpx_wrap.cpp is put into action. We hook into the system function in
case of Linux and provide alternate entry point in case of macOS. For other operating systems we rely on a macro:

#define main hpx_startup::user_main

provided in the header file hpx/hpx_main.hpp. This implementation can result in unexpected behavior.

Caution: We make use of an override variable include_libhpx_wrap in the header file hpx/hpx_main.hpp
to swiftly choose the function call stack at runtime. Therefore, the header file should only be included in the main
executable. Including it in the components will result in multiple definition of the variable.

Supply your own main HPX entry point while blocking the main thread

With this method you need to provide an explicit main-thread function named hpx_main at global scope. This function
will be invoked as the main entry point of your HPX application on the console locality only (this function will be
invoked as the first HPX thread of your application). All HPX API functions can be used from within this function.

The thread executing the function hpx::init will block waiting for the runtime system to exit. The value returned
from hpx_main will be returned from hpx::init after the runtime system has stopped.

The function hpx::finalize has to be called on one of the HPX localities in order to signal that all work has been
scheduled and the runtime system should be stopped after the scheduled work has been executed.

This method of invoking HPX has the advantage of the user being able to decide which version of hpx::init to call.
This allows to pass additional configuration parameters while initializing the HPX runtime system.

#include <hpx/hpx_init.hpp>

int hpx_main(int argc, char* argv[])
{

// Any HPX application logic goes here...
(continues on next page)

120 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

return hpx::finalize();
}

int main(int argc, char* argv[])
{

// Initialize HPX, run hpx_main as the first HPX thread, and
// wait for hpx::finalize being called.
return hpx::init(argc, argv);

}

Note: The function hpx_main does not need to expect receiving argc/argv as shown above, but could expose one of
the following signatures:

int hpx_main();
int hpx_main(int argc, char* argv[]);
int hpx_main(hpx::program_options::variables_map& vm);

This is consistent with (and extends) the usually allowed prototypes for the function main() in C++ applications.

The header file to include for this method of using HPX is hpx/hpx_init.hpp.

There are many additional overloads of hpx::init available, such as the ability to provide your own entry-point
function instead of hpx_main. Please refer to the function documentation for more details (see: hpx/hpx_init.
hpp).

Supply your own main HPX entry point while avoiding blocking the main thread

With this method you need to provide an explicit main thread function named hpx_main at global scope. This function
will be invoked as the main entry point of your HPX application on the console locality only (this function will be
invoked as the first HPX thread of your application). All HPX API functions can be used from within this function.

The thread executing the function hpx::start will not block waiting for the runtime system to exit, but will return
immediately. The function hpx::finalize has to be called on one of the HPX localities in order to signal that all
work has been scheduled and the runtime system should be stopped after the scheduled work has been executed.

This method of invoking HPX is useful for applications where the main thread is used for special operations, such a
GUIs. The function hpx::stop can be used to wait for the HPX runtime system to exit and should at least be used
as the last function called in main(). The value returned from hpx_main will be returned from hpx::stop after the
runtime system has stopped.

#include <hpx/hpx_start.hpp>

int hpx_main(int argc, char* argv[])
{

// Any HPX application logic goes here...
return hpx::finalize();

}

int main(int argc, char* argv[])
{

// Initialize HPX, run hpx_main.
hpx::start(argc, argv);

(continues on next page)

2.3. Manual 121

HPX Documentation, master

(continued from previous page)

// ...Execute other code here...

// Wait for hpx::finalize being called.
return hpx::stop();

}

Note: The function hpx_main does not need to expect receiving argc/argv as shown above, but could expose one of
the following signatures:

int hpx_main();
int hpx_main(int argc, char* argv[]);
int hpx_main(hpx::program_options::variables_map& vm);

This is consistent with (and extends) the usually allowed prototypes for the function main() in C++ applications.

The header file to include for this method of using HPX is hpx/hpx_start.hpp.

There are many additional overloads of hpx::start available, such as the option for users to provide their own
entry point function instead of hpx_main. Please refer to the function documentation for more details (see: hpx/
hpx_start.hpp).

Supply your own explicit startup function as the main HPX entry point

There is also a way to specify any function (besides hpx_main) to be used as the main entry point for your HPX
application:

#include <hpx/hpx_init.hpp>

int application_entry_point(int argc, char* argv[])
{

// Any HPX application logic goes here...
return hpx::finalize();

}

int main(int argc, char* argv[])
{

// Initialize HPX, run application_entry_point as the first HPX thread,
// and wait for hpx::finalize being called.
return hpx::init(&application_entry_point, argc, argv);

}

Note: The function supplied to hpx::init must have one of the following prototypes:

int application_entry_point(int argc, char* argv[]); int application_entry_point(hpx::program_options::variables_map&
vm);

Note: If nullptr is used as the function argument, HPX will not run any startup function on this locality.

122 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Suspending and resuming the HPX runtime

In some applications it is required to combine HPX with other runtimes. To support this use case, HPX provides two
functions: hpx::suspend and hpx::resume. hpx::suspend is a blocking call which will wait for all scheduled
tasks to finish executing and then put the thread pool OS threads to sleep. hpx::resume simply wakes up the sleeping
threads so that they are ready to accept new work. hpx::suspend and hpx::resume can be found in the header
hpx/hpx_suspend.hpp.

#include <hpx/hpx_start.hpp>
#include <hpx/hpx_suspend.hpp>

int main(int argc, char* argv[])
{

// Initialize HPX, don't run hpx_main
hpx::start(nullptr, argc, argv);

// Schedule a function on the HPX runtime
hpx::post(&my_function, ...);

// Wait for all tasks to finish, and suspend the HPX runtime
hpx::suspend();

// Execute non-HPX code here

// Resume the HPX runtime
hpx::resume();

// Schedule more work on the HPX runtime

// hpx::finalize has to be called from the HPX runtime before hpx::stop
hpx::post([]() { hpx::finalize(); });
return hpx::stop();

}

Note: hpx::suspend does not wait for hpx::finalize to be called. Only call hpx::finalize when you wish to
fully stop the HPX runtime.

Warning:

hpx::suspend only waits for local tasks, i.e. tasks on the current locality, to finish executing. When using
hpx::suspend in a multi-locality scenario the user is responsible for ensuring that any work required from
other localities has also finished.

HPX also supports suspending individual thread pools and threads. For details on how to do that, see the documentation
for hpx::threads::thread_pool_base.

2.3. Manual 123

HPX Documentation, master

Automatically suspending worker threads

The previous method guarantees that the worker threads are suspended when you ask for it and that they stay suspended.
An alternative way to achieve the same effect is to tweak how quickly HPX suspends its worker threads when they run
out of work. The following configuration values make sure that HPX idles very quickly:

hpx.max_idle_backoff_time = 1000
hpx.max_idle_loop_count = 0

They can be set on the command line using --hpx:ini=hpx.max_idle_backoff_time=1000 and --hpx:ini=hpx.
max_idle_loop_count=0. See Launching and configuring HPX applications for more details on how to set config-
uration parameters.

After setting idling parameters the previous example could now be written like this instead:

#include <hpx/hpx_start.hpp>

int main(int argc, char* argv[])
{

// Initialize HPX, don't run hpx_main
hpx::start(nullptr, argc, argv);

// Schedule some functions on the HPX runtime
// NOTE: run_as_hpx_thread blocks until completion.
hpx::run_as_hpx_thread(&my_function, ...);
hpx::run_as_hpx_thread(&my_other_function, ...);

// hpx::finalize has to be called from the HPX runtime before hpx::stop
hpx::post([]() { hpx::finalize(); });
return hpx::stop();

}

In this example each call to hpx::run_as_hpx_thread acts as a “parallel region”.

Working of hpx_main.hpp

In order to initialize HPX from main(), we make use of linker tricks.

It is implemented differently for different operating systems. The method of implementation is as follows:

• Linux: Using linker --wrap option.

• Mac OSX: Using the linker -e option.

• Windows: Using #define main hpx_startup::user_main

124 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Linux implementation

We make use of the Linux linker ld‘s --wrap option to wrap the main() function. This way any calls to main() are
redirected to our own implementation of main. It is here that we check for the existence of hpx_main.hpp by making
use of a shadow variable include_libhpx_wrap. The value of this variable determines the function stack at runtime.

The implementation can be found in libhpx_wrap.a.

Important: It is necessary that hpx_main.hpp be not included more than once. Multiple inclusions can result in
multiple definition of include_libhpx_wrap.

Mac OSX implementation

Here we make use of yet another linker option -e to change the entry point to our custom entry function
initialize_main. We initialize the HPX runtime system from this function and call main from the initialized system.
We determine the function stack at runtime by making use of the shadow variable include_libhpx_wrap.

The implementation can be found in libhpx_wrap.a.

Important: It is necessary that hpx_main.hpp be not included more than once. Multiple inclusions can result in
multiple definition of include_libhpx_wrap.

Windows implementation

We make use of a macro #define main hpx_startup::user_main to take care of the initializations.

This implementation could result in unexpected behaviors.

2.3.9 Launching and configuring HPX applications

Configuring HPX applications

All HPX applications can be configured using special command line options and/or using special configuration files.
This section describes the available options, the configuration file format, and the algorithm used to locate possible
predefined configuration files. Additionally, this section describes the defaults assumed if no external configuration
information is supplied.

During startup any HPX application applies a predefined search pattern to locate one or more configuration files.
All found files will be read and merged in the sequence they are found into one single internal database holding all
configuration properties. This database is used during the execution of the application to configure different aspects of
the runtime system.

In addition to the ini files, any application can supply its own configuration files, which will be merged with the con-
figuration database as well. Moreover, the user can specify additional configuration parameters on the command line
when executing an application. The HPX runtime system will merge all command line configuration options (see the
description of the --hpx:ini, --hpx:config, and --hpx:app-config command line options).

2.3. Manual 125

HPX Documentation, master

The HPX ini file format

All HPX applications can be configured using a special file format that is similar to the well-known Windows INI file
format64. This is a structured text format that allows users to group key/value pairs (properties) into sections. The basic
element contained in an ini file is the property. Every property has a name and a value, delimited by an equal sign '='.
The name appears to the left of the equal sign:

name=value

The value may contain equal signs as only the first '=' character is interpreted as the delimiter between name and
value. Whitespace before the name, after the value and immediately before and after the delimiting equal sign is
ignored. Whitespace inside the value is retained.

Properties may be grouped into arbitrarily named sections. The section name appears on a line by itself, in square
brackets. All properties after the section declaration are associated with that section. There is no explicit “end of
section” delimiter; sections end at the next section declaration or the end of the file:

[section]

In HPX sections can be nested. A nested section has a name composed of all section names it is embedded in. The
section names are concatenated using a dot '.':

[outer_section.inner_section]

Here, inner_section is logically nested within outer_section.

It is possible to use the full section name concatenated with the property name to refer to a particular property. For
example, in:

[a.b.c]
d = e

the property value of d can be referred to as a.b.c.d=e.

In HPX ini files can contain comments. Hash signs '#' at the beginning of a line indicate a comment. All characters
starting with '#' until the end of the line are ignored.

If a property with the same name is reused inside a section, the second occurrence of this property name will override the
first occurrence (discard the first value). Duplicate sections simply merge their properties together, as if they occurred
contiguously.

In HPX ini files a property value ${FOO:default}will use the environmental variable FOO to extract the actual value if
it is set and default otherwise. No default has to be specified. Therefore, ${FOO} refers to the environmental variable
FOO. If FOO is not set or empty, the overall expression will evaluate to an empty string. A property value $[section.
key:default] refers to the value held by the property section.key if it exists and default otherwise. No default
has to be specified. Therefore $[section.key] refers to the property section.key. If the property section.key
is not set or empty, the overall expression will evaluate to an empty string.

Note: Any property $[section.key:default] is evaluated whenever it is queried and not when the configuration
data is initialized. This allows for lazy evaluation and relaxes initialization order of different sections. The only excep-
tion are recursive property values, e.g., values referring to the very key they are associated with. Those property values
are evaluated at initialization time to avoid infinite recursion.

64 https://en.wikipedia.org/wiki/INI_file

126 Chapter 2. What’s so special about HPX?

https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file

HPX Documentation, master

Built-in default configuration settings

During startup any HPX application applies a predefined search pattern to locate one or more configuration files. All
found files will be read and merged in the sequence they are found into one single internal data structure holding all
configuration properties.

As a first step the internal configuration database is filled with a set of default configuration properties. Those settings
are described on a section by section basis below.

Note: You can print the default configuration settings used for an executable by specifying the command line option
--hpx:dump-config.

The system configuration section

[system]
pid = <process-id>
prefix = <current prefix path of core HPX library>
executable = <current prefix path of executable>

Property Description
system.pid This is initialized to store the current OS-process id of the application instance.
system.prefix This is initialized to the base directory HPX has been loaded from.
system.
executable_prefix

This is initialized to the base directory the current executable has been loaded
from.

The HPX configuration section

[hpx]
location = ${HPX_LOCATION:$[system.prefix]}
component_path = $[hpx.location]/lib/hpx:$[system.executable_prefix]/lib/hpx:$[system.
→˓executable_prefix]/../lib/hpx
master_ini_path = $[hpx.location]/share/hpx-<version>:$[system.executable_prefix]/share/
→˓hpx-<version>:$[system.executable_prefix]/../share/hpx-<version>
ini_path = $[hpx.master_ini_path]/ini
os_threads = 1
cores = all
localities = 1
program_name =
cmd_line =
lock_detection = ${HPX_LOCK_DETECTION:0}
throw_on_held_lock = ${HPX_THROW_ON_HELD_LOCK:1}
minimal_deadlock_detection = <debug>
spinlock_deadlock_detection = <debug>
spinlock_deadlock_detection_limit = ${HPX_SPINLOCK_DEADLOCK_DETECTION_LIMIT:1000000}
max_background_threads = ${HPX_MAX_BACKGROUND_THREADS:$[hpx.os_threads]}
max_idle_loop_count = ${HPX_MAX_IDLE_LOOP_COUNT:<hpx_idle_loop_count_max>}
max_busy_loop_count = ${HPX_MAX_BUSY_LOOP_COUNT:<hpx_busy_loop_count_max>}
max_idle_backoff_time = ${HPX_MAX_IDLE_BACKOFF_TIME:<hpx_idle_backoff_time_max>}

(continues on next page)

2.3. Manual 127

HPX Documentation, master

(continued from previous page)

exception_verbosity = ${HPX_EXCEPTION_VERBOSITY:2}
trace_depth = ${HPX_TRACE_DEPTH:20}
handle_signals = ${HPX_HANDLE_SIGNALS:1}
handle_failed_new = ${HPX_HANDLE_FAILED_NEW:1}

[hpx.stacks]
small_size = ${HPX_SMALL_STACK_SIZE:<hpx_small_stack_size>}
medium_size = ${HPX_MEDIUM_STACK_SIZE:<hpx_medium_stack_size>}
large_size = ${HPX_LARGE_STACK_SIZE:<hpx_large_stack_size>}
huge_size = ${HPX_HUGE_STACK_SIZE:<hpx_huge_stack_size>}
use_guard_pages = ${HPX_THREAD_GUARD_PAGE:1}

128 Chapter 2. What’s so special about HPX?

HPX Documentation, master

2.3. Manual 129

HPX Documentation, master

Property Description
hpx.
location

This is initialized to the id of the locality this application instance is running on.

hpx.
component_path

Duplicates are discarded. This property can refer to a list of directories separated by ':' (Linux,
Android, and MacOS) or by ';' (Windows).

hpx.
master_ini_path

This is initialized to the list of default paths of the main hpx.ini configuration files. This property can
refer to a list of directories separated by ':' (Linux, Android, and MacOS) or using ';' (Windows).

hpx.
ini_path

This is initialized to the default path where HPX will look for more ini configuration files. This
property can refer to a list of directories separated by ':' (Linux, Android, and MacOS) or using ';'
(Windows).

hpx.
os_threads

This setting reflects the number of OS threads used for running HPX threads. Defaults to number of
detected cores (not hyperthreads/PUs).

hpx.
cores

This setting reflects the number of cores used for running HPX threads. Defaults to number of detected
cores (not hyperthreads/PUs).

hpx.
localities

This setting reflects the number of localities the application is running on. Defaults to 1.

hpx.
program_name

This setting reflects the program name of the application instance. Initialized from the command line
argv[0].

hpx.
cmd_line

This setting reflects the actual command line used to launch this application instance.

hpx.
lock_detection

This setting verifies that no locks are being held while a HPX thread is suspended. This setting is
applicable only if HPX_WITH_VERIFY_LOCKS is set during configuration in CMake.

hpx.
throw_on_held_lock

This setting causes an exception if during lock detection at least one lock is being held while a HPX
thread is suspended. This setting is applicable only if HPX_WITH_VERIFY_LOCKS is set during con-
figuration in CMake. This setting has no effect if hpx.lock_detection=0.

hpx.
minimal_deadlock_detection

This setting enables support for minimal deadlock detection for HPX threads. By default this is set
to 1 (for Debug builds) or to 0 (for Release, RelWithDebInfo, RelMinSize builds). This setting is
effective only if HPX_WITH_THREAD_DEADLOCK_DETECTION is set during configuration in CMake.

hpx.
spinlock_deadlock_detection

This setting verifies that spinlocks don’t spin longer than specified using the
hpx.spinlock_deadlock_detection_limit. This setting is applicable only if
HPX_WITH_SPINLOCK_DEADLOCK_DETECTION is set during configuration in CMake. By de-
fault this is set to 1 (for Debug builds) or to 0 (for Release, RelWithDebInfo, RelMinSize builds).

hpx.
spinlock_deadlock_detection_limit

This setting specifies the upper limit of the allowed number of spins that spinlocks are allowed to per-
form. This setting is applicable only if HPX_WITH_SPINLOCK_DEADLOCK_DETECTION is set during
configuration in CMake. By default this is set to 1000000.

hpx.
max_background_threads

This setting defines the number of threads in the scheduler, which are used to execute background
work. By default this is the same as the number of cores used for the scheduler.

hpx.
max_idle_loop_count

By default this is defined by the preprocessor constant HPX_IDLE_LOOP_COUNT_MAX. This is an in-
ternal setting that you should change only if you know exactly what you are doing.

hpx.
max_busy_loop_count

This setting defines the maximum value of the busy-loop counter in the scheduler. By default this
is defined by the preprocessor constant HPX_BUSY_LOOP_COUNT_MAX. This is an internal setting that
you should change only if you know exactly what you are doing.

hpx.
max_idle_backoff_time

This setting defines the maximum time (in milliseconds) for the scheduler to sleep af-
ter being idle for hpx.max_idle_loop_count iterations. This setting is applicable only if
HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF is set during configuration in CMake65. By default
this is defined by the preprocessor constant HPX_IDLE_BACKOFF_TIME_MAX. This is an internal set-
ting that you should change only if you know exactly what you are doing.

hpx.
exception_verbosity

This setting defines the verbosity of exceptions. Valid values are integers. A setting of 2 or higher
prints all available information. A setting of 1 leaves out the build configuration and environment
variables. A setting of 0 or lower prints only the description of the thrown exception and the file
name, function, and line number where the exception was thrown. The default value is 2 or the value
of the environment variable HPX_EXCEPTION_VERBOSITY.

hpx.
trace_depth

This setting defines the number of stack-levels printed in generated stack backtraces. This defaults
to 20, but can be changed using the cmake HPX_WITH_THREAD_BACKTRACE_DEPTH configuration
setting.

hpx.
handle_signals

This setting defines whether HPX will register signal handlers that will print the configuration in-
formation (stack backtrace, system information, etc.) whenever a signal is raised. The default is 1.
Setting this value to 0 can be useful in cases when generating a core-dump on segmentation faults or
similar signals is desired.

hpx.
handle_failed_new

This setting defines whether HPX will register a handler for failed allocationsthat will print the con-
figuration information (stack backtrace, system information, etc.) whenever an allocation fails. The
default is 1. Setting this value to 0 can be useful in cases when generating a core-dump on segmenta-
tion faults or similar signals is desired.

hpx.
stacks.
small_size

This is initialized to the small stack size to be used by HPX threads. Set by default to the value of
the compile time preprocessor constant HPX_SMALL_STACK_SIZE (defaults to 0x8000). This value
is used for all HPX threads by default, except for the thread running hpx_main (which runs on a large
stack).

hpx.
stacks.
medium_size

This is initialized to the medium stack size to be used by HPX threads. Set by default to the value of
the compile time preprocessor constant HPX_MEDIUM_STACK_SIZE (defaults to 0x20000).

hpx.
stacks.
large_size

This is initialized to the large stack size to be used by HPX threads. Set by default to the value of the
compile time preprocessor constant HPX_LARGE_STACK_SIZE (defaults to 0x200000). This setting
is used by default for the thread running hpx_main only.

hpx.
stacks.
huge_size

This is initialized to the huge stack size to be used by HPX threads. Set by default to the value of the
compile time preprocessor constant HPX_HUGE_STACK_SIZE (defaults to 0x2000000).

hpx.
stacks.
use_guard_pages

This entry controls whether the coroutine library will generate stack guard pages or not. This entry
is applicable on Linux only and only if the HPX_USE_GENERIC_COROUTINE_CONTEXT option is not
enabled and the HPX_WITH_THREAD_GUARD_PAGE is set to 1 while configuring the build system. It is
set by default to 1.

130 Chapter 2. What’s so special about HPX?

https://www.cmake.org

HPX Documentation, master

The hpx.threadpools configuration section

[hpx.threadpools]
io_pool_size = ${HPX_NUM_IO_POOL_SIZE:2}
parcel_pool_size = ${HPX_NUM_PARCEL_POOL_SIZE:2}
timer_pool_size = ${HPX_NUM_TIMER_POOL_SIZE:2}

Property Description
hpx.threadpools.
io_pool_size

The value of this property defines the number of OS threads created for the
internal I/O thread pool.

hpx.threadpools.
parcel_pool_size

The value of this property defines the number of OS threads created for the
internal parcel thread pool.

hpx.threadpools.
timer_pool_size

The value of this property defines the number of OS threads created for the
internal timer thread pool.

The hpx.thread_queue configuration section

Important: These are the setting control internal values used by the thread scheduling queues in the HPX scheduler.
You should not modify these settings unless you know exactly what you are doing.

[hpx.thread_queue]
min_tasks_to_steal_pending = ${HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_PENDING:0}
min_tasks_to_steal_staged = ${HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_STAGED:0}
min_add_new_count = ${HPX_THREAD_QUEUE_MIN_ADD_NEW_COUNT:10}
max_add_new_count = ${HPX_THREAD_QUEUE_MAX_ADD_NEW_COUNT:10}
max_delete_count = ${HPX_THREAD_QUEUE_MAX_DELETE_COUNT:1000}

Property Description
hpx.thread_queue.
min_tasks_to_steal_pending

The value of this property defines the number of pending HPX threads that have to be
available before neighboring cores are allowed to steal work. The default is to allow
stealing always.

hpx.thread_queue.
min_tasks_to_steal_staged

The value of this property defines the number of staged HPX tasks that need to be
available before neighboring cores are allowed to steal work. The default is to allow
stealing always.

hpx.thread_queue.
min_add_new_count

The value of this property defines the minimal number of tasks to be converted into
HPX threads whenever the thread queues for a core have run empty.

hpx.thread_queue.
max_add_new_count

The value of this property defines the maximal number of tasks to be converted into
HPX threads whenever the thread queues for a core have run empty.

hpx.thread_queue.
max_delete_count

The value of this property defines the number of terminated HPX threads to discard
during each invocation of the corresponding function.

65 https://www.cmake.org

2.3. Manual 131

HPX Documentation, master

The hpx.components configuration section

[hpx.components]
load_external = ${HPX_LOAD_EXTERNAL_COMPONENTS:1}

Property Description
hpx.
components.
load_external

This entry defines whether external components will be loaded on this locality. This entry is
normally set to 1, and usually there is no need to directly change this value. It is automatically
set to 0 for a dedicated AGAS server locality.

Additionally, the section hpx.componentswill be populated with the information gathered from all found components.
The information loaded for each of the components will contain at least the following properties:

[hpx.components.<component_instance_name>]
name = <component_name>
path = <full_path_of_the_component_module>
enabled = $[hpx.components.load_external]

Property Description
hpx.components.
<component_instance_name>.
name

This is the name of a component, usually the same as the second argument to the macro used
while registering the component with HPX_REGISTER_COMPONENT. Set by the component
factory.

hpx.components.
<component_instance_name>.
path

This is either the full path file name of the component module or the directory the component
module is located in. In this case, the component module name will be derived from the
property hpx.components.<component_instance_name>.name. Set by the component
factory.

hpx.components.
<component_instance_name>.
enabled

This setting explicitly enables or disables the component. This is an optional property. HPX
assumes that the component is enabled if it is not defined.

The value for <component_instance_name> is usually the same as for the corresponding name property. However,
generally it can be defined to any arbitrary instance name. It is used to distinguish between different ini sections, one
for each component.

The hpx.parcel configuration section

[hpx.parcel]
address = ${HPX_PARCEL_SERVER_ADDRESS:<hpx_initial_ip_address>}
port = ${HPX_PARCEL_SERVER_PORT:<hpx_initial_ip_port>}
bootstrap = ${HPX_PARCEL_BOOTSTRAP:<hpx_parcel_bootstrap>}
max_connections = ${HPX_PARCEL_MAX_CONNECTIONS:<hpx_parcel_max_connections>}
max_connections_per_locality = ${HPX_PARCEL_MAX_CONNECTIONS_PER_LOCALITY:<hpx_parcel_max_
→˓connections_per_locality>}
max_message_size = ${HPX_PARCEL_MAX_MESSAGE_SIZE:<hpx_parcel_max_message_size>}
max_outbound_message_size = ${HPX_PARCEL_MAX_OUTBOUND_MESSAGE_SIZE:<hpx_parcel_max_
→˓outbound_message_size>}
array_optimization = ${HPX_PARCEL_ARRAY_OPTIMIZATION:1}
zero_copy_optimization = ${HPX_PARCEL_ZERO_COPY_OPTIMIZATION:$[hpx.parcel.array_
→˓optimization]}
zero_copy_receive_optimization = ${HPX_PARCEL_ZERO_COPY_RECEIVE_OPTIMIZATION:$[hpx.
→˓parcel.array_optimization]} (continues on next page)

132 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

async_serialization = ${HPX_PARCEL_ASYNC_SERIALIZATION:1}
message_handlers = ${HPX_PARCEL_MESSAGE_HANDLERS:0}

Property Description
hpx.
parcel.
address

This property defines the default IP address to be used for the parcel layer to listen to. This IP
address will be used as long as no other values are specified (for instance, using the --hpx:hpx
command line option). The expected format is any valid IP address or domain name format that
can be resolved into an IP address. The default depends on the compile time preprocessor constant
HPX_INITIAL_IP_ADDRESS ("127.0.0.1").

hpx.
parcel.
port

This property defines the default IP port to be used for the parcel layer to listen to. This IP port will
be used as long as no other values are specified (for instance using the --hpx:hpx command line
option). The default depends on the compile time preprocessor constant HPX_INITIAL_IP_PORT
(7910).

hpx.
parcel.
bootstrap

This property defines which parcelport type should be used during application bootstrap. The de-
fault depends on the compile time preprocessor constant HPX_PARCEL_BOOTSTRAP ("tcp").

hpx.
parcel.
max_connections

This property defines how many network connections between different localities are overall
kept alive by each locality. The default depends on the compile time preprocessor constant
HPX_PARCEL_MAX_CONNECTIONS (512).

hpx.
parcel.
max_connections_per_locality

This property defines the maximum number of network connections that one locality will
open to another locality. The default depends on the compile time preprocessor constant
HPX_PARCEL_MAX_CONNECTIONS_PER_LOCALITY (4).

hpx.
parcel.
max_message_size

This property defines the maximum allowed message size that will be transferrable
through the parcel layer. The default depends on the compile time preprocessor constant
HPX_PARCEL_MAX_MESSAGE_SIZE (1000000000 bytes).

hpx.
parcel.
max_outbound_message_size

This property defines the maximum allowed outbound coalesced message size that will be trans-
ferrable through the parcel layer. The default depends on the compile time preprocessor constant
HPX_PARCEL_MAX_OUTBOUND_MESSAGE_SIZE (1000000 bytes).

hpx.
parcel.
array_optimization

This property defines whether this locality is allowed to utilize array optimizations during serial-
ization of parcel data. The default is 1.

hpx.
parcel.
zero_copy_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations dur-
ing serialization of parcel data. The default is the same value as set for hpx.parcel.
array_optimization.

hpx.
parcel.
zero_copy_receive_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations on the
receiving end during de-serialization of parcel data. The default is the same value as set for hpx.
parcel.zero_copy_optimization.

hpx.
parcel.
zero_copy_serialization_threshold

This property defines the threshold value (in bytes) starting at which the serialization layer will apply
zero-copy optimizations for serialized entities. The default value is defined by the preprocessor
constant HPX_ZERO_COPY_SERIALIZATION_THRESHOLD.

hpx.
parcel.
async_serialization

This property defines whether this locality is allowed to spawn a new thread for serialization (this
is both for encoding and decoding parcels). The default is 1.

hpx.
parcel.
message_handlers

This property defines whether message handlers are loaded. The default is 0.

hpx.
parcel.
max_background_threads

This property defines how many cores should be used to perform background operations. The
default is -1 (all cores).

The following settings relate to the TCP/IP parcelport.

2.3. Manual 133

HPX Documentation, master

[hpx.parcel.tcp]
enable = ${HPX_HAVE_PARCELPORT_TCP:$[hpx.parcel.enabled]}
array_optimization = ${HPX_PARCEL_TCP_ARRAY_OPTIMIZATION:$[hpx.parcel.array_
→˓optimization]}
zero_copy_optimization = ${HPX_PARCEL_TCP_ZERO_COPY_OPTIMIZATION:$[hpx.parcel.zero_copy_
→˓optimization]}
zero_copy_receive_optimization = ${HPX_PARCEL_TCP_ZERO_COPY_RECEIVE_OPTIMIZATION:$[hpx.
→˓parcel.zero_copy_receive_optimization]}
zero_copy_serialization_threshold = ${HPX_PARCEL_TCP_ZERO_COPY_SERIALIZATION_THRESHOLD:
→˓$[hpx.parcel.zero_copy_serialization_threshold]}
async_serialization = ${HPX_PARCEL_TCP_ASYNC_SERIALIZATION:$[hpx.parcel.async_
→˓serialization]}
parcel_pool_size = ${HPX_PARCEL_TCP_PARCEL_POOL_SIZE:$[hpx.threadpools.parcel_pool_size]}
max_connections = ${HPX_PARCEL_TCP_MAX_CONNECTIONS:$[hpx.parcel.max_connections]}
max_connections_per_locality = ${HPX_PARCEL_TCP_MAX_CONNECTIONS_PER_LOCALITY:$[hpx.
→˓parcel.max_connections_per_locality]}
max_message_size = ${HPX_PARCEL_TCP_MAX_MESSAGE_SIZE:$[hpx.parcel.max_message_size]}
max_outbound_message_size = ${HPX_PARCEL_TCP_MAX_OUTBOUND_MESSAGE_SIZE:$[hpx.parcel.max_
→˓outbound_message_size]}
max_background_threads = ${HPX_PARCEL_TCP_MAX_BACKGROUND_THREADS:$[hpx.parcel.max_
→˓background_threads]}

134 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Property Description
hpx.parcel.tcp.
enable

Enables the use of the default TCP parcelport. Note that the initial bootstrap of the overall
HPX application will be performed using the default TCP connections. This parcelport is
enabled by default. This will be disabled only if MPI is enabled (see below).

hpx.parcel.tcp.
array_optimization

This property defines whether this locality is allowed to utilize array optimizations in the
TCP/IP parcelport during serialization of parcel data. The default is the same value as set
for hpx.parcel.array_optimization.

hpx.parcel.tcp.
zero_copy_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations
during serialization of parcel data. The default is the same value as set for hpx.parcel.
zero_copy_optimization.

hpx.parcel.tcp.
zero_copy_receive_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations
on the receiving end in the TCP/IP parcelport during de-serialization of parcel data. The
default is the same value as set for hpx.parcel.zero_copy_optimization.

hpx.parcel.tcp.
zero_copy_serialization_threshold

This property defines the threshold value (in bytes) starting at which the serialization layer
will apply zero-copy optimizations for serialized entities. The default is the same value as
set for hpx.parcel.zero_copy_serialization_threshold.

hpx.parcel.tcp.
async_serialization

This property defines whether this locality is allowed to spawn a new thread for serializa-
tion in the TCP/IP parcelport (this is both for encoding and decoding parcels). The default
is the same value as set for hpx.parcel.async_serialization.

hpx.parcel.tcp.
parcel_pool_size

The value of this property defines the number of OS threads created for the internal par-
cel thread pool of the TCP parcel port. The default is taken from hpx.threadpools.
parcel_pool_size.

hpx.parcel.tcp.
max_connections

This property defines how many network connections between different localities are over-
all kept alive by each locality. The default is taken from hpx.parcel.max_connections.

hpx.parcel.tcp.
max_connections_per_locality

This property defines the maximum number of network connections that one lo-
cality will open to another locality. The default is taken from hpx.parcel.
max_connections_per_locality.

hpx.parcel.tcp.
max_message_size

This property defines the maximum allowed message size that will be transferrable through
the parcel layer. The default is taken from hpx.parcel.max_message_size.

hpx.parcel.tcp.
max_outbound_message_size

This property defines the maximum allowed outbound coalesced message size that will
be transferrable through the parcel layer. The default is taken from hpx.parcel.
max_outbound_connections.

hpx.parcel.tcp.
max_background_threads

This property defines how many cores should be used to perform background operations.
The default is taken from hpx.parcel.max_background_threads.

The following settings relate to the MPI parcelport. These settings take effect only if the compile time constant
HPX_HAVE_PARCELPORT_MPI is set (the equivalent CMake variable is HPX_WITH_PARCELPORT_MPI and has to be
set to ON).

[hpx.parcel.mpi]
enable = ${HPX_HAVE_PARCELPORT_MPI:$[hpx.parcel.enabled]}
env = ${HPX_HAVE_PARCELPORT_MPI_ENV:MV2_COMM_WORLD_RANK,PMI_RANK,OMPI_COMM_WORLD_SIZE,
→˓ALPS_APP_PE,PALS_NODEID}
multithreaded = ${HPX_HAVE_PARCELPORT_MPI_MULTITHREADED:1}
rank = <MPI_rank>
processor_name = <MPI_processor_name>
array_optimization = ${HPX_HAVE_PARCEL_MPI_ARRAY_OPTIMIZATION:$[hpx.parcel.array_
→˓optimization]}
zero_copy_optimization = ${HPX_HAVE_PARCEL_MPI_ZERO_COPY_OPTIMIZATION:$[hpx.parcel.zero_
→˓copy_optimization]}
zero_copy_receive_optimization = ${HPX_HAVE_PARCEL_MPI_ZERO_COPY_RECEIVE_OPTIMIZATION:
→˓$[hpx.parcel.zero_copy_receive_optimization]}

(continues on next page)

2.3. Manual 135

HPX Documentation, master

(continued from previous page)

zero_copy_serialization_threshold = ${HPX_PARCEL_MPI_ZERO_COPY_SERIALIZATION_THRESHOLD:
→˓$[hpx.parcel.zero_copy_serialization_threshold]}
use_io_pool = ${HPX_HAVE_PARCEL_MPI_USE_IO_POOL:$1}
async_serialization = ${HPX_HAVE_PARCEL_MPI_ASYNC_SERIALIZATION:$[hpx.parcel.async_
→˓serialization]}
parcel_pool_size = ${HPX_HAVE_PARCEL_MPI_PARCEL_POOL_SIZE:$[hpx.threadpools.parcel_pool_
→˓size]}
max_connections = ${HPX_HAVE_PARCEL_MPI_MAX_CONNECTIONS:$[hpx.parcel.max_connections]}
max_connections_per_locality = ${HPX_HAVE_PARCEL_MPI_MAX_CONNECTIONS_PER_LOCALITY:$[hpx.
→˓parcel.max_connections_per_locality]}
max_message_size = ${HPX_HAVE_PARCEL_MPI_MAX_MESSAGE_SIZE:$[hpx.parcel.max_message_
→˓size]}
max_outbound_message_size = ${HPX_HAVE_PARCEL_MPI_MAX_OUTBOUND_MESSAGE_SIZE:$[hpx.
→˓parcel.max_outbound_message_size]}
max_background_threads = ${HPX_PARCEL_MPI_MAX_BACKGROUND_THREADS:$[hpx.parcel.max_
→˓background_threads]}

136 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Property Description
hpx.parcel.
mpi.enable

Enables the use of the MPI parcelport. HPX tries to detect if the application was started within
a parallel MPI environment. If the detection was successful, the MPI parcelport is enabled by
default. To explicitly disable the MPI parcelport, set to 0. Note that the initial bootstrap of the
overall HPX application will be performed using MPI as well.

hpx.parcel.
mpi.env

This property influences which environment variables (separated by commas) will be analyzed
to find out whether the application was invoked by MPI.

hpx.
parcel.mpi.
multithreaded

This property is used to determine what threading mode to use when initializing MPI. If this
setting is 0, HPX will initialize MPI with MPI_THREAD_SINGLE. If the value is not equal to 0,
HPX will initialize MPI with MPI_THREAD_MULTI.

hpx.parcel.
mpi.rank

This property will be initialized to the MPI rank of the locality.

hpx.
parcel.mpi.
processor_name

This property will be initialized to the MPI processor name of the locality.

hpx.
parcel.mpi.
array_optimization

This property defines whether this locality is allowed to utilize array optimizations in the MPI
parcelport during serialization of parcel data. The default is the same value as set for hpx.
parcel.array_optimization.

hpx.
parcel.mpi.
zero_copy_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations in the
MPI parcelport during serialization of parcel data. The default is the same value as set for
hpx.parcel.zero_copy_optimization.

hpx.
parcel.mpi.
zero_copy_receive_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations on the
receiving end in the MPI parcelport during de-serialization of parcel data. The default is the
same value as set for hpx.parcel.zero_copy_optimization.

hpx.
parcel.mpi.
zero_copy_serialization_threshold

This property defines the threshold value (in bytes) starting at which the serialization layer will
apply zero-copy optimizations for serialized entities. The default is the same value as set for
hpx.parcel.zero_copy_serialization_threshold.

hpx.
parcel.mpi.
use_io_pool

This property can be set to run the progress thread inside of HPX threads instead of a separate
thread pool. The default is 1.

hpx.
parcel.mpi.
async_serialization

This property defines whether this locality is allowed to spawn a new thread for serialization
in the MPI parcelport (this is both for encoding and decoding parcels). The default is the same
value as set for hpx.parcel.async_serialization.

hpx.
parcel.mpi.
parcel_pool_size

The value of this property defines the number of OS threads created for the internal par-
cel thread pool of the MPI parcel port. The default is taken from hpx.threadpools.
parcel_pool_size.

hpx.
parcel.mpi.
max_connections

This property defines how many network connections between different localities are overall
kept alive by each locality. The default is taken from hpx.parcel.max_connections.

hpx.
parcel.mpi.
max_connections_per_locality

This property defines the maximum number of network connections that one lo-
cality will open to another locality. The default is taken from hpx.parcel.
max_connections_per_locality.

hpx.
parcel.mpi.
max_message_size

This property defines the maximum allowed message size that will be transferrable through the
parcel layer. The default is taken from hpx.parcel.max_message_size.

hpx.
parcel.mpi.
max_outbound_message_size

This property defines the maximum allowed outbound coalesced message size that will
be transferrable through the parcel layer. The default is taken from hpx.parcel.
max_outbound_connections.

hpx.
parcel.mpi.
max_background_threads

This property defines how many cores should be used to perform background operations. The
default is taken from hpx.parcel.max_background_threads.

2.3. Manual 137

HPX Documentation, master

The hpx.agas configuration section

[hpx.agas]
address = ${HPX_AGAS_SERVER_ADDRESS:<hpx_initial_ip_address>}
port = ${HPX_AGAS_SERVER_PORT:<hpx_initial_ip_port>}
service_mode = hosted
dedicated_server = 0
max_pending_refcnt_requests = ${HPX_AGAS_MAX_PENDING_REFCNT_REQUESTS:<hpx_initial_agas_
→˓max_pending_refcnt_requests>}
use_caching = ${HPX_AGAS_USE_CACHING:1}
use_range_caching = ${HPX_AGAS_USE_RANGE_CACHING:1}
local_cache_size = ${HPX_AGAS_LOCAL_CACHE_SIZE:<hpx_agas_local_cache_size>}

Property Description
hpx.
agas.
address

This property defines the default IP address to be used for the AGAS root server. This IP address
will be used as long as no other values are specified (for instance, using the --hpx:agas com-
mand line option). The expected format is any valid IP address or domain name format that can
be resolved into an IP address. The default depends on the compile time preprocessor constant
HPX_INITIAL_IP_ADDRESS ("127.0.0.1").

hpx.
agas.
port

This property defines the default IP port to be used for the AGAS root server. This IP port will be used
as long as no other values are specified (for instance, using the --hpx:agas command line option).
The default depends on the compile time preprocessor constant HPX_INITIAL_IP_PORT (7009).

hpx.
agas.
service_mode

This property specifies what type of AGAS service is running on this locality. Currently, two modes
exist. The locality that acts as the AGAS server runs in bootstrap mode. All other localities are in
hosted mode.

hpx.
agas.
dedicated_server

This property specifies whether the AGAS server is exclusively running AGAS services and not hosting
any application components. It is a boolean value. Set to 1 if --hpx:run-agas-server-only is
present.

hpx.
agas.
max_pending_refcnt_requests

This property defines the number of reference counting requests (increments or decre-
ments) to buffer. The default depends on the compile time preprocessor constant
HPX_INITIAL_AGAS_MAX_PENDING_REFCNT_REQUESTS (4096).

hpx.
agas.
use_caching

This property specifies whether a software address translation cache is used. It is a boolean value.
Defaults to 1.

hpx.
agas.
use_range_caching

This property specifies whether range-based caching is used by the software address translation cache.
This property is ignored if hpx.agas.use_caching is false. It is a boolean value. Defaults to 1.

hpx.
agas.
local_cache_size

This property defines the size of the software address translation cache for AGAS services. This prop-
erty is ignored if hpx.agas.use_caching is false. Note that if hpx.agas.use_range_caching
is true, this size will refer to the maximum number of ranges stored in the cache, not the number
of entries spanned by the cache. The default depends on the compile time preprocessor constant
HPX_AGAS_LOCAL_CACHE_SIZE (4096).

138 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The hpx.commandline configuration section

The following table lists the definition of all pre-defined command line option shortcuts. For more information about
commandline options, see the section HPX Command Line Options.

[hpx.commandline]
aliasing = ${HPX_COMMANDLINE_ALIASING:1}
allow_unknown = ${HPX_COMMANDLINE_ALLOW_UNKNOWN:0}

[hpx.commandline.aliases]
-a = --hpx:agas
-c = --hpx:console
-h = --hpx:help
-I = --hpx:ini
-l = --hpx:localities
-p = --hpx:app-config
-q = --hpx:queuing
-r = --hpx:run-agas-server
-t = --hpx:threads
-v = --hpx:version
-w = --hpx:worker
-x = --hpx:hpx
-0 = --hpx:node=0
-1 = --hpx:node=1
-2 = --hpx:node=2
-3 = --hpx:node=3
-4 = --hpx:node=4
-5 = --hpx:node=5
-6 = --hpx:node=6
-7 = --hpx:node=7
-8 = --hpx:node=8
-9 = --hpx:node=9

Note: The short options listed above are disabled by default if the application is built using #include <hpx/
hpx_main.hpp>. See Re-use the main() function as the main HPX entry point for more information. The rationale
behind this is that in this case the user’s application may handle its own command line options, since HPX passes all
unknown options to main(). Short options like -t are prone to create ambiguities regarding what the application will
support. Hence, the user should instead rely on the corresponding long options like --hpx:threads in such a case.

2.3. Manual 139

HPX Documentation, master

140 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Property Description
hpx.commandline.
aliasing

Enable command line aliases as defined in the section hpx.commandline.
aliases (see below). Defaults to 1.

hpx.commandline.
allow_unknown

Allow for unknown command line options to be passed through to hpx_main()
Defaults to 0.

hpx.commandline.
aliases.-a

On the commandline -a expands to: --hpx:agas.

hpx.commandline.
aliases.-c

On the commandline -c expands to: --hpx:console.

hpx.commandline.
aliases.-h

On the commandline -h expands to: --hpx:help.

hpx.commandline.
aliases.--help

On the commandline --help expands to: --hpx:help.

hpx.commandline.
aliases.-I

On the commandline -I expands to: --hpx:ini.

hpx.commandline.
aliases.-l

On the commandline -l expands to: --hpx:localities.

hpx.commandline.
aliases.-p

On the commandline -p expands to: --hpx:app-config.

hpx.commandline.
aliases.-q

On the commandline -q expands to: --hpx:queuing.

hpx.commandline.
aliases.-r

On the commandline -r expands to: --hpx:run-agas-server.

hpx.commandline.
aliases.-t

On the commandline -t expands to: --hpx:threads.

hpx.commandline.
aliases.-v

On the commandline -v expands to: --hpx:version.

hpx.commandline.
aliases.--version

On the commandline --version expands to: --hpx:version.

hpx.commandline.
aliases.-w

On the commandline -w expands to: --hpx:worker.

hpx.commandline.
aliases.-x

On the commandline -x expands to: --hpx:hpx.

hpx.commandline.
aliases.-0

On the commandline -0 expands to: --hpx:node=0.

hpx.commandline.
aliases.-1

On the commandline -1 expands to: --hpx:node=1.

hpx.commandline.
aliases.-2

On the commandline -2 expands to: --hpx:node=2.

hpx.commandline.
aliases.-3

On the commandline -3 expands to: --hpx:node=3.

hpx.commandline.
aliases.-4

On the commandline -4 expands to: --hpx:node=4.

hpx.commandline.
aliases.-5

On the commandline -5 expands to: --hpx:node=5.

hpx.commandline.
aliases.-6

On the commandline -6 expands to: --hpx:node=6.

hpx.commandline.
aliases.-7

On the commandline -7 expands to: --hpx:node=7.

hpx.commandline.
aliases.-8

On the commandline -8 expands to: --hpx:node=8.

hpx.commandline.
aliases.-9

On the commandline -9 expands to: --hpx:node=9.

2.3. Manual 141

HPX Documentation, master

Loading INI files

During startup and after the internal database has been initialized as described in the section Built-in default configu-
ration settings, HPX will try to locate and load additional ini files to be used as a source for configuration properties.
This allows for a wide spectrum of additional customization possibilities by the user and system administrators. The
sequence of locations where HPX will try loading the ini files is well defined and documented in this section. All ini
files found are merged into the internal configuration database. The merge operation itself conforms to the rules as
described in the section The HPX ini file format.

1. Load all component shared libraries found in the directories specified by the property hpx.component_path
and retrieve their default configuration information (see section Loading components for more details). This
property can refer to a list of directories separated by ':' (Linux, Android, and MacOS) or by ';' (Windows).

2. Load all files named hpx.ini in the directories referenced by the property hpx.master_ini_path This prop-
erty can refer to a list of directories separated by ':' (Linux, Android, and MacOS) or by ';' (Windows).

3. Load a file named .hpx.ini in the current working directory, e.g., the directory the application was invoked
from.

4. Load a file referenced by the environment variable HPX_INI. This variable is expected to provide the full path
name of the ini configuration file (if any).

5. Load a file named /etc/hpx.ini. This lookup is done on non-Windows systems only.

6. Load a file named .hpx.ini in the home directory of the current user, e.g., the directory referenced by the
environment variable HOME.

7. Load a file named .hpx.ini in the directory referenced by the environment variable PWD.

8. Load the file specified on the command line using the option --hpx:config.

9. Load all properties specified on the command line using the option --hpx:ini. The properties will be added to
the database in the same sequence as they are specified on the command line. The format for those options is, for
instance, --hpx:ini=hpx.default_stack_size=0x4000. In addition to the explicit command line options,
this will set the following properties as implied from other settings:

• hpx.parcel.address and hpx.parcel.port as set by --hpx:hpx

• hpx.agas.address, hpx.agas.port and hpx.agas.service_mode as set by --hpx:agas

• hpx.program_name and hpx.cmd_line will be derived from the actual command line

• hpx.os_threads and hpx.localities as set by --hpx:threads and --hpx:localities

• hpx.runtime_mode will be derived from any explicit --hpx:console, --hpx:worker, or
--hpx:connect, or it will be derived from other settings, such as --hpx:node =0, which implies
--hpx:console.

10. Load files based on the pattern *.ini in all directories listed by the property hpx.ini_path. All files found
during this search will be merged. The property hpx.ini_path can hold a list of directories separated by ':'
(on Linux or Mac) or ';' (on Windows).

11. Load the file specified on the command line using the option --hpx:app-config. Note that this file will be
merged as the content for a top level section [application].

Note: Any changes made to the configuration database caused by one of the steps will influence the loading process for
all subsequent steps. For instance, if one of the ini files loaded changes the property hpx.ini_path, this will influence
the directories searched in step 9 as described above.

142 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Important: The HPX core library will verify that all configuration settings specified on the command line (using
the --hpx:ini option) will be checked for validity. That means that the library will accept only known configuration
settings. This is to protect the user from unintentional typos while specifying those settings. This behavior can be
overwritten by appending a '!' to the configuration key, thus forcing the setting to be entered into the configuration
database. For instance: --hpx:ini=hpx.foo! = 1

If any of the environment variables or files listed above are not found, the corresponding loading step will be silently
skipped.

Loading components

HPX relies on loading application specific components during the runtime of an application. Moreover, HPX comes
with a set of preinstalled components supporting basic functionalities useful for almost every application. Any com-
ponent in HPX is loaded from a shared library, where any of the shared libraries can contain more than one component
type. During startup, HPX tries to locate all available components (e.g., their corresponding shared libraries) and cre-
ates an internal component registry for later use. This section describes the algorithm used by HPX to locate all relevant
shared libraries on a system. As described, this algorithm is customizable by the configuration properties loaded from
the ini files (see section Loading INI files).

Loading components is a two-stage process. First HPX tries to locate all component shared libraries, loads those, and
generates a default configuration section in the internal configuration database for each component found. For each
found component the following information is generated:

[hpx.components.<component_instance_name>]
name = <name_of_shared_library>
path = $[component_path]
enabled = $[hpx.components.load_external]
default = 1

The values in this section correspond to the expected configuration information for a component as described in the
section Built-in default configuration settings.

In order to locate component shared libraries, HPX will try loading all shared libraries (files with the platform specific
extension of a shared library, Linux: *.so, Windows: *.dll, MacOS: *.dylib found in the directory referenced by
the ini property hpx.component_path).

This first step corresponds to step 1) during the process of filling the internal configuration database with default
information as described in section Loading INI files.

After all of the configuration information has been loaded, HPX performs the second step in terms of
loading components. During this step, HPX scans all existing configuration sections [hpx.component.
<some_component_instance_name>] and instantiates a special factory object for each of the successfully located
and loaded components. During the application’s life time, these factory objects are responsible for creating new and
discarding old instances of the component they are associated with. This step is performed after step 11) of the process
of filling the internal configuration database with default information as described in section Loading INI files.

2.3. Manual 143

HPX Documentation, master

Application specific component example

This section assumes there is a simple application component that exposes one member function as a component action.
The header file app_server.hpp declares the C++ type to be exposed as a component. This type has a member
function print_greeting(), which is exposed as an action print_greeting_action. We assume the source files
for this example are located in a directory referenced by $APP_ROOT:

// file: $APP_ROOT/app_server.hpp
#include <hpx/hpx.hpp>
#include <hpx/include/iostreams.hpp>

namespace app
{

// Define a simple component exposing one action 'print_greeting'
class HPX_COMPONENT_EXPORT server
: public hpx::components::component_base<server>

{
void print_greeting ()
{

hpx::cout << "Hey, how are you?\n" << std::flush;
}

// Component actions need to be declared, this also defines the
// type 'print_greeting_action' representing the action.
HPX_DEFINE_COMPONENT_ACTION(server, print_greeting, print_greeting_action);

};
}

// Declare boilerplate code required for each of the component actions.
HPX_REGISTER_ACTION_DECLARATION(app::server::print_greeting_action);

The corresponding source file contains mainly macro invocations that define the boilerplate code needed for HPX to
function properly:

// file: $APP_ROOT/app_server.cpp
#include "app_server.hpp"

// Define boilerplate required once per component module.
HPX_REGISTER_COMPONENT_MODULE();

// Define factory object associated with our component of type 'app::server'.
HPX_REGISTER_COMPONENT(app::server, app_server);

// Define boilerplate code required for each of the component actions. Use the
// same argument as used for HPX_REGISTER_ACTION_DECLARATION above.
HPX_REGISTER_ACTION(app::server::print_greeting_action);

The following gives an example of how the component can be used. Here, one instance of the app::server component
is created on the current locality and the exposed action print_greeting_action is invoked using the global id of
the newly created instance. Note that no special code is required to delete the component instance after it is not needed
anymore. It will be deleted automatically when its last reference goes out of scope (shown in the example below at the
closing brace of the block surrounding the code):

144 Chapter 2. What’s so special about HPX?

HPX Documentation, master

// file: $APP_ROOT/use_app_server_example.cpp
#include <hpx/hpx_init.hpp>
#include "app_server.hpp"

int hpx_main()
{

{
// Create an instance of the app_server component on the current locality.
hpx::naming:id_type app_server_instance =

hpx::create_component<app::server>(hpx::find_here());

// Create an instance of the action 'print_greeting_action'.
app::server::print_greeting_action print_greeting;

// Invoke the action 'print_greeting' on the newly created component.
print_greeting(app_server_instance);

}
return hpx::finalize();

}

int main(int argc, char* argv[])
{

return hpx::init(argc, argv);
}

In order to make sure that the application will be able to use the component app::server, special configuration
information must be passed to HPX. The simplest way to allow HPX to ‘find’ the component is to provide special ini
configuration files that add the necessary information to the internal configuration database. The component should
have a special ini file containing the information specific to the component app_server.

file: $APP_ROOT/app_server.ini
[hpx.components.app_server]
name = app_server
path = $APP_LOCATION/

Here, $APP_LOCATION is the directory where the (binary) component shared library is located. HPX will attempt to
load the shared library from there. The section name hpx.components.app_server reflects the instance name of the
component (app_server is an arbitrary, but unique name). The property value for hpx.components.app_server.
name should be the same as used for the second argument to the macro HPX_REGISTER_COMPONENT above.

Additionally, a file .hpx.ini, which could be located in the current working directory (see step 3 as described in the
section Loading INI files), can be used to add to the ini search path for components:

file: $PWD/.hpx.ini
[hpx]
ini_path = $[hpx.ini_path]:$APP_ROOT/

This assumes that the above ini file specific to the component is located in the directory $APP_ROOT.

Note: It is possible to reference the defined property from inside its value. HPX will gracefully use the previous value
of hpx.ini_path for the reference on the right hand side and assign the overall (now expanded) value to the property.

2.3. Manual 145

HPX Documentation, master

Logging

HPX uses a sophisticated logging framework, allowing users to follow in detail what operations have been performed
inside the HPX library in what sequence. This information proves to be very useful for diagnosing problems or just for
improving the understanding of what is happening in HPX as a consequence of invoking HPX API functionality.

Default logging

Enabling default logging is a simple process. The detailed description in the remainder of this section explains different
ways to customize the defaults. Default logging can be enabled by using one of the following:

• A command line switch --hpx:debug-hpx-log, which will enable logging to the console terminal.

• The command line switch --hpx:debug-hpx-log=<filename>, which enables logging to a given file
<filename>.

• Setting an environment variable HPX_LOGLEVEL=<loglevel> while running the HPX application. In this case
<loglevel> should be a number between (or equal to) 1 and 5 where 1 means minimal logging and 5 causes all
available messages to be logged. When setting the environment variable, the logs will be written to a file named
hpx.<PID>.lo in the current working directory, where <PID> is the process id of the console instance of the
application.

Customizing logging

Generally, logging can be customized either using environment variable settings or using by an ini configuration file.
Logging is generated in several categories, each of which can be customized independently. All customizable configu-
ration parameters have reasonable defaults, allowing for the use of logging without any additional configuration effort.
The following table lists the available categories.

Table 2.5: Logging categories
Cate-
gory

Category
shortcut

Information to be generated Environment
variable

Gen-
eral

None Logging information generated by different subsystems of HPX, such as
thread-manager, parcel layer, LCOs, etc.

HPX_LOGLEVEL

AGAS AGAS Logging output generated by the AGAS subsystem HPX_AGAS_LOGLEVEL
Appli-
cation

APP Logging generated by applications. HPX_APP_LOGLEVEL

By default, all logging output is redirected to the console instance of an application, where it is collected and written
to a file, one file for each logging category.

Each logging category can be customized at two levels. The parameters for each are stored in the ini configuration
sections hpx.logging.CATEGORY and hpx.logging.console.CATEGORY (where CATEGORY is the category shortcut
as listed in the table above). The former influences logging at the source locality and the latter modifies the logging
behaviour for each of the categories at the console instance of an application.

146 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Levels

All HPX logging output has seven different logging levels. These levels can be set explicitly or through environment
variables in the main HPX ini file as shown below. The logging levels and their associated integral values are shown
in the table below, ordered from most verbose to least verbose. By default, all HPX logs are set to 0, e.g., all logging
output is disabled by default.

Table 2.6: Logging levels
Logging level Integral value
<debug> 5
<info> 4
<warning> 3
<error> 2
<fatal> 1
No logging 0

Tip: The easiest way to enable logging output is to set the environment variable corresponding to the logging category
to an integral value as described in the table above. For instance, setting HPX_LOGLEVEL=5 will enable full logging
output for the general category. Please note that the syntax and means of setting environment variables varies between
operating systems.

Configuration

Logs will be saved to destinations as configured by the user. By default, logging output is saved on the console in-
stance of an application to hpx.<CATEGORY>.<PID>.lo (where CATEGORY and PID> are placeholders for the category
shortcut and the OS process id). The output for the general logging category is saved to hpx.<PID>.log. The default
settings for the general logging category are shown here (the syntax is described in the section The HPX ini file format):

[hpx.logging]
level = ${HPX_LOGLEVEL:0}
destination = ${HPX_LOGDESTINATION:console}
format = ${HPX_LOGFORMAT:(T%locality%/%hpxthread%.%hpxphase%/%hpxcomponent%) P%parentloc
→˓%/%hpxparent%.%hpxparentphase% %time%($hh:$mm.$ss.$mili) [%idx%]|\\n}

The logging level is taken from the environment variable HPX_LOGLEVEL and defaults to zero, e.g., no logging. The
default logging destination is read from the environment variable HPX_LOGDESTINATION On any of the localities
it defaults to console, which redirects all generated logging output to the console instance of an application. The
following table lists the possible destinations for any logging output. It is possible to specify more than one destination
separated by whitespace.

Table 2.7: Logging destinations
Logging desti-
nation

Description

file(<filename>)Directs all output to a file with the given <filename>.
cout Directs all output to the local standard output of the application instance on this locality.
cerr Directs all output to the local standard error output of the application instance on this locality.
console Directs all output to the console instance of the application. The console instance has its logging

destinations configured separately.
android_log Directs all output to the (Android) system log (available on Android systems only).

2.3. Manual 147

HPX Documentation, master

The logging format is read from the environment variable HPX_LOGFORMAT, and it defaults to a complex format de-
scription. This format consists of several placeholder fields (for instance %locality%), which will be replaced by
concrete values when the logging output is generated. All other information is transferred verbatim to the output. The
table below describes the available field placeholders. The separator character | separates the logging message prefix
formatted as shown and the actual log message which will replace the separator.

Table 2.8: Available field placeholders
Name Description
locality The id of the locality on which the logging message was generated.
hpxthread The id of the HPX thread generating this logging output.
hpxphase The phase67 of the HPX thread generating this logging output.
hpxcom-
ponent

The local virtual address of the component which the current HPX thread is accessing.

parentloc The id of the locality where the HPX thread was running that initiated the current HPX thread. The
current HPX thread is generating this logging output.

hpxparent The id of the HPX thread that initiated the current HPX thread. The current HPX thread is generating
this logging output.

hpxpar-
entphase

The phase of the HPX thread when it initiated the current HPX thread. The current HPX thread is
generating this logging output.

time The time stamp for this logging outputline as generated by the source locality.
idx The sequence number of the logging output line as generated on the source locality.
osthread The sequence number of the OS thread that executes the current HPX thread.

Note: Not all of the field placeholder may be expanded for all generated logging output. If no value is available for a
particular field, it is replaced with a sequence of '-' characters.

Here is an example line from a logging output generated by one of the HPX examples (please note that this is generated
on a single line, without a line break):

(T00000000/0000000002d46f90.01/00000000009ebc10) P--------/0000000002d46f80.02 17:49.37.
→˓320 [000000000000004d]

<info> [RT] successfully created component {0000000100ff0001, 0000000000030002} of␣
→˓type: component_barrier[7(3)]

The default settings for the general logging category on the console is shown here:

[hpx.logging.console]
level = ${HPX_LOGLEVEL:$[hpx.logging.level]}
destination = ${HPX_CONSOLE_LOGDESTINATION:file(hpx.$[system.pid].log)}
format = ${HPX_CONSOLE_LOGFORMAT:|}

These settings define how the logging is customized once the logging output is received by the console instance of an
application. The logging level is read from the environment variable HPX_LOGLEVEL (as set for the console instance of
the application). The level defaults to the same values as the corresponding settings in the general logging configuration
shown before. The destination on the console instance is set to be a file that’s name is generated based on its OS process
id. Setting the environment variable HPX_CONSOLE_LOGDESTINATION allows customization of the naming scheme for
the output file. The logging format is set to leave the original logging output unchanged, as received from one of the
localities the application runs on.

67 The phase of a HPX-thread counts how often this thread has been activated.

148 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX Command Line Options

The predefined command line options for any application using hpx::init are described in the following subsections.

HPX options (allowed on command line only)

--hpx:help

Print out program usage (default: this message). Possible values: full (additionally prints options from com-
ponents).

--hpx:version

Print out HPX version and copyright information.

--hpx:info

Print out HPX configuration information.

--hpx:options-file arg

Specify a file containing command line options (alternatively: @filepath).

HPX options (additionally allowed in an options file)

--hpx:worker

Run this instance in worker mode.

--hpx:console

Run this instance in console mode.

--hpx:connect

Run this instance in worker mode, but connecting late.

--hpx:run-agas-server

Run AGAS server as part of this runtime instance.

--hpx:run-hpx-main

Run the hpx_main function, regardless of locality mode.

--hpx:hpx arg

The IP address the HPX parcelport is listening on, expected format: address:port (default: 127.0.0.
1:7910).

--hpx:agas arg

The IP address the AGAS root server is running on, expected format: address:port (default: 127.0.0.
1:7910).

--hpx:run-agas-server-only

Run only the AGAS server.

--hpx:nodefile arg

The file name of a node file to use (list of nodes, one node name per line and core).

--hpx:nodes arg

The (space separated) list of the nodes to use (usually this is extracted from a node file).

--hpx:endnodes

This can be used to end the list of nodes specified using the option --hpx:nodes.

2.3. Manual 149

HPX Documentation, master

--hpx:ifsuffix arg

Suffix to append to host names in order to resolve them to the proper network interconnect.

--hpx:ifprefix arg

Prefix to prepend to host names in order to resolve them to the proper network interconnect.

--hpx:iftransform arg

Sed-style search and replace (s/search/replace/) used to transform host names to the proper network inter-
connect.

--hpx:force_ipv4

Network hostnames will be resolved to ipv4 addresses instead of using the first resolved endpoint. This is es-
pecially useful on Windows where the local hostname will resolve to an ipv6 address while remote network
hostnames are commonly resolved to ipv4 addresses.

--hpx:localities arg

The number of localities to wait for at application startup (default: 1).

--hpx:node arg

Number of the node this locality is run on (must be unique).

--hpx:ignore-batch-env

Ignore batch environment variables.

--hpx:expect-connecting-localities

This locality expects other localities to dynamically connect (this is implied if the number of initial localities is
larger than 1).

--hpx:pu-offset

The first processing unit this instance of HPX should be run on (default: 0).

--hpx:pu-step

The step between used processing unit numbers for this instance of HPX (default: 1).

--hpx:threads arg

The number of operating system threads to spawn for this HPX locality. Possible values are: numeric values
1, 2, 3 and so on, all (which spawns one thread per processing unit, includes hyperthreads), or cores (which
spawns one thread per core) (default: cores).

--hpx:cores arg

The number of cores to utilize for this HPX locality (default: all, i.e., the number of cores is based on the
number of threads --hpx:threads assuming --hpx:bind=compact.

--hpx:affinity arg

The affinity domain the OS threads will be confined to, possible values: pu, core, numa, machine (default: pu).

--hpx:bind arg

he detailed affinity description for the OS threads, see More details about HPX command line options
for a detailed description of possible values. Do not use with --hpx:pu-step, --hpx:pu-offset or
--hpx:affinity options. Implies --hpx:numa-sensitive (--hpx:bind=none) disables defining thread
affinities).

--hpx:use-process-mask

Use the process mask to restrict available hardware resources (implies --hpx:ignore-batch-env).

--hpx:print-bind

Print to the console the bit masks calculated from the arguments specified to all --hpx:bind options.

150 Chapter 2. What’s so special about HPX?

HPX Documentation, master

--hpx:queuing arg

The queue scheduling policy to use. Options are local, local-priority-fifo, local-priority-lifo,
static, static-priority, abp-priority-fifo, local-workrequesting-fifo,
local-workrequesting-lifo local-workrequesting-mc, and abp-priority-lifo (default:
local-priority-fifo).

--hpx:high-priority-threads arg

The number of operating system threads maintaining a high priority queue (default: number of
OS threads), valid for --hpx:queuing=abp-priority, --hpx:queuingstatic-priority and
--hpx:queuinglocal-priority only.

--hpx:numa-sensitive

Makes the scheduler NUMA sensitive.

HPX configuration options

--hpx:app-config arg

Load the specified application configuration (ini) file.

--hpx:config arg

Load the specified HPX configuration (ini) file.

--hpx:ini arg

Add a configuration definition to the default runtime configuration.

--hpx:exit

Exit after configuring the runtime.

HPX debugging options

--hpx:list-symbolic-names

List all registered symbolic names after startup.

--hpx:list-component-types

List all dynamic component types after startup.

--hpx:dump-config-initial

Print the initial runtime configuration.

--hpx:dump-config

Print the final runtime configuration.

--hpx:debug-hpx-log [arg]

Enable all messages on the HPX log channel and send all HPX logs to the target destination (default: cout).

--hpx:debug-agas-log [arg]

Enable all messages on the AGAS log channel and send all AGAS logs to the target destination (default: cout).

--hpx:debug-parcel-log [arg]

Enable all messages on the parcel transport log channel and send all parcel transport logs to the target destination
(default: cout).

--hpx:debug-timing-log [arg]

Enable all messages on the timing log channel and send all timing logs to the target destination (default: cout).

2.3. Manual 151

HPX Documentation, master

--hpx:debug-app-log [arg]

Enable all messages on the application log channel and send all application logs to the target destination (default:
cout).

--hpx:debug-clp

Debug command line processing.

--hpx:attach-debugger arg

Wait for a debugger to be attached, possible arg values: startup or exception (default: startup)

HPX options related to performance counters

--hpx:print-counter

Print the specified performance counter either repeatedly and/or at the times specified by
--hpx:print-counter-at (see also option --hpx:print-counter-interval).

--hpx:print-counter-reset

Print the specified performance counter either repeatedly and/or at the times specified by
--hpx:print-counter-at. Reset the counter after the value is queried (see also option
--hpx:print-counter-interval).

--hpx:print-counter-interval

Print the performance counter(s) specified with --hpx:print-counter repeatedly after the time interval (spec-
ified in milliseconds), (default: 0, which means print once at shutdown).

--hpx:print-counter-destination

Print the performance counter(s) specified with --hpx:print-counter to the given file (default: console).

--hpx:list-counters

List the names of all registered performance counters, possible values: minimal (prints counter name skeletons),
full (prints all available counter names).

--hpx:list-counter-infos

List the description of all registered performance counters, possible values: minimal (prints info for counter
name skeletons), full (prints all available counter infos).

--hpx:print-counter-format

Print the performance counter(s) specified with --hpx:print-counter. Possible formats in CSV include
a format with a header or without any header (see option --hpx:no-csv-header). Possible values: csv
(prints counter values in CSV format with full names as header), csv-short (prints counter values in CSV
format with short names provided with --hpx:print-counter as --hpx:print-counter shortname,
full-countername

--hpx:no-csv-header

Print the performance counter(s) specified with --hpx:print-counter and csv or csv-short format specified
with --hpx:print-counter-format without header.

--hpx:print-counter-at arg

Print the performance counter(s) specified with --hpx:print-counter (or --hpx:print-counter-reset)
at the given point in time, possible argument values: startup, shutdown (default), noshutdown.

--hpx:reset-counters

Reset all performance counter(s) specified with --hpx:print-counter after they have been evaluated.

152 Chapter 2. What’s so special about HPX?

HPX Documentation, master

--hpx:print-counters-locally

Each locality prints only its own local counters. If this is used with
--hpx:print-counter-destination=<file>, the code will append a ".<locality_id>" to the file
name in order to avoid clashes between localities.

Command line argument shortcuts

Additionally, the following shortcuts are available from every HPX application.

Table 2.9: Predefined command line option shortcuts
Shortcut option Equivalent long option
-a --hpx:agas
-c --hpx:console
-h --hpx:help
-I --hpx:ini
-l --hpx:localities
-p --hpx:app-config
-q --hpx:queuing
-r --hpx:run-agas-server
-t --hpx:threads
-v --hpx:version
-w --hpx:worker
-x --hpx:hpx
-0 --hpx:node=0
-1 --hpx:node=1
-2 --hpx:node=2
-3 --hpx:node=3
-4 --hpx:node=4
-5 --hpx:node=5
-6 --hpx:node=6
-7 --hpx:node=7
-8 --hpx:node=8
-9 --hpx:node=9

Note: The short options listed above are disabled by default if the application is built using #include <hpx/
hpx_main.hpp>. See Re-use the main() function as the main HPX entry point for more information. The rationale
behind this is that in this case the user’s application may handle its own command line options, since HPX passes all
unknown options to main(). Short options like -t are prone to create ambiguities regarding what the application will
support. Hence, the user should instead rely on the corresponding long options like --hpx:threads in such a case.

It is possible to define your own shortcut options. In fact, all of the shortcuts listed above are pre-defined using the
technique described here. Also, it is possible to redefine any of the pre-defined shortcuts to expand differently as well.

Shortcut options are obtained from the internal configuration database. They are stored as key-value properties in a
special properties section named hpx.commandline. You can define your own shortcuts by adding the corresponding
definitions to one of the ini configuration files as described in the section Configuring HPX applications. For instance,
in order to define a command line shortcut --p, which should expand to -hpx:print-counter, the following config-
uration information needs to be added to one of the ini configuration files:

2.3. Manual 153

HPX Documentation, master

[hpx.commandline.aliases]
--pc = --hpx:print-counter

Note: Any arguments for shortcut options passed on the command line are retained and passed as arguments to the
corresponding expanded option. For instance, given the definition above, the command line option:

--pc=/threads{locality#0/total}/count/cumulative

would be expanded to:

--hpx:print-counter=/threads{locality#0/total}/count/cumulative

Important: Any shortcut option should either start with a single '-' or with two '--' characters. Shortcuts starting
with a single '-' are interpreted as short options (i.e., everything after the first character following the '-' is treated as
the argument). Shortcuts starting with '--' are interpreted as long options. No other shortcut formats are supported.

Specifying options for single localities only

For runs involving more than one locality, it is sometimes desirable to supply specific command line options to single
localities only. When the HPX application is launched using a scheduler (like PBS; for more details see section How
to use HPX applications with PBS), specifying dedicated command line options for single localities may be desirable.
For this reason all of the command line options that have the general format --hpx:<some_key> can be used in a more
general form: --hpx:<N>:<some_key>, where <N> is the number of the locality this command line option will be
applied to; all other localities will simply ignore the option. For instance, the following PBS script passes the option
--hpx:pu-offset=4 to the locality '1' only.

#!/bin/bash
#
#PBS -l nodes=2:ppn=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u $APP_PATH $APP_OPTIONS --hpx:1:pu-offset=4 --hpx:nodes=`cat $PBS_NODEFILE`

Caution: If the first application specific argument (inside $APP_OPTIONS) is a non-option (i.e., does not start with
a - or a --), then it must be placed before the option --hpx:nodes, which, in this case, should be the last option
on the command line.

Alternatively, use the option --hpx:endnodes to explicitly mark the end of the list of node names:

$ pbsdsh -u $APP_PATH --hpx:1:pu-offset=4 --hpx:nodes=`cat $PBS_NODEFILE` --
→˓hpx:endnodes $APP_OPTIONS

154 Chapter 2. What’s so special about HPX?

HPX Documentation, master

More details about HPX command line options

This section documents the following list of the command line options in more detail:

• The command line option --hpx:bind

The command line option --hpx:bind

This command line option allows one to specify the required affinity of the HPX worker threads to the underlying
processing units. As a result the worker threads will run only on the processing units identified by the corresponding
bind specification. The affinity settings are to be specified using --hpx:bind=<BINDINGS>, where <BINDINGS> have
to be formatted as described below.

In addition to the syntax described below, one can use --hpx:bind=none to disable all binding of any threads to a
particular core. This is mostly supported for debugging purposes.

The specified affinities refer to specific regions within a machine hardware topology. In order to understand the hard-
ware topology of a particular machine, it may be useful to run the lstopo tool, which is part of Portable Hardware
Locality (HWLOC), to see the reported topology tree. Seeing and understanding a topology tree will definitely help in
understanding the concepts that are discussed below.

Affinities can be specified using hwloc tuples. Tuples of hwloc objects and associated indexes can be specified in
the form object:index, object:index-index or object:index,...,index. Hwloc objects represent types of
mapped items in a topology tree. Possible values for objects are socket, numanode, core and pu (processing unit).
Indexes are non-negative integers that specify a unique physical object in a topology tree using its logical sequence
number.

Chaining multiple tuples together in the more general form object1:index1[.object2:index2[...]] is permis-
sible. While the first tuple’s object may appear anywhere in the topology, the Nth tuple’s object must have a shallower
topology depth than the (N+1)th tuple’s object. Put simply: as you move right in a tuple chain, objects must go deeper
in the topology tree. Indexes specified in chained tuples are relative to the scope of the parent object. For example,
socket:0.core:1 refers to the second core in the first socket (all indices are zero based).

Multiple affinities can be specified using several --hpx:bind command line options or by appending several affinities
separated by a ';'. By default, if multiple affinities are specified, they are added.

"all" is a special affinity consisting in the entire current topology.

Note: All “names” in an affinity specification, such as thread, socket, numanode, pu or all, can be abbrevi-
ated. Thus, the affinity specification threads:0-3=socket:0.core:1.pu:1 is fully equivalent to its shortened form
t:0-3=s:0.c:1.p:1.

Here is a full grammar describing the possible format of mappings:

mappings ::= distribution | mapping (";" mapping)*
distribution ::= "compact" | "scatter" | "balanced" | "numa-balanced"
mapping ::= thread_spec "=" pu_specs
thread_spec ::= "thread:" range_specs
pu_specs ::= pu_spec ("." pu_spec)*
pu_spec ::= type ":" range_specs | "~" pu_spec
range_specs ::= range_spec ("," range_spec)*
range_spec ::= int | int "-" int | "all"
type ::= "socket" | "numanode" | "core" | "pu"

2.3. Manual 155

HPX Documentation, master

The following example assumes a system with at least 4 cores, where each core has more than 1 processing unit
(hardware threads). Running hello_world_distributed with 4 OS threads (on 4 processing units), where each of
those threads is bound to the first processing unit of each of the cores, can be achieved by invoking:

$ hello_world_distributed -t4 --hpx:bind=thread:0-3=core:0-3.pu:0

Here, thread:0-3 specifies the OS threads used to define affinity bindings, and core:0-3.pu: defines that for each
of the cores (core:0-3) only their first processing unit pu:0 should be used.

Note: The command line option --hpx:print-bind can be used to print the bitmasks generated from the affinity
mappings as specified with --hpx:bind . For instance, on a system with hyperthreading enabled (i.e. 2 processing
units per core), the command line:

$ hello_world_distributed -t4 --hpx:bind=thread:0-3=core:0-3.pu:0 --hpx:print-bind

will cause this output to be printed:

0: PU L#0(P#0), Core L#0, Socket L#0, Node L#0(P#0)
1: PU L#2(P#2), Core L#1, Socket L#0, Node L#0(P#0)
2: PU L#4(P#4), Core L#2, Socket L#0, Node L#0(P#0)
3: PU L#6(P#6), Core L#3, Socket L#0, Node L#0(P#0)

where each bit in the bitmasks corresponds to a processing unit the listed worker thread will be bound to run on.

The difference between the four possible predefined distribution schemes (compact, scatter, balanced and
numa-balanced) is best explained with an example. Imagine that we have a system with 4 cores and 4 hardware
threads per core on 2 sockets. If we place 8 threads the assignments produced by the compact, scatter, balanced
and numa-balanced types are shown in the figure below. Notice that compact does not fully utilize all the cores in the
system. For this reason it is recommended that applications are run using the scatter or balanced/numa-balanced
options in most cases.

In addition to the predefined distributions it is possible to restrict the resources used by HPX to the process CPU
mask. The CPU mask is typically set by e.g. MPI66 and batch environments. Using the command line option
--hpx:use-process-mask makes HPX act as if only the processing units in the CPU mask are available for use
by HPX. The number of threads is automatically determined from the CPU mask. The number of threads can still be
changed manually using this option, but only to a number less than or equal to the number of processing units in the
CPU mask. The option --hpx:print-bind is useful in conjunction with --hpx:use-process-mask to make sure
threads are placed as expected.

2.3.10 Writing single-node applications

Being a C++ Standard Library for Concurrency and Parallelism, HPX implements all of the corresponding facilities
as defined by the C++ Standard but also those which are proposed as part of the ongoing C++ standardization process.
This section focuses on the features available in HPX for parallel and concurrent computation on a single node, although
many of the features presented here are also implemented to work in the distributed case.

66 https://en.wikipedia.org/wiki/Message_Passing_Interface

156 Chapter 2. What’s so special about HPX?

https://en.wikipedia.org/wiki/Message_Passing_Interface

HPX Documentation, master

Fig. 2.7: Schematic of thread affinity type distributions.

2.3. Manual 157

HPX Documentation, master

Synchronization objects

The following objects are providing synchronization for HPX applications:

1. Barrier

2. Condition variable

3. Latch

4. Mutex

5. Shared mutex

6. Semaphore

7. Composable guards

Barrier

Barriers are used for synchronizing multiple threads. They provide a synchronization point, where all threads must wait
until they have all reached the barrier, before they can continue execution. This allows multiple threads to work together
to solve a common task, and ensures that no thread starts working on the next task until all threads have completed the
current task. This ensures that all threads are in the same state before performing any further operations, leading to a
more consistent and accurate computation.

Unlike latches, barriers are reusable: once the participating threads are released from a barrier’s synchronization point,
they can re-use the same barrier. It is thus useful for managing repeated tasks, or phases of a larger task, that are handled
by multiple threads. The code below shows how barriers can be used to synchronize two threads:

#include <hpx/barrier.hpp>
#include <hpx/future.hpp>
#include <hpx/init.hpp>

#include <iostream>

int hpx_main()
{

hpx::barrier b(2);

hpx::future<void> f1 = hpx::async([&b]() {
std::cout << "Thread 1 started." << std::endl;
// Do some computation
b.arrive_and_wait();
// Continue with next task
std::cout << "Thread 1 finished." << std::endl;

});

hpx::future<void> f2 = hpx::async([&b]() {
std::cout << "Thread 2 started." << std::endl;
// Do some computation
b.arrive_and_wait();
// Continue with next task
std::cout << "Thread 2 finished." << std::endl;

});

(continues on next page)

158 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

f1.get();
f2.get();

return hpx::local::finalize();
}

int main(int argc, char* argv[])
{

return hpx::local::init(hpx_main, argc, argv);
}

In this example, two hpx::future objects are created, each representing a separate thread of execution. The wait
function of the hpx::barrier object is called by each thread. The threads will wait at the barrier until both have
reached it. Once both threads have reached the barrier, they can continue with their next task.

Condition variable

A condition variable is a synchronization primitive in HPX that allows a thread to wait for a specific condition to be
satisfied before continuing execution. It is typically used in conjunction with a mutex or a lock to protect shared data
that is being modified by multiple threads. Hence, it blocks one or more threads until another thread both modifies
a shared variable (the condition) and notifies the condition_variable. The code below shows how two threads
modifying the shared variable data can be synchronized using the condition_variable:

#include <hpx/condition_variable.hpp>
#include <hpx/init.hpp>
#include <hpx/mutex.hpp>
#include <hpx/thread.hpp>

#include <iostream>
#include <string>

hpx::condition_variable cv;
hpx::mutex m;
std::string data;
bool ready = false;
bool processed = false;

void worker_thread()
{

// Wait until the main thread signals that data is ready
std::unique_lock<hpx::mutex> lk(m);
cv.wait(lk, [] { return ready; });

// Access the shared resource
std::cout << "Worker thread: Processing data...\n";
data = "Test data after";

// Send data back to the main thread
processed = true;
std::cout << "Worker thread: data processing is complete\n";

(continues on next page)

2.3. Manual 159

HPX Documentation, master

(continued from previous page)

// Manual unlocking is done before notifying, to avoid waking up
// the waiting thread only to block again
lk.unlock();
cv.notify_one();

}

int hpx_main()
{

hpx::thread worker(worker_thread);

// Do some work
std::cout << "Main thread: Preparing data...\n";
data = "Test data before";
hpx::this_thread::sleep_for(std::chrono::seconds(1));
std::cout << "Main thread: Data before processing = " << data << '\n';

// Signal that data is ready and send data to worker thread
{

std::lock_guard<hpx::mutex> lk(m);
ready = true;
std::cout << "Main thread: Data is ready...\n";

}
cv.notify_one();

// Wait for the worker thread to finish
{

std::unique_lock<hpx::mutex> lk(m);
cv.wait(lk, [] { return processed; });

}
std::cout << "Main thread: Data after processing = " << data << '\n';
worker.join();

return hpx::local::finalize();
}

int main(int argc, char* argv[])
{

return hpx::local::init(hpx_main, argc, argv);
}

The main thread of the code above starts by creating a worker thread and preparing the shared variable data. Once the
data is ready, the main thread acquires a lock on the mutex m using std::lock_guard<hpx::mutex> lk(m) and sets
the ready flag to true, then signals the worker thread to start processing by calling cv.notify_one(). The cv.wait()
call in the main thread then blocks until the worker thread signals that processing is complete by setting the processed
flag.

The worker thread starts by acquiring a lock on the mutex m to ensure exclusive access to the shared data. The cv.
wait() call blocks the thread until the ready flag is set by the main thread. Once this is true, the worker thread
accesses the shared data resource, processes it, and sets the processed flag to indicate completion. The mutex is then
unlocked using lk.unlock() and the cv.notify_one() call signals the main thread to resume execution. Finally,
the new data is printed by the main thread to the console.

160 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Latch

A latch is a downward counter which can be used to synchronize threads. The value of the counter is initialized on
creation. Threads may block on the latch until the counter is decremented to zero. There is no possibility to increase
or reset the counter, which makes the latch a single-use barrier.

In HPX, a latch is implemented as a counting semaphore, which can be initialized with a specific count value and
decremented each time a thread reaches the latch. When the count value reaches zero, all waiting threads are unblocked
and allowed to continue execution. The code below shows how latch can be used to synchronize 16 threads:

std::ptrdiff_t num_threads = 16;

///
void wait_for_latch(hpx::latch& l)
{

l.arrive_and_wait();
}

///
int hpx_main(hpx::program_options::variables_map& vm)
{

num_threads = vm["num-threads"].as<std::ptrdiff_t>();

hpx::latch l(num_threads + 1);

std::vector<hpx::future<void>> results;
for (std::ptrdiff_t i = 0; i != num_threads; ++i)

results.push_back(hpx::async(&wait_for_latch, std::ref(l)));

// Wait for all threads to reach this point.
l.arrive_and_wait();

hpx::wait_all(results);

return hpx::local::finalize();
}

In the above code, the hpx_main function creates a latch object lwith a count of num_threads + 1 and num_threads
number of threads using hpx::async. These threads call the wait_for_latch function and pass the reference to the
latch object. In the wait_for_latch function, the thread calls the arrive_and_wait method on the latch, which
decrements the count of the latch and causes the thread to wait until the count reaches zero. Finally, the main thread
waits for all the threads to arrive at the latch by calling the arrive_and_wait method and then waits for all the threads
to finish by calling the hpx::wait_all method.

2.3. Manual 161

HPX Documentation, master

Mutex

A mutex (short for “mutual exclusion”) is a synchronization primitive in HPX used to control access to a shared resource,
ensuring that only one thread can access it at a time. A mutex is used to protect data structures from race conditions
and other synchronization-related issues. When a thread acquires a mutex, other threads that try to access the same
resource will be blocked until the mutex is released. The code below shows the basic use of mutexes:

#include <hpx/future.hpp>
#include <hpx/init.hpp>
#include <hpx/mutex.hpp>

#include <iostream>

int hpx_main()
{

hpx::mutex m;

hpx::future<void> f1 = hpx::async([&m]() {
std::scoped_lock sl(m);
std::cout << "Thread 1 acquired the mutex" << std::endl;

});

hpx::future<void> f2 = hpx::async([&m]() {
std::scoped_lock sl(m);
std::cout << "Thread 2 acquired the mutex" << std::endl;

});

hpx::wait_all(f1, f2);

return hpx::local::finalize();
}

int main(int argc, char* argv[])
{

return hpx::local::init(hpx_main, argc, argv);
}

In this example, two HPX threads created using hpx::async are acquiring a hpx::mutex m. std::scoped_lock
sl(m) is used to take ownership of the given mutex m. When control leaves the scope in which the scoped_lock
object was created, the scoped_lock is destructed and the mutex is released.

Attention: A common way to acquire and release mutexes is by using the function m.lock() before accessing
the shared resource, and m.unlock() called after the access is complete. However, these functions may lead to
deadlocks in case of exception(s). That is, if an exception happens when the mutex is locked then the code that
unlocks the mutex will never be executed, the lock will remain held by the thread that acquired it, and other threads
will be unable to access the shared resource. This can cause a deadlock if the other threads are also waiting to
acquire the same lock. For this reason, we suggest you use std::scoped_lock, which prevents this issue by
releasing the lock when control leaves the scope in which the scoped_lock object was created.

162 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Shared mutex

A shared mutex is a synchronization primitive that can be used to protect shared data from being simultaneously
accessed by multiple threads. In contrast to other mutex types which facilitate exclusive access, a shared_mutex has
two levels of access:

• Exclusive access prevents any other thread from acquiring the mutex, just as with the normal mutex. It does not
matter if the other thread tries to acquire shared or exclusive access.

• Shared access allows multiple threads to acquire the mutex, but all of them only in shared mode. Exclusive
access is not granted until all of the previous shared holders have returned the mutex (typically, as long as an
exclusive request is waiting, new shared ones are queued to be granted after the exclusive access).

Shared mutexes are especially useful when shared data can be safely read by any number of threads simultaneously, but
a thread may only write the same data when no other thread is reading or writing at the same time. A typical scenario
is a database: The data can be read simultaneously by different threads with no problem. However, modification of the
database is critical: if some threads read data while another one is writing, the threads reading may receive inconsistent
data. Hence, while a thread is writing, reading should not be allowed. After writing is complete, reads can occur
simultaneously again. The code below shows how shared_mutex can be used to synchronize reads and writes:

int const writers = 3;
int const readers = 3;
int const cycles = 10;

using std::chrono::milliseconds;

int hpx_main()
{

std::vector<hpx::thread> threads;
std::atomic<bool> ready(false);
hpx::shared_mutex stm;

for (int i = 0; i < writers; ++i)
{

threads.emplace_back([&ready, &stm, i] {
std::mt19937 urng(static_cast<std::uint32_t>(std::time(nullptr)));
std::uniform_int_distribution<int> dist(1, 1000);

while (!ready)
{ /*** wait... ***/
}

for (int j = 0; j < cycles; ++j)
{

// scope of unique_lock
{

std::unique_lock<hpx::shared_mutex> ul(stm);

std::cout << "^^^ Writer " << i << " starting..."
<< std::endl;

hpx::this_thread::sleep_for(milliseconds(dist(urng)));
std::cout << "vvv Writer " << i << " finished."

<< std::endl;
}

(continues on next page)

2.3. Manual 163

HPX Documentation, master

(continued from previous page)

hpx::this_thread::sleep_for(milliseconds(dist(urng)));
}

});
}

for (int i = 0; i < readers; ++i)
{

int k = writers + i;
threads.emplace_back([&ready, &stm, k, i] {

HPX_UNUSED(k);
std::mt19937 urng(static_cast<std::uint32_t>(std::time(nullptr)));
std::uniform_int_distribution<int> dist(1, 1000);

while (!ready)
{ /*** wait... ***/
}

for (int j = 0; j < cycles; ++j)
{

// scope of shared_lock
{

std::shared_lock<hpx::shared_mutex> sl(stm);

std::cout << "Reader " << i << " starting..." << std::endl;
hpx::this_thread::sleep_for(milliseconds(dist(urng)));
std::cout << "Reader " << i << " finished." << std::endl;

}
hpx::this_thread::sleep_for(milliseconds(dist(urng)));

}
});

}

ready = true;
for (auto& t : threads)

t.join();

return hpx::local::finalize();
}

The above code creates writers and readers threads, each of which will perform cycles of operations. Both the
writer and reader threads use the hpx::shared_mutex object stm to synchronize access to a shared resource.

• For the writer threads, a unique_lock on the shared mutex is acquired before each write operation and is released
after control leaves the scope in which the unique_lock object was created.

• For the reader threads, a shared_lock on the shared mutex is acquired before each read operation and is released
after control leaves the scope in which the shared_lock object was created.

Before each operation, both the reader and writer threads sleep for a random time period, which is generated using a
random number generator. The random time period simulates the processing time of the operation.

164 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Semaphore

Semaphores are a synchronization mechanism used to control concurrent access to a shared resource. The two types
of semaphores are:

• counting semaphore: it has a counter that is bigger than zero. The counter is initialized in the constructor.
Acquiring the semaphore decreases the counter and releasing the semaphore increases the counter. If a thread
tries to acquire the semaphore when the counter is zero, the thread will block until another thread increments
the counter by releasing the semaphore. Unlike hpx::mutex, an hpx::counting_semaphore is not bound to
a thread, which means that the acquire and release call of a semaphore can happen on different threads.

• binary semaphore: it is an alias for a hpx::counting_semaphore<1>. In this case, the least maximal value is
1. hpx::binary_semaphore can be used to implement locks.

#include <hpx/init.hpp>
#include <hpx/semaphore.hpp>
#include <hpx/thread.hpp>

#include <iostream>

// initialize the semaphore with a count of 3
hpx::counting_semaphore<> semaphore(3);

void worker()
{

semaphore.acquire(); // decrement the semaphore's count
std::cout << "Entering critical section" << std::endl;
hpx::this_thread::sleep_for(std::chrono::seconds(1));
semaphore.release(); // increment the semaphore's count
std::cout << "Exiting critical section" << std::endl;

}

int hpx_main()
{

hpx::thread t1(worker);
hpx::thread t2(worker);
hpx::thread t3(worker);
hpx::thread t4(worker);
hpx::thread t5(worker);

t1.join();
t2.join();
t3.join();
t4.join();
t5.join();

return hpx::local::finalize();
}

int main(int argc, char* argv[])
{

return hpx::local::init(hpx_main, argc, argv);
}

In this example, the counting semaphore is initialized to the value of 3. This means that up to 3 threads can access the

2.3. Manual 165

HPX Documentation, master

critical section (the section of code inside the worker() function) at the same time. When a thread enters the critical
section, it acquires the semaphore, which decrements the count, while when it exits the critical section, it releases
the semaphore, incrementing thus the count. The worker() function simulates a critical section by acquiring the
semaphore, sleeping for 1 second and then releasing the semaphore.

In the main function, 5 worker threads are created and started, each trying to enter the critical section. If the count of
the semaphore is already 0, a worker will wait until another worker releases the semaphore (increasing its value).

Composable guards

Composable guards operate in a manner similar to locks, but are applied only to asynchronous functions. The guard
(or guards) is automatically locked at the beginning of a specified task and automatically unlocked at the end. Because
guards are never added to an existing task’s execution context, the calling of guards is freely composable and can never
deadlock.

To call an application with a single guard, simply declare the guard and call run_guarded() with a function (task):

hpx::lcos::local::guard gu;
run_guarded(gu,task);

If a single method needs to run with multiple guards, use a guard set:

std::shared_ptr<hpx::lcos::local::guard> gu1(new hpx::lcos::local::guard());
std::shared_ptr<hpx::lcos::local::guard> gu2(new hpx::lcos::local::guard());
gs.add(*gu1);
gs.add(*gu2);
run_guarded(gs,task);

Guards use two atomic operations (which are not called repeatedly) to manage what they do, so overhead should be
extremely low.

Execution control

The following objects are providing control of the execution in HPX applications:

1. Futures

2. Channels

3. Task blocks

4. Task groups

5. Threads

Futures

Futures are a mechanism to represent the result of a potentially asynchronous operation. A future is a type that rep-
resents a value that will become available at some point in the future, and it can be used to write asynchronous and
parallel code. Futures can be returned from functions that perform time-consuming operations, allowing the calling
code to continue executing while the function performs its work. The value of the future is set when the operation
completes and can be accessed later. Futures are used in HPX to write asynchronous and parallel code. Below is an
example demonstrating different features of futures:

166 Chapter 2. What’s so special about HPX?

HPX Documentation, master

#include <hpx/assert.hpp>
#include <hpx/future.hpp>
#include <hpx/hpx_main.hpp>
#include <hpx/tuple.hpp>

#include <iostream>
#include <utility>

int main()
{

// Asynchronous execution with futures
hpx::future<void> f1 = hpx::async(hpx::launch::async, []() {});
hpx::shared_future<int> f2 =

hpx::async(hpx::launch::async, []() { return 42; });
hpx::future<int> f3 =

f2.then([](hpx::shared_future<int>&& f) { return f.get() * 3; });

hpx::promise<double> p;
auto f4 = p.get_future();
HPX_ASSERT(!f4.is_ready());
p.set_value(123.45);
HPX_ASSERT(f4.is_ready());

hpx::packaged_task<int()> t([]() { return 43; });
hpx::future<int> f5 = t.get_future();
HPX_ASSERT(!f5.is_ready());
t();
HPX_ASSERT(f5.is_ready());

// Fire-and-forget
hpx::post([]() {

std::cout << "This will be printed later\n" << std::flush;
});

// Synchronous execution
hpx::sync([]() {

std::cout << "This will be printed immediately\n" << std::flush;
});

// Combinators
hpx::future<double> f6 = hpx::async([]() { return 3.14; });
hpx::future<double> f7 = hpx::async([]() { return 42.0; });
std::cout

<< hpx::when_all(f6, f7)
.then([](hpx::future<

hpx::tuple<hpx::future<double>, hpx::future<double>>>
f) {

hpx::tuple<hpx::future<double>, hpx::future<double>> t =
f.get();

double pi = hpx::get<0>(t).get();
double r = hpx::get<1>(t).get();
return pi * r * r;

})
(continues on next page)

2.3. Manual 167

HPX Documentation, master

(continued from previous page)

.get()
<< std::endl;

// Easier continuations with dataflow; it waits for all future or
// shared_future arguments before executing the continuation, and also
// accepts non-future arguments
hpx::future<double> f8 = hpx::async([]() { return 3.14; });
hpx::future<double> f9 = hpx::make_ready_future(42.0);
hpx::shared_future<double> f10 = hpx::async([]() { return 123.45; });
hpx::future<hpx::tuple<double, double>> f11 = hpx::dataflow(

[](hpx::future<double> a, hpx::future<double> b,
hpx::shared_future<double> c, double d) {
return hpx::make_tuple<>(a.get() + b.get(), c.get() / d);

},
f8, f9, f10, -3.9);

// split_future gives a tuple of futures from a future of tuple
hpx::tuple<hpx::future<double>, hpx::future<double>> f12 =

hpx::split_future(std::move(f11));
std::cout << hpx::get<1>(f12).get() << std::endl;

return 0;
}

The first section of the main function demonstrates how to use futures for asynchronous execution. The first two
lines create two futures, one for void and another for an integer, using the hpx::async() function. These futures are
executed asynchronously in separate threads using the hpx::launch::async launch policy. The third future is created
by chaining the second future using the then() member function. This future multiplies the result of the second future
by 3.

The next part of the code demonstrates how to use promises and packaged tasks, which are constructs used for com-
municating data between threads. The promise class is used to store a value that can be retrieved later using a future.
The packaged_task class represents a task that can be executed asynchronously, and its result can be obtained using
a future. The last three lines create a packaged task that returns an integer, obtain its future, execute the task, and check
whether the future is ready or not.

The code then demonstrates how to use the hpx::post() and hpx::sync() functions for fire-and-forget and syn-
chronous execution, respectively. The hpx::post() function executes a given function asynchronously and returns
immediately without waiting for the result. The hpx::sync() function executes a given function synchronously and
waits for the result before returning.

Next the code demonstrates the use of combinators, which are higher-order functions that combine two or more futures
into a single future. The hpx::when_all() function is used to combine two futures, which return double values, into
a tuple of futures. The then() member function is then used to compute the area of a circle using the values of the
two futures. The get() member function is used to retrieve the result of the computation.

The last section demonstrates the use of hpx::dataflow(), which is a higher-order function that waits for all the
future or shared_future arguments to be ready before executing the continuation. The hpx::make_ready_future()
function is used to create a future with a given value. The hpx::split_future() function is used to split a future of
a tuple into a tuple of futures. The last line retrieves the value of the second future in the tuple using hpx::get() and
prints it to the console.

168 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Extended facilities for futures

Concurrency is about both decomposing and composing the program from the parts that work well individually and
together. It is in the composition of connected and multicore components where today’s C++ libraries are still lacking.

The functionality of std::future68 offers a partial solution. It allows for the separation of the initiation of an operation
and the act of waiting for its result; however, the act of waiting is synchronous. In communication-intensive code
this act of waiting can be unpredictable, inefficient and simply frustrating. The example below illustrates a possible
synchronous wait using futures:

#include <future>
using namespace std;
int main()
{

future<int> f = async([]() { return 123; });
int result = f.get(); // might block

}

For this reason, HPX implements a set of extensions to std::future69 (as proposed by N431370). This proposal introduces
the following key asynchronous operations to hpx::future, hpx::shared_future and hpx::async, which enhance
and enrich these facilities.

Table 2.11: Facilities extending std::future

Facility Description
hpx::future::then In asynchronous programming, it is very common for one asynchronous operation, on com-

pletion, to invoke a second operation and pass data to it. The current C++ standard does
not allow one to register a continuation to a future. With then, instead of waiting for the
result, a continuation is “attached” to the asynchronous operation, which is invoked when
the result is ready. Continuations registered using then function will help to avoid blocking
waits or wasting threads on polling, greatly improving the responsiveness and scalability of
an application.

unwrapping
constructor for
hpx::future

In some scenarios, you might want to create a future that returns another future, resulting in
nested futures. Although it is possible to write code to unwrap the outer future and retrieve
the nested future and its result, such code is not easy to write because users must handle
exceptions and it may cause a blocking call. Unwrapping can allow users to mitigate this
problem by doing an asynchronous call to unwrap the outermost future.

hpx::future::is_readyThere are often situations where a get() call on a future may not be a blocking call, or
is only a blocking call under certain circumstances. This function gives the ability to test
for early completion and allows us to avoid associating a continuation, which needs to be
scheduled with some non-trivial overhead and near-certain loss of cache efficiency.

hpx::make_ready_futureSome functions may know the value at the point of construction. In these cases
the value is immediately available, but needs to be returned as a future. By using
hpx::make_ready_future a future can be created that holds a pre-computed result in its
shared state. In the current standard it is non-trivial to create a future directly from a value.
First a promise must be created, then the promise is set, and lastly the future is retrieved
from the promise. This can now be done with one operation.

The standard also omits the ability to compose multiple futures. This is a common pattern that is ubiquitous in other
asynchronous frameworks and is absolutely necessary in order to make C++ a powerful asynchronous programming
language. Not including these functions is synonymous to Boolean algebra without AND/OR.

68 http://en.cppreference.com/w/cpp/thread/future
69 http://en.cppreference.com/w/cpp/thread/future
70 http://wg21.link/n4313

2.3. Manual 169

http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/future
http://wg21.link/n4313

HPX Documentation, master

In addition to the extensions proposed by N431371, HPX adds functions allowing users to compose several futures in
a more flexible way.

Table 2.12: Facilities for composing hpx::futures
Facility Description
hpx::when_any,
hpx::when_any_n

Asynchronously wait for at least one of multiple future or shared_future objects to finish.

hpx::wait_any,
hpx::wait_any_n

Synchronously wait for at least one of multiple future or shared_future objects to finish.

hpx::when_all,
hpx::when_all_n

Asynchronously wait for all future and shared_future objects to finish.

hpx::wait_all,
hpx::wait_all_n

Synchronously wait for all future and shared_future objects to finish.

hpx::when_some,
hpx::when_some_n

Asynchronously wait for multiple future and shared_future objects to finish.

hpx::wait_some,
hpx::wait_some_n

Synchronously wait for multiple future and shared_future objects to finish.

hpx::when_each Asynchronously wait for multiple future and shared_future objects to finish and call a
function for each of the future objects as soon as it becomes ready.

hpx::wait_each ,
hpx::wait_each_n

Synchronously wait for multiple future and shared_future objects to finish and call a
function for each of the future objects as soon as it becomes ready.

Channels

Channels combine communication (the exchange of a value) with synchronization (guaranteeing that two calculations
(tasks) are in a known state). A channel can transport any number of values of a given type from a sender to a receiver:

hpx::lcos::local::channel<int> c;
hpx::future<int> f = c.get();
HPX_ASSERT(!f.is_ready());
c.set(42);
HPX_ASSERT(f.is_ready());
std::cout << f.get() << std::endl;

Channels can be handed to another thread (or in case of channel components, to other localities), thus establishing a
communication channel between two independent places in the program:

void do_something(hpx::lcos::local::receive_channel<int> c,
hpx::lcos::local::send_channel<> done)

{
// prints 43
std::cout << c.get(hpx::launch::sync) << std::endl;
// signal back
done.set();

}

void send_receive_channel()
{

hpx::lcos::local::channel<int> c;
hpx::lcos::local::channel<> done;

(continues on next page)

71 http://wg21.link/n4313

170 Chapter 2. What’s so special about HPX?

http://wg21.link/n4313

HPX Documentation, master

(continued from previous page)

hpx::post(&do_something, c, done);

// send some value
c.set(43);
// wait for thread to be done
done.get().wait();

}

Note how hpx::lcos::local::channel::get without any arguments returns a future which is ready when
a value has been set on the channel. The launch policy hpx::launch::sync can be used to make
hpx::lcos::local::channel::get block until a value is set and return the value directly.

A channel component is created on one locality and can be sent to another locality using an action. This example also
demonstrates how a channel can be used as a range of values:

// channel components need to be registered for each used type (not needed
// for hpx::lcos::local::channel)
HPX_REGISTER_CHANNEL(double)

void channel_sender(hpx::lcos::channel<double> c)
{

for (double d : c)
hpx::cout << d << std::endl;

}
HPX_PLAIN_ACTION(channel_sender)

void channel()
{

// create the channel on this locality
hpx::lcos::channel<double> c(hpx::find_here());

// pass the channel to a (possibly remote invoked) action
hpx::post(channel_sender_action(), hpx::find_here(), c);

// send some values to the receiver
std::vector<double> v = {1.2, 3.4, 5.0};
for (double d : v)

c.set(d);

// explicitly close the communication channel (implicit at destruction)
c.close();

}

2.3. Manual 171

HPX Documentation, master

Task blocks

Task blocks in HPX provide a way to structure and organize the execution of tasks in a parallel program, making it
easier to manage dependencies between tasks. A task block actually is a group of tasks that can be executed in parallel.
Tasks in a task block can depend on other tasks in the same task block. The task block allows the runtime to optimize
the execution of tasks, by scheduling them in an optimal order based on the dependencies between them.

The define_task_block, run and the wait functions implemented based on N475572 are based on the task_block
concept that is a part of the common subset of the Microsoft Parallel Patterns Library (PPL)73 and the Intel Threading
Building Blocks (TBB)74 libraries.

These implementations adopt a simpler syntax than exposed by those libraries— one that is influenced by language-
based concepts, such as spawn and sync from Cilk++75 and async and finish from X1076. They improve on existing
practice in the following ways:

• The exception handling model is simplified and more consistent with normal C++ exceptions.

• Most violations of strict fork-join parallelism can be enforced at compile time (with compiler assistance, in some
cases).

• The syntax allows scheduling approaches other than child stealing.

Consider an example of a parallel traversal of a tree, where a user-provided function compute is applied to each node
of the tree, returning the sum of the results:

template <typename Func>
int traverse(node& n, Func && compute)
{

int left = 0, right = 0;
define_task_block(

[&](task_block<>& tr) {
if (n.left)

tr.run([&] { left = traverse(*n.left, compute); });
if (n.right)

tr.run([&] { right = traverse(*n.right, compute); });
});

return compute(n) + left + right;
}

The example above demonstrates the use of two of the functions, hpx::experimental::define_task_block and
the hpx::experimental::task_block::run member function of a hpx::experimental::task_block .

The task_block function delineates a region in a program code potentially containing invocations of threads spawned
by the run member function of the task_block class. The run function spawns an HPX thread, a unit of work that
is allowed to execute in parallel with respect to the caller. Any parallel tasks spawned by run within the task block are
joined back to a single thread of execution at the end of the define_task_block. run takes a user-provided function
object f and starts it asynchronously—i.e., it may return before the execution of f completes. The HPX scheduler may
choose to run f immediately or delay running f until compute resources become available.

A task_block can be constructed only by define_task_block because it has no public constructors. Thus, run can
be invoked directly or indirectly only from a user-provided function passed to define_task_block:

72 http://wg21.link/n4755
73 https://msdn.microsoft.com/en-us/library/dd492418.aspx
74 https://www.threadingbuildingblocks.org/
75 https://software.intel.com/en-us/articles/intel-cilk-plus/
76 https://x10-lang.org/

172 Chapter 2. What’s so special about HPX?

http://wg21.link/n4755
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://software.intel.com/en-us/articles/intel-cilk-plus/
https://x10-lang.org/

HPX Documentation, master

void g();

void f(task_block<>& tr)
{

tr.run(g); // OK, invoked from within task_block in h
}

void h()
{

define_task_block(f);
}

int main()
{

task_block<> tr; // Error: no public constructor
tr.run(g); // No way to call run outside of a define_task_block
return 0;

}

Extensions for task blocks

Using execution policies with task blocks

HPX implements some extensions for task_block beyond the actual standards proposal N475577. The main addition is
that a task_block can be invoked with an execution policy as its first argument, very similar to the parallel algorithms.

An execution policy is an object that expresses the requirements on the ordering of functions invoked as a consequence
of the invocation of a task block. Enabling passing an execution policy to define_task_block gives the user control
over the amount of parallelism employed by the created task_block. In the following example the use of an explicit
par execution policy makes the user’s intent explicit:

template <typename Func>
int traverse(node *n, Func&& compute)
{

int left = 0, right = 0;

define_task_block(
execution::par, // execution::parallel_policy
[&](task_block<>& tb) {

if (n->left)
tb.run([&] { left = traverse(n->left, compute); });

if (n->right)
tb.run([&] { right = traverse(n->right, compute); });

});

return compute(n) + left + right;
}

This also causes the hpx::experimental::task_block object to be a template in our implementation. The tem-
plate argument is the type of the execution policy used to create the task block. The template argument defaults to
hpx::execution::parallel_policy.

77 http://wg21.link/n4755

2.3. Manual 173

http://wg21.link/n4755

HPX Documentation, master

HPX still supports calling hpx::experimental::define_task_block without an explicit execution policy. In this
case the task block will run using the hpx::execution::parallel_policy.

HPX also adds the ability to access the execution policy that was used to create a given task_block.

Using executors to run tasks

Often, users want to be able to not only define an execution policy to use by default for all spawned tasks inside the
task block, but also to customize the execution context for one of the tasks executed by task_block::run. Adding an
optionally passed executor instance to that function enables this use case:

template <typename Func>
int traverse(node *n, Func&& compute)
{

int left = 0, right = 0;

define_task_block(
execution::par, // execution::parallel_policy
[&](auto& tb) {

if (n->left)
{

// use explicitly specified executor to run this task
tb.run(my_executor(), [&] { left = traverse(n->left, compute); });

}
if (n->right)
{

// use the executor associated with the par execution policy
tb.run([&] { right = traverse(n->right, compute); });

}
});

return compute(n) + left + right;
}

HPX still supports calling hpx::experimental::task_block::run without an explicit executor object. In
this case the task will be run using the executor associated with the execution policy that was used to call
hpx::experimental::define_task_block .

Task groups

A task group in HPX is a synchronization primitive that allows you to execute a group of tasks concurrently and wait for
their completion before continuing. The tasks in an hpx::experimental::task_group can be added dynamically.
This is the HPX implementation of tbb::task_group of the Intel Threading Building Blocks (TBB)78 library.

The example below shows that to use a task group, you simply create an hpx::task_group object and add tasks to it
using the run() method. Once all the tasks have been added, you can call the wait() method to synchronize the tasks
and wait for them to complete.

#include <hpx/experimental/task_group.hpp>
#include <hpx/init.hpp>

(continues on next page)

78 https://www.threadingbuildingblocks.org/

174 Chapter 2. What’s so special about HPX?

https://www.threadingbuildingblocks.org/

HPX Documentation, master

(continued from previous page)

#include <iostream>

void task1()
{

std::cout << "Task 1 executed." << std::endl;
}

void task2()
{

std::cout << "Task 2 executed." << std::endl;
}

int hpx_main()
{

hpx::experimental::task_group tg;

tg.run(task1);
tg.run(task2);

tg.wait();

std::cout << "All tasks finished!" << std::endl;

return hpx::local::finalize();
}

int main(int argc, char* argv[])
{

return hpx::local::init(hpx_main, argc, argv);
}

Note: task groups and task blocks are both ways to group and synchronize parallel tasks, but task groups are used to
group multiple tasks together as a single unit, while task blocks are used to execute a loop in parallel, with each iteration
of the loop executing in a separate task. If the difference is not clear yet, continue reading.

A task group is a construct that allows multiple parallel tasks to be grouped together as a single unit. The task group
provides a way to synchronize all the tasks in the group before continuing with the rest of the program.

A task block, on the other hand, is a parallel loop construct that allows you to execute a loop in parallel, with each
iteration of the loop executing in a separate task. The loop iterations are executed in a block, meaning that the loop
body is executed as a single task.

2.3. Manual 175

HPX Documentation, master

Threads

A thread in HPX refers to a sequence of instructions that can be executed concurrently with other such sequences in
multithreading environments, while sharing a same address space. These threads can communicate with each other
through various means, such as futures or shared data structures.

The example below demonstrates how to launch multiple threads and synchronize them using a hpx::latch object.
It also shows how to query the state of threads and wait for futures to complete.

#include <hpx/future.hpp>
#include <hpx/init.hpp>
#include <hpx/thread.hpp>

#include <functional>
#include <iostream>
#include <vector>

int const num_threads = 10;

///
void wait_for_latch(hpx::latch& l)
{

l.arrive_and_wait();
}

int hpx_main()
{

// Spawn a couple of threads
hpx::latch l(num_threads + 1);

std::vector<hpx::future<void>> results;
results.reserve(num_threads);

for (int i = 0; i != num_threads; ++i)
results.push_back(hpx::async(&wait_for_latch, std::ref(l)));

// Allow spawned threads to reach latch
hpx::this_thread::yield();

// Enumerate all suspended threads
hpx::threads::enumerate_threads(

[](hpx::threads::thread_id_type id) -> bool {
std::cout << "thread " << hpx::thread::id(id) << " is "

<< hpx::threads::get_thread_state_name(
hpx::threads::get_thread_state(id))

<< std::endl;
return true; // always continue enumeration

},
hpx::threads::thread_schedule_state::suspended);

// Wait for all threads to reach this point.
l.arrive_and_wait();

(continues on next page)

176 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

hpx::wait_all(results);

return hpx::local::finalize();
}

int main(int argc, char* argv[])
{

return hpx::local::init(hpx_main, argc, argv);
}

In more detail, the wait_for_latch() function is a simple helper function that waits for a hpx::latch object to be
released. At this point we remind that hpx::latch is a synchronization primitive that allows multiple threads to wait
for a common event to occur.

In the hpx_main() function, an hpx::latch object is created with a count of num_threads + 1, indicating
that num_threads threads need to arrive at the latch before the latch is released. The loop that follows launches
num_threads asynchronous operations, each of which calls the wait_for_latch function. The resulting futures are
added to the vector.

After the threads have been launched, hpx::this_thread::yield() is called to give them a chance to reach the
latch before the program proceeds. Then, the hpx::threads::enumerate_threads function prints the state of each
suspended thread, while the next call of l.arrive_and_wait() waits for all the threads to reach the latch. Finally,
hpx::wait_all is called to wait for all the futures to complete.

Hint: An advantage of using hpx::thread over other threading libraries is that it is optimized for high-performance
parallelism, with support for lightweight threads and task scheduling to minimize thread overhead and maximize par-
allelism. Additionally, hpx::thread integrates seamlessly with other features of HPX such as futures, promises, and
task groups, making it a powerful tool for parallel programming.

Checkout the examples of Shared mutex, Condition variable, Semaphore to see how HPX threads are used in combi-
nation with other features.

High level parallel facilities

In preparation for the upcoming C++ Standards, there are currently several proposals targeting different facilities sup-
porting parallel programming. HPX implements (and extends) some of those proposals. This is well aligned with our
strategy to align the APIs exposed from HPX with current and future C++ Standards.

At this point, HPX implements several of the C++ Standardization working papers, most notably N440979 (Working
Draft, Technical Specification for C++ Extensions for Parallelism), N475580 (Task Blocks), and N440681 (Parallel
Algorithms Need Executors).

79 http://wg21.link/n4409
80 http://wg21.link/n4755
81 http://wg21.link/n4406

2.3. Manual 177

http://wg21.link/n4409
http://wg21.link/n4755
http://wg21.link/n4406

HPX Documentation, master

Using parallel algorithms

A parallel algorithm is a function template declared in the namespace hpx::parallel.

All parallel algorithms are very similar in semantics to their sequential counterparts (as defined in the namespace std)
with an additional formal template parameter named ExecutionPolicy. The execution policy is generally passed as
the first argument to any of the parallel algorithms and describes the manner in which the execution of these algorithms
may be parallelized and the manner in which they apply user-provided function objects.

The applications of function objects in parallel algorithms invoked with an execution policy object of type
hpx::execution::sequenced_policy or hpx::execution::sequenced_task_policy execute in sequential
order. For hpx::execution::sequenced_policy the execution happens in the calling thread.

The applications of function objects in parallel algorithms invoked with an execution policy object of type
hpx::execution::parallel_policy or hpx::execution::parallel_task_policy are permitted to execute
in an unordered fashion in unspecified threads, and are indeterminately sequenced within each thread.

Important: It is the caller’s responsibility to ensure correctness, such as making sure that the invocation does not
introduce data races or deadlocks.

The example below demonstrates how to perform a sequential and parallel hpx::for_each loop on a vector of integers.

#include <hpx/algorithm.hpp>
#include <hpx/execution.hpp>
#include <hpx/init.hpp>

#include <iostream>
#include <vector>

int hpx_main()
{

std::vector<int> v{1, 2, 3, 4, 5};

auto print = [](const int& n) { std::cout << n << ' '; };

std::cout << "Print sequential: ";
hpx::for_each(v.begin(), v.end(), print);
std::cout << '\n';

std::cout << "Print parallel: ";
hpx::for_each(hpx::execution::par, v.begin(), v.end(), print);
std::cout << '\n';

return hpx::local::finalize();
}

int main(int argc, char* argv[])
{

return hpx::local::init(hpx_main, argc, argv);
}

The above code uses hpx::for_each to print the elements of the vector v{1, 2, 3, 4, 5}. At first,
hpx::for_each() is called without an execution policy, which means that it applies the lambda function print
to each element in the vector sequentially. Hence, the elements are printed in order.

178 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Next, hpx::for_each() is called with the hpx::execution::par execution policy, which applies the lambda func-
tion print to each element in the vector in parallel. Therefore, the output order of the elements in the vector is not
deterministic and may vary from run to run.

Parallel exceptions

During the execution of a standard parallel algorithm, if temporary memory resources are required by any of the algo-
rithms and no memory is available, the algorithm throws a std::bad_alloc exception.

During the execution of any of the parallel algorithms, if the application of a function object terminates with an uncaught
exception, the behavior of the program is determined by the type of execution policy used to invoke the algorithm:

• If the execution policy object is of type hpx::execution::parallel_unsequenced_policy,
hpx::terminate shall be called.

• If the execution policy object is of type hpx::execution::sequenced_policy,
hpx::execution::sequenced_task_policy, hpx::execution::parallel_policy, or
hpx::execution::parallel_task_policy, the execution of the algorithm terminates with an
hpx::exception_list exception. All uncaught exceptions thrown during the application of user-provided
function objects shall be contained in the hpx::exception_list.

For example, the number of invocations of the user-provided function object in for_each is unspecified. When
hpx::for_each is executed sequentially, only one exception will be contained in the hpx::exception_list ob-
ject.

These guarantees imply that, unless the algorithm has failed to allocate memory and terminated with std::bad_alloc,
all exceptions thrown during the execution of the algorithm are communicated to the caller. It is unspecified whether
an algorithm implementation will “forge ahead” after encountering and capturing a user exception.

The algorithm may terminate with the std::bad_alloc exception even if one or more user-provided function objects
have terminated with an exception. For example, this can happen when an algorithm fails to allocate memory while
creating or adding elements to the hpx::exception_list object.

Parallel algorithms

HPX provides implementations of the following parallel algorithms:

2.3. Manual 179

HPX Documentation, master

Table 2.13: Non-modifying parallel algorithms of header
hpx/algorithm.hpp

Name Description C++ standard
hpx::adjacent_find Computes the differences between adjacent elements in a

range.
adjacent_find82

hpx::all_of Checks if a predicate is true for all of the elements in a range. all_any_none_of83

hpx::any_of Checks if a predicate is true for any of the elements in a range. all_any_none_of84

hpx::count Returns the number of elements equal to a given value. count85

hpx::count_if Returns the number of elements satisfying a specific criteria. count_if86

hpx::equal Determines if two sets of elements are the same. equal87

hpx::find Finds the first element equal to a given value. find88

hpx::find_end Finds the last sequence of elements in a certain range. find_end89

hpx::find_first_of Searches for any one of a set of elements. find_first_of90

hpx::find_if Finds the first element satisfying a specific criteria. find_if91

hpx::find_if_not Finds the first element not satisfying a specific criteria. find_if_not92

hpx::for_each Applies a function to a range of elements. for_each93

hpx::for_each_n Applies a function to a number of elements. for_each_n94

hpx::lexicographical_compareChecks if a range of values is lexicographically less than an-
other range of values.

lexicographi-
cal_compare95

hpx::mismatch Finds the first position where two ranges differ. mismatch96

hpx::none_of Checks if a predicate is true for none of the elements in a
range.

all_any_none_of97

hpx::search Searches for a range of elements. search98

hpx::search_n Searches for a number consecutive copies of an element in a
range.

search_n99

82 http://en.cppreference.com/w/cpp/algorithm/adjacent_find
83 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
84 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
85 http://en.cppreference.com/w/cpp/algorithm/count
86 http://en.cppreference.com/w/cpp/algorithm/count_if
87 http://en.cppreference.com/w/cpp/algorithm/equal
88 http://en.cppreference.com/w/cpp/algorithm/find
89 http://en.cppreference.com/w/cpp/algorithm/find_end
90 http://en.cppreference.com/w/cpp/algorithm/find_first_of
91 http://en.cppreference.com/w/cpp/algorithm/find_if
92 http://en.cppreference.com/w/cpp/algorithm/find_if_not
93 http://en.cppreference.com/w/cpp/algorithm/for_each
94 http://en.cppreference.com/w/cpp/algorithm/for_each_n
95 http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
96 http://en.cppreference.com/w/cpp/algorithm/mismatch
97 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
98 http://en.cppreference.com/w/cpp/algorithm/search
99 http://en.cppreference.com/w/cpp/algorithm/search_n

180 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/adjacent_find
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/count
http://en.cppreference.com/w/cpp/algorithm/count_if
http://en.cppreference.com/w/cpp/algorithm/equal
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find_end
http://en.cppreference.com/w/cpp/algorithm/find_first_of
http://en.cppreference.com/w/cpp/algorithm/find_if
http://en.cppreference.com/w/cpp/algorithm/find_if_not
http://en.cppreference.com/w/cpp/algorithm/for_each
http://en.cppreference.com/w/cpp/algorithm/for_each_n
http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
http://en.cppreference.com/w/cpp/algorithm/mismatch
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/search
http://en.cppreference.com/w/cpp/algorithm/search_n

HPX Documentation, master

Table 2.14: Modifying parallel algorithms of header hpx/algorithm.hpp
Name Description C++ standard
hpx::copy Copies a range of elements to a new location. exclusive_scan100

hpx::copy_n Copies a number of elements to a new location. copy_n101

hpx::copy_if Copies the elements from a range to a new location for which
the given predicate is true

copy102

hpx::move Moves a range of elements to a new location. move103

hpx::fill Assigns a range of elements a certain value. fill104

hpx::fill_n Assigns a value to a number of elements. fill_n105

hpx::generate Saves the result of a function in a range. generate106

hpx::generate_n Saves the result of N applications of a function. generate_n107

hpx::experimental::reduce_by_keyPerforms an inclusive scan on consecutive elements with
matching keys, with a reduction to output only the final sum
for each key. The key sequence {1,1,1,2,3,3,3,3,1} and
value sequence {2,3,4,5,6,7,8,9,10} would be reduced
to keys={1,2,3,1}, values={9,5,30,10}.

hpx::remove Removes the elements from a range that are equal to the given
value.

remove108

hpx::remove_if Removes the elements from a range that are equal to the given
predicate is false

remove109

hpx::remove_copy Copies the elements from a range to a new location that are not
equal to the given value.

remove_copy110

hpx::remove_copy_if Copies the elements from a range to a new location for which
the given predicate is false

remove_copy111

hpx::replace Replaces all values satisfying specific criteria with another
value.

replace112

hpx::replace_if Replaces all values satisfying specific criteria with another
value.

replace113

hpx::replace_copy Copies a range, replacing elements satisfying specific criteria
with another value.

replace_copy114

hpx::replace_copy_if Copies a range, replacing elements satisfying specific criteria
with another value.

replace_copy115

hpx::reverse Reverses the order elements in a range. reverse116

hpx::reverse_copy Creates a copy of a range that is reversed. reverse_copy117

hpx::rotate Rotates the order of elements in a range. rotate118

hpx::rotate_copy Copies and rotates a range of elements. rotate_copy119

hpx::shift_left Shifts the elements in the range left by n positions. shift_left120

hpx::shift_right Shifts the elements in the range right by n positions. shift_right121

hpx::swap_ranges Swaps two ranges of elements. swap_ranges122

hpx::transform Applies a function to a range of elements. transform123

hpx::unique Eliminates all but the first element from every consecutive
group of equivalent elements from a range.

unique124

hpx::unique_copy Copies the elements from one range to another in such a way
that there are no consecutive equal elements.

unique_copy125

2.3. Manual 181

http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/copy_n
http://en.cppreference.com/w/cpp/algorithm/copy
http://en.cppreference.com/w/cpp/algorithm/move
http://en.cppreference.com/w/cpp/algorithm/fill
http://en.cppreference.com/w/cpp/algorithm/fill_n
http://en.cppreference.com/w/cpp/algorithm/generate
http://en.cppreference.com/w/cpp/algorithm/generate_n
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/replace
http://en.cppreference.com/w/cpp/algorithm/replace
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/reverse
http://en.cppreference.com/w/cpp/algorithm/reverse_copy
http://en.cppreference.com/w/cpp/algorithm/rotate
http://en.cppreference.com/w/cpp/algorithm/rotate_copy
http://en.cppreference.com/w/cpp/algorithm/shift_left
http://en.cppreference.com/w/cpp/algorithm/shift_right
http://en.cppreference.com/w/cpp/algorithm/swap_ranges
http://en.cppreference.com/w/cpp/algorithm/transform
http://en.cppreference.com/w/cpp/algorithm/unique
http://en.cppreference.com/w/cpp/algorithm/unique_copy

HPX Documentation, master

Table 2.15: Set operations on sorted sequences of header
hpx/algorithm.hpp

Name Description C++ standard
hpx::merge Merges two sorted ranges. merge126

hpx::inplace_merge Merges two ordered ranges in-place. inplace_merge127

hpx::includes Returns true if one set is a subset of another. includes128

hpx::set_difference Computes the difference between two sets. set_difference129

hpx::set_intersection Computes the intersection of two sets. set_intersection130

hpx::set_symmetric_differenceComputes the symmetric difference between two sets. set_symmetric_difference131

hpx::set_union Computes the union of two sets. set_union132

Table 2.16: Heap operations of header hpx/algorithm.hpp
Name Description C++ standard
hpx::is_heap Returns true if the range is max heap. is_heap133

hpx::is_heap_until Returns the first element that breaks a max heap. is_heap_until134

hpx::make_heap Constructs a max heap in the range [first, last). make_heap135

100 http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
101 http://en.cppreference.com/w/cpp/algorithm/copy_n
102 http://en.cppreference.com/w/cpp/algorithm/copy
103 http://en.cppreference.com/w/cpp/algorithm/move
104 http://en.cppreference.com/w/cpp/algorithm/fill
105 http://en.cppreference.com/w/cpp/algorithm/fill_n
106 http://en.cppreference.com/w/cpp/algorithm/generate
107 http://en.cppreference.com/w/cpp/algorithm/generate_n
108 http://en.cppreference.com/w/cpp/algorithm/remove
109 http://en.cppreference.com/w/cpp/algorithm/remove
110 http://en.cppreference.com/w/cpp/algorithm/remove_copy
111 http://en.cppreference.com/w/cpp/algorithm/remove_copy
112 http://en.cppreference.com/w/cpp/algorithm/replace
113 http://en.cppreference.com/w/cpp/algorithm/replace
114 http://en.cppreference.com/w/cpp/algorithm/replace_copy
115 http://en.cppreference.com/w/cpp/algorithm/replace_copy
116 http://en.cppreference.com/w/cpp/algorithm/reverse
117 http://en.cppreference.com/w/cpp/algorithm/reverse_copy
118 http://en.cppreference.com/w/cpp/algorithm/rotate
119 http://en.cppreference.com/w/cpp/algorithm/rotate_copy
120 http://en.cppreference.com/w/cpp/algorithm/shift_left
121 http://en.cppreference.com/w/cpp/algorithm/shift_right
122 http://en.cppreference.com/w/cpp/algorithm/swap_ranges
123 http://en.cppreference.com/w/cpp/algorithm/transform
124 http://en.cppreference.com/w/cpp/algorithm/unique
125 http://en.cppreference.com/w/cpp/algorithm/unique_copy
126 http://en.cppreference.com/w/cpp/algorithm/merge
127 http://en.cppreference.com/w/cpp/algorithm/inplace_merge
128 http://en.cppreference.com/w/cpp/algorithm/includes
129 http://en.cppreference.com/w/cpp/algorithm/set_difference
130 http://en.cppreference.com/w/cpp/algorithm/set_intersection
131 http://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
132 http://en.cppreference.com/w/cpp/algorithm/set_union

182 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/merge
http://en.cppreference.com/w/cpp/algorithm/inplace_merge
http://en.cppreference.com/w/cpp/algorithm/includes
http://en.cppreference.com/w/cpp/algorithm/set_difference
http://en.cppreference.com/w/cpp/algorithm/set_intersection
http://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
http://en.cppreference.com/w/cpp/algorithm/set_union
http://en.cppreference.com/w/cpp/algorithm/is_heap
http://en.cppreference.com/w/cpp/algorithm/is_heap_until
http://en.cppreference.com/w/cpp/algorithm/make_heap

HPX Documentation, master

Table 2.17: Minimum/maximum operations of header hpx/algorithm.hpp
Name Description C++ standard
hpx::max_element Returns the largest element in a range. max_element136

hpx::min_element Returns the smallest element in a range. min_element137

hpx::minmax_element Returns the smallest and the largest element in a range. minmax_element138

Table 2.18: Partitioning Operations of header hpx/algorithm.hpp
Name Description C++ standard
hpx::nth_element Partially sorts the given range making sure that it is partitioned

by the given element
nth_element139

hpx::is_partitioned Returns true if each true element for a predicate precedes the
false elements in a range.

is_partitioned140

hpx::partition Divides elements into two groups without preserving their rel-
ative order.

partition141

hpx::partition_copy Copies a range dividing the elements into two groups. partition_copy142

hpx::stable_partition Divides elements into two groups while preserving their rela-
tive order.

stable_partition143

Table 2.19: Sorting Operations of header hpx/algorithm.hpp
Name Description C++ standard
hpx::is_sorted Returns true if each element in a range is sorted. is_sorted144

hpx::is_sorted_until Returns the first unsorted element. is_sorted_until145

hpx::sort Sorts the elements in a range. sort146

hpx::stable_sort Sorts the elements in a range, maintain sequence of equal ele-
ments.

stable_sort147

hpx::partial_sort Sorts the first elements in a range. partial_sort148

hpx::partial_sort_copy Sorts the first elements in a range, storing the result in another
range.

partial_sort_copy149

hpx::experimental::sort_by_keySorts one range of data using keys supplied in another range.
133 http://en.cppreference.com/w/cpp/algorithm/is_heap
134 http://en.cppreference.com/w/cpp/algorithm/is_heap_until
135 http://en.cppreference.com/w/cpp/algorithm/make_heap
136 http://en.cppreference.com/w/cpp/algorithm/max_element
137 http://en.cppreference.com/w/cpp/algorithm/min_element
138 http://en.cppreference.com/w/cpp/algorithm/minmax_element
139 http://en.cppreference.com/w/cpp/algorithm/nth_element
140 http://en.cppreference.com/w/cpp/algorithm/is_partitioned
141 http://en.cppreference.com/w/cpp/algorithm/partition
142 http://en.cppreference.com/w/cpp/algorithm/partition_copy
143 http://en.cppreference.com/w/cpp/algorithm/stable_partition

2.3. Manual 183

http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm/minmax_element
http://en.cppreference.com/w/cpp/algorithm/nth_element
http://en.cppreference.com/w/cpp/algorithm/is_partitioned
http://en.cppreference.com/w/cpp/algorithm/partition
http://en.cppreference.com/w/cpp/algorithm/partition_copy
http://en.cppreference.com/w/cpp/algorithm/stable_partition
http://en.cppreference.com/w/cpp/algorithm/is_sorted
http://en.cppreference.com/w/cpp/algorithm/is_sorted_until
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/stable_sort
http://en.cppreference.com/w/cpp/algorithm/partial_sort
http://en.cppreference.com/w/cpp/algorithm/partial_sort_copy

HPX Documentation, master

Table 2.20: Numeric Parallel Algorithms of header hpx/numeric.hpp
Name Description C++ standard
hpx::adjacent_differenceCalculates the difference between each element in an input

range and the preceding element.
adja-
cent_difference150

hpx::exclusive_scan Does an exclusive parallel scan over a range of elements. exclusive_scan151

hpx::inclusive_scan Does an inclusive parallel scan over a range of elements. inclusive_scan152

hpx::reduce Sums up a range of elements. reduce153

hpx::transform_exclusive_scanDoes an exclusive parallel scan over a range of elements after
applying a function.

trans-
form_exclusive_scan154

hpx::transform_inclusive_scanDoes an inclusive parallel scan over a range of elements after
applying a function.

trans-
form_inclusive_scan155

hpx::transform_reduce Sums up a range of elements after applying a function. Also,
accumulates the inner products of two input ranges.

transform_reduce156

144 http://en.cppreference.com/w/cpp/algorithm/is_sorted
145 http://en.cppreference.com/w/cpp/algorithm/is_sorted_until
146 http://en.cppreference.com/w/cpp/algorithm/sort
147 http://en.cppreference.com/w/cpp/algorithm/stable_sort
148 http://en.cppreference.com/w/cpp/algorithm/partial_sort
149 http://en.cppreference.com/w/cpp/algorithm/partial_sort_copy
150 http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
151 http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
152 http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
153 http://en.cppreference.com/w/cpp/algorithm/reduce
154 http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan
155 http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
156 http://en.cppreference.com/w/cpp/algorithm/transform_reduce

184 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/reduce
http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_reduce

HPX Documentation, master

Table 2.21: Dynamic Memory Management of header hpx/memory.hpp
Name Description C++ standard
hpx::destroy Destroys a range of objects. destroy157

hpx::destroy_n Destroys a range of objects. destroy_n158

hpx::uninitialized_copyCopies a range of objects to an uninitialized area of memory. uninitial-
ized_copy159

hpx::uninitialized_copy_nCopies a number of objects to an uninitialized area of memory. uninitial-
ized_copy_n160

hpx::uninitialized_default_constructCopies a range of objects to an uninitialized area of memory. uninitial-
ized_default_construct161

hpx::uninitialized_default_construct_nCopies a number of objects to an uninitialized area of memory. uninitial-
ized_default_construct_n162

hpx::uninitialized_fillCopies an object to an uninitialized area of memory. uninitialized_fill163

hpx::uninitialized_fill_nCopies an object to an uninitialized area of memory. uninitial-
ized_fill_n164

hpx::uninitialized_moveMoves a range of objects to an uninitialized area of memory. uninitial-
ized_move165

hpx::uninitialized_move_nMoves a number of objects to an uninitialized area of memory. uninitial-
ized_move_n166

hpx::uninitialized_value_constructConstructs objects in an uninitialized area of memory. uninitial-
ized_value_construct167

hpx::uninitialized_value_construct_nConstructs objects in an uninitialized area of memory. uninitial-
ized_value_construct_n168

Table 2.22: Index-based for-loops of header hpx/algorithm.hpp
Name Description
hpx::experimental::for_loop Implements loop functionality over a range specified by integral or it-

erator bounds.
hpx::experimental::for_loop_stridedImplements loop functionality over a range specified by integral or it-

erator bounds.
hpx::experimental::for_loop_n Implements loop functionality over a range specified by integral or it-

erator bounds.
hpx::experimental::for_loop_n_stridedImplements loop functionality over a range specified by integral or it-

erator bounds.

157 http://en.cppreference.com/w/cpp/memory/destroy
158 http://en.cppreference.com/w/cpp/memory/destroy_n
159 http://en.cppreference.com/w/cpp/memory/uninitialized_copy
160 http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
161 http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
162 http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
163 http://en.cppreference.com/w/cpp/memory/uninitialized_fill
164 http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
165 http://en.cppreference.com/w/cpp/memory/uninitialized_move
166 http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
167 http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
168 http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n

2.3. Manual 185

http://en.cppreference.com/w/cpp/memory/destroy
http://en.cppreference.com/w/cpp/memory/destroy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_copy
http://en.cppreference.com/w/cpp/memory/uninitialized_copy
http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_fill
http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
http://en.cppreference.com/w/cpp/memory/uninitialized_move
http://en.cppreference.com/w/cpp/memory/uninitialized_move
http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n

HPX Documentation, master

Executor parameters and executor parameter traits

HPX introduces the notion of execution parameters and execution parameter traits. At this point, the only parameter
that can be customized is the size of the chunks of work executed on a single HPX thread (such as the number of loop
iterations combined to run as a single task).

An executor parameter object is responsible for exposing the calculation of the size of the chunks scheduled. It abstracts
the (potentially platform-specific) algorithms of determining those chunk sizes.

The way executor parameters are implemented is aligned with the way executors are implemented. All functionalities
of concrete executor parameter types are exposed and accessible through a corresponding customization point, e.g.
get_chunk_size().

With executor_parameter_traits, clients access all types of executor parameters uniformly, e.g.:

std::size_t chunk_size =
hpx::execution::experimental::get_chunk_size(my_parameter, my_executor,

num_cores, num_tasks);

This call synchronously retrieves the size of a single chunk of loop iterations (or similar) to combine for execution on a
single HPX thread if the overall number of cores num_cores and tasks to schedule is given by num_tasks. The lambda
function exposes a means of test-probing the execution of a single iteration for performance measurement purposes. The
execution parameter type might dynamically determine the execution time of one or more tasks in order to calculate the
chunk size; see hpx::execution::experimental::auto_chunk_size for an example of this executor parameter
type.

Other functions in the interface exist to discover whether an executor parameter type should be invoked once
(i.e., it returns a static chunk size; see hpx::execution::experimental::static_chunk_size) or whether it
should be invoked for each scheduled chunk of work (i.e., it returns a variable chunk size; for an example, see
hpx::execution::experimental::guided_chunk_size).

Although this interface appears to require executor parameter type authors to implement all different basic operations,
none are required. In practice, all operations have sensible defaults. However, some executor parameter types will
naturally specialize all operations for maximum efficiency.

HPX implements the following executor parameter types:

• hpx::execution::experimental::auto_chunk_size: Loop iterations are divided into pieces and then as-
signed to threads. The number of loop iterations combined is determined based on measurements of how long
the execution of 1% of the overall number of iterations takes. This executor parameter type makes sure that as
many loop iterations are combined as necessary to run for the amount of time specified.

• hpx::execution::experimental::static_chunk_size: Loop iterations are divided into pieces of a given
size and then assigned to threads. If the size is not specified, the iterations are, if possible, evenly divided
contiguously among the threads. This executor parameters type is equivalent to OpenMP’s STATIC scheduling
directive.

• hpx::execution::experimental::dynamic_chunk_size: Loop iterations are divided into pieces of a
given size and then dynamically scheduled among the cores; when a core finishes one chunk, it is dynami-
cally assigned another. If the size is not specified, the default chunk size is 1. This executor parameter type is
equivalent to OpenMP’s DYNAMIC scheduling directive.

• hpx::execution::experimental::guided_chunk_size: Iterations are dynamically assigned to cores in
blocks as cores request them until no blocks remain to be assigned. This is similar to dynamic_chunk_size
except that the block size decreases each time a number of loop iterations is given to a thread. The size of the initial
block is proportional to number_of_iterations / number_of_cores. Subsequent blocks are proportional
to number_of_iterations_remaining / number_of_cores. The optional chunk size parameter defines
the minimum block size. The default minimal chunk size is 1. This executor parameter type is equivalent to
OpenMP’s GUIDED scheduling directive.

186 Chapter 2. What’s so special about HPX?

HPX Documentation, master

2.3.11 Writing distributed applications

This section focuses on the features of HPX needed to write distributed applications, namely the Active Global Address
Space (AGAS), remotely executable functions (i.e., actions), and distributed objects (i.e., components).

Global names

HPX implements an Active Global Address Space (AGAS) which exposes a single uniform address space spanning all
localities an application runs on. AGAS is a fundamental component of the ParalleX execution model. Conceptually,
there is no rigid demarcation of local or global memory in AGAS; all available memory is a part of the same address
space. AGAS enables named objects to be moved (migrated) across localities without having to change the object’s
name; i.e., no references to migrated objects have to be ever updated. This feature has significance for dynamic load
balancing and in applications where the workflow is highly dynamic, allowing work to be migrated from heavily loaded
nodes to less loaded nodes. In addition, immutability of names ensures that AGAS does not have to keep extra indirec-
tions (“bread crumbs”) when objects move, hence, minimizing complexity of code management for system developers
as well as minimizing overheads in maintaining and managing aliases.

The AGAS implementation in HPX does not automatically expose every local address to the global address space. It
is the responsibility of the programmer to explicitly define which of the objects have to be globally visible and which
of the objects are purely local.

In HPX global addresses (global names) are represented using the hpx::id_type data type. This data type is concep-
tually very similar to void* pointers as it does not expose any type information of the object it is referring to.

The only predefined global addresses are assigned to all localities. The following HPX API functions allow one to
retrieve the global addresses of localities:

• hpx::find_here: retrieves the global address of the locality this function is called on.

• hpx::find_all_localities: retrieves the global addresses of all localities available to this application (in-
cluding the locality the function is being called on).

• hpx::find_remote_localities: retrieves the global addresses of all remote localities available to this appli-
cation (not including the locality the function is being called on).

• hpx::get_num_localities: retrieves the number of localities available to this application.

• hpx::find_locality: retrieves the global address of any locality supporting the given component type.

• hpx::get_colocation_id : retrieves the global address of the locality currently hosting the object with the
given global address.

Additionally, the global addresses of localities can be used to create new instances of components using the following
HPX API function:

• hpx::components::new_: Creates a new instance of the given Component type on the specified locality.

Note: HPX does not expose any functionality to delete component instances. All global addresses (as represented
using hpx::id_type) are automatically garbage collected. When the last (global) reference to a particular component
instance goes out of scope, the corresponding component instance is automatically deleted.

2.3. Manual 187

HPX Documentation, master

Posting actions

Action type definition

Actions are special types used to describe possibly remote operations. For every global function and every member
function which has to be invoked distantly, a special type must be defined. For any global function the special macro
HPX_PLAIN_ACTION can be used to define the action type. Here is an example demonstrating this:

namespace app
{

void some_global_function(double d)
{

cout << d;
}

}

// This will define the action type 'some_global_action' which represents
// the function 'app::some_global_function'.
HPX_PLAIN_ACTION(app::some_global_function, some_global_action);

Important: The macro HPX_PLAIN_ACTION has to be placed in global namespace, even if the wrapped function is
located in some other namespace. The newly defined action type is placed in the global namespace as well.

If the action type should be defined somewhere not in global namespace, the action type definition has to be split into
two macro invocations (HPX_DEFINE_PLAIN_ACTION and HPX_REGISTER_ACTION) as shown in the next example:

namespace app
{

void some_global_function(double d)
{

cout << d;
}

// On conforming compilers the following macro expands to:
//
// typedef hpx::actions::make_action<
// decltype(&some_global_function), &some_global_function
// >::type some_global_action;
//
// This will define the action type 'some_global_action' which represents
// the function 'some_global_function'.
HPX_DEFINE_PLAIN_ACTION(some_global_function, some_global_action);

}

// The following macro expands to a series of definitions of global objects
// which are needed for proper serialization and initialization support
// enabling the remote invocation of the function``some_global_function``
HPX_REGISTER_ACTION(app::some_global_action, app_some_global_action);

The shown code defines an action type some_global_action inside the namespace app.

Important: If the action type definition is split between two macros as shown above, the name of the action type to

188 Chapter 2. What’s so special about HPX?

HPX Documentation, master

create has to be the same for both macro invocations (here some_global_action).

Important: The second argument passed to HPX_REGISTER_ACTION (app_some_global_action) has to comprise
a globally unique C++ identifier representing the action. This is used for serialization purposes.

For member functions of objects which have been registered with AGAS (e.g., ‘components’), a different registration
macro HPX_DEFINE_COMPONENT_ACTION has to be utilized. Any component needs to be declared in a header file and
have some special support macros defined in a source file. Here is an example demonstrating this. The first snippet has
to go into the header file:

namespace app
{

struct some_component
: hpx::components::component_base<some_component>

{
int some_member_function(std::string s)
{

return boost::lexical_cast<int>(s);
}

// This will define the action type 'some_member_action' which
// represents the member function 'some_member_function' of the
// object type 'some_component'.
HPX_DEFINE_COMPONENT_ACTION(some_component, some_member_function,

some_member_action);
};

}

// Note: The second argument to the macro below has to be systemwide-unique
// C++ identifiers
HPX_REGISTER_ACTION_DECLARATION(app::some_component::some_member_action, some_component_
→˓some_action);

The next snippet belongs in a source file (e.g., the main application source file) in the simplest case:

typedef hpx::components::component<app::some_component> component_type;
typedef app::some_component some_component;

HPX_REGISTER_COMPONENT(component_type, some_component);

// The parameters for this macro have to be the same as used in the corresponding
// HPX_REGISTER_ACTION_DECLARATION() macro invocation above
typedef some_component::some_member_action some_component_some_action;
HPX_REGISTER_ACTION(some_component_some_action);

While these macro invocations are a bit more complex than those for simple global functions, they should still be
manageable.

The most important macro invocation is the HPX_DEFINE_COMPONENT_ACTION in the header file as this defines the
action type we need to invoke the member function. For a complete example of a simple component action see
component_in_executable.cpp.

2.3. Manual 189

HPX Documentation, master

Action invocation

The process of invoking a global function (or a member function of an object) with the help of the associated action
is called ‘posting the action’. Actions can have arguments, which will be supplied while the action is applied. At the
minimum, one parameter is required to post any action - the id of the locality the associated function should be invoked
on (for global functions), or the id of the component instance (for member functions). Generally, HPX provides several
ways to post an action, all of which are described in the following sections.

Generally, HPX actions are very similar to ‘normal’ C++ functions except that actions can be invoked remotely. Fig.
2.8 below shows an overview of the main API exposed by HPX. This shows the function invocation syntax as defined
by the C++ language (dark gray), the additional invocation syntax as provided through C++ Standard Library features
(medium gray), and the extensions added by HPX (light gray) where:

• f function to invoke,

• p..: (optional) arguments,

• R: return type of f,

• action: action type defined by, HPX_DEFINE_PLAIN_ACTION or HPX_DEFINE_COMPONENT_ACTION encapsu-
lating f,

• a: an instance of the type action,

• id: the global address the action is applied to.

Fig. 2.8: Overview of the main API exposed by HPX.

This figure shows that HPX allows the user to post actions with a syntax similar to the C++ standard. In fact, all action
types have an overloaded function operator allowing to synchronously post the action. Further, HPX implements
hpx::async which semantically works similar to the way std::async works for plain C++ function.

Note: The similarity of posting an action to conventional function invocations extends even further. HPX im-
plements hpx::bind and hpx::function two facilities which are semantically equivalent to the std::bind and
std::function types as defined by the C++11 Standard. While hpx::async extends beyond the conventional se-
mantics by supporting actions and conventional C++ functions, the HPX facilities hpx::bind and hpx::function
extend beyond the conventional standard facilities too. The HPX facilities not only support conventional functions, but
can be used for actions as well.

190 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Additionally, HPX exposes hpx::post and hpx::async_continue both of which refine and extend the standard C++
facilities.

The different ways to invoke a function in HPX will be explained in more detail in the following sections.

Posting an action asynchronously without any synchronization

This method (‘fire and forget’) will make sure the function associated with the action is scheduled to run on the target
locality. Posting the action does not wait for the function to start running, instead it is a fully asynchronous operation.
The following example shows how to post the action as defined in the previous section on the local locality (the locality
this code runs on):

some_global_action act; // define an instance of some_global_action
hpx::post(act, hpx::find_here(), 2.0);

(the function hpx::find_here() returns the id of the local locality, i.e. the locality this code executes on).

Any component member function can be invoked using the same syntactic construct. Given that id is the global address
for a component instance created earlier, this invocation looks like:

some_component_action act; // define an instance of some_component_action
hpx::post(act, id, "42");

In this case any value returned from this action (e.g. in this case the integer 42 is ignored. Please look at Action type
definition for the code defining the component action some_component_action used.

Posting an action asynchronously with synchronization

This method will make sure the action is scheduled to run on the target locality. Posting the action itself does not wait for
the function to start running or to complete, instead this is a fully asynchronous operation similar to using hpx::post
as described above. The difference is that this method will return an instance of a hpx::future<> encapsulating the
result of the (possibly remote) execution. The future can be used to synchronize with the asynchronous operation. The
following example shows how to post the action from above on the local locality:

some_global_action act; // define an instance of some_global_action
hpx::future<void> f = hpx::async(act, hpx::find_here(), 2.0);
//
// ... other code can be executed here
//
f.get(); // this will possibly wait for the asynchronous operation to 'return'

(as before, the function hpx::find_here() returns the id of the local locality (the locality this code is executed on).

Note: The use of a hpx::future<void> allows the current thread to synchronize with any remote operation not
returning any value.

Note: Any std::future<> returned from std::async() is required to block in its destructor if the value has not
been set for this future yet. This is not true for hpx::future<> which will never block in its destructor, even if the
value has not been returned to the future yet. We believe that consistency in the behavior of futures is more important
than standards conformance in this case.

2.3. Manual 191

HPX Documentation, master

Any component member function can be invoked using the same syntactic construct. Given that id is the global address
for a component instance created earlier, this invocation looks like:

some_component_action act; // define an instance of some_component_action
hpx::future<int> f = hpx::async(act, id, "42");
//
// ... other code can be executed here
//
cout << f.get(); // this will possibly wait for the asynchronous operation to 'return'␣
→˓42

Note: The invocation of f.get() will return the result immediately (without suspending the calling thread) if the
result from the asynchronous operation has already been returned. Otherwise, the invocation of f.get() will suspend
the execution of the calling thread until the asynchronous operation returns its result.

Posting an action synchronously

This method will schedule the function wrapped in the specified action on the target locality. While the invocation
appears to be synchronous (as we will see), the calling thread will be suspended while waiting for the function to
return. Invoking a plain action (e.g. a global function) synchronously is straightforward:

some_global_action act; // define an instance of some_global_action
act(hpx::find_here(), 2.0);

While this call looks just like a normal synchronous function invocation, the function wrapped by the action will be
scheduled to run on a new thread and the calling thread will be suspended. After the new thread has executed the
wrapped global function, the waiting thread will resume and return from the synchronous call.

Equivalently, any action wrapping a component member function can be invoked synchronously as follows:

some_component_action act; // define an instance of some_component_action
int result = act(id, "42");

The action invocation will either schedule a new thread locally to execute the wrapped member function (as before, id
is the global address of the component instance the member function should be invoked on), or it will send a parcel to
the remote locality of the component causing a new thread to be scheduled there. The calling thread will be suspended
until the function returns its result. This result will be returned from the synchronous action invocation.

It is very important to understand that this ‘synchronous’ invocation syntax in fact conceals an asynchronous function
call. This is beneficial as the calling thread is suspended while waiting for the outcome of a potentially remote oper-
ation. The HPX thread scheduler will schedule other work in the meantime, allowing the application to make further
progress while the remote result is computed. This helps overlapping computation with communication and hiding
communication latencies.

Note: The syntax of posting an action is always the same, regardless whether the target locality is remote to the
invocation locality or not. This is a very important feature of HPX as it frees the user from the task of keeping track
what actions have to be applied locally and which actions are remote. If the target for posting an action is local, a
new thread is automatically created and scheduled. Once this thread is scheduled and run, it will execute the function
encapsulated by that action. If the target is remote, HPX will send a parcel to the remote locality which encapsulates
the action and its parameters. Once the parcel is received on the remote locality HPX will create and schedule a new
thread there. Once this thread runs on the remote locality, it will execute the function encapsulated by the action.

192 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Posting an action with a continuation but without any synchronization

This method is very similar to the method described in section Posting an action asynchronously without any synchro-
nization. The difference is that it allows the user to chain a sequence of asynchronous operations, while handing the
(intermediate) results from one step to the next step in the chain. Where hpx::post invokes a single function using
‘fire and forget’ semantics, hpx::post_continue asynchronously triggers a chain of functions without the need for
the execution flow ‘to come back’ to the invocation site. Each of the asynchronous functions can be executed on a
different locality.

Posting an action with a continuation and with synchronization

This method is very similar to the method described in section Posting an action asynchronously with synchronization.
In addition to what hpx::async can do, the functions hpx::async_continue takes an additional function argument.
This function will be called as the continuation of the executed action. It is expected to perform additional operations
and to make sure that a result is returned to the original invocation site. This method chains operations asynchronously
by providing a continuation operation which is automatically executed once the first action has finished executing.

As an example we chain two actions, where the result of the first action is forwarded to the second action and the result
of the second action is sent back to the original invocation site:

// first action
std::int32_t action1(std::int32_t i)
{

return i+1;
}
HPX_PLAIN_ACTION(action1); // defines action1_type

// second action
std::int32_t action2(std::int32_t i)
{

return i*2;
}
HPX_PLAIN_ACTION(action2); // defines action2_type

// this code invokes 'action1' above and passes along a continuation
// function which will forward the result returned from 'action1' to
// 'action2'.
action1_type act1; // define an instance of 'action1_type'
action2_type act2; // define an instance of 'action2_type'
hpx::future<int> f =

hpx::async_continue(act1, hpx::make_continuation(act2),
hpx::find_here(), 42);

hpx::cout << f.get() << "\n"; // will print: 86 ((42 + 1) * 2)

By default, the continuation is executed on the same locality as hpx::async_continue is invoked from. If you want
to specify the locality where the continuation should be executed, the code above has to be written as:

// this code invokes 'action1' above and passes along a continuation
// function which will forward the result returned from 'action1' to
// 'action2'.
action1_type act1; // define an instance of 'action1_type'
action2_type act2; // define an instance of 'action2_type'
hpx::future<int> f =

(continues on next page)

2.3. Manual 193

HPX Documentation, master

(continued from previous page)

hpx::async_continue(act1, hpx::make_continuation(act2, hpx::find_here()),
hpx::find_here(), 42);

hpx::cout << f.get() << "\n"; // will print: 86 ((42 + 1) * 2)

Similarly, it is possible to chain more than 2 operations:

action1_type act1; // define an instance of 'action1_type'
action2_type act2; // define an instance of 'action2_type'
hpx::future<int> f =

hpx::async_continue(act1,
hpx::make_continuation(act2, hpx::make_continuation(act1)),
hpx::find_here(), 42);

hpx::cout << f.get() << "\n"; // will print: 87 ((42 + 1) * 2 + 1)

The function hpx::make_continuation creates a special function object which exposes the following prototype:

struct continuation
{

template <typename Result>
void operator()(hpx::id_type id, Result&& result) const
{

...
}

};

where the parameters passed to the overloaded function operator operator()() are:

• the id is the global id where the final result of the asynchronous chain of operations should be sent to (in most
cases this is the id of the hpx::future returned from the initial call to hpx::async_continue. Any custom
continuation function should make sure this id is forwarded to the last operation in the chain.

• the result is the result value of the current operation in the asynchronous execution chain. This value needs to
be forwarded to the next operation.

Note: All of those operations are implemented by the predefined continuation function object which is returned
from hpx::make_continuation. Any (custom) function object used as a continuation should conform to the same
interface.

Action error handling

Like in any other asynchronous invocation scheme it is important to be able to handle error conditions occurring while
the asynchronous (and possibly remote) operation is executed. In HPX all error handling is based on standard C++
exception handling. Any exception thrown during the execution of an asynchronous operation will be transferred back
to the original invocation locality, where it is rethrown during synchronization with the calling thread.

Important: Exceptions thrown during asynchronous execution can be transferred back to the invoking thread only
for the synchronous and the asynchronous case with synchronization. Like with any other unhandled exception,
any exception thrown during the execution of an asynchronous action without synchronization will result in calling
hpx::terminate causing the running application to exit immediately.

194 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Even if error handling internally relies on exceptions, most of the API functions exposed by HPX can be used
without throwing an exception. Please see Working with exceptions for more information.

As an example, we will assume that the following remote function will be executed:

namespace app
{

void some_function_with_error(int arg)
{

if (arg < 0) {
HPX_THROW_EXCEPTION(hpx::error::bad_parameter,

"some_function_with_error",
"some really bad error happened");

}
// do something else...

}
}

// This will define the action type 'some_error_action' which represents
// the function 'app::some_function_with_error'.
HPX_PLAIN_ACTION(app::some_function_with_error, some_error_action);

The use of HPX_THROW_EXCEPTION to report the error encapsulates the creation of a hpx::exception which is ini-
tialized with the error code hpx::error::bad_parameter. Additionally it carries the passed strings, the information
about the file name, line number, and call stack of the point the exception was thrown from.

We invoke this action using the synchronous syntax as described before:

// note: wrapped function will throw hpx::exception
some_error_action act; // define an instance of some_error_action
try {

act(hpx::find_here(), -3); // exception will be rethrown from here
}
catch (hpx::exception const& e) {

// prints: 'some really bad error happened: HPX(bad parameter)'
cout << e.what();

}

If this action is invoked asynchronously with synchronization, the exception is propagated to the waiting thread as well
and is re-thrown from the future’s function get():

// note: wrapped function will throw hpx::exception
some_error_action act; // define an instance of some_error_action
hpx::future<void> f = hpx::async(act, hpx::find_here(), -3);
try {

f.get(); // exception will be rethrown from here
}
catch (hpx::exception const& e) {

// prints: 'some really bad error happened: HPX(bad parameter)'
cout << e.what();

}

For more information about error handling please refer to the section Working with exceptions. There we also explain
how to handle error conditions without having to rely on exception.

2.3. Manual 195

HPX Documentation, master

Writing components

A component in HPX is a C++ class which can be created remotely and for which its member functions can be invoked
remotely as well. The following sections highlight how components can be defined, created, and used.

Defining components

In order for a C++ class type to be managed remotely in HPX, the type must be derived from the
hpx::components::component_base template type. We call such C++ class types ‘components’.

Note that the component type itself is passed as a template argument to the base class:

// header file some_component.hpp

#include <hpx/include/components.hpp>

namespace app
{

// Define a new component type 'some_component'
struct some_component
: hpx::components::component_base<some_component>

{
// This member function is has to be invoked remotely
int some_member_function(std::string const& s)
{

return boost::lexical_cast<int>(s);
}

// This will define the action type 'some_member_action' which
// represents the member function 'some_member_function' of the
// object type 'some_component'.
HPX_DEFINE_COMPONENT_ACTION(some_component, some_member_function, some_member_

→˓action);
};

}

// This will generate the necessary boiler-plate code for the action allowing
// it to be invoked remotely. This declaration macro has to be placed in the
// header file defining the component itself.
//
// Note: The second argument to the macro below has to be systemwide-unique
// C++ identifiers
//
HPX_REGISTER_ACTION_DECLARATION(app::some_component::some_member_action, some_component_
→˓some_action);

There is more boiler plate code which has to be placed into a source file in order for the component to be usable. Every
component type is required to have macros placed into its source file, one for each component type and one macro for
each of the actions defined by the component type.

For instance:

// source file some_component.cpp

(continues on next page)

196 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

#include "some_component.hpp"

// The following code generates all necessary boiler plate to enable the
// remote creation of 'app::some_component' instances with 'hpx::new_<>()'
//
using some_component = app::some_component;
using some_component_type = hpx::components::component<some_component>;

// Please note that the second argument to this macro must be a
// (system-wide) unique C++-style identifier (without any namespaces)
//
HPX_REGISTER_COMPONENT(some_component_type, some_component);

// The parameters for this macro have to be the same as used in the corresponding
// HPX_REGISTER_ACTION_DECLARATION() macro invocation in the corresponding
// header file.
//
// Please note that the second argument to this macro must be a
// (system-wide) unique C++-style identifier (without any namespaces)
//
HPX_REGISTER_ACTION(app::some_component::some_member_action, some_component_some_action);

Defining client side representation classes

Often it is very convenient to define a separate type for a component which can be used on the client side (from where
the component is instantiated and used). This step might seem as unnecessary duplicating code, however it significantly
increases the type safety of the code.

A possible implementation of such a client side representation for the component described in the previous section
could look like:

#include <hpx/include/components.hpp>

namespace app
{

// Define a client side representation type for the component type
// 'some_component' defined in the previous section.
//
struct some_component_client
: hpx::components::client_base<some_component_client, some_component>

{
using base_type = hpx::components::client_base<

some_component_client, some_component>;

some_component_client(hpx::future<hpx::id_type> && id)
: base_type(std::move(id))

{}

hpx::future<int> some_member_function(std::string const& s)
{

some_component::some_member_action act;
(continues on next page)

2.3. Manual 197

HPX Documentation, master

(continued from previous page)

return hpx::async(act, get_id(), s);
}

};
}

A client side object stores the global id of the component instance it represents. This global id is accessible by calling
the function client_base<>::get_id(). The special constructor which is provided in the example allows to create
this client side object directly using the API function hpx::new_.

Creating component instances

Instances of defined component types can be created in two different ways. If the component to create has a defined
client side representation type, then this can be used, otherwise use the server type.

The following examples assume that some_component_type is the type of the server side implementation of the
component to create. All additional arguments (see , ... notation below) are passed through to the corresponding
constructor calls of those objects:

// create one instance on the given locality
hpx::id_type here = hpx::find_here();
hpx::future<hpx::id_type> f =

hpx::new_<some_component_type>(here, ...);

// create one instance using the given distribution
// policy (here: hpx::colocating_distribution_policy)
hpx::id_type here = hpx::find_here();
hpx::future<hpx::id_type> f =

hpx::new_<some_component_type>(hpx::colocated(here), ...);

// create multiple instances on the given locality
hpx::id_type here = find_here();
hpx::future<std::vector<hpx::id_type>> f =

hpx::new_<some_component_type[]>(here, num, ...);

// create multiple instances using the given distribution
// policy (here: hpx::binpacking_distribution_policy)
hpx::future<std::vector<hpx::id_type>> f = hpx::new_<some_component_type[]>(

hpx::binpacking(hpx::find_all_localities()), num, ...);

The examples below demonstrate the use of the same API functions for creating client side representation objects
(instead of just plain ids). These examples assume that client_type is the type of the client side representation of
the component type to create. As above, all additional arguments (see , ... notation below) are passed through to the
corresponding constructor calls of the server side implementation objects corresponding to the client_type:

// create one instance on the given locality
hpx::id_type here = hpx::find_here();
client_type c = hpx::new_<client_type>(here, ...);

// create one instance using the given distribution
// policy (here: hpx::colocating_distribution_policy)
hpx::id_type here = hpx::find_here();
client_type c = hpx::new_<client_type>(hpx::colocated(here), ...);

(continues on next page)

198 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

// create multiple instances on the given locality
hpx::id_type here = hpx::find_here();
hpx::future<std::vector<client_type>> f =

hpx::new_<client_type[]>(here, num, ...);

// create multiple instances using the given distribution
// policy (here: hpx::binpacking_distribution_policy)
hpx::future<std::vector<client_type>> f = hpx::new_<client_type[]>(

hpx::binpacking(hpx::find_all_localities()), num, ...);

Using component instances

After having created the component instances as described above, we can simply use them as indicated below:

#include <hpx/include/components.hpp>
#include <iostream>
#include <vector>

// Define a simple component
struct some_component : hpx::components::component_base<some_component>
{

void print() const
{

std::cout << "Hello from component instance!" << std::endl;
}
HPX_DEFINE_COMPONENT_ACTION(some_component, print, print_action);

};

typedef some_component::print_action print_action;

// Create one instance on the given locality
hpx::id_type here = hpx::find_here();
hpx::future<hpx::id_type> f1 =

hpx::new_<some_component>(here);

// Get the future value
hpx::id_type instance_id = f1.get();

// Invoke action on the instance
hpx::async<print_action>(instance_id).get();

// Create multiple instances on the given locality
int num = 3;
hpx::future<std::vector<hpx::id_type>> f2 =

hpx::new_<some_component[]>(here, num);

// Get the future value
std::vector<hpx::id_type> instance_ids = f2.get();

// Invoke action on each instance
(continues on next page)

2.3. Manual 199

HPX Documentation, master

(continued from previous page)

for (const auto& id : instance_ids)
{

hpx::async<print_action>(id).get();
}

We can use the component instances with distribution policies the same way.

Segmented containers

In parallel programming, there is now a plethora of solutions aimed at implementing “partially contiguous” or seg-
mented data structures, whether on shared memory systems or distributed memory systems. HPX implements such
structures by drawing inspiration from Standard C++ containers.

Using segmented containers

A segmented container is a template class that is described in the namespace hpx. All segmented containers are
very similar semantically to their sequential counterpart (defined in namespace std but with an additional template
parameter named DistPolicy). The distribution policy is an optional parameter that is passed last to the segmented
container constructor (after the container size when no default value is given, after the default value if not). The
distribution policy describes the manner in which a container is segmented and the placement of each segment among
the available runtime localities.

However, only a part of the std container member functions were reimplemented:

• (constructor), (destructor), operator=

• operator[]

• begin, cbegin, end, cend

• size

An example of how to use the partitioned_vector container would be:

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

// By default, the number of segments is equal to the current number of
// localities
//
hpx::partitioned_vector<double> va(50);
hpx::partitioned_vector<double> vb(50, 0.0);

An example of how to use the partitioned_vector container with distribution policies would be:

#include <hpx/include/partitioned_vector.hpp>
#include <hpx/runtime_distributed/find_localities.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments

(continues on next page)

200 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

//
HPX_REGISTER_PARTITIONED_VECTOR(double);

std::size_t num_segments = 10;
std::vector<hpx::id_type> locs = hpx::find_all_localities();

auto layout =
hpx::container_layout(num_segments, locs);

// The number of segments is 10 and those segments are spread across the
// localities collected in the variable locs in a Round-Robin manner
//
hpx::partitioned_vector<double> va(50, layout);
hpx::partitioned_vector<double> vb(50, 0.0, layout);

By definition, a segmented container must be accessible from any thread although its construction is synchronous only
for the thread who has called its constructor. To overcome this problem, it is possible to assign a symbolic name to the
segmented container:

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

hpx::future<void> fserver = hpx::async(
[](){
hpx::partitioned_vector<double> v(50);

// Register the 'partitioned_vector' with the name "some_name"
//
v.register_as("some_name");

/* Do some code */
});

hpx::future<void> fclient =
hpx::async(
[](){
// Naked 'partitioned_vector'
//
hpx::partitioned_vector<double> v;

// Now the variable v points to the same 'partitioned_vector' that has
// been registered with the name "some_name"
//
v.connect_to("some_name");

/* Do some code */
});

2.3. Manual 201

HPX Documentation, master

Segmented containers

HPX provides the following segmented containers:

Table 2.23: Sequence containers
Name Description In header C++ stan-

dard
hpx::partitioned_vectorDynamic segmented contigu-

ous array.
<hpx/include/
partitioned_vector.hpp>

vector169

Table 2.24: Unordered associative containers
Name Description In header C++ stan-

dard
hpx::unordered_mapSegmented collection of key-value pairs, hashed

by keys, keys are unique.
<hpx/include/
unordered_map.hpp>

un-
ordered_map170

Segmented iterators and segmented iterator traits

The basic iterator used in the STL library is only suitable for one-dimensional structures. The iterators we use in
HPX must adapt to the segmented format of our containers. Our iterators are then able to know when incrementing
themselves if the next element of type T is in the same data segment or in another segment. In this second case, the
iterator will automatically point to the beginning of the next segment.

Note: Note that the dereference operation operator * does not directly return a reference of type T& but an inter-
mediate object wrapping this reference. When this object is used as an l-value, a remote write operation is performed;
When this object is used as an r-value, implicit conversion to T type will take care of performing remote read operation.

It is sometimes useful not only to iterate element by element, but also segment by segment, or simply get a local
iterator in order to avoid additional construction costs at each deferencing operations. To mitigate this need, the
hpx::traits::segmented_iterator_traits are used.

With segmented_iterator_traits users can uniformly get the iterators which specifically iterates over segments
(by providing a segmented iterator as a parameter), or get the local begin/end iterators of the nearest local segment (by
providing a per-segment iterator as a parameter):

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

using iterator = hpx::partitioned_vector<T>::iterator;
using traits = hpx::traits::segmented_iterator_traits<iterator>;

hpx::partitioned_vector<T> v;
std::size_t count = 0;

(continues on next page)

169 http://en.cppreference.com/w/cpp/container/vector
170 http://en.cppreference.com/w/cpp/container/unordered_map

202 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/unordered_map
http://en.cppreference.com/w/cpp/container/unordered_map

HPX Documentation, master

(continued from previous page)

auto seg_begin = traits::segment(v.begin());
auto seg_end = traits::segment(v.end());

// Iterate over segments
for (auto seg_it = seg_begin; seg_it != seg_end; ++seg_it)
{

auto loc_begin = traits::begin(seg_it);
auto loc_end = traits::end(seg_it);

// Iterate over elements inside segments
for (auto lit = loc_begin; lit != loc_end; ++lit, ++count)
{

*lit = count;
}

}

Which is equivalent to:

hpx::partitioned_vector<T> v;
std::size_t count = 0;

auto begin = v.begin();
auto end = v.end();

for (auto it = begin; it != end; ++it, ++count)
{

*it = count;
}

Using views

The use of multidimensional arrays is quite common in the numerical field whether to perform dense matrix operations
or to process images. It exist many libraries which implement such object classes overloading their basic operators
(e.g. +, -, *, (), etc.). However, such operation becomes more delicate when the underlying data layout is segmented
or when it is mandatory to use optimized linear algebra subroutines (i.e. BLAS subroutines).

Our solution is thus to relax the level of abstraction by allowing the user to work not directly on n-dimensionnal data,
but on “n-dimensionnal collections of 1-D arrays”. The use of well-accepted techniques on contiguous data is thus
preserved at the segment level, and the composability of the segments is made possible thanks to multidimensional
array-inspired access mode.

2.3. Manual 203

HPX Documentation, master

Preface: Why SPMD?

Although HPX refutes by design this programming model, the locality plays a dominant role when it comes to imple-
ment vectorized code. To maximize local computations and avoid unneeded data transfers, a parallel section (or Single
Programming Multiple Data section) is required. Because the use of global variables is prohibited, this parallel section
is created via the RAII idiom.

To define a parallel section, simply write an action taking a spmd_block variable as a first parameter:

#include <hpx/collectives/spmd_block.hpp>

void bulk_function(hpx::lcos::spmd_block block /* , arg0, arg1, ... */)
{

// Parallel section

/* Do some code */
}
HPX_PLAIN_ACTION(bulk_function, bulk_action);

Note: In the following paragraphs, we will use the term “image” several times. An image is defined as a lightweight
process whose entry point is a function provided by the user. It’s an “image of the function”.

The spmd_block class contains the following methods:

• Team information: get_num_images, this_image, images_per_locality

• Control statements: sync_all, sync_images

Here is a sample code summarizing the features offered by the spmd_block class:

#include <hpx/collectives/spmd_block.hpp>

void bulk_function(hpx::lcos::spmd_block block /* , arg0, arg1, ... */)
{

std::size_t num_images = block.get_num_images();
std::size_t this_image = block.this_image();
std::size_t images_per_locality = block.images_per_locality();

/* Do some code */

// Synchronize all images in the team
block.sync_all();

/* Do some code */

// Synchronize image 0 and image 1
block.sync_images(0,1);

/* Do some code */

std::vector<std::size_t> vec_images = {2,3,4};

// Synchronize images 2, 3 and 4
block.sync_images(vec_images);

(continues on next page)

204 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

// Alternative call to synchronize images 2, 3 and 4
block.sync_images(vec_images.begin(), vec_images.end());

/* Do some code */

// Non-blocking version of sync_all()
hpx::future<void> event =

block.sync_all(hpx::launch::async);

// Callback waiting for 'event' to be ready before being scheduled
hpx::future<void> cb =

event.then(
[](hpx::future<void>)
{

/* Do some code */

});

// Finally wait for the execution tree to be finished
cb.get();

}
HPX_PLAIN_ACTION(bulk_test_function, bulk_test_action);

Then, in order to invoke the parallel section, call the function define_spmd_block specifying an arbitrary symbolic
name and indicating the number of images per locality to create:

void bulk_function(hpx::lcos::spmd_block block, /* , arg0, arg1, ... */)
{

}
HPX_PLAIN_ACTION(bulk_test_function, bulk_test_action);

int main()
{

/* std::size_t arg0, arg1, ...; */

bulk_action act;
std::size_t images_per_locality = 4;

// Instantiate the parallel section
hpx::lcos::define_spmd_block(

"some_name", images_per_locality, std::move(act) /*, arg0, arg1, ... */);

return 0;
}

Note: In principle, the user should never call the spmd_block constructor. The define_spmd_block function is
responsible of instantiating spmd_block objects and broadcasting them to each created image.

2.3. Manual 205

HPX Documentation, master

SPMD multidimensional views

Some classes are defined as “container views” when the purpose is to observe and/or modify the values of a container
using another perspective than the one that characterizes the container. For example, the values of an std::vector
object can be accessed via the expression [i]. Container views can be used, for example, when it is desired for those
values to be “viewed” as a 2D matrix that would have been flattened in a std::vector. The values would be possibly
accessible via the expression vv(i,j) which would call internally the expression v[k].

By default, the partitioned_vector class integrates 1-D views of its segments:

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

using iterator = hpx::partitioned_vector<double>::iterator;
using traits = hpx::traits::segmented_iterator_traits<iterator>;

hpx::partitioned_vector<double> v;

// Create a 1-D view of the vector of segments
auto vv = traits::segment(v.begin());

// Access segment i
std::vector<double> v = vv[i];

Our views are called “multidimensional” in the sense that they generalize to N dimensions the purpose of
segmented_iterator_traits::segment() in the 1-D case. Note that in a parallel section, the 2-D expression
a(i,j) = b(i,j) is quite confusing because without convention, each of the images invoked will race to execute the
statement. For this reason, our views are not only multidimensional but also “spmd-aware”.

Note: SPMD-awareness: The convention is simple. If an assignment statement contains a view subscript as an l-
value, it is only and only the image holding the r-value who is evaluating the statement. (In MPI sense, it is called a
Put operation).

Subscript-based operations

Here are some examples of using subscripts in the 2-D view case:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

using Vec = hpx::partitioned_vector<double>;
using View_2D = hpx::partitioned_vector_view<double,2>;

(continues on next page)

206 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

/* Do some code */

Vec v;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t height, width;

// Instantiate the view
View_2D vv(block, v.begin(), v.end(), {height,width});

// The l-value is a view subscript, the image that owns vv(1,0)
// evaluates the assignment.
vv(0,1) = vv(1,0);

// The l-value is a view subscript, the image that owns the r-value
// (result of expression 'std::vector<double>(4,1.0)') evaluates the
// assignment : oops! race between all participating images.
vv(2,3) = std::vector<double>(4,1.0);

}

Iterator-based operations

Here are some examples of using iterators in the 3-D view case:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(int);

using Vec = hpx::partitioned_vector<int>;
using View_3D = hpx::partitioned_vector_view<int,3>;

/* Do some code */

Vec v1, v2;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t sixe_x, size_y, size_z;

// Instantiate the views
View_3D vv1(block, v1.begin(), v1.end(), {sixe_x,size_y,size_z});
View_3D vv2(block, v2.begin(), v2.end(), {sixe_x,size_y,size_z});

// Save previous segments covered by vv1 into segments covered by vv2
auto vv2_it = vv2.begin();

(continues on next page)

2.3. Manual 207

HPX Documentation, master

(continued from previous page)

auto vv1_it = vv1.cbegin();

for(; vv2_it != vv2.end(); vv2_it++, vv1_it++)
{

// It's a Put operation
*vv2_it = *vv1_it;

}

// Ensure that all images have performed their Put operations
block.sync_all();

// Ensure that only one image is putting updated data into the different
// segments covered by vv1
if(block.this_image() == 0)
{

int idx = 0;

// Update all the segments covered by vv1
for(auto i = vv1.begin(); i != vv1.end(); i++)
{

// It's a Put operation
*i = std::vector<float>(elt_size,idx++);

}
}

}

Here is an example that shows how to iterate only over segments owned by the current image:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/components/containers/partitioned_vector/partitioned_vector_local_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(float);

using Vec = hpx::partitioned_vector<float>;
using View_1D = hpx::partitioned_vector_view<float,1>;

/* Do some code */

Vec v;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t num_segments;

// Instantiate the view
View_1D vv(block, v.begin(), v.end(), {num_segments});

// Instantiate the local view from the view
(continues on next page)

208 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

auto local_vv = hpx::local_view(vv);

for (auto i = local_vv.begin(); i != local_vv.end(); i++)
{

std::vector<float> & segment = *i;

/* Do some code */
}

}

Instantiating sub-views

It is possible to construct views from other views: we call it sub-views. The constraint nevertheless for the subviews is
to retain the dimension and the value type of the input view. Here is an example showing how to create a sub-view:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(float);

using Vec = hpx::partitioned_vector<float>;
using View_2D = hpx::partitioned_vector_view<float,2>;

/* Do some code */

Vec v;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t N = 20;
std::size_t tilesize = 5;

// Instantiate the view
View_2D vv(block, v.begin(), v.end(), {N,N});

// Instantiate the subview
View_2D svv(

block,&vv(tilesize,0),&vv(2*tilesize-1,tilesize-1),{tilesize,tilesize},{N,N});

if(block.this_image() == 0)
{

// Equivalent to 'vv(tilesize,0) = 2.0f'
svv(0,0) = 2.0f;

// Equivalent to 'vv(2*tilesize-1,tilesize-1) = 3.0f'
svv(tilesize-1,tilesize-1) = 3.0f;

}
(continues on next page)

2.3. Manual 209

HPX Documentation, master

(continued from previous page)

}

Note: The last parameter of the subview constructor is the size of the original view. If one would like to create a
subview of the subview and so on, this parameter should stay unchanged. {N,N} for the above example).

C++ co-arrays

Fortran has extended its scalar element indexing approach to reference each segment of a distributed array. In this
extension, a segment is attributed a ?co-index? and lives in a specific locality. A co-index provides the application
with enough information to retrieve the corresponding data reference. In C++, containers present themselves as a
?smarter? alternative of Fortran arrays but there are still no corresponding standardized features similar to the Fortran
co-indexing approach. We present here an implementation of such features in HPX.

Preface: co-array, a segmented container tied to a SPMD multidimensional views

As mentioned before, a co-array is a distributed array whose segments are accessible through an array-inspired access
mode. We have previously seen that it is possible to reproduce such access mode using the concept of views. Nev-
ertheless, the user must pre-create a segmented container to instantiate this view. We illustrate below how a single
constructor call can perform those two operations:

#include <hpx/components/containers/coarray/coarray.hpp>
#include <hpx/collectives/spmd_block.hpp>

// The following code generates all necessary boiler plate to enable the
// co-creation of 'coarray'
//
HPX_REGISTER_COARRAY(double);

// Parallel section (suppose 'block' an spmd_block instance)
{

using hpx::container::placeholders::_;

std::size_t height=32, width=4, segment_size=10;

hpx::coarray<double,3> a(block, "a", {height,width,_}, segment_size);

/* Do some code */
}

Unlike segmented containers, a co-array object can only be instantiated within a parallel section. Here is the description
of the parameters to provide to the coarray constructor:

210 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.25: Parameters of coarray constructor
Parameter Description
block Reference to a spmd_block object
"a" Symbolic name of type std::string
{height,width,
_}

Dimensions of the coarray object

segment_size Size of a co-indexed element (i.e. size of the object referenced by the expression a(i,j,k))

Note that the “last dimension size” cannot be set by the user. It only accepts the constexpr variable
hpx::container::placeholders::_. This size, which is considered private, is equal to the number of current
images (value returned by block.get_num_images()).

Note: An important constraint to remember about coarray objects is that all segments sharing the same “last dimension
index” are located in the same image.

Using co-arrays

The member functions owned by the coarray objects are exactly the same as those of spmd multidimensional views.
These are:

* Subscript-based operations
* Iterator-based operations

However, one additional functionality is provided. Knowing that the element a(i,j,k) is in the memory of the kth
image, the use of local subscripts is possible.

Note: For spmd multidimensional views, subscripts are only global as it still involves potential remote data transfers.

Here is an example of using local subscripts:

#include <hpx/components/containers/coarray/coarray.hpp>
#include <hpx/collectives/spmd_block.hpp>

// The following code generates all necessary boiler plate to enable the
// co-creation of 'coarray'
//
HPX_REGISTER_COARRAY(double);

// Parallel section (suppose 'block' an spmd_block instance)
{

using hpx::container::placeholders::_;

std::size_t height=32, width=4, segment_size=10;

hpx::coarray<double,3> a(block, "a", {height,width,_}, segment_size);

double idx = block.this_image()*height*width;

for (std::size_t j = 0; j<width; j++)
(continues on next page)

2.3. Manual 211

HPX Documentation, master

(continued from previous page)

for (std::size_t i = 0; i<height; i++)
{

// Local write operation performed via the use of local subscript
a(i,j,_) = std::vector<double>(elt_size,idx);
idx++;

}

block.sync_all();
}

Note: When the “last dimension index” of a subscript is equal to hpx::container::placeholders::_, local
subscript (and not global subscript) is used. It is equivalent to a global subscript used with a “last dimension index”
equal to the value returned by block.this_image().

2.3.12 Running on batch systems

This section walks you through launching HPX applications on various batch systems.

How to use HPX applications with PBS

Most HPX applications are executed on parallel computers. These platforms typically provide integrated job manage-
ment services that facilitate the allocation of computing resources for each parallel program. HPX includes support for
one of the most common job management systems, the Portable Batch System (PBS).

All PBS jobs require a script to specify the resource requirements and other parameters associated with a parallel job.
The PBS script is basically a shell script with PBS directives placed within commented sections at the beginning of
the file. The remaining (not commented-out) portions of the file executes just like any other regular shell script. While
the description of all available PBS options is outside the scope of this tutorial (the interested reader may refer to in-
depth documentation171 for more information), below is a minimal example to illustrate the approach. The following
test application will use the multithreaded hello_world_distributed program, explained in the section Remote
execution with actions.

#!/bin/bash
#
#PBS -l nodes=2:ppn=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u $APP_PATH $APP_OPTIONS --hpx:nodes=`cat $PBS_NODEFILE`

Caution: If the first application specific argument (inside $APP_OPTIONS) is a non-option (i.e., does not start with
a - or a --), then the argument has to be placed before the option --hpx:nodes, which, in this case, should be the
last option on the command line.

Alternatively, use the option --hpx:endnodes to explicitly mark the end of the list of node names:

$ pbsdsh -u $APP_PATH --hpx:nodes`cat $PBS_NODEFILE` --hpx:endnodes $APP_OPTIONS

171 http://www.clusterresources.com/torquedocs21/

212 Chapter 2. What’s so special about HPX?

http://www.clusterresources.com/torquedocs21/

HPX Documentation, master

The #PBS -l nodes=2:ppn=4 directive will cause two compute nodes to be allocated for the application, as specified
in the option nodes. Each of the nodes will dedicate four cores to the program, as per the option ppn, short for
“processors per node” (PBS does not distinguish between processors and cores). Note that requesting more cores per
node than physically available is pointless and may prevent PBS from accepting the script.

On newer PBS versions the PBS command syntax might be different. For instance, the PBS script above would look
like:

#!/bin/bash
#
#PBS -l select=2:ncpus=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u $APP_PATH $APP_OPTIONS --hpx:nodes=`cat $PBS_NODEFILE`

APP_PATH and APP_OPTIONS are shell variables that respectively specify the correct path to the executable
(hello_world_distributed in this case) and the command line options. Since the hello_world_distributed
application doesn’t need any command line options, APP_OPTIONS has been left empty. Unlike in other execution
environments, there is no need to use the --hpx:threads option to indicate the required number of OS threads per
node; the HPX library will derive this parameter automatically from PBS.

Finally, pbsdsh is a PBS command that starts tasks to the resources allocated to the current job. It is recommended to
leave this line as shown and modify only the PBS options and shell variables as needed for a specific application.

Important: A script invoked by pbsdsh starts in a very basic environment: the user’s $HOME directory is defined and is
the current directory, the LANG variable is set to C and the PATH is set to the basic /usr/local/bin:/usr/bin:/bin
as defined in a system-wide file pbs_environment. Nothing that would normally be set up by a system shell profile or
user shell profile is defined, unlike the environment for the main job script.

Another choice is for the pbsdsh command in your main job script to invoke your program via a shell, like sh or bash,
so that it gives an initialized environment for each instance. Users can create a small script runme.sh, which is used
to invoke the program:

#!/bin/bash
Small script which invokes the program based on what was passed on its
command line.
#
This script is executed by the bash shell which will initialize all
environment variables as usual.
$@

Now, the script is invoked using the pbsdsh tool:

#!/bin/bash
#
#PBS -l nodes=2:ppn=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

(continues on next page)

2.3. Manual 213

HPX Documentation, master

(continued from previous page)

pbsdsh -u runme.sh $APP_PATH $APP_OPTIONS --hpx:nodes=`cat $PBS_NODEFILE`

All that remains now is submitting the job to the queuing system. Assuming that the contents of the PBS script were
saved in the file pbs_hello_world.sh in the current directory, this is accomplished by typing:

$ qsub ./pbs_hello_world_pbs.sh

If the job is accepted, qsub will print out the assigned job ID, which may look like:

$ 42.supercomputer.some.university.edu

To check the status of your job, issue the following command:

$ qstat 42.supercomputer.some.university.edu

and look for a single-letter job status symbol. The common cases include:

• Q - signifies that the job is queued and awaiting its turn to be executed.

• R - indicates that the job is currently running.

• C - means that the job has completed.

The example qstat output below shows a job waiting for execution resources to become available:

Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
42.supercomputer ...ello_world.sh joe_user 0 Q batch

After the job completes, PBS will place two files, pbs_hello_world.sh.o42 and pbs_hello_world.sh.e42, in
the directory where the job was submitted. The first contains the standard output and the second contains the standard
error from all the nodes on which the application executed. In our example, the error output file should be empty and
the standard output file should contain something similar to:

hello world from OS-thread 3 on locality 0
hello world from OS-thread 2 on locality 0
hello world from OS-thread 1 on locality 1
hello world from OS-thread 0 on locality 0
hello world from OS-thread 3 on locality 1
hello world from OS-thread 2 on locality 1
hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 1

Congratulations! You have just run your first distributed HPX application!

214 Chapter 2. What’s so special about HPX?

HPX Documentation, master

How to use HPX applications with SLURM

Just like PBS (described in section How to use HPX applications with PBS), SLURM is a job management system
which is widely used on large supercomputing systems. Any HPX application can easily be run using SLURM. This
section describes how this can be done.

The easiest way to run an HPX application using SLURM is to utilize the command line tool srun, which interacts with
the SLURM batch scheduling system:

$ srun -p <partition> -N <number-of-nodes> hpx-application <application-arguments>

Here, <partition> is one of the node partitions existing on the target machine (consult the machine’s documentation
to get a list of existing partitions) and <number-of-nodes> is the number of compute nodes that should be used. By
default, the HPX application is started with one locality per node and uses all available cores on a node. You can change
the number of localities started per node (for example, to account for NUMA effects) by specifying the -n option of
srun. The number of cores per locality can be set by -c. The <application-arguments> are any application specific
arguments that need to be passed on to the application.

Note: There is no need to use any of the HPX command line options related to the number of localities, number of
threads, or related to networking ports. All of this information is automatically extracted from the SLURM environment
by the HPX startup code.

Important: The srun documentation explicitly states: “If -c is specified without -n, as many tasks will be allocated
per node as possible while satisfying the -c restriction. For instance on a cluster with 8 CPUs per node, a job request
for 4 nodes and 3 CPUs per task may be allocated 3 or 6 CPUs per node (1 or 2 tasks per node) depending upon resource
consumption by other jobs.” For this reason, it’s recommended to always specify -n <number-of-instances>, even
if <number-of-instances> is equal to one (1).

Interactive shells

To get an interactive development shell on one of the nodes, users can issue the following command:

$ srun -p <node-type> -N <number-of-nodes> --pty /bin/bash -l

After the shell has been opened, users can run their HPX application. By default, it uses all available cores. Note that
if you requested one node, you don’t need to do srun again. However, if you requested more than one node, and want
to run your distributed application, you can use srun again to start up the distributed HPX application. It will use the
resources that have been requested for the interactive shell.

Scheduling batch jobs

The above mentioned method of running HPX applications is fine for development purposes. The disadvantage that
comes with srun is that it only returns once the application is finished. This might not be appropriate for longer-running
applications (for example, benchmarks or larger scale simulations). In order to cope with that limitation, users can use
the sbatch command.

The sbatch command expects a script that it can run once the requested resources are available. In order to request
resources, users need to add #SBATCH comments in their script or provide the necessary parameters to sbatch directly.
The parameters are the same as with run. The commands you need to execute are the same you would need to start
your application as if you were in an interactive shell.

2.3. Manual 215

HPX Documentation, master

2.3.13 Debugging HPX applications

Using a debugger with HPX applications

Using a debugger such as gdb with HPX applications is no problem. However, there are some things to keep in mind
to make the experience somewhat more productive.

Call stacks in HPX can often be quite unwieldy as the library is heavily templated and the call stacks can be very deep.
For this reason it is sometimes a good idea compile HPX in RelWithDebInfomode, which applies some optimizations
but keeps debugging symbols. This can often compress call stacks significantly. On the other hand, stepping through
the code can also be more difficult because of statements being reordered and variables being optimized away. Also,
note that because HPX implements user-space threads and context switching, call stacks may not always be complete
in a debugger.

HPX launches not only worker threads but also a few helper threads. The first thread is the main thread, which typically
does no work in an HPX application, except at startup and shutdown. If using the default settings, HPX will spawn six
additional threads (used for service thread pools). The first worker thread is usually the eighth thread, and most user
codes will be run on these worker threads. The last thread is a helper thread used for HPX shutdown.

Finally, since HPX is a multi-threaded runtime, the following gdb options can be helpful:

set pagination off
set non-stop on

Non-stop mode allows users to have a single thread stop on a breakpoint without stopping all other threads as well.

Using sanitizers with HPX applications

Warning: Not all parts of HPX are sanitizer clean. This means that users may end up with false positives from
HPX itself when using sanitizers for their applications.

To use sanitizers with HPX, turn on HPX_WITH_SANITIZERS and turn off HPX_WITH_STACKOVERFLOW_DETECTION
during CMake172 configuration. It’s recommended to also build Boost with the same sanitizers that will be
used for HPX. The appropriate sanitizers can then be enabled using CMake by appending -fsanitize=address
-fno-omit-frame-pointer to CMAKE_CXX_FLAGS and -fsanitize=address to CMAKE_EXE_LINKER_FLAGS. Re-
place address with the sanitizer that you want to use.

Debugging applications using core files

For HPX to generate useful core files, HPX has to be compiled without signal and exception handlers
HPX_WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS:BOOL. If this option is not specified, the signal handlers
change the application state. For example, after a segmentation fault the stack trace will show the signal handler.
Similarly, unhandled exceptions are also caught by these handlers and the stack trace will not point to the location
where the unhandled exception was thrown.

In general, core files are a helpful tool to inspect the state of the application at the moment of the crash (post-mortem
debugging), without the need of attaching a debugger beforehand. This approach to debugging is especially useful if
the error cannot be reliably reproduced, as only a single crashed application run is required to gain potentially helpful
information like a stacktrace.

To debug with core files, the operating system first has to be told to actually write them. On most Unix systems this
can be done by calling:

172 https://www.cmake.org

216 Chapter 2. What’s so special about HPX?

https://www.cmake.org

HPX Documentation, master

$ ulimit -c unlimited

in the shell. Now the debugger can be started up with:

$ gdb <application> <core file name>

The debugger should now display the last state of the application. The default file name for core files is core.

2.3.14 Optimizing HPX applications

Performance counters

Performance counters in HPX are used to provide information as to how well the runtime system or an application
is performing. The counter data can help determine system bottlenecks, and fine-tune system and application perfor-
mance. The HPX runtime system, its networking, and other layers provide counter data that an application can consume
to provide users with information about how well the application is performing.

Applications can also use counter data to determine how much system resources to consume. For example, an appli-
cation that transfers data over the network could consume counter data from a network switch to determine how much
data to transfer without competing for network bandwidth with other network traffic. The application could use the
counter data to adjust its transfer rate as the bandwidth usage from other network traffic increases or decreases.

Performance counters are HPX parallel processes that expose a predefined interface. HPX exposes special API func-
tions that allow one to create, manage, and read the counter data, and release instances of performance counters. Perfor-
mance Counter instances are accessed by name, and these names have a predefined structure which is described in the
section Performance counter names. The advantage of this is that any Performance Counter can be accessed remotely
(from a different locality) or locally (from the same locality). Moreover, since all counters expose their data using the
same API, any code consuming counter data can be utilized to access arbitrary system information with minimal effort.

Counter data may be accessed in real time. More information about how to consume counter data can be found in the
section Consuming performance counter data.

All HPX applications provide command line options related to performance counters, such as the ability to list available
counter types, or periodically query specific counters to be printed to the screen or save them in a file. For more
information, please refer to the section HPX Command Line Options.

Performance counter names

All Performance Counter instances have a name uniquely identifying each instance. This name can be used to access the
counter, retrieve all related meta data, and to query the counter data (as described in the section Consuming performance
counter data). Counter names are strings with a predefined structure. The general form of a countername is:

/objectname{full_instancename}/countername@parameters

where full_instancename could be either another (full) counter name or a string formatted as:

parentinstancename#parentindex/instancename#instanceindex

Each separate part of a countername (e.g., objectname, countername parentinstancename, instancename, and
parameters) should start with a letter ('a'. . .'z', 'A'. . .'Z') or an underscore character ('_'), optionally followed
by letters, digits ('0'. . .'9'), hyphen ('-'), or underscore characters. Whitespace is not allowed inside a counter
name. The characters '/', '{', '}', '#' and '@' have a special meaning and are used to delimit the different parts
of the counter name.

2.3. Manual 217

HPX Documentation, master

The parts parentinstanceindex and instanceindex are integers. If an index is not specified, HPX will assume a
default of -1.

Two counter name examples

This section gives examples of both simple counter names and aggregate counter names. For more information on
simple and aggregate counter names, please see Performance counter instances.

An example of a well-formed (and meaningful) simple counter name would be:

/threads{locality#0/total}/count/cumulative

This counter returns the current cumulative number of executed (retired) HPX threads for the locality 0. The counter
type of this counter is /threads/count/cumulative and the full instance name is locality#0/total. This counter
type does not require an instanceindex or parameters to be specified.

In this case, the parentindex (the '0') designates the locality for which the counter instance is created. The counter
will return the number of HPX threads retired on that particular locality.

Another example for a well formed (aggregate) counter name is:

/statistics{/threads{locality#0/total}/count/cumulative}/average@500

This counter takes the simple counter from the first example, samples its values every 500 milliseconds, and returns the
average of the value samples whenever it is queried. The counter type of this counter is /statistics/average and
the instance name is the full name of the counter for which the values have to be averaged. In this case, the parameters
(the '500') specify the sampling interval for the averaging to take place (in milliseconds).

Performance counter types

Every performance counter belongs to a specific performance counter type which classifies the counters into groups of
common semantics. The type of a counter is identified by the objectname and the countername parts of the name.

/objectname/countername

When an application starts HPX will register all available counter types on each of the localities. These counter types
are held in a special performance counter registration database, which can be used to retrieve the meta data related to
a counter type and to create counter instances based on a given counter instance name.

Performance counter instances

The full_instancename distinguishes different counter instances of the same counter type. The formatting of the
full_instancename depends on the counter type. There are two types of counters: simple counters, which usually
generate the counter values based on direct measurements, and aggregate counters, which take another counter and
transform its values before generating their own counter values. An example for a simple counter is given above:
counting retired HPX threads. An aggregate counter is shown as an example above as well: calculating the average of
the underlying counter values sampled at constant time intervals.

While simple counters use instance names formatted as parentinstancename#parentindex/
instancename#instanceindex, most aggregate counters have the full counter name of the embedded counter as
their instance name.

Not all simple counter types require specifying all four elements of a full counter instance name; some of the parts
(parentinstancename, parentindex, instancename, and instanceindex) are optional for specific counters.

218 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Please refer to the documentation of a particular counter for more information about the formatting requirements for
the name of this counter (see Existing HPX performance counters).

The parameters are used to pass additional information to a counter at creation time. They are optional, and they
fully depend on the concrete counter. Even if a specific counter type allows additional parameters to be given, those
usually are not required as sensible defaults will be chosen. Please refer to the documentation of a particular counter
for more information about what parameters are supported, how to specify them, and what default values are assumed
(see also Existing HPX performance counters).

Every locality of an application exposes its own set of performance counter types and performance counter instances.
The set of exposed counters is determined dynamically at application start based on the execution environment of the
application. For instance, this set is influenced by the current hardware environment for the locality (such as whether
the locality has access to accelerators), and the software environment of the application (such as the number of OS
threads used to execute HPX threads).

Using wildcards in performance counter names

It is possible to use wildcard characters when specifying performance counter names. Performance counter names can
contain two types of wildcard characters:

• Wildcard characters in the performance counter type

• Wildcard characters in the performance counter instance name

A wildcard character has a meaning which is very close to usual file name wildcard matching rules implemented by
common shells (like bash).

Table 2.26: Wildcard characters in the performance counter type
Wild-
card

Description

* This wildcard character matches any number (zero or more) of arbitrary characters.
? This wildcard character matches any single arbitrary character.
[...] This wildcard character matches any single character from the list of specified within the square brack-

ets.

Table 2.27: Wildcard characters in the performance counter instance
name

Wild-
card

Description

* This wildcard character matches any locality or any thread, depending on whether it is used for locality#*
or worker-thread#*. No other wildcards are allowed in counter instance names.

Consuming performance counter data

You can consume performance data using either the command line interface, the HPX application or the HPX API.
The command line interface is easier to use, but it is less flexible and does not allow one to adjust the behaviour of your
application at runtime. The command line interface provides a convenience abstraction but simplified abstraction for
querying and logging performance counter data for a set of performance counters.

2.3. Manual 219

HPX Documentation, master

Consuming performance counter data from the command line

HPX provides a set of predefined command line options for every application that uses hpx::init for its initialization.
While there are many more command line options available (see HPX Command Line Options), the set of options related
to performance counters allows one to list existing counters, and query existing counters once at application termination
or repeatedly after a constant time interval.

The following table summarizes the available command line options:

Table 2.28: HPX Command Line Options Related to Performance Coun-
ters

Com-
mand
line
option

Description

--hpx:print-counterPrints the specified performance counter either repeatedly and/or at the times specified by
--hpx:print-counter-at (see also option --hpx:print-counter-interval).

--hpx:print-counter-resetPrints the specified performance counter either repeatedly and/or at the times specified by
--hpx:print-counter-at. Reset the counter after the value is queried (see also option
--hpx:print-counter-interval).

--hpx:print-counter-intervalPrints the performance counter(s) specified with --hpx:print-counter repeatedly after the time
interval (specified in milliseconds) (default:0 which means print once at shutdown).

--hpx:print-counter-destinationPrints the performance counter(s) specified with --hpx:print-counter to the given file (default:
console).

--hpx:list-countersLists the names of all registered performance counters.
--hpx:list-counter-infosLists the description of all registered performance counters.
--hpx:print-counter-formatPrints the performance counter(s) specified with --hpx:print-counter. Possible formats in CVS

format with header or without any header (see option --hpx:no-csv-header), possible values: csv
(prints counter values in CSV format with full names as header) csv-short (prints counter values
in CSV format with shortnames provided with --hpx:print-counter as --hpx:print-counter
shortname,full-countername).

--hpx:no-csv-headerPrints the performance counter(s) specified with --hpx:print-counter and csv or csv-short for-
mat specified with --hpx:print-counter-format without header.

--hpx:print-counter-at
arg

Prints the performance counter(s) specified with --hpx:print-counter (or
--hpx:print-counter-reset) at the given point in time. Possible argument values: startup,
shutdown (default), noshutdown.

--hpx:reset-countersResets all performance counter(s) specified with --hpx:print-counter after they have been evalu-
ated.

--hpx:print-counter-typesAppends counter type description to generated output.
--hpx:print-counters-locallyEach locality prints only its own local counters.

While the options --hpx:list-counters and --hpx:list-counter-infos give a short list of all available coun-
ters, the full documentation for those can be found in the section Existing HPX performance counters.

220 Chapter 2. What’s so special about HPX?

HPX Documentation, master

A simple example

All of the commandline options mentioned above can be tested using the hello_world_distributed example.

Listing all available counters hello_world_distributed --hpx:list-counters yields:

List of available counter instances (replace * below with the appropriate
sequence number)

/agas/count/allocate /agas/count/bind /agas/count/bind_gid
/agas/count/bind_name ... /threads{locality#*/allocator#*}/count/objects
/threads{locality#*/total}/count/stack-recycles
/threads{locality#*/total}/idle-rate
/threads{locality#*/worker-thread#*}/idle-rate

Providing more information about all available counters, hello_world_distributed
--hpx:list-counter-infos yields:

Information about available counter instances (replace * below with the
appropriate sequence number)
--
fullname: /agas/count/allocate helptext: returns the number of invocations of
the AGAS service 'allocate' type: counter_type::raw version: 1.0.0
--

--
fullname: /agas/count/bind helptext: returns the number of invocations of the
AGAS service 'bind' type: counter_type::raw version: 1.0.0
--

--
fullname: /agas/count/bind_gid helptext: returns the number of invocations of
the AGAS service 'bind_gid' type: counter_type::raw version: 1.0.0
--

...

This command will not only list the counter names but also a short description of the data exposed by this counter.

Note: The list of available counters may differ depending on the concrete execution environment (hardware or soft-
ware) of your application.

Requesting the counter data for one or more performance counters can be achieved by invoking
hello_world_distributed with a list of counter names:

$ hello_world_distributed \
--hpx:print-counter=/threads{locality#0/total}/count/cumulative \
--hpx:print-counter=/agas{locality#0/total}/count/bind

which yields for instance:

hello world from OS-thread 0 on locality 0
/threads{locality#0/total}/count/cumulative,1,0.212527,[s],33
/agas{locality#0/total}/count/bind,1,0.212790,[s],11

2.3. Manual 221

HPX Documentation, master

The first line is the normal output generated by hello_world_distributed and has no relation to the counter data
listed. The last two lines contain the counter data as gathered at application shutdown. These lines have six fields,
the counter name, the sequence number of the counter invocation, the time stamp at which this information has been
sampled, the unit of measure for the time stamp, the actual counter value and an optional unit of measure for the counter
value.

Note: The command line option --hpx:print-counter-types will append a seventh field to the generated output.
This field will hold an abbreviated counter type.

The actual counter value can be represented by a single number (for counters returning singular values) or a list of
numbers separated by ':' (for counters returning an array of values, like for instance a histogram).

Note: The name of the performance counter will be enclosed in double quotes '"' if it contains one or more commas
','.

Requesting to query the counter data once after a constant time interval with this command line:

$ hello_world_distributed \
--hpx:print-counter=/threads{locality#0/total}/count/cumulative \
--hpx:print-counter=/agas{locality#0/total}/count/bind \
--hpx:print-counter-interval=20

yields for instance (leaving off the actual console output of the hello_world_distributed example for brevity):

threads{locality#0/total}/count/cumulative,1,0.002409,[s],22
agas{locality#0/total}/count/bind,1,0.002542,[s],9
threads{locality#0/total}/count/cumulative,2,0.023002,[s],41
agas{locality#0/total}/count/bind,2,0.023557,[s],10
threads{locality#0/total}/count/cumulative,3,0.037514,[s],46
agas{locality#0/total}/count/bind,3,0.038679,[s],10

The command --hpx:print-counter-destination=<file> will redirect all counter data gathered to the specified
file name, which avoids cluttering the console output of your application.

The command line option --hpx:print-counter supports using a limited set of wildcards for a (very limited) set
of use cases. In particular, all occurrences of #* as in locality#* and in worker-thread#* will be automatically
expanded to the proper set of performance counter names representing the actual environment for the executed program.
For instance, if your program is utilizing four worker threads for the execution of HPX threads (see command line option
--hpx:threads) the following command line

$ hello_world_distributed \
--hpx:threads=4 \
--hpx:print-counter=/threads{locality#0/worker-thread#*}/count/cumulative

will print the value of the performance counters monitoring each of the worker threads:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
hello world from OS-thread 3 on locality 0
hello world from OS-thread 2 on locality 0
/threads{locality#0/worker-thread#0}/count/cumulative,1,0.0025214,[s],27
/threads{locality#0/worker-thread#1}/count/cumulative,1,0.0025453,[s],33

(continues on next page)

222 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

/threads{locality#0/worker-thread#2}/count/cumulative,1,0.0025683,[s],29
/threads{locality#0/worker-thread#3}/count/cumulative,1,0.0025904,[s],33

The command --hpx:print-counter-format takes values csv and csv-short to generate CSV formatted counter
values with a header.

With format as csv:

$ hello_world_distributed \
--hpx:threads=2 \
--hpx:print-counter-format csv \
--hpx:print-counter /threads{locality#*/total}/count/cumulative \
--hpx:print-counter /threads{locality#*/total}/count/cumulative-phases

will print the values of performance counters in CSV format with the full countername as a header:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
/threads{locality#*/total}/count/cumulative,/threads{locality#*/total}/count/cumulative-
→˓phases
39,93

With format csv-short:

$ hello_world_distributed \
--hpx:threads 2 \
--hpx:print-counter-format csv-short \
--hpx:print-counter cumulative,/threads{locality#*/total}/count/cumulative \
--hpx:print-counter phases,/threads{locality#*/total}/count/cumulative-phases

will print the values of performance counters in CSV format with the short countername as a header:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
cumulative,phases
39,93

With format csv and csv-short when used with --hpx:print-counter-interval:

$ hello_world_distributed \
--hpx:threads 2 \
--hpx:print-counter-format csv-short \
--hpx:print-counter cumulative,/threads{locality#*/total}/count/cumulative \
--hpx:print-counter phases,/threads{locality#*/total}/count/cumulative-phases \
--hpx:print-counter-interval 5

will print the header only once repeating the performance counter value(s) repeatedly:

cum,phases
25,42
hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
44,95

2.3. Manual 223

HPX Documentation, master

The command --hpx:no-csv-header can be used with --hpx:print-counter-format to print performance
counter values in CSV format without any header:

$ hello_world_distributed \
--hpx:threads 2 \
--hpx:print-counter-format csv-short \
--hpx:print-counter cumulative,/threads{locality#*/total}/count/cumulative \
--hpx:print-counter phases,/threads{locality#*/total}/count/cumulative-phases \
--hpx:no-csv-header

will print:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
37,91

Consuming performance counter data using the HPX API

HPX provides an API that allows users to discover performance counters and to retrieve the current value of any existing
performance counter from any application.

Discover existing performance counters

Retrieve the current value of any performance counter

Performance counters are specialized HPX components. In order to retrieve a counter value, the performance counter
needs to be instantiated. HPX exposes a client component object for this purpose:

hpx::performance_counters::performance_counter counter(std::string const& name);

Instantiating an instance of this type will create the performance counter identified by the given name. Only the first
invocation for any given counter name will create a new instance of that counter. All following invocations for a given
counter name will reference the initially created instance. This ensures that at any point in time there is never more
than one active instance of any of the existing performance counters.

In order to access the counter value (or to invoke any of the other functionality related to a performance counter, like
start, stop or reset) member functions of the created client component instance should be called:

// print the current number of threads created on locality 0
hpx::performance_counters::performance_counter count(

"/threads{locality#0/total}/count/cumulative");
hpx::cout << count.get_value<int>().get() << std::endl;

For more information about the client component type, see hpx::performance_counters::performance_counter

Note: In the above example count.get_value() returns a future. In order to print the result we must append .get()
to retrieve the value. You could write the above example like this for more clarity:

// print the current number of threads created on locality 0
hpx::performance_counters::performance_counter count(

"/threads{locality#0/total}/count/cumulative");
(continues on next page)

224 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

hpx::future<int> result = count.get_value<int>();
hpx::cout << result.get() << std::endl;

Providing performance counter data

HPX offers several ways by which you may provide your own data as a performance counter. This has the benefit
of exposing additional, possibly application-specific information using the existing Performance Counter framework,
unifying the process of gathering data about your application.

An application that wants to provide counter data can implement a performance counter to provide the data. When a
consumer queries performance data, the HPX runtime system calls the provider to collect the data. The runtime system
uses an internal registry to determine which provider to call.

Generally, there are two ways of exposing your own performance counter data: a simple, function-based way and a
more complex, but more powerful way of implementing a full performance counter. Both alternatives are described in
the following sections.

Exposing performance counter data using a simple function

The simplest way to expose arbitrary numeric data is to write a function which will then be called whenever a consumer
queries this counter. Currently, this type of performance counter can only be used to expose integer values. The expected
signature of this function is:

std::int64_t some_performance_data(bool reset);

The argument bool reset (which is supplied by the runtime system when the function is invoked) specifies whether
the counter value should be reset after evaluating the current value (if applicable).

For instance, here is such a function returning how often it was invoked:

// The atomic variable 'counter' ensures the thread safety of the counter.
boost::atomic<std::int64_t> counter(0);

std::int64_t some_performance_data(bool reset)
{

std::int64_t result = ++counter;
if (reset)

counter = 0;
return result;

}

This example function exposes a linearly-increasing value as our performance data. The value is incremented on each
invocation, i.e., each time a consumer requests the counter data of this performance counter.

The next step in exposing this counter to the runtime system is to register the function as a new raw counter type
using the HPX API function hpx::performance_counters::install_counter_type. A counter type represents
certain common characteristics of counters, like their counter type name and any associated description information.
The following snippet shows an example of how to register the function some_performance_data, which is shown
above, for a counter type named "/test/data". This registration has to be executed before any consumer instantiates,
and queries an instance of this counter type:

2.3. Manual 225

HPX Documentation, master

#include <hpx/include/performance_counters.hpp>

void register_counter_type()
{

// Call the HPX API function to register the counter type.
hpx::performance_counters::install_counter_type(

"/test/data", // counter type name
&some_performance_data, // function providing counter␣

→˓data
"returns a linearly increasing counter value" // description text (optional)
"" // unit of measure (optional)

);
}

Now it is possible to instantiate a new counter instance based on the naming scheme "/test{locality#*/total}/
data" where * is a zero-based integer index identifying the locality for which the counter instance should be ac-
cessed. The function hpx::performance_counters::install_counter_type enables users to instantiate exactly
one counter instance for each locality. Repeated requests to instantiate such a counter will return the same instance,
i.e., the instance created for the first request.

If this counter needs to be accessed using the standard HPX command line options, the registration has to be performed
during application startup, before hpx_main is executed. The best way to achieve this is to register an HPX startup
function using the API function hpx::register_startup_function before calling hpx::init to initialize the
runtime system:

int main(int argc, char* argv[])
{

// By registering the counter type we make it available to any consumer
// who creates and queries an instance of the type "/test/data".
//
// This registration should be performed during startup. The
// function 'register_counter_type' should be executed as an HPX thread right
// before hpx_main is executed.
hpx::register_startup_function(®ister_counter_type);

// Initialize and run HPX.
return hpx::init(argc, argv);

}

Please see the code in simplest_performance_counter.cpp for a full example demonstrating this functionality.

Implementing a full performance counter

Sometimes, the simple way of exposing a single value as a performance counter is not sufficient. For that reason, HPX
provides a means of implementing full performance counters which support:

• Retrieving the descriptive information about the performance counter

• Retrieving the current counter value

• Resetting the performance counter (value)

• Starting the performance counter

• Stopping the performance counter

226 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Setting the (initial) value of the performance counter

Every full performance counter will implement a predefined interface:

// Copyright (c) 2007-2023 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#pragma once

#include <hpx/config.hpp>
#include <hpx/async_base/launch_policy.hpp>
#include <hpx/components/client_base.hpp>
#include <hpx/functional/bind_front.hpp>
#include <hpx/futures/future.hpp>
#include <hpx/modules/execution.hpp>

#include <hpx/performance_counters/counters_fwd.hpp>
#include <hpx/performance_counters/server/base_performance_counter.hpp>

#include <string>
#include <utility>
#include <vector>

#include <hpx/config/warnings_prefix.hpp>

///
namespace hpx::performance_counters {

///
struct HPX_EXPORT performance_counter

: components::client_base<performance_counter,
server::base_performance_counter>

{
using base_type = components::client_base<performance_counter,

server::base_performance_counter>;

performance_counter() = default;

explicit performance_counter(std::string const& name);

performance_counter(
std::string const& name, hpx::id_type const& locality);

performance_counter(id_type const& id)
: base_type(id)

{
}

performance_counter(future<id_type>&& id)
: base_type(HPX_MOVE(id))

{
(continues on next page)

2.3. Manual 227

HPX Documentation, master

(continued from previous page)

}

performance_counter(hpx::future<performance_counter>&& c)
: base_type(HPX_MOVE(c))

{
}

///
future<counter_info> get_info() const;
counter_info get_info(

launch::sync_policy, error_code& ec = throws) const;

future<counter_value> get_counter_value(bool reset) const;
counter_value get_counter_value(

launch::sync_policy, bool reset, error_code& ec = throws) const;

future<counter_value> get_counter_value() const;
counter_value get_counter_value(

launch::sync_policy, error_code& ec = throws) const;

future<counter_values_array> get_counter_values_array(bool reset) const;
counter_values_array get_counter_values_array(

launch::sync_policy, bool reset, error_code& ec = throws) const;

future<counter_values_array> get_counter_values_array() const;
counter_values_array get_counter_values_array(

launch::sync_policy, error_code& ec = throws) const;

///
future<bool> start() const;
bool start(launch::sync_policy, error_code& ec = throws) const;

future<bool> stop() const;
bool stop(launch::sync_policy, error_code& ec = throws) const;

future<void> reset() const;
void reset(launch::sync_policy, error_code& ec = throws) const;

future<void> reinit(bool reset = true) const;
void reinit(launch::sync_policy, bool reset = true,

error_code& ec = throws) const;

///
future<std::string> get_name() const;
std::string get_name(

launch::sync_policy, error_code& ec = throws) const;

private:
template <typename T>
static T extract_value(future<counter_value>&& value)
{

return value.get().get_value<T>();

(continues on next page)

228 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

}

public:
template <typename T>
future<T> get_value(bool reset = false)
{

return get_counter_value(reset).then(hpx::launch::sync,
hpx::bind_front(&performance_counter::extract_value<T>));

}
template <typename T>
T get_value(

launch::sync_policy, bool reset = false, error_code& ec = throws)
{

return get_counter_value(launch::sync, reset).get_value<T>(ec);
}

template <typename T>
future<T> get_value() const
{

return get_counter_value(false).then(hpx::launch::sync,
hpx::bind_front(&performance_counter::extract_value<T>));

}
template <typename T>
T get_value(launch::sync_policy, error_code& ec = throws) const
{

return get_counter_value(launch::sync, false).get_value<T>(ec);
}

};

// Return all counters matching the given name (with optional wild cards).
HPX_EXPORT std::vector<performance_counter> discover_counters(

std::string const& name, error_code& ec = throws);
} // namespace hpx::performance_counters

#include <hpx/config/warnings_suffix.hpp>

In order to implement a full performance counter, you have to create an HPX component exposing this interface. To
simplify this task, HPX provides a ready-made base class which handles all the boiler plate of creating a component
for you. The remainder of this section will explain the process of creating a full performance counter based on the Sine
example, which you can find in the directory examples/performance_counters/sine/.

The base class is defined in the header file base_performance_counter.cpp as:

// Copyright (c) 2007-2023 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#pragma once

#include <hpx/config.hpp>
#include <hpx/actions_base/component_action.hpp>

(continues on next page)

2.3. Manual 229

HPX Documentation, master

(continued from previous page)

#include <hpx/components_base/component_type.hpp>
#include <hpx/components_base/server/component_base.hpp>
#include <hpx/performance_counters/counters.hpp>
#include <hpx/performance_counters/server/base_performance_counter.hpp>
#include <hpx/runtime_local/get_locality_id.hpp>

///
//[performance_counter_base_class
namespace hpx::performance_counters {

template <typename Derived>
class base_performance_counter;

} // namespace hpx::performance_counters
//]

///
namespace hpx::performance_counters {

template <typename Derived>
class base_performance_counter
: public hpx::performance_counters::server::base_performance_counter
, public hpx::components::component_base<Derived>

{
private:

using base_type = hpx::components::component_base<Derived>;

public:
using type_holder = Derived;
using base_type_holder =

hpx::performance_counters::server::base_performance_counter;

base_performance_counter() = default;

explicit base_performance_counter(
hpx::performance_counters::counter_info const& info)

: base_type_holder(info)
{
}

// Disambiguate finalize() which is implemented in both base classes
void finalize()
{

base_type_holder::finalize();
base_type::finalize();

}

hpx::naming::address get_current_address() const
{

return hpx::naming::address(
hpx::naming::get_gid_from_locality_id(hpx::get_locality_id()),
hpx::components::get_component_type<Derived>(),
const_cast<Derived*>(static_cast<Derived const*>(this)));

(continues on next page)

230 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

}
};

} // namespace hpx::performance_counters

The single template parameter is expected to receive the type of the derived class implementing the performance
counter. In the Sine example this looks like:

// Copyright (c) 2007-2012 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#pragma once

#include <hpx/config.hpp>
#if !defined(HPX_COMPUTE_DEVICE_CODE)
#include <hpx/hpx.hpp>
#include <hpx/include/lcos_local.hpp>
#include <hpx/include/performance_counters.hpp>
#include <hpx/include/util.hpp>

#include <cstdint>

namespace performance_counters { namespace sine { namespace server {
///
//[sine_counter_definition
class sine_counter
: public hpx::performance_counters::base_performance_counter<sine_counter>

//]
{
public:

sine_counter()
: current_value_(0)
, evaluated_at_(0)

{
}
explicit sine_counter(

hpx::performance_counters::counter_info const& info);

/// This function will be called in order to query the current value of
/// this performance counter
hpx::performance_counters::counter_value get_counter_value(bool reset);

/// The functions below will be called to start and stop collecting
/// counter values from this counter.
bool start();
bool stop();

/// finalize() will be called just before the instance gets destructed
void finalize();

(continues on next page)

2.3. Manual 231

HPX Documentation, master

(continued from previous page)

protected:
bool evaluate();

private:
typedef hpx::spinlock mutex_type;

mutable mutex_type mtx_;
double current_value_;
std::uint64_t evaluated_at_;

hpx::util::interval_timer timer_;
};

}}} // namespace performance_counters::sine::server
#endif

i.e., the type sine_counter is derived from the base class passing the type as a template argument (please see
simplest_performance_counter.cpp for the full source code of the counter definition). For more information
about this technique (called Curiously Recurring Template Pattern - CRTP), please see for instance the corresponding
Wikipedia article173. This base class itself is derived from the performance_counter interface described above.

Additionally, a full performance counter implementation not only exposes the actual value but also provides information
about:

• The point in time a particular value was retrieved.

• A (sequential) invocation count.

• The actual counter value.

• An optional scaling coefficient.

• Information about the counter status.

Existing HPX performance counters

The HPX runtime system exposes a wide variety of predefined performance counters. These counters expose critical
information about different modules of the runtime system. They can help determine system bottlenecks and fine-tune
system and application performance.

173 http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

232 Chapter 2. What’s so special about HPX?

http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

HPX Documentation, master

Table 2.29: AGAS performance counter /agas/count/
<agas_service>

Counter type /agas/count/<agas_service>
where <agas_service> is one of the following:
primary namespace services: route, bind_gid, resolve_gid, unbind_gid,
increment_credit, decrement_credit, allocate, begin_migration,
end_migration
component namespace services: bind_prefix, bind_name, resolve_id, unbind_name,
iterate_types, get_component_typename, num_localities_type
locality namespace services: free, localities, num_localities, num_threads,
resolve_locality, resolved_localities
symbol namespace services: bind, resolve, unbind, iterate_names,
on_symbol_namespace_event

Counter instance
formatting

<agas_instance>/total
where <agas_instance> is the name of the AGAS service to query. Currently, this value
will be locality#0 where 0 is the root locality (the id of the locality hosting the AGAS
service).
The value for * can be any locality id for the following <agas_service>: route,
bind_gid, resolve_gid, unbind_gid, increment_credit, decrement_credit, bin,
resolve, unbind, and iterate_names (only the primary and symbol AGAS service com-
ponents live on all localities, whereas all other AGAS services are available on locality#0
only).

Description Returns the total number of invocations of the specified AGAS service since its creation.

Table 2.30: AGAS performance counter /agas/
<agas_service_category>/count

Counter type /agas/<agas_service_category>/count
where <agas_service_category> is one of the following: primary, locality,
component or symbol

Counter instance
formatting

<agas_instance>/total
where <agas_instance> is the name of the AGAS service to query. Currently, this value
will be locality#0 where 0 is the root locality (the id of the locality hosting the AGAS
service). Except for <agas_service_category>, primary or symbol for which the value
for * can be any locality id (only the primary and symbol AGAS service components live on
all localities, whereas all other AGAS services are available on locality#0 only).

Description Returns the overall total number of invocations of all AGAS services provided by the given
AGAS service category since its creation.

Table 2.31: AGAS performance counter /agas/
<agas_service_category>/count

Counter type /agas/<agas_service_category>/count
where <agas_service_category> is one of the following: primary, locality,
component or symbol

Counter instance
formatting

<agas_instance>/total
where <agas_instance> is the name of the AGAS service to query. Currently, this value
will be locality#0 where 0 is the root locality (the id of the locality hosting the AGAS
service). Except for <agas_service_category>, primary or symbol for which the value
for * can be any locality id (only the primary and symbol AGAS service components live on
all localities, whereas all other AGAS services are available on locality#0 only).

Description Returns the overall total number of invocations of all AGAS services provided by the given
AGAS service category since its creation.

2.3. Manual 233

HPX Documentation, master

Table 2.32: AGAS performance counter agas/time/<agas_service>
Counter type agas/time/<agas_service>

where <agas_service> is one of the following:
primary namespace services: route, bind_gid, resolve_gid, unbind_gid,
increment_credit, decrement_credit, allocate begin_migration,
end_migration
component namespace services: bind_prefix, bind_name, resolve_id, unbind_name,
iterate_types, get_component_typename, num_localities_type
locality namespace services: free, localities, num_localities, num_threads,
resolve_locality, resolved_localities
symbol namespace services: bind, resolve, unbind, iterate_names,
on_symbol_namespace_event

Counter instance
formatting

<agas_instance>/total
where <agas_instance> is the name of the AGAS service to query. Currently, this value
will be locality#0 where 0 is the root locality (the id of the locality hosting the AGAS
service).
The value for * can be any locality id for the following <agas_service>: route,
bind_gid, resolve_gid, unbind_gid, increment_credit, decrement_credit, bin,
resolve, unbind, and iterate_names (only the primary and symbol AGAS service com-
ponents live on all localities, whereas all other AGAS services are available on locality#0
only).

Description Returns the overall execution time of the specified AGAS service since its creation (in
nanoseconds).

Table 2.33: AGAS performance counter
/agas/<agas_service_category>/time`

Counter type /agas/<agas_service_category>/time
where <agas_service_category> is one of the following: primary, locality,
component or symbol

Counter instance
formatting

<agas_instance>/total
where <agas_instance> is the name of the AGAS service to query. Currently, this value
will be locality#0 where 0 is the root locality (the id of the locality hosting the AGAS
service). Except for <agas_service_category primary or symbol for which the value
for * can be any locality id (only the primary and symbol AGAS service components live on
all localities, whereas all other AGAS services are available on locality#0 only).

Description Returns the overall execution time of all AGAS services provided by the given AGAS service
category since its creation (in nanoseconds).

Table 2.34: AGAS performance counter /agas/count/entries
Counter type /agas/count/entries
Counter instance
formatting

locality#*/total
where * is the locality id of the locality the AGAS cache should be queried. The locality id
is a (zero based) number identifying the locality.

Description Returns the number of cache entries resident in the AGAS cache of the specified locality (see
<cache_statistics>).

234 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.35: AGAS performance counter /agas/count/
<cache_statistics>

Counter type /agas/count/<cache_statistics>
where <cache_statistics> is one of the following: cache/evictions, cache/hits,
cache/insertions, cache/misses

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the AGAS cache should be queried. The locality id
is a (zero based) number identifying the locality

Description Returns the number of cache events (evictions, hits, inserts, and misses) in the AGAS cache
of the specified locality (see <cache_statistics>).

Table 2.36: AGAS performance counter /agas/count/
<full_cache_statistics>

Counter type /agas/count/<full_cache_statistics>
where <full_cache_statistics> is one of the following: cache/get_entry, cache/
insert_entry, cache/update_entry, cache/erase_entry

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the AGAS cache should be queried. The locality id
is a (zero based) number identifying the locality.

Description Returns the number of invocations of the specified cache API function of the AGAS cache.

Table 2.37: AGAS performance counter /agas/time/
<full_cache_statistics>

Counter type /agas/time/<full_cache_statistics>
where <full_cache_statistics> is one of the following:
cache/get_entry, cache/insert_entry, cache/update_entry, cache/
erase_entry

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the AGAS cache should be queried. The locality id
is a (zero based) number identifying the locality.

Description Returns the overall time spent executing of the specified API function of the AGAS cache.

2.3. Manual 235

HPX Documentation, master

Table 2.38: Parcel layer performance counter /data/count/
<connection_type>/<operation>

Counter type /data/count/<connection_type>/<operation>
where: <operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the overall number of transmitted bytes should be
queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the overall number of raw (uncompressed) bytes sent or received (see <operation>,
e.g. sent or received) for the specified <connection_type>.
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

Table 2.39: Parcel layer performance counter /data/time/
<connection_type>/<operation>

Counter type /data/time/<connection_type>/<operation>
where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the total transmission time should be queried for.
The locality id is a (zero based) number identifying the locality.

Description Returns the total time (in nanoseconds) between the start of each asynchronous transmission
operation and the end of the corresponding operation for the specified <connection_type>
the given locality (see <operation>, e.g. sent or received).
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

236 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.40: Parcel layer performance counter /serialize/count/
<connection_type>/<operation>

Counter type /serialize/count/<connection_type>/<operation>
where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the overall number of transmitted bytes should be
queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the overall number of bytes transferred (see <operation>, e.g. sent or received
possibly compressed) for the specified <connection_type> by the given locality.
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

Description If the configure-time option -DHPX_WITH_PARCELPORT_ACTION_COUNTERS=On was spec-
ified, this counter allows one to specify an optional action name as its parameter. In this case
the counter will report the number of bytes transmitted for the given action only.

Table 2.41: Parcel layer performance counter /serialize/time/
<connection_type>/<operation>

Counter type /serialize/time/<connection_type>/<operation>
where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the serialization time should be queried for. The
locality id is a (zero based) number identifying the locality.

Description Returns the overall time spent performing outgoing data serialization for the specified
<connection_type> on the given locality (see <operation>, e.g. sent or received).
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

Parameters If the configure-time option -DHPX_WITH_PARCELPORT_ACTION_COUNTERS=On was spec-
ified, this counter allows one to specify an optional action name as its parameter. In this case
the counter will report the serialization time for the given action only.

2.3. Manual 237

HPX Documentation, master

Table 2.42: Parcel layer performance counter /parcels/count/routed
Counter type /parcels/count/routed
Counter instance
formatting

locality#*/total
where * is the locality id of the locality the number of routed parcels should be queried for.
The locality id is a (zero based) number identifying the locality.

Description Returns the overall number of routed (outbound) parcels transferred by the given locality.
Routed parcels are those which cannot directly be delivered to its destination as the local
AGAS is not able to resolve the destination address. In this case a parcel is sent to the AGAS
service component which is responsible for creating the destination GID (and is responsible
for resolving the destination address). This AGAS service component will deliver the parcel
to its final target.

Parameters If the configure-time option -DHPX_WITH_PARCELPORT_ACTION_COUNTERS=On was spec-
ified, this counter allows one to specify an optional action name as its parameter. In this case
the counter will report the number of parcels for the given action only.

Table 2.43: Parcel layer performance counter /parcels/count/
<connection_type>/<operation>

Counter type /parcels/count/<connection_type>/<operation>
where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the number of parcels should be queried for. The
locality id is a (zero based) number identifying the locality.

Description Returns the overall number of parcels transferred using the specified <connection_type>
by the given locality (see operation>, e.g. sent or received.
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

238 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.44: Parcel layer performance counter /messages/count/
<connection_type>/<operation>

Counter type /messages/count/<connection_type>/<operation> where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the number of messages should be queried for. The
locality id is a (zero based) number identifying the locality.

Description Returns the overall number of messages174 transferred using the specified
<connection_type> by the given locality (see <operation>, e.g. sent or received)
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

Table 2.45: Parcel layer performance counter /parcelport/count/
<connection_type>/zero_copy_chunks/<operation>

Counter type /parcelport/count/<connection_type>/zero_copy_chunks/<operation>
where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the overall number of transmitted bytes should be
queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the overall number of zero-copy chunks sent or received (see <operation>, e.g.
sent or received) for the specified <connection_type>.
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

174 A message can potentially consist of more than one parcel.

2.3. Manual 239

HPX Documentation, master

Table 2.46: Parcel layer performance counter /parcelport/
count-max/<connection_type>/zero_copy_chunks/
<operation>

Counter type /parcelport/count-max/<connection_type>/zero_copy_chunks/<operation>
where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the overall number of transmitted bytes should be
queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the maximum number of zero-copy chunks sent or received per message (see
<operation>, e.g. sent or received) for the specified <connection_type>.
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

Table 2.47: Parcel layer performance counter /parcelport/size/
<connection_type>/zero_copy_chunks/<operation>

Counter type /parcelport/size/<connection_type>/zero_copy_chunks/<operation>
where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the overall number of transmitted bytes should be
queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the overall size of zero-copy chunks sent or received (see <operation>, e.g. sent
or received) for the specified <connection_type>.
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

240 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.48: Parcel layer performance counter /parcelport/size-max/
<connection_type>/zero_copy_chunks/<operation>

Counter type /parcelport/size-max/<connection_type>/zero_copy_chunks/<operation>
where:
<operation> is one of the following: sent, received
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the overall number of transmitted bytes should be
queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the maximum size of zero-copy chunks sent or received (see <operation>, e.g.
sent or received) for the specified <connection_type>.
The performance counters are available only if the compile time constant
HPX_HAVE_PARCELPORT_COUNTERS was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_COUNTERS.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

Table 2.49: Parcel layer performance counter /parcelport/count/
<connection_type>/<cache_statistics>

Counter type /parcelport/count/<connection_type>/<cache_statistics>
where:
<cache_statistics> is one of the following: cache/insertions, cache/evictions,
cache/hits, cache/misses
<connection_type> is one of the following: tcp, mpi

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the number of messages should be queried for. The
locality id is a (zero based) number identifying the locality.

Description Returns the overall number cache events (evictions, hits, inserts, misses, and re-
claims) for the connection cache of the given connection type on the given locality
(see <cache_statistics, e.g. ache/insertions, cache/evictions, cache/hits,
cache/misses or``cache/reclaims``.
The performance counters for the connection type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI was defined while compiling the HPX core li-
brary (which is not defined by default). The corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake options for more details.

Table 2.50: Parcel layer performance counter /parcelqueue/length/
<operation>

Counter type /parcelqueue/length/<operation>
where <operation> is one of the following: sent, receive

Counter instance
formatting

locality#*/total
where * is the locality id of the locality the parcel queue should be queried. The locality id
is a (zero based) number identifying the locality.

Description Returns the current number of parcels stored in the parcel queue (see <operation> for
which queue to query, e.g. sent or received).

2.3. Manual 241

HPX Documentation, master

Table 2.51: Thread manager performance counter /threads/count/
cumulative

Counter type /threads/count/cumulative
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the overall number of retired HPX-threads
should be queried for. The locality id (given by the *) is a (zero based) number identifying
the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should

be queried for.
worker-thread#* is defining the worker thread for which the overall number of re-

tired HPX-threads should be queried for. The worker thread number (given by the
*) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the
option --hpx:threads. If no pool-name is specified the counter refers to the ‘de-
fault’ pool.

Description Returns the overall number of executed (retired) HPX-threads on the given locality since
application start. If the instance name is total the counter returns the accumulated number
of retired HPX-threads for all worker threads (cores) on that locality. If the instance name is
worker-thread#* the counter will return the overall number of retired HPX-threads for all
worker threads separately. This counter is available only if the configuration time constant
HPX_WITH_THREAD_CUMULATIVE_COUNTS is set to ON (default: ON).

Table 2.52: Thread manager performance counter /threads/time/
average

Counter type /threads/time/average
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the average time spent executing one HPX-
thread should be queried for. The locality id (given by the *) is a (zero based) number
identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the average time spent executing
one HPX-thread should be queried for. The worker thread number (given by the *) is a (zero
based) number identifying the worker thread. The number of available worker threads is
usually specified on the command line for the application using the option --hpx:threads.
If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the average time spent executing one HPX-thread on the given locality since
application start. If the instance name is total the counter returns the average time
spent executing one HPX-thread for all worker threads (cores) on that locality. If the in-
stance name is worker-thread#* the counter will return the average time spent execut-
ing one HPX-thread for all worker threads separately. This counter is available only if the
configuration time constants HPX_WITH_THREAD_CUMULATIVE_COUNTS (default: ON) and
HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure for this
counter is nanosecond [ns].

242 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.53: Thread manager performance counter /threads/time/
average-overhead

Counter type /threads/time/average-overhead
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the average overhead spent executing one
HPX-thread should be queried for. The locality id (given by the *) is a (zero based) number
identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the average overhead spent
executing one HPX-thread should be queried for. The worker thread number (given by
the *) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the option
--hpx:threads. If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the average time spent on overhead while executing one HPX-thread on the
given locality since application start. If the instance name is total the counter re-
turns the average time spent on overhead while executing one HPX-thread for all
worker threads (cores) on that locality. If the instance name is worker-thread#*
the counter will return the average time spent on overhead executing one HPX-
thread for all worker threads separately. This counter is available only if the con-
figuration time constants HPX_WITH_THREAD_CUMULATIVE_COUNTS (default: ON) and
HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure for this
counter is nanosecond [ns].

Table 2.54: Thread manager performance counter /threads/count/
cumulative-phases

Counter type /threads/count/cumulative-phases
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the overall number of executed HPX-thread
phases (invocations) should be queried for. The locality id (given by the *) is a (zero based)
number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the overall number of executed
HPX-thread phases (invocations) should be queried for. The worker thread number (given
by the *) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the option
--hpx:threads. If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the overall number of executed HPX-thread phases (invocations) on the given lo-
cality since application start. If the instance name is total the counter returns the accumu-
lated number of executed HPX-thread phases (invocations) for all worker threads (cores) on
that locality. If the instance name is worker-thread#* the counter will return the over-
all number of executed HPX-thread phases for all worker threads separately. This counter is
available only if the configuration time constant HPX_WITH_THREAD_CUMULATIVE_COUNTS
is set to ON (default: ON). The unit of measure for this counter is nanosecond [ns].

2.3. Manual 243

HPX Documentation, master

Table 2.55: Thread manager performance counter /threads/time/
average-phase

Counter type /threads/time/average-phase
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the average time spent executing one HPX-
thread phase (invocation) should be queried for. The locality id (given by the *) is a (zero
based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the average time executing one
HPX-thread phase (invocation) should be queried for. The worker thread number (given
by the *) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the option
--hpx:threads. If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the average time spent executing one HPX-thread phase (invocation) on the
given locality since application start. If the instance name is total the counter
returns the average time spent executing one HPX-thread phase (invocation) for all
worker threads (cores) on that locality. If the instance name is worker-thread#*
the counter will return the average time spent executing one HPX-thread phase
for all worker threads separately. This counter is available only if the config-
uration time constants HPX_WITH_THREAD_CUMULATIVE_COUNTS (default: ON) and
HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure for this
counter is nanosecond [ns].

244 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.56: Thread manager performance counter /threads/time/
average-phase-overhead

Counter type /threads/time/average-phase-overhead
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the average time overhead executing one
HPX-thread phase (invocation) should be queried for. The locality id (given by the *) is a
(zero based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the average overhead executing
one HPX-thread phase (invocation) should be queried for. The worker thread number (given
by the *) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the option
--hpx:threads. If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the average time spent on overhead executing one HPX-thread phase (invoca-
tion) on the given locality since application start. If the instance name is total the
counter returns the average time spent on overhead while executing one HPX-thread
phase (invocation) for all worker threads (cores) on that locality. If the instance name is
worker-thread#* the counter will return the average time spent on overhead executing
one HPX-thread phase for all worker threads separately. This counter is available only if the
configuration time constants HPX_WITH_THREAD_CUMULATIVE_COUNTS (default: ON) and
HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure for this
counter is nanosecond [ns].

Table 2.57: Thread manager performance counter /threads/time/
overall

Counter type /threads/time/overall
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the overall time spent running the scheduler
should be queried for. The locality id (given by the *) is a (zero based) number identifying
the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the overall time spent running the
scheduler should be queried for. The worker thread number (given by the *) is a (zero based)
number identifying the worker thread. The number of available worker threads is usually
specified on the command line for the application using the option --hpx:threads. If no
pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the overall time spent running the scheduler on the given locality since applica-
tion start. If the instance name is total the counter returns the overall time spent run-
ning the scheduler for all worker threads (cores) on that locality. If the instance name is
worker-thread#* the counter will return the overall time spent running the scheduler for
all worker threads separately. This counter is available only if the configuration time con-
stant HPX_WITH_THREAD_IDLE_RATES is set to ON (default: OFF). The unit of measure for
this counter is nanosecond [ns].

2.3. Manual 245

HPX Documentation, master

Table 2.58: Thread manager performance counter /threads/time/
cumulative

Counter type /threads/time/cumulative
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the overall time spent executing all HPX-
threads should be queried for. The locality id (given by the *) is a (zero based) number
identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the overall time spent executing
all HPX-threads should be queried for. The worker thread number (given by the *) is a (zero
based) number identifying the worker thread. The number of available worker threads is
usually specified on the command line for the application using the option --hpx:threads.
If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the overall time spent executing all HPX-threads on the given locality since ap-
plication start. If the instance name is total the counter returns the overall time spent
executing all HPX-threads for all worker threads (cores) on that locality. If the instance
name is worker-thread#* the counter will return the overall time spent executing all
HPX-threads for all worker threads separately. This counter is available only if the con-
figuration time constants HPX_THREAD_MAINTAIN_CUMULATIVE_COUNTS (default: ON) and
HPX_THREAD_MAINTAIN_IDLE_RATES are set to ON (default: OFF).

Table 2.59: Thread manager performance counter /threads/time/
cumulative-overheads

Counter type /threads/time/cumulative-overheads
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the overall overhead time incurred by execut-
ing all HPX-threads should be queried for. The locality id (given by the *) is a (zero based)
number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the the overall overhead time
incurred by executing all HPX-threads should be queried for. The worker thread number
(given by the *) is a (zero based) number identifying the worker thread. The number of
available worker threads is usually specified on the command line for the application using
the option --hpx:threads. If no pool-name is specified the counter refers to the ‘default’
pool.

Description Returns the overall overhead time incurred executing all HPX-threads on the given locality
since application start. If the instance name is total the counter returns the overall overhead
time incurred executing all HPX-threads for all worker threads (cores) on that locality. If the
instance name is worker-thread#* the counter will return the overall overhead time in-
curred executing all HPX-threads for all worker threads separately. This counter is available
only if the configuration time constants HPX_THREAD_MAINTAIN_CUMULATIVE_COUNTS
(default: ON) and HPX_THREAD_MAINTAIN_IDLE_RATES are set to ON (default: OFF). The
unit of measure for this counter is nanosecond [ns].

246 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.60: Thread manager performance counter threads/count/
instantaneous/<thread-state>

Counter type threads/count/instantaneous/<thread-state>
where:
<thread-state> is one of the following: all, active, pending, suspended,
terminated, staged

Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the current number of threads with the given
state should be queried for. The locality id (given by the *) is a (zero based) number identi-
fying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the current number of threads
with the given state should be queried for. The worker thread number (given by the *)
is a (zero based) number identifying the worker thread. The number of available worker
threads is usually specified on the command line for the application using the option
--hpx:threads. If no pool-name is specified the counter refers to the ‘default’ pool.
The staged thread state refers to registered tasks before they are converted to thread objects.

Description Returns the current number of HPX-threads having the given thread state on the given local-
ity. If the instance name is total the counter returns the current number of HPX-threads
of the given state for all worker threads (cores) on that locality. If the instance name is
worker-thread#* the counter will return the current number of HPX-threads in the given
state for all worker threads separately.

2.3. Manual 247

HPX Documentation, master

Table 2.61: Thread manager performance counter threads/
wait-time/<thread-state>

Counter type threads/wait-time/<thread-state>
where:
<thread-state> is one of the following: pending staged

Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the average wait time of HPX-threads (pend-
ing) or thread descriptions (staged) with the given state should be queried for. The locality
id (given by * is a (zero based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the average wait time for the
given state should be queried for. The worker thread number (given by the *) is a (zero
based) number identifying the worker thread. The number of available worker threads is
usually specified on the command line for the application using the option --hpx:threads.
If no pool-name is specified the counter refers to the ‘default’ pool.
The staged thread state refers to the wait time of registered tasks before they are converted
into thread objects, while the pending thread state refers to the wait time of threads in any
of the scheduling queues.

Description Returns the average wait time of HPX-threads (if the thread state is pending or of task
descriptions (if the thread state is staged on the given locality since application start. If the
instance name is total the counter returns the wait time of HPX-threads of the given state
for all worker threads (cores) on that locality. If the instance name is worker-thread#*
the counter will return the wait time of HPX-threads in the given state for all worker threads
separately.
These counters are available only if the compile time constant
HPX_WITH_THREAD_QUEUE_WAITTIME was defined while compiling the HPX core
library (default: OFF). The unit of measure for this counter is nanosecond [ns].

248 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.62: Thread manager performance counter /threads/
idle-rate

Counter type /threads/idle-rate
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the average idle rate of all (or one) worker
threads should be queried for. The locality id (given by the *) is a (zero based) number
identifying the locality
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the averaged idle rate should
be queried for. The worker thread number (given by the * is a (zero based) number iden-
tifying the worker thread. The number of available worker threads is usually specified on
the command line for the application using the option --hpx:threads. If no pool-name is
specified the counter refers to the ‘default’ pool.

Description Returns the average idle rate for the given worker thread(s) on the given locality. The idle rate
is defined as the ratio of the time spent on scheduling and management tasks and the overall
time spent executing work since the application started. This counter is available only if the
configuration time constant HPX_WITH_THREAD_IDLE_RATES is set to ON (default: OFF).

Table 2.63: Thread manager performance counter /threads/
creation-idle-rate

Counter type /threads/creation-idle-rate
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the average creation idle rate of all (or one)
worker threads should be queried for. The locality id (given by the *) is a (zero based)
number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the averaged idle rate should
be queried for. The worker thread number (given by the * is a (zero based) number iden-
tifying the worker thread. The number of available worker threads is usually specified on
the command line for the application using the option --hpx:threads. If no pool-name is
specified the counter refers to the ‘default’ pool.

Description Returns the average idle rate for the given worker thread(s) on the given local-
ity which is caused by creating new threads. The creation idle rate is defined
as the ratio of the time spent on creating new threads and the overall time spent
executing work since the application started. This counter is available only if
the configuration time constants HPX_WITH_THREAD_IDLE_RATES (default: OFF) and
HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES are set to ON.

2.3. Manual 249

HPX Documentation, master

Table 2.64: Thread manager performance counter /threads/
cleanup-idle-rate

Counter type /threads/cleanup-idle-rate
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the average cleanup idle rate of all (or one)
worker threads should be queried for. The locality id (given by the *) is a (zero based)
number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the averaged cleanup idle rate
should be queried for. The worker thread number (given by the *) is a (zero based) number
identifying the worker thread. The number of available worker threads is usually specified
on the command line for the application using the option --hpx:threads. If no pool-name
is specified the counter refers to the ‘default’ pool.

Description Returns the average idle rate for the given worker thread(s) on the given locality which
is caused by cleaning up terminated threads. The cleanup idle rate is defined as the
ratio of the time spent on cleaning up terminated thread objects and the overall time
spent executing work since the application started. This counter is available only if
the configuration time constants HPX_WITH_THREAD_IDLE_RATES (default: OFF) and
HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES are set to ON.

Table 2.65: Thread manager performance counter /threadqueue/
length

Counter type /threadqueue/length
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the current length of all thread queues in the
scheduler for all (or one) worker threads should be queried for. The locality id (given by the
*) is a (zero based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the current length of all thread
queues in the scheduler should be queried for. The worker thread number (given by
the *) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the option
--hpx:threads. If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the overall length of all queues for the given worker thread(s) on the given locality.

250 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.66: Thread manager performance counter /threads/count/
stack-unbinds

Counter type /threads/count/stack-unbinds
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the unbind (madvise) operations should be queried for. The
locality id is a (zero based) number identifying the locality.

Description Returns the total number of HPX-thread unbind (madvise) operations performed for the
referenced locality. Note that this counter is not available on Windows based platforms.

Table 2.67: Thread manager performance counter /threads/count/
stack-recycles

Counter type /threads/count/stack-recycles
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the recycling operations should be queried for. The locality
id is a (zero based) number identifying the locality.

Description Returns the total number of HPX-thread recycling operations performed.

Table 2.68: Thread manager performance counter /threads/count/
stolen-from-pending

Counter type /threads/count/stolen-from-pending
Counter instance
formatting

locality#*/total
where:

* is the locality id of the locality the number of ‘stole’ threads should be queried for. The
locality id is a (zero based) number identifying the locality.

Description Returns the total number of HPX-threads ‘stolen’ from the pending thread queue by a neigh-
boring thread worker thread (these threads are executed by a different worker thread than they
were initially scheduled on). This counter is available only if the configuration time constant
HPX_WITH_THREAD_STEALING_COUNTS is set to ON (default: ON).

2.3. Manual 251

HPX Documentation, master

Table 2.69: Thread manager performance counter /threads/count/
pending-misses

Counter type /threads/count/pending-misses
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the number of pending queue misses of all
(or one) worker threads should be queried for. The locality id (given by the *) is a (zero
based) number identifying the locality
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the number of pending queue
misses should be queried for. The worker thread number (given by the *) is a (zero based)
number identifying the worker thread. The number of available worker threads is usually
specified on the command line for the application using the option --hpx:threads. If no
pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the total number of times that the referenced worker-thread on the referenced lo-
cality failed to find pending HPX-threads in its associated queue. This counter is available
only if the configuration time constant HPX_WITH_THREAD_STEALING_COUNTS is set to ON
(default: ON).

Table 2.70: Thread manager performance counter /threads/count/
pending-accesses

Counter type /threads/count/pending-accesses
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the number of pending queue accesses of all
(or one) worker threads should be queried for. The locality id (given by the *) is a (zero
based) number identifying the locality
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the number of pending queue
accesses should be queried for. The worker thread number (given by the *) is a (zero based)
number identifying the worker thread. The number of available worker threads is usually
specified on the command line for the application using the option --hpx:threads. If no
pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the total number of times that the referenced worker-thread on the referenced locality
looked for pending HPX-threads in its associated queue. This counter is available only if the
configuration time constant HPX_WITH_THREAD_STEALING_COUNTS is set to ON (default:
ON).

252 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.71: Thread manager performance counter /threads/count/
stolen-from-staged

Counter type /threads/count/stolen-from-staged
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the number of HPX-threads stolen from the
staged queue of all (or one) worker threads should be queried for. The locality id (given by
the *) is a (zero based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the number of HPX-threads
stolen from the staged queue should be queried for. The worker thread number (given by
the *) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the option
--hpx:threads. If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the total number of HPX-threads ‘stolen’ from the staged thread queue by a neigh-
boring worker thread (these threads are executed by a different worker thread than they were
initially scheduled on). This counter is available only if the configuration time constant
HPX_WITH_THREAD_STEALING_COUNTS is set to ON (default: ON).

Table 2.72: Thread manager performance counter /threads/count/
stolen-to-pending

Counter type /threads/count/stolen-to-pending
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the number of HPX-threads stolen to the
pending queue of all (or one) worker threads should be queried for. The locality id (given
by the *) is a (zero based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the number of HPX-threads
stolen to the pending queue should be queried for. The worker thread number (given by
the *) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the option
--hpx:threads. If no pool-name is specified the counter refers to the ‘default’ pool.

Description Returns the total number of HPX-threads ‘stolen’ to the pending thread queue of the
worker thread (these threads are executed by a different worker thread than they were
initially scheduled on). This counter is available only if the configuration time constant
HPX_WITH_THREAD_STEALING_COUNTS is set to ON (default: ON).

2.3. Manual 253

HPX Documentation, master

Table 2.73: Thread manager performance counter /threads/count/
stolen-to-staged

Counter type /threads/count/stolen-to-staged
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the number of HPX-threads stolen to the
staged queue of all (or one) worker threads should be queried for. The locality id (given by
*) is a (zero based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the number of HPX-threads
stolen to the staged queue should be queried for. The worker thread number (given by the
*) is a (zero based) worker thread number (given by the *) is a (zero based) number iden-
tifying the worker thread. The number of available worker threads is usually specified on
the command line for the application using the option --hpx:threads. If no pool-name is
specified the counter refers to the ‘default’ pool.

Description Returns the total number of HPX-threads ‘stolen’ to the staged thread queue of a neighbor-
ing worker thread (these threads are executed by a different worker thread than they were
initially scheduled on). This counter is available only if the configuration time constant
HPX_WITH_THREAD_STEALING_COUNTS is set to ON (default: ON).

Table 2.74: Thread manager performance counter /threads/count/
objects

Counter type /threads/count/objects
Counter instance
formatting

locality#*/total or
locality#*/allocator#*
where:
locality#* is defining the locality for which the current (cumulative) number of all created
HPX-thread objects should be queried for. The locality id (given by *) is a (zero based)
number identifying the locality.
allocator#* is defining the number of the allocator instance using which the threads have
been created. HPX uses a varying number of allocators to create (and recycle) HPX-thread
objects, most likely these counters are of use for debugging purposes only. The allocator id
(given by *) is a (zero based) number identifying the allocator to query.

Description Returns the total number of HPX-thread objects created. Note that thread objects are reused
to improve system performance, thus this number does not reflect the number of actually
executed (retired) HPX-threads.

254 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.75: Thread manager performance counter /scheduler/
utilization/instantaneous

Counter type /scheduler/utilization/instantaneous
Counter instance
formatting

locality#*/total
where:
locality#* is defining the locality for which the current (instantaneous) scheduler uti-
lization queried for. The locality id (given by *) is a (zero based) number identifying the
locality.

Description Returns the total (instantaneous) scheduler utilization. This is the current percentage
of scheduler threads executing HPX threads.

Parameters Percent

Table 2.76: Thread manager performance counter /threads/
idle-loop-count/instantaneous

Counter type /threads/idle-loop-count/instantaneous
Counter instance
formatting

locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the current current accumulated value of all
idle-loop counters of all worker threads should be queried. The locality id (given by the *)
is a (zero based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the current value of the idle-
loop counter should be queried for. The worker thread number (given by the *) is a (zero
based) worker thread number (given by the *) is a (zero based) number identifying the worker
thread. The number of available worker threads is usually specified on the command line for
the application using the option --hpx:threads. If no pool-name is specified the counter
refers to the ‘default’ pool.

Description Returns the current (instantaneous) idle-loop count for the given HPX- worker thread or the
accumulated value for all worker threads.

2.3. Manual 255

HPX Documentation, master

Table 2.77: Thread manager performance counter /threads/
busy-loop-count/instantaneous

Counter type /threads/busy-loop-count/instantaneous
Counter instance
formatting

locality#*/worker-thread#* or
locality#*/pool#*/worker-thread#*
where:
locality#* is defining the locality for which the current current accumulated value of all
busy-loop counters of all worker threads should be queried. The locality id (given by the *)
is a (zero based) number identifying the locality.
pool#* is defining the pool for which the current value of the idle-loop counter should be
queried for.
worker-thread#* is defining the worker thread for which the current value of the busy-
loop counter should be queried for. The worker thread number (given by the *) is a (zero
based) worker thread number (given by the *) is a (zero based) number identifying the worker
thread. The number of available worker threads is usually specified on the command line for
the application using the option --hpx:threads. If no pool-name is specified the counter
refers to the ‘default’ pool.

Description Returns the current (instantaneous) busy-loop count for the given HPX- worker thread or
the accumulated value for all worker threads.

Table 2.78: Thread manager performance counter /threads/time/
background-work-duration

Counter type /threads/time/background-work-duration
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#*
where:
locality#* is defining the locality for which the overall time spent performing background
work should be queried for. The locality id (given by *) is a (zero based) number identifying
the locality.
worker-thread#* is defining the worker thread for which the overall time spent performing
background work should be queried for. The worker thread number (given by the *) is a (zero
based) number identifying the worker thread. The number of available worker threads is
usually specified on the command line for the application using the option --hpx:threads.

Description Returns the overall time spent performing background work on the given locality since ap-
plication start. If the instance name is total the counter returns the overall time spent
performing background work for all worker threads (cores) on that locality. If the instance
name is worker-thread#* the counter will return the overall time spent performing back-
ground work for all worker threads separately. This counter is available only if the con-
figuration time constants HPX_WITH_BACKGROUND_THREAD_COUNTERS (default: OFF) and
HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure for this
counter is nanosecond [ns].

256 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.79: Thread manager performance counter /threads/
background-overhead

Counter type /threads/background-overhead
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#*
where:
locality#* is defining the locality for which the background overhead should be queried
for. The locality id (given by *) is a (zero based) number identifying the locality.
worker-thread#* is defining the worker thread for which the background overhead should
be queried for. The worker thread number (given by the *) is a (zero based) number identi-
fying the worker thread. The number of available worker threads is usually specified on the
command line for the application using the option --hpx:threads.

Description Returns the background overhead on the given locality since application start. If the in-
stance name is total the counter returns the background overhead for all worker threads
(cores) on that locality. If the instance name is worker-thread#* the counter will return
background overhead for all worker threads separately. This counter is available only if the
configuration time constants HPX_WITH_BACKGROUND_THREAD_COUNTERS (default: OFF)
and HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure dis-
played for this counter is 0.1%.

Table 2.80: Thread manager performance counter /threads/time/
background-send-duration

Counter type /threads/time/background-send-duration
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#*
where:
locality#* is defining the locality for which the overall time spent performing background
work related to sending parcels should be queried for. The locality id (given by *) is a (zero
based) number identifying the locality.
worker-thread#* is defining the worker thread for which the overall time spent performing
background work related to sending parcels should be queried for. The worker thread number
(given by the *) is a (zero based) number identifying the worker thread. The number of
available worker threads is usually specified on the command line for the application using
the option --hpx:threads.

Description Returns the overall time spent performing background work related to sending parcels on the
given locality since application start. If the instance name is total the counter returns the
overall time spent performing background work for all worker threads (cores) on that locality.
If the instance name is worker-thread#* the counter will return the overall time spent
performing background work for all worker threads separately. This counter is available only
if the configuration time constants HPX_WITH_BACKGROUND_THREAD_COUNTERS (default:
OFF) and HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure
for this counter is nanosecond [ns].
This counter will currently return meaningful values for the MPI parcelport only.

2.3. Manual 257

HPX Documentation, master

Table 2.81: Thread manager performance counter /threads/
background-send-overhead

Counter type /threads/background-send-overhead
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#*
where:
locality#* is defining the locality for which the background overhead related to sending
parcels should be queried for. The locality id (given by *) is a (zero based) number identi-
fying the locality.
worker-thread#* is defining the worker thread for which the background overhead related
to sending parcels should be queried for. The worker thread number (given by the *) is a (zero
based) number identifying the worker thread. The number of available worker threads is
usually specified on the command line for the application using the option --hpx:threads.

Description Returns the background overhead related to sending parcels on the given local-
ity since application start. If the instance name is total the counter returns the
background overhead for all worker threads (cores) on that locality. If the in-
stance name is worker-thread#* the counter will return background overhead for
all worker threads separately. This counter is available only if the configura-
tion time constants HPX_WITH_BACKGROUND_THREAD_COUNTERS (default: OFF) and
HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure dis-
played for this counter is 0.1%.
This counter will currently return meaningful values for the MPI parcelport only.

Table 2.82: Thread manager performance counter /threads/time/
background-receive-duration

Counter type /threads/time/background-receive-duration
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#*
where:
locality#* is defining the locality for which the overall time spent performing background
work related to receiving parcels should be queried for. The locality id (given by *) is a (zero
based) number identifying the locality.
worker-thread#* is defining the worker thread for which the overall time spent performing
background work related to receiving parcels should be queried for. The worker thread
number (given by the *) is a (zero based) number identifying the worker thread. The number
of available worker threads is usually specified on the command line for the application using
the option --hpx:threads.

Description Returns the overall time spent performing background work related to receiving parcels on
the given locality since application start. If the instance name is total the counter returns
the overall time spent performing background work for all worker threads (cores) on that
locality. If the instance name is worker-thread#* the counter will return the overall time
spent performing background work for all worker threads separately. This counter is avail-
able only if the configuration time constants HPX_WITH_BACKGROUND_THREAD_COUNTERS
(default: OFF) and HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit
of measure for this counter is nanosecond [ns].
This counter will currently return meaningful values for the MPI parcelport only.

258 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.83: Thread manager performance counter /threads/
background-receive-overhead

Counter type /threads/background-receive-overhead
Counter instance
formatting

locality#*/total or
locality#*/worker-thread#*
where:
locality#* is defining the locality for which the background overhead related to receiving
should be queried for. The locality id (given by *) is a (zero based) number identifying the
locality.
worker-thread#* is defining the worker thread for which the background overhead re-
lated to receiving parcels should be queried for. The worker thread number (given by
the *) is a (zero based) number identifying the worker thread. The number of available
worker threads is usually specified on the command line for the application using the option
--hpx:threads.

Description Returns the background overhead related to receiving parcels on the given local-
ity since application start. If the instance name is total the counter returns the
background overhead for all worker threads (cores) on that locality. If the in-
stance name is worker-thread#* the counter will return background overhead for
all worker threads separately. This counter is available only if the configura-
tion time constants HPX_WITH_BACKGROUND_THREAD_COUNTERS (default: OFF) and
HPX_WITH_THREAD_IDLE_RATES are set to ON (default: OFF). The unit of measure dis-
played for this counter is 0.1%.
This counter will currently return meaningful values for the MPI parcelport only.

Table 2.84: General performance counter /runtime/count/
component

Counter type /runtime/count/component
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of components should be queried. The locality
id is a (zero based) number identifying the locality.

Description Returns the overall number of currently active components of the specified type on the given
locality.

Parameters The type of the component. This is the string which has been used while registering the
component with HPX, e.g. which has been passed as the second parameter to the macro
HPX_REGISTER_COMPONENT.

Table 2.85: General performance counter /runtime/count/
action-invocation

Counter type /runtime/count/action-invocation
Counter instance
formatting

locality#*/total
where:

* is the locality id of the locality the number of action invocations should be queried. The
locality id is a (zero based) number identifying the locality.

Description Returns the overall (local) invocation count of the specified action type on the given locality.
Parameters The action type. This is the string which has been used while registering the ac-

tion with HPX, e.g. which has been passed as the second parameter to the macro
HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID.

2.3. Manual 259

HPX Documentation, master

Table 2.86: General performance counter /runtime/count/
remote-action-invocation

Counter type /runtime/count/remote-action-invocation
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of action invocations should be queried. The
locality id is a (zero based) number identifying the locality.

Description Returns the overall (remote) invocation count of the specified action type on the given lo-
cality.

Parameters The action type. This is the string which has been used while registering the ac-
tion with HPX, e.g. which has been passed as the second parameter to the macro
HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID.

Table 2.87: General performance counter /runtime/uptime
Counter type /runtime/uptime
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the system uptime should be queried. The locality id is a
(zero based) number identifying the locality.

Description Returns the overall time since application start on the given locality in nanoseconds.

Table 2.88: General performance counter /runtime/memory/virtual
Counter type /runtime/memory/virtual
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the allocated virtual memory should be queried. The
locality id is a (zero based) number identifying the locality.

Description Returns the amount of virtual memory currently allocated by the referenced locality (in
bytes).

Table 2.89: General performance counter /runtime/memory/
resident

Counter type /runtime/memory/resident
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the allocated resident memory should be queried. The
locality id is a (zero based) number identifying the locality.

Description Returns the amount of resident memory currently allocated by the referenced locality (in
bytes).

260 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.90: General performance counter /runtime/memory/total
Counter type /runtime/memory/total
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the total available memory should be queried. The locality
id is a (zero based) number identifying the locality. Note: only supported in Linux.

Description
Returns the total available memory for use by the referenced locality (in bytes). This

counter is available on Linux and Windows systems only.

Table 2.91: General performance counter /runtime/io/
read_bytes_issued

Counter type /runtime/io/read_bytes_issued
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of bytes read should be queried. The locality
id is a (zero based) number identifying the locality.

Description Returns the number of bytes read by the process (aggregate of count arguments passed to
read() call or its analogues). This performance counter is available only on systems which
expose the related data through the /proc file system.

Table 2.92: General performance counter /runtime/io/
write_bytes_issued

Counter type /runtime/io/write_bytes_issued
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of bytes written should be queried. The locality
id is a (zero based) number identifying the locality.

Description Returns the number of bytes written by the process (aggregate of count arguments passed to
write() call or its analogues). This performance counter is available only on systems which
expose the related data through the /proc file system.

Table 2.93: General performance counter /runtime/io/
read_syscalls

Counter type /runtime/io/read_syscalls
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of system calls should be queried. The locality
id is a (zero based) number identifying the locality.

Description Returns the number of system calls that perform I/O reads. This performance counter is
available only on systems which expose the related data through the /proc file system.

2.3. Manual 261

HPX Documentation, master

Table 2.94: General performance counter /runtime/io/
write_syscalls

Counter type /runtime/io/write_syscalls
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of system calls should be queried. The locality
id is a (zero based) number identifying the locality.

Description Returns the number of system calls that perform I/O writes. This performance counter is
available only on systems which expose the related data through the /proc file system.

Table 2.95: General performance counter /runtime/io/
read_bytes_transferred

Counter type /runtime/io/read_bytes_transferred
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of bytes transferred should be queried. The
locality id is a (zero based) number identifying the locality.

Description Returns the number of bytes retrieved from storage by I/O operations. This performance
counter is available only on systems which expose the related data through the /proc file
system.

Table 2.96: General performance counter /runtime/io/
write_bytes_transferred

Counter type /runtime/io/write_bytes_transferred
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of bytes transferred should be queried. The
locality id is a (zero based) number identifying the locality.

Description Returns the number of bytes retrieved from storage by I/O operations. This performance
counter is available only on systems which expose the related data through the /proc file
system.

Table 2.97: General performance counter /runtime/io/
write_bytes_cancelled

Counter type /runtime/io/write_bytes_cancelled
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of bytes not being transferred should be queried.
The locality id is a (zero based) number identifying the locality.

Description Returns the number of bytes accounted by write_bytes_transferred that has not been ulti-
mately stored due to truncation or deletion. This performance counter is available only on
systems which expose the related data through the /proc file system.

262 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.98: Performance counter /papi/<papi_event>
Counter type /papi/<papi_event>

where:
<papi_event> is the name of the PAPI event to expose as a performance counter (such as
PAPI_SR_INS). Note that the list of available PAPI events changes depending on the used
architecture.
For a full list of available PAPI events and their (short) description use the
--hpx:list-counters and --hpx:papi-event-info=all command line options.

Counter instance
formatting

locality#*/total or
locality#*/worker-thread#*
where:
locality#* is defining the locality for which the current current accumulated value of all
busy-loop counters of all worker threads should be queried. The locality id (given by *) is a
(zero based) number identifying the locality.
worker-thread#* is defining the worker thread for which the current value of the busy-
loop counter should be queried for. The worker thread number (given by the *) is a (zero
based) worker thread number (given by the *) is a (zero based) number identifying the worker
thread. The number of available worker threads is usually specified on the command line
for the application using the option --hpx:threads.

Description Returns the current count of occurrences of the specified PAPI event. This counter is avail-
able only if the configuration time constant HPX_WITH_PAPI is set to ON (default: OFF).

Table 2.99: Performance counter /statistics/average
Counter type /statistics/average
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current average (mean) value calculated based on the values queried from the
underlying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to two comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value can be either 0 or 1 and specifies whether the underlying counter should be
reset during evaluation 1 or not 0. The default value is 0.

Table 2.100: Performance counter /statistics/rolling_average
Counter type /statistics/rolling_average
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current rolling average (mean) value calculated based on the values queried from
the underlying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to three comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value will be interpreted as the size of the rolling window (the number of latest values
to use to calculate the rolling average). The default value for this is 10. The third value can be
either 0 or 1 and specifies whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

2.3. Manual 263

HPX Documentation, master

Table 2.101: Performance counter /statistics/stddev
Counter type /statistics/stddev
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current standard deviation (stddev) value calculated based on the values queried
from the underlying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to two comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value can be either 0 or 1 and specifies whether the underlying counter should be
reset during evaluation 1 or not 0. The default value is 0.

Table 2.102: Performance counter /statistics/rolling_stddev
Counter type /statistics/rolling_stddev
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current rolling variance (stddev) value calculated based on the values queried
from the underlying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to three comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value will be interpreted as the size of the rolling window (the number of latest values
to use to calculate the rolling average). The default value for this is 10. The third value can be
either 0 or 1 and specifies whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

Table 2.103: Performance counter /statistics/median
Counter type /statistics/median
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current (statistically estimated) median value calculated based on the values
queried from the underlying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to two comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value can be either 0 or 1 and specifies whether the underlying counter should be
reset during evaluation 1 or not 0. The default value is 0.

Table 2.104: Performance counter /statistics/max
Counter type /statistics/max
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current maximum value calculated based on the values queried from the under-
lying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to two comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value can be either 0 or 1 and specifies whether the underlying counter should be
reset during evaluation 1 or not 0. The default value is 0.

264 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.105: Performance counter /statistics/rolling_max
Counter type /statistics/rolling_max
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current rolling maximum value calculated based on the values queried from the
underlying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to three comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value will be interpreted as the size of the rolling window (the number of latest values
to use to calculate the rolling average). The default value for this is 10. The third value can be
either 0 or 1 and specifies whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

Table 2.106: Performance counter /statistics/min
Counter type /statistics/min
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current minimum value calculated based on the values queried from the under-
lying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to two comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value can be either 0 or 1 and specifies whether the underlying counter should be
reset during evaluation 1 or not 0. The default value is 0.

Table 2.107: Performance counter /statistics/rolling_min
Counter type /statistics/rolling_min
Counter instance
formatting

Any full performance counter name. The referenced performance counter is queried at fixed
time intervals as specified by the first parameter.

Description Returns the current rolling minimum value calculated based on the values queried from the
underlying counter (the one specified as the instance name).

Parameters Any parameter will be interpreted as a list of up to three comma separated (integer) values,
where the first is the time interval (in milliseconds) at which the underlying counter should
be queried. If no value is specified, the counter will assume 1000 [ms] as the default. The
second value will be interpreted as the size of the rolling window (the number of latest values
to use to calculate the rolling average). The default value for this is 10. The third value can be
either 0 or 1 and specifies whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

Table 2.108: Performance counter /arithmetics/add
Counter type /arithmetics/add
Description Returns the sum calculated based on the values queried from the underlying counters (the

ones specified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

2.3. Manual 265

HPX Documentation, master

Table 2.109: Performance counter /arithmetics/subtract
Counter type /arithmetics/subtract
Description Returns the difference calculated based on the values queried from the underlying counters

(the ones specified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

Table 2.110: Performance counter /arithmetics/multiply
Counter type /arithmetics/multiply
Description Returns the product calculated based on the values queried from the underlying counters

(the ones specified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

Table 2.111: Performance counter /arithmetics/divide
Counter type /arithmetics/divide
Description Returns the result of division of the values queried from the underlying counters (the ones

specified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

Table 2.112: Performance counter /arithmetics/mean
Counter type /arithmetics/mean
Description Returns the average value of all values queried from the underlying counters (the ones spec-

ified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

Table 2.113: Performance counter /arithmetics/variance
Counter type /arithmetics/variance
Description Returns the standard deviation of all values queried from the underlying counters (the ones

specified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

Table 2.114: Performance counter /arithmetics/median
Counter type /arithmetics/median
Description Returns the median value of all values queried from the underlying counters (the ones spec-

ified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

266 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.115: Performance counter /arithmetics/min
Counter type /arithmetics/min
Description Returns the minimum value of all values queried from the underlying counters (the ones

specified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

Table 2.116: Performance counter /arithmetics/max
Counter type /arithmetics/max
Description Returns the maximum value of all values queried from the underlying counters (the ones

specified as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

Table 2.117: Performance counter /arithmetics/count
Counter type /arithmetics/count
Description Returns the count value of all values queried from the underlying counters (the ones specified

as the parameters).
Parameters The parameter will be interpreted as a comma separated list of full performance counter

names which are queried whenever this counter is accessed. Any wildcards in the counter
names will be expanded.

Note: The /arithmetics counters can consume an arbitrary number of other counters. For this reason those have
to be specified as parameters (a comma separated list of counters appended after a '@'). For instance:

$./bin/hello_world_distributed -t2 \
--hpx:print-counter=/threads{locality#0/worker-thread#*}/count/cumulative \
--hpx:print-counter=/arithmetics/add@/threads{locality#0/worker-thread#*}/count/

→˓cumulative
hello world from OS-thread 0 on locality 0
hello world from OS-thread 1 on locality 0
/threads{locality#0/worker-thread#0}/count/cumulative,1,0.515640,[s],25
/threads{locality#0/worker-thread#1}/count/cumulative,1,0.515520,[s],36
/arithmetics/add@/threads{locality#0/worker-thread#*}/count/cumulative,1,0.516445,[s],64

Since all wildcards in the parameters are expanded, this example is fully equivalent to specifying both counters sepa-
rately to /arithmetics/add:

$./bin/hello_world_distributed -t2 \
--hpx:print-counter=/threads{locality#0/worker-thread#*}/count/cumulative \
--hpx:print-counter=/arithmetics/add@\

/threads{locality#0/worker-thread#0}/count/cumulative,\
/threads{locality#0/worker-thread#1}/count/cumulative

2.3. Manual 267

HPX Documentation, master

Table 2.118: Performance counter /coalescing/count/parcels
Counter type /coalescing/count/parcels
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of parcels for the given action should be queried
for. The locality id is a (zero based) number identifying the locality.

Description Returns the number of parcels handled by the message handler associated with the action
which is given by the counter parameter.

Parameters The action type. This is the string which has been used while registering the ac-
tion with HPX, e.g. which has been passed as the second parameter to the macro
HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID.

Table 2.119: Performance counter /coalescing/count/messages
Counter type /coalescing/count/messages
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of messages for the given action should be
queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the number of messages generated by the message handler associated with the action
which is given by the counter parameter.

Parameters The action type. This is the string which has been used while registering the ac-
tion with HPX, e.g. which has been passed as the second parameter to the macro
HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID.

Table 2.120: Performance counter /coalescing/count/
average-parcels-per-message

Counter type /coalescing/count/average-parcels-per-message
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the number of messages for the given action should be
queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the average number of parcels sent in a message generated by the message handler
associated with the action which is given by the counter parameter.

Parameters The action type. This is the string which has been used while registering the ac-
tion with HPX, e.g. which has been passed as the second parameter to the macro
HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID

Table 2.121: Performance counter /coalescing/time/
average-parcel-arrival

Counter type /coalescing/time/average-parcel-arrival
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the average time between parcels for the given action should
be queried for. The locality id is a (zero based) number identifying the locality.

Description Returns the average time between arriving parcels for the action which is given by the counter
parameter.

Parameters The action type. This is the string which has been used while registering the ac-
tion with HPX, e.g. which has been passed as the second parameter to the macro
HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID

268 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.122: Performance counter /coalescing/time/
parcel-arrival-histogram

Counter type /coalescing/time/parcel-arrival-histogram
Counter instance
formatting

locality#*/total
where:
* is the locality id of the locality the average time between parcels for the given action should
be queried for. The locality id is a (zero based) number identifying the locality.

Description Returns a histogram representing the times between arriving parcels for the action which is
given by the counter parameter.
This counter returns an array of values, where the first three values represent the three pa-
rameters used for the histogram followed by one value for each of the histogram buckets.
The first unit of measure displayed for this counter [ns] refers to the lower and upper bound-
ary values in the returned histogram data only. The second unit of measure displayed [0.1%]
refers to the actual histogram data.
For each bucket the counter shows a value between 0 and 1000 which corresponds to a
percentage value between 0% and 100%.

Parameters The action type and optional histogram parameters. The action type is the string which has
been used while registering the action with HPX, e.g. which has been passed as the second
parameter to the macro HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID.
The action type may be followed by a comma separated list of up-to three numbers: the
lower and upper boundaries for the collected histogram, and the number of buckets for the
histogram to generate. By default these three numbers will be assumed to be 0 ([ns], lower
bound), 1000000 ([ns], upper bound), and 20 (number of buckets to generate).

Note: The performance counters related to parcel coalescing are available only if the configuration time constant
HPX_WITH_PARCEL_COALESCING is set to ON (default: ON). However, even in this case it will be available only
for actions that are enabled for parcel coalescing (see the macros HPX_ACTION_USES_MESSAGE_COALESCING and
HPX_ACTION_USES_MESSAGE_COALESCING_NOTHROW).

APEX integration

HPX provides integration with APEX175, which is a framework for application profiling using task timers and
various performance counters Huck et al.183. It can be added as a git submodule by turning on the option
HPX_WITH_APEX:BOOL during CMake176 configuration. TAU177 is an optional dependency when using APEX.

To build HPX with APEX178, add HPX_WITH_APEX=ON, and, optionally, Tau_ROOT=$PATH_TO_TAU to your CMake179

configuration. In addition, you can override the tag used for APEX180 with the HPX_WITH_APEX_TAG option. Please
see the APEX HPX documentation181 for detailed instructions on using APEX182 with HPX.

175 http://uo-oaciss.github.io/apex
183 K. A. Huck, A. Porterfield, N Chaimov, H. Kaiser, A. D. Malony, T. Sterling, and R. Fowler. An autonomic performance environment for

exascale. Supercomputing Frontiers and Innovations, 2015.
176 https://www.cmake.org
177 https://www.cs.uoregon.edu/research/tau/home.php
178 http://uo-oaciss.github.io/apex
179 https://www.cmake.org
180 http://uo-oaciss.github.io/apex
181 https://uo-oaciss.github.io/apex/usage/#hpx-louisiana-state-university
182 http://uo-oaciss.github.io/apex

2.3. Manual 269

http://uo-oaciss.github.io/apex
https://www.cmake.org
https://www.cs.uoregon.edu/research/tau/home.php
http://uo-oaciss.github.io/apex
https://www.cmake.org
http://uo-oaciss.github.io/apex
https://uo-oaciss.github.io/apex/usage/#hpx-louisiana-state-university
http://uo-oaciss.github.io/apex

HPX Documentation, master

References

2.3.15 Using the LCI parcelport

Basic information

The Lightweight Communication Interface184 (LCI) is an ongoing research project aiming to provide efficient sup-
port for applications with irregular and asynchronous communication patterns such as graph analysis, sparse linear
algebra, and task-based runtime on modern parallel architectures. Its features include (a) support for more communica-
tion primitives such as two-sided send/recv and one-sided (dynamic or direct) remote put/get (b) better multi-threaded
performance (c) explicit user control of communication resource (d) flexible signaling mechanisms such as synchro-
nizer, completion queue, and active message handler. It is designed to be a low-level communication library used by
high-level libraries and frameworks.

The LCI parcelport is an experimental parcelport. It aims to provide the best possible communication performance on
high-performance computation platforms. Compared to the MPI parcelport, it uses much fewer messages and memory
copies to transfer an HPX parcel over the network. Its message transmission path involves minimum synchronization
points and is almost lock-free. It is expected to be much faster than the MPI parcelport.

Build HPX with the LCI parcelport

While building HPX, you can specify a set of CMake185 variables to enable and configure the LCI parcelport. Below,
there is a set of the most important and frequently used CMake variables.

HPX_WITH_PARCELPORT_LCI

Enable the LCI parcelport. This enables the use of LCI for networking operations in the HPX runtime. The
default value is OFF because it’s not available on all systems and/or requires another dependency. However, this
experimental parcelport may provide better performance than the MPI parcelport. You must set this variable to
ON in order to use the LCI parcelport. All the following variables only make sense when this variable is set to
ON.

HPX_WITH_FETCH_LCI

Use FetchContent to fetch LCI. The default value is OFF. If this option is set to OFF. You need to install your own
LCI library and HPX will try to find it using CMake186 find_package. You can specify the location of the LCI
installation by the environmental variable LCI_ROOT. Refer to the LCI README187 for how to install LCI. If
this option is set to ON. HPX will fetch and build LCI for you. You can use the following CMake188 variables to
configure this behavior for your platform.

HPX_WITH_LCI_TAG

This variable only takes effect when HPX_WITH_FETCH_LCI is set to ON and FETCHCONTENT_SOURCE_DIR_LCI
is not set. HPX will fetch LCI from its github repository. This variable controls the branch/tag LCI will be
fetched.

FETCHCONTENT_SOURCE_DIR_LCI

This variable only takes effect when HPX_WITH_FETCH_LCI is set to ON. When it is defined, HPX_WITH_LCI_TAG
will be ignored. It accepts a path to a local version of LCI source code and HPX will fetch and build LCI from
there. The default value is set conservatively for the stability of HPX, but users are welcome to set this variable
to master for potentially better performance.

184 https://github.com/uiuc-hpc/lci
185 https://www.cmake.org
186 https://www.cmake.org
187 https://github.com/uiuc-hpc/lci#readme
188 https://www.cmake.org

270 Chapter 2. What’s so special about HPX?

https://github.com/uiuc-hpc/lci
https://www.cmake.org
https://www.cmake.org
https://github.com/uiuc-hpc/lci#readme
https://www.cmake.org

HPX Documentation, master

Run HPX with the LCI parcelport

We use the same mechanisms as MPI to launch LCI, so you can use the same way you run MPI parcelport to run LCI
parcelport. Typically, it would be hpxrun.py, mpirun, or srun.

hpxrun.py serves as a wrapper for mpirun and srun. If you are using hpxrun.py, pass -p lci to the scripts. You
also need to pass either -r mpi or -r srun to select the correct run wrapper according to the platform.

If you are using mpirun or srun, you can just pass --hpx:ini=hpx.parcel.lci.priority=1000,
--hpx:ini=hpx.parcel.lci.enable=1, and --hpx:ini=hpx.parcel.bootstrap=lci to the HPX appli-
cations.

The hpxrun.py argument -r none (the default option for the run wrapper) and its corresponding HPX arguments
--hpx:hpx and --hpx:agas do not work for the MPI or the LCI parcelport.

Performance tuning of the LCI parcelport

We encourage users to set the following environmental variables when using the LCI parcelport to get better perfor-
mance.

$ export LCI_SERVER_MAX_SENDS=1024
$ export LCI_SERVER_MAX_RECVS=4096
$ export LCI_SERVER_NUM_PKTS=65536
$ export LCI_SERVER_MAX_CQES=65536
$ export LCI_PACKET_SIZE=12288

This setting needs roughly 800MB memory per process. The memory consumption mainly comes from the packets,
which can be calculated using LCI_SERVER_NUM_PKTS x LCI_PACKET_SIZE.

In addition, users can tune the following command-line options when using the LCI parcelport to get better performance.

--hpx:ini=hpx.parcel.lci.ndevices=<int>

The number of LCI devices to use. The default value is 2. An LCI device represents a collection of network
resources. More devices lead to lower thread contention, but too many devices may lead to load imbalance or
hardware overhead.

--hpx:ini=hpx.parcel.lci.progress_type=<worker|rp>

The way to progress the LCI device. The default value is worker. The worker option uses all worker threads to
progress the LCI devices. The rp option uses dedicated pinned threads to progress the LCI devices. Normally,
the worker option gives better performance, but the rp option has been observed with better performance on
some clusters with prior generation of InfiniBand hardware.

2.3.16 HPX runtime and resources

HPX thread scheduling policies

The HPX runtime has six thread scheduling policies: local-priority, static-priority, local, static, local-workrequesting-
fifo, and abp-priority. These policies can be specified from the command line using the command line option
--hpx:queuing. In order to use a particular scheduling policy, the runtime system must be built with the appropriate
scheduler flag turned on (e.g. cmake -DHPX_THREAD_SCHEDULERS=local, see CMake options for more information).

2.3. Manual 271

HPX Documentation, master

Priority local scheduling policy (default policy)

The priority local scheduling policy maintains one queue per operating system (OS) thread. The OS thread pulls its
work from this queue. By default the number of high priority queues is equal to the number of OS threads; the number
of high priority queues can be specified on the command line using --hpx:high-priority-threads. High priority
threads are executed by any of the OS threads before any other work is executed. When a queue is empty, work will be
taken from high priority queues first. There is one low priority queue from which threads will be scheduled only when
there is no other work.

For this scheduling policy there is an option to turn on NUMA sensitivity using the command line option
--hpx:numa-sensitive. When NUMA sensitivity is turned on, work stealing is done from queues associated with
the same NUMA domain first, only after that work is stolen from other NUMA domains.

This scheduler is enabled at build time by default using the FIFO (first-in-first-out) queueing policy. This pol-
icy can be invoked using --hpx:queuinglocal-priority-fifo. The scheduler can also be enabled using the
LIFO (last-in-first-out) policy. This is not the default policy and must be invoked using the command line option
--hpx:queuinglocal-priority-lifo.

Static priority scheduling policy

• invoke using: --hpx:queuingstatic-priority (or -qs)

The static scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user threads).
Threads are distributed in a round robin fashion. There is no thread stealing in this policy.

Local scheduling policy

• invoke using: --hpx:queuinglocal (or -ql)

• flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=local

The local scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user threads).

Static scheduling policy

• invoke using: --hpx:queuingstatic

• flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=static

The static scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user threads).
Threads are distributed in a round robin fashion. There is no thread stealing in this policy.

Priority ABP scheduling policy

• invoke using: --hpx:queuingabp-priority-fifo

• flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=abp-priority

Priority ABP policy maintains a double ended lock free queue for each OS thread. By default the number of high
priority queues is equal to the number of OS threads; the number of high priority queues can be specified on the
command line using --hpx:high-priority-threads. High priority threads are executed by the first OS threads
before any other work is executed. When a queue is empty work will be taken from high priority queues first. There
is one low priority queue from which threads will be scheduled only when there is no other work. For this scheduling
policy there is an option to turn on NUMA sensitivity using the command line option --hpx:numa-sensitive. When

272 Chapter 2. What’s so special about HPX?

HPX Documentation, master

NUMA sensitivity is turned on work stealing is done from queues associated with the same NUMA domain first, only
after that work is stolen from other NUMA domains.

This scheduler can be used with two underlying queuing policies (FIFO: first-in-first-out, and LIFO: last-in-first-out).
In order to use the LIFO policy use the command line option --hpx:queuingabp-priority-lifo.

Work requesting scheduling policies

• invoke using: --hpx:queuinglocal-workrequesting-fifo, using --hpx:queuinglocal-workrequesting-lifo,
or using --hpx:queuinglocal-workrequesting-mc

The work-requesting policies rely on a different mechanism of balancing work between cores (compared to the other
policies listed above). Instead of actively trying to steal work from other cores, requesting work relies on a less disruptive
mechanism. If a core runs out of work, instead of actively looking at the queues of neighboring cores, in this case a
request is posted to another core. This core now (whenever it is not busy with other work) either responds to the original
core by sending back work or passes the request on to the next possible core in the system. In general, this scheme
avoids contention on the work queues as those are always accessed by their own cores only.

The HPX resource partitioner

The HPX resource partitioner lets you take the execution resources available on a system—processing units, cores, and
numa domains—and assign them to thread pools. By default HPX creates a single thread pool name default. While
this is good for most use cases, the resource partitioner lets you create multiple thread pools with custom resources and
options.

Creating custom thread pools is useful for cases where you have tasks which absolutely need to run without interference
from other tasks. An example of this is when using MPI189 for distribution instead of the built-in mechanisms in
HPX (useful in legacy applications). In this case one can create a thread pool containing a single thread for MPI
communication. MPI tasks will then always run on the same thread, instead of potentially being stuck in a queue
behind other threads.

Note that HPX thread pools are completely independent from each other in the sense that task stealing will never happen
between different thread pools. However, tasks running on a particular thread pool can schedule tasks on another thread
pool.

Note: It is simpler in some situations to schedule important tasks with high priority instead of using a separate thread
pool.

Using the resource partitioner

The hpx::resource::partitioner is now created during HPX runtime initialization without explicit action needed
from the user. To specify some of the initialization parameters you can use the hpx::init_params.

The resource partitioner callback is the interface to add thread pools to the HPX runtime and to assign resources
to the thread pools. In order to create custom thread pools you can specify the resource partitioner callback
hpx::init_params::rp_callback which will be called once the resource partitioner will be created , see the ex-
ample below. You can also specify other parameters, see hpx::init_params.

To add a thread pool use the hpx::resource::partitioner::create_thread_pool method.
If you simply want to use the default scheduler and scheduler options, it is enough to call rp.
create_thread_pool("my-thread-pool").

189 https://en.wikipedia.org/wiki/Message_Passing_Interface

2.3. Manual 273

https://en.wikipedia.org/wiki/Message_Passing_Interface

HPX Documentation, master

Then, to add resources to the thread pool you can use the hpx::resource::partitioner::add_resource method.
The resource partitioner exposes the hardware topology retrieved using Portable Hardware Locality (HWLOC)190 and
lets you iterate through the topology to add the wanted processing units to the thread pool. Below is an example of
adding all processing units from the first NUMA domain to a custom thread pool, unless there is only one NUMA
domain in which case we leave the first processing unit for the default thread pool:

Note: Whatever processing units are not assigned to a thread pool by the time hpx::init is called will be added to
the default thread pool. It is also possible to explicitly add processing units to the default thread pool, and to create the
default thread pool manually (in order to e.g. set the scheduler type).

Tip: The command line option --hpx:print-bind is useful for checking that the thread pools have been set up the
way you expect.

Difference between the old and new version

In the old version, you had to create an instance of the resource_partitioner with argc and argv.

int main(int argc, char** argv)
{

hpx::resource::partitioner rp(argc, argv);
hpx::init();

}

From HPX 1.5.0 onwards, you just pass argc and argv to hpx::init() or hpx::start() for the binding options to
be parsed by the resource partitioner.

int main(int argc, char** argv)
{

hpx::init_params init_args;
hpx::init(argc, argv, init_args);

}

In the old version, when creating a custom thread pool, you just called the utilities on the resource partitioner instantiated
previously.

int main(int argc, char** argv)
{

hpx::resource::partitioner rp(argc, argv);

rp.create_thread_pool("my-thread-pool");

bool one_numa_domain = rp.numa_domains().size() == 1;
bool skipped_first_pu = false;

hpx::resource::numa_domain const& d = rp.numa_domains()[0];

for (const hpx::resource::core& c : d.cores())
{

(continues on next page)

190 https://www.open-mpi.org/projects/hwloc/

274 Chapter 2. What’s so special about HPX?

https://www.open-mpi.org/projects/hwloc/

HPX Documentation, master

(continued from previous page)

for (const hpx::resource::pu& p : c.pus())
{

if (one_numa_domain && !skipped_first_pu)
{

skipped_first_pu = true;
continue;

}

rp.add_resource(p, "my-thread-pool");
}

}

hpx::init();
}

You now specify the resource partitioner callback which will tie the resources to the resource partitioner created during
runtime initialization.

void init_resource_partitioner_handler(hpx::resource::partitioner& rp)
{

rp.create_thread_pool("my-thread-pool");

bool one_numa_domain = rp.numa_domains().size() == 1;
bool skipped_first_pu = false;

hpx::resource::numa_domain const& d = rp.numa_domains()[0];

for (const hpx::resource::core& c : d.cores())
{

for (const hpx::resource::pu& p : c.pus())
{

if (one_numa_domain && !skipped_first_pu)
{

skipped_first_pu = true;
continue;

}

rp.add_resource(p, "my-thread-pool");
}

}
}

int main(int argc, char* argv[])
{

hpx::init_params init_args;
init_args.rp_callback = &init_resource_partitioner_handler;

hpx::init(argc, argv, init_args);
}

2.3. Manual 275

HPX Documentation, master

Advanced usage

It is possible to customize the built in schedulers by passing scheduler options to
hpx::resource::partitioner::create_thread_pool. It is also possible to create and use custom sched-
ulers.

Note: It is not recommended to create your own scheduler. The HPX developers use this to experiment with
new scheduler designs before making them available to users via the standard mechanisms of choosing a scheduler
(command line options). If you would like to experiment with a custom scheduler the resource partitioner example
shared_priority_queue_scheduler.cpp contains a fully implemented scheduler with logging, etc. to make ex-
ploration easier.

To choose a scheduler and custom mode for a thread pool, pass additional options when creating the thread pool like
this:

rp.create_thread_pool("my-thread-pool",
hpx::resource::policies::local_priority_lifo,
hpx::policies::scheduler_mode(

hpx::policies::scheduler_mode::default |
hpx::policies::scheduler_mode::enable_elasticity));

The available schedulers are documented here: hpx::resource::scheduling_policy, and the avail-
able scheduler modes here: hpx::threads::policies::scheduler_mode. Also see the examples
folder for examples of advanced resource partitioner usage: simple_resource_partitioner.cpp and
oversubscribing_resource_partitioner.cpp.

2.3.17 Miscellaneous

Error handling

Like in any other asynchronous invocation scheme, it is important to be able to handle error conditions occurring while
the asynchronous (and possibly remote) operation is executed. In HPX all error handling is based on standard C++
exception handling. Any exception thrown during the execution of an asynchronous operation will be transferred back
to the original invocation locality, where it will be rethrown during synchronization with the calling thread.

The source code for this example can be found here: error_handling.cpp.

Working with exceptions

For the following description assume that the function raise_exception() is executed by invoking the plain action
raise_exception_type.

#include <hpx/iostream.hpp>
#include <hpx/modules/runtime_local.hpp>

//[error_handling_raise_exception
void raise_exception()

The exception is thrown using the macro HPX_THROW_EXCEPTION. The type of the thrown exception is
hpx::exception. This associates additional diagnostic information with the exception, such as file name and line
number, locality id and thread id, and stack backtrace from the point where the exception was thrown.

276 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Any exception thrown during the execution of an action is transferred back to the (asynchronous) invocation site. It
will be rethrown in this context when the calling thread tries to wait for the result of the action by invoking either
future<>::get() or the synchronous action invocation wrapper as shown here:

{
{

///
// Error reporting using exceptions
//[exception_diagnostic_information
hpx::cout << "Error reporting using exceptions\n";
try
{

// invoke raise_exception() which throws an exception
raise_exception_action do_it;
do_it(hpx::find_here());

}
catch (hpx::exception const& e)
{

// Print just the essential error information.
hpx::cout << "caught exception: " << e.what() << "\n\n";

Note: The exception is transferred back to the invocation site even if it is executed on a different locality.

Additionally, this example demonstrates how an exception thrown by an (possibly remote) action can be handled. It
shows the use of hpx::diagnostic_information, which retrieves all available diagnostic information from the
exception as a formatted string. This includes, for instance, the name of the source file and line number, the sequence
number of the OS thread and the HPX thread id, the locality id and the stack backtrace of the point where the original
exception was thrown.

Under certain circumstances it is desirable to output only some of the diagnostics, or to output those using different
formatting. For this case, HPX exposes a set of lower-level functions as demonstrated in the following code snippet:

<< hpx::diagnostic_information(e) << "\n";
}
hpx::cout << std::flush;
//]

// Detailed error reporting using exceptions
//[exception_diagnostic_elements
hpx::cout << "Detailed error reporting using exceptions\n";
try
{

// Invoke raise_exception() which throws an exception.
raise_exception_action do_it;
do_it(hpx::find_here());

}
catch (hpx::exception const& e)
{

// Print the elements of the diagnostic information separately.
hpx::cout << "{what}: " << hpx::get_error_what(e) << "\n";
hpx::cout << "{locality-id}: " << hpx::get_error_locality_id(e)

<< "\n";
hpx::cout << "{hostname}: " << hpx::get_error_host_name(e) << "\n";

(continues on next page)

2.3. Manual 277

HPX Documentation, master

(continued from previous page)

hpx::cout << "{pid}: " << hpx::get_error_process_id(e) << "\n";
hpx::cout << "{function}: " << hpx::get_error_function_name(e)

<< "\n";
hpx::cout << "{file}: " << hpx::get_error_file_name(e) << "\n";
hpx::cout << "{line}: " << hpx::get_error_line_number(e) << "\n";

Working with error codes

Most of the API functions exposed by HPX can be invoked in two different modes. By default those will throw an
exception on error as described above. However, sometimes it is desirable not to throw an exception in case of an error
condition. In this case an object instance of the hpx::error_code type can be passed as the last argument to the API
function. In case of an error, the error condition will be returned in that hpx::error_code instance. The following
example demonstrates extracting the full diagnostic information without exception handling:

<< "\n";
hpx::cout << "{stack-trace}: " << hpx::get_error_backtrace(e)

<< "\n";
hpx::cout << "{env}: " << hpx::get_error_env(e) << "\n";

}
hpx::cout << std::flush;
//]

///
// Error reporting using error code
{

//[error_handling_diagnostic_information
hpx::cout << "Error reporting using error code\n";

// Create a new error_code instance.
hpx::error_code ec;

// If an instance of an error_code is passed as the last argument while
// invoking the action, the function will not throw in case of an error
// but store the error information in this error_code instance instead.
raise_exception_action do_it;
do_it(hpx::find_here(), ec);

Note: The error information is transferred back to the invocation site even if it is executed on a different locality.

This example show how an error can be handled without having to resolve to exceptions and that the returned
hpx::error_code instance can be used in a very similar way as the hpx::exception type above. Simply pass
it to the hpx::diagnostic_information, which retrieves all available diagnostic information from the error code
instance as a formatted string.

As for handling exceptions, when working with error codes, under certain circumstances it is desirable to output only
some of the diagnostics, or to output those using different formatting. For this case, HPX exposes a set of lower-level
functions usable with error codes as demonstrated in the following code snippet:

// Print all of the available diagnostic information as stored with
// the exception.

(continues on next page)

278 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

hpx::cout << "diagnostic information:"
<< hpx::diagnostic_information(ec) << "\n";

}

hpx::cout << std::flush;
//]

}

// Detailed error reporting using error code
{

//[error_handling_diagnostic_elements
hpx::cout << "Detailed error reporting using error code\n";

// Create a new error_code instance.
hpx::error_code ec;

// If an instance of an error_code is passed as the last argument while
// invoking the action, the function will not throw in case of an error
// but store the error information in this error_code instance instead.
raise_exception_action do_it;
do_it(hpx::find_here(), ec);

if (ec)
{

// Print the elements of the diagnostic information separately.
hpx::cout << "{what}: " << hpx::get_error_what(ec) << "\n";
hpx::cout << "{locality-id}: " << hpx::get_error_locality_id(ec)

<< "\n";
hpx::cout << "{hostname}: " << hpx::get_error_host_name(ec)

<< "\n";
hpx::cout << "{pid}: " << hpx::get_error_process_id(ec) << "\n";

For more information please refer to the documentation of hpx::get_error_what,
hpx::get_error_locality_id , hpx::get_error_host_name, hpx::get_error_process_id ,
hpx::get_error_function_name, hpx::get_error_file_name, hpx::get_error_line_number,
hpx::get_error_os_thread , hpx::get_error_thread_id , hpx::get_error_thread_description,
hpx::get_error_backtrace, hpx::get_error_env, and hpx::get_error_state.

Lightweight error codes

Sometimes it is not desirable to collect all the ambient information about the error at the point where it happened as
this might impose too much overhead for simple scenarios. In this case, HPX provides a lightweight error code facility
that will hold the error code only. The following snippet demonstrates its use:

<< "\n";
hpx::cout << "{thread-id}: " << std::hex

<< hpx::get_error_thread_id(ec) << "\n";
hpx::cout << "{thread-description}: "

<< hpx::get_error_thread_description(ec) << "\n\n";
hpx::cout << "{state}: " << std::hex << hpx::get_error_state(ec)

<< "\n";
(continues on next page)

2.3. Manual 279

HPX Documentation, master

(continued from previous page)

hpx::cout << "{stack-trace}: " << hpx::get_error_backtrace(ec)
<< "\n";

hpx::cout << "{env}: " << hpx::get_error_env(ec) << "\n";
}

hpx::cout << std::flush;
//]

}

// Error reporting using lightweight error code
{

//[lightweight_error_handling_diagnostic_information
hpx::cout << "Error reporting using an lightweight error code\n";

All functions that retrieve other diagnostic elements from the hpx::error_code will fail if called with a lightweight
error_code instance.

Utilities in HPX

In order to ease the burden of programming, HPX provides several utilities to users. The following section documents
those facilies.

Checkpoint

See checkpoint.

The HPX I/O-streams component

The HPX I/O-streams subsystem extends the standard C++ output streams std::cout and std::cerr to work in the
distributed setting of an HPX application. All of the output streamed to hpx::cout will be dispatched to std::cout
on the console locality. Likewise, all output generated from hpx::cerr will be dispatched to std::cerr on the
console locality.

Note: All existing standard manipulators can be used in conjunction with hpx::cout and hpx::cerr.

In order to use either hpx::cout or hpx::cerr, application codes need to #include <hpx/include/iostreams.
hpp>. For an example, please see the following ‘Hello world’ program:

// Copyright (c) 2007-2012 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

///
// The purpose of this example is to execute a HPX-thread printing
// "Hello World!" once. That's all.

//[hello_world_1_getting_started
(continues on next page)

280 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.
#include <hpx/hpx_main.hpp>
#include <hpx/iostream.hpp>

int main()
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << std::flush;
return 0;

}
//]

Additionally, those applications need to link with the iostreams component. When using CMake this can be achieved
by using the COMPONENT_DEPENDENCIES parameter; for instance:

include(HPX_AddExecutable)

add_hpx_executable(
hello_world
SOURCES hello_world.cpp
COMPONENT_DEPENDENCIES iostreams

)

Note: The hpx::cout and hpx::cerr streams buffer all output locally until a std::endl or std::flush is en-
countered. That means that no output will appear on the console as long as either of these is explicitly used.

2.3.18 Troubleshooting

Common issues

This section contains commonly encountered problems when compiling or using HPX.

See also the closed issues on GitHub191 to find out how other people resolved a similar problem. If nothing of that
works, you can also open a new issue on GitHub192 or contact us using one the options found in Support for deploying
and using HPX193.

191 https://github.com/STEllAR-GROUP/hpx/issues?q=is%3Aissue+is%3Aclosed
192 https://github.com/STEllAR-GROUP/hpx/issues
193 https://github.com/STEllAR-GROUP/hpx/blob/master/.github/SUPPORT.md

2.3. Manual 281

https://github.com/STEllAR-GROUP/hpx/issues?q=is%3Aissue+is%3Aclosed
https://github.com/STEllAR-GROUP/hpx/issues
https://github.com/STEllAR-GROUP/hpx/blob/master/.github/SUPPORT.md
https://github.com/STEllAR-GROUP/hpx/blob/master/.github/SUPPORT.md

HPX Documentation, master

HPX::iostreams_component" target not found

You may see a CMake194 error message that looks a bit like this:

error: `HPX::iostreams_component`` target not found

Simply ensure that HPX is installed with HPX_WITH_DISTRIBUTED_RUNTIME=ON to prevent encountering such er-
ror(s). This is required if you want to use hpx::cout.

Undefined reference to hpx::cout

You may see a linker error message that looks a bit like this:

hello_world.cpp:(.text+0x5aa): undefined reference to `hpx::cout'

This usually happens if you are trying to use HPX iostreams functionality such as hpx::cout but are not linking against
it. The iostreams functionality is not part of the core HPX library, and must be linked to explicitly. Typically this can be
solved by adding COMPONENT_DEPENDENCIES iostreams to a call to add_hpx_library/add_hpx_executable/
hpx_setup_target if using CMake195. See Creating HPX projects for more details.

Fail compiling for examples with hpx::future and co_await

You may see an error message that looks a bit like this:

error: coroutines require a traits template; cannot find 'std::coroutine_traits'

This can be resolved by using -DHPX_WITH_CXX_STANDARD=20 to the cmake command line. Note that a compiler that
supports C++20 is needed.

See also the corresponding closed Issue #5784196.

Build fails with ASIO error

You may see an error message that looks a bit like this:

Cannot open include file asio/io_context.hpp

This can be resolved by using -DHPX_WITH_FETCH_ASIO=ON to the cmake command line.

See also the corresponding closed Issue #5404197 for more information.
194 https://www.cmake.org
195 https://www.cmake.org
196 https://github.com/STEllAR-GROUP/hpx/issues/5784
197 https://github.com/STEllAR-GROUP/hpx/issues/5404

282 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://www.cmake.org
https://github.com/STEllAR-GROUP/hpx/issues/5784
https://github.com/STEllAR-GROUP/hpx/issues/5404

HPX Documentation, master

Build fails with TCMalloc error

You may see an error message that looks a bit like this:

Could NOT find TCMalloc (missing: Tcmalloc_LIBRARY Tcmalloc_INCLUDE_DIR)
ERROR: HPX_WITH_MALLOC was set to tcmalloc, but tcmalloc could not be
found. Valid options for HPX_WITH_MALLOC are: system, tcmalloc, jemalloc,
mimalloc, tbbmalloc, and custom

This can be resolved either by defining HPX_WITH_MALLOC=system or by installing TCMalloc. This error occurs when
users don’t specify an option for HPX_WITH_MALLOC; in that case, HPX will be looking tcmalloc, which is the default
value.

Useful suggestions

Reducing compilation time

If you want to significantly reduce compilation time, you can just use the local part of HPX for parallelism by disabling
the distributed functionality. Moreover, you can avoid compiling examples. These can be done with the following flags:

-DHPX_WITH_NETWORKING=OFF
-DHPX_WITH_DISTRIBUTED_RUNTIME=OFF
-DHPX_WITH_EXAMPLES=OFF
-DHPX_WITH_TESTS=OFF

Linking HPX to your application

If you want to avoid installing and linking HPX, you can just build HPX and then use the following flag on your HPX
application CMake configuration:

-DHPX_DIR=<build_dir>/lib/cmake/HPX

Note: For this to work you need not to specify -DCMAKE_INSTALL_PREFIX when building HPX.

HPX -application build type conformance

Your application’s build type should align with the HPX build type. For example, if you specified
-DCMAKE_BUILD_TYPE=Debug during the HPX compilation, then your application needs to be compiled with the
same flag. We recommend keeping a separate build folder for different build types and just point accordingly to the
type you want by using -DHPX_DIR=<build_dir>/lib/cmake/HPX.

2.3. Manual 283

HPX Documentation, master

2.4 Terminology

This section gives definitions for some of the terms used throughout the HPX documentation and source code.

Locality A locality in HPX describes a synchronous domain of execution, or the domain of bounded upper response
time. This normally is just a single node in a cluster or a NUMA domain in a SMP machine.

Active Global Address Space

AGAS HPX incorporates a global address space. Any executing thread can access any object within the domain of the
parallel application with the caveat that it must have appropriate access privileges. The model does not assume
that global addresses are cache coherent; all loads and stores will deal directly with the site of the target object. All
global addresses within a Synchronous Domain are assumed to be cache coherent for those processor cores that
incorporate transparent caches. The Active Global Address Space used by HPX differs from research PGAS198

models. Partitioned Global Address Space is passive in their means of address translation. Copy semantics,
distributed compound operations, and affinity relationships are some of the global functionality supported by
AGAS.

Process The concept of the “process” in HPX is extended beyond that of either sequential execution or communicating
sequential processes. While the notion of process suggests action (as do “function” or “subroutine”) it has a
further responsibility of context, that is, the logical container of program state. It is this aspect of operation that
process is employed in HPX. Furthermore, referring to “parallel processes” in HPX designates the presence of
parallelism within the context of a given process, as well as the coarse grained parallelism achieved through
concurrency of multiple processes of an executing user job. HPX processes provide a hierarchical name space
within the framework of the active global address space and support multiple means of internal state access from
external sources.

Parcel The Parcel is a component in HPX that communicates data, invokes an action at a distance, and distributes
flow-control through the migration of continuations. Parcels bridge the gap of asynchrony between synchronous
domains while maintaining symmetry of semantics between local and global execution. Parcels enable message-
driven computation and may be seen as a form of “active messages”. Other important forms of message-driven
computation predating active messages include dataflow tokens199, the J-machine’s200 support for remote method
instantiation, and at the coarse grained variations of Unix remote procedure calls, among others. This enables
work to be moved to the data as well as performing the more common action of bringing data to the work.
A parcel can cause actions to occur remotely and asynchronously, among which are the creation of threads at
different system nodes or synchronous domains.

Local Control Object

Lightweight Control Object

LCO A local control object (sometimes called a lightweight control object) is a general term for the synchronization
mechanisms used in HPX. Any object implementing a certain concept can be seen as an LCO. This concepts
encapsulates the ability to be triggered by one or more events which when taking the object into a predefined
state will cause a thread to be executed. This could either create a new thread or resume an existing thread.

The LCO is a family of synchronization functions potentially representing many classes of synchronization con-
structs, each with many possible variations and multiple instances. The LCO is sufficiently general that it can
subsume the functionality of conventional synchronization primitives such as spinlocks, mutexes, semaphores,
and global barriers. However due to the rich concept an LCO can represent powerful synchronization and con-
trol functionality not widely employed, such as dataflow and futures (among others), which open up enormous
opportunities for rich diversity of distributed control and operation.

See lcos for more details on how to use LCOs in HPX.
198 https://www.pgas.org/
199 http://en.wikipedia.org/wiki/Dataflow_architecture
200 http://en.wikipedia.org/wiki/J%E2%80%93Machine

284 Chapter 2. What’s so special about HPX?

https://www.pgas.org/
http://en.wikipedia.org/wiki/Dataflow_architecture
http://en.wikipedia.org/wiki/J%E2%80%93Machine

HPX Documentation, master

Action An action is a function that can be invoked remotely. In HPX a plain function can be made into an action using
a macro. See applying_actions for details on how to use actions in HPX.

Component A component is a C++ object which can be accessed remotely. A component can also contain member
functions which can be invoked remotely. These are referred to as component actions. See Writing components
for details on how to use components in HPX.

2.5 Why HPX?

Current advances in high performance computing (HPC) continue to suffer from the issues plaguing parallel compu-
tation. These issues include, but are not limited to, ease of programming, inability to handle dynamically changing
workloads, scalability, and efficient utilization of system resources. Emerging technological trends such as multi-
core processors further highlight limitations of existing parallel computation models. To mitigate the aforementioned
problems, it is necessary to rethink the approach to parallelization models. ParalleX contains mechanisms such as
multi-threading, parcels, global name space support, percolation and local control objects (LCO). By design, ParalleX
overcomes limitations of current models of parallelism by alleviating contention, latency, overhead and starvation.
With ParalleX, it is further possible to increase performance by at least an order of magnitude on challenging paral-
lel algorithms, e.g., dynamic directed graph algorithms and adaptive mesh refinement methods for astrophysics. An
additional benefit of ParalleX is fine-grained control of power usage, enabling reductions in power consumption.

2.5.1 ParalleX—a new execution model for future architectures

ParalleX is a new parallel execution model that offers an alternative to the conventional computation models, such as
message passing. ParalleX distinguishes itself by:

• Split-phase transaction model

• Message-driven

• Distributed shared memory (not cache coherent)

• Multi-threaded

• Futures synchronization

• Local Control Objects (LCOs)

• Synchronization for anonymous producer-consumer scenarios

• Percolation (pre-staging of task data)

The ParalleX model is intrinsically latency hiding, delivering an abundance of variable-grained parallelism within a
hierarchical namespace environment. The goal of this innovative strategy is to enable future systems delivering very
high efficiency, increased scalability and ease of programming. ParalleX can contribute to significant improvements
in the design of all levels of computing systems and their usage from application algorithms and their programming
languages to system architecture and hardware design together with their supporting compilers and operating system
software.

2.5. Why HPX? 285

HPX Documentation, master

2.5.2 What is HPX?

High Performance ParalleX (HPX) is the first runtime system implementation of the ParalleX execution model. The
HPX runtime software package is a modular, feature-complete, and performance-oriented representation of the Par-
alleX execution model targeted at conventional parallel computing architectures, such as SMP nodes and commodity
clusters. It is academically developed and freely available under an open source license. We provide HPX to the com-
munity for experimentation and application to achieve high efficiency and scalability for dynamic adaptive and irregular
computational problems. HPX is a C++ library that supports a set of critical mechanisms for dynamic adaptive resource
management and lightweight task scheduling within the context of a global address space. It is solidly based on many
years of experience in writing highly parallel applications for HPC systems.

The two-decade success of the communicating sequential processes (CSP) execution model and its message passing
interface (MPI) programming model have been seriously eroded by challenges of power, processor core complexity,
multi-core sockets, and heterogeneous structures of GPUs. Both efficiency and scalability for some current (strong
scaled) applications and future Exascale applications demand new techniques to expose new sources of algorithm
parallelism and exploit unused resources through adaptive use of runtime information.

The ParalleX execution model replaces CSP to provide a new computing paradigm embodying the governing princi-
ples for organizing and conducting highly efficient scalable computations greatly exceeding the capabilities of today’s
problems. HPX is the first practical, reliable, and performance-oriented runtime system incorporating the principal
concepts of the ParalleX model publicly provided in open source release form.

HPX is designed by the STE||AR201 Group (Systems Technology, Emergent Parallelism, and Algorithm Research)
at Louisiana State University (LSU)202’s Center for Computation and Technology (CCT)203 to enable developers to
exploit the full processing power of many-core systems with an unprecedented degree of parallelism. STE||AR204 is a
research group focusing on system software solutions and scientific application development for hybrid and many-core
hardware architectures.

For more information about the STE||AR205 Group, see People.

2.5.3 What makes our systems slow?

Estimates say that we currently run our computers at well below 100% efficiency. The theoretical peak performance
(usually measured in FLOPS206—floating point operations per second) is much higher than any practical peak perfor-
mance reached by any application. This is particularly true for highly parallel hardware. The more hardware parallelism
we provide to an application, the better the application must scale in order to efficiently use all the resources of the ma-
chine. Roughly speaking, we distinguish two forms of scalability: strong scaling (see Amdahl’s Law207) and weak
scaling (see Gustafson’s Law208). Strong scaling is defined as how the solution time varies with the number of pro-
cessors for a fixed total problem size. It gives an estimate of how much faster we can solve a particular problem by
throwing more resources at it. Weak scaling is defined as how the solution time varies with the number of processors
for a fixed problem size per processor. In other words, it defines how much more data can we process by using more
hardware resources.

In order to utilize as much hardware parallelism as possible an application must exhibit excellent strong and weak
scaling characteristics, which requires a high percentage of work executed in parallel, i.e., using multiple threads of
execution. Optimally, if you execute an application on a hardware resource with N processors it either runs N times
faster or it can handle N times more data. Both cases imply 100% of the work is executed on all available processors
in parallel. However, this is just a theoretical limit. Unfortunately, there are more things that limit scalability, mostly

201 https://stellar-group.org
202 https://www.lsu.edu
203 https://www.cct.lsu.edu
204 https://stellar-group.org
205 https://stellar-group.org
206 http://en.wikipedia.org/wiki/FLOPS
207 http://en.wikipedia.org/wiki/Amdahl%27s_law
208 http://en.wikipedia.org/wiki/Gustafson%27s_law

286 Chapter 2. What’s so special about HPX?

https://stellar-group.org
https://www.lsu.edu
https://www.cct.lsu.edu
https://stellar-group.org
https://stellar-group.org
http://en.wikipedia.org/wiki/FLOPS
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Gustafson%27s_law

HPX Documentation, master

inherent to the hardware architectures and the programming models we use. We break these limitations into four
fundamental factors that make our systems SLOW :

• Starvation occurs when there is insufficient concurrent work available to maintain high utilization of all resources.

• Latencies are imposed by the time-distance delay intrinsic to accessing remote resources and services.

• Overhead is work required for the management of parallel actions and resources on the critical execution path,
which is not necessary in a sequential variant.

• Waiting for contention resolution is the delay due to the lack of availability of oversubscribed shared resources.

Each of those four factors manifests itself in multiple and different ways; each of the hardware architectures and pro-
gramming models expose specific forms. However, the interesting part is that all of them are limiting the scalability of
applications no matter what part of the hardware jungle we look at. Hand-helds, PCs, supercomputers, or the cloud,
all suffer from the reign of the 4 horsemen: Starvation, Latency, Overhead, and Contention. This realization is very
important as it allows us to derive the criteria for solutions to the scalability problem from first principles, and it al-
lows us to focus our analysis on very concrete patterns and measurable metrics. Moreover, any derived results will be
applicable to a wide variety of targets.

2.5.4 Technology demands new response

Today’s computer systems are designed based on the initial ideas of John von Neumann209, as published back in 1945,
and later extended by the Harvard architecture210. These ideas form the foundation, the execution model, of computer
systems we use currently. However, a new response is required in the light of the demands created by today’s technology.

So, what are the overarching objectives for designing systems allowing for applications to scale as they should? In our
opinion, the main objectives are:

• Performance: as previously mentioned, scalability and efficiency are the main criteria people are interested in.

• Fault tolerance: the low expected mean time between failures (MTBF211) of future systems requires embracing
faults, not trying to avoid them.

• Power: minimizing energy consumption is a must as it is one of the major cost factors today, and will continue
to rise in the future.

• Generality: any system should be usable for a broad set of use cases.

• Programmability: for programmer this is a very important objective, ensuring long term platform stability and
portability.

What needs to be done to meet those objectives, to make applications scale better on tomorrow’s architectures? Well,
the answer is almost obvious: we need to devise a new execution model—a set of governing principles for the holistic
design of future systems—targeted at minimizing the effect of the outlined SLOW factors. Everything we create
for future systems, every design decision we make, every criteria we apply, have to be validated against this single,
uniform metric. This includes changes in the hardware architecture we prevalently use today, and it certainly involves
new ways of writing software, starting from the operating system, runtime system, compilers, and at the application
level. However, the key point is that all those layers have to be co-designed; they are interdependent and cannot be seen
as separate facets. The systems we have today have been evolving for over 50 years now. All layers function in a certain
way, relying on the other layers to do so. But we do not have the time to wait another 50 years for a new coherent system
to evolve. The new paradigms are needed now—therefore, co-design is the key.

209 http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
210 http://en.wikipedia.org/wiki/Harvard_architecture
211 http://en.wikipedia.org/wiki/Mean_time_between_failures

2.5. Why HPX? 287

http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
http://en.wikipedia.org/wiki/Harvard_architecture
http://en.wikipedia.org/wiki/Mean_time_between_failures

HPX Documentation, master

2.5.5 Governing principles applied while developing HPX

As it turn out, we do not have to start from scratch. Not everything has to be invented and designed anew. Many of the
ideas needed to combat the 4 horsemen already exist, many for more than 30 years. All it takes is to gather them into
a coherent approach. We’ll highlight some of the derived principles we think to be crucial for defeating SLOW. Some
of those are focused on high-performance computing, others are more general.

Focus on latency hiding instead of latency avoidance

It is impossible to design a system exposing zero latencies. In an effort to come as close as possible to this goal many
optimizations are mainly targeted towards minimizing latencies. Examples for this can be seen everywhere, such as low
latency network technologies like InfiniBand212, caching memory hierarchies in all modern processors, the constant
optimization of existing MPI213 implementations to reduce related latencies, or the data transfer latencies intrinsic
to the way we use GPGPUs214 today. It is important to note that existing latencies are often tightly related to some
resource having to wait for the operation to be completed. At the same time it would be perfectly fine to do some
other, unrelated work in the meantime, allowing the system to hide the latencies by filling the idle-time with useful
work. Modern systems already employ similar techniques (pipelined instruction execution in the processor cores,
asynchronous input/output operations, and many more). What we propose is to go beyond anything we know today and
to make latency hiding an intrinsic concept of the operation of the whole system stack.

Embrace fine-grained parallelism instead of heavyweight threads

If we plan to hide latencies even for very short operations, such as fetching the contents of a memory cell from main
memory (if it is not already cached), we need to have very lightweight threads with extremely short context switching
times, optimally executable within one cycle. Granted, for mainstream architectures, this is not possible today (even
if we already have special machines supporting this mode of operation, such as the Cray XMT215). For conventional
systems, however, the smaller the overhead of a context switch and the finer the granularity of the threading system,
the better will be the overall system utilization and its efficiency. For today’s architectures we already see a flurry
of libraries providing exactly this type of functionality: non-pre-emptive, task-queue based parallelization solutions,
such as Intel Threading Building Blocks (TBB)216, Microsoft Parallel Patterns Library (PPL)217, Cilk++218, and many
others. The possibility to suspend a current task if some preconditions for its execution are not met (such as waiting
for I/O or the result of a different task), seamlessly switching to any other task which can continue, and to reschedule
the initial task after the required result has been calculated, which makes the implementation of latency hiding almost
trivial.

Rediscover constraint-based synchronization to replace global barriers

The code we write today is riddled with implicit (and explicit) global barriers. By “global barriers,” we mean the
synchronization of the control flow between several (very often all) threads (when using OpenMP219) or processes
(MPI220). For instance, an implicit global barrier is inserted after each loop parallelized using OpenMP221 as the system
synchronizes the threads used to execute the different iterations in parallel. In MPI222 each of the communication steps
imposes an explicit barrier onto the execution flow as (often all) nodes have to be synchronized. Each of those barriers

212 http://en.wikipedia.org/wiki/InfiniBand
213 https://en.wikipedia.org/wiki/Message_Passing_Interface
214 http://en.wikipedia.org/wiki/GPGPU
215 http://en.wikipedia.org/wiki/Cray_XMT
216 https://www.threadingbuildingblocks.org/
217 https://msdn.microsoft.com/en-us/library/dd492418.aspx
218 https://software.intel.com/en-us/articles/intel-cilk-plus/
219 https://openmp.org/wp/
220 https://en.wikipedia.org/wiki/Message_Passing_Interface
221 https://openmp.org/wp/
222 https://en.wikipedia.org/wiki/Message_Passing_Interface

288 Chapter 2. What’s so special about HPX?

http://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/Cray_XMT
https://www.threadingbuildingblocks.org/
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://software.intel.com/en-us/articles/intel-cilk-plus/
https://openmp.org/wp/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://openmp.org/wp/
https://en.wikipedia.org/wiki/Message_Passing_Interface

HPX Documentation, master

is like the eye of a needle the overall execution is forced to be squeezed through. Even minimal fluctuations in the
execution times of the parallel threads (jobs) causes them to wait. Additionally, it is often only one of the executing
threads that performs the actual reduce operation, which further impedes parallelism. A closer analysis of a couple of
key algorithms used in science applications reveals that these global barriers are not always necessary. In many cases
it is sufficient to synchronize a small subset of the threads. Any operation should proceed whenever the preconditions
for its execution are met, and only those. Usually there is no need to wait for iterations of a loop to finish before you
can continue calculating other things; all you need is to complete the iterations that produce the required results for the
next operation. Good bye global barriers, hello constraint based synchronization! People have been trying to build this
type of computing (and even computers) since the 1970s. The theory behind what they did is based on ideas around
static and dynamic dataflow. There are certain attempts today to get back to those ideas and to incorporate them with
modern architectures. For instance, a lot of work is being done in the area of constructing dataflow-oriented execution
trees. Our results show that employing dataflow techniques in combination with the other ideas, as outlined herein,
considerably improves scalability for many problems.

Adaptive locality control instead of static data distribution

While this principle seems to be a given for single desktop or laptop computers (the operating system is your friend), it
is everything but ubiquitous on modern supercomputers, which are usually built from a large number of separate nodes
(i.e., Beowulf clusters), tightly interconnected by a high-bandwidth, low-latency network. Today’s prevalent program-
ming model for those is MPI, which does not directly help with proper data distribution, leaving it to the programmer
to decompose the data to all of the nodes the application is running on. There are a couple of specialized languages
and programming environments based on PGAS223 (Partitioned Global Address Space) designed to overcome this lim-
itation, such as Chapel224, X10225, UPC226, or Fortress227. However, all systems based on PGAS rely on static data
distribution. This works fine as long as this static data distribution does not result in heterogeneous workload distribu-
tions or other resource utilization imbalances. In a distributed system these imbalances can be mitigated by migrating
part of the application data to different localities (nodes). The only framework supporting (limited) migration today is
Charm++228. The first attempts towards solving related problem go back decades as well, a good example is the Linda
coordination language229. Nevertheless, none of the other mentioned systems support data migration today, which
forces the users to either rely on static data distribution and live with the related performance hits or to implement
everything themselves, which is very tedious and difficult. We believe that the only viable way to flexibly support dy-
namic and adaptive locality control is to provide a global, uniform address space to the applications, even on distributed
systems.

Prefer moving work to the data over moving data to the work

For the best performance it seems obvious to minimize the amount of bytes transferred from one part of the system
to another. This is true on all levels. At the lowest level we try to take advantage of processor memory caches, thus,
minimizing memory latencies. Similarly, we try to amortize the data transfer time to and from GPGPUs230 as much
as possible. At high levels we try to minimize data transfer between different nodes of a cluster or between different
virtual machines on the cloud. Our experience (well, it’s almost common wisdom) shows that the amount of bytes
necessary to encode a certain operation is very often much smaller than the amount of bytes encoding the data the
operation is performed upon. Nevertheless, we still often transfer the data to a particular place where we execute the
operation just to bring the data back to where it came from afterwards. As an example let’s look at the way we usually
write our applications for clusters using MPI. This programming model is all about data transfer between nodes. MPI
is the prevalent programming model for clusters, and it is fairly straightforward to understand and to use. Therefore,

223 https://www.pgas.org/
224 https://chapel.cray.com/
225 https://x10-lang.org/
226 https://upc.lbl.gov/
227 https://labs.oracle.com/projects/plrg/Publications/index.html
228 https://charm.cs.uiuc.edu/
229 http://en.wikipedia.org/wiki/Linda_(coordination_language)
230 http://en.wikipedia.org/wiki/GPGPU

2.5. Why HPX? 289

https://www.pgas.org/
https://chapel.cray.com/
https://x10-lang.org/
https://upc.lbl.gov/
https://labs.oracle.com/projects/plrg/Publications/index.html
https://charm.cs.uiuc.edu/
http://en.wikipedia.org/wiki/Linda_(coordination_language)
http://en.wikipedia.org/wiki/Linda_(coordination_language)
http://en.wikipedia.org/wiki/GPGPU

HPX Documentation, master

we often write applications in a way that accommodates this model, centered around data transfer. These applications
usually work well for smaller problem sizes and for regular data structures. The larger the amount of data we have to
churn and the more irregular the problem domain becomes, the worse the overall machine utilization and the (strong)
scaling characteristics become. While it is not impossible to implement more dynamic, data driven, and asynchronous
applications using MPI, it is somewhat difficult to do so. At the same time, if we look at applications that prefer to
execute the code close to the locality where the data was placed, i.e., utilizing active messages (for instance based on
Charm++231), we see better asynchrony, simpler application codes, and improved scaling.

Favor message driven computation over message passing

Today’s prevalently used programming model on parallel (multi-node) systems is MPI. It is based on message passing,
as the name implies, which means that the receiver has to be aware of a message about to come in. Both codes, the
sender and the receiver, have to synchronize in order to perform the communication step. Even the newer, asynchronous
interfaces require explicitly coding the algorithms around the required communication scheme. As a result, everything
but the most trivial MPI applications spends a considerable amount of time waiting for incoming messages, thus,
causing starvation and latencies to impede full resource utilization. The more complex and more dynamic the data
structures and algorithms become, the larger the adverse effects. The community discovered message-driven and data-
driven methods of implementing algorithms a long time ago, and systems such as Charm++232 have already integrated
active messages demonstrating the validity of the concept. Message-driven computation allows for sending messages
without requiring the receiver to actively wait for them. Any incoming message is handled asynchronously and triggers
the encoded action by passing along arguments and—possibly—continuations. HPX combines this scheme with work-
queue based scheduling as described above, which allows the system to almost completely overlap any communication
with useful work, thereby minimizing latencies.

2.6 Additional material

• 2-day workshop held at CSCS in 2016

– Recorded lectures233

– Slides234

• Tutorials repository235

• STE||AR Group blog posts236

• Basic HPX recipes

– Exporting a free function from a shared library which lives in a namespace, to use as Action237

– Turning a struct or class into a component and use it’s methods238

– Creating and referencing components in hpx239

231 https://charm.cs.uiuc.edu/
232 https://charm.cs.uiuc.edu/
233 https://www.youtube.com/playlist?list=PL1tk5lGm7zvSXfS-sqOOmIJ0lFNjKze18
234 https://github.com/STEllAR-GROUP/tutorials/tree/master/cscs2016
235 https://github.com/STEllAR-GROUP/tutorials
236 http://stellar-group.org/blog/
237 https://gitlab.com/-/snippets/1821389
238 https://gitlab.com/-/snippets/1822983
239 https://gitlab.com/-/snippets/1828131

290 Chapter 2. What’s so special about HPX?

https://charm.cs.uiuc.edu/
https://charm.cs.uiuc.edu/
https://www.youtube.com/playlist?list=PL1tk5lGm7zvSXfS-sqOOmIJ0lFNjKze18
https://github.com/STEllAR-GROUP/tutorials/tree/master/cscs2016
https://github.com/STEllAR-GROUP/tutorials
http://stellar-group.org/blog/
https://gitlab.com/-/snippets/1821389
https://gitlab.com/-/snippets/1822983
https://gitlab.com/-/snippets/1828131

HPX Documentation, master

2.7 Overview

HPX is organized into different sub-libraries and those in turn into modules. The libraries and modules are independent,
with clear dependencies and no cycles. As an end-user, the use of these libraries is completely transparent. If you use
e.g. add_hpx_executable to create a target in your project you will automatically get all modules as dependencies.
See below for a list of the available libraries and modules. Currently these are nothing more than an internal grouping
and do not affect usage. They cannot be consumed individually at the moment.

Note: There is a dependency report that displays useful information about the structure of the code. It is available for
each commit at HPX Dependency report.

2.7.1 Core modules

affinity

The affinity module contains helper functionality for mapping worker threads to hardware resources.

See the API reference of the module for more details.

algorithms

The algorithms module exposes the full set of algorithms defined by the C++ standard. There is also partial support
for C++ ranges.

See the API reference of the module for more details.

allocator_support

This module provides utilities for allocators. It contains hpx::util::internal_allocator which directly forwards
allocation calls to jemalloc. This utility is is mainly useful on Windows.

See the API reference of the module for more details.

asio

The asio module is a thin wrapper around the Boost.Asio240 library, providing a few additional helper functions.

See the API reference of the module for more details.
240 https://www.boost.org/doc/libs/release/doc/html/boost_asio.html

2.7. Overview 291

../../report/index.html
https://www.boost.org/doc/libs/release/doc/html/boost_asio.html

HPX Documentation, master

assertion

The assertion library implements the macros HPX_ASSERT and HPX_ASSERT_MSG . Those two macros can be used to
implement assertions which are turned of during a release build.

By default, the location and function where the assert has been called from are displayed when the assertion fires. This
behavior can be modified by using hpx::assertion::set_assertion_handler. When HPX initializes, it uses this
function to specify a more elaborate assertion handler. If your application needs to customize this, it needs to do so
before calling hpx::init, hpx_main or using the C-main wrappers.

See the API reference of the module for more details.

async_base

The async_base module defines the basic functionality for spawning tasks on thread pools. This module does not
implement any functionality on its own, but is extended by async_local and async_distributed with implementations
for the local and distributed cases.

See the API reference of this module for more details.

async_combinators

This module contains combinators for futures. The when_* functions allow you to turn multiple futures into a single
future which is ready when all, any, some, or each of the given futures are ready. The wait_* combinators are equivalent
to the when_* functions except that they do not return a future. Those wait for all futures to become ready before
returning to the user. Note that the wait_* functions will rethrow one of the exceptions from exceptional futures. The
wait_*_nothrow combinators are equivalent to the wait_* functions exception that they do not throw if one of the
futures has become exceptional.

The split_future combinator takes a single future of a container (e.g. tuple) and turns it into a container of futures.

See lcos_local, synchronization, and async_distributed for other synchronization facilities.

See the API reference of this module for more details.

async_cuda

This library adds a simple API that enables the user to retrieve a future from a CUDA241 stream. Typically, a user
may launch one or more kernels and then get a future from the stream that will become ready when those kernels have
completed. It is important to note that multiple kernels may be launched without fetching a future, and multiple futures
may be obtained from the helper. Please refer to the unit tests and examples for further examples.

See the API reference of this module for more details.
241 https://www.nvidia.com/object/cuda_home_new.html

292 Chapter 2. What’s so special about HPX?

https://www.nvidia.com/object/cuda_home_new.html

HPX Documentation, master

async_local

This module extends async_base to provide local implementations of hpx::async, hpx::post, hpx::sync, and
hpx::dataflow. The async_distributed module extends the functionality in this module to work with actions.

See the API reference of this module for more details.

async_mpi

The MPI library is intended to simplify the process of integrating MPI242 based codes with the HPX runtime. Any
MPI function that is asynchronous and uses an MPI_Request may be converted into an hpx::future. The syntax is
designed to allow a simple replacement of the MPI call with a futurized async version that accepts an executor instead
of a communicator, and returns a future instead of assigning a request. Typically, an MPI call of the form

int MPI_Isend(buf, count, datatype, rank, tag, comm, request);

becomes

hpx::future<int> f = hpx::async(executor, MPI_Isend, buf, count, datatype, rank, tag);

When the MPI operation is complete, the future will become ready. This allows communication to integrated cleanly
with the rest of HPX, in particular the continuation style of programming may be used to build up more complex code.
Consider the following example, that chains user processing, sends and receives using continuations. . .

// create an executor for MPI dispatch
hpx::mpi::experimental::executor exec(MPI_COMM_WORLD);

// post an asynchronous receive using MPI_Irecv
hpx::future<int> f_recv = hpx::async(

exec, MPI_Irecv, &data, rank, MPI_INT, rank_from, i);

// attach a continuation to run when the recv completes,
f_recv.then([=, &tokens, &counter](auto&&)
{

// call an application specific function
msg_recv(rank, size, rank_to, rank_from, tokens[i], i);

// send a new message
hpx::future<int> f_send = hpx::async(

exec, MPI_Isend, &tokens[i], 1, MPI_INT, rank_to, i);

// when that send completes
f_send.then([=, &tokens, &counter](auto&&)
{

// call an application specific function
msg_send(rank, size, rank_to, rank_from, tokens[i], i);

});
}

The example above makes use of MPI_Isend and MPI_Irecv, but any MPI function that uses requests may be futurized
in this manner. The following is a (non exhaustive) list of MPI functions that should be supported, though not all have
been tested at the time of writing (please report any problems to the issue tracker).

242 https://en.wikipedia.org/wiki/Message_Passing_Interface

2.7. Overview 293

https://en.wikipedia.org/wiki/Message_Passing_Interface

HPX Documentation, master

int MPI_Isend(...);
int MPI_Ibsend(...);
int MPI_Issend(...);
int MPI_Irsend(...);
int MPI_Irecv(...);
int MPI_Imrecv(...);
int MPI_Ibarrier(...);
int MPI_Ibcast(...);
int MPI_Igather(...);
int MPI_Igatherv(...);
int MPI_Iscatter(...);
int MPI_Iscatterv(...);
int MPI_Iallgather(...);
int MPI_Iallgatherv(...);
int MPI_Ialltoall(...);
int MPI_Ialltoallv(...);
int MPI_Ialltoallw(...);
int MPI_Ireduce(...);
int MPI_Iallreduce(...);
int MPI_Ireduce_scatter(...);
int MPI_Ireduce_scatter_block(...);
int MPI_Iscan(...);
int MPI_Iexscan(...);
int MPI_Ineighbor_allgather(...);
int MPI_Ineighbor_allgatherv(...);
int MPI_Ineighbor_alltoall(...);
int MPI_Ineighbor_alltoallv(...);
int MPI_Ineighbor_alltoallw(...);

Note that the HPX mpi futurization wrapper should work with any asynchronous MPI call, as long as the function
signature has the last two arguments MPI_xxx(..., MPI_Comm comm, MPI_Request *request) - internally these
two parameters will be substituted by the executor and future data parameters that are supplied by template instantiations
inside the hpx::mpi code.

See the API reference of this module for more details.

async_sycl

This module allows creating HPX futures using SYCL243 events, effectively integrating asynchronous SYCL kernels and
memory transfers with HPX. Building on this integration, this module also contains a SYCL executor. This executor
encapsulates a SYCL queue. When SYCL queue member functions are launched with this executor, the user can
automatically obtain the HPX futures associated with them.

The creation of the HPX futures using SYCL events is based on the same event polling mechanism that the CUDA HPX
integration uses. Each registered event gets an associated callback and gets inserted into a callback vector to be polled
by the scheduler in between tasks. Once the polling reveals the event is complete, the callback will be called, which in
turn sets the future to ready (see sycl_event_callback.cpp). There are multiple adaptions for HipSYCL for this: To keep
the runtime alive (avoiding the repeated on-the-fly creation of the runtime during the polling), we keep a default queue.
Furthermore, we flush the internal SYCL DAG to ensure that the launched SYCL function is actually being executed.

The SYCL executor offers the usual post and async_execute functions. Additionally, it contains two get_future func-
tions. One expects a pre-existing SYCL event to return a future, the other one does not but will launch an empty
SYCL kernel instead, to obtain an event (causing higher overhead for the sake of being more convenient). The post and

243 https://en.wikipedia.org/wiki/SYCL

294 Chapter 2. What’s so special about HPX?

https://en.wikipedia.org/wiki/SYCL

HPX Documentation, master

async_execute implementations here are actually different for HipSYCL and OneAPI, since the sycl::queue in OneAPI
uses a different interface (using a code_location parameter) which requires some adaptations here.

To make this module compile, we use the -fno-sycl and -fsycl compiler parameters for the OneAPI use-case (requiring
HPX to be compiled with dpcpp). For HipSYCL we use its cmake integration instead (requiring HPX to be compiled
with clang++ and including HipSYCL as a library).

To build with OneAPI, use the CMake Variable HPX_WITH_SYCL=ON. To build with HipSYCL, use
HPX_WITH_SYCL=ON and HPX_WITH_HIPSYCL=ON (and make sure find_package will find HipSYCL).

Lastly, the module contains three tests/examples. All three implement a simple vector add example. The first one
obtains a future using the free method get_future, the second one uses a single SYCL executor and the last one is using
multiple executors called from multiple host threads.

To build the tests, use ” make tests.unit.modules.async_sycl ” To run the tests, use “ctest -R sycl”.

NOTE: Theoretically, this module could work with other SYCL implementations, but was only tested using OneAPI
and HipSYCL so far.

See the API reference of this module for more details.

batch_environments

This module allows for the detection of execution as batch jobs, a series of programs executed without user intervention.
All data is preselected and will be executed according to preset parameters, such as date or completion of another task.
Batch environments are especially useful for executing repetitive tasks.

HPX supports the creation of batch jobs through the Portable Batch System (PBS) and SLURM.

For more information on batch environments, see Running on batch systems and the API reference for the module.

cache

This module provides two cache data structures:

• hpx::util::cache::local_cache

• hpx::util::cache::lru_cache

See the API reference of the module for more details.

concepts

This module provides helpers for emulating concepts. It provides the following macros:

• HPX_CONCEPT_REQUIRES

• HPX_HAS_MEMBER_XXX_TRAIT_DEF

• HPX_HAS_XXX_TRAIT_DEF

See the API reference of the module for more details.

2.7. Overview 295

HPX Documentation, master

concurrency

This module provides concurrency primitives useful for multi-threaded programming such as:

• hpx::barrier

• hpx::util::cache_line_data and hpx::util::cache_aligned_data: wrappers for aligning and
padding data to cache lines.

• various lockfree queue data structures

See the API reference of the module for more details.

config

The config module contains various configuration options, typically hidden behind macros that choose the correct
implementation based on the compiler and other available options. It also contains platform independent macros to
control inlinining, export sets and more.

See the API reference of the module for more details.

config_registry

The config_registry module is a low level module providing helper functionality for registering configuration entries to
a global registry from other modules. The hpx::config_registry::add_module_config function is used to add
configuration options, and hpx::config_registry::get_module_configs can be used to retrieve configuration
entries registered so far. add_module_config_helper can be used to register configuration entries through static
global options.

See the API reference of this module for more details.

coroutines

The coroutines module provides coroutine (user-space thread) implementations for different platforms.

See the API reference of the module for more details.

datastructures

The datastructures module provides basic data structures (typically provided for compatibility with older C++ stan-
dards):

• hpx::detail::small_vector

• hpx::util::basic_any

• hpx::util::member_pack

• hpx::optional

• hpx::tuple

• hpx::variant

See the API reference of the module for more details.

296 Chapter 2. What’s so special about HPX?

HPX Documentation, master

debugging

This module provides helpers for demangling symbol names.

See the API reference of the module for more details.

errors

This module provides support for exceptions and error codes:

• hpx::exception

• hpx::error_code

• hpx::error

See the API reference of the module for more details.

execution

This library implements executors and execution policies for use with parallel algorithms and other facilities related to
managing the execution of tasks.

See the API reference of the module for more details.

execution_base

The basic execution module is the main entry point to implement parallel and concurrent operations. It is modeled after
P0443244 with some additions and implementations for the described concepts. Most notably, it provides an abstraction
for execution resources, execution contexts and execution agents in such a way, that it provides customization points
that those aforementioned concepts can be replaced and combined with ease.

For that purpose, three virtual base classes are provided to be able to provide implementations with different properties:

• resource_base: This is the abstraction for execution resources, that is for example CPU cores or an accel-
erator.

• context_base: An execution context uses execution resources and is able to spawn new execution agents,
as new threads of executions on the available resources.

• agent_base: The execution agent represents the thread of execution, and can be used to yield, suspend,
resume or abort a thread of execution.

executors

The executors module exposes executors and execution policies. Most importantly, it exposes the following classes and
constants:

• hpx::execution::sequenced_executor

• hpx::execution::parallel_executor

• hpx::execution::sequenced_policy

• hpx::execution::parallel_policy

• hpx::execution::parallel_unsequenced_policy
244 http://wg21.link/p0443

2.7. Overview 297

http://wg21.link/p0443

HPX Documentation, master

• hpx::execution::sequenced_task_policy

• hpx::execution::parallel_task_policy

• hpx::execution::seq

• hpx::execution::par

• hpx::execution::par_unseq

• hpx::execution::task

See the API reference of this module for more details.

filesystem

This module provides a compatibility layer for the C++17 filesystem library. If the filesystem library is available this
module will simply forward its contents into the hpx::filesystem namespace. If the library is not available it will
fall back to Boost.Filesystem instead.

See the API reference of the module for more details.

format

The format module exposes the format and format_to functions for formatting strings.

See the API reference of the module for more details.

functional

This module provides function wrappers and helpers for managing functions and their arguments.

• hpx::function

• hpx::function_ref

• hpx::move_only_function

• hpx::bind

• hpx::bind_back

• hpx::bind_front

• hpx::util::deferred_call

• hpx::invoke

• hpx::invoke_r

• hpx::invoke_fused

• hpx::invoke_fused_r

• hpx::mem_fn

• hpx::util::one_shot

• hpx::util::protect

• hpx::util::result_of

• hpx::placeholders::_1

298 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• hpx::placeholders::_2

• . . .

• hpx::placeholders::_9

See the API reference of the module for more details.

futures

This module defines the hpx::future and hpx::shared_future classes corresponding to the C++ standard library
classes std::future245 and std::shared_future246. Note that the specializations of hpx::future::then for executors
and execution policies are defined in the execution module.

See the API reference of this module for more details.

hardware

The hardware module abstracts away hardware specific details of timestamps and CPU features.

See the API reference of the module for more details.

hashing

The hashing module provides two hashing implementations:

• hpx::util::fibhash

• hpx::util::jenkins_hash

See the API reference of the module for more details.

include_local

This module provides no functionality in itself. Instead it provides headers that group together other headers that often
appear together. This module provides local-only headers.

See the API reference of this module for more details.

io_service

This module provides an abstraction over Boost.ASIO, combining multiple asio::io_contexts into
a single pool. hpx::util::io_service_pool provides a simple pool of asio::io_contexts with
an API similar to asio::io_context. hpx::threads::detail::io_service_thread_pool wraps
hpx::util::io_service_pool into an interface derived from hpx::threads::detail::thread_pool_base.

See the API reference of this module for more details.
245 http://en.cppreference.com/w/cpp/thread/future
246 http://en.cppreference.com/w/cpp/thread/shared_future

2.7. Overview 299

http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/shared_future

HPX Documentation, master

iterator_support

This module provides helpers for iterators. It provides hpx::util::iterator_facade and
hpx::util::iterator_adaptor for creating new iterators, and the trait hpx::util::is_iterator along
with more specific iterator traits.

See the API reference of the module for more details.

itt_notify

This module provides support for profiling with Intel VTune247.

See the API reference of this module for more details.

lci_base

This module provides helper functionality for detecting LCI environments.

See the API reference of this module for more details.

lcos_local

This module provides the following local LCOs:

• hpx::lcos::local::and_gate

• hpx::lcos::local::channel

• hpx::lcos::local::one_element_channel

• hpx::lcos::local::receive_channel

• hpx::lcos::local::send_channel

• hpx::lcos::local::guard

• hpx::lcos::local::guard_set

• hpx::lcos::local::run_guarded

• hpx::lcos::local::conditional_trigger

• hpx::packaged_task

• hpx::promise

• hpx::lcos::local::receive_buffer

• hpx::lcos::local::trigger

See lcos_distributed for distributed LCOs. Basic synchronization primitives for use in HPX threads can be found in
synchronization. async_combinators contains useful utility functions for combining futures.

See the API reference of this module for more details.
247 https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

300 Chapter 2. What’s so special about HPX?

https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

HPX Documentation, master

lock_registration

This module contains fucntionality for registering locks to detect when they are locked and unlocked on different
threads.

See the API reference of this module for more details.

logging

This module provides useful macros for logging information.

See the API reference of the module for more details.

memory

Part of this module is a forked version of boost::intrusive_ptr from Boost.SmartPtr248.

See the API reference of the module for more details.

mpi_base

This module provides helper functionality for detecting MPI249 environments.

See the API reference of this module for more details.

pack_traversal

This module exposes the basic functionality for traversing various packs, both synchronously and asyn-
chronously: hpx::util::traverse_pack and hpx::util::traverse_pack_async. It also exposes the
higher level functionality of unwrapping nested futures: hpx::util::unwrap and its function object form
hpx::util::functional::unwrap.

See the API reference of this module for more details.

plugin

This module provides base utilities for creating plugins.

See the API reference of the module for more details.

prefix

This module provides utilities for handling the prefix of an HPX application, i.e. the paths used for searching compo-
nents and plugins.

See the API reference of this module for more details.
248 https://www.boost.org/doc/libs/release/libs/smart_ptr/doc/html/smart_ptr.html
249 https://en.wikipedia.org/wiki/Message_Passing_Interface

2.7. Overview 301

https://www.boost.org/doc/libs/release/libs/smart_ptr/doc/html/smart_ptr.html
https://en.wikipedia.org/wiki/Message_Passing_Interface

HPX Documentation, master

preprocessor

This library contains useful preprocessor macros:

• HPX_PP_CAT: Concatenate two tokens

• HPX_PP_EXPAND: Expands a preprocessor token

• HPX_PP_NARGS: Determines the number of arguments passed to a variadic macro

• HPX_PP_STRINGIZE: Turns a token into a string

• HPX_PP_STRIP_PARENS: Strips parenthesis from a token

See the API reference of the module for more details.

program_options

The module program_options is a direct fork of the Boost.Program_options250 library (Boost V1.70.0251). In or-
der to be included as an HPX module, the Boost.Program_options library has been moved to the namespace
hpx::program_options. We have also replaced all Boost facilities the library depends on with either the equiv-
alent facilities from the standard library or from HPX. As a result, the HPX program_options module is fully
interface compatible with Boost.Program_options (sans the hpx namespace and the #include <hpx/modules/
program_options.hpp> changes that need to be applied to all code relying on this library).

All credit goes to Vladimir Prus, the author of the excellent Boost.Program_options library. All bugs have been intro-
duced by us.

See the API reference of the module for more details.

properties

This module implements the prefer customization point for properties in terms of P2220252. This differs from
P1393253 in that it relies fully on tag_invoke overloads and fewer base customization points. Actual properties are
defined in modules. All functionality is experimental and can be accessed through the hpx::experimental names-
pace.

See the API reference of this module for more details.

resiliency

In HPX, a program failure is a manifestation of a failing task. This module exposes several APIs that allow users to
manage failing tasks in a convenient way by either replaying a failed task or by replicating a specific task.

Task replay is analogous to the Checkpoint/Restart mechanism found in conventional execution models. The key dif-
ference being localized fault detection. When the runtime detects an error, it replays the failing task as opposed to
completely rolling back the entire program to the previous checkpoint.

Task replication is designed to provide reliability enhancements by replicating a set of tasks and evaluating their results
to determine a consensus among them. This technique is most effective in situations where there are few tasks in the
critical path of the DAG which leaves the system underutilized or where hardware or software failures may result in an
incorrect result instead of an error. However, the drawback of this method is the additional computational cost incurred
by repeating a task multiple times.

250 https://www.boost.org/doc/html/program_options.html
251 https://www.boost.org/doc/libs/1_70_0/doc/html/program_options.html
252 https://wg21.link/p2220
253 http://wg21.link/p1393

302 Chapter 2. What’s so special about HPX?

https://www.boost.org/doc/html/program_options.html
https://www.boost.org/doc/libs/1_70_0/doc/html/program_options.html
https://wg21.link/p2220
http://wg21.link/p1393

HPX Documentation, master

The following API functions are exposed:

• hpx::resiliency::experimental::async_replay: This version of task replay will catch
user-defined exceptions and automatically reschedule the task N times before throwing an
hpx::resiliency::experimental::abort_replay_exception if no task is able to complete execu-
tion without an exception.

• hpx::resiliency::experimental::async_replay_validate: This version of replay adds an argument
to async replay which receives a user-provided validation function to test the result of the task against. If the
task’s output is validated, the result is returned. If the output fails the check or an exception is thrown, the task
is replayed until no errors are encountered or the number of specified retries has been exceeded.

• hpx::resiliency::experimental::async_replicate: This is the most basic implementation of the task
replication. The API returns the first result that runs without detecting any errors.

• hpx::resiliency::experimental::async_replicate_validate: This API additionally takes a valida-
tion function which evaluates the return values produced by the threads. The first task to compute a valid result
is returned.

• hpx::resiliency::experimental::async_replicate_vote: This API adds a vote function to the basic
replicate function. Many hardware or software failures are silent errors which do not interrupt program flow. In
order to detect errors of this kind, it is necessary to run the task several times and compare the values returned
by every version of the task. In order to determine which return value is “correct”, the API allows the user
to provide a custom consensus function to properly form a consensus. This voting function then returns the
“correct”” answer.

• hpx::resiliency::experimental::async_replicate_vote_validate: This combines the features of
the previously discussed replicate set. Replicate vote validate allows a user to provide a validation function to
filter results. Additionally, as described in replicate vote, the user can provide a “voting function” which returns
the consensus formed by the voting logic.

• hpx::resiliency::experimental::dataflow_replay: This version of dataflow replay will
catch user-defined exceptions and automatically reschedules the task N times before throwing an
hpx::resiliency::experimental::abort_replay_exception if no task is able to complete execu-
tion without an exception. Any arguments for the executed task that are futures will cause the task invocation to
be delayed until all of those futures have become ready.

• hpx::resiliency::experimental::dataflow_replay_validate : This version of replay adds an argu-
ment to dataflow replay which receives a user-provided validation function to test the result of the task against.
If the task’s output is validated, the result is returned. If the output fails the check or an exception is thrown,
the task is replayed until no errors are encountered or the number of specified retries have been exceeded. Any
arguments for the executed task that are futures will cause the task invocation to be delayed until all of those
futures have become ready.

• hpx::resiliency::experimental::dataflow_replicate: This is the most basic implementation of the
task replication. The API returns the first result that runs without detecting any errors. Any arguments for the
executed task that are futures will cause the task invocation to be delayed until all of those futures have become
ready.

• hpx::resiliency::experimental::dataflow_replicate_validate: This API additionally takes a vali-
dation function which evaluates the return values produced by the threads. The first task to compute a valid result
is returned. Any arguments for the executed task that are futures will cause the task invocation to be delayed until
all of those futures have become ready.

• hpx::resiliency::experimental::dataflow_replicate_vote: This API adds a vote function to the
basic replicate function. Many hardware or software failures are silent errors which do not interrupt program
flow. In order to detect errors of this kind, it is necessary to run the task several times and compare the values
returned by every version of the task. In order to determine which return value is “correct”, the API allows the
user to provide a custom consensus function to properly form a consensus. This voting function then returns

2.7. Overview 303

HPX Documentation, master

the “correct” answer. Any arguments for the executed task that are futures will cause the task invocation to be
delayed until all of those futures have become ready.

• hpx::resiliency::experimental::dataflow_replicate_vote_validate: This combines the features
of the previously discussed replicate set. Replicate vote validate allows a user to provide a validation function to
filter results. Additionally, as described in replicate vote, the user can provide a “voting function” which returns
the consensus formed by the voting logic. Any arguments for the executed task that are futures will cause the
task invocation to be delayed until all of those futures have become ready.

See the API reference of the module for more details.

resource_partitioner

The resource_partitioner module defines hpx::resource::partitioner, the class used by the runtime and users to
partition available hardware resources into thread pools. See Using the resource partitioner for more details on using
the resource partitioner in applications.

See the API reference of this module for more details.

runtime_configuration

This module handles the configuration options required by the runtime.

See the API reference of this module for more details.

schedulers

This module provides schedulers used by thread pools in the thread_pools module. There are currently three main
schedulers:

• hpx::threads::policies::local_priority_queue_scheduler

• hpx::threads::policies::static_priority_queue_scheduler

• hpx::threads::policies::shared_priority_queue_scheduler

Other schedulers are specializations or variations of the above schedulers. See the examples of the resource_partitioner
module for examples of specifying a custom scheduler for a thread pool.

See the API reference of this module for more details.

serialization

This module provides serialization primitives and support for all built-in types as well as all C++ Standard Library
collection and utility types. This list is extended by HPX vocabulary types with proper support for global reference
counting. HPX’s mode of serialization is derived from Boost’s serialization model254 and, as such, is mostly interface
compatible with its Boost counterpart.

The purest form of serializing data is to copy the content of the payload bit by bit; however, this method is impractical
for generic C++ types, which might be composed of more than just regular built-in types. Instead, HPX’s approach to
serialization is derived from the Boost Serialization library, and is geared towards allowing the programmer of a given
class explicit control and syntax of what to serialize. It is based on operator overloading of two special archive types
that hold a buffer or stream to store the serialized data and is responsible for dispatching the serialization mechanism
to the intrusive or non-intrusive version. The serialization process is recursive. Each member that needs to be serial-
ized must be specified explicitly. The advantage of this approach is that the serialization code is written in C++ and

254 https://www.boost.org/doc/libs/1_72_0/libs/serialization/doc/index.html

304 Chapter 2. What’s so special about HPX?

https://www.boost.org/doc/libs/1_72_0/libs/serialization/doc/index.html

HPX Documentation, master

leverages all necessary programming techniques. The generic, user-facing interface allows for effective application of
the serialization process without obstructing the algorithms that need special code for packing and unpacking. It also
allows for optimizations in the implementation of the archives.

See the API reference of the module for more details.

static_reinit

This module provides a simple wrapper around static variables that can be reinitialized.

See the API reference of this module for more details.

string_util

This module contains string utilities inspired by the Boost String Algorithms Library.

See the API reference of this module for more details.

synchronization

This module provides synchronization primitives that should be used rather than the C++ standard ones in HPX threads:

• hpx::barrier

• hpx::binary_semaphore

• hpx::call_once

• hpx::condition_variable

• hpx::condition_variable_any

• hpx::counting_semaphore

• hpx::lcos::local::event

• hpx::latch

• hpx::mutex

• hpx::no_mutex

• hpx::once_flag

• hpx::recursive_mutex

• hpx::shared_mutex

• hpx::sliding_semaphore

• hpx::spinlock (std::mutex compatible spinlock)

• hpx::spinlock_no_backoff (boost::mutex compatible spinlock)

• hpx::spinlock_pool

• hpx::stop_callback

• hpx::stop_source

• hpx::stop_token

• hpx::in_place_stop_token

2.7. Overview 305

HPX Documentation, master

• hpx::timed_mutex

• hpx::upgrade_to_unique_lock

• hpx::upgrade_lock

See lcos_local, async_combinators, and async_distributed for higher level synchronization facilities.

See the API reference of this module for more details.

testing

The testing module contains useful macros for testing. The results of tests can be printed with
hpx::util::report_errors. The following macros are provided:

• HPX_TEST

• HPX_TEST_MSG

• HPX_TEST_EQ

• HPX_TEST_NEQ

• HPX_TEST_LT

• HPX_TEST_LTE

• HPX_TEST_RANGE

• HPX_TEST_EQ_MSG

• HPX_TEST_NEQ_MSG

• HPX_SANITY

• HPX_SANITY_MSG

• HPX_SANITY_EQ

• HPX_SANITY_NEQ

• HPX_SANITY_LT

• HPX_SANITY_LTE

• HPX_SANITY_RANGE

• HPX_SANITY_EQ_MSG

See the API reference of the module for more details.

thread_pool_util

This module contains helper functions for asynchronously suspending and resuming thread pools and their worker
threads.

See the API reference of this module for more details.

306 Chapter 2. What’s so special about HPX?

HPX Documentation, master

thread_pools

This module defines the thread pools and utilities used by the HPX runtime. The only thread pool implemen-
tation provided by this module is hpx::threads::detail::scheduled_thread_pool, which is derived from
hpx::threads::detail::thread_pool_base defined in the threading_base module.

See the API reference of this module for more details.

thread_support

This module provides miscellaneous utilities for threading and concurrency.

See the API reference of the module for more details.

threading

This module provides the equivalents of std::thread and std::jthread for lightweight HPX threads:

• hpx::thread

• hpx::jthread

See the API reference of this module for more details.

threading_base

This module contains the base class definition required for threads. The base class hpx::threads::thread_data
is inherited by two specializations for stackful and stackless threads: hpx::threads::thread_data_stackful and
hpx::threads::thread_data_stackless. In addition, the module defines the base classes for schedulers and
thread pools: hpx::threads::policies::scheduler_base and hpx::threads::thread_pool_base.

See the API reference of this module for more details.

thread_manager

This module defines the hpx::threads::threadmanager class. This is used by the runtime to manage the creation
and destruction of thread pools. The resource_partitioner module handles the partitioning of resources into thread
pools, but not the creation of thread pools.

See the API reference of this module for more details.

timed_execution

This module provides extensions to the executor interfaces defined in the execution module that allow timed submission
of tasks on thread pools (at or after a specified time).

See the API reference of this module for more details.

2.7. Overview 307

HPX Documentation, master

timing

This module provides the timing utilities (clocks and timers).

See the API reference of the module for more details.

topology

This module provides the class hpx::threads::topology which represents the hardware resources available
on a node. The class is a light wrapper around the Portable Hardware Locality (HWLOC)255 library. The
hpx::threads::cpu_mask is a small companion class that represents a set of resources on a node.

See the API reference of the module for more details.

type_support

This module provides helper facilities related to types.

See the API reference of the module for more details.

util

The util module provides miscellaneous standalone utilities.

See the API reference of the module for more details.

version

This module macros and functions for accessing version information about HPX and its dependencies.

See the API reference of this module for more details.

2.7.2 Main HPX modules

actions

TODO: High-level description of the library.

See the API reference of this module for more details.

actions_base

TODO: High-level description of the library.

See the API reference of this module for more details.
255 https://www.open-mpi.org/projects/hwloc/

308 Chapter 2. What’s so special about HPX?

https://www.open-mpi.org/projects/hwloc/

HPX Documentation, master

agas

TODO: High-level description of the module.

See the API reference of this module for more details.

agas_base

This module holds the implementation of the four AGAS services: primary namespace, locality namespace, component
namespace, and symbol namespace.

See the API reference of this module for more details.

async_colocated

TODO: High-level description of the module.

See the API reference of this module for more details.

async_distributed

This module contains functionality for asynchronously launching work on remote localities: hpx::async, hpx::post.
This module extends the local-only functions in libs_async_local.

See the API reference of this module for more details.

checkpoint

A common need of users is to periodically backup an application. This practice provides resiliency and potential restart
points in code. HPX utilizes the concept of a checkpoint to support this use case.

Found in hpx/util/checkpoint.hpp, checkpoints are defined as objects that hold a serialized version of an object
or set of objects at a particular moment in time. This representation can be stored in memory for later use or it can be
written to disk for storage and/or recovery at a later point. In order to create and fill this object with data, users must
use a function called save_checkpoint. In code the function looks like this:

hpx::future<hpx::util::checkpoint> hpx::util::save_checkpoint(a, b, c, ...);

save_checkpoint takes arbitrary data containers, such as int, double, float, vector, and future, and serializes
them into a newly created checkpoint object. This function returns a future to a checkpoint containing the data.
Here’s an example of a simple use case:

using hpx::util::checkpoint;
using hpx::util::save_checkpoint;

std::vector<int> vec{1,2,3,4,5};
hpx::future<checkpoint> save_checkpoint(vec);

Once the future is ready, the checkpoint object will contain the vector vec and its five elements.

prepare_checkpoint takes arbitrary data containers (same as for save_checkpoint), , such as int, double,
float, vector, and future, and calculates the necessary buffer space for the checkpoint that would be created if
save_checkpoint was called with the same arguments. This function returns a future to a checkpoint that is
appropriately initialized. Here’s an example of a simple use case:

2.7. Overview 309

HPX Documentation, master

using hpx::util::checkpoint;
using hpx::util::prepare_checkpoint;

std::vector<int> vec{1,2,3,4,5};
hpx::future<checkpoint> prepare_checkpoint(vec);

Once the future is ready, the checkpoint object will be initialized with an appropriately sized internal buffer.

It is also possible to modify the launch policy used by save_checkpoint. This is accomplished by passing a launch
policy as the first argument. It is important to note that passing hpx::launch::sync will cause save_checkpoint
to return a checkpoint instead of a future to a checkpoint. All other policies passed to save_checkpoint will
return a future to a checkpoint.

Sometimes checkpoint s must be declared before they are used. save_checkpoint allows users to move pre-created
checkpoint s into the function as long as they are the first container passing into the function (In the case where a
launch policy is used, the checkpoint will immediately follow the launch policy). An example of these features can
be found below:

char character = 'd';
int integer = 10;
float flt = 10.01f;
bool boolean = true;
std::string str = "I am a string of characters";
std::vector<char> vec(str.begin(), str.end());
checkpoint archive;

// Test 1
// test basic functionality
hpx::shared_future<checkpoint> f_archive = save_checkpoint(

std::move(archive), character, integer, flt, boolean, str, vec);

Once users can create checkpoints they must now be able to restore the objects they contain into memory. This is
accomplished by the function restore_checkpoint. This function takes a checkpoint and fills its data into the
containers it is provided. It is important to remember that the containers must be ordered in the same way they were
placed into the checkpoint. For clarity see the example below:

char character2;
int integer2;
float flt2;
bool boolean2;
std::string str2;
std::vector<char> vec2;

restore_checkpoint(data, character2, integer2, flt2, boolean2, str2, vec2);

The core utility of checkpoint is in its ability to make certain data persistent. Often, this means that the data needs
to be stored in an object, such as a file, for later use. HPX has two solutions for these issues: stream operator overloads
and access iterators.

HPX contains two stream overloads, operator<< and operator>>, to stream data out of and into checkpoint. Here
is an example of the overloads in use below:

double a9 = 1.0, b9 = 1.1, c9 = 1.2;
std::ofstream test_file_9("test_file_9.txt");
hpx::future<checkpoint> f_9 = save_checkpoint(a9, b9, c9);

(continues on next page)

310 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

test_file_9 << f_9.get();
test_file_9.close();

double a9_1, b9_1, c9_1;
std::ifstream test_file_9_1("test_file_9.txt");
checkpoint archive9;
test_file_9_1 >> archive9;
restore_checkpoint(archive9, a9_1, b9_1, c9_1);

This is the primary way to move data into and out of a checkpoint. It is important to note, however, that users should be
cautious when using a stream operator to load data and another function to remove it (or vice versa). Both operator<<
and operator>> rely on a .write() and a .read() function respectively. In order to know how much data to read
from the std::istream, the operator<< will write the size of the checkpoint before writing the checkpoint data.
Correspondingly, the operator>> will read the size of the stored data before reading the data into a new instance of
checkpoint. As long as the user employs the operator<< and operator>> to stream the data, this detail can be
ignored.

Important: Be careful when mixing operator<< and operator>> with other facilities to read and write to a
checkpoint. operator<< writes an extra variable, and operator>> reads this variable back separately. Used to-
gether the user will not encounter any issues and can safely ignore this detail.

Users may also move the data into and out of a checkpoint using the exposed .begin() and .end() iterators. An
example of this use case is illustrated below.

std::ofstream test_file_7("checkpoint_test_file.txt");
std::vector<float> vec7{1.02f, 1.03f, 1.04f, 1.05f};
hpx::future<checkpoint> fut_7 = save_checkpoint(vec7);
checkpoint archive7 = fut_7.get();
std::copy(archive7.begin(), // Write data to ofstream

archive7.end(), // ie. the file
std::ostream_iterator<char>(test_file_7));

test_file_7.close();

std::vector<float> vec7_1;
std::vector<char> char_vec;
std::ifstream test_file_7_1("checkpoint_test_file.txt");
if (test_file_7_1)
{

test_file_7_1.seekg(0, test_file_7_1.end);
auto length = test_file_7_1.tellg();
test_file_7_1.seekg(0, test_file_7_1.beg);
char_vec.resize(length);
test_file_7_1.read(char_vec.data(), length);

}
checkpoint archive7_1(std::move(char_vec)); // Write data to checkpoint
restore_checkpoint(archive7_1, vec7_1);

2.7. Overview 311

HPX Documentation, master

Checkpointing components

save_checkpoint and restore_checkpoint are also able to store components inside checkpoints. This can be
done in one of two ways. First a client of the component can be passed to save_checkpoint. When the user wishes
to resurrect the component she can pass a client instance to restore_checkpoint.

This technique is demonstrated below:

// Try to checkpoint and restore a component with a client
std::vector<int> vec3{10, 10, 10, 10, 10};

// Create a component instance through client constructor
data_client D(hpx::find_here(), std::move(vec3));
hpx::future<checkpoint> f3 = save_checkpoint(D);

// Create a new client
data_client E;

// Restore server inside client instance
restore_checkpoint(f3.get(), E);

The second way a user can save a component is by passing a shared_ptr to the component to save_checkpoint.
This component can be resurrected by creating a new instance of the component type and passing a shared_ptr to
the new instance to restore_checkpoint.

This technique is demonstrated below:

// test checkpoint a component using a shared_ptr
std::vector<int> vec{1, 2, 3, 4, 5};
data_client A(hpx::find_here(), std::move(vec));

// Checkpoint Server
hpx::id_type old_id = A.get_id();

hpx::future<std::shared_ptr<data_server>> f_a_ptr =
hpx::get_ptr<data_server>(A.get_id());

std::shared_ptr<data_server> a_ptr = f_a_ptr.get();
hpx::future<checkpoint> f = save_checkpoint(a_ptr);
auto&& data = f.get();

// test prepare_checkpoint API
checkpoint c = prepare_checkpoint(hpx::launch::sync, a_ptr);
HPX_TEST(c.size() == data.size());

// Restore Server
// Create a new server instance
std::shared_ptr<data_server> b_server;
restore_checkpoint(data, b_server);

312 Chapter 2. What’s so special about HPX?

HPX Documentation, master

checkpoint_base

The checkpoint_base module contains lower level facilities that wrap simple check-pointing capabilities. This module
does not implement special handling for futures or components, but simply serializes all arguments to or from a given
container.

This module exposes the hpx::util::save_checkpoint_data, hpx::util::restore_checkpoint_data, and
hpx::util::prepare_checkpoint_data APIs. These functions encapsulate the basic serialization functionalities
necessary to save/restore a variadic list of arguments to/from a given data container.

See the API reference of this module for more details.

collectives

The collectives module exposes a set of distributed collective operations. Those can be used to exchange data between
participating sites in a coordinated way. At this point the module exposes the following collective primitives:

• hpx::collectives::all_gather: receives a set of values from all participating sites.

• hpx::collectives::all_reduce: performs a reduction on data from each participating site to each partici-
pating site.

• hpx::collectives::all_to_all: each participating site provides its element of the data to collect while all
participating sites receive the data from every other site.

• hpx::collectives::broadcast_to and hpx::collectives::broadcast_from : performs a broadcast
operation from a root site to all participating sites.

• cpp:func:hpx::collectives::exclusive_scan performs an exclusive scan operation

on a set of values received from all call sites operating on the given base name.

• hpx::collectives::gather_here and hpx::collectives::gather_there: gathers values from all par-
ticipating sites.

• cpp:func:hpx::collectives::inclusive_scan performs an inclusive scan operation

on a set of values received from all call sites operating on the given base name.

• hpx::collectives::reduce_here and hpx::collectives::reduce_there: performs a reduction on
data from each participating site to a root site.

• hpx::collectives::scatter_to and hpx::collectives::scatter_from : receives an element of a set
of values operating on the given base name.

• hpx::lcos::broadcast: performs a given action on all given global identifiers.

• hpx::distributed::barrier: distributed barrier.

• hpx::lcos::fold: performs a fold with a given action on all given global identifiers.

• hpx::distributed::latch : distributed latch.

• hpx::lcos::reduce: performs a reduction on data from each given global identifiers.

• hpx::lcos::spmd_block: performs the same operation on a local image while providing handles to the other
images.

See the API reference of the module for more details.

2.7. Overview 313

HPX Documentation, master

command_line_handling

The command_line_handling module defines and handles the command-line options required by the HPX runtime,
combining them with configuration options defined by the runtime_configuration module. The actual parsing of com-
mand line options is handled by the program_options module.

See the API reference of the module for more details.

components

TODO: High-level description of the module.

See the API reference of this module for more details.

components_base

TODO: High-level description of the library.

See the API reference of this module for more details.

compute

The compute module provides utilities for handling task and memory affinity on host systems.

See the API reference of the module for more details.

distribution_policies

TODO: High-level description of the module.

See the API reference of this module for more details.

executors_distributed

This module provides the executor hpx::parallel::execution::disribution_policy_executor. It allows
one to create work that is implicitly distributed over multiple localities.

See the API reference of this module for more details.

include

This module provides no functionality in itself. Instead it provides headers that group together other headers that often
appear together.

See the API reference of this module for more details.

314 Chapter 2. What’s so special about HPX?

HPX Documentation, master

init_runtime

TODO: High-level description of the library.

See the API reference of this module for more details.

lcos_distributed

This module contains distributed LCOs. Currently the only LCO provided is :cpp:class::hpx::lcos::channel, a construct
for sending values from one locality to another. See libs_lcos_local for local LCOs.

See the API reference of this module for more details.

naming

TODO: High-level description of the module.

See the API reference of this module for more details.

naming_base

This module provides a forward declaration of address_type, component_type and invalid_locality_id.

See the API reference of this module for more details.

parcelport_lci

TODO: High-level description of the module.

See the API reference of this module for more details.

parcelport_mpi

TODO: High-level description of the module.

See the API reference of this module for more details.

parcelport_tcp

TODO: High-level description of the module.

See the API reference of this module for more details.

parcelset

TODO: High-level description of the module.

See the API reference of this module for more details.

2.7. Overview 315

HPX Documentation, master

parcelset_base

TODO: High-level description of the module.

See the API reference of this module for more details.

performance_counters

This module provides the basic functionality required for defining performance counters. See Performance counters
for more information about performance counters.

See the API reference of this module for more details.

plugin_factories

TODO: High-level description of the module.

See the API reference of this module for more details.

resiliency_distributed

Software resiliency features of HPX were introduced in the resiliency module. This module extends the APIs to run on
distributed-memory systems allowing the user to invoke the failing task on other localities at runtime. This is useful
in cases where a node is identified to fail more often (e.g., for certain ALU computes) as the task can now be replayed
or replicated among different localities. The API exposed allows for an easy integration with the local only resiliency
APIs as well.

Distributed software resilience APIs have a similar function signature and lives under the same namespace of
hpx::resiliency::experimental. The difference arises in the formal parameters where distributed APIs takes
the localities as the first argument, and an action as opposed to a function or a function object. The localities signify
the order in which the API will either schedule (in case of Task Replay) tasks in a round robin fashion or replicate the
tasks onto the list of localities.

The list of APIs exposed by distributed resiliency modules is the same as those defined in local resiliency module.

See the API reference of this module for more details.

runtime_components

TODO: High-level description of the module.

See the API reference of this module for more details.

runtime_distributed

TODO: High-level description of the module.

See the API reference of this module for more details.

316 Chapter 2. What’s so special about HPX?

HPX Documentation, master

segmented_algorithms

Segmented algorithms extend the usual parallel algorithms by providing overloads that work with distributed containers,
such as partitioned vectors.

See the API reference of the module for more details.

statistics

This module provide some statistics utilities like rolling min/max and histogram.

See the API reference of the module for more details.

2.8 API reference

HPX follows a versioning scheme with three numbers: major.minor.patch. We guarantee no breaking changes in
the API for patch releases. Minor releases may remove or break existing APIs, but only after a deprecation period of
at least two minor releases. In rare cases do we outright remove old and unused functionality without a deprecation
period.

We do not provide any ABI compatibility guarantees between any versions, debug and release builds, and builds with
different C++ standards.

The public API of HPX is presented below. Clicking on a name brings you to the full documentation for the class or
function. Including the header specified in a heading brings in the features listed under that heading.

Note: Names listed here are guaranteed stable with respect to semantic versioning. However, at the moment the list
is incomplete and certain unlisted features are intended to be in the public API. While we work on completing the list,
if you’re unsure about whether a particular unlisted name is part of the public API you can get into contact with us or
open an issue and we’ll clarify the situation.

2.8.1 Public API

Our API is semantically conforming; hence, the reader is highly encouraged to refer to the corresponding facility in the
C++ Standard256 if needed. All names below are also available in the top-level hpx namespace unless otherwise noted.
The names in hpx should be preferred. The names in sub-namespaces will eventually be removed.

hpx/algorithm.hpp

The header hpx/algorithm.hpp257 corresponds to the C++ standard library header algorithm258. See Using parallel
algorithms for more information about the parallel algorithms.

256 https://en.cppreference.com/w/cpp/header
257 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp
258 http://en.cppreference.com/w/cpp/header/algorithm

2.8. API reference 317

https://en.cppreference.com/w/cpp/header
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp
http://en.cppreference.com/w/cpp/header/algorithm

HPX Documentation, master

Classes

Table 2.123: Classes of header hpx/algorithm.hpp
Class C++ standard
hpx::experimental::reduction N4808259

hpx::experimental::induction N4808260

Functions

Table 2.124: hpx functions of header hpx/algorithm.hpp
hpx function C++ standard
hpx::adjacent_find std::adjacent_find261

hpx::all_of std::all_of262

hpx::any_of std::any_of263

hpx::copy std::copy264

hpx::copy_if std::copy_if265

hpx::copy_n std::copy_n266

hpx::count std::count267

hpx::count_if std::count_if268

hpx::ends_with std::ends_with269

hpx::equal std::equal270

hpx::fill std::fill271

hpx::fill_n std::fill_n272

hpx::find std::find273

hpx::find_end std::find_end274

hpx::find_first_of std::find_first_of275

hpx::find_if std::find_if276

hpx::find_if_not std::find_if_not277

hpx::for_each std::for_each278

hpx::for_each_n std::for_each_n279

hpx::generate std::generate280

hpx::generate_n std::generate_n281

hpx::includes std::includes282

hpx::inplace_merge std::inplace_merge283

hpx::is_heap std::is_heap284

hpx::is_heap_until std::is_heap_until285

hpx::is_partitioned std::is_partitioned286

hpx::is_sorted std::is_sorted287

hpx::is_sorted_until std::is_sorted_until288

hpx::lexicographical_compare std::lexicographical_compare289

hpx::make_heap std::make_heap290

hpx::max_element std::max_element291

hpx::merge std::merge292

hpx::min_element std::min_element293

hpx::minmax_element std::minmax_element294

continues on next page

259 http://wg21.link/n4808
260 http://wg21.link/n4808

318 Chapter 2. What’s so special about HPX?

http://wg21.link/n4808
http://wg21.link/n4808
http://en.cppreference.com/w/cpp/algorithm/adjacent_find
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/copy
http://en.cppreference.com/w/cpp/algorithm/copy
http://en.cppreference.com/w/cpp/algorithm/copy_n
http://en.cppreference.com/w/cpp/algorithm/count
http://en.cppreference.com/w/cpp/algorithm/count
http://en.cppreference.com/w/cpp/algorithm/ranges/ends_with
http://en.cppreference.com/w/cpp/algorithm/equal
http://en.cppreference.com/w/cpp/algorithm/fill
http://en.cppreference.com/w/cpp/algorithm/fill_n
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find_end
http://en.cppreference.com/w/cpp/algorithm/find_first_of
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/for_each
http://en.cppreference.com/w/cpp/algorithm/for_each_n
http://en.cppreference.com/w/cpp/algorithm/generate
http://en.cppreference.com/w/cpp/algorithm/generate_n
http://en.cppreference.com/w/cpp/algorithm/includes
http://en.cppreference.com/w/cpp/algorithm/inplace_merge
http://en.cppreference.com/w/cpp/algorithm/is_heap
http://en.cppreference.com/w/cpp/algorithm/is_heap_until
http://en.cppreference.com/w/cpp/algorithm/is_partitioned
http://en.cppreference.com/w/cpp/algorithm/is_sorted
http://en.cppreference.com/w/cpp/algorithm/is_sorted_until
http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
http://en.cppreference.com/w/cpp/algorithm/make_heap
http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/merge
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm/minmax_element

HPX Documentation, master

Table 2.124 – continued from previous page
hpx function C++ standard
hpx::mismatch std::mismatch295

hpx::move std::move296

hpx::none_of std::none_of297

hpx::nth_element std::nth_element298

hpx::partial_sort std::partial_sort299

hpx::partial_sort_copy std::partial_sort_copy300

hpx::partition std::partition301

hpx::partition_copy std::partition_copy302

hpx::experimental::reduce_by_key reduce_by_key303

hpx::remove std::remove304

hpx::remove_copy std::remove_copy305

hpx::remove_copy_if std::remove_copy_if306

hpx::remove_if std::remove_if307

hpx::replace std::replace308

hpx::replace_copy std::replace_copy309

hpx::replace_copy_if std::replace_copy_if310

hpx::replace_if std::replace_if311

hpx::reverse std::reverse312

hpx::reverse_copy std::reverse_copy313

hpx::rotate std::rotate314

hpx::rotate_copy std::rotate_copy315

hpx::search std::search316

hpx::search_n std::search_n317

hpx::set_difference std::set_difference318

hpx::set_intersection std::set_intersection319

hpx::set_symmetric_difference std::set_symmetric_difference320

hpx::set_union std::set_union321

hpx::shift_left std::shift_left322

hpx::shift_right std::shift_right323

hpx::sort std::sort324

hpx::experimental::sort_by_key sort_by_key325

hpx::stable_partition std::stable_partition326

hpx::stable_sort std::stable_sort327

hpx::starts_with std::starts_with328

hpx::swap_ranges std::swap_ranges329

hpx::transform std::transform330

hpx::unique std::unique331

hpx::unique_copy std::unique_copy332

hpx::experimental::for_loop N4808333

hpx::experimental::for_loop_strided N4808334

hpx::experimental::for_loop_n N4808335

hpx::experimental::for_loop_n_strided N4808336

2.8. API reference 319

http://en.cppreference.com/w/cpp/algorithm/mismatch
http://en.cppreference.com/w/cpp/algorithm/move
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/nth_element
http://en.cppreference.com/w/cpp/algorithm/partial_sort
http://en.cppreference.com/w/cpp/algorithm/partial_sort_copy
http://en.cppreference.com/w/cpp/algorithm/partition
http://en.cppreference.com/w/cpp/algorithm/partition_copy
https://thrust.github.io/doc/group__reductions_gad5623f203f9b3fdcab72481c3913f0e0.html
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/replace
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/replace
http://en.cppreference.com/w/cpp/algorithm/reverse
http://en.cppreference.com/w/cpp/algorithm/reverse_copy
http://en.cppreference.com/w/cpp/algorithm/rotate
http://en.cppreference.com/w/cpp/algorithm/rotate_copy
http://en.cppreference.com/w/cpp/algorithm/search
http://en.cppreference.com/w/cpp/algorithm/search_n
http://en.cppreference.com/w/cpp/algorithm/set_difference
http://en.cppreference.com/w/cpp/algorithm/set_intersection
http://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
http://en.cppreference.com/w/cpp/algorithm/set_union
http://en.cppreference.com/w/cpp/algorithm/shift
http://en.cppreference.com/w/cpp/algorithm/shift
http://en.cppreference.com/w/cpp/algorithm/sort
https://thrust.github.io/doc/group__sorting_gabe038d6107f7c824cf74120500ef45ea.html
http://en.cppreference.com/w/cpp/algorithm/stable_partition
http://en.cppreference.com/w/cpp/algorithm/stable_sort
http://en.cppreference.com/w/cpp/algorithm/ranges/starts_with
http://en.cppreference.com/w/cpp/algorithm/swap_ranges
http://en.cppreference.com/w/cpp/algorithm/transform
http://en.cppreference.com/w/cpp/algorithm/unique
http://en.cppreference.com/w/cpp/algorithm/unique_copy
http://wg21.link/n4808
http://wg21.link/n4808
http://wg21.link/n4808
http://wg21.link/n4808

HPX Documentation, master

261 http://en.cppreference.com/w/cpp/algorithm/adjacent_find
262 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
263 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
264 http://en.cppreference.com/w/cpp/algorithm/copy
265 http://en.cppreference.com/w/cpp/algorithm/copy
266 http://en.cppreference.com/w/cpp/algorithm/copy_n
267 http://en.cppreference.com/w/cpp/algorithm/count
268 http://en.cppreference.com/w/cpp/algorithm/count
269 http://en.cppreference.com/w/cpp/algorithm/ranges/ends_with
270 http://en.cppreference.com/w/cpp/algorithm/equal
271 http://en.cppreference.com/w/cpp/algorithm/fill
272 http://en.cppreference.com/w/cpp/algorithm/fill_n
273 http://en.cppreference.com/w/cpp/algorithm/find
274 http://en.cppreference.com/w/cpp/algorithm/find_end
275 http://en.cppreference.com/w/cpp/algorithm/find_first_of
276 http://en.cppreference.com/w/cpp/algorithm/find
277 http://en.cppreference.com/w/cpp/algorithm/find
278 http://en.cppreference.com/w/cpp/algorithm/for_each
279 http://en.cppreference.com/w/cpp/algorithm/for_each_n
280 http://en.cppreference.com/w/cpp/algorithm/generate
281 http://en.cppreference.com/w/cpp/algorithm/generate_n
282 http://en.cppreference.com/w/cpp/algorithm/includes
283 http://en.cppreference.com/w/cpp/algorithm/inplace_merge
284 http://en.cppreference.com/w/cpp/algorithm/is_heap
285 http://en.cppreference.com/w/cpp/algorithm/is_heap_until
286 http://en.cppreference.com/w/cpp/algorithm/is_partitioned
287 http://en.cppreference.com/w/cpp/algorithm/is_sorted
288 http://en.cppreference.com/w/cpp/algorithm/is_sorted_until
289 http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
290 http://en.cppreference.com/w/cpp/algorithm/make_heap
291 http://en.cppreference.com/w/cpp/algorithm/max_element
292 http://en.cppreference.com/w/cpp/algorithm/merge
293 http://en.cppreference.com/w/cpp/algorithm/min_element
294 http://en.cppreference.com/w/cpp/algorithm/minmax_element
295 http://en.cppreference.com/w/cpp/algorithm/mismatch
296 http://en.cppreference.com/w/cpp/algorithm/move
297 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
298 http://en.cppreference.com/w/cpp/algorithm/nth_element
299 http://en.cppreference.com/w/cpp/algorithm/partial_sort
300 http://en.cppreference.com/w/cpp/algorithm/partial_sort_copy
301 http://en.cppreference.com/w/cpp/algorithm/partition
302 http://en.cppreference.com/w/cpp/algorithm/partition_copy
303 https://thrust.github.io/doc/group__reductions_gad5623f203f9b3fdcab72481c3913f0e0.html
304 http://en.cppreference.com/w/cpp/algorithm/remove
305 http://en.cppreference.com/w/cpp/algorithm/remove_copy
306 http://en.cppreference.com/w/cpp/algorithm/remove_copy
307 http://en.cppreference.com/w/cpp/algorithm/remove
308 http://en.cppreference.com/w/cpp/algorithm/replace
309 http://en.cppreference.com/w/cpp/algorithm/replace_copy
310 http://en.cppreference.com/w/cpp/algorithm/replace_copy
311 http://en.cppreference.com/w/cpp/algorithm/replace
312 http://en.cppreference.com/w/cpp/algorithm/reverse
313 http://en.cppreference.com/w/cpp/algorithm/reverse_copy
314 http://en.cppreference.com/w/cpp/algorithm/rotate
315 http://en.cppreference.com/w/cpp/algorithm/rotate_copy
316 http://en.cppreference.com/w/cpp/algorithm/search
317 http://en.cppreference.com/w/cpp/algorithm/search_n
318 http://en.cppreference.com/w/cpp/algorithm/set_difference
319 http://en.cppreference.com/w/cpp/algorithm/set_intersection
320 http://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
321 http://en.cppreference.com/w/cpp/algorithm/set_union
322 http://en.cppreference.com/w/cpp/algorithm/shift
323 http://en.cppreference.com/w/cpp/algorithm/shift
324 http://en.cppreference.com/w/cpp/algorithm/sort
325 https://thrust.github.io/doc/group__sorting_gabe038d6107f7c824cf74120500ef45ea.html
326 http://en.cppreference.com/w/cpp/algorithm/stable_partition
327 http://en.cppreference.com/w/cpp/algorithm/stable_sort
328 http://en.cppreference.com/w/cpp/algorithm/ranges/starts_with
329 http://en.cppreference.com/w/cpp/algorithm/swap_ranges
330 http://en.cppreference.com/w/cpp/algorithm/transform
331 http://en.cppreference.com/w/cpp/algorithm/unique
332 http://en.cppreference.com/w/cpp/algorithm/unique_copy
333 http://wg21.link/n4808
334 http://wg21.link/n4808
335 http://wg21.link/n4808
336 http://wg21.link/n4808

320 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Table 2.125: hpx::ranges functions of header hpx/algorithm.hpp
hpx::ranges function C++ standard
hpx::ranges::adjacent_find std::adjacent_find337

hpx::ranges::all_of std::all_of338

hpx::ranges::any_of std::any_of339

hpx::ranges::copy std::copy340

hpx::ranges::copy_if std::copy_if341

hpx::ranges::copy_n std::copy_n342

hpx::ranges::count std::count343

hpx::ranges::count_if std::count_if344

hpx::ranges::ends_with std::ends_with345

hpx::ranges::equal std::equal346

hpx::ranges::fill std::fill347

hpx::ranges::fill_n std::fill_n348

hpx::ranges::find std::find349

hpx::ranges::find_end std::find_end350

hpx::ranges::find_first_of std::find_first_of351

hpx::ranges::find_if std::find_if352

hpx::ranges::find_if_not std::find_if_not353

hpx::ranges::for_each std::for_each354

hpx::ranges::for_each_n std::for_each_n355

hpx::ranges::generate std::generate356

hpx::ranges::generate_n std::generate_n357

hpx::ranges::includes std::includes358

hpx::ranges::inplace_merge std::inplace_merge359

hpx::ranges::is_heap std::is_heap360

hpx::ranges::is_heap_until std::is_heap_until361

hpx::ranges::is_partitioned std::is_partitioned362

hpx::ranges::is_sorted std::is_sorted363

hpx::ranges::is_sorted_until std::is_sorted_until364

hpx::ranges::make_heap std::make_heap365

hpx::ranges::max_element std::max_element366

hpx::ranges::merge std::merge367

hpx::ranges::min_element std::min_element368

hpx::ranges::minmax_element std::minmax_element369

hpx::ranges::mismatch std::mismatch370

hpx::ranges::move std::move371

hpx::ranges::none_of std::none_of372

hpx::ranges::nth_element std::nth_element373

hpx::ranges::partial_sort std::partial_sort374

hpx::ranges::partial_sort_copy std::partial_sort_copy375

hpx::ranges::partition std::partition376

hpx::ranges::partition_copy std::partition_copy377

hpx::ranges::set_difference std::set_difference378

hpx::ranges::set_intersection std::set_intersection379

hpx::ranges::set_symmetric_difference std::set_symmetric_difference380

hpx::ranges::set_union std::set_union381

hpx::ranges::shift_left P2440382

hpx::ranges::shift_right P2440383

hpx::ranges::sort std::sort384

continues on next page

2.8. API reference 321

http://en.cppreference.com/w/cpp/algorithm/ranges/adjacent_find
http://en.cppreference.com/w/cpp/algorithm/ranges/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/ranges/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/ranges/copy
http://en.cppreference.com/w/cpp/algorithm/ranges/copy
http://en.cppreference.com/w/cpp/algorithm/ranges/copy_n
http://en.cppreference.com/w/cpp/algorithm/ranges/count
http://en.cppreference.com/w/cpp/algorithm/ranges/count
http://en.cppreference.com/w/cpp/algorithm/ranges/ends_with
http://en.cppreference.com/w/cpp/algorithm/ranges/equal
http://en.cppreference.com/w/cpp/algorithm/ranges/fill
http://en.cppreference.com/w/cpp/algorithm/ranges/fill_n
http://en.cppreference.com/w/cpp/algorithm/ranges/find
http://en.cppreference.com/w/cpp/algorithm/ranges/find_end
http://en.cppreference.com/w/cpp/algorithm/ranges/find_first_of
http://en.cppreference.com/w/cpp/algorithm/ranges/find
http://en.cppreference.com/w/cpp/algorithm/ranges/find
http://en.cppreference.com/w/cpp/algorithm/ranges/for_each
http://en.cppreference.com/w/cpp/algorithm/ranges/for_each_n
http://en.cppreference.com/w/cpp/algorithm/ranges/generate
http://en.cppreference.com/w/cpp/algorithm/ranges/generate_n
http://en.cppreference.com/w/cpp/algorithm/ranges/includes
http://en.cppreference.com/w/cpp/algorithm/ranges/inplace_merge
http://en.cppreference.com/w/cpp/algorithm/ranges/is_heap
http://en.cppreference.com/w/cpp/algorithm/ranges/is_heap_until
http://en.cppreference.com/w/cpp/algorithm/ranges/is_partitioned
http://en.cppreference.com/w/cpp/algorithm/ranges/is_sorted
http://en.cppreference.com/w/cpp/algorithm/ranges/is_sorted_until
http://en.cppreference.com/w/cpp/algorithm/ranges/make_heap
http://en.cppreference.com/w/cpp/algorithm/ranges/max_element
http://en.cppreference.com/w/cpp/algorithm/ranges/merge
http://en.cppreference.com/w/cpp/algorithm/ranges/min_element
http://en.cppreference.com/w/cpp/algorithm/ranges/minmax_element
http://en.cppreference.com/w/cpp/algorithm/ranges/mismatch
http://en.cppreference.com/w/cpp/algorithm/ranges/move
http://en.cppreference.com/w/cpp/algorithm/ranges/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/ranges/nth_element
http://en.cppreference.com/w/cpp/algorithm/ranges/partial_sort
http://en.cppreference.com/w/cpp/algorithm/ranges/partial_sort_copy
http://en.cppreference.com/w/cpp/algorithm/ranges/partition
http://en.cppreference.com/w/cpp/algorithm/ranges/partition_copy
http://en.cppreference.com/w/cpp/algorithm/ranges/set_difference
http://en.cppreference.com/w/cpp/algorithm/ranges/set_intersection
http://en.cppreference.com/w/cpp/algorithm/ranges/set_symmetric_difference
http://en.cppreference.com/w/cpp/algorithm/ranges/set_union
https://wg21.link/p2440
https://wg21.link/p2440
http://en.cppreference.com/w/cpp/algorithm/ranges/sort

HPX Documentation, master

Table 2.125 – continued from previous page
hpx::ranges function C++ standard
hpx::ranges::stable_partition std::stable_partition385

hpx::ranges::stable_sort std::stable_sort386

hpx::ranges::starts_with std::starts_with387

hpx::ranges::swap_ranges std::swap_ranges388

hpx::ranges::transform std::transform389

hpx::ranges::unique std::unique390

hpx::ranges::unique_copy std::unique_copy391

hpx::ranges::experimental::for_loop N4808392

hpx::ranges::experimental::for_loop_strided N4808393

322 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/ranges/stable_partition
http://en.cppreference.com/w/cpp/algorithm/ranges/stable_sort
http://en.cppreference.com/w/cpp/algorithm/ranges/starts_with
http://en.cppreference.com/w/cpp/algorithm/ranges/swap_ranges
http://en.cppreference.com/w/cpp/algorithm/ranges/transform
http://en.cppreference.com/w/cpp/algorithm/ranges/unique
http://en.cppreference.com/w/cpp/algorithm/ranges/unique_copy
http://wg21.link/n4808
http://wg21.link/n4808

HPX Documentation, master

hpx/any.hpp

The header hpx/any.hpp394 corresponds to the C++ standard library header any395.

hpx::any is compatible with std::any.
337 http://en.cppreference.com/w/cpp/algorithm/ranges/adjacent_find
338 http://en.cppreference.com/w/cpp/algorithm/ranges/all_any_none_of
339 http://en.cppreference.com/w/cpp/algorithm/ranges/all_any_none_of
340 http://en.cppreference.com/w/cpp/algorithm/ranges/copy
341 http://en.cppreference.com/w/cpp/algorithm/ranges/copy
342 http://en.cppreference.com/w/cpp/algorithm/ranges/copy_n
343 http://en.cppreference.com/w/cpp/algorithm/ranges/count
344 http://en.cppreference.com/w/cpp/algorithm/ranges/count
345 http://en.cppreference.com/w/cpp/algorithm/ranges/ends_with
346 http://en.cppreference.com/w/cpp/algorithm/ranges/equal
347 http://en.cppreference.com/w/cpp/algorithm/ranges/fill
348 http://en.cppreference.com/w/cpp/algorithm/ranges/fill_n
349 http://en.cppreference.com/w/cpp/algorithm/ranges/find
350 http://en.cppreference.com/w/cpp/algorithm/ranges/find_end
351 http://en.cppreference.com/w/cpp/algorithm/ranges/find_first_of
352 http://en.cppreference.com/w/cpp/algorithm/ranges/find
353 http://en.cppreference.com/w/cpp/algorithm/ranges/find
354 http://en.cppreference.com/w/cpp/algorithm/ranges/for_each
355 http://en.cppreference.com/w/cpp/algorithm/ranges/for_each_n
356 http://en.cppreference.com/w/cpp/algorithm/ranges/generate
357 http://en.cppreference.com/w/cpp/algorithm/ranges/generate_n
358 http://en.cppreference.com/w/cpp/algorithm/ranges/includes
359 http://en.cppreference.com/w/cpp/algorithm/ranges/inplace_merge
360 http://en.cppreference.com/w/cpp/algorithm/ranges/is_heap
361 http://en.cppreference.com/w/cpp/algorithm/ranges/is_heap_until
362 http://en.cppreference.com/w/cpp/algorithm/ranges/is_partitioned
363 http://en.cppreference.com/w/cpp/algorithm/ranges/is_sorted
364 http://en.cppreference.com/w/cpp/algorithm/ranges/is_sorted_until
365 http://en.cppreference.com/w/cpp/algorithm/ranges/make_heap
366 http://en.cppreference.com/w/cpp/algorithm/ranges/max_element
367 http://en.cppreference.com/w/cpp/algorithm/ranges/merge
368 http://en.cppreference.com/w/cpp/algorithm/ranges/min_element
369 http://en.cppreference.com/w/cpp/algorithm/ranges/minmax_element
370 http://en.cppreference.com/w/cpp/algorithm/ranges/mismatch
371 http://en.cppreference.com/w/cpp/algorithm/ranges/move
372 http://en.cppreference.com/w/cpp/algorithm/ranges/all_any_none_of
373 http://en.cppreference.com/w/cpp/algorithm/ranges/nth_element
374 http://en.cppreference.com/w/cpp/algorithm/ranges/partial_sort
375 http://en.cppreference.com/w/cpp/algorithm/ranges/partial_sort_copy
376 http://en.cppreference.com/w/cpp/algorithm/ranges/partition
377 http://en.cppreference.com/w/cpp/algorithm/ranges/partition_copy
378 http://en.cppreference.com/w/cpp/algorithm/ranges/set_difference
379 http://en.cppreference.com/w/cpp/algorithm/ranges/set_intersection
380 http://en.cppreference.com/w/cpp/algorithm/ranges/set_symmetric_difference
381 http://en.cppreference.com/w/cpp/algorithm/ranges/set_union
382 https://wg21.link/p2440
383 https://wg21.link/p2440
384 http://en.cppreference.com/w/cpp/algorithm/ranges/sort
385 http://en.cppreference.com/w/cpp/algorithm/ranges/stable_partition
386 http://en.cppreference.com/w/cpp/algorithm/ranges/stable_sort
387 http://en.cppreference.com/w/cpp/algorithm/ranges/starts_with
388 http://en.cppreference.com/w/cpp/algorithm/ranges/swap_ranges
389 http://en.cppreference.com/w/cpp/algorithm/ranges/transform
390 http://en.cppreference.com/w/cpp/algorithm/ranges/unique
391 http://en.cppreference.com/w/cpp/algorithm/ranges/unique_copy
392 http://wg21.link/n4808
393 http://wg21.link/n4808
394 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/any.hpp
395 http://en.cppreference.com/w/cpp/header/any

2.8. API reference 323

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/any.hpp
http://en.cppreference.com/w/cpp/header/any

HPX Documentation, master

Classes

Table 2.126: Classes of header hpx/any.hpp
Class C++ standard
hpx::any std::any396

hpx::any_nonser
hpx::bad_any_cast std::bad_any_cast397

hpx::unique_any_nonser

Functions

Table 2.127: Functions of header hpx/any.hpp
Function C++ standard
hpx::any_cast std::any_cast398

hpx::make_any std::make_any399

hpx::make_any_nonser
hpx::make_unique_any_nonser

hpx/assert.hpp

The header hpx/assert.hpp400 corresponds to the C++ standard library header cassert401.

HPX_ASSERT is the HPX equivalent to assert in cassert. HPX_ASSERT can also be used in CUDA device code.

Macros

Table 2.128: Macros of header hpx/assert.hpp
Macro
HPX_ASSERT
HPX_ASSERT_MSG

396 http://en.cppreference.com/w/cpp/utility/any
397 http://en.cppreference.com/w/cpp/utility/any/bad_any_cast
398 http://en.cppreference.com/w/cpp/utility/any/any_cast
399 http://en.cppreference.com/w/cpp/utility/any/make_any
400 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/assertion/include/hpx/assert.hpp
401 http://en.cppreference.com/w/cpp/header/cassert

324 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/utility/any
http://en.cppreference.com/w/cpp/utility/any/bad_any_cast
http://en.cppreference.com/w/cpp/utility/any/any_cast
http://en.cppreference.com/w/cpp/utility/any/make_any
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/assertion/include/hpx/assert.hpp
http://en.cppreference.com/w/cpp/header/cassert

HPX Documentation, master

hpx/barrier.hpp

The header hpx/barrier.hpp402 corresponds to the C++ standard library header barrier403 and contains a distributed
barrier implementation. This functionality is also exposed through the hpx::distributed namespace. The name in
hpx::distributed should be preferred.

Classes

Table 2.129: Classes of header hpx/barrier.hpp
Class C++ standard
hpx::barrier std::barrier404

Table 2.130: Distributed implementation of classes of header hpx/
barrier.hpp

Class
hpx::distributed::barrier

hpx/channel.hpp

The header hpx/channel.hpp405 contains a local and a distributed channel implementation. This functionality is also
exposed through the hpx::distributed namespace. The name in hpx::distributed should be preferred.

Classes

Table 2.131: Classes of header hpx/channel.hpp
Class
hpx::channel

Table 2.132: Distributed implementation of classes of header hpx/
channel.hpp

Class
hpx::distributed::channel

402 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/barrier.hpp
403 http://en.cppreference.com/w/cpp/header/barrier
404 http://en.cppreference.com/w/cpp/thread/barrier
405 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/channel.hpp

2.8. API reference 325

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/barrier.hpp
http://en.cppreference.com/w/cpp/header/barrier
http://en.cppreference.com/w/cpp/thread/barrier
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/channel.hpp

HPX Documentation, master

hpx/chrono.hpp

The header hpx/chrono.hpp406 corresponds to the C++ standard library header chrono407. The following replacements
and extensions are provided compared to chrono408.

Classes

Table 2.133: Classes of header hpx/chrono.hpp
Class C++ standard
hpx::chrono::high_resolution_clock std::high_resolution_clock409

hpx::chrono::high_resolution_timer
hpx::chrono::steady_time_point std::time_point410

hpx/condition_variable.hpp

The header hpx/condition_variable.hpp411 corresponds to the C++ standard library header condition_variable412.

Classes

Table 2.134: Classes of header hpx/condition_variable.hpp
Class C++ standard
hpx::condition_variable std::condition_variable413

hpx::condition_variable_any std::condition_variable_any414

hpx::cv_status std::cv_status415

hpx/exception.hpp

The header hpx/exception.hpp416 corresponds to the C++ standard library header exception417. hpx::exception
extends std::exception and is the base class for all exceptions thrown in HPX. HPX_THROW_EXCEPTION can be
used to throw HPX exceptions with file and line information attached to the exception.

406 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/chrono.
hpp

407 http://en.cppreference.com/w/cpp/header/chrono
408 http://en.cppreference.com/w/cpp/header/chrono
409 http://en.cppreference.com/w/cpp/chrono/high_resolution_clock
410 http://en.cppreference.com/w/cpp/chrono/time_point
411 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

condition_variable.hpp
412 http://en.cppreference.com/w/cpp/header/condition_variable
413 http://en.cppreference.com/w/cpp/thread/condition_variable
414 http://en.cppreference.com/w/cpp/thread/condition_variable_any
415 http://en.cppreference.com/w/cpp/thread/cv_status
416 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

exception.hpp
417 http://en.cppreference.com/w/cpp/header/exception

326 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/chrono.hpp
http://en.cppreference.com/w/cpp/header/chrono
http://en.cppreference.com/w/cpp/header/chrono
http://en.cppreference.com/w/cpp/chrono/high_resolution_clock
http://en.cppreference.com/w/cpp/chrono/time_point
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/condition_variable.hpp
http://en.cppreference.com/w/cpp/header/condition_variable
http://en.cppreference.com/w/cpp/thread/condition_variable
http://en.cppreference.com/w/cpp/thread/condition_variable_any
http://en.cppreference.com/w/cpp/thread/cv_status
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/exception.hpp
http://en.cppreference.com/w/cpp/header/exception

HPX Documentation, master

Macros

• HPX_THROW_EXCEPTION

Classes

Table 2.135: Classes of header hpx/exception.hpp
Class C++ standard
hpx::exception std::exception418

hpx/execution.hpp

The header hpx/execution.hpp419 corresponds to the C++ standard library header execution420. See High level parallel
facilities, Using parallel algorithms and Executor parameters and executor parameter traits for more information about
execution policies and executor parameters.

Note: These names are only available in the hpx::execution namespace, not in the top-level hpx namespace.

Constants

Table 2.136: Constants of header hpx/execution.hpp
Constant C++ standard
hpx::execution::seq std::execution_policy_tag421

hpx::execution::par std::execution_policy_tag422

hpx::execution::par_unseq std::execution_policy_tag423

hpx::execution::task

418 http://en.cppreference.com/w/cpp/error/exception
419 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

execution.hpp
420 http://en.cppreference.com/w/cpp/header/execution
421 http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag
422 http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag
423 http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag

2.8. API reference 327

http://en.cppreference.com/w/cpp/error/exception
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/execution.hpp
http://en.cppreference.com/w/cpp/header/execution
http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag
http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag
http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag

HPX Documentation, master

Classes

Table 2.137: Classes of header hpx/execution.hpp
Class C++ standard
hpx::execution::sequenced_policy std::execution_policy_tag_t424

hpx::execution::parallel_policy std::execution_policy_tag_t425

hpx::execution::parallel_unsequenced_policy std::execution_policy_tag_t426

hpx::execution::sequenced_task_policy
hpx::execution::parallel_task_policy
hpx::execution::experimental::auto_chunk_size
hpx::execution::experimental::dynamic_chunk_size
hpx::execution::experimental::guided_chunk_size
hpx::execution::experimental::persistent_auto_chunk_size
hpx::execution::experimental::static_chunk_size
hpx::execution::experimental::num_cores

hpx/functional.hpp

The header hpx/functional.hpp427 corresponds to the C++ standard library header functional428. hpx::function is a
more efficient and serializable replacement for std::function.

Constants

The following constants correspond to the C++ standard std::placeholders429

Table 2.138: Constants of header hpx/functional.hpp
Constant
hpx::placeholders::_1
hpx::placeholders::_2
. . .
hpx::placeholders::_9

424 http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
425 http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
426 http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
427 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

functional.hpp
428 http://en.cppreference.com/w/cpp/header/functional
429 http://en.cppreference.com/w/cpp/utility/functional/placeholders

328 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
http://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp
http://en.cppreference.com/w/cpp/header/functional
http://en.cppreference.com/w/cpp/utility/functional/placeholders

HPX Documentation, master

Classes

Table 2.139: Classes of header hpx/functional.hpp
Class C++ standard
hpx::function std::function430

hpx::function_ref P0792431

hpx::move_only_function std::move_only_function432

hpx::is_bind_expression std::is_bind_expression433

hpx::is_placeholder std::is_placeholder434

hpx::scoped_annotation

Functions

Table 2.140: Functions of header hpx/functional.hpp
Function C++ standard
hpx::annotated_function
hpx::bind std::bind435

hpx::bind_back std::bind_front436

hpx::bind_front std::bind_front437

hpx::invoke std::invoke438

hpx::invoke_fused std::apply439

hpx::invoke_fused_r
hpx::mem_fn std::mem_fn440

hpx/future.hpp

The header hpx/future.hpp441 corresponds to the C++ standard library header future442. See Extended facilities for
futures for more information about extensions to futures compared to the C++ standard library.

This header file also contains overloads of hpx::async, hpx::post, hpx::sync, and hpx::dataflow that can be
used with actions. See Action invocation for more information about invoking actions.

430 http://en.cppreference.com/w/cpp/utility/functional/function
431 http://wg21.link/p0792
432 http://en.cppreference.com/w/cpp/utility/functional/move_only_function
433 http://en.cppreference.com/w/cpp/utility/functional/is_bind_expression
434 http://en.cppreference.com/w/cpp/utility/functional/is_placeholder
435 http://en.cppreference.com/w/cpp/utility/functional/bind
436 http://en.cppreference.com/w/cpp/utility/functional/bind_front
437 http://en.cppreference.com/w/cpp/utility/functional/bind_front
438 http://en.cppreference.com/w/cpp/utility/functional/invoke
439 http://en.cppreference.com/w/cpp/utility/apply
440 http://en.cppreference.com/w/cpp/utility/functional/mem_fn
441 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp
442 http://en.cppreference.com/w/cpp/header/future

2.8. API reference 329

http://en.cppreference.com/w/cpp/utility/functional/function
http://wg21.link/p0792
http://en.cppreference.com/w/cpp/utility/functional/move_only_function
http://en.cppreference.com/w/cpp/utility/functional/is_bind_expression
http://en.cppreference.com/w/cpp/utility/functional/is_placeholder
http://en.cppreference.com/w/cpp/utility/functional/bind
http://en.cppreference.com/w/cpp/utility/functional/bind_front
http://en.cppreference.com/w/cpp/utility/functional/bind_front
http://en.cppreference.com/w/cpp/utility/functional/invoke
http://en.cppreference.com/w/cpp/utility/apply
http://en.cppreference.com/w/cpp/utility/functional/mem_fn
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp
http://en.cppreference.com/w/cpp/header/future

HPX Documentation, master

Classes

Table 2.141: Classes of header hpx/future.hpp
Class C++ standard
hpx::future std::future443

hpx::shared_future std::shared_future444

hpx::promise std::promise445

hpx::launch std::launch446

hpx::packaged_task std::packaged_task447

Note: All names except hpx::promise are also available in the top-level hpx namespace. hpx::promise refers to
hpx::distributed::promise, a distributed variant of hpx::promise, but will eventually refer to hpx::promise
after a deprecation period.

Table 2.142: Distributed implementation of classes of header hpx/
future.hpp

Class
hpx::distributed::promise

Functions

Table 2.143: Functions of header hpx/future.hpp
Function C++ standard
hpx::async std::async448

hpx::post
hpx::sync
hpx::dataflow
hpx::make_future
hpx::make_shared_future
hpx::make_ready_future P0159449

hpx::make_ready_future_alloc
hpx::make_ready_future_at
hpx::make_ready_future_after
hpx::make_exceptional_future P0159450

hpx::when_all P0159451

hpx::when_any P0159452

hpx::when_some
hpx::when_each
hpx::wait_all
hpx::wait_any
hpx::wait_some
hpx::wait_each

443 http://en.cppreference.com/w/cpp/thread/future
444 http://en.cppreference.com/w/cpp/thread/shared_future
445 http://en.cppreference.com/w/cpp/thread/promise
446 http://en.cppreference.com/w/cpp/thread/launch
447 http://en.cppreference.com/w/cpp/thread/packaged_task

330 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/thread/future
http://en.cppreference.com/w/cpp/thread/shared_future
http://en.cppreference.com/w/cpp/thread/promise
http://en.cppreference.com/w/cpp/thread/launch
http://en.cppreference.com/w/cpp/thread/packaged_task
http://en.cppreference.com/w/cpp/thread/async
http://wg21.link/p0159
http://wg21.link/p0159
http://wg21.link/p0159
http://wg21.link/p0159

HPX Documentation, master

hpx/init.hpp

The header hpx/init.hpp453 contains functionality for starting, stopping, suspending, and resuming the HPX runtime.
This is the main way to explicitly start the HPX runtime. See Starting the HPX runtime for more details on starting the
HPX runtime.

Classes

Table 2.144: Classes of header hpx/init.hpp
Class
hpx::init_params
hpx::runtime_mode

Functions

Table 2.145: Functions of header hpx/init.hpp
Function
hpx::init
hpx::start
hpx::finalize
hpx::disconnect
hpx::suspend
hpx::resume

hpx/latch.hpp

The header hpx/latch.hpp454 corresponds to the C++ standard library header latch455. It contains a local and a distributed
latch implementation. This functionality is also exposed through the hpx::distributed namespace. The name in
hpx::distributed should be preferred.

Classes

Table 2.146: Classes of header hpx/latch.hpp
Class C++ standard
hpx::latch std::latch456

448 http://en.cppreference.com/w/cpp/thread/async
449 http://wg21.link/p0159
450 http://wg21.link/p0159
451 http://wg21.link/p0159
452 http://wg21.link/p0159
453 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp
454 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/latch.hpp
455 http://en.cppreference.com/w/cpp/header/latch
456 http://en.cppreference.com/w/cpp/thread/latch

2.8. API reference 331

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/latch.hpp
http://en.cppreference.com/w/cpp/header/latch
http://en.cppreference.com/w/cpp/thread/latch

HPX Documentation, master

Table 2.147: Distributed implementation of classes of header hpx/
latch.hpp

Class
hpx::distributed::latch

hpx/mutex.hpp

The header hpx/mutex.hpp457 corresponds to the C++ standard library header mutex458.

Classes

Table 2.148: Classes of header hpx/mutex.hpp
Class C++ standard
hpx::mutex std::mutex459

hpx::no_mutex
hpx::once_flag std::once_flag460

hpx::recursive_mutex std::recursive_mutex461

hpx::spinlock
hpx::timed_mutex std::timed_mutex462

hpx::unlock_guard

Functions

Table 2.149: Functions of header hpx/mutex.hpp
Class C++ standard
hpx::call_once std::call_once463

hpx/memory.hpp

The header hpx/memory.hpp464 corresponds to the C++ standard library header memory465. It contains parallel versions
of the copy, fill, move, and construct helper functions in memory466. See Using parallel algorithms for more information
about the parallel algorithms.

457 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.
hpp

458 http://en.cppreference.com/w/cpp/header/mutex
459 http://en.cppreference.com/w/cpp/thread/mutex
460 http://en.cppreference.com/w/cpp/thread/once_flag
461 http://en.cppreference.com/w/cpp/thread/recursive_mutex
462 http://en.cppreference.com/w/cpp/thread/timed_mutex
463 http://en.cppreference.com/w/cpp/thread/call_once
464 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/memory.

hpp
465 http://en.cppreference.com/w/cpp/header/memory
466 http://en.cppreference.com/w/cpp/header/memory

332 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.hpp
http://en.cppreference.com/w/cpp/header/mutex
http://en.cppreference.com/w/cpp/thread/mutex
http://en.cppreference.com/w/cpp/thread/once_flag
http://en.cppreference.com/w/cpp/thread/recursive_mutex
http://en.cppreference.com/w/cpp/thread/timed_mutex
http://en.cppreference.com/w/cpp/thread/call_once
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/memory.hpp
http://en.cppreference.com/w/cpp/header/memory
http://en.cppreference.com/w/cpp/header/memory

HPX Documentation, master

Functions

Table 2.150: hpx functions of header hpx/memory.hpp
hpx function C++ standard
hpx::uninitialized_copy std::uninitialized_copy467

hpx::uninitialized_copy_n std::uninitialized_copy_n468

hpx::uninitialized_default_construct std::uninitialized_default_construct469

hpx::uninitialized_default_construct_n std::uninitialized_default_construct_n470

hpx::uninitialized_fill std::uninitialized_fill471

hpx::uninitialized_fill_n std::uninitialized_fill_n472

hpx::uninitialized_move std::uninitialized_move473

hpx::uninitialized_move_n std::uninitialized_move_n474

hpx::uninitialized_value_construct std::uninitialized_value_construct475

hpx::uninitialized_value_construct_n std::uninitialized_value_construct_n476

Table 2.151: hpx::ranges functions of header hpx/memory.hpp
hpx::ranges function C++ standard
hpx::ranges::uninitialized_copy std::uninitialized_copy477

hpx::ranges::uninitialized_copy_n std::uninitialized_copy_n478

hpx::ranges::uninitialized_default_construct std::uninitialized_default_construct479

hpx::ranges::uninitialized_default_construct_n std::uninitialized_default_construct_n480

hpx::ranges::uninitialized_fill std::uninitialized_fill481

hpx::ranges::uninitialized_fill_n std::uninitialized_fill_n482

hpx::ranges::uninitialized_move std::uninitialized_move483

hpx::ranges::uninitialized_move_n std::uninitialized_move_n484

hpx::ranges::uninitialized_value_construct std::uninitialized_value_construct485

hpx::ranges::uninitialized_value_construct_n std::uninitialized_value_construct_n486

467 http://en.cppreference.com/w/cpp/memory/uninitialized_copy
468 http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
469 http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
470 http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
471 http://en.cppreference.com/w/cpp/memory/uninitialized_fill
472 http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
473 http://en.cppreference.com/w/cpp/memory/uninitialized_move
474 http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
475 http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
476 http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n
477 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_copy
478 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_copy_n
479 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_default_construct
480 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_default_construct_n
481 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_fill
482 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_fill_n
483 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_move
484 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_move_n
485 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_value_construct
486 http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_value_construct_n

2.8. API reference 333

http://en.cppreference.com/w/cpp/memory/uninitialized_copy
http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_fill
http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
http://en.cppreference.com/w/cpp/memory/uninitialized_move
http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_copy
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_copy_n
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_default_construct
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_default_construct_n
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_fill
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_fill_n
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_move
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_move_n
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_value_construct
http://en.cppreference.com/w/cpp/memory/ranges/uninitialized_value_construct_n

HPX Documentation, master

hpx/numeric.hpp

The header hpx/numeric.hpp487 corresponds to the C++ standard library header numeric488. See Using parallel algo-
rithms for more information about the parallel algorithms.

Functions

Table 2.152: hpx functions of header hpx/numeric.hpp
hpx function C++ standard
hpx::adjacent_difference std::adjacent_difference489

hpx::exclusive_scan std::exclusive_scan490

hpx::inclusive_scan std::inclusive_scan491

hpx::reduce std::reduce492

hpx::transform_exclusive_scan std::transform_exclusive_scan493

hpx::transform_inclusive_scan std::transform_inclusive_scan494

hpx::transform_reduce std::transform_reduce495

Table 2.153: hpx::ranges functions of header hpx/numeric.hpp
hpx::ranges function
hpx::ranges::adjacent_difference
hpx::ranges::exclusive_scan
hpx::ranges::inclusive_scan
hpx::ranges::reduce
hpx::ranges::transform_exclusive_scan
hpx::ranges::transform_inclusive_scan
hpx::ranges::transform_reduce

hpx/optional.hpp

The header hpx/optional.hpp496 corresponds to the C++ standard library header optional497. hpx::optional is com-
patible with std::optional.

487 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/numeric.
hpp

488 http://en.cppreference.com/w/cpp/header/numeric
489 http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
490 http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
491 http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
492 http://en.cppreference.com/w/cpp/algorithm/reduce
493 http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan
494 http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
495 http://en.cppreference.com/w/cpp/algorithm/transform_reduce
496 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/optional.

hpp
497 http://en.cppreference.com/w/cpp/header/optional

334 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/numeric.hpp
http://en.cppreference.com/w/cpp/header/numeric
http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/reduce
http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_reduce
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/optional.hpp
http://en.cppreference.com/w/cpp/header/optional

HPX Documentation, master

Constants

• hpx::nullopt

Classes

Table 2.154: Classes of header hpx/optional.hpp
Class C++ standard
hpx::optional std::optional498

hpx::nullopt_t std::nullopt_t499

hpx::bad_optional_access std::bad_optional_access500

hpx/runtime.hpp

The header hpx/runtime.hpp501 contains functions for accessing local and distributed runtime information.

Typedefs

Table 2.155: Typedefs of header hpx/runtime.hpp
Typedef
hpx::startup_function_type
hpx::shutdown_function_type

Functions

Table 2.156: Functions of header hpx/runtime.hpp
Function
hpx::find_root_locality
hpx::find_all_localities
hpx::find_remote_localities
hpx::find_locality
hpx::get_colocation_id
hpx::get_locality_id
hpx::get_num_worker_threads
hpx::get_worker_thread_num
hpx::get_thread_name
hpx::register_pre_startup_function
hpx::register_startup_function
hpx::register_pre_shutdown_function
hpx::register_shutdown_function
hpx::get_num_localities
hpx::get_locality_name

498 http://en.cppreference.com/w/cpp/utility/optional
499 http://en.cppreference.com/w/cpp/utility/nullopt_t
500 http://en.cppreference.com/w/cpp/utility/optional/bad_optional_access
501 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

2.8. API reference 335

http://en.cppreference.com/w/cpp/utility/optional
http://en.cppreference.com/w/cpp/utility/nullopt_t
http://en.cppreference.com/w/cpp/utility/optional/bad_optional_access
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

hpx/experimental/scope.hpp

The header hpx/experimental/scope.hpp502 corresponds to the C++ standard library header experimental/scope503.

Classes

Table 2.157: Classes of header hpx/scope.hpp
Class C++ standard
hpx::experimental::scope_exit std::scope_exit504

hpx::experimental::scope_fail std::scope_fail505

hpx::experimental::scope_success std::scope_success506

hpx/semaphore.hpp

The header hpx/semaphore.hpp507 corresponds to the C++ standard library header semaphore508.

Classes

Table 2.158: Classes of header hpx/semaphore.hpp
Class C++ standard
hpx::binary_semaphore std::counting_semaphore509

hpx::counting_semaphore std::counting_semaphore510

hpx/shared_mutex.hpp

The header hpx/shared_mutex.hpp511 corresponds to the C++ standard library header shared_mutex512.
502 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

experimental/scope.hpp
503 http://en.cppreference.com/w/cpp/header/experimental/scope
504 http://en.cppreference.com/w/cpp/experimental/scope_exit
505 http://en.cppreference.com/w/cpp/experimental/scope_fail
506 http://en.cppreference.com/w/cpp/experimental/scope_success
507 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

semaphore.hpp
508 http://en.cppreference.com/w/cpp/header/semaphore
509 http://en.cppreference.com/w/cpp/thread/counting_semaphore
510 http://en.cppreference.com/w/cpp/thread/counting_semaphore
511 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/shared_

mutex.hpp
512 http://en.cppreference.com/w/cpp/header/shared_mutex

336 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/experimental/scope.hpp
http://en.cppreference.com/w/cpp/header/experimental/scope
http://en.cppreference.com/w/cpp/experimental/scope_exit
http://en.cppreference.com/w/cpp/experimental/scope_fail
http://en.cppreference.com/w/cpp/experimental/scope_success
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/semaphore.hpp
http://en.cppreference.com/w/cpp/header/semaphore
http://en.cppreference.com/w/cpp/thread/counting_semaphore
http://en.cppreference.com/w/cpp/thread/counting_semaphore
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/shared_mutex.hpp
http://en.cppreference.com/w/cpp/header/shared_mutex

HPX Documentation, master

Classes

Table 2.159: Classes of header hpx/shared_mutex.hpp
Class C++ standard
hpx::shared_mutex std::shared_mutex513

hpx/source_location.hpp

The header hpx/source_location.hpp514 corresponds to the C++ standard library header source_location515.

Classes

Table 2.160: Classes of header hpx/system_error.hpp
Class C++ standard
hpx::source_location std::source_location516

hpx/stop_token.hpp

The header hpx/stop_token.hpp517 corresponds to the C++ standard library header stop_token518.

Constants

Table 2.161: Constants of header hpx/stop_token.hpp
Constant C++ standard
hpx::nostopstate std::nostopstate519

Classes

Table 2.162: Classes of header hpx/stop_token.hpp
Class C++ standard
hpx::stop_callback std::stop_callback520

hpx::stop_source std::stop_source521

hpx::stop_token std::stop_token522

hpx::nostopstate_t std::nostopstate_t523

513 http://en.cppreference.com/w/cpp/thread/shared_mutex
514 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/source_

location.hpp
515 http://en.cppreference.com/w/cpp/header/source_location
516 http://en.cppreference.com/w/cpp/utility/source_location
517 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/stop_

token.hpp
518 http://en.cppreference.com/w/cpp/header/stop_token
519 http://en.cppreference.com/w/cpp/thread/stop_source/nostopstate

2.8. API reference 337

http://en.cppreference.com/w/cpp/thread/shared_mutex
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/source_location.hpp
http://en.cppreference.com/w/cpp/header/source_location
http://en.cppreference.com/w/cpp/utility/source_location
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/stop_token.hpp
http://en.cppreference.com/w/cpp/header/stop_token
http://en.cppreference.com/w/cpp/thread/stop_source/nostopstate
http://en.cppreference.com/w/cpp/thread/stop_callback
http://en.cppreference.com/w/cpp/thread/stop_source
http://en.cppreference.com/w/cpp/thread/stop_token
http://en.cppreference.com/w/cpp/thread/stop_source/nostopstate_t

HPX Documentation, master

hpx/system_error.hpp

The header hpx/system_error.hpp524 corresponds to the C++ standard library header system_error525.

Classes

Table 2.163: Classes of header hpx/system_error.hpp
Class C++ standard
hpx::error_code std::error_code526

hpx/task_block.hpp

The header hpx/task_block.hpp527 corresponds to the task_block feature in N4755528. See using_task_block for more
details on using task blocks.

Classes

Table 2.164: Classes of header hpx/task_block.hpp
Class
hpx::experimental::task_canceled_exception
hpx::experimental::task_block

Functions

Table 2.165: Functions of header hpx/task_block.hpp
Function
hpx::experimental::define_task_block
hpx::experimental::define_task_block_restore_thread

520 http://en.cppreference.com/w/cpp/thread/stop_callback
521 http://en.cppreference.com/w/cpp/thread/stop_source
522 http://en.cppreference.com/w/cpp/thread/stop_token
523 http://en.cppreference.com/w/cpp/thread/stop_source/nostopstate_t
524 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/system_

error.hpp
525 http://en.cppreference.com/w/cpp/header/system_error
526 http://en.cppreference.com/w/cpp/error/error_code
527 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/task_

block.hpp
528 http://wg21.link/n4755

338 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/system_error.hpp
http://en.cppreference.com/w/cpp/header/system_error
http://en.cppreference.com/w/cpp/error/error_code
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/task_block.hpp
http://wg21.link/n4755

HPX Documentation, master

hpx/experimental/task_group.hpp

The header hpx/experimental/task_group.hpp529 corresponds to the task_group feature in oneAPI Threading Building
Blocks (oneTBB)530.

Classes

Table 2.166: Classes of header hpx/experimental/task_group.hpp
Class
hpx::experimental::task_group

hpx/thread.hpp

The header hpx/thread.hpp531 corresponds to the C++ standard library header thread532. The functionality in this header
is equivalent to the standard library thread functionality, with the exception that the HPX equivalents are implemented
on top of lightweight threads and the HPX runtime.

Classes

Table 2.167: Classes of header hpx/thread.hpp
Class C++ standard
hpx::thread std::thread533

hpx::jthread std::jthread534

Functions

Table 2.168: Functions of header hpx/thread.hpp
Function C++ standard
hpx::this_thread::yield std::yield535

hpx::this_thread::get_id std::get_id536

hpx::this_thread::sleep_for std::sleep_for537

hpx::this_thread::sleep_until std::sleep_until538

529 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
experimental/task_group.hpp

530 https://spec.oneapi.io/versions/1.0-rev-3/elements/oneTBB/source/task_scheduler/task_group/task_group_cls.html
531 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/thread.

hpp
532 http://en.cppreference.com/w/cpp/header/thread
533 http://en.cppreference.com/w/cpp/thread/thread
534 http://en.cppreference.com/w/cpp/thread/jthread
535 http://en.cppreference.com/w/cpp/thread/yield
536 http://en.cppreference.com/w/cpp/thread/get_id
537 http://en.cppreference.com/w/cpp/thread/sleep_for
538 http://en.cppreference.com/w/cpp/thread/sleep_until

2.8. API reference 339

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/experimental/task_group.hpp
https://spec.oneapi.io/versions/1.0-rev-3/elements/oneTBB/source/task_scheduler/task_group/task_group_cls.html
https://spec.oneapi.io/versions/1.0-rev-3/elements/oneTBB/source/task_scheduler/task_group/task_group_cls.html
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/thread.hpp
http://en.cppreference.com/w/cpp/header/thread
http://en.cppreference.com/w/cpp/thread/thread
http://en.cppreference.com/w/cpp/thread/jthread
http://en.cppreference.com/w/cpp/thread/yield
http://en.cppreference.com/w/cpp/thread/get_id
http://en.cppreference.com/w/cpp/thread/sleep_for
http://en.cppreference.com/w/cpp/thread/sleep_until

HPX Documentation, master

hpx/tuple.hpp

The header hpx/tuple.hpp539 corresponds to the C++ standard library header tuple540. hpx::tuple can be used in
CUDA device code, unlike std::tuple.

Constants

Table 2.169: Constants of header hpx/tuple.hpp
Constant C++ standard
hpx::ignore std::ignore541

Classes

Table 2.170: Classes of header hpx/tuple.hpp
Class C++ standard
hpx::tuple std::tuple542

hpx::tuple_size std::tuple_size543

hpx::tuple_element std::tuple_element544

Functions

Table 2.171: Functions of header hpx/tuple.hpp
Function C++ standard
hpx::make_tuple std::tuple_element545

hpx::tie std::tie546

hpx::forward_as_tuple std::forward_as_tuple547

hpx::tuple_cat std::tuple_cat548

hpx::get std::get549

539 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/tuple.
hpp

540 http://en.cppreference.com/w/cpp/header/tuple
541 http://en.cppreference.com/w/cpp/utility/tuple/ignore
542 http://en.cppreference.com/w/cpp/utility/tuple
543 http://en.cppreference.com/w/cpp/utility/tuple_size
544 http://en.cppreference.com/w/cpp/utility/tuple_element
545 http://en.cppreference.com/w/cpp/utility/tuple/tuple_element
546 http://en.cppreference.com/w/cpp/utility/tuple/tie
547 http://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
548 http://en.cppreference.com/w/cpp/utility/tuple/tuple_cat
549 http://en.cppreference.com/w/cpp/utility/tuple/get

340 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/tuple.hpp
http://en.cppreference.com/w/cpp/header/tuple
http://en.cppreference.com/w/cpp/utility/tuple/ignore
http://en.cppreference.com/w/cpp/utility/tuple
http://en.cppreference.com/w/cpp/utility/tuple_size
http://en.cppreference.com/w/cpp/utility/tuple_element
http://en.cppreference.com/w/cpp/utility/tuple/tuple_element
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
http://en.cppreference.com/w/cpp/utility/tuple/tuple_cat
http://en.cppreference.com/w/cpp/utility/tuple/get

HPX Documentation, master

hpx/type_traits.hpp

The header hpx/type_traits.hpp550 corresponds to the C++ standard library header type_traits551.

Classes

Table 2.172: Classes of header hpx/type_traits.hpp
Class C++ standard
hpx::is_invocable std::is_invocable552

hpx::is_invocable_r std::is_invocable553

hpx/unwrap.hpp

The header hpx/unwrap.hpp554 contains utilities for unwrapping futures.

Classes

Table 2.173: Classes of header hpx/unwrap.hpp
Class
hpx::functional::unwrap
hpx::functional::unwrap_n
hpx::functional::unwrap_all

Functions

Table 2.174: Functions of header hpx/unwrap.hpp
Function
hpx::unwrap
hpx::unwrap_n
hpx::unwrap_all
hpx::unwrapping
hpx::unwrapping_n
hpx::unwrapping_all

550 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/type_
traits.hpp

551 http://en.cppreference.com/w/cpp/header/type_traits
552 http://en.cppreference.com/w/cpp/types/is_invocable
553 http://en.cppreference.com/w/cpp/types/is_invocable
554 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/unwrap.

hpp

2.8. API reference 341

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/type_traits.hpp
http://en.cppreference.com/w/cpp/header/type_traits
http://en.cppreference.com/w/cpp/types/is_invocable
http://en.cppreference.com/w/cpp/types/is_invocable
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/unwrap.hpp

HPX Documentation, master

hpx/version.hpp

The header hpx/version.hpp555 provides version information about HPX.

Macros

Table 2.175: Macros of header hpx/version.hpp
Macro
HPX_VERSION_MAJOR
HPX_VERSION_MINOR
HPX_VERSION_SUBMINOR
HPX_VERSION_FULL
HPX_VERSION_DATE
HPX_VERSION_TAG
HPX_AGAS_VERSION

Functions

Table 2.176: Functions of header hpx/version.hpp
Function
hpx::major_version
hpx::minor_version
hpx::subminor_version
hpx::full_version
hpx::full_version_as_string
hpx::tag
hpx::agas_version
hpx::build_type
hpx::build_date_time

hpx/wrap_main.hpp

The header hpx/wrap_main.hpp556 does not provide any direct functionality but is used for implicitly using main as the
runtime entry point. See Re-use the main() function as the main HPX entry point for more details on implicitly starting
the HPX runtime.

555 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/version/include/hpx/version.hpp
556 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/wrap/include/hpx/wrap_main.hpp

342 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/version/include/hpx/version.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/wrap/include/hpx/wrap_main.hpp

HPX Documentation, master

2.8.2 Public distributed API

Our Public Distributed API offers a rich set of tools and functions that enable developers to harness the full potential
of distributed computing. Here, you’ll find a comprehensive list of header files, classes and functions for various
distributed computing features provided by HPX.

hpx/barrier.hpp

The header hpx/barrier.hpp557 includes a distributed barrier implementation. For information regarding the C++ stan-
dard library header barrier558, see Public API .

Classes

Table 2.177: Distributed implementation of classes of header hpx/
barrier.hpp

Class
hpx::distributed::barrier

Functions

Table 2.178: hpx functions of header hpx/barrier.hpp
Function
hpx::distributed::wait
hpx::distributed::synchronize

hpx/collectives.hpp

The header hpx/collectives.hpp559 contains definitions and implementations related to the collectives operations.

Classes

Table 2.179: hpx classes of header hpx/collectives.hpp
Class
hpx::collectives::num_sites_arg
hpx::collectives::this_site_arg
hpx::collectives::that_site_arg
hpx::collectives::generation_arg
hpx::collectives::root_site_arg
hpx::collectives::tag_arg
hpx::collectives::arity_arg
hpx::collectives::communicator
hpx::collectives::channel_communicator

557 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/barrier.hpp
558 http://en.cppreference.com/w/cpp/header/barrier
559 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/collectives.hpp

2.8. API reference 343

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/barrier.hpp
http://en.cppreference.com/w/cpp/header/barrier
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/collectives.hpp

HPX Documentation, master

Functions

Table 2.180: hpx functions of header hpx/collectives.hpp
Function
hpx::collectives::all_gather
hpx::collectives::all_reduce
hpx::collectives::all_to_all
hpx::collectives::broadcast_to
hpx::collectives::broadcast_from
hpx::collectives::create_channel_communicator
hpx::collectives::set
hpx::collectives::get
hpx::collectives::create_communication_set
hpx::collectives::create_communicator
hpx::collectives::create_local_communicator
hpx::collectives::communicator::set_info
hpx::collectives::communicator::get_info
hpx::collectives::communicator::is_root
hpx::collectives::exclusive_scan
hpx::collectives::gather_here
hpx::collectives::gather_there
hpx::collectives::inclusive_scan
hpx::collectives::reduce_here
hpx::collectives::reduce_there
hpx::collectives::scatter_from
hpx::collectives::scatter_to

hpx/latch.hpp

The header hpx/latch.hpp560 includes a distributed latch implementation. For information regarding the C++ standard
library header latch561, see Public API .

560 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/latch.hpp
561 http://en.cppreference.com/w/cpp/header/latch

344 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/latch.hpp
http://en.cppreference.com/w/cpp/header/latch

HPX Documentation, master

Classes

Table 2.181: Distributed implementation of classes of header hpx/
latch.hpp

Class
hpx::distributed::latch

Member functions

Table 2.182: hpx functions of class hpx::distributed::latch from
header hpx/latch.hpp

Function
hpx::distributed::latch::count_down_and_wait
hpx::distributed::latch::arrive_and_wait
hpx::distributed::latch::count_down
hpx::distributed::latch::is_ready
hpx::distributed::latch::try_wait
hpx::distributed::latch::wait

hpx/async.hpp

The header hpx/async.hpp562 includes distributed implementations of hpx::async, hpx::post, hpx::sync, and
hpx::dataflow. For information regarding the C++ standard library header, see Public API .

Functions

Table 2.183: Distributed implementation of functions of header hpx/
async.hpp

Functions
hpx::async (distributed)
hpx::sync (distributed)
hpx::post (distributed)
hpx::dataflow (distributed)

562 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/async_distributed/include/hpx/
async.hpp

2.8. API reference 345

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/async_distributed/include/hpx/async.hpp

HPX Documentation, master

hpx/components.hpp

The header hpx/include/components.hpp563 includes the components implementation. A component in hpx is a C++
class which can be created remotely and for which its member functions can be invoked remotely as well. More
information about how components can be defined, created, and used can be found in Writing components. Components
and actions includes examples on the accumulator, template accumulator and template function accumulator.

Macros

Table 2.184: hpx macros of header hpx/components.hpp
Macro
HPX_DEFINE_COMPONENT_ACTION
HPX_REGISTER_ACTION_DECLARATION
HPX_REGISTER_ACTION
HPX_REGISTER_COMMANDLINE_MODULE
HPX_REGISTER_COMPONENT
HPX_REGISTER_COMPONENT_MODULE
HPX_REGISTER_STARTUP_MODULE

Classes

Table 2.185: hpx classes of header hpx/components.hpp
Class
hpx::components::client
hpx::components::client_base
hpx::components::component
hpx::components::component_base
hpx::components::component_commandline_base

Functions

Table 2.186: hpx functions of header hpx/components.hpp
Function
hpx::new_

563 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/include/
components.hpp

346 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/include/components.hpp

HPX Documentation, master

2.8.3 Full API

The full API of HPX is presented below. The listings for the public API above refer to the full documentation below.

Note: Most names listed in the full API reference are implementation details or considered unstable. They are listed
mostly for completeness. If there is a particular feature you think deserves being in the public API we may consider
promoting it. In general we prioritize making sure features corresponding to C++ standard library features are stable
and complete.

algorithms

See Public API for a list of names and headers that are part of the public HPX API.

hpx::experimental::run_on_all

Defined in header hpx/task_block.hpp564.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename ExPolicy, typename T, typename ...Ts>
decltype(auto) run_on_all(ExPolicy &&policy, T &&t, Ts&&... ts)

Run a function on all available worker threads with reduction support using the given execution policy
Template Parameters

• ExPolicy – The execution policy type
• T – The first type in a list of reduction types and the function type to invoke (last argument)
• Ts – The list of reduction types and the function type to invoke (last argument)

Parameters
• policy – The execution policy to use
• t – The first in a list of reductions and the function to invoke (last argument)
• ts – The list of reductions and the function to invoke (last argument)

template<typename T, typename ...Ts>
decltype(auto) run_on_all(T &&t, Ts&&... ts)

Run a function on all available worker threads with reduction support using the hpx::execution::par
execution policy

Template Parameters
• T – The first type in a list of reduction types and the function type to invoke (last argument)
• Ts – The list of reduction types and the function type to invoke (last argument)

Parameters
• t – The first in a list of reductions and the function to invoke (last argument)
• ts – The list of reductions and the function to invoke (last argument)

564 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/task_
block.hpp

2.8. API reference 347

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/task_block.hpp

HPX Documentation, master

hpx::experimental::task_canceled_exception, hpx::experimental::task_block,
hpx::experimental::define_task_block, hpx::experimental::define_task_block_restore_thread

Defined in header hpx/task_block.hpp565.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename ExPolicy, typename F>
decltype(auto) define_task_block(ExPolicy &&policy, F &&f)

Constructs a task_block, tr, using the given execution policy policy,and invokes the expression f(tr) on
the user-provided object, f.

Postcondition: All tasks spawned from f have finished execution. A call to define_task_block may
return on a different thread than that on which it was called.

Note: It is expected (but not mandated) that f will (directly or indirectly) call tr.run(callable_object).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the task block may be parallelized.
• F – The type of the user defined function to invoke inside the define_task_block (de-

duced). F shall be MoveConstructible.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• f – The user defined function to invoke inside the task block. Given an lvalue tr of type

task_block, the expression, (void)f(tr), shall be well-formed.
Throws exception_list – specified in Exception Handling.

template<typename F>
void define_task_block(F &&f)

Constructs a task_block, tr, and invokes the expression f(tr) on the user-provided object, f. This version
uses parallel_policy for task scheduling.

Postcondition: All tasks spawned from f have finished execution. A call to define_task_block may
return on a different thread than that on which it was called.

Note: It is expected (but not mandated) that f will (directly or indirectly) call tr.run(callable_object).

565 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/task_
block.hpp

348 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/task_block.hpp

HPX Documentation, master

Template Parameters F – The type of the user defined function to invoke inside the de-
fine_task_block (deduced). F shall be MoveConstructible.

Parameters f – The user defined function to invoke inside the task block. Given an lvalue tr
of type task_block, the expression, (void)f(tr), shall be well-formed.

Throws exception_list – specified in Exception Handling.

template<typename ExPolicy, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> define_task_block_restore_thread(ExPolicy

&&pol-
icy,
F
&&f)

Constructs a task_block, tr, and invokes the expression f(tr) on the user-provided object, f.

Postcondition: All tasks spawned from f have finished execution. A call to de-
fine_task_block_restore_thread always returns on the same thread as that on which it was called.

Note: It is expected (but not mandated) that f will (directly or indirectly) call tr.run(callable_object).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the task block may be parallelized.
• F – The type of the user defined function to invoke inside the define_task_block (de-

duced). F shall be MoveConstructible.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• f – The user defined function to invoke inside the define_task_block. Given an lvalue tr

of type task_block, the expression, (void)f(tr), shall be well-formed.
Throws exception_list – specified in Exception Handling.

template<typename F>
void define_task_block_restore_thread(F &&f)

Constructs a task_block, tr, and invokes the expression f(tr) on the user-provided object, f. This version
uses parallel_policy for task scheduling.

Postcondition: All tasks spawned from f have finished execution. A call to de-
fine_task_block_restore_thread always returns on the same thread as that on which it was called.

Note: It is expected (but not mandated) that f will (directly or indirectly) call tr.run(callable_object).

Template Parameters F – The type of the user defined function to invoke inside the de-
fine_task_block (deduced). F shall be MoveConstructible.

Parameters f – The user defined function to invoke inside the define_task_block. Given an
lvalue tr of type task_block, the expression, (void)f(tr), shall be well-formed.

Throws exception_list – specified in Exception Handling.

template<typename ExPolicy = hpx::execution::parallel_policy>

class task_block
#include <task_block.hpp> The class task_block defines an interface for forking and joining paral-

2.8. API reference 349

HPX Documentation, master

lel tasks. The define_task_block and define_task_block_restore_thread function templates create an
object of type task_block and pass a reference to that object to a user-provided callable object.

An object of class task_block cannot be constructed, destroyed, copied, or moved except by the im-
plementation of the task region library. Taking the address of a task_block object via operator& or
addressof is ill formed. The result of obtaining its address by any other means is unspecified.

A task_block is active if it was created by the nearest enclosing task block, where “task block” refers
to an invocation of define_task_block or define_task_block_restore_thread and “nearest

enclosing” means the most recent invocation that has not yet completed. Code designated for execution
in another thread by means other than the facilities in this section (e.g., using thread or async) are not
enclosed in the task region and a task_block passed to (or captured by) such code is not active within
that code. Performing any operation on a task_block that is not active results in undefined behavior.

The task_block that is active before a specific call to the run member function is not active within
the asynchronous function that invoked run. (The invoked function should not, therefore, capture the
task_block from the surrounding block.)

Example:
define_task_block([&](auto& tr) {

tr.run([&] {
tr.run([] { f(); }); // Error: tr is not active
define_task_block([&](auto& tr) { // Nested task block

tr.run(f); // OK: inner tr is active
/// ...

});
}); /// ...

});

Template Parameters ExPolicy – The execution policy an instance of a task_block was
created with. This defaults to parallel_policy.

Public Types

using execution_policy = ExPolicy
Refers to the type of the execution policy used to create the task_block.

Public Functions

inline constexpr execution_policy const &get_execution_policy() const noexcept
Return the execution policy instance used to create this task_block

template<typename F, typename ...Ts>
inline void run(F &&f, Ts&&... ts)

Causes the expression f() to be invoked asynchronously. The invocation of f is permitted to run
on an unspecified thread in an unordered fashion relative to the sequence of operations following
the call to run(f) (the continuation), or indeterminately sequenced within the same thread as the
continuation.

The call to run synchronizes with the invocation of f. The completion of f() synchronizes with the
next invocation of wait on the same task_block or completion of the nearest enclosing task block
(i.e., the define_task_block or define_task_block_restore_thread that created this task block).

350 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Requires: F shall be MoveConstructible. The expression, (void)f(), shall be well-formed.

Precondition: this shall be the active task_block.

Postconditions: A call to run may return on a different thread than that on which it was called.

Note: The call to run is sequenced before the continuation as if run returns on the same thread.
The invocation of the user-supplied callable object f may be immediate or may be delayed until
compute resources are available. run might or might not return before invocation of f completes.

Throws task_canceled_exception – described in Exception Handling.

template<typename Executor, typename F, typename ...Ts>
inline void run(Executor &&exec, F &&f, Ts&&... ts)

Causes the expression f() to be invoked asynchronously using the given executor. The invocation
of f is permitted to run on an unspecified thread associated with the given executor and in an
unordered fashion relative to the sequence of operations following the call to run(exec, f) (the
continuation), or indeterminately sequenced within the same thread as the continuation.

The call to run synchronizes with the invocation of f. The completion of f() synchronizes with the
next invocation of wait on the same task_block or completion of the nearest enclosing task block
(i.e., the define_task_block or define_task_block_restore_thread that created this task block).

Requires: Executor shall be a type modeling the Executor concept. F shall be MoveConstructible.
The expression, (void)f(), shall be well-formed.

Precondition: this shall be the active task_block.

Postconditions: A call to run may return on a different thread than that on which it was called.

Note: The call to run is sequenced before the continuation as if run returns on the same thread.
The invocation of the user-supplied callable object f may be immediate or may be delayed until
compute resources are available. run might or might not return before invocation of f completes.

Throws task_canceled_exception – described in Exception Handling. The function
will also throw an exception_list holding all exceptions that were caught while executing
the tasks.

inline void wait()
Blocks until the tasks spawned using this task_block have finished.

Precondition: this shall be the active task_block.

Postcondition: All tasks spawned by the nearest enclosing task region have finished. A call to wait
may return on a different thread than that on which it was called.

Example:
define_task_block([&](auto& tr) {

tr.run([&]{ process(a, w, x); }); // Process a[w] through a[x]
if (y < x) tr.wait(); // Wait if overlap between [w, x) and [y,␣

→˓z)
process(a, y, z); // Process a[y] through a[z]

});

2.8. API reference 351

HPX Documentation, master

Note: The call to wait is sequenced before the continuation as if wait returns on the same thread.

Throws This – function may throw task_canceled_exception, as described in Exception
Handling. The function will also throw a exception_list holding all exceptions that were
caught while executing the tasks.

inline ExPolicy &policy() noexcept
Returns a reference to the execution policy used to construct this object.

Precondition: this shall be the active task_block.

inline constexpr ExPolicy const &policy() const noexcept
Returns a reference to the execution policy used to construct this object.

Precondition: this shall be the active task_block.

Private Members

hpx::experimental::task_group tasks_

threads::thread_id_type id_

ExPolicy policy_

class task_canceled_exception : public exception
#include <task_block.hpp> The class task_canceled_exception defines the type of objects thrown by
task_block::run or task_block::wait if they detect that an exception is pending within the current par-
allel region.

Public Functions

inline task_canceled_exception() noexcept

namespace parallel

Typedefs

typedef hpx::experimental::task_canceled_exception instead

352 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename ExPolicy, typename F> HPX_DEPRECATED_V (1, 9,
"hpx::parallel:v2::define_task_block is deprecated,
use " "hpx::experimental::define_task_block instead") hpx

template<typename ExPolicy, typename F> HPX_DEPRECATED_V (1, 9,
"hpx::parallel:v2::define_task_block is deprecated,
use " "hpx::experimental::define_task_block instead") void define_task_block(ExPolicy &&policy

template<typename F> HPX_DEPRECATED_V (1, 9,
"hpx::parallel:v2::define_task_block is deprecated,
use " "hpx::experimental::define_task_block instead") void define_task_block(F &&f)

Variables

F && f {returnhpx::experimental::define_task_block(policy, f)

hpx::experimental::task_group

Defined in header hpx/experimental/task_group.hpp566.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Typedefs

using instead = hpx::experimental::task_group

namespace experimental
Top-level namespace.

class task_group
#include <task_group.hpp> A task_group represents concurrent execution of a group of tasks. Tasks
can be dynamically added to the group while it is executing.

566 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
experimental/task_group.hpp

2.8. API reference 353

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/experimental/task_group.hpp

HPX Documentation, master

Public Functions

task_group()

~task_group()

task_group(task_group const&) = delete

task_group(task_group&&) = delete

task_group &operator=(task_group const&) = delete

task_group &operator=(task_group&&) = delete

template<typename Executor, typename F, typename ...Ts>
inline void run(Executor &&exec, F &&f, Ts&&... ts)

Adds a task to compute f() and returns immediately.
Template Parameters

• Executor – The type of the executor to associate with this execution policy.
• F – The type of the user defined function to invoke.
• Ts – The type of additional arguments used to invoke f().

Parameters
• exec – The executor to use for the execution of the parallel algorithm the returned exe-

cution policy is used with.
• f – The user defined function to invoke inside the task group.
• ts – Additional arguments to use to invoke f().

template<typename F, typename ...Ts>
inline void run(F &&f, Ts&&... ts)

Adds a task to compute f() and returns immediately.
Template Parameters

• F – The type of the user defined function to invoke.
• Ts – The type of additional arguments used to invoke f().

Parameters
• f – The user defined function to invoke inside the task group.
• ts – Additional arguments to use to invoke f().

void wait()
Waits for all tasks in the group to complete or be cancelled.

void add_exception(std::exception_ptr p)
Adds an exception to this task_group.

Private Types

using shared_state_type = lcos::detail::future_data<void>

354 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Functions

void serialize(serialization::output_archive&, unsigned const)

Private Members

hpx::lcos::local::latch latch_

hpx::intrusive_ptr<shared_state_type> state_

hpx::exception_list errors_

std::atomic<bool> has_arrived_

Private Static Functions

static inline constexpr void serialize(serialization::input_archive&, unsigned const) noexcept

Friends

friend class serialization::access

hpx::adjacent_difference

Defined in header hpx/algorithm.hpp567.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter1, typename FwdIter2>
FwdIter2 adjacent_difference(FwdIter1 first, FwdIter1 last, FwdIter2 dest)

Assigns each value in the range given by result its corresponding element in the range [first, last] and the
one preceding it except *result, which is assigned *first.

Note: Complexity: Exactly (last - first) - 1 application of the binary operator and (last - first) assignments.

Template Parameters

• FwdIter1 – The type of the source iterators used for the input range (deduced). This
iterator type must meet the requirements of a forward iterator.

567 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 355

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• FwdIter2 – The type of the source iterators used for the output range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• dest – Refers to the beginning of the sequence of elements the results will be assigned to.

Returns The adjacent_difference algorithm returns a FwdIter2. The adjacent_difference algo-
rithm returns an iterator to the element past the last element written.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> adjacent_difference(ExPolicy

&&policy,
FwdIter1 first,
FwdIter1 last,
FwdIter2 dest)

Assigns each value in the range given by result its corresponding element in the range [first, last] and the
one preceding it except *result, which is assigned *first. Executed according to the policy.

The difference operations in the parallel adjacent_difference invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The difference operations in the parallel adjacent_difference invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly (last - first) - 1 application of the binary operator and (last - first) assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the input range (deduced). This
iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used for the output range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• dest – Refers to the beginning of the sequence of elements the results will be assigned to.

356 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The adjacent_difference algorithm returns a hpx::future<FwdIter2> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 oth-
erwise. The adjacent_difference algorithm returns an iterator to the element past the last
element written.

template<typename FwdIter1, typename FwdIter2, typename Op>
FwdIter2 adjacent_difference(FwdIter1 first, FwdIter1 last, FwdIter2 dest, Op &&op)

Assigns each value in the range given by result its corresponding element in the range [first, last] and the
one preceding it except *result, which is assigned *first

Note: Complexity: Exactly (last - first) - 1 application of the binary operator and (last - first) assignments.

Template Parameters

• FwdIter1 – The type of the source iterators used for the input range (deduced). This
iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used for the output range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Op – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of adjacent_difference requires Op to meet the requirements of Copy-
Constructible.

Parameters

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• dest – Refers to the beginning of the sequence of elements the results will be assigned to.

• op – The binary operator which returns the difference of elements. The signature should
be equivalent to the following:

bool op(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 must be such that objects of type FwdIter1 can be derefer-
enced and then implicitly converted to the dereferenced type of dest.

Returns The adjacent_difference algorithm returns FwdIter2. The adjacent_difference algo-
rithm returns an iterator to the element past the last element written.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> adjacent_difference(ExPolicy

&&policy,
FwdIter1 first,
FwdIter1 last,
FwdIter2 dest,
Op &&op)

Assigns each value in the range given by result its corresponding element in the range [first, last] and the
one preceding it except *result, which is assigned *first

2.8. API reference 357

HPX Documentation, master

The difference operations in the parallel adjacent_difference invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The difference operations in the parallel adjacent_difference invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly (last - first) - 1 application of the binary operator and (last - first) assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the input range (deduced). This
iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used for the output range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Op – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of adjacent_difference requires Op to meet the requirements of Copy-
Constructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• dest – Refers to the beginning of the sequence of elements the results will be assigned to.

• op – The binary operator which returns the difference of elements. The signature should
be equivalent to the following:

bool op(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 must be such that objects of type FwdIter1 can be derefer-
enced and then implicitly converted to the dereferenced type of dest.

Returns The adjacent_difference algorithm returns a hpx::future<FwdIter2> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 oth-
erwise. The adjacent_difference algorithm returns an iterator to the element past the last
element written.

358 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::adjacent_find

Defined in header hpx/algorithm.hpp568.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename Pred = hpx::parallel::detail::equal_to>
InIter adjacent_find(InIter first, InIter last, Pred &&pred = Pred())

Searches the range [first, last) for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the predicate
where result is the value returned

Template Parameters

• InIter – The type of the source iterators used for the range (deduced). This iterator type
must meet the requirements of an input iterator.

• Pred – The type of an optional function/function object to use.

Parameters

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• pred – The binary predicate which returns true if the elements should be treated as equal.
The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1 .

Returns The adjacent_find algorithm returns an iterator to the first of the identical elements. If
no such elements are found, last is returned.

template<typename ExPolicy, typename FwdIter, typename Pred = hpx::parallel::detail::equal_to>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> adjacent_find(ExPolicy &&policy,

FwdIter first, FwdIter
last, Pred &&pred =
Pred())

Searches the range [first, last) for two consecutive identical elements. This version uses the given binary
predicate pred

568 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 359

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The comparison operations in the parallel adjacent_find invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel adjacent_find invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

This overload of adjacent_find is available if the user decides to provide their algorithm their own binary
predicate pred.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the predicate
where result is the value returned

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the range (deduced). This iterator type
must meet the requirements of a forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of adjacent_find requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• pred – The binary predicate which returns true if the elements should be treated as equal.
The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1 .

Returns The adjacent_find algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
adjacent_find algorithm returns an iterator to the first of the identical elements. If no such
elements are found, last is returned.

360 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::all_of, hpx::any_of, hpx::none_of

Defined in header hpx/algorithm.hpp569.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result_t<ExPolicy, bool> none_of(ExPolicy &&policy, FwdIter first, FwdIter last, F

&&f)
Checks if unary predicate f returns true for no elements in the range [first, last).

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the predicate f

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of none_of requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

bool pred(const Type &a);

569 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 361

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The none_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The none_of al-
gorithm returns true if the unary predicate f returns true for no elements in the range, false
otherwise. It returns true if the range is empty.

template<typename InIter, typename F>
bool none_of(InIter first, InIter last, F &&f)

Checks if unary predicate f returns true for no elements in the range [first, last).

Note: Complexity: At most last - first applications of the predicate f

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of none_of requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

Returns The none_of algorithm returns a bool . The none_of algorithm returns true if the unary
predicate f returns true for no elements in the range, false otherwise. It returns true if the
range is empty.

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result_t<ExPolicy, bool> any_of(ExPolicy &&policy, FwdIter first, FwdIter last, F

&&f)
Checks if unary predicate f returns true for at least one element in the range [first, last).

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

362 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: At most last - first applications of the predicate f

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of any_of requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The any_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The any_of al-
gorithm returns true if the unary predicate f returns true for at least one element in the range,
false otherwise. It returns false if the range is empty.

template<typename InIter, typename F>
bool any_of(InIter first, InIter last, F &&f)

Checks if unary predicate f returns true for at least one element in the range [first, last).

Note: Complexity: At most last - first applications of the predicate f

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of any_of requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

2.8. API reference 363

HPX Documentation, master

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

Returns The any_of algorithm returns a bool . The any_of algorithm returns true if the unary
predicate f returns true for at least one element in the range, false otherwise. It returns false
if the range is empty.

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result_t<ExPolicy, bool> all_of(ExPolicy &&policy, FwdIter first, FwdIter last, F

&&f)
Checks if unary predicate f returns true for all elements in the range [first, last).

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the predicate f

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of all_of requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

bool pred(const Type &a);

364 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The all_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The all_of al-
gorithm returns true if the unary predicate f returns true for all elements in the range, false
otherwise. It returns true if the range is empty.

template<typename ExPolicy, typename InIter, typename F>
bool all_of(InIter first, InIter last, F &&f)

Checks if unary predicate f returns true for all elements in the range [first, last).

Note: Complexity: At most last - first applications of the predicate f

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of all_of requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

Returns The all_of algorithm returns a bool . The all_of algorithm returns true if the unary
predicate f returns true for all elements in the range, false otherwise. It returns true if the
range is empty.

hpx::copy, hpx::copy_n, hpx::copy_if

Defined in header hpx/algorithm.hpp570.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

570 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 365

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> copy(ExPolicy &&policy, FwdIter1 first,

FwdIter1 last, FwdIter2 dest)
Copies the elements in the range, defined by [first, last), to another range beginning at dest. Executed
according to the policy.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The copy algorithm returns a hpx::future<FwdIter2> > if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter2> otherwise. The copy
algorithm returns the pair of the input iterator last and the output iterator to the element in
the destination range, one past the last element copied.

template<typename FwdIter1, typename FwdIter2>
FwdIter2 copy(FwdIter1 first, FwdIter1 last, FwdIter2 dest)

Copies the elements in the range, defined by [first, last), to another range beginning at dest.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

366 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The copy algorithm returns a FwdIter2 . The copy algorithm returns the pair of the input
iterator last and the output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> copy_n(ExPolicy &&policy, FwdIter1

first, Size count, FwdIter2 dest)
Copies the elements in the range [first, first + count), starting from first and proceeding to first + count - 1.,
to another range beginning at dest. Executed according to the policy.

The assignments in the parallel copy_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy_n algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The copy_n algorithm returns a hpx::future<FwdIter2> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The copy_n

2.8. API reference 367

HPX Documentation, master

algorithm returns Iterator in the destination range, pointing past the last element copied if
count>0 or result otherwise.

template<typename FwdIter1, typename Size, typename FwdIter2>
FwdIter2 copy_n(FwdIter1 first, Size count, FwdIter2 dest)

Copies the elements in the range [first, first + count), starting from first and proceeding to first + count - 1.,
to another range beginning at dest.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The copy_n algorithm returns a FwdIter2 . The copy_n algorithm returns Iterator in the
destination range, pointing past the last element copied if count>0 or result otherwise.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> copy_if(ExPolicy &&policy, FwdIter1

first, FwdIter1 last, FwdIter2
dest, Pred &&pred)

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies only the
elements for which the predicate f returns true. The order of the elements that are not removed is preserved.
Executed according to the policy.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate f.

Template Parameters

368 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of copy_if requires F to meet the requirements of CopyCon-
structible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

Returns The copy_if algorithm returns a hpx::future<FwdIter2> > if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
copy_if algorithm returns output iterator to the element in the destination range, one past the
last element copied.

template<typename FwdIter1, typename FwdIter2, typename Pred>
FwdIter2 copy_if(FwdIter1 first, FwdIter1 last, FwdIter2 dest, Pred &&pred)

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies only the
elements for which the predicate f returns true. The order of the elements that are not removed is preserved.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate f.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of copy_if requires F to meet the requirements of CopyCon-
structible.

2.8. API reference 369

HPX Documentation, master

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

Returns The copy_if algorithm returns a FwdIter2 . The copy_if algorithm returns output iter-
ator to the element in the destination range, one past the last element copied.

hpx::count, hpx::count_if

Defined in header hpx/algorithm.hpp571.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename T>
util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<FwdIter>::difference_type>::type count(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last,
T
const
&value)

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version counts
the elements that are equal to the given value. Executed according to the policy.

The comparisons in the parallel count algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first comparisons.

571 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

370 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Note: The comparisons in the parallel count algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the comparisons.

• FwdIter – The type of the source iterator used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T – The type of the value to search for (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• value – The value to search for.

Returns The count algorithm returns a hpx::future<difference_type> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns difference_type otherwise
(where difference_type is defined by std::iterator_traits<FwdIterB>::difference_type. The
count algorithm returns the number of elements satisfying the given criteria.

template<typename InIter, typename T>
std::iterator_traits<InIter>::difference_type count(InIter first, InIter last, T const &value)

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version counts
the elements that are equal to the given value.

Note: Complexity: Performs exactly last - first comparisons.

Template Parameters

• InIter – The type of the source iterator used (deduced). This iterator type must meet the
requirements of an input iterator.

• T – The type of the value to search for (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• value – The value to search for.

Returns The count algorithm returns a difference_type (where difference_type is defined by
std::iterator_traits<InIter>::difference_type. The count algorithm returns the number of el-
ements satisfying the given criteria.

2.8. API reference 371

HPX Documentation, master

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<FwdIter>::difference_type>::type count_if(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last,
F
&&f)

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version counts
elements for which predicate f returns true. Executed according to the policy.

Note: Complexity: Performs exactly last - first applications of the predicate.

Note: The assignments in the parallel count_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note: The assignments in the parallel count_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the comparisons.

• FwdIter – The type of the source begin iterator used (deduced). This iterator type must
meet the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of count_if requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last).This is an unary predicate which returns true for
the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

372 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The count_if algorithm returns hpx::future<difference_type> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns difference_type oth-
erwise (where difference_type is defined by std::iterator_traits<FwdIter>::difference_type.
The count algorithm returns the number of elements satisfying the given criteria.

template<typename InIter, typename F>
std::iterator_traits<InIter>::difference_type count_if(InIter first, InIter last, F &&f)

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version counts
elements for which predicate f returns true.

Note: Complexity: Performs exactly last - first applications of the predicate.

Template Parameters

• InIter – The type of the source begin iterator used (deduced). This iterator type must
meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of count_if requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last).This is an unary predicate which returns true for
the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

Returns The count_if algorithm returns difference_type (where a difference_type is defined by
std::iterator_traits<InIter>::difference_type. The count algorithm returns the number of el-
ements satisfying the given criteria.

hpx::destroy, hpx::destroy_n

Defined in header hpx/algorithm.hpp572.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

572 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 373

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename FwdIter>
util::detail::algorithm_result_t<ExPolicy> destroy(ExPolicy &&policy, FwdIter first, FwdIter last)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, last). Executed
according to the policy.

The operations in the parallel destroy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The operations in the parallel destroy algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first operations.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The destroy algorithm returns a hpx::future<void>, if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename FwdIter>
void destroy(FwdIter first, FwdIter last)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, last).

Note: Complexity: Performs exactly last - first operations.

Template Parameters FwdIter – The type of the source iterators used (deduced). This iterator
type must meet the requirements of an forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The destroy algorithm returns a void

374 Chapter 2. What’s so special about HPX?

HPX Documentation, master

template<typename ExPolicy, typename FwdIter, typename Size>
util::detail::algorithm_result_t<ExPolicy, FwdIter> destroy_n(ExPolicy &&policy, FwdIter first, Size count)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, first + count).
Executed according to the policy.

The operations in the parallel destroy_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The operations in the parallel destroy_n algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count operations, if count > 0, no assignments otherwise.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply this algorithm
to.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

Returns The destroy_n algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The de-
stroy_n algorithm returns the iterator to the element in the source range, one past the last
element constructed.

template<typename FwdIter, typename Size>
FwdIter destroy_n(FwdIter first, Size count)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, first + count).

Note: Complexity: Performs exactly count operations, if count > 0, no assignments otherwise.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply this algorithm
to.

Parameters

2.8. API reference 375

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

Returns The destroy_n algorithm returns a FwdIter . The destroy_n algorithm returns the iterator
to the element in the source range, one past the last element constructed.

hpx::ends_with

Defined in header hpx/algorithm.hpp573.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter1, typename InIter2, typename Pred>
bool ends_with(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2, Pred &&pred)

Checks whether the second range defined by [first1, last1) matches the suffix of the first range defined by
[first2, last2)

The assignments in the parallel ends_with algorithm invoked without an execution policy object execute in
sequential order in the calling thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters

• InIter1 – The type of the begin source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• InIter2 – The type of the begin destination iterators used deduced). This iterator type
must meet the requirements of a input iterator.

• Pred – The binary predicate that compares the projected elements.

Parameters

• first1 – Refers to the beginning of the source range.

• last1 – Refers to the end of the source range.

• first2 – Refers to the beginning of the destination range.

• last2 – Refers to the end of the destination range.

• pred – Specifies the binary predicate function (or function object) which will be invoked for
comparison of the elements in the in two ranges projected by proj1 and proj2 respectively.

Returns The ends_with algorithm returns bool. The ends_with algorithm returns a boolean with
the value true if the second range matches the suffix of the first range, false otherwise.

573 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

376 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred>
hpx::parallel::util::detail::algorithm_result<ExPolicy, bool>::type ends_with(ExPolicy &&policy, FwdIter1

first1, FwdIter1 last1, FwdIter2
first2, FwdIter2 last2, Pred
&&pred)

Checks whether the second range defined by [first1, last1) matches the suffix of the first range defined by
[first2, last2). Executed according to the policy.

The assignments in the parallel ends_with algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel ends_with algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the begin source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• FwdIter2 – The type of the begin destination iterators used deduced). This iterator type
must meet the requirements of a forward iterator.

• Pred – The binary predicate that compares the projected elements.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the source range.

• last1 – Refers to the end of the source range.

• first2 – Refers to the beginning of the destination range.

• last2 – Refers to the end of the destination range.

• pred – Specifies the binary predicate function (or function object) which will be invoked
for

Returns The ends_with algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The ends_with
algorithm returns a boolean with the value true if the second range matches the suffix of the
first range, false otherwise.

2.8. API reference 377

HPX Documentation, master

hpx::equal

Defined in header hpx/algorithm.hpp574.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result_t<ExPolicy, bool> equal(ExPolicy &&policy, FwdIter1 first1, FwdIter1 last1,

FwdIter2 first2, FwdIter2 last2, Pred &&op = Pred())
Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise. Executed
according to the policy.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(min(last1 - first1, last2 - first2)) applications of the predicate op.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of equal requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

574 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

378 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The equal algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The equal algo-
rithm returns true if the elements in the two ranges are equal, otherwise it returns false. If the
length of the range [first1, last1) does not equal the length of the range [first2, last2), it returns
false.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
util::detail::algorithm_result_t<ExPolicy, bool> equal(ExPolicy &&policy, FwdIter1 first1, FwdIter1 last1,

FwdIter2 first2, FwdIter2 last2)
Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise. Executed
according to policy.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(min(last1 - first1, last2 - first2)) applications of the predicate std::equal_to.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

2.8. API reference 379

HPX Documentation, master

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

Returns The equal algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The equal algo-
rithm returns true if the elements in the two ranges are equal, otherwise it returns false. If the
length of the range [first1, last1) does not equal the length of the range [first2, last2), it returns
false.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result_t<ExPolicy, bool> equal(ExPolicy &&policy, FwdIter1 first1, FwdIter1 last1,

FwdIter2 first2, Pred &&op = Pred())
Returns true if the range [first1, last1) is equal to the range starting at first2, and false otherwise. Executed
according to policy.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(min(last1 - first1, last2 - first2)) applications of the predicate op.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of equal requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

380 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The equal algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The equal algo-
rithm returns true if the elements in the two ranges are equal, otherwise it returns false.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
util::detail::algorithm_result_t<ExPolicy, bool> equal(ExPolicy &&policy, FwdIter1 first1, FwdIter1 last1,

FwdIter2 first2)
Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise. Executed
according to policy.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last1 - first1 applications of the predicate op.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

2.8. API reference 381

HPX Documentation, master

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

Returns The equal algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The equal algo-
rithm returns true if the elements in the two ranges are equal, otherwise it returns false. If the
length of the range [first1, last1) does not equal the length of the range [first2, last2), it returns
false.

template<typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
bool equal(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2, Pred &&op = Pred())

Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise.

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate op.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of equal requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

382 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The equal algorithm returns a bool . The equal algorithm returns true if the elements
in the two ranges are equal, otherwise it returns false. If the length of the range [first1, last1)
does not equal the length of the range [first2, last2), it returns false.

template<typename FwdIter1, typename FwdIter2>
bool equal(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2)

Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise.

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate std::equal_to.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

Returns The equal algorithm returns a bool . The equal algorithm returns true if the elements
in the two ranges are equal, otherwise it returns false. If the length of the range [first1, last1)
does not equal the length of the range [first2, last2), it returns false.

template<typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
bool equal(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, Pred &&op = Pred())

Returns true if the range [first1, last1) is equal to the range [first2, first2 + (last1 - first1)), and false otherwise.

Note: Complexity: At most last1 - first1 applications of the predicate op.

2.8. API reference 383

HPX Documentation, master

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of equal requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The equal algorithm returns a bool . The equal algorithm returns true if the elements
in the two ranges are equal, otherwise it returns false. If the length of the range [first1, last1)
does not equal the length of the range [first2, last2), it returns false.

hpx::exclusive_scan

Defined in header hpx/algorithm.hpp575.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

575 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

384 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename InIter, typename OutIter, typename T>
OutIter exclusive_scan(InIter first, InIter last, OutIter dest, T init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(+, init, *first, . . . , *(first + (i - result) - 1))

The reduce operations in the parallel exclusive_scan algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate std::plus<T>.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:

• a1 when N is 1

• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• init – The initial value for the generalized sum.

Returns The exclusive_scan algorithm returns OutIter. The exclusive_scan algorithm returns
the output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T>
util::detail::algorithm_result_t<ExPolicy, FwdIter2> exclusive_scan(ExPolicy &&policy, FwdIter1 first,

FwdIter1 last, FwdIter2 dest, T init)
Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(+, init, *first, . . . , *(first + (i - result) - 1))

2.8. API reference 385

HPX Documentation, master

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate std::plus<T>.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:

• a1 when N is 1

• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• init – The initial value for the generalized sum.

Returns The exclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise.
The exclusive_scan algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename InIter, typename OutIter, typename T, typename Op>
OutIter exclusive_scan(InIter first, InIter last, OutIter dest, T init, Op &&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, *first, . . . , *(first + (i - result) - 1)).

386 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The reduce operations in the parallel exclusive_scan algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Op – The type of the binary function object used for the reduction operation.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• init – The initial value for the generalized sum.

• op – Specifies the function (or function object) which will be invoked for each of the values
of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

Returns The exclusive_scan algorithm returns OutIter. The exclusive_scan algorithm returns
the output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op, typename T>
util::detail::algorithm_result_t<ExPolicy, FwdIter2> exclusive_scan(ExPolicy &&policy, FwdIter1 first,

FwdIter1 last, FwdIter2 dest, T init,
Op &&op)

2.8. API reference 387

HPX Documentation, master

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, *first, . . . , *(first + (i - result) - 1)).

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Op – The type of the binary function object used for the reduction operation.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• init – The initial value for the generalized sum.

• op – Specifies the function (or function object) which will be invoked for each of the values
of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

388 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

Returns The exclusive_scan algorithm returns a hpx::future<OutIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns OutIter otherwise. The
exclusive_scan algorithm returns the output iterator to the element in the destination range,
one past the last element copied.

hpx::fill, hpx::fill_n

Defined in header hpx/algorithm.hpp576.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename T>
util::detail::algorithm_result_t<ExPolicy> fill(ExPolicy &&policy, FwdIter first, FwdIter last, T value)

Assigns the given value to the elements in the range [first, last). Executed according to the policy.

The comparisons in the parallel fill algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel fill algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T – The type of the value to be assigned (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

576 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 389

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• value – The value to be assigned.

Returns The fill algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where
difference_type is defined by void.

template<typename FwdIter, typename T>
void fill(FwdIter first, FwdIter last, T value)

Assigns the given value to the elements in the range [first, last).

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T – The type of the value to be assigned (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• value – The value to be assigned.

Returns The fill algorithm returns a void.

template<typename ExPolicy, typename FwdIter, typename Size, typename T>
util::detail::algorithm_result_t<ExPolicy, FwdIter> fill_n(ExPolicy &&policy, FwdIter first, Size count, T

value)
Assigns the given value value to the first count elements in the range beginning at first if count > 0. Does
nothing otherwise. Executed according to the policy.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, for count > 0.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

390 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Size – The type of the argument specifying the number of elements to apply f to.

• T – The type of the value to be assigned (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• value – The value to be assigned.

Returns The fill_n algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where
difference_type is defined by void.

template<typename FwdIter, typename Size, typename T>
FwdIter fill_n(FwdIter first, Size count, T value)

Assigns the given value value to the first count elements in the range beginning at first if count > 0. Does
nothing otherwise.

Note: Complexity: Performs exactly count assignments, for count > 0.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• T – The type of the value to be assigned (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• value – The value to be assigned.

Returns The fill_n algorithm returns a FwdIter.

hpx::find, hpx::find_if, hpx::find_if_not, hpx::find_end, hpx::find_first_of

Defined in header hpx/algorithm.hpp577.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

577 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 391

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename FwdIter, typename T>
util::detail::algorithm_result_t<ExPolicy, FwdIter> find(ExPolicy &&policy, FwdIter first, FwdIter last, T

const &val)
Returns the first element in the range [first, last) that is equal to value. Executed according to the policy.

The comparison operations in the parallel find algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the operator==().

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• T – The type of the value to find (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• val – the value to compare the elements to

Returns The find algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find al-
gorithm returns the first element in the range [first,last) that is equal to val. If no such element
in the range of [first,last) is equal to val, then the algorithm returns last.

template<typename InIter, typename T>
InIter find(InIter first, InIter last, T const &val)

Returns the first element in the range [first, last) that is equal to value. Executed according to the policy.

Note: Complexity: At most last - first applications of the operator==().

Template Parameters

• InIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an input iterator.

392 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• T – The type of the value to find (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• val – the value to compare the elements to

Returns The find algorithm returns a InIter. The find algorithm returns the first element in the
range [first,last) that is equal to val. If no such element in the range of [first,last) is equal to
val, then the algorithm returns last.

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result_t<ExPolicy, FwdIter> find_if(ExPolicy &&policy, FwdIter first, FwdIter last,

F &&f)
Returns the first element in the range [first, last) for which predicate f returns true. Executed according to
the policy.

The comparison operations in the parallel find_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the predicate.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• f – The unary predicate which returns true for the required element. The signature of the
predicate should be equivalent to:

bool pred(const Type &a);

2.8. API reference 393

HPX Documentation, master

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The find_if algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find_if
algorithm returns the first element in the range [first,last) that satisfies the predicate f. If no
such element exists that satisfies the predicate f, the algorithm returns last.

template<typename InIter, typename F>
InIter find_if(InIter first, InIter last, F &&f)

Returns the first element in the range [first, last) for which predicate f returns true.

Note: Complexity: At most last - first applications of the predicate.

Template Parameters

• InIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• f – The unary predicate which returns true for the required element. The signature of the
predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type.

Returns The find_if algorithm returns a InIter. The find_if algorithm returns the first element
in the range [first,last) that satisfies the predicate f. If no such element exists that satisfies the
predicate f, the algorithm returns last.

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result_t<ExPolicy, FwdIter> find_if_not(ExPolicy &&policy, FwdIter first, FwdIter

last, F &&f)
Returns the first element in the range [first, last) for which predicate f returns false. Executed according to
the policy.

The comparison operations in the parallel find_if_not algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_if_not algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

394 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: At most last - first applications of the predicate.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• f – The unary predicate which returns false for the required element. The signature of the
predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The find_if_not algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
find_if_not algorithm returns the first element in the range [first, last) that does not satisfy
the predicate f. If no such element exists that does not satisfy the predicate f, the algorithm
returns last.

template<typename FwdIter, typename F>
FwdIter find_if_not(FwdIter first, FwdIter last, F &&f)

Returns the first element in the range [first, last) for which predicate f returns false.

Note: Complexity: At most last - first applications of the predicate.

Template Parameters

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

2.8. API reference 395

HPX Documentation, master

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• f – The unary predicate which returns false for the required element. The signature of the
predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The find_if_not algorithm returns a FwdIter. The find_if_not algorithm returns the first
element in the range [first, last) that does not satisfy the predicate f. If no such element exists
that does not satisfy the predicate f, the algorithm returns last.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result_t<ExPolicy, FwdIter1> find_end(ExPolicy &&policy, FwdIter1 first1, FwdIter1

last1, FwdIter2 first2, FwdIter2 last2, Pred
&&op = Pred())

Returns the last subsequence of elements [first2, last2) found in the range [first, last) using the given predi-
cate op to compare elements. Executed according to the policy.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

This overload of find_end is available if the user decides to provide the algorithm their own predicate op.

Note: Complexity: at most S*(N-S+1) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

396 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• last2 – Refers to the end of the sequence of elements of the algorithm will be searching
for.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively.

Returns The find_end algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find_end
algorithm returns an iterator to the beginning of the last subsequence [first2, last2) in range
[first, last). If the length of the subsequence [first2, last2) is greater than the length of the
range [first1, last1), last1 is returned. Additionally if the size of the subsequence is empty or
no subsequence is found, last1 is also returned.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
util::detail::algorithm_result_t<ExPolicy, FwdIter1> find_end(ExPolicy &&policy, FwdIter1 first1, FwdIter1

last1, FwdIter2 first2, FwdIter2 last2)
Returns the last subsequence of elements [first2, last2) found in the range [first, last). Elements are compared
using operator==. Executed according to the policy.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: at most S*(N-S+1) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

2.8. API reference 397

HPX Documentation, master

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• last2 – Refers to the end of the sequence of elements of the algorithm will be searching
for.

Returns The find_end algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find_end
algorithm returns an iterator to the beginning of the last subsequence [first2, last2) in range
[first, last). If the length of the subsequence [first2, last2) is greater than the length of the
range [first1, last1), last1 is returned. Additionally if the size of the subsequence is empty or
no subsequence is found, last1 is also returned.

template<typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
FwdIter1 find_end(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2, Pred &&op = Pred())

Returns the last subsequence of elements [first2, last2) found in the range [first, last) using the given predi-
cate op to compare elements.

This overload of find_end is available if the user decides to provide the algorithm their own predicate op.

Note: Complexity: at most S*(N-S+1) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• last2 – Refers to the end of the sequence of elements of the algorithm will be searching
for.

398 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively.

Returns The find_end algorithm returns a FwdIter1. The find_end algorithm returns an iterator
to the beginning of the last subsequence [first2, last2) in range [first, last). If the length of
the subsequence [first2, last2) is greater than the length of the range [first1, last1), last1 is
returned. Additionally if the size of the subsequence is empty or no subsequence is found,
last1 is also returned.

template<typename FwdIter1, typename FwdIter2>
FwdIter1 find_end(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2)

Returns the last subsequence of elements [first2, last2) found in the range [first, last). Elements are compared
using operator==.

Note: Complexity: at most S*(N-S+1) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• last2 – Refers to the end of the sequence of elements of the algorithm will be searching
for.

Returns The find_end algorithm returns a FwdIter1. The find_end algorithm returns an iterator
to the beginning of the last subsequence [first2, last2) in range [first, last). If the length of
the subsequence [first2, last2) is greater than the length of the range [first1, last1), last1 is
returned. Additionally if the size of the subsequence is empty or no subsequence is found,
last1 is also returned.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result_t<ExPolicy, FwdIter1> find_first_of(ExPolicy &&policy, FwdIter1 first,

FwdIter1 last, FwdIter2 s_first,
FwdIter2 s_last, Pred &&op = Pred())

2.8. API reference 399

HPX Documentation, master

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses binary predicate op to
compare elements. Executed according to the policy.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

This overload of find_first_of is available if the user decides to provide the algorithm their own predicate
op.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = distance(first,
last).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of equal requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• s_first – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and

400 Chapter 2. What’s so special about HPX?

HPX Documentation, master

FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively.

Returns The find_first_of algorithm returns a hpx::future<FwdIter1> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter1 otherwise. The
find_first_of algorithm returns an iterator to the first element in the range [first, last) that is
equal to an element from the range [s_first, s_last). If the length of the subsequence [s_first,
s_last) is greater than the length of the range [first, last), last is returned. Additionally if the
size of the subsequence is empty or no subsequence is found, last is also returned.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
util::detail::algorithm_result_t<ExPolicy, FwdIter1> find_first_of(ExPolicy &&policy, FwdIter1 first,

FwdIter1 last, FwdIter2 s_first,
FwdIter2 s_last)

Searches the range [first, last) for any elements in the range [s_first, s_last). Elements are compared using
operator==. Executed according to the policy.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = distance(first,
last).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• s_first – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

Returns The find_first_of algorithm returns a hpx::future<FwdIter1> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter1 otherwise. The

2.8. API reference 401

HPX Documentation, master

find_first_of algorithm returns an iterator to the first element in the range [first, last) that is
equal to an element from the range [s_first, s_last). If the length of the subsequence [s_first,
s_last) is greater than the length of the range [first, last), last is returned. Additionally if the
size of the subsequence is empty or no subsequence is found, last is also returned.

template<typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
FwdIter1 find_first_of(FwdIter1 first, FwdIter1 last, FwdIter2 s_first, FwdIter2 s_last, Pred &&op =

Pred())
Searches the range [first, last) for any elements in the range [s_first, s_last). Uses binary predicate op to
compare elements.

This overload of find_first_of is available if the user decides to provide the algorithm their own predicate
op.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = distance(first,
last).

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of equal requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• s_first – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively.

Returns The find_first_of algorithm returns a FwdIter1. The find_first_of algorithm returns an
iterator to the first element in the range [first, last) that is equal to an element from the range
[s_first, s_last). If the length of the subsequence [s_first, s_last) is greater than the length of

402 Chapter 2. What’s so special about HPX?

HPX Documentation, master

the range [first, last), last is returned. Additionally if the size of the subsequence is empty or
no subsequence is found, last is also returned.

template<typename FwdIter1, typename FwdIter2>
FwdIter1 find_first_of(FwdIter1 first, FwdIter1 last, FwdIter2 s_first, FwdIter2 s_last)

Searches the range [first, last) for any elements in the range [s_first, s_last). Elements are compared using
operator==.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = distance(first,
last).

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• s_first – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

Returns The find_first_of algorithm returns a FwdIter1. The find_first_of algorithm returns an
iterator to the first element in the range [first, last) that is equal to an element from the range
[s_first, s_last). If the length of the subsequence [s_first, s_last) is greater than the length of
the range [first, last), last is returned. Additionally if the size of the subsequence is empty or
no subsequence is found, last is also returned.

hpx::for_each, hpx::for_each_n

Defined in header hpx/algorithm.hpp578.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

578 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 403

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename InIter, typename F>
F for_each(InIter first, InIter last, F &&f)

Applies f to the result of dereferencing every iterator in the range [first, last).

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Note: Complexity: Applies f exactly last - first times.

Template Parameters

• InIter – The type of the source begin and end iterator used (deduced). This iterator type
must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). F must meet requirements
of MoveConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type InIter can be dereferenced and then implicitly converted to Type.

Returns f.

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result_t<ExPolicy, void> for_each(ExPolicy &&policy, FwdIter first, FwdIter last, F

&&f)
Applies f to the result of dereferencing every iterator in the range [first, last). Executed according to the
policy.

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function parameter,
since parallelization may not permit efficient state accumulation.

404 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Applies f exactly last - first times.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter – The type of the source begin and end iterator used (deduced). This iterator type
must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of for_each requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type FwdIter can be dereferenced and then implicitly converted to Type.

Returns The for_each algorithm returns a hpx::future<void> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename InIter, typename Size, typename F>
InIter for_each_n(InIter first, Size count, F &&f)

Applies f to the result of dereferencing every iterator in the range [first, first + count), starting from first
and proceeding to first + count - 1.

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Note: Complexity: Applies f exactly count times.

Template Parameters

2.8. API reference 405

HPX Documentation, master

• InIter – The type of the source begin and end iterator used (deduced). This iterator type
must meet the requirements of an input iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• F – The type of the function/function object to use (deduced). F must meet requirements
of MoveConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type InIter can be dereferenced and then implicitly converted to Type.

Returns first + count for non-negative values of count and first for negative values.

template<typename ExPolicy, typename FwdIter, typename Size, typename F>
util::detail::algorithm_result_t<ExPolicy, FwdIter> for_each_n(ExPolicy &&policy, FwdIter first, Size

count, F &&f)
Applies f to the result of dereferencing every iterator in the range [first, first + count), starting from first
and proceeding to first + count - 1. Executed according to the policy.

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each_n does not return a copy of its Function pa-
rameter, since parallelization may not permit efficient state accumulation.

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Applies f exactly count times.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

406 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• F – The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of for_each_n requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). The signature of this predicate should be equivalent
to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type FwdIter can be dereferenced and then implicitly converted to Type.

Returns The for_each_n algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns
first + count for non-negative values of count and first for negative values.

hpx::experimental::for_loop, hpx::experimental::for_loop_strided, hpx::experimental::for_loop_n,
hpx::experimental::for_loop_n_strided

Defined in header hpx/algorithm.hpp579.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename I, typename ...Args>
void for_loop(std::decay_t<I> first, I last, Args&&... args)

The for_loop implements loop functionality over a range specified by integral or iterator bounds. For
the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the pro-
grammer when and if to dereference the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying
hpx::execution::seq as the execution policy.

579 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 407

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args
parameter pack shall have at least one element, comprising objects returned by invocations of reduc-
tion and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to
the reductions and inductions in the args parameter pack. The length of the input sequence is last -
first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding
f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction
object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal position
of an application of f, even though the applications themselves may be unordered.

Template Parameters
• I – The type of the iteration variable. This could be an (forward) iterator type or an

integral type.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• args – The last element of this parameter pack is the function (object) to invoke, while the

remaining elements of the parameter pack are instances of either induction or reduction
objects. The function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

template<typename ExPolicy, typename I, typename...
Args> < unspecified > for_loop (ExPolicy &&policy, std::decay_t< I > first,
I last, Args &&... args)

408 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The for_loop implements loop functionality over a range specified by integral or iterator bounds. For
the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the pro-
grammer when and if to dereference the iterator. Executed according to the policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args
parameter pack shall have at least one element, comprising objects returned by invocations of reduc-
tion and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to
the reductions and inductions in the args parameter pack. The length of the input sequence is last -
first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding
f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction
object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal position
of an application of f, even though the applications themselves may be unordered.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• I – The type of the iteration variable. This could be an (forward) iterator type or an
integral type.

• Args – A parameter pack, it’s last element is a function object to be invoked for each
iteration, the others have to be either conforming to the induction or reduction concept.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• args – The last element of this parameter pack is the function (object) to invoke, while the

remaining elements of the parameter pack are instances of either induction or reduction
objects. The function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last) should expose a signature equivalent to:

2.8. API reference 409

HPX Documentation, master

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

Returns The for_loop algorithm returns a hpx::future<void> if the execution policy is of
type hpx::execution::sequenced_task_policy or hpx::execution::parallel_task_policy and
returns void otherwise.

template<typename I, typename S, typename ...Args>
void for_loop_strided(std::decay_t<I> first, I last, S stride, Args&&... args)

The for_loop_strided implements loop functionality over a range specified by integral or iterator
bounds. For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave
to the programmer when and if to dereference the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying
hpx::execution::seq as the execution policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args
parameter pack shall have at least one element, comprising objects returned by invocations of reduc-
tion and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to
the reductions and inductions in the args parameter pack. The length of the input sequence is last -
first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding
f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction
object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal position
of an application of f, even though the applications themselves may be unordered.

Template Parameters
• I – The type of the iteration variable. This could be an (forward) iterator type or an

integral type.
• S – The type of the stride variable. This should be an integral type.

410 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Args – A parameter pack, it’s last element is a function object to be invoked for each
iteration, the others have to be either conforming to the induction or reduction concept.

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• stride – Refers to the stride of the iteration steps. This shall have non-zero value and

shall be negative only if I has integral type or meets the requirements of a bidirectional
iterator.

• args – The last element of this parameter pack is the function (object) to invoke, while the
remaining elements of the parameter pack are instances of either induction or reduction
objects. The function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

template<typename ExPolicy, typename I, typename S, typename...
Args> < unspecified > for_loop_strided (ExPolicy &&policy,
std::decay_t< I > first, I last, S stride, Args &&... args)

The for_loop_strided implements loop functionality over a range specified by integral or iterator
bounds. For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave
to the programmer when and if to dereference the iterator. Executed according to the policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args
parameter pack shall have at least one element, comprising objects returned by invocations of reduc-
tion and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to
the reductions and inductions in the args parameter pack. The length of the input sequence is last -
first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding
f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction
object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

2.8. API reference 411

HPX Documentation, master

Note: The order of the elements of the input sequence is important for determining ordinal position
of an application of f, even though the applications themselves may be unordered.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• I – The type of the iteration variable. This could be an (forward) iterator type or an
integral type.

• S – The type of the stride variable. This should be an integral type.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• stride – Refers to the stride of the iteration steps. This shall have non-zero value and

shall be negative only if I has integral type or meets the requirements of a bidirectional
iterator.

• args – The last element of this parameter pack is the function (object) to invoke, while the
remaining elements of the parameter pack are instances of either induction or reduction
objects. The function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

Returns The for_loop_strided algorithm returns a hpx::future<void> if the execution policy
is of type hpx::execution::sequenced_task_policy or hpx::execution::parallel_task_policy
and returns void otherwise.

template<typename I, typename Size, typename ...Args>
void for_loop_n(I first, Size size, Args&&... args)

The for_loop_n implements loop functionality over a range specified by integral or iterator bounds.
For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the
programmer when and if to dereference the iterator.

The execution of for_loop_n without specifying an execution policy is equivalent to specifying
hpx::execution::seq as the execution policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args
parameter pack shall have at least one element, comprising objects returned by invocations of reduc-
tion and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to
the reductions and inductions in the args parameter pack. The length of the input sequence is last -
first.

The first element in the input sequence is specified by first. Each subsequent element is generated by

412 Chapter 2. What’s so special about HPX?

HPX Documentation, master

incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding
f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction
object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal position
of an application of f, even though the applications themselves may be unordered.

Template Parameters
• I – The type of the iteration variable. This could be an (forward) iterator type or an

integral type.
• Size – The type of a non-negative integral value specifying the number of items to iterate

over.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• size – Refers to the number of items the algorithm will be applied to.
• args – The last element of this parameter pack is the function (object) to invoke, while the

remaining elements of the parameter pack are instances of either induction or reduction
objects. The function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

template<typename ExPolicy, typename I, typename Size, typename...
Args> < unspecified > for_loop_n (ExPolicy &&policy, I first, Size size,
Args &&... args)

The for_loop_n implements loop functionality over a range specified by integral or iterator bounds.
For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the
programmer when and if to dereference the iterator. Executed according to the policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args
parameter pack shall have at least one element, comprising objects returned by invocations of reduc-

2.8. API reference 413

HPX Documentation, master

tion and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to
the reductions and inductions in the args parameter pack. The length of the input sequence is last -
first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding
f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction
object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal position
of an application of f, even though the applications themselves may be unordered.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• I – The type of the iteration variable. This could be an (forward) iterator type or an
integral type.

• Size – The type of a non-negative integral value specifying the number of items to iterate
over.

• Args – A parameter pack, it’s last element is a function object to be invoked for each
iteration, the others have to be either conforming to the induction or reduction concept.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• size – Refers to the number of items the algorithm will be applied to.
• args – The last element of this parameter pack is the function (object) to invoke, while the

remaining elements of the parameter pack are instances of either induction or reduction
objects. The function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

414 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The for_loop_n algorithm returns a hpx::future<void> if the execution policy is of
type hpx::execution::sequenced_task_policy or hpx::execution::parallel_task_policy and
returns void otherwise.

template<typename I, typename Size, typename S, typename ...Args>
void for_loop_n_strided(I first, Size size, S stride, Args&&... args)

The for_loop_n_strided implements loop functionality over a range specified by integral or iterator
bounds. For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave
to the programmer when and if to dereference the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying
hpx::execution::seq as the execution policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args
parameter pack shall have at least one element, comprising objects returned by invocations of reduc-
tion and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to
the reductions and inductions in the args parameter pack. The length of the input sequence is last -
first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding
f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction
object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal position
of an application of f, even though the applications themselves may be unordered.

Template Parameters
• I – The type of the iteration variable. This could be an (forward) iterator type or an

integral type.
• Size – The type of a non-negative integral value specifying the number of items to iterate

over.
• S – The type of the stride variable. This should be an integral type.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

2.8. API reference 415

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• size – Refers to the number of items the algorithm will be applied to.
• stride – Refers to the stride of the iteration steps. This shall have non-zero value and

shall be negative only if I has integral type or meets the requirements of a bidirectional
iterator.

• args – The last element of this parameter pack is the function (object) to invoke, while the
remaining elements of the parameter pack are instances of either induction or reduction
objects. The function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

template<typename ExPolicy, typename I, typename Size, typename S, typename...
Args> < unspecified > for_loop_n_strided (ExPolicy &&policy, I first, Size size,
S stride, Args &&... args)

The for_loop_n_strided implements loop functionality over a range specified by integral or iterator
bounds. For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave
to the programmer when and if to dereference the iterator. Executed according to the policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args
parameter pack shall have at least one element, comprising objects returned by invocations of reduc-
tion and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to
the reductions and inductions in the args parameter pack. The length of the input sequence is last -
first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding
f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction
object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal position

416 Chapter 2. What’s so special about HPX?

HPX Documentation, master

of an application of f, even though the applications themselves may be unordered.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• I – The type of the iteration variable. This could be an (forward) iterator type or an
integral type.

• Size – The type of a non-negative integral value specifying the number of items to iterate
over.

• S – The type of the stride variable. This should be an integral type.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• size – Refers to the number of items the algorithm will be applied to.
• stride – Refers to the stride of the iteration steps. This shall have non-zero value and

shall be negative only if I has integral type or meets the requirements of a bidirectional
iterator.

• args – The last element of this parameter pack is the function (object) to invoke, while the
remaining elements of the parameter pack are instances of either induction or reduction
objects. The function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

Returns The for_loop_n_strided algorithm returns a hpx::future<void> if
the execution policy is of type hpx::execution::sequenced_task_policy or
hpx::execution::parallel_task_policy and returns void otherwise.

hpx::experimental::induction

Defined in header hpx/algorithm.hpp580.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

580 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 417

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename T>
constexpr hpx::parallel::detail::induction_stride_helper<T> induction(T &&value, std::size_t stride)

The function template returns an induction object of unspecified type having a value type and encap-
sulating an initial value of that type and, optionally, a stride.

For each element in the input range, a looping algorithm over input sequence S computes an induction
value from an induction variable and ordinal position p within S by the formula i + p * stride if a stride
was specified or i + p otherwise. This induction value is passed to the element access function.

If the value argument to induction is a non-const lvalue, then that lvalue becomes the live-out object
for the returned induction object. For each induction object that has a live-out object, the looping
algorithm assigns the value of i + n * stride to the live-out object upon return, where n is the number
of elements in the input range.

Template Parameters T – The value type to be used by the induction object.
Parameters

• value – [in] The initial value to use for the induction object
• stride – [in] The (optional) stride to use for the induction object (default: 1)

Returns This returns an induction object with value type T, initial value, and (if specified)
stride. If T is a lvalue of non-const type, value is used as the live-out object for the induction
object; otherwise there is no live-out object.

template<typename T>
constexpr hpx::parallel::detail::induction_helper<T> induction(T &&value)

hpx::experimental::reduction

Defined in header hpx/algorithm.hpp581.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename T, typename Op>
constexpr hpx::parallel::detail::reduction_helper<T , std::decay_t<Op>> reduction(T &var, T const

&identity, Op
&&combiner)

The function template returns a reduction object of unspecified type having a value type and encapsu-
lating an identity value for the reduction, a combiner function object, and a live-out object from which
the initial value is obtained and into which the final value is stored.

A parallel algorithm uses reduction objects by allocating an unspecified number of instances, called
views, of the reduction’s value type. Each view is initialized with the reduction object’s identity value,
except that the live-out object (which was initialized by the caller) comprises one of the views. The
algorithm passes a reference to a view to each application of an element-access function, ensuring that

581 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

418 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

no two concurrently-executing invocations share the same view. A view can be shared between two
applications that do not execute concurrently, but initialization is performed only once per view.

Modifications to the view by the application of element access functions accumulate as partial results.
At some point before the algorithm returns, the partial results are combined, two at a time, using the
reduction object’s combiner operation until a single value remains, which is then assigned back to the
live-out object.

T shall meet the requirements of CopyConstructible and MoveAssignable. The expression

var = combiner(var, var)

shall be well-formed.

Note: In order to produce useful results, modifications to the view should be limited to commuta-
tive operations closely related to the combiner operation. For example if the combiner is plus<T>,
incrementing the view would be consistent with the combiner but doubling it or assigning to it would
not.

Template Parameters
• T – The value type to be used by the induction object.
• Op – The type of the binary function (object) used to perform the reduction operation.

Parameters
• var – [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity – [in] The identity value to use for the reduction operation. This argument is

optional and defaults to a copy of var.
• combiner – [in] The binary function (object) used to perform a pairwise reduction on

the elements.
Returns This returns a reduction object of unspecified type having a value type of T. When

the return value is used by an algorithm, the reference to var is used as the live-out object,
new views are initialized to a copy of identity, and views are combined by invoking the copy
of combiner, passing it the two views to be combined.

template<typename T, typename Op>
constexpr hpx::parallel::detail::reduction_helper<T , std::decay_t<Op>> reduction(T &var, Op

&&combiner)

hpx::experimental::reduction_bit_and

Defined in header hpx/algorithm.hpp582.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

582 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 419

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::bit_and<T>> reduction_bit_and(T &var)

The function template reduction_bit_and returns a reduction object of unspecified type having a value
type and encapsulating an identity value for the reduction, it uses std::bit_and{} as its combiner func-
tion, and a live-out object from which the initial value is obtained and into which the final value is
stored.

A parallel algorithm uses the reduction_bit_and object by allocating an unspecified number of in-
stances, called views, of the reduction’s value type. Each view is initialized with the reduction object’s
identity value, except that the live-out object (which was initialized by the caller) comprises one of the
views. The algorithm passes a reference to a view to each application of an element-access function,
ensuring that no two concurrently-executing invocations share the same view. A view can be shared
between two applications that do not execute concurrently, but initialization is performed only once
per view.

Modifications to the view by the application of element access functions accumulate as partial results.
At some point before the algorithm returns, the partial results are combined, two at a time, using the
std::bit_and{} operation until a single value remains, which is then assigned back to the live-out object.

T shall meet the requirements of CopyConstructible and MoveAssignable.

Note: In order to produce useful results, modifications to the view should be limited to commutative
operations closely related to the combiner operation.

Template Parameters
• T – The value type to be used by the induction object.
• Op – The type of the binary function (object) used to perform the reduction operation.

Parameters
• var – [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity – [in] The identity value to use for the reduction operation. This argument is

optional and defaults to a copy of var.
Returns This returns a reduction object of unspecified type having a value type of T. When

the return value is used by an algorithm, the reference to var is used as the live-out object,
new views are initialized to a copy of identity, and views are combined by invoking the copy
of combiner, passing it the two views to be combined.

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::bit_and<T>> reduction_bit_and(T &var, T

const
&iden-
tity)

420 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::experimental::reduction_bit_or

Defined in header hpx/algorithm.hpp583.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::bit_or<T>> reduction_bit_or(T &var)

The function template reduction_bit_or returns a reduction object of unspecified type having a value
type and encapsulating an identity value for the reduction, it uses std::bit_or{} as its combiner function,
and a live-out object from which the initial value is obtained and into which the final value is stored.

A parallel algorithm uses the reduction_bit_or object by allocating an unspecified number of instances,
called views, of the reduction’s value type. Each view is initialized with the reduction object’s identity
value, except that the live-out object (which was initialized by the caller) comprises one of the views.
The algorithm passes a reference to a view to each application of an element-access function, ensuring
that no two concurrently-executing invocations share the same view. A view can be shared between
two applications that do not execute concurrently, but initialization is performed only once per view.

Modifications to the view by the application of element access functions accumulate as partial results.
At some point before the algorithm returns, the partial results are combined, two at a time, using the
std::bit_or{} operation until a single value remains, which is then assigned back to the live-out object.

T shall meet the requirements of CopyConstructible and MoveAssignable.

Note: In order to produce useful results, modifications to the view should be limited to commutative
operations closely related to the combiner operation.

Template Parameters
• T – The value type to be used by the induction object.
• Op – The type of the binary function (object) used to perform the reduction operation.

Parameters
• var – [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity – [in] The identity value to use for the reduction operation. This argument is

optional and defaults to a copy of var.
Returns This returns a reduction object of unspecified type having a value type of T. When

the return value is used by an algorithm, the reference to var is used as the live-out object,
new views are initialized to a copy of identity, and views are combined by invoking the copy
of combiner, passing it the two views to be combined.

template<typename T>
583 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 421

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

constexpr hpx::parallel::detail::reduction_helper<T , std::bit_or<T>> reduction_bit_or(T &var, T
const
&identity)

hpx::experimental::reduction_bit_xor

Defined in header hpx/algorithm.hpp584.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::bit_xor<T>> reduction_bit_xor(T &var)

The function template reduction_bit_xor returns a reduction object of unspecified type having a value
type and encapsulating an identity value for the reduction, it uses std::bit_xor{} as its combiner func-
tion, and a live-out object from which the initial value is obtained and into which the final value is
stored.

A parallel algorithm uses the reduction_bit_xor object by allocating an unspecified number of in-
stances, called views, of the reduction’s value type. Each view is initialized with the reduction object’s
identity value, except that the live-out object (which was initialized by the caller) comprises one of the
views. The algorithm passes a reference to a view to each application of an element-access function,
ensuring that no two concurrently-executing invocations share the same view. A view can be shared
between two applications that do not execute concurrently, but initialization is performed only once
per view.

Modifications to the view by the application of element access functions accumulate as partial results.
At some point before the algorithm returns, the partial results are combined, two at a time, using the
std::bit_xor{} operation until a single value remains, which is then assigned back to the live-out object.

T shall meet the requirements of CopyConstructible and MoveAssignable.

Note: In order to produce useful results, modifications to the view should be limited to commutative
operations closely related to the combiner operation.

Template Parameters
• T – The value type to be used by the induction object.
• Op – The type of the binary function (object) used to perform the reduction operation.

Parameters
• var – [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity – [in] The identity value to use for the reduction operation. This argument is

optional and defaults to a copy of var.
584 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

422 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Returns This returns a reduction object of unspecified type having a value type of T. When
the return value is used by an algorithm, the reference to var is used as the live-out object,
new views are initialized to a copy of identity, and views are combined by invoking the copy
of combiner, passing it the two views to be combined.

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::bit_xor<T>> reduction_bit_xor(T &var, T

const
&identity)

hpx::experimental::reduction_max

Defined in header hpx/algorithm.hpp585.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , hpx::parallel::detail::max_of<T>> reduction_max(T

&var)
The function template reduction_max returns a reduction object of unspecified type having a value type
and encapsulating an identity value for the reduction, it uses std::max_of{} as its combiner function,
and a live-out object from which the initial value is obtained and into which the final value is stored.

A parallel algorithm uses the reduction_max object by allocating an unspecified number of instances,
called views, of the reduction’s value type. Each view is initialized with the reduction object’s identity
value, except that the live-out object (which was initialized by the caller) comprises one of the views.
The algorithm passes a reference to a view to each application of an element-access function, ensuring
that no two concurrently-executing invocations share the same view. A view can be shared between
two applications that do not execute concurrently, but initialization is performed only once per view.

Modifications to the view by the application of element access functions accumulate as partial results.
At some point before the algorithm returns, the partial results are combined, two at a time, using the
std::max_of{} operation until a single value remains, which is then assigned back to the live-out object.

T shall meet the requirements of CopyConstructible and MoveAssignable.

Note: In order to produce useful results, modifications to the view should be limited to commutative
operations closely related to the combiner operation.

Template Parameters
• T – The value type to be used by the induction object.
• Op – The type of the binary function (object) used to perform the reduction operation.

585 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 423

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Parameters
• var – [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity – [in] The identity value to use for the reduction operation. This argument is

optional and defaults to a copy of var.
Returns This returns a reduction object of unspecified type having a value type of T. When

the return value is used by an algorithm, the reference to var is used as the live-out object,
new views are initialized to a copy of identity, and views are combined by invoking the copy
of combiner, passing it the two views to be combined.

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , hpx::parallel::detail::max_of<T>> reduction_max(T

&var,
T
const
&iden-
tity)

hpx::experimental::reduction_min

Defined in header hpx/algorithm.hpp586.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , hpx::parallel::detail::min_of<T>> reduction_min(T

&var)
The function template reduction_min returns a reduction object of unspecified type having a value type
and encapsulating an identity value for the reduction, it uses std::min_of{} as its combiner function,
and a live-out object from which the initial value is obtained and into which the final value is stored.

A parallel algorithm uses the reduction_min object by allocating an unspecified number of instances,
called views, of the reduction’s value type. Each view is initialized with the reduction object’s identity
value, except that the live-out object (which was initialized by the caller) comprises one of the views.
The algorithm passes a reference to a view to each application of an element-access function, ensuring
that no two concurrently-executing invocations share the same view. A view can be shared between
two applications that do not execute concurrently, but initialization is performed only once per view.

Modifications to the view by the application of element access functions accumulate as partial results.
At some point before the algorithm returns, the partial results are combined, two at a time, using the
std::min_of{} operation until a single value remains, which is then assigned back to the live-out object.

T shall meet the requirements of CopyConstructible and MoveAssignable.
586 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

424 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Note: In order to produce useful results, modifications to the view should be limited to commutative
operations closely related to the combiner operation.

Template Parameters
• T – The value type to be used by the induction object.
• Op – The type of the binary function (object) used to perform the reduction operation.

Parameters
• var – [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity – [in] The identity value to use for the reduction operation. This argument is

optional and defaults to a copy of var.
Returns This returns a reduction object of unspecified type having a value type of T. When

the return value is used by an algorithm, the reference to var is used as the live-out object,
new views are initialized to a copy of identity, and views are combined by invoking the copy
of combiner, passing it the two views to be combined.

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , hpx::parallel::detail::min_of<T>> reduction_min(T

&var,
T
const
&iden-
tity)

hpx::experimental::reduction_multiplies

Defined in header hpx/algorithm.hpp587.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::multiplies<T>> reduction_multiplies(T

&var)
The function template reduction_multiplies returns a reduction object of unspecified type having a
value type and encapsulating an identity value for the reduction, it uses std::multiplies{} as its combiner
function, and a live-out object from which the initial value is obtained and into which the final value
is stored.

A parallel algorithm uses the reduction_multiplies object by allocating an unspecified number of in-
stances, called views, of the reduction’s value type. Each view is initialized with the reduction object’s
identity value, except that the live-out object (which was initialized by the caller) comprises one of the
views. The algorithm passes a reference to a view to each application of an element-access function,

587 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 425

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

ensuring that no two concurrently-executing invocations share the same view. A view can be shared
between two applications that do not execute concurrently, but initialization is performed only once
per view.

Modifications to the view by the application of element access functions accumulate as partial results.
At some point before the algorithm returns, the partial results are combined, two at a time, using the
std::multiplies{} operation until a single value remains, which is then assigned back to the live-out
object.

T shall meet the requirements of CopyConstructible and MoveAssignable.

Note: In order to produce useful results, modifications to the view should be limited to commutative
operations closely related to the combiner operation.

Template Parameters
• T – The value type to be used by the induction object.
• Op – The type of the binary function (object) used to perform the reduction operation.

Parameters
• var – [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity – [in] The identity value to use for the reduction operation. This argument is

optional and defaults to a copy of var.
Returns This returns a reduction object of unspecified type having a value type of T. When

the return value is used by an algorithm, the reference to var is used as the live-out object,
new views are initialized to a copy of identity, and views are combined by invoking the copy
of combiner, passing it the two views to be combined.

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::multiplies<T>> reduction_multiplies(T

&var,
T
const
&iden-
tity)

hpx::experimental::reduction_plus

Defined in header hpx/algorithm.hpp588.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

588 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

426 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::plus<T>> reduction_plus(T &var)

The function template reduction_plus returns a reduction object of unspecified type having a value
type and encapsulating an identity value for the reduction, it uses std::plus{} as its combiner function,
and a live-out object from which the initial value is obtained and into which the final value is stored.

A parallel algorithm uses the reduction_plus object by allocating an unspecified number of instances,
called views, of the reduction’s value type. Each view is initialized with the reduction object’s identity
value, except that the live-out object (which was initialized by the caller) comprises one of the views.
The algorithm passes a reference to a view to each application of an element-access function, ensuring
that no two concurrently-executing invocations share the same view. A view can be shared between
two applications that do not execute concurrently, but initialization is performed only once per view.

Modifications to the view by the application of element access functions accumulate as partial results.
At some point before the algorithm returns, the partial results are combined, two at a time, using the
std::plus{} operation until a single value remains, which is then assigned back to the live-out object.

T shall meet the requirements of CopyConstructible and MoveAssignable.

Note: In order to produce useful results, modifications to the view should be limited to commutative
operations closely related to the combiner operation.

Template Parameters
• T – The value type to be used by the induction object.
• Op – The type of the binary function (object) used to perform the reduction operation.

Parameters
• var – [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity – [in] The identity value to use for the reduction operation. This argument is

optional and defaults to a copy of var.
Returns This returns a reduction object of unspecified type having a value type of T. When

the return value is used by an algorithm, the reference to var is used as the live-out object,
new views are initialized to a copy of identity, and views are combined by invoking the copy
of combiner, passing it the two views to be combined.

template<typename T>
constexpr hpx::parallel::detail::reduction_helper<T , std::plus<T>> reduction_plus(T &var, T const

&identity)

hpx::generate, hpx::generate_n

Defined in header hpx/algorithm.hpp589.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

589 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 427

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename FwdIter, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> generate(ExPolicy &&policy, FwdIter

first, FwdIter last, F &&f)
Assign each element in range [first, last) a value generated by the given function object f. Executed accord-
ing to the policy.

The assignments in the parallel generate algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel generate algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Exactly distance(first, last) invocations of f and assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – generator function that will be called. signature of function should be equivalent to the
following:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and assigned
a value of type Ret.

Returns The generate algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise.

template<typename FwdIter, typename F>
FwdIter generate(FwdIter first, FwdIter last, F &&f)

Assign each element in range [first, last) a value generated by the given function object f.

Note: Complexity: Exactly distance(first, last) invocations of f and assignments.

428 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – generator function that will be called. signature of function should be equivalent to the
following:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and assigned
a value of type Ret.

Returns The generate algorithm returns a FwdIter.

template<typename ExPolicy, typename FwdIter, typename Size, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> generate_n(ExPolicy &&policy, FwdIter

first, Size count, F &&f)
Assigns each element in range [first, first+) a value generated by the given function object f. Executed
according to the policy.

The assignments in the parallel generate_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel generate_n algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Exactly count invocations of f and assignments, for count > 0.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Size – The type of a non-negative integral value specifying the number of items to iterate
over.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

2.8. API reference 429

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements in the sequence the algorithm will be applied to.

• f – Refers to the generator function object that will be called. The signature of the function
should be equivalent to

Ret fun();

The type Ret must be such that an object of type OutputIt can be dereferenced and assigned
a value of type Ret.

Returns The generate_n algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. gener-
ate_n algorithm returns iterator one past the last element assigned if count>0, first otherwise.

template<typename FwdIter, typename Size, typename F>
FwdIter generate_n(FwdIter first, Size count, F &&f)

Assigns each element in range [first, first+) a value generated by the given function object f.

Note: Complexity: Exactly count invocations of f and assignments, for count > 0.

Template Parameters

• Size – The type of a non-negative integral value specifying the number of items to iterate
over.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements in the sequence the algorithm will be applied to.

• f – Refers to the generator function object that will be called. The signature of the function
should be equivalent to

Ret fun();

The type Ret must be such that an object of type OutputIt can be dereferenced and assigned
a value of type Ret.

Returns The generate_n algorithm returns a FwdIter. generate_n algorithm returns iterator one
past the last element assigned if count>0, first otherwise.

430 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::includes

Defined in header hpx/algorithm.hpp590.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred =
hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool>::type includes(ExPolicy &&policy, FwdIter1

first1, FwdIter1 last1,
FwdIter2 first2, FwdIter2
last2, Pred &&op = Pred())

Returns true if every element from the sorted range [first2, last2) is found within the sorted range [first1,
last1). Also returns true if [first2, last2) is empty. The version expects both ranges to be sorted with the
user supplied binary predicate f. Executed according to the policy.

The comparison operations in the parallel includes algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel includes algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: At most 2*(N1+N2-1) comparisons, where N1 = std::distance(first1, last1) and N2 =
std::distance(first2, last2).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of includes requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

590 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 431

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• op – The binary predicate which returns true if the elements should be treated as includes.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The includes algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The includes al-
gorithm returns true every element from the sorted range [first2, last2) is found within the
sorted range [first1, last1). Also returns true if [first2, last2) is empty.

template<typename FwdIter1, typename FwdIter2, typename Pred = hpx::parallel::detail::less>
bool includes(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2, Pred &&op = Pred())

Returns true if every element from the sorted range [first2, last2) is found within the sorted range [first1,
last1). Also returns true if [first2, last2) is empty. The version expects both ranges to be sorted with the
user supplied binary predicate f.

Note: At most 2*(N1+N2-1) comparisons, where N1 = std::distance(first1, last1) and N2 =
std::distance(first2, last2).

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of includes requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

432 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• op – The binary predicate which returns true if the elements should be treated as includes.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The includes algorithm returns a bool. The includes algorithm returns true every ele-
ment from the sorted range [first2, last2) is found within the sorted range [first1, last1). Also
returns true if [first2, last2) is empty.

hpx::inclusive_scan

Defined in header hpx/algorithm.hpp591.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename OutIter>
OutIter inclusive_scan(InIter first, InIter last, OutIter dest)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(+, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate op, here std::plus<>().

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:

• a1 when N is 1

• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
591 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 433

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The inclusive_scan algorithm returns OutIter. The inclusive_scan algorithm returns the
output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> inclusive_scan(ExPolicy &&policy,

FwdIter1 first,
FwdIter1 last, FwdIter2
dest)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(+, *first, . . . , *(first + (i - result))). Executed according to the policy.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate op, here std::plus<>().

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:

• a1 when N is 1

• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

434 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The inclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
inclusive_scan algorithm returns the output iterator to the element in the destination range,
one past the last element copied.

template<typename InIter, typename OutIter, typename Op>
OutIter inclusive_scan(InIter first, InIter last, OutIter dest, Op &&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:

• a1 when N is 1

• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Op – The type of the binary function object used for the reduction operation.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

2.8. API reference 435

HPX Documentation, master

• dest – Refers to the beginning of the destination range.

• op – Specifies the function (or function object) which will be invoked for each of the values
of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

Returns The inclusive_scan algorithm returns OutIter. The inclusive_scan algorithm returns the
output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> inclusive_scan(ExPolicy &&policy,

FwdIter1 first,
FwdIter1 last, FwdIter2
dest, Op &&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, *first, . . . , *(first + (i - result))). Executed according to the policy.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:

• a1 when N is 1

• GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

436 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Op – The type of the binary function object used for the reduction operation.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• op – Specifies the function (or function object) which will be invoked for each of the values
of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

Returns The inclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
inclusive_scan algorithm returns the output iterator to the element in the destination range,
one past the last element copied.

template<typename InIter, typename OutIter, typename Op, typename T>
OutIter inclusive_scan(InIter first, InIter last, OutIter dest, Op &&op, T init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters

2.8. API reference 437

HPX Documentation, master

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Op – The type of the binary function object used for the reduction operation.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• op – Specifies the function (or function object) which will be invoked for each of the values
of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

• init – The initial value for the generalized sum.

Returns The inclusive_scan algorithm returns OutIter. The inclusive_scan algorithm returns the
output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op, typename T>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> inclusive_scan(ExPolicy &&policy,

FwdIter1 first,
FwdIter1 last, FwdIter2
dest, Op &&op, T init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, *first, . . . , *(first + (i - result))). Executed according to the
policy.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

438 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Op – The type of the binary function object used for the reduction operation.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• op – Specifies the function (or function object) which will be invoked for each of the values
of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

• init – The initial value for the generalized sum.

Returns The inclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
inclusive_scan algorithm returns the output iterator to the element in the destination range,
one past the last element copied.

2.8. API reference 439

HPX Documentation, master

hpx::is_heap, hpx::is_heap_until

Defined in header hpx/algorithm.hpp592.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename RandIter, typename Comp = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_heap(ExPolicy &&policy, RandIter first,

RandIter last, Comp &&comp =
Comp())

Returns whether the range is max heap. That is, true if the range is max heap, false otherwise. The function
uses the given comparison function object comp (defaults to using operator<()). Executed according to the
policy.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator.

592 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

440 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Returns The is_heap algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The is_heap al-
gorithm returns whether the range is max heap. That is, true if the range is max heap, false
otherwise.

template<typename RandIter, typename Comp = hpx::parallel::detail::less>
bool is_heap(RandIter first, RandIter last, Comp &&comp = Comp())

Returns whether the range is max heap. That is, true if the range is max heap, false otherwise. The function
uses the given comparison function object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

Note: Complexity: Linear in the distance between first and last.

Template Parameters

• RandIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator.

Returns The is_heap a bool. The is_heap algorithm returns whether the range is max heap. That
is, true if the range is max heap, false otherwise.

template<typename ExPolicy, typename RandIter, typename Comp = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, RandIter> is_heap_until(ExPolicy &&policy,

RandIter first, RandIter
last, Comp &&comp =
Comp())

Returns the upper bound of the largest range beginning at first which is a max heap. That is, the last iterator
it for which range [first, it) is a max heap. The function uses the given comparison function object comp
(defaults to using operator<()). Executed according to the policy.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last.

2.8. API reference 441

HPX Documentation, master

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator.

Returns The is_heap_until algorithm returns a hpx::future<RandIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns RandIter otherwise. The
is_heap_until algorithm returns the upper bound of the largest range beginning at first which
is a max heap. That is, the last iterator it for which range [first, it) is a max heap.

template<typename RandIter, typename Comp = hpx::parallel::detail::less>
RandIter is_heap_until(RandIter first, RandIter last, Comp &&comp = Comp())

Returns the upper bound of the largest range beginning at first which is a max heap. That is, the last iterator
it for which range [first, it) is a max heap. The function uses the given comparison function object comp
(defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

Note: Complexity: Linear in the distance between first and last.

Template Parameters

• RandIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator.

442 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The is_heap_until algorithm returns a RandIter. The is_heap_until algorithm returns
the upper bound of the largest range beginning at first which is a max heap. That is, the last
iterator it for which range [first, it) is a max heap.

hpx::is_partitioned

Defined in header hpx/algorithm.hpp593.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter, typename Pred>
bool is_partitioned(FwdIter first, FwdIter last, Pred &&pred)

Determines if the range [first, last) is partitioned.

Note: Complexity: at most (N) predicate evaluations where N = distance(first, last).

Template Parameters

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Pred – The type of the function/function object to use (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• pred – Refers to the unary predicate which returns true for elements expected to be found
in the beginning of the range. The signature of the function should be equivalent to

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The is_partitioned algorithm returns bool. The is_partitioned algorithm returns true if
each element in the sequence for which pred returns true precedes those for which pred returns
false. Otherwise is_partitioned returns false. If the range [first, last) contains less than two
elements, the function is always true.

template<typename ExPolicy, typename FwdIter, typename Pred>
593 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 443

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_partitioned(ExPolicy &&policy, FwdIter
first, FwdIter last, Pred
&&pred)

Determines if the range [first, last) is partitioned. Executed according to the policy.

The predicate operations in the parallel is_partitioned algorithm invoked with an execution policy object
of type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_partitioned algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (N) predicate evaluations where N = distance(first, last).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Pred – The type of the function/function object to use (deduced). Pred must be CopyCon-
structible when using a parallel policy.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• pred – Refers to the unary predicate which returns true for elements expected to be found
in the beginning of the range. The signature of the function should be equivalent to

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The is_partitioned algorithm returns a hpx::future<bool> if the execution policy is of
type task_execution_policy and returns bool otherwise. The is_partitioned algorithm returns
true if each element in the sequence for which pred returns true precedes those for which pred
returns false. Otherwise is_partitioned returns false. If the range [first, last) contains less than
two elements, the function is always true.

444 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::is_sorted, hpx::is_sorted_until

Defined in header hpx/algorithm.hpp594.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter, typename Pred = hpx::parallel::detail::less>
bool is_sorted(FwdIter first, FwdIter last, Pred &&pred = Pred())

Determines if the range [first, last) is sorted. Uses pred to compare elements.

The comparison operations in the parallel is_sorted algorithm executes in sequential order in the calling
thread.

Note: Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of partitions

Template Parameters

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Pred – The type of an optional function/function object to use.

Parameters

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• pred – Refers to the binary predicate which returns true if the first argument should be
treated as less than the second argument. The signature of the function should be equivalent
to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The is_sorted algorithm returns a bool. The is_sorted algorithm returns true if each
element in the sequence [first, last) satisfies the predicate passed. If the range [first, last)
contains less than two elements, the function always returns true.

template<typename ExPolicy, typename FwdIter, typename Pred = hpx::parallel::detail::less>
594 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 445

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_sorted(ExPolicy &&policy, FwdIter first,
FwdIter last, Pred &&pred =
Pred())

Determines if the range [first, last) is sorted. Uses pred to compare elements. Executed according to the
policy.

The comparison operations in the parallel is_sorted algorithm invoked with an execution policy object of
type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_sorted algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of partitions

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of is_sorted requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• pred – Refers to the binary predicate which returns true if the first argument should be
treated as less than the second argument. The signature of the function should be equivalent
to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The is_sorted algorithm returns a hpx::future<bool> if the execution policy is of type
task_execution_policy and returns bool otherwise. The is_sorted algorithm returns a bool if
each element in the sequence [first, last) satisfies the predicate passed. If the range [first, last)
contains less than two elements, the function always returns true.

template<typename FwdIter, typename Pred = hpx::parallel::detail::less>

446 Chapter 2. What’s so special about HPX?

HPX Documentation, master

FwdIter is_sorted_until(FwdIter first, FwdIter last, Pred &&pred = Pred())
Returns the first element in the range [first, last) that is not sorted. Uses a predicate to compare elements
or the less than operator.

The comparison operations in the parallel is_sorted_until algorithm execute in sequential order in the call-
ing thread.

Note: Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of partitions

Template Parameters

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Pred – The type of an optional function/function object to use.

Parameters

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• pred – Refers to the binary predicate which returns true if the first argument should be
treated as less than the second argument. The signature of the function should be equivalent
to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The is_sorted_until algorithm returns a FwdIter. The is_sorted_until algorithm returns
the first unsorted element. If the sequence has less than two elements or the sequence is sorted,
last is returned.

template<typename ExPolicy, typename FwdIter, typename Pred = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type is_sorted_until(ExPolicy &&policy,

FwdIter first,
FwdIter last, Pred
&&pred = Pred())

Returns the first element in the range [first, last) that is not sorted. Uses a predicate to compare elements
or the less than operator. Executed according to the policy.

The comparison operations in the parallel is_sorted_until algorithm invoked with an execution policy object
of type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_sorted_until algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

2.8. API reference 447

HPX Documentation, master

Note: Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of partitions

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of is_sorted_until requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• pred – Refers to the binary predicate which returns true if the first argument should be
treated as less than the second argument. The signature of the function should be equivalent
to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The is_sorted_until algorithm returns a hpx::future<FwdIter> if the execution policy is
of type task_execution_policy and returns FwdIter otherwise. The is_sorted_until algorithm
returns the first unsorted element. If the sequence has less than two elements or the sequence
is sorted, last is returned.

hpx::lexicographical_compare

Defined in header hpx/algorithm.hpp595.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

595 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

448 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename InIter1, typename InIter2, typename Pred = hpx::parallel::detail::less>
bool lexicographical_compare(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2, Pred &&pred)

Checks if the first range [first1, last1) is lexicographically less than the second range [first2, last2). uses a
provided predicate to compare elements.

The comparison operations in the parallel lexicographical_compare algorithm invoked without an execu-
tion policy object execute in sequential order in the calling thread.

Note: Complexity: At most 2 * min(N1, N2) applications of the comparison operation, where N1 =
std::distance(first1, last) and N2 = std::distance(first2, last2).

Note: Lexicographical comparison is an operation with the following properties

• Two ranges are compared element by element

• The first mismatching element defines which range is lexicographically less or greater than the other

• If one range is a prefix of another, the shorter range is lexicographically less than the other

• If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically
equal

• An empty range is lexicographically less than any non-empty range

• Two empty ranges are lexicographically equal

Template Parameters

• InIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an input iterator.

• InIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an input iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of lexicographical_compare requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• pred – Refers to the comparison function that the first and second ranges will be applied
to

2.8. API reference 449

HPX Documentation, master

Returns The lexicographically_compare algorithm returns a returns bool if the execution policy
object is not passed in. The lexicographically_compare algorithm returns true if the first
range is lexicographically less, otherwise it returns false. range [first2, last2), it returns false.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred =
hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> lexicographical_compare(ExPolicy

&&policy,
FwdIter1 first1,
FwdIter1 last1,
FwdIter2 first2,
FwdIter2 last2,
Pred &&pred)

Checks if the first range [first1, last1) is lexicographically less than the second range [first2, last2). uses a
provided predicate to compare elements.

The comparison operations in the parallel lexicographical_compare algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel lexicographical_compare algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fash-
ion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2 * min(N1, N2) applications of the comparison operation, where N1 =
std::distance(first1, last) and N2 = std::distance(first2, last2).

Note: Lexicographical comparison is an operation with the following properties

• Two ranges are compared element by element

• The first mismatching element defines which range is lexicographically less or greater than the other

• If one range is a prefix of another, the shorter range is lexicographically less than the other

• If two ranges have equivalent elements and are of the same length, then the ranges are lexicographically
equal

• An empty range is lexicographically less than any non-empty range

• Two empty ranges are lexicographically equal

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

450 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of lexicographical_compare requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• pred – Refers to the comparison function that the first and second ranges will be applied
to

Returns The lexicographically_compare algorithm returns a hpx::future<bool> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns bool otherwise.
The lexicographically_compare algorithm returns true if the first range is lexicographically
less, otherwise it returns false. range [first2, last2), it returns false.

hpx::make_heap

Defined in header hpx/algorithm.hpp596.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename RndIter, typename Comp>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> make_heap(ExPolicy &&policy, RndIter first,

RndIter last, Comp &&comp)
Constructs a max heap in the range [first, last). Executed according to the policy.

The predicate operations in the parallel make_heap algorithm invoked with an execution policy object of
type sequential_execution_policy executes in sequential order in the calling thread.

The comparison operations in the parallel make_heap algorithm invoked with an execution policy object of
type parallel_execution_policy or parallel_task_execution_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

596 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 451

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RndIter – The type of the source iterators used for algorithm. This iterator must meet the
requirements for a random access iterator.

• Comp – Comparison function object (i.e. an object that satisfies the requirements of Com-
pare) which returns true if the first argument is less than the second. The signature of the
comparison function should be equivalent to the following:

bool cmp(const Type1 &a, const Type2 &b);

While the signature does not need to have const &, the function must not modify the objects
passed to it and must be able to accept all values of type (possibly const) Type1 and Type2
regardless of value category (thus, Type1 & is not allowed, nor is Type1 unless for Type1
a move is equivalent to a copy. The types Type1 and Type2 must be such that an object of
type RandomIt can be dereferenced and then implicitly converted to both of them.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• comp – Refers to the binary predicate which returns true if the first argument should be
treated as less than the second. The signature of the function should be equivalent to

bool comp(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types RndIter can be dereferenced
and then implicitly converted to Type.

Returns The make_heap algorithm returns a hpx::future<void> if the execution policy is of type
task_execution_policy and returns void otherwise.

template<typename ExPolicy, typename RndIter>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> make_heap(ExPolicy &&policy, RndIter first,

RndIter last)
Constructs a max heap in the range [first, last). Uses the operator < for comparisons. Executed according
to the policy.

The predicate operations in the parallel make_heap algorithm invoked with an execution policy object of
type sequential_execution_policy executes in sequential order in the calling thread.

The comparison operations in the parallel make_heap algorithm invoked with an execution policy object of
type parallel_execution_policy or parallel_task_execution_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

452 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RndIter – The type of the source iterators used for algorithm. This iterator must meet the
requirements for a random access iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

Returns The make_heap algorithm returns a hpx::future<void> if the execution policy is of type
task_execution_policy and returns void otherwise.

template<typename RndIter, typename Comp>
void make_heap(RndIter first, RndIter last, Comp &&comp)

Constructs a max heap in the range [first, last).

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters

• RndIter – The type of the source iterators used for algorithm. This iterator must meet the
requirements for a random access iterator.

• Comp – Comparison function object (i.e. an object that satisfies the requirements of Com-
pare) which returns true if the first argument is less than the second. The signature of the
comparison function should be equivalent to the following:

bool cmp(const Type1 &a, const Type2 &b);

While the signature does not need to have const &, the function must not modify the objects
passed to it and must be able to accept all values of type (possibly const) Type1 and Type2
regardless of value category (thus, Type1 & is not allowed, nor is Type1 unless for Type1
a move is equivalent to a copy. The types Type1 and Type2 must be such that an object of
type RandomIt can be dereferenced and then implicitly converted to both of them.

Parameters

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• comp – Refers to the binary predicate which returns true if the first argument should be
treated as less than the second. The signature of the function should be equivalent to

bool comp(const Type &a, const Type &b);

2.8. API reference 453

HPX Documentation, master

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types RndIter can be dereferenced
and then implicitly converted to Type.

Returns The make_heap algorithm returns a void.

template<typename RndIter>
void make_heap(RndIter first, RndIter last)

Constructs a max heap in the range [first, last).

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters RndIter – The type of the source iterators used for algorithm. This iter-
ator must meet the requirements for a random access iterator.

Parameters

• first – Refers to the beginning of the sequence of elements of that the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

Returns The make_heap algorithm returns a void.

hpx::merge, hpx::inplace_merge

Defined in header hpx/algorithm.hpp597.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename RandIter1, typename RandIter2, typename RandIter3,
typename Comp = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, RandIter3> merge(ExPolicy &&policy, RandIter1

first1, RandIter1 last1, RandIter2
first2, RandIter2 last2, RandIter3
dest, Comp &&comp = Comp())

Merges two sorted ranges [first1, last1) and [first2, last2) into one sorted range beginning at dest. The
order of equivalent elements in the each of original two ranges is preserved. For equivalent elements in
the original two ranges, the elements from the first range precede the elements from the second range. The
destination range cannot overlap with either of the input ranges. Executed according to the policy.

The assignments in the parallel merge algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

597 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

454 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignments in the parallel merge algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs O(std::distance(first1, last1) + std::distance(first2, last2)) applications of the
comparison comp and the each projection.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandIter1 – The type of the source iterators used (deduced) representing the first sorted
range. This iterator type must meet the requirements of an random access iterator.

• RandIter2 – The type of the source iterators used (deduced) representing the second
sorted range. This iterator type must meet the requirements of an random access iterator.

• RandIter3 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of merge requires Comp to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the first range of elements the algorithm will be applied
to.

• last1 – Refers to the end of the first range of elements the algorithm will be applied to.

• first2 – Refers to the beginning of the second range of elements the algorithm will be
applied to.

• last2 – Refers to the end of the second range of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• comp – comp is a callable object which returns true if the first argument is less than the
second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types RandIter1 and
RandIter2 can be dereferenced and then implicitly converted to both Type1 and Type2

Returns The merge algorithm returns a hpx::future<RandIter3> > if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns RandIter3 otherwise. The
merge algorithm returns the destination iterator to the end of the dest range.

template<typename RandIter1, typename RandIter2, typename RandIter3, typename Comp =
hpx::parallel::detail::less>

2.8. API reference 455

HPX Documentation, master

RandIter3 merge(RandIter1 first1, RandIter1 last1, RandIter2 first2, RandIter2 last2, RandIter3 dest, Comp
&&comp = Comp())

Merges two sorted ranges [first1, last1) and [first2, last2) into one sorted range beginning at dest. The
order of equivalent elements in the each of original two ranges is preserved. For equivalent elements in
the original two ranges, the elements from the first range precede the elements from the second range. The
destination range cannot overlap with either of the input ranges.

Note: Complexity: Performs O(std::distance(first1, last1) + std::distance(first2, last2)) applications of the
comparison comp and the each projection.

Template Parameters

• RandIter1 – The type of the source iterators used (deduced) representing the first sorted
range. This iterator type must meet the requirements of an random access iterator.

• RandIter2 – The type of the source iterators used (deduced) representing the second
sorted range. This iterator type must meet the requirements of an random access iterator.

• RandIter3 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of merge requires Comp to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters

• first1 – Refers to the beginning of the first range of elements the algorithm will be applied
to.

• last1 – Refers to the end of the first range of elements the algorithm will be applied to.

• first2 – Refers to the beginning of the second range of elements the algorithm will be
applied to.

• last2 – Refers to the end of the second range of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• comp – comp is a callable object which returns true if the first argument is less than the
second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types RandIter1 and
RandIter2 can be dereferenced and then implicitly converted to both Type1 and Type2

Returns The merge algorithm returns a RandIter3. The merge algorithm returns the destination
iterator to the end of the dest range.

template<typename ExPolicy, typename RandIter, typename Comp = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> inplace_merge(ExPolicy &&policy, RandIter first,

RandIter middle, RandIter last,
Comp &&comp = Comp())

Merges two consecutive sorted ranges [first, middle) and [middle, last) into one sorted range [first, last).
The order of equivalent elements in the each of original two ranges is preserved. For equivalent elements

456 Chapter 2. What’s so special about HPX?

HPX Documentation, master

in the original two ranges, the elements from the first range precede the elements from the second range.
Executed according to the policy.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs O(std::distance(first, last)) applications of the comparison comp and the each
projection.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of inplace_merge requires Comp to meet the requirements of
CopyConstructible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

• middle – Refers to the end of the first sorted range and the beginning of the second sorted
range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.

• comp – comp is a callable object which returns true if the first argument is less than the
second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types RandIter can
be dereferenced and then implicitly converted to both Type1 and Type2

Returns The inplace_merge algorithm returns a hpx::future<void> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns void otherwise. The in-
place_merge algorithm returns the source iterator last.

template<typename RandIter, typename Comp = hpx::parallel::detail::less>
void inplace_merge(RandIter first, RandIter middle, RandIter last, Comp &&comp = Comp())

Merges two consecutive sorted ranges [first, middle) and [middle, last) into one sorted range [first, last).
The order of equivalent elements in the each of original two ranges is preserved. For equivalent elements
in the original two ranges, the elements from the first range precede the elements from the second range.

2.8. API reference 457

HPX Documentation, master

Note: Complexity: Performs O(std::distance(first, last)) applications of the comparison comp and the each
projection.

Template Parameters

• RandIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of inplace_merge requires Comp to meet the requirements of
CopyConstructible. This defaults to std::less<>

Parameters

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

• middle – Refers to the end of the first sorted range and the beginning of the second sorted
range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.

• comp – comp is a callable object which returns true if the first argument is less than the
second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types RandIter can
be dereferenced and then implicitly converted to both Type1 and Type2

Returns The inplace_merge algorithm returns a void. The inplace_merge algorithm returns the
source iterator last.

hpx::min_element, hpx::max_element, hpx::minmax_element

Defined in header hpx/algorithm.hpp598.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter, typename F = hpx::parallel::detail::less>
FwdIter min_element(FwdIter first, FwdIter last, F &&f)

Finds the smallest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel min_element algorithm execute in sequential order in the calling thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

598 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

458 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – The binary predicate which returns true if the the left argument is less than the right
element. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

Returns The min_element algorithm returns FwdIter. The min_element algorithm returns the
iterator to the smallest element in the range [first, last). If several elements in the range are
equivalent to the smallest element, returns the iterator to the first such element. Returns last
if the range is empty.

template<typename ExPolicy, typename FwdIter, typename F = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> min_element(ExPolicy &&policy, FwdIter

first, FwdIter last, F &&f)
Finds the smallest element in the range [first, last) using the given comparison function f. Executed accord-
ing to the policy.

The comparisons in the parallel min_element algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel min_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of min_element requires F to meet the requirements of CopyCon-
structible.

Parameters

2.8. API reference 459

HPX Documentation, master

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – The binary predicate which returns true if the the left argument is less than the right
element. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

Returns The min_element algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
min_element algorithm returns the iterator to the smallest element in the range [first, last). If
several elements in the range are equivalent to the smallest element, returns the iterator to the
first such element. Returns last if the range is empty.

template<typename FwdIter, typename F = hpx::parallel::detail::less>
FwdIter max_element(FwdIter first, FwdIter last, F &&f)

Finds the largest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel min_element algorithm execute in sequential order in the calling thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – The binary predicate which returns true if the This argument is optional and defaults
to std::less. the left argument is less than the right element. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

Returns The max_element algorithm returns FwdIter. The max_element algorithm returns the
iterator to the smallest element in the range [first, last). If several elements in the range are

460 Chapter 2. What’s so special about HPX?

HPX Documentation, master

equivalent to the smallest element, returns the iterator to the first such element. Returns last
if the range is empty.

template<typename ExPolicy, typename FwdIter, typename F = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type max_element(ExPolicy &&policy,

FwdIter first, FwdIter
last, F &&f)

Removes all elements satisfying specific criteria from the range Finds the largest element in the range [first,
last) using the given comparison function f. Executed according to the policy.

The comparisons in the parallel max_element algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel max_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of max_element requires F to meet the requirements of CopyCon-
structible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – The binary predicate which returns true if the This argument is optional and defaults
to std::less. the left argument is less than the right element. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

Returns The max_element algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
max_element algorithm returns the iterator to the smallest element in the range [first, last). If
several elements in the range are equivalent to the smallest element, returns the iterator to the
first such element. Returns last if the range is empty.

2.8. API reference 461

HPX Documentation, master

template<typename FwdIter, typename F = hpx::parallel::detail::less>
minmax_element_result<FwdIter> minmax_element(FwdIter first, FwdIter last, F &&f)

Finds the largest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel minmax_element algorithm execute in sequential order in the calling thread.

Note: Complexity: At most max(floor(3/2*(N-1)), 0) applications of the predicate, where N =
std::distance(first, last).

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – The binary predicate which returns true if the the left argument is less than the right
element. This argument is optional and defaults to std::less. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

Returns The minmax_element algorithm returns a minmax_element_result<FwdIter> The min-
max_element algorithm returns a pair consisting of an iterator to the smallest element as
the min element and an iterator to the largest element as the max element. Returns min-
max_element_result<FwdIter>{first,first} if the range is empty. If several elements are equiv-
alent to the smallest element, the iterator to the first such element is returned. If several ele-
ments are equivalent to the largest element, the iterator to the last such element is returned.

template<typename ExPolicy, typename FwdIter, typename F = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, minmax_element_result<FwdIter>> minmax_element(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last,
F
&&f)

Finds the largest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

462 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The comparisons in the parallel minmax_element algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most max(floor(3/2*(N-1)), 0) applications of the predicate, where N =
std::distance(first, last).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of minmax_element requires F to meet the requirements of CopyCon-
structible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – The binary predicate which returns true if the the left argument is less than the right
element. This argument is optional and defaults to std::less. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

Returns The minmax_element algorithm returns a hpx::future<minmax_element_result<FwdIter>>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
minmax_element_result<FwdIter> otherwise. The minmax_element algorithm returns a
pair consisting of an iterator to the smallest element as the min element and an iterator to
the largest element as the max element. Returns std::make_pair(first,first) if the range is
empty. If several elements are equivalent to the smallest element, the iterator to the first such
element is returned. If several elements are equivalent to the largest element, the iterator to
the last such element is returned.

2.8. API reference 463

HPX Documentation, master

hpx::mismatch

Defined in header hpx/algorithm.hpp599.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, std::pair<FwdIter1, FwdIter2>> mismatch(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
Pred
&&op)

Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2,last2). If last2 is not provided, it denotes first2 + (last1 - first1). Executed according to
the policy.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate op or operator==.
If FwdIter1 and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 -
first2) then no applications of the predicate op or operator== are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matches *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements are
mismatch.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

599 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

464 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of mismatch requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• op – The binary predicate which returns true if the elements should be treated as mismatch.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The mismatch algorithm returns a hpx::future<std::pair<FwdIter1,FwdIter2>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
std::pair<FwdIter1,FwdIter2> otherwise. If no mismatches are found when the comparison
reaches last1 or last2, whichever happens first, the pair holds the end iterator and the corre-
sponding iterator from the other range.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, std::pair<FwdIter1, FwdIter2>> mismatch(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2)

Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2,last2). If last2 is not provided, it denotes first2 + (last1 - first1). Executed according to
the policy.

2.8. API reference 465

HPX Documentation, master

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of operator==. If FwdIter1
and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then no
applications of operator== are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matches *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements are
mismatch.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

Returns The mismatch algorithm returns a hpx::future<std::pair<FwdIter1,FwdIter2>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
std::pair<FwdIter1,FwdIter2> otherwise. If no mismatches are found when the comparison
reaches last1 or last2, whichever happens first, the pair holds the end iterator and the corre-
sponding iterator from the other range.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred>

466 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, std::pair<FwdIter1, FwdIter2>> mismatch(ExPolicy
&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
Pred
&&op)

Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2,last2). If last2 is not provided, it denotes first2 + (last1 - first1). Executed according to
the policy.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last1 - first1 applications of the predicate op or operator==. If FwdIter1
and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then no
applications of the predicate op or operator== are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matches *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements are
mismatch.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of mismatch requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

2.8. API reference 467

HPX Documentation, master

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• op – The binary predicate which returns true if the elements should be treated as mismatch.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The mismatch algorithm returns a hpx::future<std::pair<FwdIter1,FwdIter2>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
std::pair<FwdIter1,FwdIter2> otherwise. If no mismatches are found when the comparison
reaches last1 or last2, whichever happens first, the pair holds the end iterator and the corre-
sponding iterator from the other range.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, std::pair<FwdIter1, FwdIter2>> mismatch(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2)

Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2,last2). If last2 is not provided, it denotes first2 + (last1 - first1). Executed according to
the policy.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last1 - first1 applications of operator==. If FwdIter1 and FwdIter2 meet
the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then no applications of
operator== are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matches *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements are
mismatch.

Template Parameters

468 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of mismatch requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

Returns The mismatch algorithm returns a hpx::future<std::pair<FwdIter1,FwdIter2>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
std::pair<FwdIter1,FwdIter2> otherwise. If no mismatches are found when the comparison
reaches last1 or last2, whichever happens first, the pair holds the end iterator and the corre-
sponding iterator from the other range.

template<typename FwdIter1, typename FwdIter2, typename Pred>
std::pair<FwdIter1, FwdIter2> mismatch(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2,

Pred &&op)
Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2,last2). If last2 is not provided, it denotes first2 + (last1 - first1).

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate op or operator==.
If FwdIter1 and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 -
first2) then no applications of the predicate op or operator== are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matches *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements are
mismatch.

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

2.8. API reference 469

HPX Documentation, master

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of mismatch requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• op – The binary predicate which returns true if the elements should be treated as mismatch.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The mismatch algorithm returns a std::pair<FwdIter1,FwdIter2>. If no mismatches
are found when the comparison reaches last1 or last2, whichever happens first, the pair holds
the end iterator and the corresponding iterator from the other range.

template<typename FwdIter1, typename FwdIter2>
std::pair<FwdIter1, FwdIter2> mismatch(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2)

Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2,last2). If last2 is not provided, it denotes first2 + (last1 - first1).

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of operator==. If FwdIter1
and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then no
applications of operator== are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matches *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements are
mismatch.

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

470 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

Returns The mismatch algorithm returns a std::pair<FwdIter1,FwdIter2>. If no mismatches
are found when the comparison reaches last1 or last2, whichever happens first, the pair holds
the end iterator and the corresponding iterator from the other range.

template<typename FwdIter1, typename FwdIter2, typename Pred>
std::pair<FwdIter1, FwdIter2> mismatch(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, Pred &&op)

Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2,last2). If last2 is not provided, it denotes first2 + (last1 - first1).

Note: Complexity: At most last1 - first1 applications of the predicate op or operator==. If FwdIter1
and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then no
applications of the predicate op or operator== are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matches *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements are
mismatch.

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of mismatch requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• op – The binary predicate which returns true if the elements should be treated as mismatch.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

2.8. API reference 471

HPX Documentation, master

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The mismatch algorithm returns a std::pair<FwdIter1,FwdIter2>. If no mismatches
are found when the comparison reaches last1 or last2, whichever happens first, the pair holds
the end iterator and the corresponding iterator from the other range.

template<typename FwdIter1, typename FwdIter2>
std::pair<FwdIter1, FwdIter2> mismatch(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2)

Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2,last2). If last2 is not provided, it denotes first2 + (last1 - first1).

Note: Complexity: At most last1 - first1 applications of operator==. If FwdIter1 and FwdIter2 meet
the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then no applications of
operator== are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matches *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements are
mismatch.

Template Parameters

• FwdIter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of mismatch requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

Returns The mismatch algorithm returns a std::pair<FwdIter1,FwdIter2>. If no mismatches
are found when the comparison reaches last1 or last2, whichever happens first, the pair holds
the end iterator and the corresponding iterator from the other range.

472 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::move

Defined in header hpx/algorithm.hpp600.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> move(ExPolicy &&policy, FwdIter1 first,

FwdIter1 last, FwdIter2 dest)
Moves the elements in the range [first, last), to another range beginning at dest. After this operation the
elements in the moved-from range will still contain valid values of the appropriate type, but not necessarily
the same values as before the move. Executed according to the policy.

The move assignments in the parallel move algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The move assignments in the parallel move algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first move assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the move assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The move algorithm returns a hpx::future<FwdIter2>> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The move
algorithm returns the output iterator to the element in the destination range, one past the last
element moved.

600 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 473

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

template<typename FwdIter1, typename FwdIter2>
FwdIter2 move(FwdIter1 first, FwdIter1 last, FwdIter2 dest)

Moves the elements in the range [first, last), to another range beginning at dest. After this operation the
elements in the moved-from range will still contain valid values of the appropriate type, but not necessarily
the same values as before the move.

Note: Complexity: Performs exactly last - first move assignments.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The move algorithm returns a FwdIter2. The move algorithm returns the output iterator
to the element in the destination range, one past the last element moved.

hpx::nth_element

Defined in header hpx/algorithm.hpp601.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename RandomIt, typename Pred = hpx::parallel::detail::less>
void nth_element(RandomIt first, RandomIt nth, RandomIt last, Pred &&pred = Pred())

nth_element is a partial sorting algorithm that rearranges elements in [first, last) such that the element
pointed at by nth is changed to whatever element would occur in that position if [first, last) were sorted
and all of the elements before this new nth element are less than or equal to the elements after the new nth
element. Executed according to the policy.

The comparison operations in the parallel nth_element algorithm invoked without an execution policy ob-
ject execute in sequential order in the calling thread.

Note: Complexity: Linear in std::distance(first, last) on average. O(N) applications of the predicate, and
O(N log N) swaps, where N = last - first.

601 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

474 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Template Parameters

• RandomIt – The type of the source begin, nth, and end iterators used (deduced). This
iterator type must meet the requirements of a random access iterator.

• Pred – Comparison function object which returns true if the first argument is less than the
second. This defaults to std::less<>.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• nth – Refers to the iterator defining the sort partition point

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the comparison function object which returns true if the first argument
is less than (i.e. is ordered before) the second. The signature of this comparison function
should be equivalent to:

bool cmp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type must be such that an object of type randomIt can be dereferenced
and then implicitly converted to Type. This defaults to std::less<>.

Returns The nth_element algorithms returns nothing.

template<typename ExPolicy, typename RandomIt, typename Pred = hpx::parallel::detail::less>
void nth_element(ExPolicy &&policy, RandomIt first, RandomIt nth, RandomIt last, Pred &&pred =

Pred())
nth_element is a partial sorting algorithm that rearranges elements in [first, last) such that the element
pointed at by nth is changed to whatever element would occur in that position if [first, last) were sorted
and all of the elements before this new nth element are less than or equal to the elements after the new nth
element.

The comparison operations in the parallel nth_element invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel nth_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in std::distance(first, last) on average. O(N) applications of the predicate, and
O(N log N) swaps, where N = last - first.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandomIt – The type of the source begin, nth, and end iterators used (deduced). This
iterator type must meet the requirements of a random access iterator.

2.8. API reference 475

HPX Documentation, master

• Pred – Comparison function object which returns true if the first argument is less than the
second. This defaults to std::less<>.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• nth – Refers to the iterator defining the sort partition point

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the comparison function object which returns true if the first argument
is less than (i.e. is ordered before) the second. The signature of this comparison function
should be equivalent to:

bool cmp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type must be such that an object of type randomIt can be dereferenced
and then implicitly converted to Type. This defaults to std::less<>.

Returns The nth_element algorithms returns nothing.

hpx::partial_sort

Defined in header hpx/algorithm.hpp602.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename RandIter, typename Comp = hpx::parallel::detail::less>
RandIter partial_sort(RandIter first, RandIter middle, RandIter last, Comp &&comp = Comp())

Places the first middle - first elements from the range [first, last) as sorted with respect to comp into the
range [first, middle). The rest of the elements in the range [middle, last) are placed in an unspecified order.

Note: Complexity: Approximately (last - first) * log(middle - first) comparisons.

Template Parameters

• RandIter – The type of the source begin, middle, and end iterators used (deduced). This
iterator type must meet the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced). Comp defaults to de-
tail::less.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

602 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

476 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• middle – Refers to the middle of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator. It defaults to detail::less.

Returns The partial_sort algorithm returns a RandIter that refers to last.

template<typename ExPolicy, typename RandIter, typename Comp = hpx::parallel::detail::less>
parallel::util::detail::algorithm_result_t<ExPolicy, RandIter> partial_sort(ExPolicy &&policy, RandIter

first, RandIter middle, RandIter
last, Comp &&comp =
Comp())

Places the first middle - first elements from the range [first, last) as sorted with respect to comp into the
range [first, middle). The rest of the elements in the range [middle, last) are placed in an unspecified order.

Note: Complexity: Approximately (last - first) * log(middle - first) comparisons.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• RandIter – The type of the source begin, middle, and end iterators used (deduced). This
iterator type must meet the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced). Comp defaults to de-
tail::less.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• middle – Refers to the middle of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator. It defaults to detail::less.

Returns The partial_sort algorithm returns a hpx::future<RandIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns RandIter otherwise. The
iterator returned refers to last.

2.8. API reference 477

HPX Documentation, master

hpx::partial_sort_copy

Defined in header hpx/algorithm.hpp603.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename RandIter, typename Comp = hpx::parallel::detail::less>
RandIter partial_sort_copy(InIter first, InIter last, RandIter d_first, RandIter d_last, Comp &&comp =

Comp())
Sorts some of the elements in the range [first, last) in ascending order, storing the result in the range [d_first,
d_last). At most d_last - d_first of the elements are placed sorted to the range [d_first, d_first + n) where n
is the number of elements to sort (n = min(last - first, d_last - d_first)).

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(min(D,N))), where N = std::distance(first, last) and D = std::distance(d_first,
d_last) comparisons.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• RandIter – The type of the destination iterators used(deduced) This iterator type must
meet the requirements of an random iterator.

• Comp – The type of the function/function object to use (deduced). Comp defaults to de-
tail::less.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• d_first – Refers to the beginning of the destination range.

• d_last – Refers to the end of the destination range.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator. This defaults to detail::less.

603 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

478 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Returns The partial_sort_copy algorithm returns a RandomIt. The algorithm returns an iterator
to the element defining the upper boundary of the sorted range i.e. d_first + min(last - first,
d_last - d_first)

template<typename ExPolicy, typename FwdIter, typename RandIter, typename Comp =
hpx::parallel::detail::less>
parallel::util::detail::algorithm_result_t<ExPolicy, RandIter> partial_sort_copy(ExPolicy &&policy,

FwdIter first, FwdIter
last, RandIter d_first,
RandIter d_last, Comp
&&comp = Comp())

Sorts some of the elements in the range [first, last) in ascending order, storing the result in the range [d_first,
d_last). At most d_last - d_first of the elements are placed sorted to the range [d_first, d_first + n) where n
is the number of elements to sort (n = min(last - first, d_last - d_first)). Executed according to the policy.

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(min(D,N))), where N = std::distance(first, last) and D = std::distance(d_first,
d_last) comparisons.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• RandIter – The type of the destination iterators used(deduced) This iterator type must
meet the requirements of an random iterator.

• Comp – The type of the function/function object to use (deduced). Comp defaults to de-
tail::less.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• d_first – Refers to the beginning of the destination range.

• d_last – Refers to the end of the destination range.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator. This defaults to detail::less.

2.8. API reference 479

HPX Documentation, master

Returns The partial_sort_copy algorithm returns a hpx::future<RandomIt> if the execution pol-
icy is of type sequenced_task_policy or parallel_task_policy and returns RandomIt otherwise.
The algorithm returns an iterator to the element defining the upper boundary of the sorted
range i.e. d_first + min(last - first, d_last - d_first)

hpx::partition, hpx::stable_partition, hpx::partition_copy

Defined in header hpx/algorithm.hpp604.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter, typename Pred, typename Proj = hpx::identity>
FwdIter partition(FwdIter first, FwdIter last, Pred &&pred, Proj &&proj = Proj())

Reorders the elements in the range [first, last) in such a way that all elements for which the predicate pred
returns true precede the elements for which the predicate pred returns false. Relative order of the elements
is not preserved.

The assignments in the parallel partition algorithm invoked without an execution policy object execute in
sequential order in the calling thread.

Note: Complexity: At most 2 * (last - first) swaps. Exactly last - first applications of the predicate and
projection.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition requires Pred to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an unary predicate for partitioning
the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

604 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

480 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition algorithm returns returns FwdIter. The partition algorithm returns the
iterator to the first element of the second group.

template<typename ExPolicy, typename FwdIter, typename Pred, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> partition(ExPolicy &&policy, FwdIter first,

FwdIter last, Pred &&pred, Proj
&&proj = Proj())

Reorders the elements in the range [first, last) in such a way that all elements for which the predicate pred
returns true precede the elements for which the predicate pred returns false. Relative order of the elements
is not preserved.

The assignments in the parallel partition algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel partition algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: At most 2 * (last - first) swaps. Exactly last - first applications of the predicate and
projection.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition requires Pred to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an unary predicate for partitioning
the source iterators. The signature of this predicate should be equivalent to:

2.8. API reference 481

HPX Documentation, master

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition algorithm returns a hpx::future<FwdIter> if the execution policy is of
type parallel_task_policy and returns FwdIter otherwise. The partition algorithm returns the
iterator to the first element of the second group.

template<typename BidirIter, typename F, typename Proj = hpx::identity>
BidirIter stable_partition(BidirIter first, BidirIter last, F &&f, Proj &&proj = Proj())

Permutes the elements in the range [first, last) such that there exists an iterator i such that for every iterator
j in the range [first, i) INVOKE(f, INVOKE (proj, *j)) != false, and for every iterator k in the range [i, last),
INVOKE(f, INVOKE (proj, *k)) == false

The invocations of f in the parallel stable_partition algorithm invoked without an execution policy object
executes in sequential order in the calling thread.

Note: Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps if there
is enough extra memory. Exactly last - first applications of the predicate and projection.

Template Parameters

• BidirIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a bidirectional iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Unary predicate which returns true if the element should be ordered before other el-
ements. Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). The signature of this predicate should be
equivalent to:

bool fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type BidirIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

482 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The stable_partition algorithm returns an iterator i such that for every iterator j in the
range [first, i), f(*j) != false INVOKE(f, INVOKE(proj, *j)) != false, and for every iterator k
in the range [i, last), f(*k) == false INVOKE(f, INVOKE (proj, *k)) == false. The relative
order of the elements in both groups is preserved.

template<typename ExPolicy, typename BidirIter, typename F, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result_t<ExPolicy, BidirIter> stable_partition(ExPolicy &&policy,

BidirIter first, BidirIter
last, F &&f, Proj &&proj
= Proj())

Permutes the elements in the range [first, last) such that there exists an iterator i such that for every iterator
j in the range [first, i) INVOKE(f, INVOKE (proj, *j)) != false, and for every iterator k in the range [i, last),
INVOKE(f, INVOKE (proj, *k)) == false

The invocations of f in the parallel stable_partition algorithm invoked with an execution policy object of
type sequenced_policy executes in sequential order in the calling thread.

The invocations of f in the parallel stable_partition algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps if there
is enough extra memory. Exactly last - first applications of the predicate and projection.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• BidirIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a bidirectional iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• f – Unary predicate which returns true if the element should be ordered before other el-
ements. Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). The signature of this predicate should be
equivalent to:

bool fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type BidirIter can be dereferenced and then implicitly converted to Type.

2.8. API reference 483

HPX Documentation, master

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The stable_partition algorithm returns an iterator i such that for every iterator j in the
range [first, i), f(*j) != false INVOKE(f, INVOKE(proj, *j)) != false, and for every iterator
k in the range [i, last), f(*k) == false INVOKE(f, INVOKE (proj, *k)) == false. The rel-
ative order of the elements in both groups is preserved. If the execution policy is of type
parallel_task_policy the algorithm returns a future<> referring to this iterator.

template<typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred, typename Proj =
hpx::identity>
std::pair<FwdIter2, FwdIter3> partition_copy(FwdIter1 first, FwdIter1 last, FwdIter2 dest_true, FwdIter3

dest_false, Pred &&pred, Proj &&proj = Proj())
Copies the elements in the range, defined by [first, last), to two different ranges depending on the value
returned by the predicate pred. The elements, that satisfy the predicate pred are copied to the range begin-
ning at dest_true. The rest of the elements are copied to the range beginning at dest_false. The order of the
elements is preserved.

The assignments in the parallel partition_copy algorithm invoked without an execution policy object exe-
cute in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate pred.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range for the elements that
satisfy the predicate pred (deduced). This iterator type must meet the requirements of an
forward iterator.

• FwdIter3 – The type of the iterator representing the destination range for the elements that
don’t satisfy the predicate pred (deduced). This iterator type must meet the requirements
of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition_copy requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest_true – Refers to the beginning of the destination range for the elements that satisfy
the predicate pred

• dest_false – Refers to the beginning of the destination range for the elements that don’t
satisfy the predicate pred.

484 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an unary predicate for partitioning
the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition_copy algorithm returns std::pair<OutIter1, OutIter2>. The parti-
tion_copy algorithm returns the pair of the destination iterator to the end of the dest_true
range, and the destination iterator to the end of the dest_false range.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename
Pred, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result_t<ExPolicy, std::pair<FwdIter2, FwdIter3>> partition_copy(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest_true,
FwdIter3
dest_false,
Pred
&&pred,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by [first, last), to two different ranges depending on the value
returned by the predicate pred. The elements, that satisfy the predicate pred, are copied to the range begin-
ning at dest_true. The rest of the elements are copied to the range beginning at dest_false. The order of the
elements is preserved.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate pred.

Template Parameters

2.8. API reference 485

HPX Documentation, master

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range for the elements that
satisfy the predicate pred (deduced). This iterator type must meet the requirements of an
forward iterator.

• FwdIter3 – The type of the iterator representing the destination range for the elements that
don’t satisfy the predicate pred (deduced). This iterator type must meet the requirements
of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition_copy requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest_true – Refers to the beginning of the destination range for the elements that satisfy
the predicate pred

• dest_false – Refers to the beginning of the destination range for the elements that don’t
satisfy the predicate pred.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an unary predicate for partitioning
the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition_copy algorithm returns a hpx::future<std::pair<OutIter1, OutIter2>>
if the execution policy is of type parallel_task_policy and returns std::pair<OutIter1, Out-
Iter2> otherwise. The partition_copy algorithm returns the pair of the destination iterator to
the end of the dest_true range, and the destination iterator to the end of the dest_false range.

486 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::reduce

Defined in header hpx/algorithm.hpp605.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename F, typename T = typename
std::iterator_traits<FwdIter>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> reduce(ExPolicy &&policy, FwdIter first,

FwdIter last, T init, F &&f)
Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicate f.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of reduce requires F to meet the requirements of CopyConstructible.

605 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 487

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type FwdIter can be dereferenced and then implicitly converted to any of those
types.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm
returns the result of the generalized sum over the elements given by the input range [first, last).

template<typename ExPolicy, typename FwdIter, typename T = typename
std::iterator_traits<FwdIter>::value_type>
util::detail::algorithm_result_t<ExPolicy, T> reduce(ExPolicy &&policy, FwdIter first, FwdIter last, T init)

Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

488 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm
returns the result of the generalized sum (applying operator+()) over the elements given by
the input range [first, last).

template<typename ExPolicy, typename FwdIter>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<FwdIter>::value_type>::type reduce(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: The type of the initial value (and the result type) T is determined from the value_type of the used
FwdIter.

2.8. API reference 489

HPX Documentation, master

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns T otherwise (where T is the
value_type of FwdIter). The reduce algorithm returns the result of the generalized sum (ap-
plying operator+()) over the elements given by the input range [first, last).

template<typename FwdIter, typename F, typename T = typename std::iterator_traits<FwdIter>::value_type>
T reduce(FwdIter first, FwdIter last, T init, F &&f)

Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicate f.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

490 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of reduce requires F to meet the requirements of CopyConstructible.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type InIter can be dereferenced and then implicitly converted to any of those
types.

Returns The reduce algorithm returns T. The reduce algorithm returns the result of the general-
ized sum over the elements given by the input range [first, last).

template<typename FwdIter, typename T = typename std::iterator_traits<FwdIter>::value_type>
T reduce(FwdIter first, FwdIter last, T init)

Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of an input iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

2.8. API reference 491

HPX Documentation, master

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

Returns The reduce algorithm returns a T. The reduce algorithm returns the result of the gener-
alized sum (applying operator+()) over the elements given by the input range [first, last).

template<typename FwdIter>
std::iterator_traits<FwdIter>::value_type reduce(FwdIter first, FwdIter last)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: The type of the initial value (and the result type) T is determined from the value_type of the used
FwdIter.

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters FwdIter – The type of the source begin and end iterators used (deduced).
This iterator type must meet the requirements of an input iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The reduce algorithm returns T (where T is the value_type of FwdIter). The reduce
algorithm returns the result of the generalized sum (applying operator+()) over the elements
given by the input range [first, last).

492 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::reduce_by_key

Defined in header hpx/algorithm.hpp606.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename ExPolicy, typename RanIter, typename RanIter2, typename FwdIter1,
typename FwdIter2, typename Compare = std::equal_to<typename
std::iterator_traits<RanIter>::value_type>, typename Func = std::plus<typename
std::iterator_traits<RanIter2>::value_type>>
util::detail::algorithm_result<ExPolicy, util::in_out_result<FwdIter1, FwdIter2>>::type reduce_by_key(ExPolicy

&&pol-
icy,
Ran-
Iter
key_first,
Ran-
Iter
key_last,
Ran-
Iter2
val-
ues_first,
FwdIter1
keys_output,
FwdIter2
val-
ues_output,
Com-
pare
&&comp
=
Com-
pare(),
Func
&&func
=
Func())

Reduce by Key performs an inclusive scan reduction operation on elements supplied in key/value pairs.
The algorithm produces a single output value for each set of equal consecutive keys in [key_first,
key_last). the value being the GENERALIZED_NONCOMMUTATIVE_SUM(op, init, *first, . . . ,
*(first + (i - result))). for the run of consecutive matching keys. The number of keys supplied must
match the number of values.

606 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 493

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(last - first) applications of the predicate op.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• RanIter – The type of the key iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• RanIter2 – The type of the value iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• FwdIter1 – The type of the iterator representing the destination key range (deduced).
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the iterator representing the destination value range (deduced).
This iterator type must meet the requirements of a forward iterator.

• Compare – The type of the optional function/function object to use to compare keys
(deduced). Assumed to be std::equal_to otherwise.

• Func – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of reduce_by_key requires Func to meet the requirements of
CopyConstructible.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• key_first – Refers to the beginning of the sequence of key elements the algorithm will

be applied to.
• key_last – Refers to the end of the sequence of key elements the algorithm will be

applied to.
• values_first – Refers to the beginning of the sequence of value elements the algorithm

will be applied to.
• keys_output – Refers to the start output location for the keys produced by the algorithm.
• values_output – Refers to the start output location for the values produced by the

algorithm.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• func – Specifies the function (or function object) which will be invoked for each of
the elements in the sequence specified by [first, last). This is a binary predicate. The
signature of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type FwdIter can be dereferenced and then implicitly converted to any of those
types.

Returns The reduce_by_key algorithm returns a hpx::future<pair<Iter1,Iter2>> if the
execution policy is of type sequenced_task_policy or parallel_task_policy and returns

494 Chapter 2. What’s so special about HPX?

HPX Documentation, master

pair<Iter1,Iter2> otherwise.

hpx::reduce_deterministic

Defined in header hpx/algorithm.hpp607.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename F, typename T = typename
std::iterator_traits<FwdIter>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> reduce_deterministic(ExPolicy &&policy,

FwdIter first, FwdIter
last, T init, F &&f)

Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicate f.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

607 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 495

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of reduce requires F to meet the requirements of CopyConstructible.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type FwdIter can be dereferenced and then implicitly converted to any of those
types.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm
returns the result of the generalized sum over the elements given by the input range [first, last).

template<typename ExPolicy, typename FwdIter, typename T = typename
std::iterator_traits<FwdIter>::value_type>
util::detail::algorithm_result_t<ExPolicy, T> reduce_deterministic(ExPolicy &&policy, FwdIter first,

FwdIter last, T init)
Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

496 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm
returns the result of the generalized sum (applying operator+()) over the elements given by
the input range [first, last).

template<typename ExPolicy, typename FwdIter>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<FwdIter>::value_type>::type reduce_deterministic(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

2.8. API reference 497

HPX Documentation, master

Note: The type of the initial value (and the result type) T is determined from the value_type of the used
FwdIter.

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns T otherwise (where T is the
value_type of FwdIter). The reduce algorithm returns the result of the generalized sum (ap-
plying operator+()) over the elements given by the input range [first, last).

template<typename FwdIter, typename F, typename T = typename std::iterator_traits<FwdIter>::value_type>
T reduce_deterministic(FwdIter first, FwdIter last, T init, F &&f)

Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicate f.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

498 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of reduce requires F to meet the requirements of CopyConstructible.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last). This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type InIter can be dereferenced and then implicitly converted to any of those
types.

Returns The reduce algorithm returns T. The reduce algorithm returns the result of the general-
ized sum over the elements given by the input range [first, last).

template<typename FwdIter, typename T = typename std::iterator_traits<FwdIter>::value_type>
T reduce_deterministic(FwdIter first, FwdIter last, T init)

Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

2.8. API reference 499

HPX Documentation, master

• FwdIter – The type of the source begin and end iterators used (deduced). This iterator
type must meet the requirements of an input iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

Returns The reduce algorithm returns a T. The reduce algorithm returns the result of the gener-
alized sum (applying operator+()) over the elements given by the input range [first, last).

template<typename FwdIter>
std::iterator_traits<FwdIter>::value_type reduce_deterministic(FwdIter first, FwdIter last)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)). Executed according to the
policy.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: The type of the initial value (and the result type) T is determined from the value_type of the used
FwdIter.

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters FwdIter – The type of the source begin and end iterators used (deduced).
This iterator type must meet the requirements of an input iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The reduce algorithm returns T (where T is the value_type of FwdIter). The reduce
algorithm returns the result of the generalized sum (applying operator+()) over the elements
given by the input range [first, last).

500 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::remove, hpx::remove_if

Defined in header hpx/algorithm.hpp608.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter, typename T = typename std::iterator_traits<FwdIter>::value_type>
FwdIter remove(FwdIter first, FwdIter last, T const &value)

Removes all elements satisfying specific criteria from the range [first, last) and returns a past-the-end iterator
for the new end of the range. This version removes all elements that are equal to value.

The assignments in the parallel remove algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
operator==().

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T – The type of the value to remove (deduced). This value type must meet the requirements
of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• value – Specifies the value of elements to remove.

Returns The remove algorithm returns a FwdIter. The remove algorithm returns the iterator to
the new end of the range.

template<typename ExPolicy, typename FwdIter, typename T = typename
std::iterator_traits<FwdIter>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> remove(ExPolicy &&policy, FwdIter first,

FwdIter last, T const &value)
Removes all elements satisfying specific criteria from the range [first, last) and returns a past-the-end iterator
for the new end of the range. This version removes all elements that are equal to value. Executed according
to the policy.

The assignments in the parallel remove algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

608 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 501

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignments in the parallel remove algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
operator==().

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T – The type of the value to remove (deduced). This value type must meet the requirements
of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• value – Specifies the value of elements to remove.

Returns The remove algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The remove
algorithm returns the iterator to the new end of the range.

template<typename FwdIter, typename Pred>
FwdIter remove_if(FwdIter first, FwdIter last, Pred &&pred)

Removes all elements satisfying specific criteria from the range [first, last) and returns a past-the-end iterator
for the new end of the range. This version removes all elements for which predicate pred returns true.

The assignments in the parallel remove_if algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate pred.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of remove_if requires Pred to meet the requirements of Copy-
Constructible.

Parameters

502 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The remove_if algorithm returns a FwdIter. The remove_if algorithm returns the itera-
tor to the new end of the range.

template<typename ExPolicy, typename FwdIter, typename Pred>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> remove_if(ExPolicy &&policy, FwdIter

first, FwdIter last, Pred
&&pred)

Removes all elements satisfying specific criteria from the range [first, last) and returns a past-the-end iterator
for the new end of the range. This version removes all elements for which predicate pred returns true.
Executed according to the policy.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate pred.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of remove_if requires Pred to meet the requirements of Copy-
Constructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

2.8. API reference 503

HPX Documentation, master

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

Returns The remove_if algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The re-
move_if algorithm returns the iterator to the new end of the range.

hpx::remove_copy, hpx::remove_copy_if

Defined in header hpx/algorithm.hpp609.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename OutIter, typename T = typename
std::iterator_traits<InIter>::value_type>
OutIter remove_copy(InIter first, InIter last, OutIter dest, T const &value)

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies only
the elements for which the comparison operator returns false when compare to value. The order of the
elements that are not removed is preserved.

Effects: Copies all the elements referred to by the iterator it in the range [first,last) for which the following
corresponding conditions do not hold: *it == value

The assignments in the parallel remove_copy algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate pred, here comparison operator.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• T – The type that the result of dereferencing FwdIter1 is compared to.

Parameters
609 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

504 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• value – Value to be removed.

Returns The remove_copy algorithm returns an OutIter. The remove_copy algorithm returns the
iterator to the element past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T = typename
std::iterator_traits<InIter>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> remove_copy(ExPolicy &&policy,

FwdIter1 first, FwdIter1
last, FwdIter2 dest, T const
&value)

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies only
the elements for which the comparison operator returns false when compare to value. The order of the
elements that are not removed is preserved. Executed according to the policy.

Effects: Copies all the elements referred to by the iterator it in the range [first,last) for which the following
corresponding conditions do not hold: *it == value

The assignments in the parallel remove_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel remove_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate pred, here comparison operator.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T – The type that the result of dereferencing FwdIter1 is compared to.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

2.8. API reference 505

HPX Documentation, master

• dest – Refers to the beginning of the destination range.

• value – Value to be removed.

Returns The remove_copy algorithm returns a hpx::future<FwdIter2> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
remove_copy algorithm returns the iterator to the element past the last element copied.

template<typename InIter, typename OutIter, typename Pred>
OutIter remove_copy_if(InIter first, InIter last, OutIter dest, Pred &&pred)

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies only
the elements for which the predicate pred returns false. The order of the elements that are not removed is
preserved.

Effects: Copies all the elements referred to by the iterator it in the range [first,last) for which the following
corresponding conditions do not hold: INVOKE(pred, *it) != false.

The assignments in the parallel remove_copy_if algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate pred.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Pred – The type of the function/function object to use (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements to be removed. The signature of this predicate should be equivalent
to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

Returns The remove_copy_if algorithm returns an OutIter The remove_copy_if algorithm re-
turns the iterator to the element past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred>

506 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> remove_copy_if(ExPolicy &&policy,
FwdIter1 first,
FwdIter1 last, FwdIter2
dest, Pred &&pred)

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies only
the elements for which the predicate pred returns false. The order of the elements that are not removed is
preserved. Executed according to the policy.

Effects: Copies all the elements referred to by the iterator it in the range [first,last) for which the following
corresponding conditions do not hold: INVOKE(pred, *it) != false.

The assignments in the parallel remove_copy_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel remove_copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate pred.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of remove_copy_if requires Pred to meet the requirements of
CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements to be removed. The signature of this predicate should be equivalent
to:

bool pred(const Type &a);

2.8. API reference 507

HPX Documentation, master

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

Returns The remove_copy_if algorithm returns a hpx::future<FwdIter2> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise.
The remove_copy_if algorithm returns the iterator to the element past the last element copied.

hpx::replace, hpx::replace_if, hpx::replace_copy, hpx::replace_copy_if

Defined in header hpx/algorithm.hpp610.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename T = typename std::iterator_traits<InIter>::value_type>
void replace(InIter first, InIter last, T const &old_value, T const &new_value)

Replaces all elements satisfying specific criteria with new_value in the range [first, last).

Effects: Substitutes elements referred by the iterator it in the range [first, last) with new_value, when the
following corresponding conditions hold: *it == old_value

The assignments in the parallel replace algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• T – The type of the old and new values to replace (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• old_value – Refers to the old value of the elements to replace.

• new_value – Refers to the new value to use as the replacement.

Returns The replace algorithm returns a void.

template<typename ExPolicy, typename FwdIter, typename T = typename
std::iterator_traits<FwdIter>::value_type>

610 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

508 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, void> replace(ExPolicy &&policy, FwdIter first,
FwdIter last, T const &old_value, T
const &new_value)

Replaces all elements satisfying specific criteria with new_value in the range [first, last). Executed accord-
ing to the policy.

Effects: Substitutes elements referred by the iterator it in the range [first, last) with new_value, when the
following corresponding conditions hold: *it == old_value

The assignments in the parallel replace algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• T – The type of the old and new values to replace (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• old_value – Refers to the old value of the elements to replace.

• new_value – Refers to the new value to use as the replacement.

Returns The replace algorithm returns a hpx::future<void> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename Iter, typename Pred, typename T = typename std::iterator_traits<Iter>::value_type>
void replace_if(Iter first, Iter last, Pred &&pred, T const &new_value)

Replaces all elements satisfying specific criteria (for which predicate pred returns true) with new_value in
the range [first, last).

Effects: Substitutes elements referred by the iterator it in the range [first, last) with new_value, when the
following corresponding conditions hold: INVOKE(f, *it) != false

The assignments in the parallel replace_if algorithm execute in sequential order in the calling thread.

2.8. API reference 509

HPX Documentation, master

Note: Complexity: Performs exactly last - first applications of the predicate.

Template Parameters

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.

Returns The replace_if algorithm returns void.

template<typename ExPolicy, typename FwdIter, typename Pred, typename T = typename
std::iterator_traits<FwdIter>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, void> replace_if(ExPolicy &&policy, FwdIter first,

FwdIter last, Pred &&pred, T
const &new_value)

Replaces all elements satisfying specific criteria (for which predicate f returns true) with new_value in the
range [first, last). Executed according to the policy.

Effects: Substitutes elements referred by the iterator it in the range [first, last) with new_value, when the
following corresponding conditions hold: INVOKE(f, *it) != false

The assignments in the parallel replace_if algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace_if algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first applications of the predicate.

510 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.

Returns The replace_if algorithm returns a hpx::future<void> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename InIter, typename OutIter, typename T = typename
std::iterator_traits<OutIter>::value_type>
OutIter replace_copy(InIter first, InIter last, OutIter dest, T const &old_value, T const &new_value)

Copies the all elements from the range [first, last) to another range beginning at dest replacing all elements
satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (last - first)) either new_value or *(first +
(it - result)) depending on whether the following corresponding condition holds: *(first + (i - result)) ==
old_value

The assignments in the parallel replace_copy algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first applications of the predicate.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

2.8. API reference 511

HPX Documentation, master

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• T – The type of the old and new values (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• old_value – Refers to the old value of the elements to replace.

• new_value – Refers to the new value to use as the replacement.

Returns The replace_copy algorithm returns an OutIter The replace_copy algorithm returns the
Iterator to the element past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T = typename
std::iterator_traits<FwdIter2>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> replace_copy(ExPolicy &&policy,

FwdIter1 first, FwdIter1
last, FwdIter2 dest, T
const &old_value, T const
&new_value)

Copies the all elements from the range [first, last) to another range beginning at dest replacing all elements
satisfying a specific criteria with new_value. Executed according to the policy.

Effects: Assigns to every iterator it in the range [result, result + (last - first)) either new_value or *(first +
(it - result)) depending on whether the following corresponding condition holds: *(first + (i - result)) ==
old_value

The assignments in the parallel replace_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first applications of the predicate.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T – The type of the old and new values (deduced).

512 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• old_value – Refers to the old value of the elements to replace.

• new_value – Refers to the new value to use as the replacement.

Returns The replace_copy algorithm returns a hpx::future<FwdIter2> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
replace_copy algorithm returns the Iterator to the element past the last element copied.

template<typename InIter, typename OutIter, typename Pred, typename T = typename
std::iterator_traits<OutIter>::value_type>
OutIter replace_copy_if(InIter first, InIter last, OutIter dest, Pred &&pred, T const &new_value)

Copies the all elements from the range [first, last) to another range beginning at dest replacing all elements
satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (last - first)) either new_value or *(first +
(it - result)) depending on whether the following corresponding condition holds: INVOKE(f, *(first + (i -
result))) != false

The assignments in the parallel replace_copy_if algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first applications of the predicate.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

2.8. API reference 513

HPX Documentation, master

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.

Returns The replace_copy_if algorithm returns an OutIter. The replace_copy_if algorithm re-
turns the output iterator to the element in the destination range, one past the last element
copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred, typename T =
typename std::iterator_traits<FwdIter2>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> replace_copy_if(ExPolicy &&policy,

FwdIter1 first,
FwdIter1 last,
FwdIter2 dest, Pred
&&pred, T const
&new_value)

Copies the all elements from the range [first, last) to another range beginning at dest replacing all elements
satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (last - first)) either new_value or *(first +
(it - result)) depending on whether the following corresponding condition holds: INVOKE(f, *(first + (i -
result))) != false

The assignments in the parallel replace_copy_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace_copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first applications of the predicate.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of replace_copy_if requires Pred to meet the requirements of
CopyConstructible. (deduced).

• T – The type of the new values to replace (deduced).

Parameters

514 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.

Returns The replace_copy_if algorithm returns a hpx::future<FwdIter2> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise.
The replace_copy_if algorithm returns the iterator to the element in the destination range,
one past the last element copied.

hpx::reverse, hpx::reverse_copy

Defined in header hpx/algorithm.hpp611.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename BidirIter>
void reverse(BidirIter first, BidirIter last)

Reverses the order of the elements in the range [first, last). Behaves as if applying std::iter_swap to every
pair of iterators first+i, (last-i) - 1 for each non-negative i < (last-first)/2.

The assignments in the parallel reverse algorithm execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first and last.

Template Parameters BidirIter – The type of the source iterators used (deduced). This iter-
ator type must meet the requirements of a bidirectional iterator.

Parameters
611 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 515

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The reverse algorithm returns void.

template<typename ExPolicy, typename BidirIter>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, void> reverse(ExPolicy &&policy, BidirIter first,

BidirIter last)
Reverses the order of the elements in the range [first, last). Behaves as if applying std::iter_swap to every
pair of iterators first+i, (last-i) - 1 for each non-negative i < (last-first)/2. Executed according to the policy.

The assignments in the parallel reverse algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel reverse algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• BidirIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a bidirectional iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The reverse algorithm returns a hpx::future<void> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename BidirIter, typename OutIter>
OutIter reverse_copy(BidirIter first, BidirIter last, OutIter dest)

Copies the elements from the range [first, last) to another range beginning at dest in such a way that the
elements in the new range are in reverse order. Behaves as if by executing the assignment *(dest + (last -
first) - 1 - i) = *(first + i) once for each non-negative i < (last - first) If the source and destination ranges
(that is, [first, last) and [dest, dest+(last-first)) respectively) overlap, the behavior is undefined.

The assignments in the parallel reverse_copy algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

516 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters

• BidirIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a bidirectional iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the begin of the destination range.

Returns The reverse_copy algorithm returns an OutIter. The reverse_copy algorithm returns the
output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename BidirIter, typename FwdIter>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> reverse_copy(ExPolicy &&policy,

BidirIter first, BidirIter
last, FwdIter dest)

Copies the elements from the range [first, last) to another range beginning at dest in such a way that the
elements in the new range are in reverse order. Behaves as if by executing the assignment *(dest + (last -
first) - 1 - i) = *(first + i) once for each non-negative i < (last - first) If the source and destination ranges
(that is, [first, last) and [dest, dest+(last-first)) respectively) overlap, the behavior is undefined. Executed
according to the policy.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• BidirIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a bidirectional iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

2.8. API reference 517

HPX Documentation, master

• dest – Refers to the begin of the destination range.

Returns The reverse_copy algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
reverse_copy algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

hpx::rotate, hpx::rotate_copy

Defined in header hpx/algorithm.hpp612.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter>
FwdIter rotate(FwdIter first, FwdIter new_first, FwdIter last)

Performs a left rotation on a range of elements. Specifically, rotate swaps the elements in the range [first,
last) in such a way that the element new_first becomes the first element of the new range and new_first - 1
becomes the last element.

The assignments in the parallel rotate algorithm execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first and last.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable and MoveCon-
structible.

Template Parameters FwdIter – The type of the source iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• new_first – Refers to the element that should appear at the beginning of the rotated range.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The rotate algorithm returns a FwdIter. The rotate algorithm returns the iterator to the
new location of the element pointed by first,equal to first + (last - new_first).

template<typename ExPolicy, typename FwdIter>
612 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

518 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> rotate(ExPolicy &&policy, FwdIter first,
FwdIter new_first, FwdIter last)

Performs a left rotation on a range of elements. Specifically, rotate swaps the elements in the range [first,
last) in such a way that the element new_first becomes the first element of the new range and new_first - 1
becomes the last element. Executed according to the policy.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable and MoveCon-
structible.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• new_first – Refers to the element that should appear at the beginning of the rotated range.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The rotate algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The rotate
algorithm returns the iterator equal to first + (last - new_first).

template<typename FwdIter, typename OutIter>
OutIter rotate_copy(FwdIter first, FwdIter new_first, FwdIter last, OutIter dest_first)

Copies the elements from the range [first, last), to another range beginning at dest_first in such a way, that
the element new_first becomes the first element of the new range and new_first - 1 becomes the last element.

The assignments in the parallel rotate_copy algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

2.8. API reference 519

HPX Documentation, master

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• OutIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a output iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• new_first – Refers to the element that should appear at the beginning of the rotated range.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest_first – Refers to the begin of the destination range.

Returns The rotate_copy algorithm returns a output iterator, The rotate_copy algorithm returns
the output iterator to the element past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> rotate_copy(ExPolicy &&policy,

FwdIter1 first, FwdIter1
new_first, FwdIter1 last,
FwdIter2 dest_first)

Copies the elements from the range [first, last), to another range beginning at dest_first in such a way, that
the element new_first becomes the first element of the new range and new_first - 1 becomes the last element.
Executed according to the policy.

The assignments in the parallel rotate_copy algorithm execute in sequential order in the calling thread.

The assignments in the parallel rotate_copy algorithm execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• new_first – Refers to the element that should appear at the beginning of the rotated range.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

520 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• dest_first – Refers to the begin of the destination range.

Returns The rotate_copy algorithm returns a hpx::future<FwdIter2> if the execution policy is of
type parallel_task_policy and returns FwdIter2 otherwise. The rotate_copy algorithm returns
the output iterator to the element past the last element copied.

hpx::search, hpx::search_n

Defined in header hpx/algorithm.hpp613.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter, typename FwdIter2, typename Pred = parallel::detail::equal_to>
FwdIter search(FwdIter first, FwdIter last, FwdIter2 s_first, FwdIter2 s_last, Pred &&op = Pred())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate to
compare elements.

The comparison operations in the parallel search algorithm execute in sequential order in the calling thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = distance(first,
last).

Template Parameters

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of search requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• s_first – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

613 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 521

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• op – Refers to the binary predicate which returns true if the elements should be treated as
equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The search algorithm returns a hpx::future<FwdIter> if the execution policy is of type
task_execution_policy and returns FwdIter otherwise. The search algorithm returns an it-
erator to the beginning of the first subsequence [s_first, s_last) in range [first, last). If the
length of the subsequence [s_first, s_last) is greater than the length of the range [first, last),
last is returned. Additionally if the size of the subsequence is empty first is returned. If no
subsequence is found, last is returned.

template<typename ExPolicy, typename FwdIter, typename FwdIter2, typename Pred =
parallel::detail::equal_to>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> search(ExPolicy &&policy, FwdIter first,

FwdIter last, FwdIter2 s_first,
FwdIter2 s_last, Pred &&op =
Pred())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate to
compare elements. Executed according to the policy.

The comparison operations in the parallel search algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel search algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = distance(first,
last).

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of search requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

522 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• s_first – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

• op – Refers to the binary predicate which returns true if the elements should be treated as
equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The search algorithm returns a hpx::future<FwdIter> if the execution policy is of type
task_execution_policy and returns FwdIter otherwise. The search algorithm returns an it-
erator to the beginning of the first subsequence [s_first, s_last) in range [first, last). If the
length of the subsequence [s_first, s_last) is greater than the length of the range [first, last),
last is returned. Additionally if the size of the subsequence is empty first is returned. If no
subsequence is found, last is returned.

template<typename FwdIter, typename FwdIter2, typename Pred = parallel::detail::equal_to>
FwdIter search_n(FwdIter first, std::size_t count, FwdIter2 s_first, FwdIter2 s_last, Pred &&op = Pred())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate to
compare elements.

The comparison operations in the parallel search_n algorithm execute in sequential order in the calling
thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = count.

Template Parameters

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of search_n requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• count – Refers to the range of elements of the first range the algorithm will be applied to.

2.8. API reference 523

HPX Documentation, master

• s_first – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

• op – Refers to the binary predicate which returns true if the elements should be treated as
equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The search_n algorithm returns FwdIter. The search_n algorithm returns an iterator to
the beginning of the last subsequence [s_first, s_last) in range [first, first+count). If the length
of the subsequence [s_first, s_last) is greater than the length of the range [first, first+count),
first is returned. Additionally if the size of the subsequence is empty or no subsequence is
found, first is also returned.

template<typename ExPolicy, typename FwdIter, typename FwdIter2, typename Pred =
parallel::detail::equal_to>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> search_n(ExPolicy &&policy, FwdIter

first, std::size_t count, FwdIter2
s_first, FwdIter2 s_last, Pred
&&op = Pred())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate to
compare elements. Executed according to the policy.

The comparison operations in the parallel search_n algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel search_n algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = count.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of search_n requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

524 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements of the first range the algorithm
will be applied to.

• count – Refers to the range of elements of the first range the algorithm will be applied to.

• s_first – Refers to the beginning of the sequence of elements the algorithm will be search-
ing for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

• op – Refers to the binary predicate which returns true if the elements should be treated as
equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respec-
tively

Returns The search_n algorithm returns a hpx::future<FwdIter> if the execution policy is of
type task_execution_policy and returns FwdIter otherwise. The search_n algorithm returns
an iterator to the beginning of the last subsequence [s_first, s_last) in range [first, first+count).
If the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
first+count), first is returned. Additionally if the size of the subsequence is empty or no
subsequence is found, first is also returned.

hpx::set_difference

Defined in header hpx/algorithm.hpp614.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename
Pred = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter3> set_difference(ExPolicy &&policy,

FwdIter1 first1,
FwdIter1 last1,
FwdIter2 first2,
FwdIter2 last2,
FwdIter3 dest, Pred
&&op = Pred())

Constructs a sorted range beginning at dest consisting of all elements present in the range [first1, last1) and
not present in the range [first2, last2). This algorithm expects both input ranges to be sorted with the given
binary predicate pred. Executed according to the policy.

614 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 525

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Equivalent elements are treated individually, that is, if some element is found m times in [first1, last1) and
n times in [first2, last2), it will be copied to dest exactly std::max(m-n, 0) times. The resulting range cannot
overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy object
execute in sequential order in the calling thread (sequenced_policy) or in a single new thread spawned from
the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_difference requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• dest – Refers to the beginning of the destination range.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

526 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1

Returns The set_difference algorithm returns a hpx::future<FwdIter3> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter3 otherwise. The
set_difference algorithm returns the output iterator to the element in the destination range,
one past the last element copied.

template<typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred =
hpx::parallel::detail::less>
FwdIter3 set_difference(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2, FwdIter3 dest,

Pred &&op = Pred())
Constructs a sorted range beginning at dest consisting of all elements present in the range [first1, last1) and
not present in the range [first2, last2). This algorithm expects both input ranges to be sorted with the given
binary predicate pred.

Equivalent elements are treated individually, that is, if some element is found m times in [first1, last1) and
n times in [first2, last2), it will be copied to dest exactly std::max(m-n, 0) times. The resulting range cannot
overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_difference requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

2.8. API reference 527

HPX Documentation, master

• dest – Refers to the beginning of the destination range.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1

Returns The set_difference algorithm returns a FwdIter3. The set_difference algorithm returns
the output iterator to the element in the destination range, one past the last element copied.

hpx::set_intersection

Defined in header hpx/algorithm.hpp615.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename
Pred = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter3> set_intersection(ExPolicy &&policy,

FwdIter1 first1,
FwdIter1 last1,
FwdIter2 first2,
FwdIter2 last2,
FwdIter3 dest, Pred
&&op = Pred())

Constructs a sorted range beginning at dest consisting of all elements present in both sorted ranges [first1,
last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the given binary predi-
cate pred. Executed according to the policy.

If some element is found m times in [first1, last1) and n times in [first2, last2), the first std::min(m, n)
elements will be copied from the first range to the destination range. The order of equivalent elements is
preserved. The resulting range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy object
execute in sequential order in the calling thread (sequenced_policy) or in a single new thread spawned from
the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

615 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

528 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of a forward iterator or output iterator with sequential
execution.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_intersection requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• dest – Refers to the beginning of the destination range.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1

Returns The set_intersection algorithm returns a hpx::future<FwdIter3> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns FwdIter3 otherwise.
The set_intersection algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred =
hpx::parallel::detail::less>

2.8. API reference 529

HPX Documentation, master

FwdIter3 set_intersection(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2, FwdIter3 dest,
Pred &&op = Pred())

Constructs a sorted range beginning at dest consisting of all elements present in both sorted ranges [first1,
last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the given binary predi-
cate pred.

If some element is found m times in [first1, last1) and n times in [first2, last2), the first std::min(m, n)
elements will be copied from the first range to the destination range. The order of equivalent elements is
preserved. The resulting range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of a forward iterator or output iterator with sequential
execution.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_intersection requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• dest – Refers to the beginning of the destination range.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1

530 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The set_intersection algorithm returns a FwdIter3. The set_intersection algorithm re-
turns the output iterator to the element in the destination range, one past the last element
copied.

hpx::set_symmetric_difference

Defined in header hpx/algorithm.hpp616.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename
Pred = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter3>::type set_symmetric_difference(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
FwdIter3
dest,
Pred
&&op
=
Pred())

Constructs a sorted range beginning at dest consisting of all elements present in either of the sorted ranges
[first1, last1) and [first2, last2), but not in both of them are copied to the range beginning at dest. The
resulting range is also sorted. This algorithm expects both input ranges to be sorted with the given binary
predicate pred. Executed according to the policy.

If some element is found m times in [first1, last1) and n times in [first2, last2), it will be copied to dest exactly
std::abs(m-n) times. If m>n, then the last m-n of those elements are copied from [first1,last1), otherwise
the last n-m elements are copied from [first2,last2). The resulting range cannot overlap with either of the
input ranges.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy object
execute in sequential order in the calling thread (sequenced_policy) or in a single new thread spawned from
the current thread (for sequenced_task_policy).

616 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 531

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of a forward iterator or output iterator and sequential
execution.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_symmetric_difference requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• dest – Refers to the beginning of the destination range.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1

Returns The set_symmetric_difference algorithm returns a hpx::future<FwdIter3> if the execu-
tion policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter3
otherwise. The set_symmetric_difference algorithm returns the output iterator to the element
in the destination range, one past the last element copied.

532 Chapter 2. What’s so special about HPX?

HPX Documentation, master

template<typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred =
hpx::parallel::detail::less>
FwdIter3 set_symmetric_difference(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2,

FwdIter3 dest, Pred &&op = Pred())
Constructs a sorted range beginning at dest consisting of all elements present in either of the sorted ranges
[first1, last1) and [first2, last2), but not in both of them are copied to the range beginning at dest. The
resulting range is also sorted. This algorithm expects both input ranges to be sorted with the given binary
predicate pred.

If some element is found m times in [first1, last1) and n times in [first2, last2), it will be copied to dest exactly
std::abs(m-n) times. If m>n, then the last m-n of those elements are copied from [first1,last1), otherwise
the last n-m elements are copied from [first2,last2). The resulting range cannot overlap with either of the
input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of a forward iterator or output iterator and sequential
execution.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_symmetric_difference requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• dest – Refers to the beginning of the destination range.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

2.8. API reference 533

HPX Documentation, master

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1

Returns The set_symmetric_difference algorithm returns a FwdIter3. The
set_symmetric_difference algorithm returns the output iterator to the element in the
destination range, one past the last element copied.

hpx::set_union

Defined in header hpx/algorithm.hpp617.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename
Pred = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter3> set_union(ExPolicy &&policy, FwdIter1

first1, FwdIter1 last1,
FwdIter2 first2, FwdIter2
last2, FwdIter3 dest, Pred
&&op = Pred())

Constructs a sorted range beginning at dest consisting of all elements present in one or both sorted ranges
[first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the given binary
predicate pred. Executed according to the policy.

If some element is found m times in [first1, last1) and n times in [first2, last2), then all m elements will
be copied from [first1, last1) to dest, preserving order, and then exactly std::max(n-m, 0) elements will be
copied from [first2, last2) to dest, also preserving order.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy object
execute in sequential order in the calling thread (sequenced_policy) or in a single new thread spawned from
the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
617 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

534 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of a forward iterator or output iterator and sequential
execution.

• Op – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_union requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• dest – Refers to the beginning of the destination range.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1

Returns The set_union algorithm returns a hpx::future<FwdIter3> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter3 otherwise. The
set_union algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

template<typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred =
hpx::parallel::detail::less>
FwdIter3 set_union(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2, FwdIter3 dest, Pred

&&op = Pred())
Constructs a sorted range beginning at dest consisting of all elements present in one or both sorted ranges
[first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the given binary
predicate pred. Executed according to the policy.

2.8. API reference 535

HPX Documentation, master

If some element is found m times in [first1, last1) and n times in [first2, last2), then all m elements will
be copied from [first1, last1) to dest, preserving order, and then exactly std::max(n-m, 0) elements will be
copied from [first2, last2) to dest, also preserving order.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of a forward iterator or output iterator and sequential
execution.

• Op – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_union requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• dest – Refers to the beginning of the destination range.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1

Returns The set_union algorithm returns a FwdIter3. The set_union algorithm returns the output
iterator to the element in the destination range, one past the last element copied.

536 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::shift_left

Defined in header hpx/algorithm.hpp618.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter, typename Size>
FwdIter shift_left(FwdIter first, FwdIter last, Size n)

Shifts the elements in the range [first, last) by n positions towards the beginning of the range. For every
integer i in [0, last - first

• n), moves the element originally at position first + n + i to position first + i.

The assignment operations in the parallel shift_left algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of positions to shift by.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• n – Refers to the number of positions to shift.

Returns The shift_left algorithm returns FwdIter. The shift_left algorithm returns an iterator to
the end of the resulting range.

template<typename ExPolicy, typename FwdIter, typename Size>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter> shift_left(ExPolicy &&policy, FwdIter

first, FwdIter last, Size n)
Shifts the elements in the range [first, last) by n positions towards the beginning of the range. For every
integer i in [0, last - first

• n), moves the element originally at position first + n + i to position first + i. Executed according to the
policy.

618 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 537

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignment operations in the parallel shift_left algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignment operations in the parallel shift_left algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of positions to shift by.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• n – Refers to the number of positions to shift.

Returns The shift_left algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
shift_left algorithm returns an iterator to the end of the resulting range.

hpx::shift_right

Defined in header hpx/algorithm.hpp619.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

619 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

538 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename FwdIter, typename Size>
FwdIter shift_right(FwdIter first, FwdIter last, Size n)

Shifts the elements in the range [first, last) by n positions towards the end of the range. For every integer i
in [0, last - first - n), moves the element originally at position first + i to position first

• n + i.

The assignment operations in the parallel shift_right algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of positions to shift by.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• n – Refers to the number of positions to shift.

Returns The shift_right algorithm returns FwdIter. The shift_right algorithm returns an iterator
to the end of the resulting range.

template<typename ExPolicy, typename FwdIter, typename Size>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter> shift_right(ExPolicy &&policy, FwdIter

first, FwdIter last, Size n)
Shifts the elements in the range [first, last) by n positions towards the end of the range. For every integer i
in [0, last - first - n), moves the element originally at position first + i to position first

• n + i. Executed according to the policy.

The assignment operations in the parallel shift_right algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignment operations in the parallel shift_right algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) - n assignments.

2.8. API reference 539

HPX Documentation, master

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of positions to shift by.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• n – Refers to the number of positions to shift.

Returns The shift_right algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
shift_right algorithm returns an iterator to the end of the resulting range.

hpx::sort

Defined in header hpx/algorithm.hpp620.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename RandomIt, typename Comp = hpx::parallel::detail::less, typename Proj = hpx::identity>
void sort(RandomIt first, RandomIt last, Comp &&comp, Proj &&proj = Proj())

Sorts the elements in the range [first, last) in ascending order. The order of equal elements is not guar-
anteed to be preserved. The function uses the given comparison function object comp (defaults to using
operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i pointing
to the sequence and every non-negative integer n such that i + n is a valid iterator pointing to an element of
the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) == false.

comp has to induce a strict weak ordering on the values.

The assignments in the parallel sort algorithm invoked without an execution policy object execute in se-
quential order in the calling thread.

620 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

540 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters

• RandomIt – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced).

• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The sort algorithm returns void.

template<typename ExPolicy, typename RandomIt, typename Comp = hpx::parallel::detail::less, typename
Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> sort(ExPolicy &&policy, RandomIt first, RandomIt

last, Comp &&comp, Proj &&proj)
Sorts the elements in the range [first, last) in ascending order. The order of equal elements is not guar-
anteed to be preserved. The function uses the given comparison function object comp (defaults to using
operator<()). Executed according to the policy.

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i pointing
to the sequence and every non-negative integer n such that i + n is a valid iterator pointing to an element of
the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) == false.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

2.8. API reference 541

HPX Documentation, master

• RandomIt – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced).

• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The sort algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns void otherwise.

hpx::experimental::sort_by_key

Defined in header hpx/algorithm.hpp621.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace experimental
Top-level namespace.

Functions

template<typename ExPolicy, typename KeyIter, typename ValueIter, typename Compare =
detail::less>

621 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

542 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

util::detail::algorithm_result_t<ExPolicy, sort_by_key_result<KeyIter, ValueIter>> sort_by_key(ExPolicy
&&pol-
icy,
KeyIter
key_first,
KeyIter
key_last,
Val-
ueIter
value_first,
Com-
pare
&&comp
=
Com-
pare())

Sorts one range of data using keys supplied in another range. The key elements in the range [key_first,
key_last) are sorted in ascending order with the corresponding elements in the value range moved to
follow the sorted order. The algorithm is not stable, the order of equal elements is not guaranteed
to be preserved. The function uses the given comparison function object comp (defaults to using
operator<()). Executed according to the policy.

A sequence is sorted with respect to a comparator comp if for every iterator i pointing to the sequence
and every non-negative integer n such that i + n is a valid iterator pointing to an element of the sequence,
and INVOKE(comp, *(i + n), *i) == false.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• KeyIter – The type of the key iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• ValueIter – The type of the value iterators used (deduced). This iterator type must
meet the requirements of a random access iterator.

• Compare – The type of the function/function object to use (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• key_first – Refers to the beginning of the sequence of key elements the algorithm will

be applied to.
• key_last – Refers to the end of the sequence of key elements the algorithm will be

applied to.

2.8. API reference 543

HPX Documentation, master

• value_first – Refers to the beginning of the sequence of value elements the algorithm
will be applied to, the range of elements must match [key_first, key_last)

• comp – comp is a callable object. The return value of the INVOKE operation applied
to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

Returns The sort_by_key algorithm returns a hpx::future<sort_by_key_result<KeyIter,ValueIter>>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
otherwise. The algorithm returns a pair holding an iterator pointing to the first element
after the last element in the input key sequence and an iterator pointing to the first element
after the last element in the input value sequence.

hpx::stable_sort

Defined in header hpx/algorithm.hpp622.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename RandomIt, typename Comp = hpx::parallel::detail::less, typename Proj = hpx::identity>
void stable_sort(RandomIt first, RandomIt last, Comp &&comp = Comp(), Proj &&proj = Proj())

Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements is
preserved. The function uses the given comparison function object comp (defaults to using operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i pointing
to the sequence and every non-negative integer n such that i + n is a valid iterator pointing to an element of
the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) == false.

comp has to induce a strict weak ordering on the values.

The assignments in the parallel stable_sort algorithm invoked without an execution policy object execute
in sequential order in the calling thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters

• RandomIt – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced).

• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

622 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

544 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The stable_sort algorithm returns void.

template<typename ExPolicy, typename RandomIt, typename Comp = hpx::parallel::detail::less, typename
Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> stable_sort(ExPolicy &&policy, RandomIt first,

RandomIt last, Comp &&comp =
Comp(), Proj &&proj = Proj())

Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements is
preserved. The function uses the given comparison function object comp (defaults to using operator<()).
Executed according to the policy.

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i pointing
to the sequence and every non-negative integer n such that i + n is a valid iterator pointing to an element of
the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) == false.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• RandomIt – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp – The type of the function/function object to use (deduced).

• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

2.8. API reference 545

HPX Documentation, master

• comp – comp is a callable object. The return value of the INVOKE operation applied to an
object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not
apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The stable_sort algorithm returns a hpx::future<void> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

hpx::starts_with

Defined in header hpx/algorithm.hpp623.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter1, typename InIter2, typename Pred = hpx::parallel::detail::equal_to, typename
Proj1 = hpx::identity, typename Proj2 = hpx::identity>
bool starts_with(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2, Pred &&pred = Pred(), Proj1

&&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Checks whether the second range defined by [first1, last1) matches the prefix of the first range defined by
[first2, last2)

The assignments in the parallel starts_with algorithm invoked without an execution policy object execute
in sequential order in the calling thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters

• InIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an input iterator.

• InIter2 – The type of the destination iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• Pred – The binary predicate that compares the projected elements. This defaults to
hpx::parallel::detail::equal_to.

• Proj1 – The type of an optional projection function for the source range. This defaults to
hpx::identity.

• Proj2 – The type of an optional projection function for the destination range. This defaults
to hpx::identity.

Parameters
623 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

546 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• first1 – Refers to the beginning of the source range.

• last1 – Sentinel value referring to the end of the source range.

• first2 – Refers to the beginning of the destination range.

• last2 – Sentinel value referring to the end of the destination range.

• pred – Specifies the binary predicate function (or function object) which will be invoked for
comparison of the elements in the in two ranges projected by proj1 and proj2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements in the source range as a projection operation before the actual predicate pred is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate pred
is invoked.

Returns The starts_with algorithm returns bool. The starts_with algorithm returns a boolean
with the value true if the second range matches the prefix of the first range, false otherwise.

template<typename ExPolicy, typename InIter1, typename InIter2, typename Pred =
hpx::parallel::detail::equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> starts_with(ExPolicy &&policy, InIter1

first1, InIter1 last1, InIter2
first2, InIter2 last2, Pred
&&pred = Pred(), Proj1
&&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Checks whether the second range defined by [first1, last1) matches the prefix of the first range defined by
[first2, last2). Executed according to the policy.

The assignments in the parallel starts_with algorithm invoked without an execution policy object execute
in sequential order in the calling thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• InIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an input iterator.

• InIter2 – The type of the destination iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• Pred – The binary predicate that compares the projected elements. This defaults to
hpx::parallel::detail::equal_to.

• Proj1 – The type of an optional projection function for the source range. This defaults to
hpx::identity.

• Proj2 – The type of an optional projection function for the destination range. This defaults
to hpx::identity.

2.8. API reference 547

HPX Documentation, master

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the source range.

• last1 – Sentinel value referring to the end of the source range.

• first2 – Refers to the beginning of the destination range.

• last2 – Sentinel value referring to the end of the destination range.

• pred – Specifies the binary predicate function (or function object) which will be invoked for
comparison of the elements in the in two ranges projected by proj1 and proj2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements in the source range as a projection operation before the actual predicate pred is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate pred
is invoked.

Returns The starts_with algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The starts_with
algorithm returns a boolean with the value true if the second range matches the prefix of the
first range, false otherwise.

hpx::swap_ranges

Defined in header hpx/algorithm.hpp624.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter1, typename FwdIter2>
FwdIter2 swap_ranges(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2)

Exchanges elements between range [first1, last1) and another range starting at first2.

The swap operations in the parallel swap_ranges algorithm invoked without an execution policy object
execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first1 and last1.

Template Parameters

• FwdIter1 – The type of the first range of iterators to swap (deduced). This iterator type
must meet the requirements of a forward iterator.

• FwdIter2 – The type of the second range of iterators to swap (deduced). This iterator type
must meet the requirements of a forward iterator.

624 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

548 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Parameters

• first1 – Refers to the beginning of the first sequence of elements the algorithm will be
applied to.

• last1 – Refers to the end of the first sequence of elements the algorithm will be applied
to.

• first2 – Refers to the beginning of the second sequence of elements the algorithm will
be applied to.

Returns The swap_ranges algorithm returns FwdIter2. The swap_ranges algorithm returns iter-
ator to the element past the last element exchanged in the range beginning with first2.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> swap_ranges(ExPolicy &&policy,

FwdIter1 first1, FwdIter1
last1, FwdIter2 first2)

Exchanges elements between range [first1, last1) and another range starting at first2. Executed according
to the policy.

The swap operations in the parallel swap_ranges algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The swap operations in the parallel swap_ranges algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first1 and last1.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the swap operations.

• FwdIter1 – The type of the first range of iterators to swap (deduced). This iterator type
must meet the requirements of a forward iterator.

• FwdIter2 – The type of the second range of iterators to swap (deduced). This iterator type
must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the first sequence of elements the algorithm will be
applied to.

• last1 – Refers to the end of the first sequence of elements the algorithm will be applied
to.

• first2 – Refers to the beginning of the second sequence of elements the algorithm will
be applied to.

Returns The swap_ranges algorithm returns a hpx::future<FwdIter2> if the execution policy
is of type parallel_task_policy and returns FwdIter2 otherwise. The swap_ranges algorithm

2.8. API reference 549

HPX Documentation, master

returns iterator to the element past the last element exchanged in the range beginning with
first2.

hpx::transform

Defined in header hpx/algorithm.hpp625.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter1, typename FwdIter2, typename F>
FwdIter2 transform(FwdIter1 first, FwdIter1 last, FwdIter2 dest, F &&f)

Applies the given function f to the range [first, last) and stores the result in another range, beginning at dest.

Note: Complexity: Exactly last - first applications of f

Template Parameters

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last).This is an unary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type FwdIter1 can be dereferenced and then implicitly converted to Type. The type Ret
must be such that an object of type FwdIter2 can be dereferenced and assigned a value of
type Ret.

Returns The transform algorithm returns a FwdIter2. The transform algorithm returns a tuple
holding an iterator referring to the first element after the input sequence and the output iterator
to the element in the destination range, one past the last element copied.

625 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

550 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename F>
parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> transform(ExPolicy &&policy, FwdIter1 first,

FwdIter1 last, FwdIter2 dest, F
&&f)

Applies the given function f to the range [first, last) and stores the result in another range, beginning at dest.
Executed according to the policy.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly last - first applications of f

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last).This is an unary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type FwdIter1 can be dereferenced and then implicitly converted to Type. The type Ret
must be such that an object of type FwdIter2 can be dereferenced and assigned a value of
type Ret.

Returns The transform algorithm returns a hpx::future<FwdIter2> if the execution policy is of
type parallel_task_policy and returns FwdIter2 otherwise. The transform algorithm returns
a tuple holding an iterator referring to the first element after the input sequence and the output
iterator to the element in the destination range, one past the last element copied.

2.8. API reference 551

HPX Documentation, master

template<typename FwdIter1, typename FwdIter2, typename FwdIter3, typename F>
FwdIter3 transform(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter3 dest, F &&f)

Applies the given function f to pairs of elements from two ranges: one defined by [first1, last1) and the
other beginning at first2, and stores the result in another range, beginning at dest.

Note: Complexity: Exactly last - first applications of f

Template Parameters

• FwdIter1 – The type of the source iterators for the first range used (deduced). This iterator
type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators for the second range used (deduced). This
iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

Parameters

• first1 – Refers to the beginning of the first sequence of elements the algorithm will be
applied to.

• last1 – Refers to the end of the first sequence of elements the algorithm will be applied
to.

• first2 – Refers to the beginning of the second sequence of elements the algorithm will
be applied to.

• dest – Refers to the beginning of the destination range.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last).This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such that
objects of types FwdIter1 and FwdIter2 can be dereferenced and then implicitly converted
to Type1 and Type2 respectively. The type Ret must be such that an object of type FwdIter3
can be dereferenced and assigned a value of type Ret.

Returns The transform algorithm returns a FwdIter3. The transform algorithm returns a tuple
holding an iterator referring to the first element after the first input sequence, an iterator re-
ferring to the first element after the second input sequence, and the output iterator referring
to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename F>
parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter3> transform(ExPolicy &&policy, FwdIter1

first1, FwdIter1 last1, FwdIter2
first2, FwdIter3 dest, F &&f)

Applies the given function f to pairs of elements from two ranges: one defined by [first1, last1) and the
other beginning at first2, and stores the result in another range, beginning at dest. Executed according to
the policy.

552 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The invocations of f in the parallel transform algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly last - first applications of f

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• FwdIter1 – The type of the source iterators for the first range used (deduced). This iterator
type must meet the requirements of a forward iterator.

• FwdIter2 – The type of the source iterators for the second range used (deduced). This
iterator type must meet the requirements of a forward iterator.

• FwdIter3 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the first sequence of elements the algorithm will be
applied to.

• last1 – Refers to the end of the first sequence of elements the algorithm will be applied
to.

• first2 – Refers to the beginning of the second sequence of elements the algorithm will
be applied to.

• dest – Refers to the beginning of the destination range.

• f – Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last).This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such that
objects of types FwdIter1 and FwdIter2 can be dereferenced and then implicitly converted
to Type1 and Type2 respectively. The type Ret must be such that an object of type FwdIter3
can be dereferenced and assigned a value of type Ret.

Returns The transform algorithm returns a hpx::future<FwdIter3> if the execution policy is of
type parallel_task_policy and returns FwdIter3 otherwise. The transform algorithm returns a
tuple holding an iterator referring to the first element after the first input sequence, an iterator
referring to the first element after the second input sequence, and the output iterator referring
to the element in the destination range, one past the last element copied.

2.8. API reference 553

HPX Documentation, master

hpx::transform_exclusive_scan

Defined in header hpx/algorithm.hpp626.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename OutIter, typename BinOp, typename UnOp, typename T = typename
std::iterator_traits<InIter>::value_type>
OutIter transform_exclusive_scan(InIter first, InIter last, OutIter dest, T init, BinOp &&binary_op,

UnOp &&unary_op)
Transforms each element in the range [first, last) with unary_op, then computes an exclusive prefix sum
operation using binary_op over the resulting range, with init as the initial value, and writes the results
to the range beginning at dest. “exclusive” means that the i-th input element is not included in the i-th
sum. Formally, assigns through each iterator i in [dest, d_first + (last - first)) the value of the generalized
noncommutative sum of init, unary_op(*j). . . for every j in [first, first + (i - d_first)) over binary_op, where
generalized noncommutative sum GNSUM(op, a1, . . . , a N) is defined as follows:

• if N=1, a1

• if N > 1, op(GNSUM(op, a1, . . . , aK), GNSUM(op, aM, . . . , aN)) for any K where 1 < K+1 = M <=
N In other words, the summation operations may be performed in arbitrary order, and the behavior is
nondeterministic if binary_op is not associative.

The reduce operations in the parallel transform_exclusive_scan algorithm invoked without an execution
policy object execute in sequential order in the calling thread.

Neither unary_op nor binary_op shall invalidate iterators or sub-ranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).

The behavior of transform_exclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of each of binary_op and unary_op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

626 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

554 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• BinOp – The type of binary_op.

• UnOp – The type of unary_op.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• init – The initial value for the generalized sum.

• binary_op – Binary FunctionObject that will be applied to the result of unary_op, the
results of other binary_op, and init.

• unary_op – Unary FunctionObject that will be applied to each element of the input range.
The return type must be acceptable as input to binary_op.

Returns The transform_exclusive_scan algorithm returns a returns OutIter. The trans-
form_exclusive_scan algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename BinOp, typename UnOp,
typename T = typename std::iterator_traits<FwdIter1>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type transform_exclusive_scan(ExPolicy

&&policy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest, T init,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result) - 1))). Ex-
ecuted according to the policy.

The reduce operations in the parallel transform_exclusive_scan algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_exclusive_scan algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Neither unary_op nor binary_op shall invalidate iterators or sub-ranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).

2.8. API reference 555

HPX Documentation, master

The behavior of transform_exclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of each of binary_op and unary_op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• BinOp – The type of binary_op.

• UnOp – The type of unary_op.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• init – The initial value for the generalized sum.

• binary_op – Binary FunctionObject that will be applied in to the result of unary_op, the
results of other binary_op, and init.

• unary_op – Unary FunctionObject that will be applied to each element of the input range.
The return type must be acceptable as input to binary_op.

Returns The transform_exclusive_scan algorithm returns a hpx::future<FwdIter2> if the exe-
cution policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2
otherwise. The transform_exclusive_scan algorithm returns the output iterator to the element
in the destination range, one past the last element copied.

556 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::transform_inclusive_scan

Defined in header hpx/algorithm.hpp627.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename OutIter, typename BinOp, typename UnOp>
OutIter transform_inclusive_scan(InIter first, InIter last, OutIter dest, BinOp &&binary_op, UnOp

&&unary_op)
Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked without an execution
policy object execute in sequential order in the calling thread.

Neither binary_op nor unary_op shall invalidate iterators or sub-ranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).

The difference between inclusive_scan and transform_inclusive_scan is that transform_inclusive_scan in-
cludes the ith input element in the ith sum.

Note: Complexity: O(last - first) applications of each of binary_op and unary_op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• BinOp – The type of binary_op.

• UnOp – The type of unary_op.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

627 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 557

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• binary_op – Binary FunctionObject that will be applied in to the result of unary_op, the
results of other binary_op, and init if provided.

• unary_op – Unary FunctionObject that will be applied to each element of the input range.
The return type must be acceptable as input to binary_op.

Returns The transform_inclusive_scan algorithm returns a returns OutIter. The trans-
form_inclusive_scan algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename BinOp, typename UnOp>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type transform_inclusive_scan(ExPolicy

&&policy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest, BinOp
&&bi-
nary_op,
UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, conv(*first), . . . , conv(*(first + (i - result)))). Executed according
to the policy.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Neither binary_op nor unary_op shall invalidate iterators or sub-ranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).

The difference between inclusive_scan and transform_inclusive_scan is that transform_inclusive_scan in-
cludes the ith input element in the ith sum.

Note: Complexity: O(last - first) applications of each of binary_op and unary_op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

558 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• BinOp – The type of binary_op.

• UnOp – The type of unary_op.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• binary_op – Binary FunctionObject that will be applied in to the result of unary_op, the
results of other binary_op, and init if provided.

• unnary_op – Unary FunctionObject that will be applied to each element of the input range.
The return type must be acceptable as input to binary_op.

Returns The transform_inclusive_scan algorithm returns a hpx::future<FwdIter2> if the exe-
cution policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2
otherwise. The transform_inclusive_scan algorithm returns the output iterator to the element
in the destination range, one past the last element copied.

template<typename InIter, typename OutIter, typename BinOp, typename UnOp, typename T = typename
std::iterator_traits<InIter>::value_type>
OutIter transform_inclusive_scan(InIter first, InIter last, OutIter dest, BinOp &&binary_op, UnOp

&&unary_op, T init)
Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked without an execution
policy object execute in sequential order in the calling thread.

Neither binary_op nor unary_op shall invalidate iterators or sub-ranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).

The difference between inclusive_scan and transform_inclusive_scan is that transform_inclusive_scan in-
cludes the ith input element in the ith sum. If binary_op is not mathematically associative, the behavior of
transform_inclusive_scan may be non-deterministic.

Note: Complexity: O(last - first) applications of each of binary_op and unary_op.

2.8. API reference 559

HPX Documentation, master

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• BinOp – The type of binary_op.

• UnOp – The type of unary_op.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• binary_op – Binary FunctionObject that will be applied in to the result of unary_op, the
results of other binary_op, and init if provided.

• unnary_op – Unary FunctionObject that will be applied to each element of the input range.
The return type must be acceptable as input to binary_op.

• init – The initial value for the generalized sum.

Returns The transform_inclusive_scan algorithm returns a returns OutIter. The trans-
form_inclusive_scan algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename BinOp, typename UnOp,
typename T = typename std::iterator_traits<FwdIter1>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type transform_inclusive_scan(ExPolicy

&&policy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest, BinOp
&&bi-
nary_op,
UnOp
&&unary_op,
T init)

560 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, conv(*first), . . . , conv(*(first + (i - result)))). Executed ac-
cording to the policy.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Neither binary_op nor unary_op shall invalidate iterators or sub-ranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).

The difference between inclusive_scan and transform_inclusive_scan is that transform_inclusive_scan in-
cludes the ith input element in the ith sum. If binary_op is not mathematically associative, the behavior of
transform_inclusive_scan may be non-deterministic.

Note: Complexity: O(last - first) applications of each of binary_op and unary_op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:

• a1 when N is 1

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• BinOp – The type of binary_op.

• UnOp – The type of unary_op.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

2.8. API reference 561

HPX Documentation, master

• binary_op – Binary FunctionObject that will be applied in to the result of unary_op, the
results of other binary_op, and init if provided.

• unnary_op – Unary FunctionObject that will be applied to each element of the input range.
The return type must be acceptable as input to binary_op.

• init – The initial value for the generalized sum.

Returns The transform_inclusive_scan algorithm returns a hpx::future<FwdIter2> if the exe-
cution policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2
otherwise. The transform_inclusive_scan algorithm returns the output iterator to the element
in the destination range, one past the last element copied.

hpx::transform_reduce

Defined in header hpx/algorithm.hpp628.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename T, typename Reduce, typename Convert>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy, FwdIter

first, FwdIter last, T init,
Reduce &&red_op, Convert
&&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).
Executed according to the policy.

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
628 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

562 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce – The type of the binary function object used for the reduction operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

• red_op – Specifies the function (or function object) which will be invoked for each of the
values returned from the invocation of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1, Type2, and Ret must be such that an object of a type as
returned from conv_op can be implicitly converted to any of those types.

• conv_op – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature
of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type parallel_task_policy and returns T otherwise. The transform_reduce algorithm returns
the result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename InIter, typename T, typename Reduce, typename Convert>
T transform_reduce(InIter first, InIter last, T init, Reduce &&red_op, Convert &&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

2.8. API reference 563

HPX Documentation, master

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce – The type of the binary function object used for the reduction operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

• red_op – Specifies the function (or function object) which will be invoked for each of the
values returned from the invocation of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1, Type2, and Ret must be such that an object of a type as
returned from conv_op can be implicitly converted to any of those types.

• conv_op – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature
of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

564 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The transform_reduce algorithm returns a T. The transform_reduce algorithm returns
the result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy,

FwdIter1 first1, FwdIter1
last1, FwdIter2 first2, T init)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2. Executed according to the policy.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(last - first) applications each of reduce and transform.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the first source iterators used (deduced). This iterator type must
meet the requirements of a forward iterator.

• FwdIter2 – The type of the second source iterators used (deduced). This iterator type
must meet the requirements of a forward iterator.

• T – The type of the value to be used as return) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the first sequence of elements the result will be cal-
culated with.

• last1 – Refers to the end of the first sequence of elements the algorithm will be applied
to.

• first2 – Refers to the beginning of the second sequence of elements the result will be
calculated with.

• init – The initial value for the sum.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns T otherwise.

template<typename InIter1, typename InIter2, typename T>
T transform_reduce(InIter1 first1, InIter1 last1, InIter2 first2, T init)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

2.8. API reference 565

HPX Documentation, master

Note: Complexity: O(last - first) applications each of reduce and transform.

Template Parameters

• InIter1 – The type of the first source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• InIter2 – The type of the second source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• T – The type of the value to be used as return) values (deduced).

Parameters

• first1 – Refers to the beginning of the first sequence of elements the result will be cal-
culated with.

• last1 – Refers to the end of the first sequence of elements the algorithm will be applied
to.

• first2 – Refers to the beginning of the second sequence of elements the result will be
calculated with.

• init – The initial value for the sum.

Returns The transform_reduce algorithm returns a T.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename Reduce,
typename Convert>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy,

FwdIter1 first1, FwdIter1
last1, FwdIter2 first2, T init,
Reduce &&red_op, Convert
&&conv_op)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2. Executed according to the policy.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(last - first) applications each of reduce and transform.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the first source iterators used (deduced). This iterator type must
meet the requirements of a forward iterator.

566 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• FwdIter2 – The type of the second source iterators used (deduced). This iterator type
must meet the requirements of a forward iterator.

• T – The type of the value to be used as return) values (deduced).

• Reduce – The type of the binary function object used for the multiplication operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first1 – Refers to the beginning of the first sequence of elements the result will be cal-
culated with.

• last1 – Refers to the end of the first sequence of elements the algorithm will be applied
to.

• first2 – Refers to the beginning of the second sequence of elements the result will be
calculated with.

• init – The initial value for the sum.

• red_op – Specifies the function (or function object) which will be invoked for the initial
value and each of the return values of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Ret must be such that it can be implicitly converted to a type of T.

• conv_op – Specifies the function (or function object) which will be invoked for each of
the input values of the sequence. This is a binary predicate. The signature of this predicate
should be equivalent to

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Ret must be such that it can be implicitly converted to an object for
the second argument type of red_op.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns T otherwise.

template<typename InIter1, typename InIter2, typename T, typename Reduce, typename Convert>
T transform_reduce(ExPolicy &&policy, InIter1 first1, InIter1 last1, InIter2 first2, T init, Reduce

&&red_op, Convert &&conv_op)
Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

Note: Complexity: O(last - first) applications each of reduce and transform.

Template Parameters

• InIter1 – The type of the first source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

2.8. API reference 567

HPX Documentation, master

• InIter2 – The type of the second source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• T – The type of the value to be used as return) values (deduced).

• Reduce – The type of the binary function object used for the multiplication operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• first1 – Refers to the beginning of the first sequence of elements the result will be cal-
culated with.

• last1 – Refers to the end of the first sequence of elements the algorithm will be applied
to.

• first2 – Refers to the beginning of the second sequence of elements the result will be
calculated with.

• init – The initial value for the sum.

• red_op – Specifies the function (or function object) which will be invoked for the initial
value and each of the return values of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Ret must be such that it can be implicitly converted to a type of T.

• conv_op – Specifies the function (or function object) which will be invoked for each of
the input values of the sequence. This is a binary predicate. The signature of this predicate
should be equivalent to

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Ret must be such that it can be implicitly converted to an object for
the second argument type of red_op.

Returns The transform_reduce algorithm returns a T.

hpx/parallel/algorithms/transform_reduce_binary.hpp

Defined in header hpx/parallel/algorithms/transform_reduce_binary.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

568 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::uninitialized_copy, hpx::uninitialized_copy_n

Defined in header hpx/algorithm.hpp629.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename FwdIter>
FwdIter uninitialized_copy(InIter first, InIter last, FwdIter dest)

Copies the elements in the range, defined by [first, last), to an uninitialized memory area beginning at dest.
If an exception is thrown during the copy operation, the function has no effects.

The assignments in the parallel uninitialized_copy algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_copy algorithm returns FwdIter. The uninitialized_copy algorithm
returns the output iterator to the element in the destination range, one past the last element
copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> uninitialized_copy(ExPolicy

&&policy,
FwdIter1 first,
FwdIter1 last,
FwdIter2 dest)

Copies the elements in the range, defined by [first, last), to an uninitialized memory area beginning at dest.
If an exception is thrown during the copy operation, the function has no effects. Executed according to the
policy.

629 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 569

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignments in the parallel uninitialized_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_copy algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_copy algorithm returns a hpx::future<FwdIter2>, if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 oth-
erwise. The uninitialized_copy algorithm returns the output iterator to the element in the
destination range, one past the last element copied.

template<typename InIter, typename Size, typename FwdIter>
FwdIter uninitialized_copy_n(InIter first, Size count, FwdIter dest)

Copies the elements in the range [first, first + count), starting from first and proceeding to first + count - 1.,
to another range beginning at dest. If an exception is thrown during the copy operation, the function has no
effects.

The assignments in the parallel uninitialized_copy_n algorithm invoked without an execution policy object
execute in sequential order in the calling thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

570 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_copy_n algorithm returns a returns FwdIter. The uninitial-
ized_copy_n algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> uninitialized_copy_n(ExPolicy

&&policy,
FwdIter1 first,
Size count,
FwdIter2 dest)

Copies the elements in the range [first, first + count), starting from first and proceeding to first + count - 1.,
to another range beginning at dest. If an exception is thrown during the copy operation, the function has no
effects.

The assignments in the parallel uninitialized_copy_n algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_copy_n algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

2.8. API reference 571

HPX Documentation, master

Returns The uninitialized_copy_n algorithm returns a hpx::future<FwdIter2> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 oth-
erwise. The uninitialized_copy_n algorithm returns the output iterator to the element in the
destination range, one past the last element copied.

hpx::uninitialized_default_construct, hpx::uninitialized_default_construct_n

Defined in header hpx/algorithm.hpp630.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter>
void uninitialized_default_construct(FwdIter first, FwdIter last)

Constructs objects of type typename iterator_traits<ForwardIt> ::value_type in the uninitialized storage
designated by the range by default-initialization. If an exception is thrown during the initialization, the
function has no effects.

The assignments in the parallel uninitialized_default_construct algorithm invoked without an execution
policy object will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters FwdIter – The type of the source iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The uninitialized_default_construct algorithm returns nothing

template<typename ExPolicy, typename FwdIter>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> uninitialized_default_construct(ExPolicy

&&policy,
FwdIter
first,
FwdIter
last)

Constructs objects of type typename iterator_traits<ForwardIt> ::value_type in the uninitialized storage
designated by the range by default-initialization. If an exception is thrown during the initialization, the
function has no effects. Executed according to the policy.

630 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

572 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignments in the parallel uninitialized_default_construct algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_default_construct algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The uninitialized_default_construct algorithm returns a hpx::future<void>, if the exe-
cution policy is of type sequenced_task_policy or parallel_task_policy and returns nothing
otherwise.

template<typename FwdIter, typename Size>
FwdIter uninitialized_default_construct_n(FwdIter first, Size count)

Constructs objects of type typename iterator_traits<ForwardIt> ::value_type in the uninitialized storage
designated by the range [first, first + count) by default-initialization. If an exception is thrown during the
initialization, the function has no effects.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

Returns The uninitialized_default_construct_n algorithm returns a returns FwdIter. The unini-
tialized_default_construct_n algorithm returns the iterator to the element in the source range,
one past the last element constructed.

template<typename ExPolicy, typename FwdIter, typename Size>

2.8. API reference 573

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_default_construct_n(ExPolicy
&&pol-
icy,
FwdIter
first,
Size
count)

Constructs objects of type typename iterator_traits<ForwardIt> ::value_type in the uninitialized storage
designated by the range [first, first + count) by default-initialization. If an exception is thrown during the
initialization, the function has no effects. Executed according to the policy.

The assignments in the parallel uninitialized_default_construct_n algorithm invoked with an execution pol-
icy object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_default_construct_n algorithm invoked with an execution pol-
icy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

Returns The uninitialized_default_construct_n algorithm returns a hpx::future<FwdIter> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
FwdIter otherwise. The uninitialized_default_construct_n algorithm returns the iterator to
the element in the source range, one past the last element constructed.

hpx::uninitialized_fill, hpx::uninitialized_fill_n

Defined in header hpx/algorithm.hpp631.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

631 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

574 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename FwdIter, typename T>
void uninitialized_fill(FwdIter first, FwdIter last, T const &value)

Copies the given value to an uninitialized memory area, defined by the range [first, last). If an exception is
thrown during the initialization, the function has no effects.

Note: Complexity: Linear in the distance between first and last

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• T – The type of the value to be assigned (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• value – The value to be assigned.

Returns The uninitialized_fill algorithm returns nothing

template<typename ExPolicy, typename FwdIter, typename T>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> uninitialized_fill(ExPolicy &&policy, FwdIter

first, FwdIter last, T const
&value)

Copies the given value to an uninitialized memory area, defined by the range [first, last). If an exception is
thrown during the initialization, the function has no effects. Executed according to the policy.

The initializations in the parallel uninitialized_fill algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The initializations in the parallel uninitialized_fill algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• T – The type of the value to be assigned (deduced).

Parameters

2.8. API reference 575

HPX Documentation, master

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• value – The value to be assigned.

Returns The uninitialized_fill algorithm returns a hpx::future<void>, if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns nothing otherwise.

template<typename FwdIter, typename Size, typename T>
FwdIter uninitialized_fill_n(FwdIter first, Size count, T const &value)

Copies the given value value to the first count elements in an uninitialized memory area beginning at first.
If an exception is thrown during the initialization, the function has no effects.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• T – The type of the value to be assigned (deduced).

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• value – The value to be assigned.

Returns The uninitialized_fill_n algorithm returns a returns FwdIter. The uninitialized_fill_n
algorithm returns the output iterator to the element in the range, one past the last element
copied.

template<typename ExPolicy, typename FwdIter, typename Size, typename T>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_fill_n(ExPolicy

&&policy,
FwdIter first,
Size count, T
const &value)

Copies the given value value to the first count elements in an uninitialized memory area beginning at first.
If an exception is thrown during the initialization, the function has no effects. Executed according to the
policy.

The initializations in the parallel uninitialized_fill_n algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The initializations in the parallel uninitialized_fill_n algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

576 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• T – The type of the value to be assigned (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• value – The value to be assigned.

Returns The uninitialized_fill_n algorithm returns a hpx::future<FwdIter>, if the execution pol-
icy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise.
The uninitialized_fill_n algorithm returns the output iterator to the element in the range, one
past the last element copied.

hpx::uninitialized_move, hpx::uninitialized_move_n

Defined in header hpx/algorithm.hpp632.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename InIter, typename FwdIter>
FwdIter uninitialized_move(InIter first, InIter last, FwdIter dest)

Moves the elements in the range, defined by [first, last), to an uninitialized memory area beginning at dest. If
an exception is thrown during the initialization, some objects in [first, last) are left in a valid but unspecified
state.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

632 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 577

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_move algorithm returns FwdIter. The uninitialized_move algorithm
returns the output iterator to the element in the destination range, one past the last element
moved.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> uninitialized_move(ExPolicy

&&policy,
FwdIter1 first,
FwdIter1 last,
FwdIter2 dest)

Moves the elements in the range, defined by [first, last), to an uninitialized memory area beginning at dest. If
an exception is thrown during the initialization, some objects in [first, last) are left in a valid but unspecified
state. Executed according to the policy.

The assignments in the parallel uninitialized_move algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_move algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

578 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The uninitialized_move algorithm returns a hpx::future<FwdIter2>, if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 oth-
erwise. The uninitialized_move algorithm returns the output iterator to the element in the
destination range, one past the last element moved.

template<typename InIter, typename Size, typename FwdIter>
std::pair<InIter, FwdIter> uninitialized_move_n(InIter first, Size count, FwdIter dest)

Moves the elements in the range [first, first + count), starting from first and proceeding to first + count - 1.,
to another range beginning at dest. If an exception is thrown during the initialization, some objects in [first,
first + count) are left in a valid but unspecified state.

Note: Complexity: Performs exactly count movements, if count > 0, no move operations otherwise.

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_move_n algorithm returns a returns std::pair<InIter,FwdIter>. The
uninitialized_move_n algorithm returns A pair whose first element is an iterator to the element
past the last element moved in the source range, and whose second element is an iterator to
the element past the last element moved in the destination range.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2>
parallel::util::detail::algorithm_result<ExPolicy, std::pair<FwdIter1, FwdIter2>>::type uninitialized_move_n(ExPolicy

&&pol-
icy,
FwdIter1
first,
Size
count,
FwdIter2
dest)

Moves the elements in the range [first, first + count), starting from first and proceeding to first + count - 1.,
to another range beginning at dest. If an exception is thrown during the initialization, some objects in [first,
first + count) are left in a valid but unspecified state. Executed according to the policy.

The assignments in the parallel uninitialized_move_n algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

2.8. API reference 579

HPX Documentation, master

The assignments in the parallel uninitialized_move_n algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count movements, if count > 0, no move operations otherwise.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_move_n algorithm returns a hpx::future<std::pair<FwdIter1,FwdIter2>>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
std::pair<FwdIter1,FwdIter2> otherwise. The uninitialized_move_n algorithm returns A
pair whose first element is an iterator to the element past the last element moved in the source
range, and whose second element is an iterator to the element past the last element moved in
the destination range.

hpx::uninitialized_relocate, hpx::uninitialized_relocate_n

Defined in header hpx/algorithm.hpp633.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

633 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

580 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename InIter1, typename InIter2, typename FwdIter>
FwdIter uninitialized_relocate(InIter1 first, InIter2 last, FwdIter dest)

Relocates the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the move-construction of an element, all elements left in the input
range, as well as all objects already constructed in the destination range are destroyed. After this algorithm
completes, the source range should be freed or reused without destroying the objects.

The assignments in the parallel uninitialized_relocate algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: time: O(n), space: O(1) 1) For “trivially relocatable” underlying types (T) and a
contiguous iterator range [first, last): std::distance(first, last)*sizeof(T) bytes are copied. 2) For “trivially
relocatable” underlying types (T) and a non-contiguous iterator range [first, last): std::distance(first, last)
memory copies of sizeof(T) bytes each are performed. 3) For “non-trivially relocatable” underlying types
(T): std::distance(first, last) move assignments and destructions are performed.

Note: Declare a type as “trivially relocatable” using the HPX_DECLARE_TRIVIALLY_RELOCATABLE
macros found in <hpx/type_support/is_trivially_relocatable.hpp>.

Template Parameters

• InIter1 – The type of the source iterator first (deduced). This iterator type must meet the
requirements of an input iterator.

• InIter2 – The type of the source iterator last (deduced). This iterator type must meet the
requirements of an input iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_relocate algorithm returns FwdIter. The uninitialized_relocate al-
gorithm returns the output iterator to the element in the destination range, one past the last
element relocated.

template<typename ExPolicy, typename InIter1, typename InIter2, typename FwdIter>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_relocate(ExPolicy

&&policy,
InIter1 first,
InIter2 last,
FwdIter dest)

Relocates the elements in the range defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the move-construction of an element, all elements left in the input

2.8. API reference 581

HPX Documentation, master

range, as well as all objects already constructed in the destination range are destroyed. After this algorithm
completes, the source range should be freed or reused without destroying the objects.

The assignments in the parallel uninitialized_relocate algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: time: O(n), space: O(1) 1) For “trivially relocatable” underlying types (T) and a
contiguous iterator range [first, last): std::distance(first, last)*sizeof(T) bytes are copied. 2) For “trivially
relocatable” underlying types (T) and a non-contiguous iterator range [first, last): std::distance(first, last)
memory copies of sizeof(T) bytes each are performed. 3) For “non-trivially relocatable” underlying types
(T): std::distance(first, last) move assignments and destructions are performed.

Note: Declare a type as “trivially relocatable” using the HPX_DECLARE_TRIVIALLY_RELOCATABLE
macros found in <hpx/type_support/is_trivially_relocatable.hpp>.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• InIter1 – The type of the source iterator first (deduced). This iterator type must meet the
requirements of an input iterator.

• InIter2 – The type of the source iterator last (deduced). This iterator type must meet the
requirements of an input iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range. The assignments in the paral-
lel uninitialized_relocate_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Returns The uninitialized_relocate algorithm returns a hpx::future<FwdIter>, if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter other-
wise. The uninitialized_relocate algorithm returns the output iterator to the element in the
destination range, one past the last element relocated.

template<typename BiIter1, typename BiIter2>
BiIter2 uninitialized_relocate_backward(BiIter1 first, BiIter1 last, BiIter2 dest_last)

Relocates the elements in the range, defined by [first, last), to an uninitialized memory area ending at
dest_last. The objects are processed in reverse order. If an exception is thrown during the the move-
construction of an element, all elements left in the input range, as well as all objects already constructed

582 Chapter 2. What’s so special about HPX?

HPX Documentation, master

in the destination range are destroyed. After this algorithm completes, the source range should be freed or
reused without destroying the objects.

The assignments in the parallel uninitialized_relocate algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: time: O(n), space: O(1) 1) For “trivially relocatable” underlying types (T) and a
contiguous iterator range [first, last): std::distance(first, last)*sizeof(T) bytes are copied. 2) For “trivially
relocatable” underlying types (T) and a non-contiguous iterator range [first, last): std::distance(first, last)
memory copies of sizeof(T) bytes each are performed. 3) For “non-trivially relocatable” underlying types
(T): std::distance(first, last) move assignments and destructions are performed.

Note: Declare a type as “trivially relocatable” using the HPX_DECLARE_TRIVIALLY_RELOCATABLE
macros found in <hpx/type_support/is_trivially_relocatable.hpp>.

Template Parameters

• BiIter1 – The type of the source range (deduced). This iterator type must meet the re-
quirements of a Bidirectional iterator.

• BiIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a Bidirectional iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest_last – Refers to the beginning of the destination range.

Returns The uninitialized_relocate_backward algorithm returns BiIter2. The uninitial-
ized_relocate_backward algorithm returns the bidirectional iterator to the first element in the
destination range.

template<typename ExPolicy, typename BiIter1, typename BiIter2>
hpx::parallel::util::detail::algorithm_result<ExPolicy, BiIter2> uninitialized_relocate_backward(ExPolicy

&&pol-
icy,
Bi-
Iter1
first,
Bi-
Iter1
last,
Bi-
Iter2
dest_last)

Relocates the elements in the range, defined by [first, last), to an uninitialized memory area ending at
dest_last. The order of the relocation of the objects depends on the execution policy. If an exception is
thrown during the the move-construction of an element, all elements left in the input range, as well as

2.8. API reference 583

HPX Documentation, master

all objects already constructed in the destination range are destroyed. After this algorithm completes, the
source range should be freed or reused without destroying the objects.

The assignments in the parallel uninitialized_relocate_backward algorithm invoked with an execution pol-
icy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Using the uninitialized_relocate_backward algorithm with the with a non-sequenced execution
policy, will not guarantee the order of the relocation of the objects.

Note: Complexity: time: O(n), space: O(1) 1) For “trivially relocatable” underlying types (T) and a
contiguous iterator range [first, last): std::distance(first, last)*sizeof(T) bytes are copied. 2) For “trivially
relocatable” underlying types (T) and a non-contiguous iterator range [first, last): std::distance(first, last)
memory copies of sizeof(T) bytes each are performed. 3) For “non-trivially relocatable” underlying types
(T): std::distance(first, last) move assignments and destructions are performed.

Note: Declare a type as “trivially relocatable” using the HPX_DECLARE_TRIVIALLY_RELOCATABLE
macros found in <hpx/type_support/is_trivially_relocatable.hpp>.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• BiIter1 – The type of the source range (deduced). This iterator type must meet the re-
quirements of a Bidirectional iterator.

• BiIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a Bidirectional iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest_last – Refers to the end of the destination range.

Returns The uninitialized_relocate_backward algorithm returns a hpx::future<FwdIter>, if the
execution policy is of type sequenced_task_policy or parallel_task_policy and returns BiIter2
otherwise. The uninitialized_relocate_backward algorithm returns the bidirectional iterator
to the first element in the destination range.

template<typename InIter, typename Size, typename FwdIter>
FwdIter uninitialized_relocate_n(InIter first, Size count, FwdIter dest)

Relocates the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the move-construction of an element, all elements left in the input
range, as well as all objects already constructed in the destination range are destroyed. After this algorithm
completes, the source range should be freed or reused without destroying the objects.

584 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The assignments in the parallel uninitialized_relocate_n algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

Note: Complexity: time: O(n), space: O(1) 1) For “trivially relocatable” underlying types (T) and a
contiguous iterator range [first, first+count): count*sizeof(T) bytes are copied. 2) For “trivially relocat-
able” underlying types (T) and a non-contiguous iterator range [first, first+count): count memory copies
of sizeof(T) bytes each are performed. 3) For “non-trivially relocatable” underlying types (T): count move
assignments and destructions are performed.

Note: Declare a type as “trivially relocatable” using the HPX_DECLARE_TRIVIALLY_RELOCATABLE
macros found in <hpx/type_support/is_trivially_relocatable.hpp>.

Template Parameters

• InIter – The type of the source iterator first (deduced). This iterator type must meet the
requirements of an input iterator.

• Size – The type of the argument specifying the number of elements to relocate.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_relocate_n algorithm returns FwdIter. The uninitialized_relocate_n
algorithm returns the output iterator to the element in the destination range, one past the last
element relocated.

template<typename ExPolicy, typename InIter, typename Size, typename FwdIter>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_relocate_n(ExPolicy

&&policy,
InIter first,
Size count,
FwdIter
dest)

Relocates the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the move-construction of an element, all elements left in the input
range, as well as all objects already constructed in the destination range are destroyed. After this algorithm
completes, the source range should be freed or reused without destroying the objects.

The assignments in the parallel uninitialized_relocate_n algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_relocate_n algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

2.8. API reference 585

HPX Documentation, master

Note: Complexity: time: O(n), space: O(1) 1) For “trivially relocatable” underlying types (T) and a
contiguous iterator range [first, first+count): count*sizeof(T) bytes are copied. 2) For “trivially relocat-
able” underlying types (T) and a non-contiguous iterator range [first, first+count): count memory copies
of sizeof(T) bytes each are performed. 3) For “non-trivially relocatable” underlying types (T): count move
assignments and destructions are performed.

Note: Declare a type as “trivially relocatable” using the HPX_DECLARE_TRIVIALLY_RELOCATABLE
macros found in <hpx/type_support/is_trivially_relocatable.hpp>.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• InIter – The type of the source iterator first (deduced). This iterator type must meet the
requirements of an input iterator.

• Size – The type of the argument specifying the number of elements to relocate.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

Returns The uninitialized_relocate_n algorithm returns a hpx::future<FwdIter> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter other-
wise. The uninitialized_relocate_n algorithm returns the output iterator to the element in the
destination range, one past the last element relocated.

hpx::uninitialized_value_construct, hpx::uninitialized_value_construct_n

Defined in header hpx/algorithm.hpp634.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

634 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

586 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename FwdIter>
void uninitialized_value_construct(FwdIter first, FwdIter last)

Constructs objects of type typename iterator_traits<ForwardIt> ::value_type in the uninitialized storage
designated by the range by value-initialization. If an exception is thrown during the initialization, the
function has no effects.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters FwdIter – The type of the source iterators used (deduced). This iterator
type must meet the requirements of a forward iterator.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The uninitialized_value_construct algorithm returns nothing

template<typename ExPolicy, typename FwdIter>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> uninitialized_value_construct(ExPolicy

&&policy,
FwdIter first,
FwdIter last)

Constructs objects of type typename iterator_traits<ForwardIt> ::value_type in the uninitialized storage
designated by the range by value-initialization. If an exception is thrown during the initialization, the
function has no effects. Executed according to the policy.

The assignments in the parallel uninitialized_value_construct algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_value_construct algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

2.8. API reference 587

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The uninitialized_value_construct algorithm returns a hpx::future<void>, if the exe-
cution policy is of type sequenced_task_policy or parallel_task_policy and returns nothing
otherwise.

template<typename FwdIter, typename Size>
FwdIter uninitialized_value_construct_n(FwdIter first, Size count)

Constructs objects of type typename iterator_traits<ForwardIt> ::value_type in the uninitialized storage
designated by the range [first, first + count) by value-initialization. If an exception is thrown during the
initialization, the function has no effects.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

Returns The uninitialized_value_construct_n algorithm returns a returns FwdIter. The unini-
tialized_value_construct_n algorithm returns the iterator to the element in the source range,
one past the last element constructed.

template<typename ExPolicy, typename FwdIter, typename Size>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_value_construct_n(ExPolicy

&&pol-
icy,
FwdIter
first,
Size
count)

Constructs objects of type typename iterator_traits<ForwardIt> ::value_type in the uninitialized storage
designated by the range [first, first + count) by value-initialization. If an exception is thrown during the
initialization, the function has no effects.

The assignments in the parallel uninitialized_value_construct_n algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_value_construct_n algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

588 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied to.

Returns The uninitialized_value_construct_n algorithm returns a hpx::future<FwdIter> if the
execution policy is of type sequenced_task_policy or parallel_task_policy and returns
FwdIter otherwise. The uninitialized_value_construct_n algorithm returns the iterator to the
element in the source range, one past the last element constructed.

hpx::unique, hpx::unique_copy

Defined in header hpx/algorithm.hpp635.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename FwdIter, typename Pred = hpx::parallel::detail::equal_to, typename Proj =
hpx::identity>
FwdIter unique(FwdIter first, FwdIter last, Pred &&pred = Pred(), Proj &&proj = Proj())

Eliminates all but the first element from every consecutive group of equivalent elements from the range
[first, last) and returns a past-the-end iterator for the new logical end of the range.

Note: Complexity: Performs not more than last - first assignments, exactly last - first - 1 applications of
the predicate pred and no more than twice as many applications of the projection proj.

Template Parameters

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

635 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 589

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of unique requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an binary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate pred is invoked.

Returns The unique algorithm returns FwdIter. The unique algorithm returns the iterator to the
new end of the range.

template<typename ExPolicy, typename FwdIter, typename Pred = hpx::parallel::detail::equal_to,
typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type unique(ExPolicy &&policy, FwdIter first,

FwdIter last, Pred &&pred =
Pred(), Proj &&proj = Proj())

Eliminates all but the first element from every consecutive group of equivalent elements from the range
[first, last) and returns a past-the-end iterator for the new logical end of the range. Executed according to
the policy.

The assignments in the parallel unique algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel unique algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first - 1 applications of
the predicate pred and no more than twice as many applications of the projection proj.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

590 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of unique requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an binary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate pred is invoked.

Returns The unique algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The unique
algorithm returns the iterator to the new end of the range.

template<typename InIter, typename OutIter, typename Pred = hpx::parallel::detail::equal_to, typename
Proj = hpx::identity>
OutIter unique_copy(InIter first, InIter last, OutIter dest, Pred &&pred = Pred(), Proj &&proj = Proj())

Copies the elements from the range [first, last), to another range beginning at dest in such a way that there
are no consecutive equal elements. Only the first element of each group of equal elements is copied.

Note: Complexity: Performs not more than last - first assignments, exactly last - first - 1 applications of
the predicate pred and no more than twice as many applications of the projection proj

Template Parameters

• InIter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of unique_copy requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

2.8. API reference 591

HPX Documentation, master

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an binary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate pred is invoked.

Returns The unique_copy algorithm returns a returns OutIter. The unique_copy algorithm re-
turns the destination iterator to the end of the dest range.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred =
hpx::parallel::detail::equal_to, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type unique_copy(ExPolicy &&policy,

FwdIter1 first, FwdIter1 last,
FwdIter2 dest, Pred &&pred
= Pred(), Proj &&proj =
Proj())

Copies the elements from the range [first, last), to another range beginning at dest in such a way that there are
no consecutive equal elements. Only the first element of each group of equal elements is copied. Executed
according to the policy.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first - 1 applications of
the predicate pred and no more than twice as many applications of the projection proj

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of unique_copy requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

592 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.

• dest – Refers to the beginning of the destination range.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an binary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate pred is invoked.

Returns The unique_copy algorithm returns a hpx::future<FwdIter2> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise.
The unique_copy algorithm returns the pair of the source iterator to last, and the destination
iterator to the end of the dest range.

hpx::ranges::adjacent_difference

Defined in header hpx/algorithm.hpp636.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter1, typename FwdIter2, typename Sent>
FwdIter2 adjacent_difference(FwdIter1 first, Sent last, FwdIter2 dest)

Searches the range [first, last) for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• FwdIter1 – The type of the source iterators used for the range (deduced). This iterator

type must meet the requirements of an forward iterator.
636 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 593

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• FwdIter2 – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

Parameters
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• dest – Refers to the beginning of the destination range.

Returns The adjacent_difference algorithm returns an iterator to the first of the identical
elements. If no such elements are found, last is returned.

template<typename Rng, typename FwdIter2>
FwdIter2 adjacent_difference(Rng &&rng, FwdIter2 dest)

Searches the rng for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• FwdIter2 – The type of the source iterators used for the range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The adjacent_difference algorithm returns an iterator to the first of the identical
elements.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> adjacent_difference(ExPolicy

&&policy,
FwdIter1
first, Sent
last,
FwdIter2
dest)

Searches the range [first, last) for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

594 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• dest – Refers to the beginning of the destination range.

Returns The adjacent_difference algorithm returns an iterator to the first of the identical
elements. If no such elements are found, last is returned.

template<typename ExPolicy, typename Rng, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> adjacent_difference(ExPolicy

&&policy,
Rng
&&rng,
FwdIter2
dest)

Searches the rng for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter2 – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The adjacent_difference algorithm returns an iterator to the first of the identical
elements.

template<typename FwdIter1, typename Sent, typename FwdIter2, typename Op>
FwdIter2 adjacent_difference(FwdIter1 first, Sent last, FwdIter2 dest, Op &&op)

Searches the range [first, last) for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• FwdIter1 – The type of the source iterators used for the range (deduced). This iterator

type must meet the requirements of an forward iterator.
• FwdIter2 – The type of the source iterators used for the range (deduced). This iterator

type must meet the requirements of an forward iterator.

2.8. API reference 595

HPX Documentation, master

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

• Op – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of adjacent_difference requires Op to meet the requirements
of CopyConstructible.

Parameters
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• dest – Refers to the beginning of the destination range.
• op – Binary operation function object that will be applied. The signature of the function

should be equivalent to the following:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const &. The types Type1 and Type2 must be such that
an object of type iterator_traits<InputIt>::value_type can be implicitly converted to both
of them. The type Ret must be such that an object of type OutputIt can be dereferenced
and assigned a value of type Ret.

Returns The adjacent_difference algorithm returns an iterator to the first of the identical
elements. If no such elements are found, last is returned.

template<typename Rng, typename FwdIter2, typename Op>
FwdIter2 adjacent_difference(Rng &&rng, FwdIter2 dest, Op &&op)

Searches the rng for two consecutive identical elements.
Template Parameters

• FwdIter2 – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Op – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of adjacent_difference requires Op to meet the requirements
of CopyConstructible.

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – Binary operation function object that will be applied. The signature of the function

should be equivalent to the following:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const &. The types Type1 and Type2 must be such that
an object of type iterator_traits<InputIt>::value_type can be implicitly converted to both
of them. The type Ret must be such that an object of type OutputIt can be dereferenced
and assigned a value of type Ret.?

Returns The adjacent_difference algorithm returns an iterator to the first of the identical
elements.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename
Op>

596 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> adjacent_difference(ExPolicy
&&policy,
FwdIter1
first, Sent
last,
FwdIter2
dest, Op
&&op)

Searches the range [first, last) for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

• Op – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of adjacent_difference requires Op to meet the requirements
of CopyConstructible.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• dest – Refers to the beginning of the destination range.
• op – Binary operation function object that will be applied. The signature of the function

should be equivalent to the following:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const &. The types Type1 and Type2 must be such that
an object of type iterator_traits<InputIt>::value_type can be implicitly converted to both
of them. The type Ret must be such that an object of type OutputIt can be dereferenced
and assigned a value of type Ret.?

Returns The adjacent_difference algorithm returns an iterator to the first of the identical
elements. If no such elements are found, last is returned.

template<typename ExPolicy, typename Rng, typename FwdIter2, typename Op>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> adjacent_difference(ExPolicy

&&policy,
Rng
&&rng,
FwdIter2
dest, Op
&&op)

2.8. API reference 597

HPX Documentation, master

Searches the rng for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter2 – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Op – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of adjacent_difference requires Op to meet the requirements
of CopyConstructible.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – Binary operation function object that will be applied. The signature of the function

should be equivalent to the following:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const &. The types Type1 and Type2 must be such that
an object of type iterator_traits<InputIt>::value_type can be implicitly converted to both
of them. The type Ret must be such that an object of type OutputIt can be dereferenced
and assigned a value of type Ret.

Returns The adjacent_difference algorithm returns an iterator to the first of the identical
elements.

hpx::ranges::adjacent_find

Defined in header hpx/algorithm.hpp637.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

637 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

598 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename FwdIter, typename Sent, typename Proj = hpx::identity, typename Pred =
detail::equal_to>
FwdIter adjacent_find(FwdIter first, Sent last, Pred &&pred = Pred(), Proj &&proj = Proj())

Searches the range [first, last) for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• FwdIter – The type of the source iterators used for the range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• Proj – The type of an optional projection function. This defaults to hpx::identity
• Pred – The type of an optional function/function object to use.

Parameters
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• pred – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1 .

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The adjacent_find algorithm returns an iterator to the first of the identical elements.
If no such elements are found, last is returned.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Proj = hpx::identity,
typename Pred = detail::equal_to>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type adjacent_find(ExPolicy &&policy,

FwdIter first, Sent
last, Pred &&pred =
Pred(), Proj &&proj
= Proj())

Searches the range [first, last) for two consecutive identical elements. This version uses the given
binary predicate pred

The comparison operations in the parallel adjacent_find invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel adjacent_find invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

2.8. API reference 599

HPX Documentation, master

This overload of adjacent_find is available if the user decides to provide their algorithm their own
binary predicate pred.

Note: Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the
predicate where result is the value returned

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

• Proj – The type of an optional projection function. This defaults to hpx::identity
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• pred – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1 .

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The adjacent_find algorithm returns a hpx::future<InIter> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns InIter otherwise. The
adjacent_find algorithm returns an iterator to the first of the identical elements. If no such
elements are found, last is returned.

template<typename Rng, typename Proj = hpx::identity, typename Pred = detail::equal_to>
hpx::traits::range_traits<Rng>::iterator_type adjacent_find(Rng &&rng, Pred &&pred = Pred(), Proj

&&proj = Proj())
Searches the range rng for two consecutive identical elements.

Note: Complexity: Exactly the smaller of (result - std::begin(rng)) + 1 and (std::begin(rng) -
std::end(rng)) - 1 applications of the predicate where result is the value returned

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Proj – The type of an optional projection function. This defaults to hpx::identity
• Pred – The type of an optional function/function object to use.

600 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1 .

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The adjacent_find algorithm returns an iterator to the first of the identical elements.
If no such elements are found, last is returned.

template<typename ExPolicy, typename Rng, typename Proj = hpx::identity, typename Pred =
detail::equal_to>
parallel::util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng>::iterator_type>::type adjacent_find(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred
=
Pred(),
Proj
&&proj
=
Proj())

Searches the range rng for two consecutive identical elements.

The comparison operations in the parallel adjacent_find invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel adjacent_find invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

This overload of adjacent_find is available if the user decides to provide their algorithm their own
binary predicate pred.

Note: Complexity: Exactly the smaller of (result - std::begin(rng)) + 1 and (std::begin(rng) -
std::end(rng)) - 1 applications of the predicate where result is the value returned

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Proj – The type of an optional projection function. This defaults to hpx::identity

2.8. API reference 601

HPX Documentation, master

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1 .

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The adjacent_find algorithm returns a hpx::future<InIter> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns InIter otherwise. The
adjacent_find algorithm returns an iterator to the first of the identical elements. If no such
elements are found, last is returned.

hpx::ranges::all_of, hpx::ranges::any_of, hpx::ranges::none_of

Defined in header hpx/algorithm.hpp638.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Rng, typename F, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> none_of(ExPolicy &&policy, Rng

&&rng, F &&f, Proj &&proj =
Proj())

Checks if unary predicate f returns true for no elements in the range rng.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
638 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

602 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The none_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The none_of
algorithm returns true if the unary predicate f returns true for no elements in the range,
false otherwise. It returns true if the range is empty.

template<typename ExPolicy, typename Iter, typename Sent, typename F, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> none_of(ExPolicy &&policy, Iter first,

Sent last, F &&f, Proj &&proj
= Proj())

Checks if unary predicate f returns true for no elements in the range [first, last).

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the predicate f

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

2.8. API reference 603

HPX Documentation, master

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The none_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The none_of
algorithm returns true if the unary predicate f returns true for no elements in the range,
false otherwise. It returns true if the range is empty.

template<typename Rng, typename F, typename Proj = hpx::identity>
bool none_of(Rng &&rng, F &&f, Proj &&proj = Proj())

Checks if unary predicate f returns true for no elements in the range rng.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The none_of algorithm returns true if the unary predicate f returns true for no ele-
ments in the range, false otherwise. It returns true if the range is empty.

604 Chapter 2. What’s so special about HPX?

HPX Documentation, master

template<typename Iter, typename Sent, typename F, typename Proj = hpx::identity>
bool none_of(Iter first, Sent last, F &&f, Proj &&proj = Proj())

Checks if unary predicate f returns true for no elements in the range [first, last).

Note: Complexity: At most last - first applications of the predicate f

Template Parameters
• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• f – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The none_of algorithm returns true if the unary predicate f returns true for no ele-
ments in the range, false otherwise. It returns true if the range is empty.

template<typename ExPolicy, typename Rng, typename F, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> any_of(ExPolicy &&policy, Rng &&rng,

F &&f, Proj &&proj = Proj())
Checks if unary predicate f returns true for at least one element in the range rng.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

2.8. API reference 605

HPX Documentation, master

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The any_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The any_of
algorithm returns true if the unary predicate f returns true for at least one element in the
range, false otherwise. It returns false if the range is empty.

template<typename ExPolicy, typename Iter, typename Sent, typename F, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> any_of(ExPolicy &&policy, Iter first,

Sent last, F &&f, Proj &&proj =
Proj())

Checks if unary predicate f returns true for at least one element in the range rng.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

606 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The any_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The any_of
algorithm returns true if the unary predicate f returns true for at least one element in the
range, false otherwise. It returns false if the range is empty.

template<typename Rng, typename F, typename Proj = hpx::identity>
bool any_of(Rng &&rng, F &&f, Proj &&proj = Proj())

Checks if unary predicate f returns true for at least one element in the range rng.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The any_of algorithm returns true if the unary predicate f returns true for at least
one element in the range, false otherwise. It returns false if the range is empty.

template<typename Iter, typename Sent, typename F, typename Proj = hpx::identity>
bool any_of(Iter first, Sent last, F &&f, Proj &&proj = Proj())

Checks if unary predicate f returns true for at least one element in the range rng.

2.8. API reference 607

HPX Documentation, master

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• f – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The any_of algorithm returns true if the unary predicate f returns true for at least
one element in the range, false otherwise. It returns false if the range is empty.

template<typename ExPolicy, typename Rng, typename F, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> all_of(ExPolicy &&policy, Rng &&rng,

F &&f, Proj &&proj = Proj())
Checks if unary predicate f returns true for all elements in the range rng.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of none_of requires F to meet the requirements of Copy-

608 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Constructible.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The all_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The all_of al-
gorithm returns true if the unary predicate f returns true for all elements in the range, false
otherwise. It returns true if the range is empty.

template<typename ExPolicy, typename Iter, typename Sent, typename F, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> all_of(ExPolicy &&policy, Iter first,

Sent last, F &&f, Proj &&proj =
Proj())

Checks if unary predicate f returns true for all elements in the range rng.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.

2.8. API reference 609

HPX Documentation, master

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• f – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The all_of algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The all_of al-
gorithm returns true if the unary predicate f returns true for all elements in the range, false
otherwise. It returns true if the range is empty.

template<typename Rng, typename F, typename Proj = hpx::identity>
bool all_of(Rng &&rng, F &&f, Proj &&proj = Proj())

Checks if unary predicate f returns true for all elements in the range rng.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The all_of algorithm returns true if the unary predicate f returns true for all elements
in the range, false otherwise. It returns true if the range is empty.

template<typename Iter, typename Sent, typename F, typename Proj = hpx::identity>
bool all_of(Iter first, Sent last, F &&f, Proj &&proj = Proj())

Checks if unary predicate f returns true for all elements in the range rng.

Note: Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f

610 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of none_of requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements of the range the algorithm
will be applied to.

• last – Refers to the end of the sequence of elements of the range the algorithm will be
applied to.

• f – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The all_of algorithm returns true if the unary predicate f returns true for all elements
in the range, false otherwise. It returns true if the range is empty.

hpx::ranges::copy, hpx::ranges::copy_n, hpx::ranges::copy_if

Defined in header hpx/algorithm.hpp639.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter>
parallel::util::detail::algorithm_result<ExPolicy, ranges::copy_result<FwdIter1, FwdIter>>::type copy(ExPolicy

&&pol-
icy,
FwdIter1
iter,
Sent1
sent,
FwdIter
dest)

Copies the elements in the range, defined by [first, last), to another range beginning at dest.
639 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 611

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the begin source iterators used (deduced). This iterator type
must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter1.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• iter – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The copy algorithm returns a hpx::future<ranges::copy_result<FwdIter1,
FwdIter> > if the execution policy is of type sequenced_task_policy or parallel_task_policy
and returns ranges::copy_result<FwdIter1, FwdIter> otherwise. The copy algorithm
returns the pair of the input iterator last and the output iterator to the element in the
destination range, one past the last element copied.

template<typename ExPolicy, typename Rng, typename FwdIter>
parallel::util::detail::algorithm_result<ExPolicy, ranges::copy_result<typename hpx::traits::range_traits<Rng>::iterator_type, FwdIter>>::type copy(ExPolicy

&&pol-
icy,
Rng
&&rng,
FwdIter
dest)

Copies the elements in the range rng to another range beginning at dest.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.

Template Parameters

612 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The copy algorithm returns a hpx::future<ranges::copy_result<iterator_t<Rng>,
FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::copy_result<iterator_t<Rng>, FwdIter2> otherwise.
The copy algorithm returns the pair of the input iterator last and the output iterator to the
element in the destination range, one past the last element copied.

template<typename FwdIter1, typename Sent1, typename FwdIter>
ranges::copy_result<FwdIter1, FwdIter> copy(FwdIter1 iter, Sent1 sent, FwdIter dest)

Copies the elements in the range, defined by [first, last), to another range beginning at dest.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• FwdIter1 – The type of the begin source iterators used (deduced). This iterator type

must meet the requirements of an forward iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of an sentinel for Iter1.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an forward iterator.
Parameters

• iter – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The copy algorithm returns the pair of the input iterator last and the output iterator
to the element in the destination range, one past the last element copied.

template<typename Rng, typename FwdIter>
ranges::copy_result<typename hpx::traits::range_traits<Rng>::iterator_type, FwdIter> copy(Rng

&&rng,
FwdIter
dest)

Copies the elements in the range rng to another range beginning at dest.

Note: Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an forward iterator.

2.8. API reference 613

HPX Documentation, master

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The copy algorithm returns the pair of the input iterator last and the output iterator
to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result<ExPolicy, ranges::copy_n_result<FwdIter1, FwdIter2>>::type copy_n(ExPolicy

&&pol-
icy,
FwdIter1
first,
Size
count,
FwdIter2
dest)

Copies the elements in the range [first, first + count), starting from first and proceeding to first + count
- 1., to another range beginning at dest.

The assignments in the parallel copy_n algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy_n algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
• FwdIter2 – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an forward iterator.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
• dest – Refers to the beginning of the destination range.

Returns The copy_n algorithm returns a hpx::future<ranges::copy_n_result<FwdIter1,
FwdIter2> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::copy_n_result<FwdIter1, FwdIter2> otherwise. The
copy algorithm returns the pair of the input iterator forwarded to the first element after the
last in the input sequence and the output iterator to the element in the destination range, one
past the last element copied.

template<typename FwdIter1, typename Size, typename FwdIter2>

614 Chapter 2. What’s so special about HPX?

HPX Documentation, master

ranges::copy_n_result<FwdIter1, FwdIter2> copy_n(FwdIter1 first, Size count, FwdIter2 dest)
Copies the elements in the range [first, first + count), starting from first and proceeding to first + count
- 1., to another range beginning at dest.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters
• FwdIter1 – The type of the source iterators used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Size – The type of the argument specifying the number of elements to apply f to.
• FwdIter2 – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an forward iterator.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied
to.

• dest – Refers to the beginning of the destination range.
Returns The copy algorithm returns the pair of the input iterator forwarded to the first element

after the last in the input sequence and the output iterator to the element in the destination
range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter, typename
Pred, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, ranges::copy_if_result<FwdIter1, FwdIter>>::type copy_if(ExPolicy

&&pol-
icy,
FwdIter1
iter,
Sent1
sent,
FwdIter
dest,
Pred
&&pred,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by [first, last) to another range beginning at dest. The order
of the elements that are not removed is preserved.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

2.8. API reference 615

HPX Documentation, master

• FwdIter1 – The type of the begin source iterators used (deduced). This iterator type
must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for FwdIter1.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• iter – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1 .

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The copy_if algorithm returns a hpx::future<ranges::copy_if_result<iterator_t<Rng>,
FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::copy_if_result<iterator_t<Rng>, FwdIter2> oth-
erwise. The copy_if algorithm returns the pair of the input iterator last and the output
iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename Rng, typename FwdIter, typename Pred, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, ranges::copy_if_result<typename hpx::traits::range_traits<Rng>::iterator_type, FwdIter>>::type copy_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
FwdIter
dest,
Pred
&&pred,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by rng to another range beginning at dest. The order of the
elements that are not removed is preserved.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

616 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1 .

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The copy_if algorithm returns a hpx::future<ranges::copy_if_result<iterator_t<Rng>,
FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::copy_if_result<iterator_t<Rng>, FwdIter2> oth-
erwise. The copy_if algorithm returns the pair of the input iterator last and the output
iterator to the element in the destination range, one past the last element copied.

template<typename FwdIter1, typename Sent1, typename FwdIter, typename Pred, typename Proj =
hpx::identity>
ranges::copy_if_result<FwdIter1, FwdIter> copy_if(FwdIter1 iter, Sent1 sent, FwdIter dest, Pred

&&pred, Proj &&proj = Proj())
Copies the elements in the range, defined by [first, last) to another range beginning at dest. The order
of the elements that are not removed is preserved.

Template Parameters
• FwdIter1 – The type of the begin source iterators used (deduced). This iterator type

must meet the requirements of an forward iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of an sentinel for FwdIter1.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• iter – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

2.8. API reference 617

HPX Documentation, master

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1 .

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The copy_if algorithm returns the pair of the input iterator last and the output iterator
to the element in the destination range, one past the last element copied.

template<typename Rng, typename FwdIter, typename Pred, typename Proj = hpx::identity>
ranges::copy_if_result<typename hpx::traits::range_traits<Rng>::iterator_type, FwdIter> copy_if(Rng

&&rng,
FwdIter
dest,
Pred
&&pred,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by rng to another range beginning at dest. The order of the
elements that are not removed is preserved.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1 .

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The copy_if algorithm returns the pair of the input iterator last and the output iterator
to the element in the destination range, one past the last element copied.

618 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::ranges::count, hpx::ranges::count_if

Defined in header hpx/algorithm.hpp640.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Rng, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::difference_type>::type count(ExPolicy

&&pol-
icy,
Rng
&&rng,
T
const
&value,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts the elements that are equal to the given value.

The comparisons in the parallel count algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first comparisons.

Note: The comparisons in the parallel count algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the comparisons.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• T – The type of the value to search for (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
640 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 619

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• value – The value to search for.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The count algorithm returns a hpx::future<difference_type> if the execution policy

is of type sequenced_task_policy or parallel_task_policy and returns difference_type other-
wise (where difference_type is defined by std::iterator_traits<FwdIter>::difference_type.
The count algorithm returns the number of elements satisfying the given criteria.

template<typename ExPolicy, typename Iter, typename Sent, typename Proj = hpx::identity,
typename T = typename hpx::parallel::traits::projected<Iter, Proj>::value_type>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<Iter>::difference_type>::type count(ExPolicy

&&pol-
icy,
Iter
first,
Sent
last,
T
const
&value,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts the elements that are equal to the given value.

The comparisons in the parallel count algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first comparisons.

Note: The comparisons in the parallel count algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the comparisons.

• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• T – The type of the value to search for (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.

620 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• value – The value to search for.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The count algorithm returns a hpx::future<difference_type> if the execution policy

is of type sequenced_task_policy or parallel_task_policy and returns difference_type other-
wise (where difference_type is defined by std::iterator_traits<FwdIter>::difference_type.
The count algorithm returns the number of elements satisfying the given criteria.

template<typename Rng, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type>
std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::difference_type count(Rng

&&rng,
T
const
&value,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts the elements that are equal to the given value.

Note: Complexity: Performs exactly last - first comparisons.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• T – The type of the value to search for (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• value – The value to search for.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The count algorithm returns the number of elements satisfying the given criteria.

template<typename Iter, typename Sent, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<Iter, Proj>::value_type>
std::iterator_traits<Iter>::difference_type count(Iter first, Sent last, T const &value, Proj &&proj =

Proj())
Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts the elements that are equal to the given value.

Note: Complexity: Performs exactly last - first comparisons.

Template Parameters
• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• T – The type of the value to search for (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

2.8. API reference 621

HPX Documentation, master

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• value – The value to search for.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The count algorithm returns the number of elements satisfying the given criteria.

template<typename ExPolicy, typename Rng, typename F, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::difference_type>::type count_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts elements for which predicate f returns true.

Note: Complexity: Performs exactly last - first applications of the predicate.

Note: The assignments in the parallel count_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

Note: The assignments in the parallel count_if algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the comparisons.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of count_if requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

622 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The count_if algorithm returns hpx::future<difference_type> if the
execution policy is of type sequenced_task_policy or parallel_task_policy
and returns difference_type otherwise (where difference_type is defined by
std::iterator_traits<FwdIter>::difference_type. The count algorithm returns the number
of elements satisfying the given criteria.

template<typename ExPolicy, typename Iter, typename Sent, typename F, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<Iter>::difference_type>::type count_if(ExPolicy

&&pol-
icy,
Iter
first,
Sent
last,
F
&&f,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts elements for which predicate f returns true.

Note: Complexity: Performs exactly last - first applications of the predicate.

Note: The assignments in the parallel count_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

Note: The assignments in the parallel count_if algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the comparisons.

• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of count_if requires F to meet the requirements of Copy-

2.8. API reference 623

HPX Documentation, master

Constructible.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The count_if algorithm returns hpx::future<difference_type> if the
execution policy is of type sequenced_task_policy or parallel_task_policy
and returns difference_type otherwise (where difference_type is defined by
std::iterator_traits<FwdIter>::difference_type. The count algorithm returns the number
of elements satisfying the given criteria.

template<typename Rng, typename F, typename Proj = hpx::identity>
std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::difference_type count_if(Rng

&&rng,
F
&&f,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts elements for which predicate f returns true.

Note: Complexity: Performs exactly last - first applications of the predicate.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of count_if requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-

624 Chapter 2. What’s so special about HPX?

HPX Documentation, master

jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The count algorithm returns the number of elements satisfying the given criteria.

template<typename Iter, typename Sent, typename F, typename Proj = hpx::identity>
std::iterator_traits<Iter>::difference_type count_if(Iter first, Sent last, F &&f, Proj &&proj = Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts elements for which predicate f returns true.

Note: Complexity: Performs exactly last - first applications of the predicate.

Template Parameters
• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of count_if requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The count algorithm returns the number of elements satisfying the given criteria.

hpx::ranges::destroy, hpx::ranges::destroy_n

Defined in header hpx/algorithm.hpp641.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

641 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 625

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Rng>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> destroy(ExPolicy

&&pol-
icy,
Rng
&&rng)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, last).

The operations in the parallel destroy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The operations in the parallel destroy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first operations.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.

Returns The destroy algorithm returns a hpx::future<void>, if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename ExPolicy, typename Iter, typename Sent>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> destroy(ExPolicy &&policy, Iter first,

Sent last)
Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, last).

The operations in the parallel destroy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The operations in the parallel destroy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first operations.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterators used for the range (deduced).

626 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The destroy algorithm returns a hpx::future<void>, if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename Rng>
hpx::traits::range_iterator<Rng>::type destroy(Rng &&rng)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, last).

Note: Complexity: Performs exactly last - first operations.

Template Parameters Rng – The type of the source range used (deduced). The iterators
extracted from this range type must meet the requirements of an input iterator.

Parameters rng – Refers to the sequence of elements the algorithm will be applied to.
Returns The destroy algorithm returns void.

template<typename Iter, typename Sent>
Iter destroy(Iter first, Sent last)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, last).

Note: Complexity: Performs exactly last - first operations.

Template Parameters
• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
Returns The destroy algorithm returns void.

template<typename ExPolicy, typename FwdIter, typename Size>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type destroy_n(ExPolicy &&policy,

FwdIter first, Size
count)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, first +
count).

The operations in the parallel destroy_n algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The operations in the parallel destroy_n algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

2.8. API reference 627

HPX Documentation, master

Note: Complexity: Performs exactly count operations, if count > 0, no assignments otherwise.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply this algo-
rithm to.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
Returns The destroy_n algorithm returns a hpx::future<FwdIter> if the execution policy is

of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
destroy_n algorithm returns the iterator to the element in the source range, one past the last
element constructed.

template<typename FwdIter, typename Size>
FwdIter destroy_n(FwdIter first, Size count)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, first +
count).

Note: Complexity: Performs exactly count operations, if count > 0, no assignments otherwise.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an forward iterator.
• Size – The type of the argument specifying the number of elements to apply this algo-

rithm to.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied
to.

Returns The destroy_n algorithm returns the iterator to the element in the source range, one
past the last element constructed.

hpx::ranges::ends_with

Defined in header hpx/algorithm.hpp642.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

642 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

628 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

namespace ranges

Functions

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred =
ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
bool ends_with(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2, Pred &&pred = Pred(), Proj1 &&proj1

= Proj1(), Proj2 &&proj2 = Proj2())
Checks whether the second range defined by [first1, last1) matches the suffix of the first range defined
by [first2, last2)

The assignments in the parallel ends_with algorithm invoked without an execution policy object exe-
cute in sequential order in the calling thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters
• Iter1 – The type of the begin source iterators used (deduced). This iterator type must

meet the requirements of an input iterator.
• Sent1 – The type of the end source iterators used(deduced). This iterator type must meet

the requirements of an sentinel for Iter1.
• Iter2 – The type of the begin destination iterators used deduced). This iterator type

must meet the requirements of a input iterator.
• Sent2 – The type of the end destination iterators used (deduced). This iterator type must

meet the requirements of an sentinel for Iter2.
• Pred – The binary predicate that compares the projected elements.
• Proj1 – The type of an optional projection function for the source range. This defaults

to hpx::identity
• Proj2 – The type of an optional projection function for the destination range. This de-

faults to hpx::identity
Parameters

• first1 – Refers to the beginning of the source range.
• last1 – Sentinel value referring to the end of the source range.
• first2 – Refers to the beginning of the destination range.
• last2 – Sentinel value referring to the end of the destination range.
• pred – Specifies the binary predicate function (or function object) which will be invoked

for comparison of the elements in the in two ranges projected by proj1 and proj2 respec-
tively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements in the source range as a projection operation before the actual predicate is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate is
invoked.

Returns The ends_with algorithm returns bool. The ends_with algorithm returns a boolean
with the value true if the second range matches the suffix of the first range, false otherwise.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter2, typename
Sent2, typename Pred = ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>

2.8. API reference 629

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, bool>::type ends_with(ExPolicy &&policy, FwdIter1
first1, Sent1 last1, FwdIter2
first2, Sent2 last2, Pred
&&pred = Pred(), Proj1
&&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Checks whether the second range defined by [first1, last1) matches the suffix of the first range defined
by [first2, last2)

The assignments in the parallel ends_with algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel ends_with algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the begin source iterators used (deduced). This iterator type
must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used(deduced). This iterator type must meet
the requirements of an sentinel for Iter1.

• FwdIter2 – The type of the begin destination iterators used deduced). This iterator type
must meet the requirements of a forward iterator.

• Sent2 – The type of the end destination iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter2.

• Pred – The binary predicate that compares the projected elements.
• Proj1 – The type of an optional projection function for the source range. This defaults

to hpx::identity
• Proj2 – The type of an optional projection function for the destination range. This de-

faults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the source range.
• last1 – Sentinel value referring to the end of the source range.
• first2 – Refers to the beginning of the destination range.
• last2 – Sentinel value referring to the end of the destination range.
• pred – Specifies the binary predicate function (or function object) which will be invoked

for comparison of the elements in the in two ranges projected by proj1 and proj2 respec-
tively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements in the source range as a projection operation before the actual predicate is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate is
invoked.

Returns The ends_with algorithm returns a hpx::future<bool> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns bool otherwise. The

630 Chapter 2. What’s so special about HPX?

HPX Documentation, master

ends_with algorithm returns a boolean with the value true if the second range matches the
suffix of the first range, false otherwise.

template<typename Rng1, typename Rng2, typename Pred = ranges::equal_to, typename Proj1 =
hpx::identity, typename Proj2 = hpx::identity>
bool ends_with(Rng1 &&rng1, Rng2 &&rng2, Pred &&pred = Pred(), Proj1 &&proj1 = Proj1(),

Proj2 &&proj2 = Proj2())
Checks whether the second range rng2 matches the suffix of the first range rng1.

The assignments in the parallel ends_with algorithm invoked without an execution policy object exe-
cute in sequential order in the calling thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Rng2 – The type of the destination range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
• Pred – The binary predicate that compares the projected elements.
• Proj1 – The type of an optional projection function for the source range. This defaults

to hpx::identity
• Proj2 – The type of an optional projection function for the destination range. This de-

faults to hpx::identity
Parameters

• rng1 – Refers to the source range.
• rng2 – Refers to the destination range.
• pred – Specifies the binary predicate function (or function object) which will be invoked

for comparison of the elements in the in two ranges projected by proj1 and proj2 respec-
tively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements in the source range as a projection operation before the actual predicate is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate is
invoked.

Returns The ends_with algorithm returns bool. The ends_with algorithm returns a boolean
with the value true if the second range matches the suffix of the first range, false otherwise.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = ranges::equal_to,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, bool>::type ends_with(ExPolicy &&policy, Rng1

&&rng1, Rng2 &&rng2,
Pred &&pred = Pred(),
Proj1 &&proj1 = Proj1(),
Proj2 &&proj2 =
Proj2())

Checks whether the second range rng2 matches the suffix of the first range rng1.

The assignments in the parallel ends_with algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

2.8. API reference 631

HPX Documentation, master

The assignments in the parallel ends_with algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Rng2 – The type of the destination range used (deduced). The iterators extracted from
this range type must meet the requirements of an forward iterator.

• Pred – The binary predicate that compares the projected elements.
• Proj1 – The type of an optional projection function for the source range. This defaults

to hpx::identity
• Proj2 – The type of an optional projection function for the destination range. This de-

faults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the source range.
• rng2 – Refers to the destination range.
• pred – Specifies the binary predicate function (or function object) which will be invoked

for comparison of the elements in the in two ranges projected by proj1 and proj2 respec-
tively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements in the source range as a projection operation before the actual predicate is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate is
invoked.

Returns The ends_with algorithm returns a hpx::future<bool> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns bool otherwise. The
ends_with algorithm returns a boolean with the value true if the second range matches the
suffix of the first range, false otherwise.

hpx::ranges::equal

Defined in header hpx/algorithm.hpp643.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

643 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

632 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Pred = equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> equal(ExPolicy &&policy, Iter1 first1,

Sent1 last1, Iter2 first2, Sent2
last2, Pred &&op = Pred(), Proj1
&&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel equal algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate f.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals
*(first2 + (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Sent1 – The type of the source iterators used for the end of the first range (deduced).
• Iter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the source iterators used for the end of the second range (deduced).
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second range. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.

2.8. API reference 633

HPX Documentation, master

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The equal algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The equal al-
gorithm returns true if the elements in the two ranges are equal, otherwise it returns false.
If the length of the range [first1, last1) does not equal the length of the range [first2, last2),
it returns false.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = equal_to, typename
Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> equal(ExPolicy &&policy, Rng1

&&rng1, Rng2 &&rng2, Pred
&&op = Pred(), Proj1 &&proj1 =
Proj1(), Proj2 &&proj2 = Proj2())

Returns true if the range [first1, last1) is equal to the range starting at first2, and false otherwise.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel equal algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last1 - first1 applications of the predicate f.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals
*(first2 + (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the first source range used (deduced). The iterators extracted from
this range type must meet the requirements of an forward iterator.

• Rng2 – The type of the second source range used (deduced). The iterators extracted from
this range type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

634 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Proj1 – The type of an optional projection function applied to the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second range. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The equal algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The equal al-
gorithm returns true if the elements in the two ranges are equal, otherwise it returns false.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred =
equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
bool equal(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2, Pred &&op = Pred(), Proj1 &&proj1 =

Proj1(), Proj2 &&proj2 = Proj2())
Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise.

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate f.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals
*(first2 + (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters
• Iter1 – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Sent1 – The type of the source iterators used for the end of the first range (deduced).
• Iter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the source iterators used for the end of the second range (deduced).
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second range. This
defaults to hpx::identity

Parameters

2.8. API reference 635

HPX Documentation, master

• first1 – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last1 – Refers to the end of the sequence of elements of the first range the algorithm
will be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The equal algorithm returns true if the elements in the two ranges are equal, other-
wise it returns false. If the length of the range [first1, last1) does not equal the length of the
range [first2, last2), it returns false.

template<typename Rng1, typename Rng2, typename Pred = equal_to, typename Proj1 = hpx::identity,
typename Proj2 = hpx::identity>
bool equal(Rng1 &&rng1, Rng2 &&rng2, Pred &&op = Pred(), Proj1 &&proj1 = Proj1(), Proj2

&&proj2 = Proj2())
Returns true if the range [first1, last1) is equal to the range starting at first2, and false otherwise.

Note: Complexity: At most last1 - first1 applications of the predicate f.

Note: The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals
*(first2 + (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Template Parameters
• Rng1 – The type of the first source range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
• Rng2 – The type of the second source range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second range. This
defaults to hpx::identity

Parameters
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.

636 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• op – The binary predicate which returns true if the elements should be treated as equal.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The equal algorithm returns true if the elements in the two ranges are equal, other-
wise it returns false.

hpx::ranges::exclusive_scan

Defined in header hpx/algorithm.hpp644.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename InIter, typename Sent, typename OutIter, typename T = typename
std::iterator_traits<InIter>::value_type, typename Op = std::plus<T>>
exclusive_scan_result<InIter, OutIter> exclusive_scan(InIter first, Sent last, OutIter dest, T init, Op

&&op = Op())
Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, *first, . . . , *(first + (i - result) - 1)).

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

644 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 637

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Template Parameters
• FwdIter1 – The type of the source iterators used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter1.
• FwdIter2 – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an forward iterator.
• T – The type of the value to be used as initial (and intermediate) values (deduced).
• Op – The type of the binary function object used for the reduction operation.

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• init – The initial value for the generalized sum.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

Returns The exclusive_scan algorithm returns an input iterator to the point denoted by the
sentinel and an output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename T
= typename std::iterator_traits<FwdIter1>::value_type, typename Op = std::plus<T>>
parallel::util::detail::algorithm_result<ExPolicy, exclusive_scan_result<FwdIter1, FwdIter2>>::type exclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
Sent
last,
FwdIter2
dest,
T
init,
Op
&&op
=
Op())

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, *first, . . . , *(first + (i - result) - 1)).

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in

638 Chapter 2. What’s so special about HPX?

HPX Documentation, master

unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter1.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
• Op – The type of the binary function object used for the reduction operation.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• init – The initial value for the generalized sum.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

Returns The exclusive_scan algorithm returns a hpx::future<util::in_out_result<FwdIter1,
FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns util::in_out_result<FwdIter1, FwdIter2> otherwise. The ex-
clusive_scan algorithm returns an input iterator to the point denoted by the sentinel and an
output iterator to the element in the destination range, one past the last element copied.

template<typename Rng, typename O, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type, typename Op = std::plus<T>>
exclusive_scan_result<traits::range_iterator_t<Rng>, O> exclusive_scan(Rng &&rng, O dest, T init,

Op &&op = Op())

2.8. API reference 639

HPX Documentation, master

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(+, init, *first, . . . , *(first + (i - result) - 1))

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate std::plus<T>.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:
• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• O – The type of the iterator representing the destination range (deduced). This iterator

type must meet the requirements of an forward iterator.
• T – The type of the value to be used as initial (and intermediate) values (deduced).
• Op – The type of the binary function object used for the reduction operation.

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• init – The initial value for the generalized sum.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

Returns The exclusive_scan algorithm returns an input iterator to the point denoted by the
sentinel and an output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng, typename O, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type, typename Op = std::plus<T>>

640 Chapter 2. What’s so special about HPX?

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, exclusive_scan_result<traits::range_iterator_t<Rng>, O>> exclusive_scan(ExPolicy
&&pol-
icy,
Rng
&&rng,
O
dest,
T
init,
Op
&&op
=
Op())

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(+, init, *first, . . . , *(first + (i - result) - 1))

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate std::plus<T>.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:
• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• O – The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
• Op – The type of the binary function object used for the reduction operation.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• init – The initial value for the generalized sum.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate

2.8. API reference 641

HPX Documentation, master

should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

Returns The exclusive_scan algorithm returns a hpx::future<util::in_out_result
<traits::range_iterator_t<Rng>, O>> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns util::in_out_result
<traits::range_iterator_t<Rng>, O> otherwise. The exclusive_scan algorithm returns
an input iterator to the point denoted by the sentinel and an output iterator to the element
in the destination range, one past the last element copied.

hpx::ranges::fill, hpx::ranges::fill_n

Defined in header hpx/algorithm.hpp645.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Rng, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng>::iterator_type>::type fill(ExPolicy

&&pol-
icy,
Rng
&&rng,
T
const
&value)

Assigns the given value to the elements in the range [first, last).

The comparisons in the parallel fill algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel fill algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
645 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

642 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• T – The type of the value to be assigned (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• value – The value to be assigned.

Returns The fill algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where
difference_type is defined by void.

template<typename ExPolicy, typename Iter, typename Sent, typename T = typename
std::iterator_traits<Iter>::value_type>
hpx::parallel::util::detail::algorithm_result<ExPolicy, Iter>::type fill(ExPolicy &&policy, Iter first,

Sent last, T const &value)
Assigns the given value to the elements in the range [first, last).

The comparisons in the parallel fill algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel fill algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• T – The type of the value to be assigned (deduced).

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• value – The value to be assigned.

Returns The fill algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where
difference_type is defined by void.

template<typename Rng, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
hpx::traits::range_iterator_t<Rng> fill(Rng &&rng, T const &value)

Assigns the given value to the elements in the range [first, last).

2.8. API reference 643

HPX Documentation, master

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• T – The type of the value to be assigned (deduced).

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• value – The value to be assigned.

Returns The fill algorithm returns void.

template<typename Iter, typename Sent, typename T = typename
std::iterator_traits<Iter>::value_type>
Iter fill(Iter first, Sent last, T const &value)

Assigns the given value to the elements in the range [first, last).

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• Iter – The type of the source iterators used for the range (deduced).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• T – The type of the value to be assigned (deduced).

Parameters
• first – Refers to the beginning of the sequence of elements of the range the algorithm

will be applied to.
• last – Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• value – The value to be assigned.

Returns The fill algorithm returns void.

template<typename ExPolicy, typename Rng, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, hpx::traits::range_iterator_t<Rng>> fill_n(ExPolicy

&&pol-
icy,
Rng
&&rng,
T
const
&value)

Assigns the given value value to the first count elements in the range beginning at first if count > 0.
Does nothing otherwise.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Template Parameters

644 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• T – The type of the value to be assigned (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• value – The value to be assigned.

Returns The fill_n algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where
difference_type is defined by void.

template<typename ExPolicy, typename FwdIter, typename Size, typename T = typename
std::iterator_traits<FwdIter>::value_type>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type fill_n(ExPolicy &&policy,

FwdIter first, Size count,
T const &value)

Assigns the given value value to the first count elements in the range beginning at first if count > 0.
Does nothing otherwise.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, for count > 0.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
• T – The type of the value to be assigned (deduced).

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
• value – The value to be assigned.

Returns The fill_n algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where
difference_type is defined by void.

template<typename Rng, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>

2.8. API reference 645

HPX Documentation, master

hpx::traits::range_traits<Rng>::iterator_type fill_n(Rng &&rng, T const &value)
Assigns the given value value to the first count elements in the range beginning at first if count > 0.
Does nothing otherwise.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• T – The type of the value to be assigned (deduced).

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• value – The value to be assigned.

Returns The fill_n algorithm returns an output iterator that compares equal to last.

template<typename FwdIter, typename Size, typename T = typename
std::iterator_traits<FwdIter>::value_type>
FwdIter fill_n(Iterator first, Size count, T const &value)

Assigns the given value value to the first count elements in the range beginning at first if count > 0.
Does nothing otherwise.

Note: Complexity: Performs exactly count assignments, for count > 0.

Template Parameters
• Iterator – The type of the source range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
• Size – The type of the argument specifying the number of elements to apply f to.
• T – The type of the value to be assigned (deduced).

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
• value – The value to be assigned.

Returns The fill_n algorithm returns an output iterator that compares equal to last.

hpx::ranges::find, hpx::ranges::find_if, hpx::ranges::find_if_not, hpx::ranges::find_end,
hpx::ranges::find_first_of

Defined in header hpx/algorithm.hpp646.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

646 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

646 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Iter, typename Sent, typename Proj = hpx::identity,
typename T = typename hpx::parallel::traits::projected<Iter, Proj>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> find(ExPolicy &&policy, Iter first, Sent

last, T const &val, Proj &&proj =
Proj())

Returns the first element in the range [first, last) that is equal to value

The comparison operations in the parallel find algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the operator==().

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the begin source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• T – The type of the value to find (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last – Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• val – the value to compare the elements to
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The find algorithm returns a hpx::future<FwdIter> if the execution policy is of type

sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find
algorithm returns the first element in the range [first,last) that is equal to val. If no such
element in the range of [first,last) is equal to val, then the algorithm returns last.

template<typename ExPolicy, typename Rng, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type>

2.8. API reference 647

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> find(ExPolicy
&&pol-
icy, Rng
&&rng,
T const
&val,
Proj
&&proj
=
Proj())

Returns the first element in the range [first, last) that is equal to value

The comparison operations in the parallel find algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the operator==().

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• T – The type of the value to find (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• val – the value to compare the elements to
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The find algorithm returns a hpx::future<FwdIter> if the execution policy is of type

sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find
algorithm returns the first element in the range [first,last) that is equal to val. If no such
element in the range of [first,last) is equal to val, then the algorithm returns last.

template<typename Iter, typename Sent, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<Iter, Proj>::value_type>
Iter find(Iter first, Sent last, T const &val, Proj &&proj = Proj())

Returns the first element in the range [first, last) that is equal to value

Note: Complexity: At most last - first applications of the operator==().

Template Parameters
• Iter – The type of the begin source iterators used (deduced). This iterator type must

meet the requirements of an forward iterator.

648 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• T – The type of the value to find (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last – Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• val – the value to compare the elements to
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The find algorithm returns the first element in the range [first,last) that is equal to

val. If no such element in the range of [first,last) is equal to val, then the algorithm returns
last.

template<typename Rng, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type>
hpx::traits::range_iterator_t<Rng> find(Rng &&rng, T const &val, Proj &&proj = Proj())

Returns the first element in the range [first, last) that is equal to value

The comparison operations in the parallel find algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the operator==().

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• T – The type of the value to find (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• val – the value to compare the elements to
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The find algorithm returns a hpx::future<FwdIter> if the execution policy is of type

sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find
algorithm returns the first element in the range [first,last) that is equal to val. If no such
element in the range of [first,last) is equal to val, then the algorithm returns last.

template<typename ExPolicy, typename Iter, typename Sent, typename Pred, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> find_if(ExPolicy &&policy, Iter first,

Sent last, Pred &&pred, Proj
&&proj = Proj())

Returns the first element in the range [first, last) for which predicate pred returns true

2.8. API reference 649

HPX Documentation, master

The comparison operations in the parallel find_if algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_if algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last – Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• pred – The unary predicate which returns true for the required element. The signature

of the predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The find_if algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
find_if algorithm returns the first element in the range [first,last) that satisfies the predicate
f. If no such element exists that satisfies the predicate f, the algorithm returns last.

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> find_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred,
Proj
&&proj
=
Proj())

650 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns the first element in the range rng for which predicate pred returns true

The comparison operations in the parallel find_if algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_if algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – The unary predicate which returns true for the required element. The signature

of the predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The find_if algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
find_if algorithm returns the first element in the range [first,last) that satisfies the predicate
f. If no such element exists that satisfies the predicate f, the algorithm returns last.

template<typename Iter, typename Sent, typename Pred, typename Proj = hpx::identity>
Iter find_if(Iter first, Sent last, Pred &&pred, Proj &&proj = Proj())

Returns the first element in the range [first, last) for which predicate pred returns true

Note: Complexity: At most last - first applications of the predicate.

Template Parameters
• Iter – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of a forward iterator.
• Sent – The type of the end source iterators used (deduced). This iterator type must meet

the requirements of an sentinel for Iter.

2.8. API reference 651

HPX Documentation, master

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• pred – The unary predicate which returns true for the required element. The signature
of the predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The find_if algorithm returns the first element in the range [first,last) that satisfies
the predicate f. If no such element exists that satisfies the predicate f, the algorithm returns
last.

template<typename Rng, typename Pred, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> find_if(Rng &&rng, Pred &&pred, Proj &&proj = Proj())

Returns the first element in the range rng for which predicate pred returns true

Note: Complexity: At most last - first applications of the predicate.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – The unary predicate which returns true for the required element. The signature

of the predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The find_if algorithm returns the first element in the range [first,last) that satisfies
the predicate f. If no such element exists that satisfies the predicate f, the algorithm returns
last.

template<typename ExPolicy, typename Iter, typename Sent, typename Pred, typename Proj =
hpx::identity>

652 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, Iter>::type find_if_not(ExPolicy &&policy,
Iter first, Sent last, Pred
&&pred, Proj &&proj
= Proj())

Returns the first element in the range [first, last) for which predicate f returns false

The comparison operations in the parallel find_if_not algorithm invoked with an execution policy ob-
ject of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_if_not algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of a forward iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last – Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• pred – The unary predicate which returns false for the required element. The signature

of the predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The find_if_not algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
find_if_not algorithm returns the first element in the range [first, last) that does not satisfy
the predicate f. If no such element exists that does not satisfy the predicate f, the algorithm
returns last.

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = hpx::identity>

2.8. API reference 653

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> find_if_not(ExPolicy
&&pol-
icy,
Rng
&&rng,
Pred
&&pred,
Proj
&&proj
=
Proj())

Returns the first element in the range rng for which predicate f returns false

The comparison operations in the parallel find_if_not algorithm invoked with an execution policy ob-
ject of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_if_not algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last - first applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – The unary predicate which returns false for the required element. The signature

of the predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The find_if_not algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
find_if_not algorithm returns the first element in the range [first, last) that does not satisfy
the predicate f. If no such element exists that does not satisfy the predicate f, the algorithm
returns last.

template<typename Iter, typename Sent, typename Pred, typename Proj = hpx::identity>

654 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Iter find_if_not(Iter first, Sent last, Pred &&pred, Proj &&proj = Proj())
Returns the first element in the range [first, last) for which predicate f returns false

Note: Complexity: At most last - first applications of the predicate.

Template Parameters
• Iter – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of a forward iterator.
• Sent – The type of the end source iterators used (deduced). This iterator type must meet

the requirements of an sentinel for Iter.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements of the first range the algo-
rithm will be applied to.

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• pred – The unary predicate which returns false for the required element. The signature
of the predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The find_if_not algorithm returns the first element in the range [first, last) that does
not satisfy the predicate f. If no such element exists that does not satisfy the predicate f, the
algorithm returns last.

template<typename Rng, typename Pred, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> find_if_not(Rng &&rng, Pred &&pred, Proj &&proj = Proj())

Returns the first element in the range rng for which predicate f returns false

Note: Complexity: At most last - first applications of the predicate.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – The unary predicate which returns false for the required element. The signature

of the predicate should be equivalent to:

2.8. API reference 655

HPX Documentation, master

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The find_if_not algorithm returns the first element in the range [first, last) that does
not satisfy the predicate f. If no such element exists that does not satisfy the predicate f, the
algorithm returns last.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = equal_to, typename
Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng1>> find_end(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Returns the last subsequence of elements rng2 found in the range rng using the given predicate f to
compare elements.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

This overload of find_end is available if the user decides to provide the algorithm their own predicate
op.

Note: Complexity: at most S*(N-S+1) comparisons where S = distance(begin(rng2), end(rng2)) and
N = distance(begin(rng), end(rng)).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it

656 Chapter 2. What’s so special about HPX?

HPX Documentation, master

executes the assignments.
• Rng1 – The type of the first source range (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• Rng2 – The type of the second source range (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 and Type2 must be such that objects of types itera-
tor_t<Rng> and iterator_t<Rng2> can be dereferenced and then implicitly converted to
Type1 and Type2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements of the first range of type dereferenced iterator_t<Rng1> as a projection
operation before the function op is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range of type dereferenced iterator_t<Rng2> as a projection
operation before the function op is invoked.

Returns The find_end algorithm returns a hpx::future<iterator_t<Rng> > if the execu-
tion policy is of type sequenced_task_policy or parallel_task_policy and returns itera-
tor_t<Rng> otherwise. The find_end algorithm returns an iterator to the beginning of the
last subsequence rng2 in range rng. If the length of the subsequence rng2 is greater than
the length of the range rng, end(rng) is returned. Additionally if the size of the subsequence
is empty or no subsequence is found, end(rng) is also returned.

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Pred = equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter1> find_end(ExPolicy &&policy, Iter1

first1, Sent1 last1, Iter2 first2,
Sent2 last2, Pred &&op =
Pred(), Proj1 &&proj1 =
Proj1(), Proj2 &&proj2 =
Proj2())

Returns the last subsequence of elements [first2, last2) found in the range [first1, last1) using the given
predicate f to compare elements.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in

2.8. API reference 657

HPX Documentation, master

unspecified threads, and indeterminately sequenced within each thread.

This overload of find_end is available if the user decides to provide the algorithm their own predicate
op.

Note: Complexity: at most S*(N-S+1) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter1 – The type of the begin source iterators for the first sequence used (deduced). This
iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators for the first sequence used (deduced). This
iterator type must meet the requirements of an sentinel for Iter1.

• Iter2 – The type of the begin source iterators for the second sequence used (deduced).
This iterator type must meet the requirements of an forward iterator.

• Sent2 – The type of the end source iterators for the second sequence used (deduced).
This iterator type must meet the requirements of an sentinel for Iter2.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1 – Refers to the end of the first sequence of elements the algorithm will be applied

to.
• first2 – Refers to the beginning of the second sequence of elements the algorithm will

be applied to.
• last2 – Refers to the end of the second sequence of elements the algorithm will be

applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 and Type2 must be such that objects of types itera-
tor_t<Rng> and iterator_t<Rng2> can be dereferenced and then implicitly converted to
Type1 and Type2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements of the first range of type dereferenced iterator_t<Rng1> as a projection
operation before the function op is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range of type dereferenced iterator_t<Rng2> as a projection
operation before the function op is invoked.

658 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The find_end algorithm returns a hpx::future<iterator_t<Rng> > if the execu-
tion policy is of type sequenced_task_policy or parallel_task_policy and returns itera-
tor_t<Rng> otherwise. The find_end algorithm returns an iterator to the beginning of the
last subsequence rng2 in range rng. If the length of the subsequence rng2 is greater than
the length of the range rng, end(rng) is returned. Additionally if the size of the subsequence
is empty or no subsequence is found, end(rng) is also returned.

template<typename Rng1, typename Rng2, typename Pred = equal_to, typename Proj1 = hpx::identity,
typename Proj2 = hpx::identity>
hpx::traits::range_iterator_t<Rng1> find_end(Rng1 &&rng1, Rng2 &&rng2, Pred &&op = Pred(),

Proj1 &&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Returns the last subsequence of elements rng2 found in the range rng using the given predicate f to
compare elements.

This overload of find_end is available if the user decides to provide the algorithm their own predicate
op.

Note: Complexity: at most S*(N-S+1) comparisons where S = distance(begin(rng2), end(rng2)) and
N = distance(begin(rng), end(rng)).

Template Parameters
• Rng1 – The type of the first source range (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• Rng2 – The type of the second source range (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 and Type2 must be such that objects of types itera-
tor_t<Rng> and iterator_t<Rng2> can be dereferenced and then implicitly converted to
Type1 and Type2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements of the first range of type dereferenced iterator_t<Rng1> as a projection
operation before the function op is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range of type dereferenced iterator_t<Rng2> as a projection
operation before the function op is invoked.

Returns The find_end algorithm returns an iterator to the beginning of the last subsequence
rng2 in range rng. If the length of the subsequence rng2 is greater than the length of the

2.8. API reference 659

HPX Documentation, master

range rng, end(rng) is returned. Additionally if the size of the subsequence is empty or no
subsequence is found, end(rng) is also returned.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred =
equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
Iter1 find_end(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2, Pred &&op = Pred(), Proj1 &&proj1 =

Proj1(), Proj2 &&proj2 = Proj2())
Returns the last subsequence of elements [first2, last2) found in the range [first1, last1) using the given
predicate f to compare elements.

This overload of find_end is available if the user decides to provide the algorithm their own predicate
op.

Note: Complexity: at most S*(N-S+1) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters
• Iter1 – The type of the begin source iterators for the first sequence used (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent1 – The type of the end source iterators for the first sequence used (deduced). This

iterator type must meet the requirements of an sentinel for Iter1.
• Iter2 – The type of the begin source iterators for the second sequence used (deduced).

This iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the end source iterators for the second sequence used (deduced).

This iterator type must meet the requirements of an sentinel for Iter2.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1 – Refers to the end of the first sequence of elements the algorithm will be applied

to.
• first2 – Refers to the beginning of the second sequence of elements the algorithm will

be applied to.
• last2 – Refers to the end of the second sequence of elements the algorithm will be

applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 and Type2 must be such that objects of types itera-
tor_t<Rng> and iterator_t<Rng2> can be dereferenced and then implicitly converted to
Type1 and Type2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements of the first range of type dereferenced iterator_t<Rng1> as a projection

660 Chapter 2. What’s so special about HPX?

HPX Documentation, master

operation before the function op is invoked.
• proj2 – Specifies the function (or function object) which will be invoked for each of

the elements of the second range of type dereferenced iterator_t<Rng2> as a projection
operation before the function op is invoked.

Returns The find_end algorithm returns an iterator to the beginning of the last subsequence
rng2 in range rng. If the length of the subsequence rng2 is greater than the length of the
range rng, end(rng) is returned. Additionally if the size of the subsequence is empty or no
subsequence is found, end(rng) is also returned.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = equal_to, typename
Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng1>> find_first_of(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Searches the range rng1 for any elements in the range rng2. Uses binary predicate p to compare
elements

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

This overload of find_first_of is available if the user decides to provide the algorithm their own predi-
cate op.

Note: Complexity: at most (S*N) comparisons where S = distance(begin(rng2), end(rng2)) and N =
distance(begin(rng1), end(rng1)).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the first source range (deduced). The iterators extracted from this
range type must meet the requirements of a forward iterator.

2.8. API reference 661

HPX Documentation, master

• Rng2 – The type of the second source range (deduced). The iterators extracted from this
range type must meet the requirements of a forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements in rng1.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements in rng2.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 and Type2 must be such that objects of types itera-
tor_t<Rng1> and iterator_t<Rng2> can be dereferenced and then implicitly converted
to Type1 and Type2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced iterator_t<Rng1> before the function op is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced iterator_t<Rng2> before the function op is invoked.

Returns The find_end algorithm returns a hpx::future<iterator_t<Rng1> > if the execu-
tion policy is of type sequenced_task_policy or parallel_task_policy and returns itera-
tor_t<Rng1> otherwise. The find_first_of algorithm returns an iterator to the first element
in the range rng1 that is equal to an element from the range rng2. If the length of the
subsequence rng2 is greater than the length of the range rng1, end(rng1) is returned. Ad-
ditionally if the size of the subsequence is empty or no subsequence is found, end(rng1) is
also returned.

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Pred = equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter1> find_first_of(ExPolicy &&policy,

Iter1 first1, Sent1 last1,
Iter2 first2, Sent2 last2,
Pred &&op = Pred(),
Proj1 &&proj1 =
Proj1(), Proj2 &&proj2
= Proj2())

Searches the range [first1, last1) for any elements in the range [first2, last2). Uses binary predicate p
to compare elements

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

662 Chapter 2. What’s so special about HPX?

HPX Documentation, master

This overload of find_first_of is available if the user decides to provide the algorithm their own predi-
cate op.

Note: Complexity: at most (S*N) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter1 – The type of the begin source iterators for the first sequence used (deduced). This
iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators for the first sequence used (deduced). This
iterator type must meet the requirements of an sentinel for Iter1.

• Iter2 – The type of the begin source iterators for the second sequence used (deduced).
This iterator type must meet the requirements of an forward iterator.

• Sent2 – The type of the end source iterators for the second sequence used (deduced).
This iterator type must meet the requirements of an sentinel for Iter2.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements in rng1.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements in rng2.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1 – Refers to the end of the first sequence of elements the algorithm will be applied

to.
• first2 – Refers to the beginning of the second sequence of elements the algorithm will

be applied to.
• last2 – Refers to the end of the second sequence of elements the algorithm will be

applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 and Type2 must be such that objects of types itera-
tor_t<Rng1> and iterator_t<Rng2> can be dereferenced and then implicitly converted
to Type1 and Type2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced iterator_t<Rng1> before the function op is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced iterator_t<Rng2> before the function op is invoked.

Returns The find_end algorithm returns a hpx::future<iterator_t<Rng1> > if the execu-
tion policy is of type sequenced_task_policy or parallel_task_policy and returns itera-
tor_t<Rng1> otherwise. The find_first_of algorithm returns an iterator to the first element
in the range rng1 that is equal to an element from the range rng2. If the length of the
subsequence rng2 is greater than the length of the range rng1, end(rng1) is returned. Ad-

2.8. API reference 663

HPX Documentation, master

ditionally if the size of the subsequence is empty or no subsequence is found, end(rng1) is
also returned.

template<typename Rng1, typename Rng2, typename Pred = equal_to, typename Proj1 = hpx::identity,
typename Proj2 = hpx::identity>
hpx::traits::range_iterator_t<Rng1> find_first_of(Rng1 &&rng1, Rng2 &&rng2, Pred &&op =

Pred(), Proj1 &&proj1 = Proj1(), Proj2 &&proj2
= Proj2())

Searches the range rng1 for any elements in the range rng2. Uses binary predicate p to compare
elements

This overload of find_first_of is available if the user decides to provide the algorithm their own predi-
cate op.

Note: Complexity: at most (S*N) comparisons where S = distance(begin(rng2), end(rng2)) and N =
distance(begin(rng1), end(rng1)).

Template Parameters
• Rng1 – The type of the first source range (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• Rng2 – The type of the second source range (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements in rng1.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements in rng2.

Parameters
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 and Type2 must be such that objects of types itera-
tor_t<Rng1> and iterator_t<Rng2> can be dereferenced and then implicitly converted
to Type1 and Type2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced iterator_t<Rng1> before the function op is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced iterator_t<Rng2> before the function op is invoked.

Returns The find_first_of algorithm returns an iterator to the first element in the range rng1
that is equal to an element from the range rng2. If the length of the subsequence rng2 is
greater than the length of the range rng1, end(rng1) is returned. Additionally if the size of
the subsequence is empty or no subsequence is found, end(rng1) is also returned.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred =
equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

664 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Iter1 find_first_of(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2, Pred &&op = Pred(), Proj1
&&proj1 = Proj1(), Proj2 &&proj2 = Proj2())

Searches the range [first1, last1) for any elements in the range [first2, last2). Uses binary predicate p
to compare elements

This overload of find_first_of is available if the user decides to provide the algorithm their own predi-
cate op.

Note: Complexity: at most (S*N) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters
• Iter1 – The type of the begin source iterators for the first sequence used (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent1 – The type of the end source iterators for the first sequence used (deduced). This

iterator type must meet the requirements of an sentinel for Iter1.
• Iter2 – The type of the begin source iterators for the second sequence used (deduced).

This iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the end source iterators for the second sequence used (deduced).

This iterator type must meet the requirements of an sentinel for Iter2.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of replace requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements in rng1.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements in rng2.

Parameters
• first1 – Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1 – Refers to the end of the first sequence of elements the algorithm will be applied

to.
• first2 – Refers to the beginning of the second sequence of elements the algorithm will

be applied to.
• last2 – Refers to the end of the second sequence of elements the algorithm will be

applied to.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The types Type1 and Type2 must be such that objects of types itera-
tor_t<Rng1> and iterator_t<Rng2> can be dereferenced and then implicitly converted
to Type1 and Type2 respectively.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced iterator_t<Rng1> before the function op is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced iterator_t<Rng2> before the function op is invoked.

Returns The find_first_of algorithm returns an iterator to the first element in the range rng1
that is equal to an element from the range rng2. If the length of the subsequence rng2 is
greater than the length of the range rng1, end(rng1) is returned. Additionally if the size of

2.8. API reference 665

HPX Documentation, master

the subsequence is empty or no subsequence is found, end(rng1) is also returned.

hpx::ranges::for_each, hpx::ranges::for_each_n

Defined in header hpx/algorithm.hpp647.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename InIter, typename Sent, typename F, typename Proj = hpx::identity>
for_each_result<InIter, F> for_each(InIter first, Sent last, F &&f, Proj &&proj = Proj())

Applies f to the result of dereferencing every iterator in the range [first, last).

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Note: Complexity: Applies f exactly last - first times.

Template Parameters
• InIter – The type of the source begin iterator used (deduced). This iterator type must

meet the requirements of an input iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of for_each requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type InIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

647 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

666 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Returns {last, HPX_MOVE(f)} where last is the iterator corresponding to the input sentinel
last.

template<typename Rng, typename F, typename Proj = hpx::identity>
for_each_result<hpx::traits::range_iterator_t<Rng>, F> for_each(Rng &&rng, F &&f, Proj &&proj =

Proj())
Applies f to the result of dereferencing every iterator in the given range rng.

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Note: Complexity: Applies f exactly size(rng) times.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of for_each requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type InIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns {std::end(rng), HPX_MOVE(f)}

template<typename ExPolicy, typename FwdIter, typename Sent, typename F, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> for_each(ExPolicy &&policy,

FwdIter first, Sent last, F
&&f, Proj &&proj =
Proj())

Applies f to the result of dereferencing every iterator in the range [first, last).

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function
parameter, since parallelization may not permit efficient state accumulation.

2.8. API reference 667

HPX Documentation, master

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Applies f exactly last - first times.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter – The type of the source begin iterator used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of for_each requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type InIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The for_each algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It
returns last.

template<typename ExPolicy, typename Rng, typename F, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> for_each(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f,
Proj
&&proj
=
Proj())

Applies f to the result of dereferencing every iterator in the given range rng.

668 Chapter 2. What’s so special about HPX?

HPX Documentation, master

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function
parameter, since parallelization may not permit efficient state accumulation.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Applies f exactly size(rng) times.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of for_each requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type InIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The for_each algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It
returns last.

template<typename InIter, typename Size, typename F, typename Proj = hpx::identity>
for_each_n_result<InIter, F> for_each_n(InIter first, Size count, F &&f, Proj &&proj = Proj())

Applies f to the result of dereferencing every iterator in the range [first, first + count), starting from
first and proceeding to first + count - 1.

If f returns a result, the result is ignored.

2.8. API reference 669

HPX Documentation, master

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function
parameter, since parallelization may not permit efficient state accumulation.

Note: Complexity: Applies f exactly count times.

Template Parameters
• InIter – The type of the source begin iterator used (deduced). This iterator type must

meet the requirements of an input iterator.
• Size – The type of the argument specifying the number of elements to apply f to.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of for_each requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied
to.

• f – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type InIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns It returns last.

template<typename ExPolicy, typename FwdIter, typename Size, typename F, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type for_each_n(ExPolicy &&policy,

FwdIter first, Size
count, F &&f, Proj
&&proj = Proj())

Applies f to the result of dereferencing every iterator in the range [first, first + count), starting from
first and proceeding to first + count - 1.

If f returns a result, the result is ignored.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function
parameter, since parallelization may not permit efficient state accumulation.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

670 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Applies f exactly count times.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• FwdIter – The type of the source begin iterator used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of for_each requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). The signature of this predicate should
be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type InIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The for_each algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It
returns last.

hpx::ranges::experimental::for_loop, hpx::ranges::experimental::for_loop_strided,
hpx::ranges::experimental::for_loop_n, hpx::ranges::experimental::for_loop_n_strided

Defined in header hpx/algorithm.hpp648.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

namespace experimental

648 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 671

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Iter, typename Sent, typename ...Args>
hpx::parallel::util::detail::algorithm_result<ExPolicy>::type for_loop(ExPolicy &&policy, Iter

first, Sent last, Args&&...
args)

The for_loop implements loop functionality over a range specified by iterator bounds. These al-
gorithms resemble for_each from the Parallelism TS, but leave to the programmer when and if to
dereference the iterator.

Requires: Iter shall meet the requirements of a forward iterator type. The args parameter pack
shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function,
f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding
to the reductions and inductions in the args parameter pack. The length of the input sequence is
last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated
by incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack
excluding f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then
the additional argument is a reference to a view of that reduction object. If the pack member is an
object returned by a call to induction, then the additional argument is the induction value for that
induction object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal
position of an application of f, even though the applications themselves may be unordered.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Iter – The type of the iteration variable (forward iterator).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for Iter.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.

672 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be ap-
plied to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• args – The last element of this parameter pack is the function (object) to invoke, while

the remaining elements of the parameter pack are instances of either induction or re-
duction objects. The function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last) should expose a signature equivalent
to:

<ignored> pred(Iter const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

Returns The for_loop algorithm returns a hpx::future<void> if the execution policy is of
type hpx::execution::sequenced_task_policy or hpx::execution::parallel_task_policy and
returns void otherwise.

template<typename Iter, typename Sent, typename ...Args>
void for_loop(Iter first, Sent last, Args&&... args)

The for_loop implements loop functionality over a range specified by iterator bounds. These al-
gorithms resemble for_each from the Parallelism TS, but leave to the programmer when and if to
dereference the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying
hpx::execution::seq as the execution policy.

Requires: Iter shall meet the requirements of an input iterator type. The args parameter pack
shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function,
f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding
to the reductions and inductions in the args parameter pack. The length of the input sequence is
last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated
by incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack
excluding f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then
the additional argument is a reference to a view of that reduction object. If the pack member is an
object returned by a call to induction, then the additional argument is the induction value for that
induction object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

2.8. API reference 673

HPX Documentation, master

Note: The order of the elements of the input sequence is important for determining ordinal
position of an application of f, even though the applications themselves may be unordered.

Template Parameters
• Iter – The type of the iteration variable (input iterator).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for Iter.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be ap-
plied to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• args – The last element of this parameter pack is the function (object) to invoke, while

the remaining elements of the parameter pack are instances of either induction or re-
duction objects. The function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last) should expose a signature equivalent
to:

<ignored> pred(Iter const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

template<typename ExPolicy, typename R, typename ...Args>
hpx::parallel::util::detail::algorithm_result<ExPolicy>::type for_loop(ExPolicy &&policy, R

&&rng, Args&&... args)
The for_loop implements loop functionality over a range specified by a range. These algorithms
resemble for_each from the Parallelism TS, but leave to the programmer when and if to dereference
the iterator.

Requires: Rng::iterator shall meet the requirements of a forward iterator type. The args parameter
pack shall have at least one element, comprising objects returned by invocations of reduction
and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding
to the reductions and inductions in the args parameter pack. The length of the input sequence is
last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated
by incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack
excluding f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then
the additional argument is a reference to a view of that reduction object. If the pack member is an
object returned by a call to induction, then the additional argument is the induction value for that
induction object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

674 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal
position of an application of f, even though the applications themselves may be unordered.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• R – The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• Args – A parameter pack, it’s last element is a function object to be invoked for each
iteration, the others have to be either conforming to the induction or reduction concept.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to theof the sequence of elements the algorithm will be applied to.
• args – The last element of this parameter pack is the function (object) to invoke, while

the remaining elements of the parameter pack are instances of either induction or re-
duction objects. The function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last) should expose a signature equivalent
to:

<ignored> pred(Rng::iterator const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

Returns The for_loop algorithm returns a hpx::future<void> if the execution policy is of
type hpx::execution::sequenced_task_policy or hpx::execution::parallel_task_policy and
returns void otherwise.

template<typename Rng, typename ...Args>
void for_loop(Rng &&rng, Args&&... args)

The for_loop implements loop functionality over a range specified by a range. These algorithms
resemble for_each from the Parallelism TS, but leave to the programmer when and if to dereference
the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying
hpx::execution::seq as the execution policy.

Requires: Rng::iterator shall meet the requirements of an input iterator type. The args parameter
pack shall have at least one element, comprising objects returned by invocations of reduction
and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding
to the reductions and inductions in the args parameter pack. The length of the input sequence is
last - first.

2.8. API reference 675

HPX Documentation, master

The first element in the input sequence is specified by first. Each subsequent element is generated
by incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack
excluding f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then
the additional argument is a reference to a view of that reduction object. If the pack member is an
object returned by a call to induction, then the additional argument is the induction value for that
induction object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal
position of an application of f, even though the applications themselves may be unordered.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• rng – Refers to theof the sequence of elements the algorithm will be applied to.
• args – The last element of this parameter pack is the function (object) to invoke, while

the remaining elements of the parameter pack are instances of either induction or re-
duction objects. The function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last) should expose a signature equivalent
to:

<ignored> pred(Rng::iterator const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

template<typename ExPolicy, typename Iter, typename Sent, typename S, typename ...Args>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> for_loop_strided(ExPolicy &&policy,

Iter first, Sent last, S
stride, Args&&...
args)

The for_loop_strided implements loop functionality over a range specified by iterator bounds.
These algorithms resemble for_each from the Parallelism TS, but leave to the programmer when
and if to dereference the iterator.

Requires: Iter shall meet the requirements of a forward iterator type. The args parameter pack
shall have at least one element, comprising objects returned by invocations of reduction and/or

676 Chapter 2. What’s so special about HPX?

HPX Documentation, master

induction function templates followed by exactly one element invocable element-access function,
f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding
to the reductions and inductions in the args parameter pack. The length of the input sequence is
last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated
by incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack
excluding f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then
the additional argument is a reference to a view of that reduction object. If the pack member is an
object returned by a call to induction, then the additional argument is the induction value for that
induction object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal
position of an application of f, even though the applications themselves may be unordered.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Iter – The type of the iteration variable (forward iterator).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for Iter.
• S – The type of the stride variable. This should be an integral type.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be ap-

plied to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• stride – Refers to the stride of the iteration steps. This shall have non-zero value and

shall be negative only if Iter meets the requirements a bidirectional iterator.
• args – The last element of this parameter pack is the function (object) to invoke, while

the remaining elements of the parameter pack are instances of either induction or re-
duction objects. The function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last) should expose a signature equivalent
to:

<ignored> pred(Iter const& a, ...);

2.8. API reference 677

HPX Documentation, master

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

Returns The for_loop_strided algorithm returns a hpx::future<void> if the execution policy
is of type hpx::execution::sequenced_task_policy or hpx::execution::parallel_task_policy
and returns void otherwise.

template<typename Iter, typename Sent, typename S, typename ...Args>
void for_loop_strided(Iter first, Sent last, S stride, Args&&... args)

The for_loop_strided implements loop functionality over a range specified by iterator bounds.
These algorithms resemble for_each from the Parallelism TS, but leave to the programmer when
and if to dereference the iterator.

The execution of for_loop_strided without specifying an execution policy is equivalent to speci-
fying hpx::execution::seq as the execution policy.

Requires: Iter shall meet the requirements of an input iterator type. The args parameter pack
shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function,
f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding
to the reductions and inductions in the args parameter pack. The length of the input sequence is
last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated
by incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack
excluding f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then
the additional argument is a reference to a view of that reduction object. If the pack member is an
object returned by a call to induction, then the additional argument is the induction value for that
induction object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal
position of an application of f, even though the applications themselves may be unordered.

Template Parameters
• Iter – The type of the iteration variable (input iterator).
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for Iter.
• S – The type of the stride variable. This should be an integral type.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.

678 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be ap-

plied to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• stride – Refers to the stride of the iteration steps. This shall have non-zero value and

shall be negative only if Iter meets the requirements a bidirectional iterator.
• args – The last element of this parameter pack is the function (object) to invoke, while

the remaining elements of the parameter pack are instances of either induction or re-
duction objects. The function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last) should expose a signature equivalent
to:

<ignored> pred(Iter const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

template<typename ExPolicy, typename Rng, typename S, typename ...Args>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy> for_loop_strided(ExPolicy &&policy,

Rng &&rng, S stride,
Args&&... args)

The for_loop_strided implements loop functionality over a range specified by a range. These
algorithms resemble for_each from the Parallelism TS, but leave to the programmer when and if
to dereference the iterator.

Requires: Rng::iterator shall meet the requirements of a forward iterator type. The args parameter
pack shall have at least one element, comprising objects returned by invocations of reduction
and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding
to the reductions and inductions in the args parameter pack. The length of the input sequence is
last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated
by incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack
excluding f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then
the additional argument is a reference to a view of that reduction object. If the pack member is an
object returned by a call to induction, then the additional argument is the induction value for that
induction object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

2.8. API reference 679

HPX Documentation, master

Note: The order of the elements of the input sequence is important for determining ordinal
position of an application of f, even though the applications themselves may be unordered.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• S – The type of the stride variable. This should be an integral type.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to theof the sequence of elements the algorithm will be applied to.
• stride – Refers to the stride of the iteration steps. This shall have non-zero value and

shall be negative only if Rng::iterator meets the requirements a bidirectional iterator.
• args – The last element of this parameter pack is the function (object) to invoke, while

the remaining elements of the parameter pack are instances of either induction or re-
duction objects. The function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last) should expose a signature equivalent
to:

<ignored> pred(Rng::iterator const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

Returns The for_loop_strided algorithm returns a hpx::future<void> if the execution policy
is of type hpx::execution::sequenced_task_policy or hpx::execution::parallel_task_policy
and returns void otherwise.

template<typename Rng, typename S, typename ...Args>
void for_loop_strided(Rng &&rng, S stride, Args&&... args)

The for_loop_strided implements loop functionality over a range specified by a range. These
algorithms resemble for_each from the Parallelism TS, but leave to the programmer when and if
to dereference the iterator.

The execution of for_loop_strided without specifying an execution policy is equivalent to speci-
fying hpx::execution::seq as the execution policy.

Requires: Rng::iterator shall meet the requirements of an input iterator type. The args parameter
pack shall have at least one element, comprising objects returned by invocations of reduction
and/or induction function templates followed by exactly one element invocable element-access
function, f. f shall meet the requirements of MoveConstructible.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding
to the reductions and inductions in the args parameter pack. The length of the input sequence is
last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated
by incrementing the previous element.

680 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Along with an element from the input sequence, for each member of the args parameter pack
excluding f, an additional argument is passed to each application of f as follows:

If the pack member is an object returned by a call to a reduction function listed in section, then
the additional argument is a reference to a view of that reduction object. If the pack member is an
object returned by a call to induction, then the additional argument is the induction value for that
induction object corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Note: As described in the C++ standard, arithmetic on non-random-access iterators is performed
using advance and distance.

Note: The order of the elements of the input sequence is important for determining ordinal
position of an application of f, even though the applications themselves may be unordered.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• S – The type of the stride variable. This should be an integral type.
• Args – A parameter pack, it’s last element is a function object to be invoked for each

iteration, the others have to be either conforming to the induction or reduction concept.
Parameters

• rng – Refers to theof the sequence of elements the algorithm will be applied to.
• stride – Refers to the stride of the iteration steps. This shall have non-zero value and

shall be negative only if Rng::iterator meets the requirements a bidirectional iterator.
• args – The last element of this parameter pack is the function (object) to invoke, while

the remaining elements of the parameter pack are instances of either induction or re-
duction objects. The function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last) should expose a signature equivalent
to:

<ignored> pred(Rng::iterator const& a, ...);

The signature does not need to have const&. It will receive the current value of the
iteration variable and one argument for each of the induction or reduction objects passed
to the algorithms, representing their current values.

hpx::ranges::generate, hpx::ranges::generate_n

Defined in header hpx/algorithm.hpp649.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

649 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 681

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Rng, typename F>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> generate(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f)

Assign each element in range [first, last) a value generated by the given function object f

The assignments in the parallel generate algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel generate algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly distance(first, last) invocations of f and assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – generator function that will be called. signature of function should be equivalent to

the following:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and as-
signed a value of type Ret.

Returns The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It
returns last.

template<typename ExPolicy, typename Iter, typename Sent, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> generate(ExPolicy &&policy, Iter first,

Sent last, F &&f)
Assign each element in range [first, last) a value generated by the given function object f

The assignments in the parallel generate algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

682 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The assignments in the parallel generate algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly distance(first, last) invocations of f and assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source begin iterator used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source end iterator used (deduced). This iterator type must meet
the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – generator function that will be called. signature of function should be equivalent to

the following:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and as-
signed a value of type Ret.

Returns The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It
returns last.

template<typename Rng, typename F>
hpx::traits::range_iterator_t<Rng> generate(Rng &&rng, F &&f)

Assign each element in range [first, last) a value generated by the given function object f

Note: Complexity: Exactly distance(first, last) invocations of f and assignments.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential form,

the parallel overload of equal requires F to meet the requirements of CopyConstructible.
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – generator function that will be called. signature of function should be equivalent to

the following:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and as-
signed a value of type Ret.

Returns The replace_if algorithm returns last.

2.8. API reference 683

HPX Documentation, master

template<typename Iter, typename Sent, typename F>
Iter generate(Iter first, Sent last, F &&f)

Assign each element in range [first, last) a value generated by the given function object f

Note: Complexity: Exactly distance(first, last) invocations of f and assignments.

Template Parameters
• Iter – The type of the source begin iterator used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Sent – The type of the source end iterator used (deduced). This iterator type must meet

the requirements of an forward iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential form,

the parallel overload of equal requires F to meet the requirements of CopyConstructible.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – generator function that will be called. signature of function should be equivalent to

the following:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and as-
signed a value of type Ret.

Returns The replace_if algorithm returns last.

template<typename ExPolicy, typename FwdIter, typename Size, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> generate_n(ExPolicy &&policy,

FwdIter first, Size count,
F &&f)

Assigns each element in range [first, first+count) a value generated by the given function object g.

The assignments in the parallel generate_n algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel generate_n algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly count invocations of f and assignments, for count > 0.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
• F – The type of the function/function object to use (deduced). Unlike its sequential form,

the parallel overload of equal requires F to meet the requirements of CopyConstructible.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.

684 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements in the sequence the algorithm will be applied
to.

• f – Refers to the generator function object that will be called. The signature of the
function should be equivalent to

Ret fun();

The type Ret must be such that an object of type OutputIt can be dereferenced and as-
signed a value of type Ret.

Returns The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It
returns last.

template<typename FwdIter, typename Size, typename F>
FwdIter generate_n(FwdIter first, Size count, F &&f)

Assigns each element in range [first, first+count) a value generated by the given function object g.

Note: Complexity: Exactly count invocations of f and assignments, for count > 0.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an forward iterator.
• Size – The type of the argument specifying the number of elements to apply f to.
• F – The type of the function/function object to use (deduced). Unlike its sequential form,

the parallel overload of equal requires F to meet the requirements of CopyConstructible.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements in the sequence the algorithm will be applied
to.

• f – Refers to the generator function object that will be called. The signature of the
function should be equivalent to

Ret fun();

The type Ret must be such that an object of type OutputIt can be dereferenced and as-
signed a value of type Ret.

Returns The replace_if algorithm returns last.

hpx::ranges::includes

Defined in header hpx/algorithm.hpp650.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

650 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 685

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> includes(ExPolicy &&policy, Iter1

first1, Sent1 last1, Iter2 first2,
Sent2 last2, Pred &&op =
Pred(), Proj1 &&proj1 =
Proj1(), Proj2 &&proj2 =
Proj2())

Returns true if every element from the sorted range [first2, last2) is found within the sorted range
[first1, last1). Also returns true if [first2, last2) is empty. The version expects both ranges to be sorted
with the user supplied binary predicate f.

The comparison operations in the parallel includes algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel includes algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: At most 2*(N1+N2-1) comparisons, where N1 = std::distance(first1, last1) and N2 =
std::distance(first2, last2).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter1.

• Iter2 – The type of the source iterators used (deduced) representing the second se-
quence. This iterator type must meet the requirements of an forward iterator.

• Sent2 – The type of the end source iterators used (deduced) representing the second
sequence. This iterator type must meet the requirements of an sentinel for Iter2.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of includes requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.

686 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• op – The binary predicate which returns true if the elements should be treated as includes.
The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The includes algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The includes
algorithm returns true every element from the sorted range [first2, last2) is found within the
sorted range [first1, last1). Also returns true if [first2, last2) is empty.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred =
hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
bool includes(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2, Pred &&op = Pred(), Proj1 &&proj1 =

Proj1(), Proj2 &&proj2 = Proj2())
Returns true if every element from the sorted range [first2, last2) is found within the sorted range
[first1, last1). Also returns true if [first2, last2) is empty. The version expects both ranges to be sorted
with the user supplied binary predicate f.

Note: At most 2*(N1+N2-1) comparisons, where N1 = std::distance(first1, last1) and N2 =
std::distance(first2, last2).

Template Parameters
• Iter1 – The type of the source iterators used (deduced) representing the first sequence.

This iterator type must meet the requirements of an forward iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of an sentinel for Iter1.
• Iter2 – The type of the source iterators used (deduced) representing the second se-

quence. This iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the end source iterators used (deduced) representing the second

sequence. This iterator type must meet the requirements of an sentinel for Iter2.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of includes requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

2.8. API reference 687

HPX Documentation, master

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• op – The binary predicate which returns true if the elements should be treated as includes.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The includes algorithm returns true every element from the sorted range [first2,
last2) is found within the sorted range [first1, last1). Also returns true if [first2, last2) is
empty.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred =
hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> includes(ExPolicy &&policy, Rng1

&&rng1, Rng2 &&rng2, Pred
&&op = Pred(), Proj1
&&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Returns true if every element from the sorted range [first2, last2) is found within the sorted range
[first1, last1). Also returns true if [first2, last2) is empty. The version expects both ranges to be sorted
with the user supplied binary predicate f.

The comparison operations in the parallel includes algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel includes algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: At most 2*(N1+N2-1) comparisons, where N1 = std::distance(first1, last1) and N2 =
std::distance(first2, last2).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

688 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of includes requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as includes.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The includes algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The includes
algorithm returns true every element from the sorted range [first2, last2) is found within the
sorted range [first1, last1). Also returns true if [first2, last2) is empty.

template<typename Rng1, typename Rng2, typename Pred = hpx::parallel::detail::less, typename Proj1
= hpx::identity, typename Proj2 = hpx::identity>
bool includes(Rng1 &&rng1, Rng2 &&rng2, Pred &&op = Pred(), Proj1 &&proj1 = Proj1(), Proj2

&&proj2 = Proj2())
Returns true if every element from the sorted range [first2, last2) is found within the sorted range
[first1, last1). Also returns true if [first2, last2) is empty. The version expects both ranges to be sorted
with the user supplied binary predicate f.

Note: At most 2*(N1+N2-1) comparisons, where N1 = std::distance(first1, last1) and N2 =
std::distance(first2, last2).

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of includes requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This

2.8. API reference 689

HPX Documentation, master

defaults to hpx::identity
Parameters

• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as includes.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The includes algorithm returns true every element from the sorted range [first2,
last2) is found within the sorted range [first1, last1). Also returns true if [first2, last2) is
empty.

hpx::ranges::inclusive_scan

Defined in header hpx/algorithm.hpp651.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename InIter, typename Sent, typename OutIter, typename Op = std::plus<typename
std::iterator_traits<InIter>::value_type>>
inclusive_scan_result<InIter, OutIter> inclusive_scan(InIter first, Sent last, OutIter dest, Op &&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

651 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

690 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:
• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• Op – The type of the binary function object used for the reduction operation.

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

Returns The inclusive_scan algorithm returns util::in_out_result<InIter, OutIter>. The in-
clusive_scan algorithm returns an input iterator to the point denoted by the sentinel and an
output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename
Op = std::plus<typename std::iterator_traits<FwdIter1>::value_type>>
parallel::util::detail::algorithm_result<ExPolicy, inclusive_scan_result<FwdIter1, FwdIter2>>::type inclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
Sent
last,
FwdIter2
dest,
Op
&&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, *first, . . . , *(first + (i - result))).

2.8. API reference 691

HPX Documentation, master

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:
• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Op – The type of the binary function object used for the reduction operation.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

Returns The inclusive_scan algorithm returns a hpx::future<util::in_out_result<FwdIter1,
FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns util::in_out_result<FwdIter1, FwdIter2> otherwise. The in-
clusive_scan algorithm returns an input iterator to the point denoted by the sentinel and an
output iterator to the element in the destination range, one past the last element copied.

template<typename Rng, typename O, typename Op = std::plus<typename
hpx::traits::range_traits<Rng>::value_type>>

692 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O> inclusive_scan(Rng &&rng, O dest,
Op &&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:
• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• O – The type of the iterator representing the destination range (deduced). This iterator

type must meet the requirements of an output iterator.
• Op – The type of the binary function object used for the reduction operation.

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

Returns The inclusive_scan algorithm returns util::in_out_result<traits::range_iterator_t<Rng>,
O> The inclusive_scan algorithm returns an input iterator to the point denoted by the
sentinel and an output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng, typename O, typename Op = std::plus<typename
hpx::traits::range_traits<Rng>::value_type>>

2.8. API reference 693

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, inclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O>> inclusive_scan(ExPolicy
&&pol-
icy,
Rng
&&rng,
O
dest,
Op
&&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:
• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• O – The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Op – The type of the binary function object used for the reduction operation.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by

694 Chapter 2. What’s so special about HPX?

HPX Documentation, master

the input sequence can be implicitly converted to any of those types.
Returns The inclusive_scan algorithm returns a hpx::future<util::in_out_result

<traits::range_iterator_t<Rng>, O>> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns util::in_out_result
<traits::range_iterator_t<Rng>, O> otherwise. The inclusive_scan algorithm returns
an input iterator to the point denoted by the sentinel and an output iterator to the element
in the destination range, one past the last element copied

template<typename InIter, typename Sent, typename OutIter, typename Op, typename T = typename
std::iterator_traits<InIter>::value_type>
inclusive_scan_result<InIter, OutIter> inclusive_scan(InIter first, Sent last, OutIter dest, Op &&op,

T init)
Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• Op – The type of the binary function object used for the reduction operation.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

2.8. API reference 695

HPX Documentation, master

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• init – The initial value for the generalized sum.
Returns The inclusive_scan algorithm returns util::in_out_result<InIter, OutIter>. The in-

clusive_scan algorithm returns an input iterator to the point denoted by the sentinel and an
output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename
Op, typename T = typename std::iterator_traits<FwdIter1>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, inclusive_scan_result<FwdIter1, FwdIter2>>::type inclusive_scan(ExPolicy

&&pol-
icy,
InIter
first,
Sent
last,
Out-
Iter
dest,
Op
&&op,
T
init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

696 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• InIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an input iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Op – The type of the binary function object used for the reduction operation.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• init – The initial value for the generalized sum.
Returns The inclusive_scan algorithm returns a hpx::future<util::in_out_result<InIter, Out-

Iter>> if the execution policy is of type sequenced_task_policy or parallel_task_policy
and returns util::in_out_result<InIter, OutIter> otherwise. The inclusive_scan algorithm
returns an input iterator to the point denoted by the sentinel and an output iterator to the
element in the destination range, one past the last element copied.

template<typename Rng, typename O, typename Op, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
inclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O> inclusive_scan(Rng &&rng, O dest,

Op &&op, T init)
Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input
element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1

2.8. API reference 697

HPX Documentation, master

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• O – The type of the iterator representing the destination range (deduced). This iterator

type must meet the requirements of an output iterator.
• Op – The type of the binary function object used for the reduction operation.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• init – The initial value for the generalized sum.
Returns The inclusive_scan algorithm returns util::in_out_result<traits::range_iterator_t<Rng>,

O> The inclusive_scan algorithm returns an input iterator to the point denoted by the
sentinel and an output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng, typename O, typename Op, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, inclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O>> inclusive_scan(ExPolicy

&&pol-
icy,
Rng
&&rng,
O
dest,
Op
&&op,
T
init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith input

698 Chapter 2. What’s so special about HPX?

HPX Documentation, master

element in the ith sum. If op is not mathematically associative, the behavior of inclusive_scan may be
non-deterministic.

Note: Complexity: O(last - first) applications of the predicate op.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• O – The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Op – The type of the binary function object used for the reduction operation.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – Specifies the function (or function object) which will be invoked for each of the

values of the input sequence. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• init – The initial value for the generalized sum.
Returns The inclusive_scan algorithm returns a hpx::future<util::in_out_result

<traits::range_iterator_t<Rng>, O>> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns util::in_out_result
<traits::range_iterator_t<Rng>, O> otherwise. The inclusive_scan algorithm returns
an input iterator to the point denoted by the sentinel and an output iterator to the element
in the destination range, one past the last element copied

hpx::ranges::is_heap, hpx::ranges::is_heap_until

Defined in header hpx/algorithm.hpp652.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

652 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 699

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

namespace ranges

Functions

template<typename ExPolicy, typename Rng, typename Comp = hpx::parallel::detail::less, typename
Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_heap(ExPolicy &&policy, Rng

&&rng, Comp &&comp =
Comp(), Proj &&proj = Proj())

Returns whether the range is max heap. That is, true if the range is max heap, false otherwise. The
function uses the given comparison function object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs at most N applications of the comparison comp, at most 2 * N applica-
tions of the projection proj, where N = last - first.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_heap algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The is_heap
algorithm returns whether the range is max heap. That is, true if the range is max heap,
false otherwise.

template<typename ExPolicy, typename Iter, typename Sent, typename Comp =
hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_heap(ExPolicy &&policy, Iter first,

Sent last, Comp &&comp =
Comp(), Proj &&proj = Proj())

Returns whether the range is max heap. That is, true if the range is max heap, false otherwise. The
function uses the given comparison function object comp (defaults to using operator<()).

700 Chapter 2. What’s so special about HPX?

HPX Documentation, master

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs at most N applications of the comparison comp, at most 2 * N applica-
tions of the projection proj, where N = last - first.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the begin source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter1.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_heap algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The is_heap
algorithm returns whether the range is max heap. That is, true if the range is max heap,
false otherwise.

template<typename Rng, typename Comp = hpx::parallel::detail::less, typename Proj = hpx::identity>
bool is_heap(Rng &&rng, Comp &&comp = Comp(), Proj &&proj = Proj())

Returns whether the range is max heap. That is, true if the range is max heap, false otherwise. The
function uses the given comparison function object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

Note: Complexity: Performs at most N applications of the comparison comp, at most 2 * N applica-
tions of the projection proj, where N = last - first.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an random access iterator.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters

2.8. API reference 701

HPX Documentation, master

• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_heap algorithm returns bool. The is_heap algorithm returns whether the
range is max heap. That is, true if the range is max heap, false otherwise.

template<typename Iter, typename Sent, typename Comp = hpx::parallel::detail::less, typename Proj =
hpx::identity>
bool is_heap(Iter first, Sent last, Comp &&comp = Comp(), Proj &&proj = Proj())

Returns whether the range is max heap. That is, true if the range is max heap, false otherwise. The
function uses the given comparison function object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

Note: Complexity: Performs at most N applications of the comparison comp, at most 2 * N applica-
tions of the projection proj, where N = last - first.

Template Parameters
• Iter – The type of the begin source iterators used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Sent – The type of the end source iterators used (deduced). This iterator type must meet

the requirements of an sentinel for Iter1.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_heap algorithm returns bool. The is_heap algorithm returns whether the
range is max heap. That is, true if the range is max heap, false otherwise.

template<typename ExPolicy, typename Rng, typename Comp = hpx::parallel::detail::less, typename
Proj = hpx::identity>

702 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> is_heap_until(ExPolicy
&&pol-
icy,
Rng
&&rng,
Comp
&&comp
=
Comp(),
Proj
&&proj
=
Proj())

Returns the upper bound of the largest range beginning at first which is a max heap. That is, the last
iterator it for which range [first, it) is a max heap. The function uses the given comparison function
object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs at most N applications of the comparison comp, at most 2 * N applica-
tions of the projection proj, where N = last - first.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_heap_until algorithm returns a hpx::future<RandIter> if the execution pol-
icy is of type sequenced_task_policy or parallel_task_policy and returns RandIter other-
wise. The is_heap_until algorithm returns the upper bound of the largest range beginning
at first which is a max heap. That is, the last iterator it for which range [first, it) is a max
heap.

template<typename ExPolicy, typename Iter, typename Sent, typename Comp =
hpx::parallel::detail::less, typename Proj = hpx::identity>

2.8. API reference 703

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> is_heap_until(ExPolicy &&policy, Iter
first, Sent last, Comp
&&comp = Comp(),
Proj &&proj = Proj())

Returns the upper bound of the largest range beginning at first which is a max heap. That is, the last
iterator it for which range [first, it) is a max heap. The function uses the given comparison function
object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs at most N applications of the comparison comp, at most 2 * N applica-
tions of the projection proj, where N = last - first.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the begin source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter1.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_heap_until algorithm returns a hpx::future<RandIter> if the execution pol-
icy is of type sequenced_task_policy or parallel_task_policy and returns RandIter other-
wise. The is_heap_until algorithm returns the upper bound of the largest range beginning
at first which is a max heap. That is, the last iterator it for which range [first, it) is a max
heap.

template<typename Rng, typename Comp = hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> is_heap_until(Rng &&rng, Comp &&comp = Comp(), Proj

&&proj = Proj())
Returns the upper bound of the largest range beginning at first which is a max heap. That is, the last
iterator it for which range [first, it) is a max heap. The function uses the given comparison function
object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

704 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: Performs at most N applications of the comparison comp, at most 2 * N applica-
tions of the projection proj, where N = last - first.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an random access iterator.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_heap_until algorithm returns RandIter. The is_heap_until algorithm returns
the upper bound of the largest range beginning at first which is a max heap. That is, the last
iterator it for which range [first, it) is a max heap.

template<typename Iter, typename Sent, typename Comp = hpx::parallel::detail::less, typename Proj =
hpx::identity>
Iter is_heap_until(Iter first, Sent last, Comp &&comp = Comp(), Proj &&proj = Proj())

Returns the upper bound of the largest range beginning at first which is a max heap. That is, the last
iterator it for which range [first, it) is a max heap. The function uses the given comparison function
object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.

Note: Complexity: Performs at most N applications of the comparison comp, at most 2 * N applica-
tions of the projection proj, where N = last - first.

Template Parameters
• Iter – The type of the begin source iterators used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Sent – The type of the end source iterators used (deduced). This iterator type must meet

the requirements of an sentinel for Iter1.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_heap_until algorithm returns RandIter. The is_heap_until algorithm returns
the upper bound of the largest range beginning at first which is a max heap. That is, the last
iterator it for which range [first, it) is a max heap.

2.8. API reference 705

HPX Documentation, master

hpx::ranges::is_partitioned

Defined in header hpx/algorithm.hpp653.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent, typename Pred, typename Proj = hpx::identity>
bool is_partitioned(FwdIter first, Sent last, Pred &&pred, Proj &&proj = Proj())

Determines if the range [first, last) is partitioned.

Note: Complexity: at most (N) predicate evaluations where N = distance(first, last).

Template Parameters
• FwdIter – The type of the source iterators used for the This iterator type must meet the

requirements of a forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
• Pred – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters
• first – Refers to the beginning of the sequence of elements of that the algorithm will

be applied to.
• last – Refers to the end of the sequence of elements of that the algorithm will be applied

to.
• pred – Refers to the unary predicate which returns true for elements expected to be found

in the beginning of the range. The signature of the function should be equivalent to

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_partitioned algorithm returns bool. The is_partitioned algorithm returns
true if each element in the sequence for which pred returns true precedes those for which
pred returns false. Otherwise is_partitioned returns false. If the range [first, last) contains
less than two elements, the function is always true.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Pred, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_partitioned(ExPolicy &&policy,

FwdIter first, Sent last,
Pred &&pred, Proj
&&proj = Proj())

653 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

706 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Determines if the range [first, last) is partitioned.

The predicate operations in the parallel is_partitioned algorithm invoked with an execution policy
object of type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_partitioned algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (N) predicate evaluations where N = distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• Pred – The type of the function/function object to use (deduced). Pred must be Copy-
Constructible when using a parallel policy.

• Proj – The type of an optional projection function. This defaults to hpx::identity.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of that the algorithm will

be applied to.
• last – Refers to the end of the sequence of elements of that the algorithm will be applied

to.
• pred – Refers to the unary predicate which returns true for elements expected to be found

in the beginning of the range. The signature of the function should be equivalent to

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_partitioned algorithm returns a hpx::future<bool> if the execution policy
is of type task_execution_policy and returns bool otherwise. The is_partitioned algorithm
returns true if each element in the sequence for which pred returns true precedes those for
which pred returns false. Otherwise is_partitioned returns false. If the range [first, last)
contains less than two elements, the function is always true.

template<typename Rng, typename Pred, typename Proj = hpx::identity>
bool is_partitioned(Rng &&rng, Pred &&pred, Proj &&proj = Proj())

Determines if the range rng is partitioned.

Note: Complexity: at most (N) predicate evaluations where N = std::size(rng).

Template Parameters

2.8. API reference 707

HPX Documentation, master

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity.

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Refers to the unary predicate which returns true for elements expected to be found

in the beginning of the range. The signature of the function should be equivalent to

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_partitioned algorithm returns bool. The is_partitioned algorithm returns
true if each element in the sequence for which pred returns true precedes those for which
pred returns false. Otherwise is_partitioned returns false. If the range rng contains less
than two elements, the function is always true.

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_partitioned(ExPolicy &&policy,

Rng &&rng, Pred
&&pred, Proj &&proj
= Proj())

Determines if the range [first, last) is partitioned.

The predicate operations in the parallel is_partitioned algorithm invoked with an execution policy
object of type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_partitioned algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (N) predicate evaluations where N = std::size(rng).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Pred must be Copy-
Constructible when using a parallel policy.

• Proj – The type of an optional projection function. This defaults to hpx::identity.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Refers to the unary predicate which returns true for elements expected to be found

in the beginning of the range. The signature of the function should be equivalent to

708 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_partitioned algorithm returns a hpx::future<bool> if the execution policy
is of type task_execution_policy and returns bool otherwise. The is_partitioned algorithm
returns true if each element in the sequence for which pred returns true precedes those for
which pred returns false. Otherwise is_partitioned returns false. If the range rng contains
less than two elements, the function is always true.

hpx::ranges::is_sorted, hpx::ranges::is_sorted_until

Defined in header hpx/algorithm.hpp654.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent, typename Pred = hpx::parallel::detail::less, typename
Proj = hpx::identity>
bool is_sorted(FwdIter first, Sent last, Pred &&pred = Pred(), Proj &&proj = Proj())

Determines if the range [first, last) is sorted. Uses pred to compare elements.

The comparison operations in the parallel is_sorted algorithm executes in sequential order in the calling
thread.

Note: Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of
partitions

Template Parameters
• FwdIter – The type of the source iterators used for the This iterator type must meet the

requirements of a forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
• Pred – The type of an optional function/function object to use.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements of that the algorithm will

be applied to.
654 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 709

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last – Refers to the end of the sequence of elements of that the algorithm will be applied
to.

• pred – Refers to the binary predicate which returns true if the first argument should
be treated as less than the second argument. The signature of the function should be
equivalent to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_sorted algorithm returns a bool. The is_sorted algorithm returns true if each
element in the sequence [first, last) satisfies the predicate passed. If the range [first, last)
contains less than two elements, the function always returns true.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Pred =
hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_sorted(ExPolicy &&policy, FwdIter

first, Sent last, Pred &&pred
= Pred(), Proj &&proj =
Proj())

Determines if the range [first, last) is sorted. Uses pred to compare elements.

The comparison operations in the parallel is_sorted algorithm invoked with an execution policy object
of type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_sorted algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of
partitions

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of is_sorted requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of that the algorithm will

be applied to.
• last – Refers to the end of the sequence of elements of that the algorithm will be applied

to.

710 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• pred – Refers to the binary predicate which returns true if the first argument should
be treated as less than the second argument. The signature of the function should be
equivalent to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_sorted algorithm returns a hpx::future<bool> if the execution policy is of
type task_execution_policy and returns bool otherwise. The is_sorted algorithm returns a
bool if each element in the sequence [first, last) satisfies the predicate passed. If the range
[first, last) contains less than two elements, the function always returns true.

template<typename Rng, typename Pred = hpx::parallel::detail::less, typename Proj = hpx::identity>
bool is_sorted(Rng &&rng, Pred &&pred = Pred(), Proj &&proj = Proj())

Determines if the range rng is sorted. Uses pred to compare elements.

The comparison operations in the parallel is_sorted algorithm executes in sequential order in the calling
thread.

Note: Complexity: at most (N+S-1) comparisons where N = size(rng). S = number of partitions

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Pred – The type of an optional function/function object to use.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Refers to the binary predicate which returns true if the first argument should

be treated as less than the second argument. The signature of the function should be
equivalent to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_sorted algorithm returns a bool. The is_sorted algorithm returns true if each
element in the rng satisfies the predicate passed. If the range rng contains less than two
elements, the function always returns true.

template<typename ExPolicy, typename Rng, typename Pred = hpx::parallel::detail::less, typename
Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> is_sorted(ExPolicy &&policy, Rng

&&rng, Pred &&pred =
Pred(), Proj &&proj =
Proj())

2.8. API reference 711

HPX Documentation, master

Determines if the range rng is sorted. Uses pred to compare elements.

The comparison operations in the parallel is_sorted algorithm invoked with an execution policy object
of type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_sorted algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (N+S-1) comparisons where N = size(rng). S = number of partitions

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of is_sorted requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Refers to the binary predicate which returns true if the first argument should

be treated as less than the second argument. The signature of the function should be
equivalent to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_sorted algorithm returns a hpx::future<bool> if the execution policy is of
type task_execution_policy and returns bool otherwise. The is_sorted algorithm returns a
bool if each element in the range rng satisfies the predicate passed. If the range rng contains
less than two elements, the function always returns true.

template<typename FwdIter, typename Sent, typename Pred = hpx::parallel::detail::less, typename
Proj = hpx::identity>
FwdIter is_sorted_until(FwdIter first, Sent last, Pred &&pred = Pred(), Proj &&proj = Proj())

Returns the first element in the range [first, last) that is not sorted. Uses a predicate to compare elements
or the less than operator.

The comparison operations in the parallel is_sorted_until algorithm execute in sequential order in the
calling thread.

Note: Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of

712 Chapter 2. What’s so special about HPX?

HPX Documentation, master

partitions

Template Parameters
• FwdIter – The type of the source iterators used for the This iterator type must meet the

requirements of a forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
• Pred – The type of an optional function/function object to use.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements of that the algorithm will

be applied to.
• last – Refers to the end of the sequence of elements of that the algorithm will be applied

to.
• pred – Refers to the binary predicate which returns true if the first argument should

be treated as less than the second argument. The signature of the function should be
equivalent to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_sorted_until algorithm returns a FwdIter. The is_sorted_until algorithm re-
turns the first unsorted element. If the sequence has less than two elements or the sequence
is sorted, last is returned.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Pred =
hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type is_sorted_until(ExPolicy

&&policy,
FwdIter first,
Sent last,
Pred &&pred
= Pred(), Proj
&&proj =
Proj())

Returns the first element in the range [first, last) that is not sorted. Uses a predicate to compare elements
or the less than operator.

The comparison operations in the parallel is_sorted_until algorithm invoked with an execution policy
object of type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_sorted_until algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of
partitions

2.8. API reference 713

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of is_sorted_until requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of that the algorithm will

be applied to.
• last – Refers to the end of the sequence of elements of that the algorithm will be applied

to.
• pred – Refers to the binary predicate which returns true if the first argument should

be treated as less than the second argument. The signature of the function should be
equivalent to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_sorted_until algorithm returns a hpx::future<FwdIter> if the execution pol-
icy is of type task_execution_policy and returns FwdIter otherwise. The is_sorted_until
algorithm returns the first unsorted element. If the sequence has less than two elements or
the sequence is sorted, last is returned.

template<typename Rng, typename Pred = hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> is_sorted_until(Rng &&rng, Pred &&pred = Pred(), Proj

&&proj = Proj())
Returns the first element in the range rng that is not sorted. Uses a predicate to compare elements or
the less than operator.

Note: Complexity: at most (N+S-1) comparisons where N = size(rng). S = number of partitions

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of is_sorted_until requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Refers to the binary predicate which returns true if the first argument should

be treated as less than the second argument. The signature of the function should be

714 Chapter 2. What’s so special about HPX?

HPX Documentation, master

equivalent to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_sorted_until returns FwdIter. The is_sorted_until algorithm returns the first
unsorted element. If the sequence has less than two elements or the sequence is sorted, last
is returned.

template<typename ExPolicy, typename Rng, typename Pred = hpx::parallel::detail::less, typename
Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> is_sorted_until(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred
=
Pred(),
Proj
&&proj
=
Proj())

Returns the first element in the range rng that is not sorted. Uses a predicate to compare elements or
the less than operator.

The comparison operations in the parallel is_sorted_until algorithm invoked with an execution policy
object of type sequenced_policy executes in sequential order in the calling thread.

The comparison operations in the parallel is_sorted_until algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (N+S-1) comparisons where N = size(rng). S = number of partitions

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of is_sorted_until requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.

2.8. API reference 715

HPX Documentation, master

• pred – Refers to the binary predicate which returns true if the first argument should
be treated as less than the second argument. The signature of the function should be
equivalent to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The is_sorted_until algorithm returns a hpx::future<FwdIter> if the execution pol-
icy is of type task_execution_policy and returns FwdIter otherwise. The is_sorted_until
algorithm returns the first unsorted element. If the sequence has less than two elements or
the sequence is sorted, last is returned.

hpx::ranges::lexicographical_compare

Defined in header hpx/algorithm.hpp655.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename InIter1, typename Sent1, typename InIter2, typename Sent2, typename Proj1
= hpx::identity, typename Proj2 = hpx::identity, typename Pred = hpx::parallel::detail::less>
bool lexicographical_compare(InIter1 first1, Sent1 last1, InIter2 first2, Sent2 last2, Pred &&pred =

Pred(), Proj1 &&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Checks if the first range [first1, last1) is lexicographically less than the second range [first2, last2). uses
a provided predicate to compare elements.

The comparison operations in the parallel lexicographical_compare algorithm invoked without an
execution policy object execute in sequential order in the calling thread.

Note: Complexity: At most 2 * min(N1, N2) applications of the comparison operation, where N1 =
std::distance(first1, last) and N2 = std::distance(first2, last2).

Note: Lexicographical comparison is an operation with the following properties
• Two ranges are compared element by element
• The first mismatching element defines which range is lexicographically less or greater than the

other
• If one range is a prefix of another, the shorter range is lexicographically less than the other

655 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

716 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• If two ranges have equivalent elements and are of the same length, then the ranges are lexicograph-
ically equal

• An empty range is lexicographically less than any non-empty range
• Two empty ranges are lexicographically equal

Template Parameters
• InIter1 – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of an input iterator.
• Sent1 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter1.
• InIter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an input iterator.
• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter2.
• Pred – The type of an optional function/function object to use. Unlike its sequential form,

the parallel overload of lexicographical_compare requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function for FwdIter1. This defaults to
hpx::identity

• Proj2 – The type of an optional projection function for FwdIter2. This defaults to
hpx::identity

Parameters
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• pred – Refers to the comparison function that the first and second ranges will be applied

to
• proj1 – Specifies the function (or function object) which will be invoked for each of the

elements of the first range as a projection operation before the actual predicate is invoked.
• proj2 – Specifies the function (or function object) which will be invoked for each of

the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The lexicographically_compare algorithm returns bool. The lexicographi-
cally_compare algorithm returns true if the first range is lexicographically less, otherwise
it returns false. range [first2, last2), it returns false.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter2, typename
Sent2, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity, typename Pred =
hpx::parallel::detail::less>

2.8. API reference 717

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> lexicographical_compare(ExPolicy
&&policy,
FwdIter1
first1,
Sent1 last1,
FwdIter2
first2,
Sent2 last2,
Pred
&&pred =
Pred(),
Proj1
&&proj1 =
Proj1(),
Proj2
&&proj2 =
Proj2())

Checks if the first range [first1, last1) is lexicographically less than the second range [first2, last2). uses
a provided predicate to compare elements.

The comparison operations in the parallel lexicographical_compare algorithm invoked with an execu-
tion policy object of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel lexicographical_compare algorithm invoked with an ex-
ecution policy object of type parallel_policy or parallel_task_policy are permitted to execute in an
unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2 * min(N1, N2) applications of the comparison operation, where N1 =
std::distance(first1, last) and N2 = std::distance(first2, last2).

Note: Lexicographical comparison is an operation with the following properties
• Two ranges are compared element by element
• The first mismatching element defines which range is lexicographically less or greater than the

other
• If one range is a prefix of another, the shorter range is lexicographically less than the other
• If two ranges have equivalent elements and are of the same length, then the ranges are lexicograph-

ically equal
• An empty range is lexicographically less than any non-empty range
• Two empty ranges are lexicographically equal

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used for the first range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter1.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

718 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter2.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of lexicographical_compare requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function for FwdIter1. This defaults to
hpx::identity

• Proj2 – The type of an optional projection function for FwdIter2. This defaults to
hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• pred – Refers to the comparison function that the first and second ranges will be applied

to
• proj1 – Specifies the function (or function object) which will be invoked for each of the

elements of the first range as a projection operation before the actual predicate is invoked.
• proj2 – Specifies the function (or function object) which will be invoked for each of

the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The lexicographically_compare algorithm returns a hpx::future<bool> if the exe-
cution policy is of type sequenced_task_policy or parallel_task_policy and returns bool
otherwise. The lexicographically_compare algorithm returns true if the first range is lexi-
cographically less, otherwise it returns false. range [first2, last2), it returns false.

template<typename Rng1, typename Rng2, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity, typename Pred = hpx::parallel::detail::less>
bool lexicographical_compare(Rng1 &&rng1, Rng2 &&rng2, Pred &&pred = Pred(), Proj1

&&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Checks if the first range rng1 is lexicographically less than the second range rng2. uses a provided
predicate to compare elements.

The comparison operations in the parallel lexicographical_compare algorithm invoked without an
execution policy object execute in sequential order in the calling thread.

Note: Complexity: At most 2 * min(N1, N2) applications of the comparison operation,
where N1 = std::distance(std::begin(rng1), std::end(rng1)) and N2 = std::distance(std::begin(rng2),
std::end(rng2)).

Note: Lexicographical comparison is an operation with the following properties
• Two ranges are compared element by element
• The first mismatching element defines which range is lexicographically less or greater than the

other
• If one range is a prefix of another, the shorter range is lexicographically less than the other

2.8. API reference 719

HPX Documentation, master

• If two ranges have equivalent elements and are of the same length, then the ranges are lexicograph-
ically equal

• An empty range is lexicographically less than any non-empty range
• Two empty ranges are lexicographically equal

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential form,

the parallel overload of lexicographical_compare requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function for elements of the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function for elements of the second range.
This defaults to hpx::identity

Parameters
• rng1 – Refers to the sequence of elements the algorithm will be applied to.
• rng2 – Refers to the sequence of elements the algorithm will be applied to.
• pred – Refers to the comparison function that the first and second ranges will be applied

to
• proj1 – Specifies the function (or function object) which will be invoked for each of the

elements of the first range as a projection operation before the actual predicate is invoked.
• proj2 – Specifies the function (or function object) which will be invoked for each of

the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The lexicographically_compare algorithm returns bool. The lexicographi-
cally_compare algorithm returns true if the first range is lexicographically less, otherwise
it returns false. range [first2, last2), it returns false.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Proj1 = hpx::identity,
typename Proj2 = hpx::identity, typename Pred = hpx::parallel::detail::less>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> lexicographical_compare(ExPolicy

&&policy,
Rng1
&&rng1,
Rng2
&&rng2,
Pred
&&pred =
Pred(),
Proj1
&&proj1 =
Proj1(),
Proj2
&&proj2 =
Proj2())

Checks if the first range rng1 is lexicographically less than the second range rng2. uses a provided
predicate to compare elements.

The comparison operations in the parallel lexicographical_compare algorithm invoked with an execu-
tion policy object of type sequenced_policy execute in sequential order in the calling thread.

720 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The comparison operations in the parallel lexicographical_compare algorithm invoked with an ex-
ecution policy object of type parallel_policy or parallel_task_policy are permitted to execute in an
unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2 * min(N1, N2) applications of the comparison operation,
where N1 = std::distance(std::begin(rng1), std::end(rng1)) and N2 = std::distance(std::begin(rng2),
std::end(rng2)).

Note: Lexicographical comparison is an operation with the following properties
• Two ranges are compared element by element
• The first mismatching element defines which range is lexicographically less or greater than the

other
• If one range is a prefix of another, the shorter range is lexicographically less than the other
• If two ranges have equivalent elements and are of the same length, then the ranges are lexicograph-

ically equal
• An empty range is lexicographically less than any non-empty range
• Two empty ranges are lexicographically equal

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of lexicographical_compare requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function for elements of the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function for elements of the second range.
This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the sequence of elements the algorithm will be applied to.
• rng2 – Refers to the sequence of elements the algorithm will be applied to.
• pred – Refers to the comparison function that the first and second ranges will be applied

to
• proj1 – Specifies the function (or function object) which will be invoked for each of the

elements of the first range as a projection operation before the actual predicate is invoked.
• proj2 – Specifies the function (or function object) which will be invoked for each of

the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The lexicographically_compare algorithm returns a hpx::future<bool> if the exe-
cution policy is of type sequenced_task_policy or parallel_task_policy and returns bool
otherwise. The lexicographically_compare algorithm returns true if the first range is lexi-
cographically less, otherwise it returns false. range [first2, last2), it returns false.

2.8. API reference 721

HPX Documentation, master

hpx::ranges::make_heap

Defined in header hpx/algorithm.hpp656.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Iter, typename Sent, typename Comp, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> make_heap(ExPolicy &&policy, Iter first,

Sent last, Comp &&comp,
Proj &&proj = Proj{})

Constructs a max heap in the range [first, last).

The predicate operations in the parallel make_heap algorithm invoked with an execution policy object
of type sequential_execution_policy executes in sequential order in the calling thread.

The comparison operations in the parallel make_heap algorithm invoked with an execution policy
object of type parallel_execution_policy or parallel_task_execution_policy are permitted to execute
in an unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the begin source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter1.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• comp – Refers to the binary predicate which returns true if the first argument should be

treated as less than the second. The signature of the function should be equivalent to

bool comp(const Type &a, const Type &b);

656 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

722 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types RndIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The make_heap algorithm returns a hpx::future<Iter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns Iter otherwise. It returns
last.

template<typename ExPolicy, typename Rng, typename Comp, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> make_heap(ExPolicy

&&pol-
icy,
Rng
&&rng,
Comp
&&comp,
Proj
&&proj
=
Proj{})

Constructs a max heap in the range [first, last).

The predicate operations in the parallel make_heap algorithm invoked with an execution policy object
of type sequential_execution_policy executes in sequential order in the calling thread.

The comparison operations in the parallel make_heap algorithm invoked with an execution policy
object of type parallel_execution_policy or parallel_task_execution_policy are permitted to execute
in an unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – Refers to the binary predicate which returns true if the first argument should be

treated as less than the second. The signature of the function should be equivalent to

bool comp(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types RndIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

2.8. API reference 723

HPX Documentation, master

Returns The make_heap algorithm returns a hpx::future<Iter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns Iter otherwise. It returns
last.

template<typename ExPolicy, typename Iter, typename Sent, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> make_heap(ExPolicy &&policy, Iter first,

Sent last, Proj &&proj =
Proj{})

Constructs a max heap in the range [first, last).

The predicate operations in the parallel make_heap algorithm invoked with an execution policy object
of type sequential_execution_policy executes in sequential order in the calling thread.

The comparison operations in the parallel make_heap algorithm invoked with an execution policy
object of type parallel_execution_policy or parallel_task_execution_policy are permitted to execute
in an unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the begin source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter1.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• proj – Specifies the function (or function object) which will be invoked for each pair of

elements as a projection operation before the actual predicate comp is invoked.
Returns The make_heap algorithm returns a hpx::future<Iter> if the execution policy is of

type sequenced_task_policy or parallel_task_policy and returns Iter otherwise. It returns
last.

template<typename ExPolicy, typename Rng, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> make_heap(ExPolicy

&&pol-
icy,
Rng
&&rng,
Proj
&&proj
=
Proj{})

Constructs a max heap in the range [first, last).

724 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The predicate operations in the parallel make_heap algorithm invoked with an execution policy object
of type sequential_execution_policy executes in sequential order in the calling thread.

The comparison operations in the parallel make_heap algorithm invoked with an execution policy
object of type parallel_execution_policy or parallel_task_execution_policy are permitted to execute
in an unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• proj – Specifies the function (or function object) which will be invoked for each pair of

elements as a projection operation before the actual predicate comp is invoked.
Returns The make_heap algorithm returns a hpx::future<Iter> if the execution policy is of

type sequenced_task_policy or parallel_task_policy and returns Iter otherwise. It returns
last.

template<typename Iter, typename Sent, typename Comp, typename Proj = hpx::identity>
Iter make_heap(Iter first, Sent last, Comp &&comp, Proj &&proj = Proj{})

Constructs a max heap in the range [first, last).

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters
• Iter – The type of the begin source iterators used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Sent – The type of the end source iterators used (deduced). This iterator type must meet

the requirements of an sentinel for Iter1.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• comp – Refers to the binary predicate which returns true if the first argument should be

treated as less than the second. The signature of the function should be equivalent to

bool comp(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types RndIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The make_heap algorithm returns Iter. It returns last.

2.8. API reference 725

HPX Documentation, master

template<typename Rng, typename Comp, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> make_heap(Rng &&rng, Comp &&comp, Proj &&proj = Proj{})

Constructs a max heap in the range [first, last).

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – Refers to the binary predicate which returns true if the first argument should be

treated as less than the second. The signature of the function should be equivalent to

bool comp(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types RndIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The make_heap algorithm returns Iter. It returns last.

template<typename Iter, typename Sent, typename Proj = hpx::identity>
Iter make_heap(Iter first, Sent last, Proj &&proj = Proj{})

Constructs a max heap in the range [first, last).

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters
• Iter – The type of the begin source iterators used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Sent – The type of the end source iterators used (deduced). This iterator type must meet

the requirements of an sentinel for Iter1.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• proj – Specifies the function (or function object) which will be invoked for each pair of

elements as a projection operation before the actual predicate comp is invoked.
Returns The make_heap algorithm returns Iter. It returns last.

template<typename Rng, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> make_heap(Rng &&rng, Proj &&proj = Proj{})

Constructs a max heap in the range [first, last).

Note: Complexity: at most (3*N) comparisons where N = distance(first, last).

Template Parameters

726 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• proj – Specifies the function (or function object) which will be invoked for each pair of

elements as a projection operation before the actual predicate comp is invoked.
Returns The make_heap algorithm returns Iter. It returns last.

hpx::ranges::merge, hpx::ranges::inplace_merge

Defined in header hpx/algorithm.hpp657.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Rng1, typename Rng2, typename Iter3, typename Comp =
hpx::ranges::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::ranges::merge_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, Iter3>> merge(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Iter3
dest,
Comp
&&comp
=
Comp(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Merges two sorted ranges [first1, last1) and [first2, last2) into one sorted range beginning at dest. The
order of equivalent elements in the each of original two ranges is preserved. For equivalent elements in
the original two ranges, the elements from the first range precede the elements from the second range.
The destination range cannot overlap with either of the input ranges.

657 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 727

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignments in the parallel merge algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel merge algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs O(std::distance(first1, last1) + std::distance(first2, last2)) applications
of the comparison comp and the each projection.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the first source range used (deduced). The iterators extracted from
this range type must meet the requirements of an random access iterator.

• Rng2 – The type of the second source range used (deduced). The iterators extracted from
this range type must meet the requirements of an random access iterator.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of merge requires Comp to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function to be used for elements of the first
range. This defaults to hpx::identity

• Proj2 – The type of an optional projection function to be used for elements of the second
range. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first range of elements the algorithm will be applied to.
• rng2 – Refers to the second range of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• comp – comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types Iter1 and Iter2
can be dereferenced and then implicitly converted to both Type1 and Type2

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual comparison comp
is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual comparison
comp is invoked.

Returns The merge algorithm returns a hpx::future<merge_result<Iter1, Iter2, Iter3>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
merge_result<Iter1, Iter2, Iter3> otherwise. The merge algorithm returns the tuple of the
source iterator last1, the source iterator last2, the destination iterator to the end of the dest
range.

728 Chapter 2. What’s so special about HPX?

HPX Documentation, master

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Iter3, typename Comp = hpx::ranges::less, typename Proj1 = hpx::identity, typename Proj2
= hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::ranges::merge_result<Iter1, Iter2, Iter3>>::type merge(ExPolicy

&&pol-
icy,
Iter1
first1,
Sent1
last1,
Iter2
first2,
Sent2
last2,
Iter3
dest,
Comp
&&comp
=
Comp(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Merges two sorted ranges [first1, last1) and [first2, last2) into one sorted range beginning at dest. The
order of equivalent elements in the each of original two ranges is preserved. For equivalent elements in
the original two ranges, the elements from the first range precede the elements from the second range.
The destination range cannot overlap with either of the input ranges.

The assignments in the parallel merge algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel merge algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs O(std::distance(first1, last1) + std::distance(first2, last2)) applications
of the comparison comp and the each projection.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an random access iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter1.

2.8. API reference 729

HPX Documentation, master

• Iter2 – The type of the source iterators used (deduced) representing the second se-
quence. This iterator type must meet the requirements of an random access iterator.

• Sent2 – The type of the end source iterators used (deduced) representing the second
sequence. This iterator type must meet the requirements of an sentinel for Iter2.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of merge requires Comp to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function to be used for elements of the first
range. This defaults to hpx::identity

• Proj2 – The type of an optional projection function to be used for elements of the second
range. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• comp – comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types Iter1 and Iter2
can be dereferenced and then implicitly converted to both Type1 and Type2

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual comparison comp
is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual comparison
comp is invoked.

Returns The merge algorithm returns a hpx::future<merge_result<Iter1, Iter2, Iter3>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
merge_result<Iter1, Iter2, Iter3> otherwise. The merge algorithm returns the tuple of the
source iterator last1, the source iterator last2, the destination iterator to the end of the dest
range.

template<typename Rng1, typename Rng2, typename Iter3, typename Comp = hpx::ranges::less,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

730 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::ranges::merge_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, Iter3> merge(Rng1
&&rng1,
Rng2
&&rng2,
Iter3
dest,
Comp
&&comp
=
Comp(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Merges two sorted ranges [first1, last1) and [first2, last2) into one sorted range beginning at dest. The
order of equivalent elements in the each of original two ranges is preserved. For equivalent elements in
the original two ranges, the elements from the first range precede the elements from the second range.
The destination range cannot overlap with either of the input ranges.

Note: Complexity: Performs O(std::distance(first1, last1) + std::distance(first2, last2)) applications
of the comparison comp and the each projection.

Template Parameters
• Rng1 – The type of the first source range used (deduced). The iterators extracted from

this range type must meet the requirements of an random access iterator.
• Rng2 – The type of the second source range used (deduced). The iterators extracted from

this range type must meet the requirements of an random access iterator.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an random access iterator.
• Comp – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of merge requires Comp to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function to be used for elements of the first
range. This defaults to hpx::identity

• Proj2 – The type of an optional projection function to be used for elements of the second
range. This defaults to hpx::identity

Parameters
• rng1 – Refers to the first range of elements the algorithm will be applied to.
• rng2 – Refers to the second range of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• comp – comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types Iter1 and Iter2
can be dereferenced and then implicitly converted to both Type1 and Type2

• proj1 – Specifies the function (or function object) which will be invoked for each of the

2.8. API reference 731

HPX Documentation, master

elements of the first range as a projection operation before the actual comparison comp
is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual comparison
comp is invoked.

Returns The merge algorithm returns merge_result<Iter1, Iter2, Iter3>. The merge algo-
rithm returns the tuple of the source iterator last1, the source iterator last2, the destination
iterator to the end of the dest range.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3,
typename Comp = hpx::ranges::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::ranges::merge_result<Iter1, Iter2, Iter3> merge(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2,

Iter3 dest, Comp &&comp = Comp(), Proj1
&&proj1 = Proj1(), Proj2 &&proj2 = Proj2())

Merges two sorted ranges [first1, last1) and [first2, last2) into one sorted range beginning at dest. The
order of equivalent elements in the each of original two ranges is preserved. For equivalent elements in
the original two ranges, the elements from the first range precede the elements from the second range.
The destination range cannot overlap with either of the input ranges.

Note: Complexity: Performs O(std::distance(first1, last1) + std::distance(first2, last2)) applications
of the comparison comp and the each projection.

Template Parameters
• Iter1 – The type of the source iterators used (deduced) representing the first sequence.

This iterator type must meet the requirements of an random access iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of an sentinel for Iter1.
• Iter2 – The type of the source iterators used (deduced) representing the second se-

quence. This iterator type must meet the requirements of an random access iterator.
• Sent2 – The type of the end source iterators used (deduced) representing the second

sequence. This iterator type must meet the requirements of an sentinel for Iter2.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an random access iterator.
• Comp – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of merge requires Comp to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function to be used for elements of the first
range. This defaults to hpx::identity

• Proj2 – The type of an optional projection function to be used for elements of the second
range. This defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• comp – comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

732 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types Iter1 and Iter2
can be dereferenced and then implicitly converted to both Type1 and Type2

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual comparison comp
is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual comparison
comp is invoked.

Returns The merge algorithm returns merge_result<Iter1, Iter2, Iter3>. The merge algo-
rithm returns the tuple of the source iterator last1, the source iterator last2, the destination
iterator to the end of the dest range.

template<typename ExPolicy, typename Rng, typename Iter, typename Comp = hpx::ranges::less,
typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> inplace_merge(ExPolicy &&policy, Rng

&&rng, Iter middle,
Comp &&comp =
Comp(), Proj &&proj =
Proj())

Merges two consecutive sorted ranges [first, middle) and [middle, last) into one sorted range [first,
last). The order of equivalent elements in the each of original two ranges is preserved. For equivalent
elements in the original two ranges, the elements from the first range precede the elements from the
second range.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs O(std::distance(first, last)) applications of the comparison comp and the
each projection.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an random access iterator.

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an random access iterator.

• Comp – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of inplace_merge requires Comp to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the range of elements the algorithm will be applied to.

2.8. API reference 733

HPX Documentation, master

• middle – Refers to the end of the first sorted range and the beginning of the second sorted
range the algorithm will be applied to.

• comp – comp is a callable object which returns true if the first argument is less than the
second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types Iter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The inplace_merge algorithm returns a hpx::future<Iter> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns Iter otherwise. The
inplace_merge algorithm returns the source iterator last

template<typename ExPolicy, typename Iter, typename Sent, typename Comp = hpx::ranges::less,
typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> inplace_merge(ExPolicy &&policy, Iter

first, Iter middle, Sent
last, Comp &&comp =
Comp(), Proj &&proj =
Proj())

Merges two consecutive sorted ranges [first, middle) and [middle, last) into one sorted range [first,
last). The order of equivalent elements in the each of original two ranges is preserved. For equivalent
elements in the original two ranges, the elements from the first range precede the elements from the
second range.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs O(std::distance(first, last)) applications of the comparison comp and the
each projection.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an random access iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter1.

• Comp – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of inplace_merge requires Comp to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

734 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• middle – Refers to the end of the first sorted range and the beginning of the second sorted
range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.
• comp – comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types Iter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The inplace_merge algorithm returns a hpx::future<Iter> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns Iter otherwise. The
inplace_merge algorithm returns the source iterator last

template<typename Rng, typename Iter, typename Comp = hpx::ranges::less, typename Proj =
hpx::identity>
Iter inplace_merge(Rng &&rng, Iter middle, Comp &&comp = Comp(), Proj &&proj = Proj())

Merges two consecutive sorted ranges [first, middle) and [middle, last) into one sorted range [first,
last). The order of equivalent elements in the each of original two ranges is preserved. For equivalent
elements in the original two ranges, the elements from the first range precede the elements from the
second range.

Note: Complexity: Performs O(std::distance(first, last)) applications of the comparison comp and the
each projection.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an random access iterator.
• Iter – The type of the source iterators used (deduced). This iterator type must meet the

requirements of an random access iterator.
• Comp – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of inplace_merge requires Comp to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the range of elements the algorithm will be applied to.
• middle – Refers to the end of the first sorted range and the beginning of the second sorted

range the algorithm will be applied to.
• comp – comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types Iter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The inplace_merge algorithm returns Iter. The inplace_merge algorithm returns the
source iterator last

2.8. API reference 735

HPX Documentation, master

template<typename Iter, typename Sent, typename Comp = hpx::ranges::less, typename Proj =
hpx::identity>
Iter inplace_merge(Iter first, Iter middle, Sent last, Comp &&comp = Comp(), Proj &&proj = Proj())

Merges two consecutive sorted ranges [first, middle) and [middle, last) into one sorted range [first,
last). The order of equivalent elements in the each of original two ranges is preserved. For equivalent
elements in the original two ranges, the elements from the first range precede the elements from the
second range.

Note: Complexity: Performs O(std::distance(first, last)) applications of the comparison comp and the
each projection.

Template Parameters
• Iter – The type of the source iterators used (deduced). This iterator type must meet the

requirements of an random access iterator.
• Sent – The type of the end source iterators used (deduced). This iterator type must meet

the requirements of an sentinel for Iter1.
• Comp – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of inplace_merge requires Comp to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.
• middle – Refers to the end of the first sorted range and the beginning of the second sorted

range the algorithm will be applied to.
• last – Refers to the end of the second sorted range the algorithm will be applied to.
• comp – comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types Iter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The inplace_merge algorithm Iter. The inplace_merge algorithm returns the source
iterator last

hpx::ranges::min_element, hpx::ranges::max_element, hpx::ranges::minmax_element

Defined in header hpx/algorithm.hpp658.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

658 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

736 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename FwdIter, typename Sent, typename F = hpx::parallel::detail::less, typename Proj =
hpx::identity>
FwdIter min_element(FwdIter first, Sent last, F &&f = F(), Proj &&proj = Proj())

Finds the smallest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel min_element algorithm execute in sequential order in the calling
thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters
• FwdIter – The type of the source iterator used (deduced). The iterator type must meet

the requirements of an forward iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for FwdIter.
• F – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the the left argument is less than the right

element. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The min_element algorithm returns FwdIter. The min_element algorithm returns
the iterator to the smallest element in the range [first, last). If several elements in the range
are equivalent to the smallest element, returns the iterator to the first such element. Returns
last if the range is empty.

template<typename Rng, typename F = hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> min_element(Rng &&rng, F &&f = F(), Proj &&proj = Proj())

Finds the smallest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel min_element algorithm execute in sequential order in the calling
thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.

2.8. API reference 737

HPX Documentation, master

• F – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the the left argument is less than the right

element. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The min_element algorithm returns a hpx::traits::range_iterator<Rng>::type oth-
erwise. The min_element algorithm returns the iterator to the smallest element in the range
[first, last). If several elements in the range are equivalent to the smallest element, returns
the iterator to the first such element. Returns last if the range is empty.

template<typename ExPolicy, typename FwdIter, typename Sent, typename F =
hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> min_element(ExPolicy &&policy,

FwdIter first, Sent last,
F &&f = F(), Proj
&&proj = Proj())

Finds the smallest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel min_element algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel min_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterator used (deduced). The iterator type must meet
the requirements of an forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for FwdIter.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of min_element requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.

738 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• f – The binary predicate which returns true if the the left argument is less than the right
element. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The min_element algorithm returns a hpx::future<FwdIter> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise.
The min_element algorithm returns the iterator to the smallest element in the range [first,
last). If several elements in the range are equivalent to the smallest element, returns the
iterator to the first such element. Returns last if the range is empty.

template<typename ExPolicy, typename Rng, typename F = hpx::parallel::detail::less, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, hpx::traits::range_iterator_t<Rng>> min_element(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f
=
F(),
Proj
&&proj
=
Proj())

Finds the smallest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel min_element algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel min_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of min_element requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

2.8. API reference 739

HPX Documentation, master

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the the left argument is less than the right

element. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The min_element algorithm returns a hpx::future<hpx::traits::range_iterator<Rng>::type>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
FwdIter otherwise. The min_element algorithm returns the iterator to the smallest element
in the range [first, last). If several elements in the range are equivalent to the smallest
element, returns the iterator to the first such element. Returns last if the range is empty.

template<typename FwdIter, typename Sent, typename F = hpx::parallel::detail::less, typename Proj =
hpx::identity>
FwdIter max_element(FwdIter first, Sent last, F &&f = F(), Proj &&proj = Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel max_element algorithm execute in sequential order in the calling
thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters
• FwdIter – The type of the source iterator used (deduced). The iterator type must meet

the requirements of an forward iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for FwdIter.
• F – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the This argument is optional and defaults

to std::less. the left argument is less than the right element. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The max_element algorithm returns a FwdIter. The max_element algorithm returns
the iterator to the smallest element in the range [first, last). If several elements in the range

740 Chapter 2. What’s so special about HPX?

HPX Documentation, master

are equivalent to the smallest element, returns the iterator to the first such element. Returns
last if the range is empty.

template<typename Rng, typename F = hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> max_element(Rng &&rng, F &&f = F(), Proj &&proj = Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel max_element algorithm execute in sequential order in the calling
thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• F – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the This argument is optional and defaults

to std::less. the left argument is less than the right element. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The max_element algorithm returns a hpx::traits::range_iterator<Rng>::type oth-
erwise. The max_element algorithm returns the iterator to the smallest element in the range
[first, last). If several elements in the range are equivalent to the smallest element, returns
the iterator to the first such element. Returns last if the range is empty.

template<typename ExPolicy, typename FwdIter, typename Sent, typename F =
hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> max_element(ExPolicy &&policy,

FwdIter first, Sent last,
F &&f = F(), Proj
&&proj = Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel max_element algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel max_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

2.8. API reference 741

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterator used (deduced). The iterator type must meet
the requirements of an forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for FwdIter.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of max_element requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the This argument is optional and defaults

to std::less. the left argument is less than the right element. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The max_element algorithm returns a hpx::future<FwdIter> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise.
The max_element algorithm returns the iterator to the smallest element in the range [first,
last). If several elements in the range are equivalent to the smallest element, returns the
iterator to the first such element. Returns last if the range is empty.

template<typename ExPolicy, typename Rng, typename F = hpx::parallel::detail::less, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, hpx::traits::range_iterator_t<Rng>> max_element(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f
=
F(),
Proj
&&proj
=
Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel max_element algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

742 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The comparisons in the parallel max_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of max_element requires F to meet the requirements of CopyCon-
structible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the This argument is optional and defaults

to std::less. the left argument is less than the right element. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The max_element algorithm returns a hpx::future<hpx::traits::range_iterator<Rng>::type>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
FwdIter otherwise. The max_element algorithm returns the iterator to the smallest element
in the range [first, last). If several elements in the range are equivalent to the smallest
element, returns the iterator to the first such element. Returns last if the range is empty.

template<typename FwdIter, typename Sent, typename F = hpx::parallel::detail::less, typename Proj =
hpx::identity>
minmax_element_result<FwdIter> minmax_element(FwdIter first, Sent last, F &&f = F(), Proj

&&proj = Proj())
Finds the greatest element in the range [first, last) using the given comparison function f.

The assignments in the parallel minmax_element algorithm execute in sequential order in the calling
thread.

Note: Complexity: At most max(floor(3/2*(N-1)), 0) applications of the predicate, where N =
std::distance(first, last).

Template Parameters
• FwdIter – The type of the source iterator used (deduced). The iterator type must meet

the requirements of an forward iterator.

2.8. API reference 743

HPX Documentation, master

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for FwdIter.

• F – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the the left argument is less than the right

element. This argument is optional and defaults to std::less. The signature of the predi-
cate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The minmax_element algorithm returns a minmax_element_result<FwdIter,
FwdIter> The minmax_element algorithm returns a min_max_result consisting of an
iterator to the smallest element as the min element and an iterator to the greatest element
as the max element. Returns minmax_element_result{first, first} if the range is empty. If
several elements are equivalent to the smallest element, the iterator to the first such element
is returned. If several elements are equivalent to the largest element, the iterator to the last
such element is returned.

template<typename Rng, typename F = hpx::parallel::detail::less, typename Proj = hpx::identity>
minmax_element_result<hpx::traits::range_iterator_t<Rng>> minmax_element(Rng &&rng, F &&f =

F(), Proj &&proj =
Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The assignments in the parallel minmax_element algorithm execute in sequential order in the calling
thread.

Note: Complexity: At most max(floor(3/2*(N-1)), 0) applications of the predicate, where N =
std::distance(first, last).

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• F – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the the left argument is less than the right

element. This argument is optional and defaults to std::less. The signature of the predi-
cate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

744 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The minmax_element algorithm returns a min-
max_element_result<hpx::traits::range_iterator<Rng>::type ,
hpx::traits::range_iterator<Rng>::type> The minmax_element algorithm returns a
min_max_result consisting of an range iterator to the smallest element as the min element
and an range iterator to the greatest element as the max element. If several elements are
equivalent to the smallest element, the iterator to the first such element is returned. If
several elements are equivalent to the largest element, the iterator to the last such element
is returned.

template<typename ExPolicy, typename FwdIter, typename Sent, typename F =
hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, minmax_element_result<FwdIter>> minmax_element(ExPolicy

&&pol-
icy,
FwdIter
first,
Sent
last,
F
&&f
=
F(),
Proj
&&proj
=
Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most max(floor(3/2*(N-1)), 0) applications of the predicate, where N =
std::distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterator used (deduced). The iterator type must meet
the requirements of an forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for FwdIter.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,

2.8. API reference 745

HPX Documentation, master

the parallel overload of minmax_element requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the the left argument is less than the right

element. This argument is optional and defaults to std::less. The signature of the predi-
cate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The minmax_element algorithm returns a minmax_element_result<FwdIter,
FwdIter> The minmax_element algorithm returns a min_max_result consisting of an
iterator to the smallest element as the min element and an iterator to the greatest element
as the max element. Returns minmax_element_result{first, first} if the range is empty. If
several elements are equivalent to the smallest element, the iterator to the first such element
is returned. If several elements are equivalent to the largest element, the iterator to the last
such element is returned.

template<typename ExPolicy, typename Rng, typename F = hpx::parallel::detail::less, typename Proj =
hpx::identity>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, minmax_element_result<hpx::traits::range_iterator_t<Rng>>> minmax_element(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f
=
F(),
Proj
&&proj
=
Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most max(floor(3/2*(N-1)), 0) applications of the predicate, where N =

746 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::distance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of minmax_element requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – The binary predicate which returns true if the the left argument is less than the right

element. This argument is optional and defaults to std::less. The signature of the predi-
cate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the ob-
jects passed to it. The type Type1 must be such that objects of type FwdIter can be
dereferenced and then implicitly converted to Type1.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The minmax_element algorithm returns a min-
max_element_result<hpx::traits::range_iterator<Rng>::type,
hpx::traits::range_iterator<Rng>::type> The minmax_element algorithm returns a
min_max_result consisting of an range iterator to the smallest element as the min element
and an range iterator to the greatest element as the max element. If several elements are
equivalent to the smallest element, the iterator to the first such element is returned. If
several elements are equivalent to the largest element, the iterator to the last such element
is returned.

hpx::ranges::mismatch

Defined in header hpx/algorithm.hpp659.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

659 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 747

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Pred = equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, mismatch_result<Iter1, Iter2>>::type mismatch(ExPolicy

&&pol-
icy,
Iter1
first1,
Sent1
last1,
Iter2
first2,
Sent2
last2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Returns true if the range [first1, last1) is mismatch to the range [first2, last2), and false otherwise.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate f. If FwdIter1
and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then
no applications of the predicate f are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i
mismatchs *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two
elements are mismatch.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

748 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Sent1 – The type of the source iterators used for the end of the first range (deduced).
• Iter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the source iterators used for the end of the second range (deduced).
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of mismatch requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second range. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• op – The binary predicate which returns true if the elements should be treated as mis-

match. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The mismatch algorithm returns a hpx::future<bool> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns bool otherwise. The mis-
match algorithm returns true if the elements in the two ranges are mismatch, otherwise it
returns false. If the length of the range [first1, last1) does not mismatch the length of the
range [first2, last2), it returns false.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = equal_to, typename
Proj1 = hpx::identity, typename Proj2 = hpx::identity>

2.8. API reference 749

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, mismatch_result<typename hpx::traits::range_traits<Rng1>::iterator_type, typename hpx::traits::range_traits<Rng2>::iterator_type>>::type mismatch(ExPolicy
&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Returns std::pair with iterators to the first two non-equivalent elements.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most last1 - first1 applications of the predicate f.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the first source range used (deduced). The iterators extracted from
this range type must meet the requirements of an forward iterator.

• Rng2 – The type of the second source range used (deduced). The iterators extracted from
this range type must meet the requirements of an forward iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of mismatch requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second range. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as mis-

match. The signature of the predicate function should be equivalent to the following:

750 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The mismatch algorithm returns a hpx::future<std::pair<FwdIter1, FwdIter2> >
if the execution policy is of type sequenced_task_policy or parallel_task_policy and re-
turns std::pair<FwdIter1, FwdIter2> otherwise. The mismatch algorithm returns the first
mismatching pair of elements from two ranges: one defined by [first1, last1) and another
defined by [first2, last2).

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred =
equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
mismatch_result<Iter1, Iter2> mismatch(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2, Pred &&op =

Pred(), Proj1 &&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Returns true if the range [first1, last1) is mismatch to the range [first2, last2), and false otherwise.

Note: Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate f. If FwdIter1
and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then
no applications of the predicate f are made.

Note: The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i
mismatchs *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two
elements are mismatch.

Template Parameters
• Iter1 – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Sent1 – The type of the source iterators used for the end of the first range (deduced).
• Iter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the source iterators used for the end of the second range (deduced).
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of mismatch requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first range. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second range. This
defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.

2.8. API reference 751

HPX Documentation, master

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• last2 – Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• op – The binary predicate which returns true if the elements should be treated as mis-
match. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The mismatch algorithm returns bool. The mismatch algorithm returns true if the
elements in the two ranges are mismatch, otherwise it returns false. If the length of the
range [first1, last1) does not mismatch the length of the range [first2, last2), it returns false.

template<typename Rng1, typename Rng2, typename Pred = equal_to, typename Proj1 = hpx::identity,
typename Proj2 = hpx::identity>
mismatch_result<typename hpx::traits::range_traits<Rng1>::iterator_type, typename hpx::traits::range_traits<Rng2>::iterator_type> mismatch(Rng1

&&rng1,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Returns std::pair with iterators to the first two non-equivalent elements.

Note: Complexity: At most last1 - first1 applications of the predicate f.

Template Parameters
• Rng1 – The type of the first source range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
• Rng2 – The type of the second source range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of mismatch requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function applied to the first range. This

752 Chapter 2. What’s so special about HPX?

HPX Documentation, master

defaults to hpx::identity
• Proj2 – The type of an optional projection function applied to the second range. This

defaults to hpx::identity
Parameters

• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• op – The binary predicate which returns true if the elements should be treated as mis-

match. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of the second range as a projection operation before the actual predicate is
invoked.

Returns The mismatch algorithm returns std::pair<FwdIter1, FwdIter2>. The mismatch
algorithm returns the first mismatching pair of elements from two ranges: one defined by
[first1, last1) and another defined by [first2, last2).

hpx::ranges::move

Defined in header hpx/algorithm.hpp660.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2>
hpx::parallel::util::detail::algorithm_result<ExPolicy, move_result<Iter1, Iter2>>::type move(ExPolicy

&&policy,
Iter1 first,
Sent1 last,
Iter2 dest)

Moves the elements in the range rng to another range beginning at dest. After this operation the ele-
ments in the moved-from range will still contain valid values of the appropriate type, but not necessarily
the same values as before the move.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

660 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 753

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignments in the parallel copy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter1 – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Sent1 – The type of the source iterators used for the end of the first range (deduced).
• Iter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The move algorithm returns a hpx::future<ranges::move_result<iterator_t<Rng>,
FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::move_result<iterator_t<Rng>, FwdIter2> otherwise.
The move algorithm returns the pair of the input iterator last and the output iterator to the
element in the destination range, one past the last element moved.

template<typename ExPolicy, typename Rng, typename Iter2>
hpx::parallel::util::detail::algorithm_result<ExPolicy, move_result<hpx::traits::range_iterator_t<Rng>, Iter2>>::type move(ExPolicy

&&pol-
icy,
Rng
&&rng,
Iter2
dest)

Moves the elements in the range rng to another range beginning at dest. After this operation the ele-
ments in the moved-from range will still contain valid values of the appropriate type, but not necessarily
the same values as before the move.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel copy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

754 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Iter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The move algorithm returns a hpx::future<ranges::move_result<iterator_t<Rng>,
FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::move_result<iterator_t<Rng>, FwdIter2> otherwise.
The move algorithm returns the pair of the input iterator last and the output iterator to the
element in the destination range, one past the last element moved.

template<typename Iter1, typename Sent1, typename Iter2>
move_result<Iter1, Iter2> move(Iter1 first, Sent1 last, Iter2 dest)

Moves the elements in the range rng to another range beginning at dest. After this operation the ele-
ments in the moved-from range will still contain valid values of the appropriate type, but not necessarily
the same values as before the move.

Note: Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.

Template Parameters
• Iter1 – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Sent1 – The type of the source iterators used for the end of the first range (deduced).
• Iter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

Returns The move algorithm returns ranges::move_result<iterator_t<Rng>, FwdIter2>.
The move algorithm returns the pair of the input iterator last and the output iterator to
the element in the destination range, one past the last element moved.

template<typename Rng, typename Iter2>
move_result<hpx::traits::range_iterator_t<Rng>, Iter2> move(Rng &&rng, Iter2 dest)

Moves the elements in the range rng to another range beginning at dest. After this operation the ele-
ments in the moved-from range will still contain valid values of the appropriate type, but not necessarily
the same values as before the move.

Note: Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Iter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.

2.8. API reference 755

HPX Documentation, master

• dest – Refers to the beginning of the destination range.
Returns The move algorithm returns a ranges::move_result<iterator_t<Rng>, FwdIter2>.

The move algorithm returns the pair of the input iterator last and the output iterator to the
element in the destination range, one past the last element moved.

hpx::ranges::nth_element

Defined in header hpx/algorithm.hpp661.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename RandomIt, typename Sent, typename Pred = hpx::parallel::detail::less, typename
Proj = hpx::identity>
RandomIt nth_element(RandomIt first, RandomIt nth, Sent last, Pred &&pred = Pred(), Proj &&proj

= Proj())
nth_element is a partial sorting algorithm that rearranges elements in [first, last) such that the element
pointed at by nth is changed to whatever element would occur in that position if [first, last) were sorted
and all of the elements before this new nth element are less than or equal to the elements after the new
nth element.

The comparison operations in the parallel nth_element algorithm invoked without an execution policy
object execute in sequential order in the calling thread.

Note: Complexity: Linear in std::distance(first, last) on average. O(N) applications of the predicate,
and O(N log N) swaps, where N = last - first.

Template Parameters
• RandomIt – The type of the source begin, nth, and end iterators used (deduced). This

iterator type must meet the requirements of a random access iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for RandomIt.
• Pred – Comparison function object which returns true if the first argument is less than

the second.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• nth – Refers to the iterator defining the sort partition point
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
661 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

756 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• pred – Specifies the comparison function object which returns true if the first argument
is less than (i.e. is ordered before) the second. The signature of this comparison function
should be equivalent to:

bool cmp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type must be such that an object of type randomIt can be dereferenced
and then implicitly converted to Type. This defaults to std::less<>.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked. This defaults
to hpx::identity.

Returns The nth_element algorithm returns returns RandomIt. The nth_element algorithm
returns an iterator equal to last.

template<typename ExPolicy, typename RandomIt, typename Sent, typename Pred =
hpx::parallel::detail::less, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result_t<ExPolicy, RandomIt> nth_element(ExPolicy &&policy,

RandomIt first, RandomIt
nth, Sent last, Pred
&&pred = Pred(), Proj
&&proj = Proj())

nth_element is a partial sorting algorithm that rearranges elements in [first, last) such that the element
pointed at by nth is changed to whatever element would occur in that position if [first, last) were sorted
and all of the elements before this new nth element are less than or equal to the elements after the new
nth element.

The comparison operations in the parallel nth_element invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel nth_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in std::distance(first, last) on average. O(N) applications of the predicate,
and O(N log N) swaps, where N = last - first.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandomIt – The type of the source begin, nth, and end iterators used (deduced). This
iterator type must meet the requirements of a random access iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for RandomIt.

• Pred – Comparison function object which returns true if the first argument is less than
the second.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• nth – Refers to the iterator defining the sort partition point

2.8. API reference 757

HPX Documentation, master

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• pred – Specifies the comparison function object which returns true if the first argument
is less than (i.e. is ordered before) the second. The signature of this comparison function
should be equivalent to:

bool cmp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type must be such that an object of type randomIt can be dereferenced
and then implicitly converted to Type. This defaults to std::less<>.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked. This defaults
to hpx::identity.

Returns The partition algorithm returns a hpx::future<RandomIt> if the execution policy is
of type parallel_task_policy and returns RandomIt otherwise. The nth_element algorithm
returns an iterator equal to last.

template<typename Rng, typename Pred = hpx::parallel::detail::less, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> nth_element(Rng &&rng, hpx::traits::range_iterator_t<Rng> nth,

Pred &&pred = Pred(), Proj &&proj = Proj())
nth_element is a partial sorting algorithm that rearranges elements in [first, last) such that the element
pointed at by nth is changed to whatever element would occur in that position if [first, last) were sorted
and all of the elements before this new nth element are less than or equal to the elements after the new
nth element.

The comparison operations in the parallel nth_element algorithm invoked without an execution policy
object execute in sequential order in the calling thread.

Note: Complexity: Linear in std::distance(first, last) on average. O(N) applications of the predicate,
and O(N log N) swaps, where N = last - first.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an random access iterator.
• Pred – Comparison function object which returns true if the first argument is less than

the second.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• nth – Refers to the iterator defining the sort partition point
• pred – Specifies the comparison function object which returns true if the first argument

is less than (i.e. is ordered before) the second. The signature of this comparison function
should be equivalent to:

bool cmp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type must be such that an object of type randomIt can be dereferenced
and then implicitly converted to Type. This defaults to std::less<>.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked. This defaults
to hpx::identity.

758 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The nth_element algorithm returns returns hpx::traits::range_iterator_t<Rng>.
The nth_element algorithm returns an iterator equal to last.

template<typename ExPolicy, typename Rng, typename Pred = hpx::parallel::detail::less, typename
Proj = hpx::identity>
parallel::util::detail::algorithm_result_t<ExPolicy, hpx::traits::range_iterator_t<Rng>> nth_element(ExPolicy

&&pol-
icy,
Rng
&&rng,
hpx::traits::range_iterator_t<Rng>
nth,
Pred
&&pred
=
Pred(),
Proj
&&proj
=
Proj())

nth_element is a partial sorting algorithm that rearranges elements in [first, last) such that the element
pointed at by nth is changed to whatever element would occur in that position if [first, last) were sorted
and all of the elements before this new nth element are less than or equal to the elements after the new
nth element.

The comparison operations in the parallel nth_element invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel nth_element algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in std::distance(first, last) on average. O(N) applications of the predicate,
and O(N log N) swaps, where N = last - first.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an random access iterator.

• Pred – Comparison function object which returns true if the first argument is less than
the second.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• nth – Refers to the iterator defining the sort partition point
• pred – Specifies the comparison function object which returns true if the first argument

is less than (i.e. is ordered before) the second. The signature of this comparison function
should be equivalent to:

2.8. API reference 759

HPX Documentation, master

bool cmp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type must be such that an object of type randomIt can be dereferenced
and then implicitly converted to Type. This defaults to std::less<>.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked. This defaults
to hpx::identity.

Returns The partition algorithm returns a hpx::future<hpx::traits::range_iterator_t<Rng>>
if the execution policy is of type parallel_task_policy and returns
hpx::traits::range_iterator_t<Rng> otherwise. The nth_element algorithm returns
an iterator equal to last.

hpx::ranges::partial_sort

Defined in header hpx/algorithm.hpp662.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename RandomIt, typename Sent, typename Comp = ranges::less, typename Proj =
hpx::identity>
RandomIt partial_sort(RandomIt first, RandomIt middle, Sent last, Comp &&comp = Comp(), Proj

&&proj = Proj())
Places the first middle - first elements from the range [first, last) as sorted with respect to comp into the
range [first, middle). The rest of the elements in the range [middle, last) are placed in an unspecified
order.

The assignments in the parallel partial_sort algorithm invoked without an execution policy object
execute in sequential order in the calling thread.

Note: Complexity: Approximately (last - first) * log(middle - first) comparisons.

Template Parameters
• RandomIt – The type of the source iterators used (deduced). This iterator type must

meet the requirements of an random iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for RandomIt.
• Comp – The type of the function/function object to use (deduced). Comp defaults to

detail::less.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
662 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

760 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• middle – Refers to the middle of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• comp – comp is a callable object. The return value of the INVOKE operation applied
to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that
comp will not apply any non-constant function through the dereferenced iterator. Comp
defaults to detail::less.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The partial_sort algorithm returns RandomIt. The algorithm returns an iterator
pointing to the first element after the last element in the input sequence.

template<typename ExPolicy, typename RandomIt, typename Sent, typename Comp = ranges::less,
typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, RandomIt>::type partial_sort(ExPolicy &&policy,

RandomIt first,
RandomIt middle,
Sent last, Comp
&&comp = Comp(),
Proj &&proj =
Proj())

Places the first middle - first elements from the range [first, last) as sorted with respect to comp into the
range [first, middle). The rest of the elements in the range [middle, last) are placed in an unspecified
order.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Approximately (last - first) * log(middle - first) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandomIt – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an random iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for RandomIt.

• Comp – The type of the function/function object to use (deduced). Comp defaults to
detail::less.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.

2.8. API reference 761

HPX Documentation, master

• middle – Refers to the middle of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• comp – comp is a callable object. The return value of the INVOKE operation applied
to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that
comp will not apply any non-constant function through the dereferenced iterator. Comp
defaults to detail::less.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The partial_sort algorithm returns a hpx::future<RandomIt> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns RandomIt otherwise.
The algorithm returns an iterator pointing to the first element after the last element in the
input sequence.

template<typename Rng, typename Comp = ranges::less, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> partial_sort(Rng &&rng, hpx::traits::range_iterator_t<Rng>

middle, Comp &&comp = Comp(), Proj &&proj =
Proj())

Places the first middle - first elements from the range [first, last) as sorted with respect to comp into the
range [first, middle). The rest of the elements in the range [middle, last) are placed in an unspecified
order.

The assignments in the parallel partial_sort algorithm invoked without an execution policy object
execute in sequential order in the calling thread.

Note: Complexity: Approximately (last - first) * log(middle - first) comparisons.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Comp – The type of the function/function object to use (deduced). Comp defaults to

detail::less.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• middle – Refers to the middle of the sequence of elements the algorithm will be applied

to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that
comp will not apply any non-constant function through the dereferenced iterator. Comp
defaults to detail::less.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The partial_sort algorithm returns hpx::traits::range_iterator_t<Rng>. It returns
last.

template<typename ExPolicy, typename Rng, typename Comp = ranges::less, typename Proj =
hpx::identity>

762 Chapter 2. What’s so special about HPX?

HPX Documentation, master

parallel::util::detail::algorithm_result_t<ExPolicy, hpx::traits::range_iterator_t<Rng>> partial_sort(ExPolicy
&&pol-
icy,
Rng
&&rng,
hpx::traits::range_iterator_t<Rng>
mid-
dle,
Comp
&&comp
=
Comp(),
Proj
&&proj
=
Proj())

Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements
is preserved. The function uses the given comparison function object comp (defaults to using opera-
tor<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Comp – The type of the function/function object to use (deduced). Comp defaults to
detail::less;

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• middle – Refers to the middle of the sequence of elements the algorithm will be applied

to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that

2.8. API reference 763

HPX Documentation, master

comp will not apply any non-constant function through the dereferenced iterator. Comp
defaults to detail::less.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The partial_sort algorithm returns a hpx::future<hpx::traits::range_iterator_t<Rng>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
hpx::traits::range_iterator_t<Rng> otherwise. It returns last.

hpx::ranges::partial_sort_copy

Defined in header hpx/algorithm.hpp663.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename InIter, typename Sent1, typename RandIter, typename Sent2, typename Comp =
ranges::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
partial_sort_copy_result<InIter, RandIter> partial_sort_copy(InIter first, Sent1 last, RandIter

r_first, Sent2 r_last, Comp &&comp =
Comp(), Proj1 &&proj1 = Proj1(),
Proj2 &&proj2 = Proj2())

Sorts some of the elements in the range [first, last) in ascending order, storing the result in the range
[r_first, r_last). At most r_last - r_first of the elements are placed sorted to the range [r_first, r_first +
n) where n is the number of elements to sort (n = min(last - first, r_last - r_first)).

The assignments in the parallel partial_sort_copy algorithm invoked without an execution policy ob-
ject execute in sequential order in the calling thread.

Note: Complexity: O(N log(min(D,N))), where N = std::distance(first, last) and D =
std::distance(r_first, r_last) comparisons.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent1 – The type of the source sentinel (deduced).This sentinel type must be a sentinel

for InIter.
• RandIter – The type of the destination iterators used(deduced) This iterator type must

meet the requirements of an random iterator.
• Sent2 – The type of the destination sentinel (deduced).This sentinel type must be a sen-

tinel for RandIter.
• Comp – The type of the function/function object to use (deduced). Comp defaults to

detail::less.
663 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

764 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• Proj1 – The type of an optional projection function for the input range. This defaults to
hpx::identity.

• Proj1 – The type of an optional projection function for the output range. This defaults
to hpx::identity.

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the sentinel value denoting the end of the sequence of elements the

algorithm will be applied to.
• r_first – Refers to the beginning of the destination range.
• r_last – Refers to the sentinel denoting the end of the destination range.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator. This defaults
to detail::less.

• proj1 – Specifies the function (or function object) which will be invoked for each pair
of elements as a projection operation before the actual predicate comp is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each pair
of elements as a projection operation after the actual predicate comp is invoked.

Returns The partial_sort_copy algorithm returns a returns partial_sort_copy_result<InIter,
RandIter>. The algorithm returns {last, result_first + N}.

template<typename ExPolicy, typename FwdIter, typename Sent1, typename RandIter, typename
Sent2, typename Comp = ranges::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
parallel::util::detail::algorithm_result_t<ExPolicy, partial_sort_copy_result<FwdIter, RandIter>> partial_sort_copy(ExPolicy

&&pol-
icy,
FwdIter
first,
Sent1
last,
Ran-
dIter
r_first,
Sent2
r_last,
Comp
&&comp
=
Comp(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Sorts some of the elements in the range [first, last) in ascending order, storing the result in the range
[r_first, r_last). At most r_last - r_first of the elements are placed sorted to the range [r_first, r_first +
n) where n is the number of elements to sort (n = min(last - first, r_last - r_first)).

2.8. API reference 765

HPX Documentation, master

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(min(D,N))), where N = std::distance(first, last) and D =
std::distance(r_first, r_last) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent1 – The type of the source sentinel (deduced).This sentinel type must be a sentinel
for FwdIter.

• RandIter – The type of the destination iterators used(deduced) This iterator type must
meet the requirements of an random iterator.

• Sent2 – The type of the destination sentinel (deduced).This sentinel type must be a sen-
tinel for RandIter.

• Comp – The type of the function/function object to use (deduced). Comp defaults to
detail::less.

• Proj1 – The type of an optional projection function for the input range. This defaults to
hpx::identity.

• Proj1 – The type of an optional projection function for the output range. This defaults
to hpx::identity.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the sentinel value denoting the end of the sequence of elements the

algorithm will be applied to.
• r_first – Refers to the beginning of the destination range.
• r_last – Refers to the sentinel denoting the end of the destination range.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator. This defaults
to detail::less.

• proj1 – Specifies the function (or function object) which will be invoked for each pair
of elements as a projection operation before the actual predicate comp is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each pair
of elements as a projection operation after the actual predicate comp is invoked.

Returns The partial_sort_copy algorithm returns a hpx::future<partial_sort_copy_result<FwdIter,
RandIter>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns partial_sort_copy_result<FwdIter, RandIter> otherwise.
The algorithm returns {last, result_first + N}.

template<typename Rng1, typename Rng2, typename Comp = ranges::less, typename Proj1 =
hpx::identity, typename Proj2 = hpx::identity>

766 Chapter 2. What’s so special about HPX?

HPX Documentation, master

partial_sort_copy_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>> partial_sort_copy(Rng1
&&rng1,
Rng2
&&rng2,
Comp
&&comp
=
Comp(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Sorts some of the elements in the range [first, last) in ascending order, storing the result in the range
[r_first, r_last). At most r_last - r_first of the elements are placed sorted to the range [r_first, r_first +
n) where n is the number of elements to sort (n = min(last - first, r_last - r_first)).

The assignments in the parallel partial_sort_copy algorithm invoked without an execution policy ob-
ject execute in sequential order in the calling thread.

Note: Complexity: O(N log(min(D,N))), where N = std::distance(first, last) and D =
std::distance(r_first, r_last) comparisons.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of a input iterator.
• Rng2 – The type of the destination range used (deduced). The iterators extracted from

this range type must meet the requirements of a random iterator.
• Comp – The type of the function/function object to use (deduced). Comp defaults to

detail::less.
• Proj1 – The type of an optional projection function for the input range. This defaults to

hpx::identity.
• Proj2 – The type of an optional projection function for the output range. This defaults

to hpx::identity.
Parameters

• rng1 – Refers to the source range.
• rng2 – Refers to the destination range.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator. This defaults
to detail::less.

• proj1 – Specifies the function (or function object) which will be invoked for each pair
of elements as a projection operation before the actual predicate comp is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each pair
of elements as a projection operation after the actual predicate comp is invoked.

Returns The partial_sort_copy algorithm returns par-
tial_sort_copy_result<range_iterator_t<Rng1>, range_iterator_t<Rng2>>. The al-
gorithm returns {last, result_first + N}.

2.8. API reference 767

HPX Documentation, master

template<typename ExPolicy, typename Rng1, typename Rng2, typename Comp = ranges::less,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
parallel::util::detail::algorithm_result_t<ExPolicy, partial_sort_copy_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>>> partial_sort_copy(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Comp
&&comp
=
Comp(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Sorts some of the elements in the range [first, last) in ascending order, storing the result in the range
[r_first, r_last). At most r_last - r_first of the elements are placed sorted to the range [r_first, r_first +
n) where n is the number of elements to sort (n = min(last - first, r_last - r_first)).

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(min(D,N))), where N = std::distance(first, last) and D =
std::distance(r_first, r_last) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of a forward iterator.

• Rng2 – The type of the destination range used (deduced). The iterators extracted from
this range type must meet the requirements of a random iterator.

• Comp – The type of the function/function object to use (deduced). Comp defaults to
detail::less.

• Proj1 – The type of an optional projection function for the input range. This defaults to
hpx::identity.

• Proj2 – The type of an optional projection function for the output range. This defaults
to hpx::identity.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the source range.

768 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• rng2 – Refers to the destination range.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator. This defaults
to detail::less.

• proj1 – Specifies the function (or function object) which will be invoked for each pair
of elements as a projection operation before the actual predicate comp is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each pair
of elements as a projection operation after the actual predicate comp is invoked.

Returns The partial_sort_copy algorithm returns a hpx::future<partial_sort_copy_result<
range_iterator_t<Rng1>, range_iterator_t<Rng2>>> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns par-
tial_sort_copy_result<range_iterator_t<Rng1>, range_iterator_t<Rng2>> otherwise.
The algorithm returns {last, result_first + N}.

hpx::ranges::partition, hpx::ranges::stable_partition, hpx::ranges::partition_copy

Defined in header hpx/algorithm.hpp664.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename Rng, typename Pred, typename Proj = hpx::identity>
subrange_t<hpx::traits::range_iterator_t<Rng>> partition(Rng &&rng, Pred &&pred, Proj &&proj =

Proj())
Reorders the elements in the range rng in such a way that all elements for which the predicate pred
returns true precede the elements for which the predicate pred returns false. Relative order of the
elements is not preserved.

The assignments in the parallel partition algorithm invoked without an execution policy object execute
in sequential order in the calling thread.

Note: Complexity: Performs at most 2 * N swaps, exactly N applications of the predicate and projec-
tion, where N = std::distance(begin(rng), end(rng)).

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequen-

tial form, the parallel overload of partition requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
664 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 769

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by the range rng. This is an unary predicate for
partitioning the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition algorithm returns subrange_t<hpx::traits::range_iterator_t<Rng>>
The partition algorithm returns a subrange starting with an iterator to the first element of
the second group and finishing with an iterator equal to last.

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<hpx::traits::range_iterator_t<Rng>>> partition(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred,
Proj
&&proj
=
Proj())

Reorders the elements in the range rng in such a way that all elements for which the predicate pred
returns true precede the elements for which the predicate pred returns false. Relative order of the
elements is not preserved.

The assignments in the parallel partition algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel partition algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs at most 2 * N swaps, exactly N applications of the predicate and projec-
tion, where N = std::distance(begin(rng), end(rng)).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequen-
tial form, the parallel overload of partition requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity

770 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by the range rng. This is an unary predicate for
partitioning the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition algorithm returns a hpx::future<subrange_t<hpx::traits::range_iterator_t<Rng>>>
if the execution policy is of type parallel_task_policy and returns sub-
range_t<hpx::traits::range_iterator_t<Rng>> The partition algorithm returns a subrange
starting with an iterator to the first element of the second group and finishing with an
iterator equal to last.

template<typename FwdIter, typename Sent, typename Pred, typename Proj = hpx::identity>
subrange_t<FwdIter> partition(FwdIter first, Sent last, Pred &&pred, Proj &&proj = Proj())

Reorders the elements in the range [first, last) in such a way that all elements for which the predicate
pred returns true precede the elements for which the predicate pred returns false. Relative order of the
elements is not preserved.

The assignments in the parallel partition algorithm invoked without an execution policy object execute
in sequential order in the calling thread.

Note: Complexity: At most 2 * (last - first) swaps. Exactly last - first applications of the predicate
and projection.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
• Pred – The type of the function/function object to use (deduced). Unlike its sequen-

tial form, the parallel overload of partition requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• pred – Specifies the function (or function object) which will be invoked for each of
the elements in the sequence specified by [first, last). This is an unary predicate for
partitioning the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

2.8. API reference 771

HPX Documentation, master

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition algorithm returns returns subrange_t<FwdIter>. The partition algo-
rithm returns a subrange starting with an iterator to the first element of the second group
and finishing with an iterator equal to last.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Pred, typename Proj =
hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<FwdIter>>::type partition(ExPolicy

&&policy,
FwdIter first,
Sent last,
Pred
&&pred,
Proj &&proj
= Proj())

Reorders the elements in the range [first, last) in such a way that all elements for which the predicate
pred returns true precede the elements for which the predicate pred returns false. Relative order of the
elements is not preserved.

The assignments in the parallel partition algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel partition algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2 * (last - first) swaps. Exactly last - first applications of the predicate
and projection.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• Pred – The type of the function/function object to use (deduced). Unlike its sequen-
tial form, the parallel overload of partition requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by [first, last). This is an unary predicate for

772 Chapter 2. What’s so special about HPX?

HPX Documentation, master

partitioning the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition algorithm returns a hpx::future<subrange_t<FwdIter>> if the exe-
cution policy is of type parallel_task_policy and returns subrange_t<FwdIter> otherwise.
The partition algorithm returns a subrange starting with an iterator to the first element of
the second group and finishing with an iterator equal to last.

template<typename Rng, typename Pred, typename Proj = hpx::identity>
subrange_t<hpx::traits::range_iterator_t<Rng>> stable_partition(Rng &&rng, Pred &&pred, Proj

&&proj = Proj())
Permutes the elements in the range [first, last) such that there exists an iterator i such that for every
iterator j in the range [first, i) INVOKE(f, INVOKE (proj, *j)) != false, and for every iterator k in the
range [i, last), INVOKE(f, INVOKE (proj, *k)) == false

The invocations of f in the parallel stable_partition algorithm invoked without an execution policy
object executes in sequential order in the calling thread.

Note: Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps if
there is enough extra memory Exactly last - first applications of the predicate and projection.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an birdirectional iterator
• Pred – The type of the function/function object to use (deduced). Unlike its sequen-

tial form, the parallel overload of partition requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Unary predicate which returns true if the element should be ordered before other

elements. Specifies the function (or function object) which will be invoked for each of
the elements in the sequence specified by [first, last). The signature of this predicate
should be equivalent to:

bool fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type BidirIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The stable_partition algorithm returns an iterator i such that for every iterator j in the
range [first, i), f(*j) != false INVOKE(f, INVOKE(proj, *j)) != false, and for every iterator
k in the range [i, last), f(*k) == false INVOKE(f, INVOKE (proj, *k)) == false. The relative
order of the elements in both groups is preserved.

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = hpx::identity>

2.8. API reference 773

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, subrange_t<hpx::traits::range_iterator_t<Rng>>> stable_partition(ExPolicy
&&pol-
icy,
Rng
&&rng,
Pred
&&pred,
Proj
&&proj
=
Proj())

Permutes the elements in the range [first, last) such that there exists an iterator i such that for every
iterator j in the range [first, i) INVOKE(f, INVOKE (proj, *j)) != false, and for every iterator k in the
range [i, last), INVOKE(f, INVOKE (proj, *k)) == false

The invocations of f in the parallel stable_partition algorithm invoked with an execution policy object
of type sequenced_policy executes in sequential order in the calling thread.

The invocations of f in the parallel stable_partition algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps if
there is enough extra memory. Exactly last - first applications of the predicate and projection.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an birdirectional iterator

• Pred – The type of the function/function object to use (deduced). Unlike its sequen-
tial form, the parallel overload of partition requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Unary predicate which returns true if the element should be ordered before other

elements. Specifies the function (or function object) which will be invoked for each of
the elements in the sequence specified by [first, last). The signature of this predicate
should be equivalent to:

bool fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type BidirIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The stable_partition algorithm returns an iterator i such that for every iterator j in
the range [first, i), f(*j) != false INVOKE(f, INVOKE(proj, *j)) != false, and for every
iterator k in the range [i, last), f(*k) == false INVOKE(f, INVOKE (proj, *k)) == false. The

774 Chapter 2. What’s so special about HPX?

HPX Documentation, master

relative order of the elements in both groups is preserved. If the execution policy is of type
parallel_task_policy the algorithm returns a future<> referring to this iterator.

template<typename BidirIter, typename Sent, typename Pred, typename Proj = hpx::identity>
subrange_t<BidirIter> stable_partition(BidirIter first, Sent last, Pred &&pred, Proj &&proj =

Proj())
Permutes the elements in the range [first, last) such that there exists an iterator i such that for every
iterator j in the range [first, i) INVOKE(f, INVOKE (proj, *j)) != false, and for every iterator k in the
range [i, last), INVOKE(f, INVOKE (proj, *k)) == false

The invocations of f in the parallel stable_partition algorithm invoked without an execution policy
object executes in sequential order in the calling thread.

Note: Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps if
there is enough extra memory Exactly last - first applications of the predicate and projection.

Template Parameters
• BidirIter – The type of the source iterators used (deduced). This iterator type must

meet the requirements of an input iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for BidirIter.
• Pred – The type of the function/function object to use (deduced). Unlike its sequen-

tial form, the parallel overload of partition requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• pred – Unary predicate which returns true if the element should be ordered before other
elements. Specifies the function (or function object) which will be invoked for each of
the elements in the sequence specified by [first, last). The signature of this predicate
should be equivalent to:

bool fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type BidirIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The stable_partition algorithm returns an iterator i such that for every iterator j in the
range [first, i), f(*j) != false INVOKE(f, INVOKE(proj, *j)) != false, and for every iterator
k in the range [i, last), f(*k) == false INVOKE(f, INVOKE (proj, *k)) == false. The relative
order of the elements in both groups is preserved.

template<typename ExPolicy, typename BidirIter, typename Sent, typename Pred, typename Proj
= hpx::identity>

2.8. API reference 775

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, subrange_t<BidirIter>>::type stable_partition(ExPolicy
&&pol-
icy,
BidirIter
first,
Sent
last,
Pred
&&pred,
Proj
&&proj
=
Proj())

Permutes the elements in the range [first, last) such that there exists an iterator i such that for every
iterator j in the range [first, i) INVOKE(f, INVOKE (proj, *j)) != false, and for every iterator k in the
range [i, last), INVOKE(f, INVOKE (proj, *k)) == false

The invocations of f in the parallel stable_partition algorithm invoked with an execution policy object
of type sequenced_policy executes in sequential order in the calling thread.

The invocations of f in the parallel stable_partition algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps if
there is enough extra memory Exactly last - first applications of the predicate and projection.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• BidirIter – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for BidirIter.

• Pred – The type of the function/function object to use (deduced). Unlike its sequen-
tial form, the parallel overload of partition requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• pred – Unary predicate which returns true if the element should be ordered before other

elements. Specifies the function (or function object) which will be invoked for each of
the elements in the sequence specified by [first, last). The signature of this predicate
should be equivalent to:

bool fun(const Type &a);

776 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The signature does not need to have const&. The type Type must be such that an object
of type BidirIter can be dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The stable_partition algorithm returns an iterator i such that for every iterator j in
the range [first, i), f(*j) != false INVOKE(f, INVOKE(proj, *j)) != false, and for every
iterator k in the range [i, last), f(*k) == false INVOKE(f, INVOKE (proj, *k)) == false. The
relative order of the elements in both groups is preserved. If the execution policy is of type
parallel_task_policy the algorithm returns a future<> referring to this iterator.

template<typename Rng, typename OutIter2, typename OutIter3, typename Pred, typename Proj =
hpx::identity>
partition_copy_result<hpx::traits::range_iterator_t<Rng>, OutIter2, OutIter3> partition_copy(Rng

&&rng,
Out-
Iter2
dest_true,
Out-
Iter3
dest_false,
Pred
&&pred,
Proj
&&proj
=
Proj())

Copies the elements in the range rng, to two different ranges depending on the value returned by the
predicate pred. The elements, that satisfy the predicate pred are copied to the range beginning at
dest_true. The rest of the elements are copied to the range beginning at dest_false. The order of the
elements is preserved.

The assignments in the parallel partition_copy algorithm invoked without an execution policy object
execute in sequential order in the calling thread.

Note: Complexity: Performs not more than N assignments, exactly N applications of the predicate
pred, where N = std::distance(begin(rng), end(rng)).

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• OutIter2 – The type of the iterator representing the destination range for the elements

that satisfy the predicate pred (deduced). This iterator type must meet the requirements
of an forward iterator.

• OutIter3 – The type of the iterator representing the destination range for the elements
that don’t satisfy the predicate pred (deduced). This iterator type must meet the require-
ments of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition_copy requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.

2.8. API reference 777

HPX Documentation, master

• dest_true – Refers to the beginning of the destination range for the elements that satisfy
the predicate pred

• dest_false – Refers to the beginning of the destination range for the elements that don’t
satisfy the predicate pred.

• pred – Specifies the function (or function object) which will be invoked for each of
the elements in the sequence specified by [first, last). This is an unary predicate for
partitioning the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter1 can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition_copy algorithm returns a parti-
tion_copy_result<hpx::traits::range_iterator_t<Rng>, FwdIter2, FwdIter3>>. The
partition_copy algorithm returns the tuple of the source iterator last, the destination
iterator to the end of the dest_true range, and the destination iterator to the end of the
dest_false range.

template<typename ExPolicy, typename Rng, typename FwdIter2, typename FwdIter3, typename
Pred, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, partition_copy_result<hpx::traits::range_iterator_t<Rng>, FwdIter2, FwdIter3>>::type partition_copy(ExPolicy

&&pol-
icy,
Rng
&&rng,
FwdIter2
dest_true,
FwdIter3
dest_false,
Pred
&&pred,
Proj
&&proj
=
Proj())

Copies the elements in the range rng, to two different ranges depending on the value returned by the
predicate pred. The elements, that satisfy the predicate pred are copied to the range beginning at
dest_true. The rest of the elements are copied to the range beginning at dest_false. The order of the
elements is preserved.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than N assignments, exactly N applications of the predicate
pred, where N = std::distance(begin(rng), end(rng)).

778 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the iterator representing the destination range for the elements
that satisfy the predicate pred (deduced). This iterator type must meet the requirements
of an forward iterator.

• FwdIter3 – The type of the iterator representing the destination range for the elements
that don’t satisfy the predicate pred (deduced). This iterator type must meet the require-
ments of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition_copy requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest_true – Refers to the beginning of the destination range for the elements that satisfy

the predicate pred
• dest_false – Refers to the beginning of the destination range for the elements that don’t

satisfy the predicate pred.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by [first, last). This is an unary predicate for
partitioning the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter1 can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition_copy algorithm returns a hpx::future<partition_copy_result
<hpx::traits::range_iterator_t<Rng>, FwdIter2, FwdIter3>> if the ex-
ecution policy is of type parallel_task_policy and returns parti-
tion_copy_result<hpx::traits::range_iterator_t<Rng>, FwdIter2, FwdIter3> otherwise.
The partition_copy algorithm returns the tuple of the source iterator last, the destination
iterator to the end of the dest_true range, and the destination iterator to the end of the
dest_false range.

template<typename InIter, typename Sent, typename OutIter2, typename OutIter3, typename
Pred, typename Proj = hpx::identity>
partition_copy_result<InIter, OutIter2, OutIter3> partition_copy(InIter first, Sent last, OutIter2

dest_true, OutIter3 dest_false, Pred
&&pred, Proj &&proj = Proj())

Copies the elements in the range, defined by [first, last), to two different ranges depending on the value
returned by the predicate pred. The elements, that satisfy the predicate pred are copied to the range
beginning at dest_true. The rest of the elements are copied to the range beginning at dest_false. The
order of the elements is preserved.

The assignments in the parallel partition_copy algorithm invoked without an execution policy object

2.8. API reference 779

HPX Documentation, master

execute in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of
the predicate f.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
• OutIter2 – The type of the iterator representing the destination range for the elements

that satisfy the predicate pred (deduced). This iterator type must meet the requirements
of an forward iterator.

• OutIter3 – The type of the iterator representing the destination range for the elements
that don’t satisfy the predicate pred (deduced). This iterator type must meet the require-
ments of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition_copy requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• dest_true – Refers to the beginning of the destination range for the elements that satisfy
the predicate pred

• dest_false – Refers to the beginning of the destination range for the elements that don’t
satisfy the predicate pred.

• pred – Specifies the function (or function object) which will be invoked for each of
the elements in the sequence specified by [first, last). This is an unary predicate for
partitioning the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter1 can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition_copy algorithm returns a partition_copy_result<FwdIter, OutIter2,
OutIter3>. The partition_copy algorithm returns the tuple of the source iterator last, the
destination iterator to the end of the dest_true range, and the destination iterator to the end
of the dest_false range.

template<typename ExPolicy, typename FwdIter, typename Sent, typename OutIter2, typename
OutIter3, typename Pred, typename Proj = hpx::identity>

780 Chapter 2. What’s so special about HPX?

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, partition_copy_result<FwdIter, OutIter2, OutIter3>>::type partition_copy(ExPolicy
&&pol-
icy,
FwdIter
first,
Sent
last,
Out-
Iter2
dest_true,
Out-
Iter3
dest_false,
Pred
&&pred,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by [first, last), to two different ranges depending on the value
returned by the predicate pred. The elements, that satisfy the predicate pred are copied to the range
beginning at dest_true. The rest of the elements are copied to the range beginning at dest_false. The
order of the elements is preserved.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of
the predicate f.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• OutIter2 – The type of the iterator representing the destination range for the elements
that satisfy the predicate pred (deduced). This iterator type must meet the requirements
of an forward iterator.

• OutIter3 – The type of the iterator representing the destination range for the elements
that don’t satisfy the predicate pred (deduced). This iterator type must meet the require-
ments of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition_copy requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity

2.8. API reference 781

HPX Documentation, master

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest_true – Refers to the beginning of the destination range for the elements that satisfy

the predicate pred
• dest_false – Refers to the beginning of the destination range for the elements that don’t

satisfy the predicate pred.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by [first, last). This is an unary predicate for
partitioning the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter1 can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The partition_copy algorithm returns a hpx::future<partition_copy_result<FwdIter,
OutIter2, OutIter3>> if the execution policy is of type parallel_task_policy and returns par-
tition_copy_result<FwdIter, OutIter2, OutIter3> otherwise. The partition_copy algorithm
returns the tuple of the source iterator last, the destination iterator to the end of the dest_true
range, and the destination iterator to the end of the dest_false range.

hpx::ranges::reduce

Defined in header hpx/algorithm.hpp665.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename FwdIter, typename Sent, typename F, typename T =
typename std::iterator_traits<FwdIter>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> reduce(ExPolicy &&policy, FwdIter first,

Sent last, T init, F &&f)
Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

665 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

782 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicate f.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source begin iterator used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source sentinel used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of copy_if requires F to meet the requirements of CopyCon-
structible.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the ele-

ments in the sequence specified by [first, last). This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type FwdIterB can be dereferenced and then implicitly converted to any of those
types.

• init – The initial value for the generalized sum.
Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type

sequenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algo-
rithm returns the result of the generalized sum over the elements given by the input range
[first, last).

template<typename ExPolicy, typename Rng, typename F, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> reduce(ExPolicy &&policy, Rng &&rng, T

init, F &&f)

2.8. API reference 783

HPX Documentation, master

Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicate f.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of copy_if requires F to meet the requirements of CopyCon-
structible.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the ele-

ments in the sequence specified by [first, last). This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type FwdIterB can be dereferenced and then implicitly converted to any of those
types.

• init – The initial value for the generalized sum.
Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type

sequenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algo-
rithm returns the result of the generalized sum over the elements given by the input range
[first, last).

template<typename ExPolicy, typename FwdIter, typename Sent, typename T = typename
std::iterator_traits<FwdIter>::value_type>

784 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> reduce(ExPolicy &&policy, FwdIter first,
Sent last, T init)

Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source begin iterator used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source sentinel used (deduced). This iterator type must meet the
requirements of an forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• init – The initial value for the generalized sum.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algo-
rithm returns the result of the generalized sum (applying operator+()) over the elements
given by the input range [first, last).

template<typename ExPolicy, typename Rng, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> reduce(ExPolicy &&policy, Rng &&rng, T

init)
Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)).

2.8. API reference 785

HPX Documentation, master

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• init – The initial value for the generalized sum.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algo-
rithm returns the result of the generalized sum (applying operator+()) over the elements
given by the input range [first, last).

template<typename ExPolicy, typename FwdIter, typename Sent>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<FwdIter>::value_type>::type reduce(ExPolicy

&&pol-
icy,
FwdIter
first,
Sent
last)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

786 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: The type of the initial value (and the result type) T is determined from the value_type of the
used FwdIterB.

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source begin iterator used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source sentinel used (deduced). This iterator type must meet the
requirements of an forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns T otherwise (where T is the
value_type of FwdIterB). The reduce algorithm returns the result of the generalized sum
(applying operator+()) over the elements given by the input range [first, last).

template<typename ExPolicy, typename Rng>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::value_type>::type reduce(ExPolicy

&&pol-
icy,
Rng
&&rng)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

2.8. API reference 787

HPX Documentation, master

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: The type of the initial value (and the result type) T is determined from the value_type of the
used FwdIterB.

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.

Returns The reduce algorithm returns a hpx::future<T> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns T otherwise (where T is the
value_type of FwdIterB). The reduce algorithm returns the result of the generalized sum
(applying operator+()) over the elements given by the input range [first, last).

template<typename FwdIter, typename Sent, typename F, typename T = typename
std::iterator_traits<FwdIter>::value_type>
T reduce(FwdIter first, Sent last, T init, F &&f)

Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)).

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicate f.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• FwdIter – The type of the source begin iterator used (deduced). This iterator type must

meet the requirements of an forward iterator.

788 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Sent – The type of the source sentinel used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of copy_if requires F to meet the requirements of CopyCon-
structible.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the ele-

ments in the sequence specified by [first, last). This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type FwdIterB can be dereferenced and then implicitly converted to any of those
types.

• init – The initial value for the generalized sum.
Returns The reduce algorithm returns T. The reduce algorithm returns the result of the gen-

eralized sum over the elements given by the input range [first, last).

template<typename Rng, typename F, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
T reduce(Rng &&rng, T init, F &&f)

Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)).

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicate f.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of copy_if requires F to meet the requirements of CopyCon-
structible.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• f – Specifies the function (or function object) which will be invoked for each of the ele-

ments in the sequence specified by [first, last). This is a binary predicate. The signature
of this predicate should be equivalent to:

2.8. API reference 789

HPX Documentation, master

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an
object of type FwdIterB can be dereferenced and then implicitly converted to any of those
types.

• init – The initial value for the generalized sum.
Returns The reduce algorithm returns T. The reduce algorithm returns the result of the gen-

eralized sum over the elements given by the input range [first, last).

template<typename FwdIter, typename Sent, typename T = typename
std::iterator_traits<FwdIter>::value_type>
T reduce(FwdIter first, Sent last, T init)

Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)).

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• FwdIter – The type of the source begin iterator used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Sent – The type of the source sentinel used (deduced). This iterator type must meet the

requirements of an forward iterator.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• init – The initial value for the generalized sum.

Returns The reduce algorithm returns T. The reduce algorithm returns the result of the gen-
eralized sum (applying operator+()) over the elements given by the input range [first, last).

template<typename Rng, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
T reduce(Rng &&rng, T init)

Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)).

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

790 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• init – The initial value for the generalized sum.

Returns The reduce algorithm returns T. The reduce algorithm returns the result of the gen-
eralized sum (applying operator+()) over the elements given by the input range [first, last).

template<typename FwdIter, typename Sent>
std::iterator_traits<FwdIter>::value_type reduce(FwdIter first, Sent last)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)).

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: The type of the initial value (and the result type) T is determined from the value_type of the
used FwdIterB.

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters
• FwdIter – The type of the source begin iterator used (deduced). This iterator type must

meet the requirements of an forward iterator.
• Sent – The type of the source sentinel used (deduced). This iterator type must meet the

requirements of an forward iterator.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
Returns The reduce algorithm returns T (where T is the value_type of FwdIterB). The reduce

algorithm returns the result of the generalized sum (applying operator+()) over the elements
given by the input range [first, last).

template<typename Rng>

2.8. API reference 791

HPX Documentation, master

std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::value_type reduce(Rng
&&rng)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)).

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the operator+().

Note: The type of the initial value (and the result type) T is determined from the value_type of the
used FwdIterB.

Note: GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

Template Parameters Rng – The type of the source range used (deduced). The iterators
extracted from this range type must meet the requirements of an input iterator.

Parameters rng – Refers to the sequence of elements the algorithm will be applied to.
Returns The reduce algorithm returns T (where T is the value_type of FwdIterB). The reduce

algorithm returns the result of the generalized sum (applying operator+()) over the elements
given by the input range [first, last).

hpx::ranges::remove, hpx::ranges::remove_if

Defined in header hpx/algorithm.hpp666.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename Iter, typename Sent, typename Pred, typename Proj = hpx::identity>
subrange_t<Iter, Sent> remove_if(Iter first, Sent sent, Pred &&pred, Proj &&proj = Proj())

Removes all elements for which predicate pred returns true from the range [first, last) and returns a
subrange [ret, last), where ret is a past-the-end iterator for the new end of the range.

The assignments in the parallel remove_if algorithm execute in sequential order in the calling thread.
666 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

792 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of
the predicate pred and the projection proj.

Template Parameters
• Iter – The type of the source iterators used for the This iterator type must meet the

requirements of a forward iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for FwdIter.
• Pred – The type of the function/function object to use (deduced). Unlike its sequen-

tial form, the parallel overload of remove_if requires Pred to meet the requirements of
CopyConstructible..

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The remove_if algorithm returns a subrange_t<FwdIter, Sent>. The remove_if al-
gorithm returns an object {ret, last}, where ret is a past-the-end iterator for a new subrange
of the values all in valid but unspecified state.

template<typename Rng, typename Pred, typename Proj = hpx::identity>
subrange_t<hpx::traits::range_iterator_t<Rng>> remove_if(Rng &&rng, Pred &&pred, Proj &&proj =

Proj())
Removes all elements that are equal to value from the range rng and and returns a subrange [ret,
util::end(rng)), where ret is a past-the-end iterator for the new end of the range.

The assignments in the parallel remove_if algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs not more than util::end(rng)
• util::begin(rng) assignments, exactly util::end(rng) - util::begin(rng) applications of the opera-

tor==() and the projection proj.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequen-

tial form, the parallel overload of remove_if requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

2.8. API reference 793

HPX Documentation, master

• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The remove_if algorithm returns a subrange_t<hpx::traits::range_iterator_t<Rng>>.
The remove_if algorithm returns an object {ret, last}, where ret is a past-the-end iterator
for a new subrange of the values all in valid but unspecified state.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Pred, typename Proj =
hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<FwdIter, Sent>>::type remove_if(ExPolicy

&&pol-
icy,
FwdIter
first,
Sent
sent,
Pred
&&pred,
Proj
&&proj
=
Proj())

Removes all elements for which predicate pred returns true from the range [first, last) and returns a
subrange [ret, last), where ret is a past-the-end iterator for the new end of the range.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of
the predicate pred and the projection proj.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for FwdIter.

794 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Pred – The type of the function/function object to use (deduced). Unlike its sequen-
tial form, the parallel overload of remove_if requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The remove_if algorithm returns a hpx::future<subrange_t<FwdIter, Sent>>. The
remove_if algorithm returns an object {ret, last}, where ret is a past-the-end iterator for a
new subrange of the values all in valid but unspecified state.

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<hpx::traits::range_iterator_t<Rng>>> remove_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred,
Proj
&&proj
=
Proj())

Removes all elements that are equal to value from the range rng and and returns a subrange [ret,
util::end(rng)), where ret is a past-the-end iterator for the new end of the range.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than util::end(rng)
• util::begin(rng) assignments, exactly util::end(rng) - util::begin(rng) applications of the opera-

tor==() and the projection proj.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it

2.8. API reference 795

HPX Documentation, master

executes the assignments.
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequen-

tial form, the parallel overload of remove_if requires Pred to meet the requirements of
CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The remove_if algorithm returns a hpx::future<subrange_t<
hpx::traits::range_iterator_t<Rng>>> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
remove_if algorithm returns an object {ret, last}, where ret is a past-the-end iterator for a
new subrange of the values all in valid but unspecified state.

template<typename Iter, typename Sent, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<Iter, Proj>::value_type>
subrange_t<Iter, Sent> remove(Iter first, Sent last, T const &value, Proj &&proj = Proj())

Removes all elements that are equal to value from the range [first, last) and and returns a subrange [ret,
last), where ret is a past-the-end iterator for the new end of the range.

The assignments in the parallel remove algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of
the operator==() and the projection proj.

Template Parameters
• Iter – The type of the source iterators used for the This iterator type must meet the

requirements of a forward iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for FwdIter.
• T – The type of the value to remove (deduced). This value type must meet the require-

ments of CopyConstructible.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• value – Specifies the value of elements to remove.

796 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The remove algorithm returns a subrange_t<FwdIter, Sent>. The remove algorithm
returns an object {ret, last}, where ret is a past-the-end iterator for a new subrange of the
values all in valid but unspecified state.

template<typename Rng, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type>
subrange_t<hpx::traits::range_iterator_t<Rng>> remove(Rng &&rng, T const &value, Proj &&proj =

Proj())
Removes all elements that are equal to value from the range rng and and returns a subrange [ret,
util::end(rng)), where ret is a past-the-end iterator for the new end of the range.

The assignments in the parallel remove algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs not more than util::end(rng)
• util::begin(rng) assignments, exactly util::end(rng) - util::begin(rng) applications of the opera-

tor==() and the projection proj.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• T – The type of the value to remove (deduced). This value type must meet the require-

ments of CopyConstructible.
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• value – Specifies the value of elements to remove.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The remove algorithm returns a subrange_t<hpx::traits::range_iterator_t<Rng>>.

The remove algorithm returns an object {ret, last}, where ret is a past-the-end iterator for a
new subrange of the values all in valid but unspecified state.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Proj = hpx::identity,
typename T = typename hpx::parallel::traits::projected<FwdIter, Proj>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<FwdIter, Sent>>::type remove(ExPolicy

&&policy,
FwdIter
first, Sent
last, T
const
&value,
Proj
&&proj =
Proj())

Removes all elements that are equal to value from the range [first, last) and and returns a subrange [ret,
last), where ret is a past-the-end iterator for the new end of the range.

The assignments in the parallel remove algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

2.8. API reference 797

HPX Documentation, master

The assignments in the parallel remove algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first applications of
the operator==() and the projection proj.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for FwdIter.

• T – The type of the value to remove (deduced). This value type must meet the require-
ments of CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• value – Specifies the value of elements to remove.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The remove algorithm returns a hpx::future<subrange_t<FwdIter, Sent>>. The re-

move algorithm returns an object {ret, last}, where ret is a past-the-end iterator for a new
subrange of the values all in valid but unspecified state.

template<typename ExPolicy, typename Rng, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<hpx::traits::range_iterator_t<Rng>>> remove(ExPolicy

&&pol-
icy,
Rng
&&rng,
T
const
&value,
Proj
&&proj
=
Proj())

Removes all elements that are equal to value from the range rng and and returns a subrange [ret,
util::end(rng)), where ret is a past-the-end iterator for the new end of the range.

The assignments in the parallel remove algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel remove algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

798 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: Performs not more than util::end(rng)
• util::begin(rng) assignments, exactly util::end(rng) - util::begin(rng) applications of the opera-

tor==() and the projection proj.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• T – The type of the value to remove (deduced). This value type must meet the require-
ments of CopyConstructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• value – Specifies the value of elements to remove.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The remove algorithm returns a hpx::future< sub-

range_t<hpx::traits::range_iterator_t<Rng>>> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The remove
algorithm returns the iterator to the new end of the range.

hpx::ranges::remove_copy, hpx::ranges::remove_copy_if

Defined in header hpx/algorithm.hpp667.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

hpx::ranges::replace, hpx::ranges::replace_if, hpx::ranges::replace_copy,
hpx::ranges::replace_copy_if

Defined in header hpx/algorithm.hpp668.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

667 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp
668 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 799

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename Iter, typename Sent, typename Pred, typename Proj = hpx::identity, typename T
= typename hpx::parallel::traits::projected<Iter, Proj>::value_type>
Iter replace_if(Iter first, Sent sent, Pred &&pred, T const &new_value, Proj &&proj = Proj())

Replaces all elements satisfying specific criteria (for which predicate f returns true) with new_value
in the range [first, sent).

Effects: Substitutes elements referred by the iterator it in the range [first, sent) with new_value, when
the following corresponding conditions hold: INVOKE(f, INVOKE(proj, *it)) != false

The assignments in the parallel replace_if algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly sent - first applications of the predicate.

Template Parameters
• Iter – The type of the source iterator used (deduced). The iterator type must meet the

requirements of a forward iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for Iter.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type Iter can be dereferenced
and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_if algorithm returns Iter. It returns last.

template<typename Rng, typename Pred, typename Proj = hpx::identity, typename T = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type>
hpx::traits::range_iterator_t<Rng> replace_if(Rng &&rng, Pred &&pred, T const &new_value, Proj

&&proj = Proj())
Replaces all elements satisfying specific criteria (for which predicate pred returns true) with new_value
in the range rng.

800 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Effects: Substitutes elements referred by the iterator it in the range rng with new_value, when the
following corresponding conditions hold: INVOKE(f, INVOKE(proj, *it)) != false

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) applications of the predicate.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by rng.This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_if algorithm returns an hpx::traits::range_iterator<Rng>::type. It re-

turns last.

template<typename ExPolicy, typename Iter, typename Sent, typename Pred, typename Proj =
hpx::identity, typename T = typename hpx::parallel::traits::projected<Iter, Proj>::value_type>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> replace_if(ExPolicy &&policy, Iter

first, Sent sent, Pred
&&pred, T const
&new_value, Proj &&proj =
Proj())

Replaces all elements satisfying specific criteria (for which predicate pred returns true) with new_value
in the range rng.

Effects: Substitutes elements referred by the iterator it in the range rng with new_value, when the
following corresponding conditions hold: INVOKE(f, INVOKE(proj, *it)) != false

The assignments in the parallel replace_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

2.8. API reference 801

HPX Documentation, master

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterator used (deduced). The iterator type must meet the
requirements of a forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for Iter.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_if algorithm returns a hpx::future<Iter> if the execution policy is of

type sequenced_task_policy or parallel_task_policy. It returns last.

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = hpx::identity, typename
T = typename hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> replace_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred,
T
const
&new_value,
Proj
&&proj
=
Proj())

Replaces all elements satisfying specific criteria (for which predicate pred returns true) with new_value

802 Chapter 2. What’s so special about HPX?

HPX Documentation, master

in the range rng.

Effects: Substitutes elements referred by the iterator it in the range rng with new_value, when the
following corresponding conditions hold: INVOKE(f, INVOKE(proj, *it)) != false

The assignments in the parallel replace algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of a forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires F to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by rng.This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_if algorithm returns a hpx::future<hpx::traits::range_iterator_t<Rng>>

if the execution policy is of type sequenced_task_policy or parallel_task_policy. It returns
last.

template<typename Iter, typename Sent, typename Proj = hpx::identity, typename T1 = typename
hpx::parallel::traits::projected<Iter, Proj>::value_type, typename T2 = T1>
Iter replace(Iter first, Sent sent, T1 const &old_value, T2 const &new_value, Proj &&proj = Proj())

Replaces all elements satisfying specific criteria with new_value in the range [first, last).

2.8. API reference 803

HPX Documentation, master

Effects: Substitutes elements referred by the iterator it in the range [first,last) with new_value, when
the following corresponding conditions hold: INVOKE(proj, *i) == old_value

The assignments in the parallel replace algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• Iter – The type of the source iterator used (deduced). The iterator type must meet the

requirements of an input iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for Iter.
• T1 – The type of the old value to replace (deduced).
• T2 – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• old_value – Refers to the old value of the elements to replace.
• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace algorithm returns an Iter.

template<typename Rng, typename Proj = hpx::identity, typename T1 = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type, typename T2 =
T1>
hpx::traits::range_iterator_t<Rng> replace(Rng &&rng, T1 const &old_value, T2 const &new_value,

Proj &&proj = Proj())
Replaces all elements satisfying specific criteria with new_value in the range rng.

Effects: Substitutes elements referred by the iterator it in the range rng with new_value, when the
following corresponding conditions hold: INVOKE(proj, *i) == old_value

The assignments in the parallel replace algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) assignments.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• T1 – The type of the old value to replace (deduced).
• T2 – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• old_value – Refers to the old value of the elements to replace.
• new_value – Refers to the new value to use as the replacement.

804 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The replace algorithm returns an hpx::traits::range_iterator<Rng>::type.

template<typename ExPolicy, typename Iter, typename Sent, typename Proj = hpx::identity,
typename T1 = typename hpx::parallel::traits::projected<Iter, Proj>::value_type, typename T2 = T1>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> replace(ExPolicy &&policy, Iter first,

Sent sent, T1 const &old_value,
T2 const &new_value, Proj
&&proj = Proj())

Replaces all elements satisfying specific criteria with new_value in the range [first, last).

Effects: Substitutes elements referred by the iterator it in the range [first,last) with new_value, when
the following corresponding conditions hold: INVOKE(proj, *i) == old_value

The assignments in the parallel replace algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterator used (deduced). The iterator type must meet the
requirements of a forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for Iter.

• T1 – The type of the old value to replace (deduced).
• T2 – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• old_value – Refers to the old value of the elements to replace.
• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace algorithm returns a hpx::future<Iter> if the execution policy is of type

sequenced_task_policy or parallel_task_policy and returns Iter otherwise.

template<typename ExPolicy, typename Rng, typename Proj = hpx::identity, typename T1 = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type, typename T2 =
T1>

2.8. API reference 805

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> replace(ExPolicy
&&pol-
icy, Rng
&&rng,
T1 const
&old_value,
T2 const
&new_value,
Proj
&&proj
= Proj())

Replaces all elements satisfying specific criteria with new_value in the range rng.

Effects: Substitutes elements referred by the iterator it in the range rng with new_value, when the
following corresponding conditions hold: INVOKE(proj, *i) == old_value

The assignments in the parallel replace algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of a forward iterator.

• T1 – The type of the old value to replace (deduced).
• T2 – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• old_value – Refers to the old value of the elements to replace.
• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked. The assign-
ments in the parallel replace algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Returns The replace algorithm returns an hpx::future<hpx::traits::range_iterator<Rng>::type>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
hpx::traits::range_iterator<Rng>::type otherwise.

template<typename InIter, typename Sent, typename OutIter, typename Pred, typename T =
typename std::iterator_traits<OutIter>::value_type, typename Proj = hpx::identity>
replace_copy_if_result<InIter, OutIter> replace_copy_if(InIter first, Sent sent, OutIter dest, Pred

&&pred, T const &new_value, Proj
&&proj = Proj())

Copies the all elements from the range [first, sent) to another range beginning at dest replacing all
elements satisfying a specific criteria with new_value.

806 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Effects: Assigns to every iterator it in the range [result, result + (sent - first)) either new_value or
*(first + (it - result)) depending on whether the following corresponding condition holds: INVOKE(f,
INVOKE(proj, *(first + (i - result)))) != false

The assignments in the parallel replace_copy_if algorithm execute in sequential order in the calling
thread.

Note: Complexity: Performs exactly sent - first applications of the predicate.

Template Parameters
• InIter – The type of the source iterator used (deduced). The iterator type must meet

the requirements of an input iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for InIter.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_copy_if algorithm returns a in_out_result<InIter, OutIter>. The re-

place_copy_if algorithm returns the input iterator last and the output iterator to the element
in the destination range, one past the last element copied.

template<typename Rng, typename OutIter, typename Pred, typename T = typename
std::iterator_traits<OutIter>::value_type, typename Proj = hpx::identity>
replace_copy_if_result<hpx::traits::range_iterator_t<Rng>, OutIter> replace_copy_if(Rng &&rng,

OutIter dest,
Pred &&pred,
T const
&new_value,
Proj &&proj =
Proj())

2.8. API reference 807

HPX Documentation, master

Copies the all elements from the range rng to another range beginning at dest replacing all elements
satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (util::end(rng) - util::begin(rng))) either
new_value or *(first + (it - result)) depending on whether the following corresponding condition holds:
INVOKE(f, INVOKE(proj, *(first + (i - result)))) != false

The assignments in the parallel replace_copy_if algorithm execute in sequential order in the calling
thread.

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) applications of the predicate.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_copy_if algorithm returns an in_out_result<hpx::traits::range_iterator_t<Rng>,

OutIter>. The replace_copy_if algorithm returns the input iterator last and the output
iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename
Pred, typename T = typename std::iterator_traits<FwdIter2>::value_type, typename Proj =
hpx::identity>

808 Chapter 2. What’s so special about HPX?

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, replace_copy_if_result<FwdIter1, FwdIter2>>::type replace_copy_if(ExPolicy
&&pol-
icy,
FwdIter1
first,
Sent
sent,
FwdIter2
dest,
Pred
&&pred,
T
const
&new_value,
Proj
&&proj
=
Proj())

Copies the all elements from the range [first, sent) to another range beginning at dest replacing all
elements satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (sent - first)) either new_value or
*(first + (it - result)) depending on whether the following corresponding condition holds: INVOKE(f,
INVOKE(proj, *(first + (i - result)))) != false

The assignments in the parallel replace_copy_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace_copy_if algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly sent - first applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterator used (deduced). The iterator type must meet
the requirements of a forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for InIter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.

2.8. API reference 809

HPX Documentation, master

• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_copy_if algorithm returns an hpx::future<FwdIter1, FwdIter2>. The

replace_copy_if algorithm returns the input iterator last and the output iterator to the ele-
ment in the destination range, one past the last element copied.

template<typename ExPolicy, typename Rng, typename FwdIter, typename Pred, typename T =
typename std::iterator_traits<FwdIter>::value_type, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, replace_copy_if_result<hpx::traits::range_iterator_t<Rng>, FwdIter>>::type replace_copy_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
FwdIter
dest,
Pred
&&pred,
T
const
&new_value,
Proj
&&proj
=
Proj())

Copies the all elements from the range rng to another range beginning at dest replacing all elements
satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (util::end(rng) - util::begin(rng))) either
new_value or *(first + (it - result)) depending on whether the following corresponding condition holds:
INVOKE(f, INVOKE(proj, *(first + (i - result)))) != false

The assignments in the parallel replace_copy_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace_copy_if algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) applications of the predicate.

810 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of equal requires Pred to meet the requirements of CopyCon-
structible. (deduced).

• T – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the elements which need to replaced. The signature of this predicate should be
equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_copy_if algorithm returns an hpx::future<in_out_result<hpx::traits::range_iterator_t<Rng>,

OutIter>>. The replace_copy_if algorithm returns the input iterator last and the output
iterator to the element in the destination range, one past the last element copied.

template<typename InIter, typename Sent, typename OutIter, typename Proj = hpx::identity,
typename T1 = typename hpx::parallel::traits::projected<InIter, Proj>::value_type, typename T2 = T1>
replace_copy_result<InIter, OutIter> replace_copy(InIter first, Sent sent, OutIter dest, T1 const

&old_value, T2 const &new_value, Proj &&proj
= Proj())

Copies the all elements from the range [first, sent) to another range beginning at dest replacing all
elements satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (sent - first)) either new_value or *(first
+ (it - result)) depending on whether the following corresponding condition holds: INVOKE(proj,
*(first + (i - result))) == old_value

The assignments in the parallel replace_copy algorithm execute in sequential order in the calling
thread.

Note: Complexity: Performs exactly sent - first applications of the predicate.

Template Parameters

2.8. API reference 811

HPX Documentation, master

• InIter – The type of the source iterator used (deduced). The iterator type must meet
the requirements of an input iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for Iter.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• T1 – The type of the old value to replace (deduced).
• T2 – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• old_value – Refers to the old value of the elements to replace.
• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_copy algorithm returns an in_out_result<InIter, OutIter>. The copy

algorithm returns the pair of the input iterator last and the output iterator to the element in
the destination range, one past the last element copied.

template<typename Rng, typename OutIter, typename Proj = hpx::identity, typename T1 = typename
hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>, Proj>::value_type, typename T2 =
T1>
replace_copy_result<hpx::traits::range_iterator_t<Rng>, OutIter> replace_copy(Rng &&rng, OutIter

dest, T1 const
&old_value, T2 const
&new_value, Proj
&&proj = Proj())

Copies the all elements from the range rbg to another range beginning at dest replacing all elements
satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (util::end(rng) - util::begin(rng))) either
new_value or *(first + (it - result)) depending on whether the following corresponding condition holds:
INVOKE(proj, *(first + (i - result))) == old_value

The assignments in the parallel replace_copy algorithm execute in sequential order in the calling
thread.

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) applications of the predicate.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• T1 – The type of the old value to replace (deduced).
• T2 – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.

812 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• old_value – Refers to the old value of the elements to replace.
• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_copy algorithm returns an in_out_result<hpx::traits::range_iterator_t<Rng>,

OutIter>. The copy algorithm returns the pair of the input iterator last and the output
iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename
Proj = hpx::identity, typename T1 = typename hpx::parallel::traits::projected<FwdIter1,
Proj>::value_type, typename T2 = T1>
parallel::util::detail::algorithm_result<ExPolicy, replace_copy_result<FwdIter1, FwdIter2>>::type replace_copy(ExPolicy

&&pol-
icy,
FwdIter1
first,
Sent
sent,
FwdIter2
dest,
T1
const
&old_value,
T2
const
&new_value,
Proj
&&proj
=
Proj())

Copies the all elements from the range [first, sent) to another range beginning at dest replacing all
elements satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (sent - first)) either new_value or *(first
+ (it - result)) depending on whether the following corresponding condition holds: INVOKE(proj,
*(first + (i - result))) == old_value

The assignments in the parallel replace_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly sent - first applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterator used (deduced). The iterator type must meet
the requirements of an forward iterator.

2.8. API reference 813

HPX Documentation, master

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for Iter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T1 – The type of the old value to replace (deduced).
• T2 – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• old_value – Refers to the old value of the elements to replace.
• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_copy algorithm returns a hpx::future<in_out_result<FwdIter1,

FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns in_out_result<FwdIter1, FwdIter2> otherwise. The copy al-
gorithm returns the pair of the forward iterator last and the output iterator to the element in
the destination range, one past the last element copied.

template<typename ExPolicy, typename Rng, typename FwdIter, typename Proj = hpx::identity,
typename T1 = typename hpx::parallel::traits::projected<hpx::traits::range_iterator_t<Rng>,
Proj>::value_type, typename T2 = T1>
parallel::util::detail::algorithm_result<ExPolicy, replace_copy_result<hpx::traits::range_iterator_t<Rng>, FwdIter>>::type replace_copy(ExPolicy

&&pol-
icy,
Rng
&&rng,
FwdIter
dest,
T1
const
&old_value,
T2
const
&new_value,
Proj
&&proj
=
Proj())

Copies the all elements from the range rbg to another range beginning at dest replacing all elements
satisfying a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (util::end(rng) - util::begin(rng))) either
new_value or *(first + (it - result)) depending on whether the following corresponding condition holds:
INVOKE(proj, *(first + (i - result))) == old_value

The assignments in the parallel replace_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel replace_copy algorithm invoked with an execution policy object of type

814 Chapter 2. What’s so special about HPX?

HPX Documentation, master

parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly util::end(rng) - util::begin(rng) applications of the predicate.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T1 – The type of the old value to replace (deduced).
• T2 – The type of the new values to replace (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• old_value – Refers to the old value of the elements to replace.
• new_value – Refers to the new value to use as the replacement.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The replace_copy algorithm returns a hpx::future<in_out_result<

hpx::traits::range_iterator_t<Rng>, FwdIter>> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns in_out_result<
hpx::traits::range_iterator_t<Rng>, FwdIter>> The copy algorithm returns the pair
of the input iterator last and the forward iterator to the element in the destination range,
one past the last element copied.

hpx::ranges::reverse, hpx::ranges::reverse_copy

Defined in header hpx/algorithm.hpp669.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

669 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 815

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename Iter, typename Sent>
Iter reverse(Iter first, Sent sent)

Reverses the order of the elements in the range [first, last). Behaves as if applying std::iter_swap to
every pair of iterators first+i, (last-i) - 1 for each non-negative i < (last-first)/2.

The assignments in the parallel reverse algorithm execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first and last.

Template Parameters
• Iter – The type of the source iterator used (deduced). The iterator type must meet the

requirements of an input iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for Iter.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• sent – Refers to the end of the sequence of elements the algorithm will be applied to.
Returns The reverse algorithm returns a Iter. It returns last.

template<typename Rng>
hpx::traits::range_iterator_t<Rng> reverse(Rng &&rng)

Uses rng as the source range, as if using util::begin(rng) as first and ranges::end(rng) as last. Reverses
the order of the elements in the range [first, last). Behaves as if applying std::iter_swap to every pair
of iterators first+i, (last-i) - 1 for each non-negative i < (last-first)/2.

The assignments in the parallel reverse algorithm execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first and last.

Template Parameters Rng – The type of the source range used (deduced). The iterators
extracted from this range type must meet the requirements of a bidirectional iterator.

Parameters rng – Refers to the sequence of elements the algorithm will be applied to.
Returns The reverse algorithm returns a hpx::traits::range_iterator<Rng>::type. It returns

last.

template<typename ExPolicy, typename Iter, typename Sent>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, Iter> reverse(ExPolicy &&policy, Iter first,

Sent sent)
Reverses the order of the elements in the range [first, last). Behaves as if applying std::iter_swap to
every pair of iterators first+i, (last-i) - 1 for each non-negative i < (last-first)/2.

The assignments in the parallel reverse algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel reverse algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

816 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: Linear in the distance between first and last.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterator used (deduced). The iterator type must meet the
requirements of an input iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for Iter.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• sent – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The reverse algorithm returns a hpx::future<Iter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns Iter otherwise. It returns last.

template<typename ExPolicy, typename Rng>
parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> reverse(ExPolicy

&&pol-
icy, Rng
&&rng)

Uses rng as the source range, as if using util::begin(rng) as first and ranges::end(rng) as last. Reverses
the order of the elements in the range [first, last). Behaves as if applying std::iter_swap to every pair
of iterators first+i, (last-i) - 1 for each non-negative i < (last-first)/2.

The assignments in the parallel reverse algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel reverse algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of a bidirectional iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.

Returns The reverse algorithm returns a hpx::future<hpx::traits::range_iterator_t<Rng>>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
hpx::future< hpx::traits::range_iterator_t<Rng>> otherwise. It returns last.

template<typename Iter, typename Sent, typename OutIter>

2.8. API reference 817

HPX Documentation, master

reverse_copy_result<Iter, OutIter> reverse_copy(Iter first, Sent last, OutIter result)
Copies the elements from the range [first, last) to another range beginning at result in such a way
that the elements in the new range are in reverse order. Behaves as if by executing the assignment
*(result + (last - first) - 1 - i) = *(first + i) once for each non-negative i < (last - first) If the source and
destination ranges (that is, [first, last) and [result, result+(last-first)) respectively) overlap, the behavior
is undefined.

The assignments in the parallel reverse_copy algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• Iter – The type of the source iterator used (deduced). The iterator type must meet the

requirements of an input iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for Iter.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• result – Refers to the begin of the destination range.

Returns The reverse_copy algorithm returns a reverse_copy_result<Iter, OutIter>. The re-
verse_copy algorithm returns the pair of the input iterator forwarded to the first element
after the last in the input sequence and the output iterator to the element in the destination
range, one past the last element copied.

template<typename Rng, typename OutIter>
reverse_copy_result<hpx::traits::range_iterator_t<Rng>, OutIter> reverse_copy(Rng &&rng, OutIter

result)
Uses rng as the source range, as if using util::begin(rng) as first and ranges::end(rng) as last. Copies
the elements from the range [first, last) to another range beginning at result in such a way that the
elements in the new range are in reverse order. Behaves as if by executing the assignment *(result + (last
- first) - 1 - i) = *(first + i) once for each non-negative i < (last - first) If the source and destination ranges
(that is, [first, last) and [result, result+(last-first)) respectively) overlap, the behavior is undefined.

The assignments in the parallel reverse_copy algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of a bidirectional iterator.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• result – Refers to the begin of the destination range.

818 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The reverse_copy algorithm returns a ranges::reverse_copy_result<
hpx::traits::range_iterator_t<Rng>, OutIter>. The reverse_copy algorithm returns an
object equal to {last, result + N} where N = last - first

template<typename ExPolicy, typename Iter, typename Sent, typename FwdIter>
parallel::util::detail::algorithm_result<ExPolicy, reverse_copy_result<Iter, FwdIter>>::type reverse_copy(ExPolicy

&&pol-
icy,
Iter
first,
Sent
last,
FwdIter
re-
sult)

Copies the elements from the range [first, last) to another range beginning at result in such a way
that the elements in the new range are in reverse order. Behaves as if by executing the assignment
*(result + (last - first) - 1 - i) = *(first + i) once for each non-negative i < (last - first) If the source and
destination ranges (that is, [first, last) and [result, result+(last-first)) respectively) overlap, the behavior
is undefined.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterator used (deduced). The iterator type must meet the
requirements of an input iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for Iter.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• result – Refers to the begin of the destination range.

Returns The reverse_copy algorithm returns a hpx::future<reverse_copy_result<Iter,
FwdIter> > if the execution policy is of type sequenced_task_policy or parallel_task_policy
and returns reverse_copy_result<Iter, FwdIter> otherwise. The reverse_copy algorithm re-
turns the pair of the input iterator forwarded to the first element after the last in the input
sequence and the output iterator to the element in the destination range, one past the last
element copied.

2.8. API reference 819

HPX Documentation, master

template<typename ExPolicy, typename Rng, typename OutIter>
parallel::util::detail::algorithm_result<ExPolicy, reverse_copy_result<hpx::traits::range_iterator_t<Rng>, OutIter>>::type reverse_copy(ExPolicy

&&pol-
icy,
Rng
&&rng,
Out-
Iter
re-
sult)

Uses rng as the source range, as if using util::begin(rng) as first and ranges::end(rng) as last. Copies
the elements from the range [first, last) to another range beginning at result in such a way that the
elements in the new range are in reverse order. Behaves as if by executing the assignment *(result + (last
- first) - 1 - i) = *(first + i) once for each non-negative i < (last - first) If the source and destination ranges
(that is, [first, last) and [result, result+(last-first)) respectively) overlap, the behavior is undefined.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of a bidirectional iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• result – Refers to the begin of the destination range.

Returns The reverse_copy algorithm returns a hpx::future<ranges::reverse_copy_result<
hpx::traits::range_iterator_t<Rng>, OutIter>> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns ranges::reverse_copy_result<
hpx::traits::range_iterator_t<Rng>, OutIter> otherwise. The reverse_copy algorithm re-
turns an object equal to {last, result + N} where N = last - first

820 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::ranges::rotate, hpx::ranges::rotate_copy

Defined in header hpx/algorithm.hpp670.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent>
subrange_t<FwdIter, Sent> rotate(FwdIter first, FwdIter middle, Sent last)

Performs a left rotation on a range of elements. Specifically, rotate swaps the elements in the range
[first, last) in such a way that the element middle becomes the first element of the new range and middle
- 1 becomes the last element.

The assignments in the parallel rotate algorithm execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first and last.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable and Move-
Constructible.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an forward iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for FwdIter.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• middle – Refers to the element that should appear at the beginning of the rotated range.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The rotate algorithm returns a subrange_t<FwdIter, Sent>. The rotate algorithm
returns the iterator equal to pair(first + (last - middle), last).

template<typename ExPolicy, typename FwdIter, typename Sent>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<FwdIter, Sent>>::type rotate(ExPolicy

&&policy,
FwdIter
first,
FwdIter
middle,
Sent last)

Performs a left rotation on a range of elements. Specifically, rotate swaps the elements in the range
670 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 821

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

[first, last) in such a way that the element middle becomes the first element of the new range and middle
- 1 becomes the last element.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable and Move-
Constructible.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for FwdIter.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• middle – Refers to the element that should appear at the beginning of the rotated range.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.

Returns The rotate algorithm returns a hpx::future<subrange_t<FwdIter, Sent>> if the ex-
ecution policy is of type parallel_task_policy and returns a subrange_t<FwdIter, Sent>
otherwise. The rotate algorithm returns the iterator equal to pair(first + (last - middle),
last).

template<typename Rng>
subrange_t<hpx::traits::range_iterator_t<Rng>, hpx::traits::range_iterator_t<Rng>> rotate(Rng

&&rng,
hpx::traits::range_iterator_t<Rng>
middle)

Uses rng as the source range, as if using util::begin(rng) as first and ranges::end(rng) as last. Performs
a left rotation on a range of elements. Specifically, rotate swaps the elements in the range [first, last) in
such a way that the element middle becomes the first element of the new range and middle - 1 becomes
the last element.

The assignments in the parallel rotate algorithm execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first and last.

822 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable and Move-
Constructible.

Template Parameters Rng – The type of the source range used (deduced). The iterators
extracted from this range type must meet the requirements of a forward iterator.

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• middle – Refers to the element that should appear at the beginning of the rotated range.

Returns The rotate algorithm returns a subrange_t<hpx::traits::range_iterator_t<Rng>,
hpx::traits::range_iterator_t<Rng>>. The rotate algorithm returns the iterator equal to
pair(first + (last - middle), last).

template<typename ExPolicy, typename Rng>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<hpx::traits::range_iterator_t<Rng>, hpx::traits::range_iterator_t<Rng>>> rotate(ExPolicy

&&pol-
icy,
Rng
&&rng,
hpx::traits::range_iterator_t<Rng>
mid-
dle)

Uses rng as the source range, as if using util::begin(rng) as first and ranges::end(rng) as last. Performs
a left rotation on a range of elements. Specifically, rotate swaps the elements in the range [first, last) in
such a way that the element middle becomes the first element of the new range and middle - 1 becomes
the last element.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable and Move-
Constructible.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of a forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• middle – Refers to the element that should appear at the beginning of the rotated range.

Returns The rotate algorithm returns a hpx::future <sub-
range_t<hpx::traits::range_iterator_t<Rng>, hpx::traits::range_iterator_t<Rng>>> if

2.8. API reference 823

HPX Documentation, master

the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
subrange_t<hpx::traits::range_iterator_t<Rng>, hpx::traits::range_iterator_t<Rng>>.
otherwise. The rotate algorithm returns the iterator equal to pair(first + (last - middle),
last).

template<typename FwdIter, typename Sent, typename OutIter>
rotate_copy_result<FwdIter, OutIter> rotate_copy(FwdIter first, FwdIter middle, Sent last, OutIter

dest_first)
Copies the elements from the range [first, last), to another range beginning at dest_first in such a way,
that the element middle becomes the first element of the new range and middle - 1 becomes the last
element.

The assignments in the parallel rotate_copy algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an forward iterator.
• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel

for FwdIter.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• middle – Refers to the element that should appear at the beginning of the rotated range.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest_first – Output iterator to the initial position of the range where the reversed range

is stored. The pointed type shall support being assigned the value of an element in the
range [first,last).

Returns The rotate_copy algorithm returns a rotate_copy_result<FwdIter, OutIter>. The
rotate_copy algorithm returns the output iterator to the element past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2>
parallel::util::detail::algorithm_result<ExPolicy, rotate_copy_result<FwdIter1, FwdIter2>>::type rotate_copy(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
mid-
dle,
Sent
last,
FwdIter2
dest_first)

Copies the elements from the range [first, last), to another range beginning at dest_first in such a way,
that the element middle becomes the first element of the new range and middle - 1 becomes the last
element.

824 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The assignments in the parallel rotate_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel rotate_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the end iterators used (deduced). This sentinel type must be a sentinel
for FwdIter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• middle – Refers to the element that should appear at the beginning of the rotated range.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest_first – Output iterator to the initial position of the range where the reversed range

is stored. The pointed type shall support being assigned the value of an element in the
range [first,last).

Returns The rotate_copy algorithm returns areturns hpx::future< ro-
tate_copy_result<FwdIter1, FwdIter2>> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns rotate_copy_result<FwdIter1,
FwdIter2> otherwise. The rotate_copy algorithm returns the output iterator to the element
past the last element copied.

template<typename Rng, typename OutIter>
rotate_copy_result<hpx::traits::range_iterator_t<Rng>, OutIter> rotate_copy(Rng &&rng,

hpx::traits::range_iterator_t<Rng>
middle, OutIter
dest_first)

Uses rng as the source range, as if using util::begin(rng) as first and ranges::end(rng) as last. Copies
the elements from the range [first, last), to another range beginning at dest_first in such a way, that the
element middle becomes the first element of the new range and middle - 1 becomes the last element.

The assignments in the parallel rotate_copy algorithm execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of a forward iterator.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an forward iterator.

2.8. API reference 825

HPX Documentation, master

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• middle – Refers to the element that should appear at the beginning of the rotated range.
• dest_first – Output iterator to the initial position of the range where the reversed range

is stored. The pointed type shall support being assigned the value of an element in the
range [first,last).

Returns The rotate algorithm returns a rotate_copy_result<hpx::traits::range_iterator_t<Rng>,
OutIter>. The rotate_copy algorithm returns the output iterator to the element past the last
element copied.

template<typename ExPolicy, typename Rng, typename OutIter>
parallel::util::detail::algorithm_result<ExPolicy, rotate_copy_result<hpx::traits::range_iterator_t<Rng>, OutIter>> rotate_copy(ExPolicy

&&pol-
icy,
Rng
&&rng,
hpx::traits::range_iterator_t<Rng>
mid-
dle,
Out-
Iter
dest_first)

Uses rng as the source range, as if using util::begin(rng) as first and ranges::end(rng) as last. Copies
the elements from the range [first, last), to another range beginning at dest_first in such a way, that
the element new_first becomes the first element of the new range and new_first - 1 becomes the last
element.

The assignments in the parallel rotate_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel rotate_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of a forward iterator.

• OutIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• middle – Refers to the element that should appear at the beginning of the rotated range.
• dest_first – Output iterator to the initial position of the range where the reversed range

is stored. The pointed type shall support being assigned the value of an element in the
range [first,last).

Returns The rotate_copy algorithm returns a hpx::future<otate_copy_result<
hpx::traits::range_iterator_t<Rng>, OutIter>> if the execution policy is of type par-

826 Chapter 2. What’s so special about HPX?

HPX Documentation, master

allel_task_policy and returns rotate_copy_result< hpx::traits::range_iterator_t<Rng>,
OutIter> otherwise. The rotate_copy algorithm returns the output iterator to the element
past the last element copied.

hpx::ranges::search, hpx::ranges::search_n

Defined in header hpx/algorithm.hpp671.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent, typename FwdIter2, typename Sent2, typename Pred =
hpx::ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
FwdIter search(FwdIter first, Sent last, FwdIter2 s_first, Sent2 s_last, Pred &&op = Pred(), Proj1

&&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate
to compare elements.

The comparison operations in the parallel search algorithm execute in sequential order in the calling
thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-
tance(first, last).

Template Parameters
• FwdIter – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Sent – The type of the source sentinel used for the first range (deduced). This iterator

type must meet the requirements of an sentinel.
• FwdIter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the source sentinel used for the second range (deduced). This iterator

type must meet the requirements of an sentinel.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of type dereferenced FwdIter.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of type dereferenced FwdIter2.

Parameters
• first – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
671 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 827

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last – Refers to the end of the sequence of elements of the first range the algorithm will
be applied to.

• s_first – Refers to the beginning of the sequence of elements the algorithm will be
searching for.

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

• op – Refers to the binary predicate which returns true if the elements should be treated
as equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements of type dereferenced FwdIter1 as a projection operation before the actual
predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of type dereferenced FwdIter2 as a projection operation before the actual
predicate is invoked.

Returns The search algorithm returns a hpx::future<FwdIter> if the execution policy is of
type task_execution_policy and returns FwdIter otherwise. The search algorithm returns
an iterator to the beginning of the first subsequence [s_first, s_last) in range [first, last). If
the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
last), last is returned. Additionally if the size of the subsequence is empty first is returned.
If no subsequence is found, last is returned.

template<typename ExPolicy, typename FwdIter, typename Sent, typename FwdIter2, typename
Sent2, typename Pred = hpx::ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type search(ExPolicy &&policy, FwdIter

first, Sent last, FwdIter2 s_first,
Sent2 s_last, Pred &&op =
Pred(), Proj1 &&proj1 =
Proj1(), Proj2 &&proj2 =
Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate
to compare elements.

The comparison operations in the parallel search algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel search algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-
tance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it

828 Chapter 2. What’s so special about HPX?

HPX Documentation, master

executes the assignments.
• FwdIter – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Sent – The type of the source sentinel used for the first range (deduced). This iterator

type must meet the requirements of an sentinel.
• FwdIter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the source sentinel used for the second range (deduced). This iterator

type must meet the requirements of an sentinel.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of type dereferenced FwdIter.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of type dereferenced FwdIter2.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last – Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• s_first – Refers to the beginning of the sequence of elements the algorithm will be

searching for.
• s_last – Refers to the end of the sequence of elements of the algorithm will be searching

for.
• op – Refers to the binary predicate which returns true if the elements should be treated

as equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements of type dereferenced FwdIter1 as a projection operation before the actual
predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of type dereferenced FwdIter2 as a projection operation before the actual
predicate is invoked.

Returns The search algorithm returns a hpx::future<FwdIter> if the execution policy is of
type task_execution_policy and returns FwdIter otherwise. The search algorithm returns
an iterator to the beginning of the first subsequence [s_first, s_last) in range [first, last). If
the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
last), last is returned. Additionally if the size of the subsequence is empty first is returned.
If no subsequence is found, last is returned.

template<typename Rng1, typename Rng2, typename Pred = hpx::ranges::equal_to, typename Proj1 =
hpx::identity, typename Proj2 = hpx::identity>
hpx::traits::range_iterator_t<Rng1> search(Rng1 &&rng1, Rng2 &&rng2, Pred &&op = Pred(), Proj1

&&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate
to compare elements.

2.8. API reference 829

HPX Documentation, master

The comparison operations in the parallel search algorithm execute in sequential order in the calling
thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-
tance(first, last).

Template Parameters
• Rng1 – The type of the examine range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the search range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of Rng1.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of Rng2.

Parameters
• rng1 – Refers to the sequence of elements the algorithm will be examining.
• rng2 – Refers to the sequence of elements the algorithm will be searching for.
• op – Refers to the binary predicate which returns true if the elements should be treated

as equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of rng1 as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of rng2 as a projection operation before the actual predicate is invoked.

Returns The search algorithm returns a hpx::future<FwdIter> if the execution policy is of
type task_execution_policy and returns FwdIter otherwise. The search algorithm returns
an iterator to the beginning of the first subsequence [s_first, s_last) in range [first, last). If
the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
last), last is returned. Additionally if the size of the subsequence is empty first is returned.
If no subsequence is found, last is returned.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred =
hpx::ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

830 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng1>> search(ExPolicy
&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate
to compare elements.

The comparison operations in the parallel search algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel search algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-
tance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the examine range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the search range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of Rng1.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of Rng2.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the sequence of elements the algorithm will be examining.
• rng2 – Refers to the sequence of elements the algorithm will be searching for.
• op – Refers to the binary predicate which returns true if the elements should be treated

2.8. API reference 831

HPX Documentation, master

as equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of rng1 as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of rng2 as a projection operation before the actual predicate is invoked.

Returns The search algorithm returns a hpx::future<FwdIter> if the execution policy is of
type task_execution_policy and returns FwdIter otherwise. The search algorithm returns
an iterator to the beginning of the first subsequence [s_first, s_last) in range [first, last). If
the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
last), last is returned. Additionally if the size of the subsequence is empty first is returned.
If no subsequence is found, last is returned.

template<typename FwdIter, typename FwdIter2, typename Sent2, typename Pred =
hpx::ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
FwdIter search_n(FwdIter first, std::size_t count, FwdIter2 s_first, Sent s_last, Pred &&op = Pred(),

Proj1 &&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate
to compare elements.

The comparison operations in the parallel search_n algorithm execute in sequential order in the calling
thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = count.

Template Parameters
• FwdIter – The type of the source iterators used for the first range (deduced). This iterator

type must meet the requirements of an forward iterator.
• FwdIter2 – The type of the source iterators used for the second range (deduced). This

iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the source sentinel used for the second range (deduced). This iterator

type must meet the requirements of an sentinel.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of type dereferenced FwdIter.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of type dereferenced FwdIter2.

Parameters
• first – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• count – Refers to the range of elements of the first range the algorithm will be applied

to.
• s_first – Refers to the beginning of the sequence of elements the algorithm will be

searching for.

832 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• s_last – Refers to the end of the sequence of elements of the algorithm will be searching
for.

• op – Refers to the binary predicate which returns true if the elements should be treated
as equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements of type dereferenced FwdIter1 as a projection operation before the actual
predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of type dereferenced FwdIter2 as a projection operation before the actual
predicate is invoked.

Returns The search_n algorithm returns FwdIter. The search_n algorithm returns an iterator
to the beginning of the last subsequence [s_first, s_last) in range [first, first+count). If
the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
first+count), first is returned. Additionally, if the size of the subsequence is empty or no
subsequence is found, first is also returned.

template<typename ExPolicy, typename FwdIter, typename FwdIter2, typename Sent2, typename
Pred = hpx::ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type search_n(ExPolicy &&policy,

FwdIter first,
std::size_t count,
FwdIter2 s_first, Sent2
s_last, Pred &&op =
Pred(), Proj1 &&proj1
= Proj1(), Proj2
&&proj2 = Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate
to compare elements.

The comparison operations in the parallel search_n algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel search_n algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = count.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2 – The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

2.8. API reference 833

HPX Documentation, master

• Sent2 – The type of the source sentinel used for the second range (deduced). This iterator
type must meet the requirements of an sentinel.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of type dereferenced FwdIter.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of type dereferenced FwdIter2.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• count – Refers to the range of elements of the first range the algorithm will be applied

to.
• s_first – Refers to the beginning of the sequence of elements the algorithm will be

searching for.
• s_last – Refers to the end of the sequence of elements of the algorithm will be searching

for.
• op – Refers to the binary predicate which returns true if the elements should be treated

as equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements of type dereferenced FwdIter1 as a projection operation before the actual
predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of
the elements of type dereferenced FwdIter2 as a projection operation before the actual
predicate is invoked.

Returns The search_n algorithm returns a hpx::future<FwdIter> if the execution policy is
of type task_execution_policy and returns FwdIter otherwise. The search_n algorithm re-
turns an iterator to the beginning of the last subsequence [s_first, s_last) in range [first,
first+count). If the length of the subsequence [s_first, s_last) is greater than the length of
the range [first, first+count), first is returned. Additionally if the size of the subsequence is
empty or no subsequence is found, first is also returned.

template<typename Rng1, typename Rng2, typename Pred = hpx::ranges::equal_to, typename Proj1 =
hpx::identity, typename Proj2 = hpx::identity>
hpx::traits::range_iterator_t<Rng1> search_n(Rng1 &&rng1, std::size_t count, Rng2 &&rng2, Pred

&&op = Pred(), Proj1 &&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate
to compare elements.

The comparison operations in the parallel search algorithm execute in sequential order in the calling
thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-

834 Chapter 2. What’s so special about HPX?

HPX Documentation, master

tance(first, last).

Template Parameters
• Rng1 – The type of the examine range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the search range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of Rng1.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of Rng2.

Parameters
• rng1 – Refers to the sequence of elements the algorithm will be examining.
• count – The number of elements to apply the algorithm on.
• rng2 – Refers to the sequence of elements the algorithm will be searching for.
• op – Refers to the binary predicate which returns true if the elements should be treated

as equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of rng1 as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of rng2 as a projection operation before the actual predicate is invoked.

Returns The search algorithm returns a hpx::future<FwdIter> if the execution policy is of
type task_execution_policy and returns FwdIter otherwise. The search algorithm returns
an iterator to the beginning of the first subsequence [s_first, s_last) in range [first, last). If
the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
last), last is returned. Additionally if the size of the subsequence is empty first is returned.
If no subsequence is found, last is returned.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred =
hpx::ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

2.8. API reference 835

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng1>> search_n(ExPolicy
&&pol-
icy,
Rng1
&&rng1,
std::size_t
count,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided predicate
to compare elements.

The comparison operations in the parallel search algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The comparison operations in the parallel search algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-
tance(first, last).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the examine range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the search range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of adjacent_find requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj1 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of Rng1.

• Proj2 – The type of an optional projection function. This defaults to hpx::identity and
is applied to the elements of Rng2.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the sequence of elements the algorithm will be examining.

836 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• count – The number of elements to apply the algorithm on.
• rng2 – Refers to the sequence of elements the algorithm will be searching for.
• op – Refers to the binary predicate which returns true if the elements should be treated

as equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1
and FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2
respectively

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of rng1 as a projection operation before the actual predicate is invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of rng2 as a projection operation before the actual predicate is invoked.

Returns The search algorithm returns a hpx::future<FwdIter> if the execution policy is of
type task_execution_policy and returns FwdIter otherwise. The search algorithm returns
an iterator to the beginning of the first subsequence [s_first, s_last) in range [first, last). If
the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
last), last is returned. Additionally if the size of the subsequence is empty first is returned.
If no subsequence is found, last is returned.

hpx::ranges::set_difference

Defined in header hpx/algorithm.hpp672.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

672 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 837

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Iter3, typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename
Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, set_difference_result<Iter1, Iter3>>::type set_difference(ExPolicy

&&pol-
icy,
Iter1
first1,
Sent1
last1,
Iter2
first2,
Sent2
last2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in the range [first1, last1)
and not present in the range [first2, last2). This algorithm expects both input ranges to be sorted with
the given binary predicate f.

Equivalent elements are treated individually, that is, if some element is found m times in [first1, last1)
and n times in [first2, last2), it will be copied to dest exactly std::max(m-n, 0) times. The resulting
range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy
object execute in sequential order in the calling thread (sequenced_policy) or in a single new thread
spawned from the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

838 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Iter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter1.

• Iter2 – The type of the source iterators used (deduced) representing the second se-
quence. This iterator type must meet the requirements of an forward iterator.

• Sent2 – The type of the end source iterators used (deduced) representing the second
sequence. This iterator type must meet the requirements of an sentinel for Iter2.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of set_difference requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_difference algorithm returns a hpx::future<ranges::set_difference_result<Iter1,
Iter3>> if the execution policy is of type sequenced_task_policy or parallel_task_policy
and returns ranges::set_difference_result<Iter1, Iter3> otherwise. The set_difference
algorithm returns the output iterator to the element in the destination range, one past the
last element copied.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Iter3, typename Pred =
hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

2.8. API reference 839

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, set_difference_result<hpx::traits::range_iterator_t<Rng1>, Iter3>> set_difference(ExPolicy
&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in the range [first1, last1)
and not present in the range [first2, last2). This algorithm expects both input ranges to be sorted with
the given binary predicate f.

Equivalent elements are treated individually, that is, if some element is found m times in [first1, last1)
and n times in [first2, last2), it will be copied to dest exactly std::max(m-n, 0) times. The resulting
range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy
object execute in sequential order in the calling thread (sequenced_policy) or in a single new thread
spawned from the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

840 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of set_difference requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_difference algorithm returns a hpx::future<ranges::set_difference_result<Iter1,
Iter3>> if the execution policy is of type sequenced_task_policy or parallel_task_policy
and returns ranges::set_difference_result<Iter1, Iter3> otherwise. where Iter1 is
range_iterator_t<Rng1> and Iter2 is range_iterator_t<Rng2> The set_difference algorithm
returns the output iterator to the element in the destination range, one past the last element
copied.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3,
typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>
set_difference_result<Iter1, Iter3> set_difference(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2,

Iter3 dest, Pred &&op = Pred(), Proj1 &&proj1 =
Proj1(), Proj2 &&proj2 = Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in the range [first1, last1)
and not present in the range [first2, last2). This algorithm expects both input ranges to be sorted with
the given binary predicate f.

Equivalent elements are treated individually, that is, if some element is found m times in [first1, last1)
and n times in [first2, last2), it will be copied to dest exactly std::max(m-n, 0) times. The resulting
range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters

2.8. API reference 841

HPX Documentation, master

• Iter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter1.

• Iter2 – The type of the source iterators used (deduced) representing the second se-
quence. This iterator type must meet the requirements of an forward iterator.

• Sent2 – The type of the end source iterators used (deduced) representing the second
sequence. This iterator type must meet the requirements of an sentinel for Iter2.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of set_difference requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_difference algorithm returns ranges::set_difference_result<Iter1, Iter3>.
The set_difference algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename Rng1, typename Rng2, typename Iter3, typename Pred = hpx::parallel::detail::less,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
set_difference_result<hpx::traits::range_iterator_t<Rng1>, Iter3> set_difference(Rng1 &&rng1,

Rng2 &&rng2,
Iter3 dest, Pred
&&op = Pred(),
Proj1 &&proj1 =
Proj1(), Proj2
&&proj2 =
Proj2())

842 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Constructs a sorted range beginning at dest consisting of all elements present in the range [first1, last1)
and not present in the range [first2, last2). This algorithm expects both input ranges to be sorted with
the given binary predicate f.

Equivalent elements are treated individually, that is, if some element is found m times in [first1, last1)
and n times in [first2, last2), it will be copied to dest exactly std::max(m-n, 0) times. The resulting
range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of set_difference requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_difference algorithm returns ranges::set_difference_result<Iter1, Iter3>.
where Iter1 is range_iterator_t<Rng1> and Iter2 is range_iterator_t<Rng2> The
set_difference algorithm returns the output iterator to the element in the destination range,
one past the last element copied.

2.8. API reference 843

HPX Documentation, master

hpx::ranges::set_intersection

Defined in header hpx/algorithm.hpp673.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Iter3, typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename
Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, set_intersection_result<Iter1, Iter2, Iter3>>::type set_intersection(ExPolicy

&&pol-
icy,
Iter1
first1,
Sent1
last1,
Iter2
first2,
Sent2
last2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in both sorted ranges
[first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the given
binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), the first std::min(m, n)
elements will be copied from the first range to the destination range. The order of equivalent elements
is preserved. The resulting range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

673 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

844 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The application of function objects in parallel algorithm invoked with a sequential execution policy
object execute in sequential order in the calling thread (sequenced_policy) or in a single new thread
spawned from the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Iter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter1.

• Iter2 – The type of the source iterators used (deduced) representing the second se-
quence. This iterator type must meet the requirements of an forward iterator.

• Sent2 – The type of the end source iterators used (deduced) representing the second
sequence. This iterator type must meet the requirements of an sentinel for Iter2.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of set_intersection requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

2.8. API reference 845

HPX Documentation, master

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_intersection algorithm returns a hpx::future<ranges::set_intersection_result<Iter1,
Iter2, Iter3>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::set_intersection_result<Iter1, Iter2, Iter3> otherwise.
The set_intersection algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Iter3, typename Pred =
hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, set_intersection_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, Iter3>> set_intersection(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in both sorted ranges
[first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the given
binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), the first std::min(m, n)
elements will be copied from the first range to the destination range. The order of equivalent elements
is preserved. The resulting range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy
object execute in sequential order in the calling thread (sequenced_policy) or in a single new thread
spawned from the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

846 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of set_intersection requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_intersection algorithm returns a hpx::future<ranges::set_intersection_result<Iter1,
Iter2, Iter3>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::set_intersection_result<Iter1, Iter2, Iter3> other-
wise. where Iter1 is range_iterator_t<Rng1> and Iter2 is range_iterator_t<Rng2> The
set_intersection algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3,
typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>
set_intersection_result<Iter1, Iter2, Iter3> set_intersection(Iter1 first1, Sent1 last1, Iter2 first2,

Sent2 last2, Iter3 dest, Pred &&op =
Pred(), Proj1 &&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in both sorted ranges
[first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the given
binary predicate f.

2.8. API reference 847

HPX Documentation, master

If some element is found m times in [first1, last1) and n times in [first2, last2), the first std::min(m, n)
elements will be copied from the first range to the destination range. The order of equivalent elements
is preserved. The resulting range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• Iter1 – The type of the source iterators used (deduced) representing the first sequence.

This iterator type must meet the requirements of an forward iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of an sentinel for Iter1.
• Iter2 – The type of the source iterators used (deduced) representing the second se-

quence. This iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the end source iterators used (deduced) representing the second

sequence. This iterator type must meet the requirements of an sentinel for Iter2.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of set_intersection requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_intersection algorithm returns ranges::set_intersection_result<Iter1, Iter2,
Iter3>. The set_intersection algorithm returns the output iterator to the element in the
destination range, one past the last element copied.

848 Chapter 2. What’s so special about HPX?

HPX Documentation, master

template<typename Rng1, typename Rng2, typename Iter3, typename Pred = hpx::parallel::detail::less,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
set_intersection_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, Iter3> set_intersection(Rng1

&&rng1,
Rng2
&&rng2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in both sorted ranges
[first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the given
binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), the first std::min(m, n)
elements will be copied from the first range to the destination range. The order of equivalent elements
is preserved. The resulting range cannot overlap with either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of set_intersection requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

2.8. API reference 849

HPX Documentation, master

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_intersection algorithm returns ranges::set_intersection_result<Iter1, Iter2,
Iter3>. where Iter1 is range_iterator_t<Rng1> and Iter2 is range_iterator_t<Rng2> The
set_intersection algorithm returns the output iterator to the element in the destination range,
one past the last element copied.

hpx::ranges::set_symmetric_difference

Defined in header hpx/algorithm.hpp674.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Iter3, typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename
Proj2 = hpx::identity>

674 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

850 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, set_symmetric_difference_result<Iter1, Iter2, Iter3>>::type set_symmetric_difference(ExPolicy
&&pol-
icy,
Iter1
first1,
Sent1
last1,
Iter2
first2,
Sent2
last2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in either of the sorted
ranges [first1, last1) and [first2, last2), but not in both of them are copied to the range beginning at
dest. The resulting range is also sorted. This algorithm expects both input ranges to be sorted with the
given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), it will be copied to dest
exactly std::abs(m-n) times. If m>n, then the last m-n of those elements are copied from [first1,last1),
otherwise the last n-m elements are copied from [first2,last2). The resulting range cannot overlap with
either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy
object execute in sequential order in the calling thread (sequenced_policy) or in a single new thread
spawned from the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

2.8. API reference 851

HPX Documentation, master

• Iter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter1.

• Iter2 – The type of the source iterators used (deduced) representing the second se-
quence. This iterator type must meet the requirements of an forward iterator.

• Sent2 – The type of the end source iterators used (deduced) representing the second
sequence. This iterator type must meet the requirements of an sentinel for Iter2.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_symmetric_difference requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_symmetric_difference algorithm returns a
hpx::future<ranges::set_symmetric_difference_result<Iter1, Iter2, Iter3>> if the
execution policy is of type sequenced_task_policy or parallel_task_policy and re-
turns ranges::set_symmetric_difference_result<Iter1, Iter2, Iter3> otherwise. The
set_symmetric_difference algorithm returns the output iterator to the element in the
destination range, one past the last element copied.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Iter3, typename Pred =
hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

852 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, set_symmetric_difference_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, Iter3>> set_symmetric_difference(ExPolicy
&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in either of the sorted
ranges [first1, last1) and [first2, last2), but not in both of them are copied to the range beginning at
dest. The resulting range is also sorted. This algorithm expects both input ranges to be sorted with the
given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), it will be copied to dest
exactly std::abs(m-n) times. If m>n, then the last m-n of those elements are copied from [first1,last1),
otherwise the last n-m elements are copied from [first2,last2). The resulting range cannot overlap with
either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy
object execute in sequential order in the calling thread (sequenced_policy) or in a single new thread
spawned from the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

2.8. API reference 853

HPX Documentation, master

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_symmetric_difference requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_symmetric_difference algorithm returns a
hpx::future<ranges::set_symmetric_difference_result<Iter1, Iter2, Iter3>> if the
execution policy is of type sequenced_task_policy or parallel_task_policy and
returns ranges::set_symmetric_difference_result<Iter1, Iter2, Iter3> otherwise.
where Iter1 is range_iterator_t<Rng1> and Iter2 is range_iterator_t<Rng2> The
set_symmetric_difference algorithm returns the output iterator to the element in the
destination range, one past the last element copied.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3,
typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>
set_symmetric_difference_result<Iter1, Iter2, Iter3> set_symmetric_difference(Iter1 first1, Sent1

last1, Iter2 first2,
Sent2 last2, Iter3
dest, Pred &&op =
Pred(), Proj1
&&proj1 = Proj1(),
Proj2 &&proj2 =
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in either of the sorted
ranges [first1, last1) and [first2, last2), but not in both of them are copied to the range beginning at
dest. The resulting range is also sorted. This algorithm expects both input ranges to be sorted with the
given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), it will be copied to dest

854 Chapter 2. What’s so special about HPX?

HPX Documentation, master

exactly std::abs(m-n) times. If m>n, then the last m-n of those elements are copied from [first1,last1),
otherwise the last n-m elements are copied from [first2,last2). The resulting range cannot overlap with
either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• Iter1 – The type of the source iterators used (deduced) representing the first sequence.

This iterator type must meet the requirements of an forward iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of an sentinel for Iter1.
• Iter2 – The type of the source iterators used (deduced) representing the second se-

quence. This iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the end source iterators used (deduced) representing the second

sequence. This iterator type must meet the requirements of an sentinel for Iter2.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential form,

the parallel overload of set_symmetric_difference requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_symmetric_difference algorithm returns
ranges::set_symmetric_difference_result<Iter1, Iter2, Iter3>. The
set_symmetric_difference algorithm returns the output iterator to the element in the

2.8. API reference 855

HPX Documentation, master

destination range, one past the last element copied.

template<typename Rng1, typename Rng2, typename Iter3, typename Pred = hpx::parallel::detail::less,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
set_symmetric_difference_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, Iter3> set_symmetric_difference(Rng1

&&rng1,
Rng2
&&rng2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in either of the sorted
ranges [first1, last1) and [first2, last2), but not in both of them are copied to the range beginning at
dest. The resulting range is also sorted. This algorithm expects both input ranges to be sorted with the
given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), it will be copied to dest
exactly std::abs(m-n) times. If m>n, then the last m-n of those elements are copied from [first1,last1),
otherwise the last n-m elements are copied from [first2,last2). The resulting range cannot overlap with
either of the input ranges.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential form,

the parallel overload of set_symmetric_difference requires Pred to meet the requirements
of CopyConstructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.

856 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_symmetric_difference algorithm returns
ranges::set_symmetric_difference_result<Iter1, Iter2, Iter3>. where
Iter1 is range_iterator_t<Rng1> and Iter2 is range_iterator_t<Rng2> The
set_symmetric_difference algorithm returns the output iterator to the element in the
destination range, one past the last element copied.

hpx::ranges::set_union

Defined in header hpx/algorithm.hpp675.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

675 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 857

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2,
typename Iter3, typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename
Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, set_union_result<Iter1, Iter2, Iter3>>::type set_union(ExPolicy

&&pol-
icy,
Iter1
first1,
Sent1
last1,
Iter2
first2,
Sent2
last2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in one or both sorted
ranges [first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the
given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), then all m elements will
be copied from [first1, last1) to dest, preserving order, and then exactly std::max(n-m, 0) elements will
be copied from [first2, last2) to dest, also preserving order.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy
object execute in sequential order in the calling thread (sequenced_policy) or in a single new thread
spawned from the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

858 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Iter1 – The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter1.

• Iter2 – The type of the source iterators used (deduced) representing the second se-
quence. This iterator type must meet the requirements of an forward iterator.

• Sent2 – The type of the end source iterators used (deduced) representing the second
sequence. This iterator type must meet the requirements of an sentinel for Iter2.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of set_union requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_union algorithm returns a hpx::future<ranges::set_union_result<Iter1,
Iter2, Iter3>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::set_union_result<Iter1, Iter2, Iter3> otherwise. The
set_union algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Iter3, typename Pred =
hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

2.8. API reference 859

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, set_union_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, Iter3>> set_union(ExPolicy
&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in one or both sorted
ranges [first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the
given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), then all m elements will
be copied from [first1, last1) to dest, preserving order, and then exactly std::max(n-m, 0) elements will
be copied from [first2, last2) to dest, also preserving order.

The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution policy
object execute in sequential order in the calling thread (sequenced_policy) or in a single new thread
spawned from the current thread (for sequenced_task_policy).

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Iter3 – The type of the iterator representing the destination range (deduced). This iter-
ator type must meet the requirements of an output iterator.

860 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Pred – The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of set_union requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_union algorithm returns a hpx::future<ranges::set_union_result<Iter1,
Iter2, Iter3>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns ranges::set_union_result<Iter1, Iter2, Iter3> otherwise. where
Iter1 is range_iterator_t<Rng1> and Iter2 is range_iterator_t<Rng2> The set_union algo-
rithm returns the output iterator to the element in the destination range, one past the last
element copied.

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3,
typename Pred = hpx::parallel::detail::less, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>
set_union_result<Iter1, Iter2, Iter3> tag_fallback_invoke(set_union_t, Iter1 first1, Sent1 last1, Iter2

first2, Sent2 last2, Iter3 dest, Pred &&op
= Pred(), Proj1 &&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in one or both sorted
ranges [first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the
given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), then all m elements will
be copied from [first1, last1) to dest, preserving order, and then exactly std::max(n-m, 0) elements will
be copied from [first2, last2) to dest, also preserving order.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

2.8. API reference 861

HPX Documentation, master

Template Parameters
• Iter1 – The type of the source iterators used (deduced) representing the first sequence.

This iterator type must meet the requirements of an forward iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of an sentinel for Iter1.
• Iter2 – The type of the source iterators used (deduced) representing the second se-

quence. This iterator type must meet the requirements of an forward iterator.
• Sent2 – The type of the end source iterators used (deduced) representing the second

sequence. This iterator type must meet the requirements of an sentinel for Iter2.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of set_union requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the sequence of elements of the first range the algo-

rithm will be applied to.
• last1 – Refers to the end of the sequence of elements of the first range the algorithm

will be applied to.
• first2 – Refers to the beginning of the sequence of elements of the second range the

algorithm will be applied to.
• last2 – Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_union algorithm returns ranges::set_union_result<Iter1, Iter2, Iter3>. The
set_union algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

template<typename Rng1, typename Rng2, typename Iter3, typename Pred = hpx::parallel::detail::less,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

862 Chapter 2. What’s so special about HPX?

HPX Documentation, master

set_union_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, Iter3> set_union(Rng1
&&rng1,
Rng2
&&rng2,
Iter3
dest,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Constructs a sorted range beginning at dest consisting of all elements present in one or both sorted
ranges [first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the
given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), then all m elements will
be copied from [first1, last1) to dest, preserving order, and then exactly std::max(n-m, 0) elements will
be copied from [first2, last2) to dest, also preserving order.

The resulting range cannot overlap with either of the input ranges.

Note: Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first sequence
and N2 is the length of the second sequence.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Iter3 – The type of the iterator representing the destination range (deduced). This iter-

ator type must meet the requirements of an output iterator.
• Pred – The type of an optional function/function object to use. Unlike its sequential

form, the parallel overload of set_union requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

• Proj1 – The type of an optional projection function applied to the first sequence. This
defaults to hpx::identity

• Proj2 – The type of an optional projection function applied to the second sequence. This
defaults to hpx::identity

Parameters
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• op – The binary predicate which returns true if the elements should be treated as equal.

The signature of the predicate function should be equivalent to the following:

2.8. API reference 863

HPX Documentation, master

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced
and then implicitly converted to Type1

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate op is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate op
is invoked.

Returns The set_union algorithm returns ranges::set_union_result<Iter1, Iter2, Iter3>.
where Iter1 is range_iterator_t<Rng1> and Iter2 is range_iterator_t<Rng2> The set_union
algorithm returns the output iterator to the element in the destination range, one past the
last element copied.

hpx::ranges::shift_left

Defined in header hpx/algorithm.hpp676.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent, typename Size>
FwdIter shift_left(FwdIter first, Sent last, Size n)

Shifts the elements in the range [first, last) by n positions towards the beginning of the range. For every
integer i in [0, last - first

• n), moves the element originally at position first + n + i to position first + i.

The assignment operations in the parallel shift_left algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
676 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

864 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• Size – The type of the argument specifying the number of positions to shift by.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• n – Refers to the number of positions to shift.
Returns The shift_left algorithm returns FwdIter. The shift_left algorithm returns an iterator

to the end of the resulting range.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Size>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> shift_left(ExPolicy &&policy,

FwdIter first, Sent last,
Size n)

Shifts the elements in the range [first, last) by n positions towards the beginning of the range. For every
integer i in [0, last - first

• n), moves the element originally at position first + n + i to position first + i.

The assignment operations in the parallel shift_left algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignment operations in the parallel shift_left algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• Size – The type of the argument specifying the number of positions to shift by.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• n – Refers to the number of positions to shift.

Returns The shift_left algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
shift_left algorithm returns an iterator to the end of the resulting range.

template<typename Rng, typename Size>
hpx::traits::range_iterator_t<Rng> shift_left(Rng &&rng, Size n)

Shifts the elements in the range [first, last) by n positions towards the beginning of the range. For every

2.8. API reference 865

HPX Documentation, master

integer i in [0, last - first
• n), moves the element originally at position first + n + i to position first + i.

The assignment operations in the parallel shift_left algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced hpx::traits::range_iterator_t<Rng> must meet the requirements of
MoveAssignable.

Template Parameters
• Rng – The type of the range used (deduced). The iterators extracted from this range type

must meet the requirements of an forward iterator.
• Size – The type of the argument specifying the number of positions to shift by.

Parameters
• rng – Refers to the range in which the elements will be shifted.
• n – Refers to the number of positions to shift.

Returns The shift_left algorithm returns hpx::traits::range_iterator_t<Rng>. The shift_left
algorithm returns an iterator to the end of the resulting range.

template<typename ExPolicy, typename Rng, typename Size>
parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> shift_left(ExPolicy

&&pol-
icy,
Rng
&&rng,
Size
n)

Shifts the elements in the range [first, last) by n positions towards the beginning of the range. For every
integer i in [0, last - first

• n), moves the element originally at position first + n + i to position first + i.

The assignment operations in the parallel shift_left algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignment operations in the parallel shift_left algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced hpx::traits::range_iterator_t<Rng> must meet the requirements of
MoveAssignable.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

866 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Rng – The type of the range used (deduced). The iterators extracted from this range type
must meet the requirements of an forward iterator.

• Size – The type of the argument specifying the number of positions to shift by.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the range in which the elements will be shifted.
• n – Refers to the number of positions to shift.

Returns The shift_left algorithm returns a hpx::future<hpx::traits::range_iterator_t<Rng>>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
hpx::traits::range_iterator_t<Rng> otherwise. The shift_left algorithm returns an iterator
to the end of the resulting range.

hpx::ranges::shift_right

Defined in header hpx/algorithm.hpp677.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent, typename Size>
FwdIter shift_right(FwdIter first, Sent last, Size n)

Shifts the elements in the range [first, last) by n positions towards the end of the range. For every
integer i in [0, last - first - n), moves the element originally at position first + i to position first

• n + i.

The assignment operations in the parallel shift_right algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
• Size – The type of the argument specifying the number of positions to shift by.

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
677 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 867

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• n – Refers to the number of positions to shift.
Returns The shift_right algorithm returns FwdIter. The shift_right algorithm returns an

iterator to the end of the resulting range.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Size>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> shift_right(ExPolicy &&policy,

FwdIter first, Sent last,
Size n)

Shifts the elements in the range [first, last) by n positions towards the end of the range. For every
integer i in [0, last - first - n), moves the element originally at position first + i to position first

• n + i.

The assignment operations in the parallel shift_right algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignment operations in the parallel shift_right algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced FwdIter must meet the requirements of MoveAssignable.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• Size – The type of the argument specifying the number of positions to shift by.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• n – Refers to the number of positions to shift.

Returns The shift_right algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
shift_right algorithm returns an iterator to the end of the resulting range.

template<typename Rng, typename Size>
hpx::traits::range_iterator_t<Rng> shift_right(Rng &&rng, Size n)

Shifts the elements in the range [first, last) by n positions towards the end of the range. For every
integer i in [0, last - first - n), moves the element originally at position first + i to position first

• n + i.

868 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The assignment operations in the parallel shift_right algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced hpx::traits::range_iterator_t<Rng> must meet the requirements of
MoveAssignable.

Template Parameters
• Rng – The type of the range used (deduced). The iterators extracted from this range type

must meet the requirements of an forward iterator.
• Size – The type of the argument specifying the number of positions to shift by.

Parameters
• rng – Refers to the range in which the elements will be shifted.
• n – Refers to the number of positions to shift.

Returns The shift_right algorithm returns hpx::traits::range_iterator_t<Rng>. The
shift_right algorithm returns an iterator to the end of the resulting range.

template<typename ExPolicy, typename Rng, typename Size>
parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> shift_right(ExPolicy

&&pol-
icy,
Rng
&&rng,
Size
n)

Shifts the elements in the range [first, last) by n positions towards the end of the range. For every
integer i in [0, last - first - n), moves the element originally at position first + i to position first

• n + i.

The assignment operations in the parallel shift_right algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignment operations in the parallel shift_right algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: At most (last - first) - n assignments.

Note: The type of dereferenced hpx::traits::range_iterator_t<Rng> must meet the requirements of
MoveAssignable.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the range used (deduced). The iterators extracted from this range type
must meet the requirements of an forward iterator.

• Size – The type of the argument specifying the number of positions to shift by.

2.8. API reference 869

HPX Documentation, master

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the range in which the elements will be shifted.
• n – Refers to the number of positions to shift.

Returns The shift_right algorithm returns a hpx::future<hpx::traits::range_iterator_t<Rng>>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and re-
turns hpx::traits::range_iterator_t<Rng> otherwise. The shift_right algorithm returns an
iterator to the end of the resulting range.

hpx::ranges::sort

Defined in header hpx/algorithm.hpp678.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename RandomIt, typename Sent, typename Comp = ranges::less, typename Proj =
hpx::identity>
RandomIt sort(RandomIt first, Sent last, Comp &&comp = Comp(), Proj &&proj = Proj())

Sorts the elements in the range [first, last) in ascending order. The order of equal elements is not
guaranteed to be preserved. The function uses the given comparison function object comp (defaults to
using operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

comp has to induce a strict weak ordering on the values.

The assignments in the parallel sort algorithm invoked without an execution policy object execute in
sequential order in the calling thread.

Note: Complexity: O(N log(N)), where N = detail::distance(first, last) comparisons.

Template Parameters
• RandomIt – The type of the source iterators used (deduced). This iterator type must

meet the requirements of an random iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for RandomIt.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
678 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

870 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• comp – comp is a callable object. The return value of the INVOKE operation applied
to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The sort algorithm returns RandomIt. The algorithm returns an iterator pointing to
the first element after the last element in the input sequence.

template<typename ExPolicy, typename RandomIt, typename Sent, typename Comp = ranges::less,
typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, RandomIt>::type sort(ExPolicy &&policy, RandomIt

first, Sent last, Comp &&comp
= Comp(), Proj &&proj =
Proj())

Sorts the elements in the range [first, last) in ascending order. The order of equal elements is not
guaranteed to be preserved. The function uses the given comparison function object comp (defaults to
using operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(N)), where N = detail::distance(first, last) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandomIt – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an random iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for RandomIt.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.

2.8. API reference 871

HPX Documentation, master

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• comp – comp is a callable object. The return value of the INVOKE operation applied
to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The sort algorithm returns a hpx::future<RandomIt> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns RandomIt otherwise. The
algorithm returns an iterator pointing to the first element after the last element in the input
sequence.

template<typename Rng, typename Comp, typename Proj>
hpx::traits::range_iterator_t<Rng> sort(Rng &&rng, Comp &&comp = Comp(), Proj &&proj = Proj())

Sorts the elements in the range rng in ascending order. The order of equal elements is not guaranteed
to be preserved. The function uses the given comparison function object comp (defaults to using
operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

comp has to induce a strict weak ordering on the values.

The assignments in the parallel sort algorithm invoked without an execution policy object execute in
sequential order in the calling thread.

Note: Complexity: O(N log(N)), where N = std::distance(begin(rng), end(rng)) comparisons.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The sort algorithm returns hpx::traits::range_iterator_t<Rng>. It returns last.

template<typename ExPolicy, typename Rng, typename Comp = ranges::less, typename Proj =
hpx::identity>

872 Chapter 2. What’s so special about HPX?

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> sort(ExPolicy
&&policy,
Rng &&rng,
Comp
&&comp =
Comp(), Proj
&&proj =
Proj())

Sorts the elements in the range rng in ascending order. The order of equal elements is not guaranteed
to be preserved. The function uses the given comparison function object comp (defaults to using
operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(N)), where N = std::distance(begin(rng), end(rng)) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The sort algorithm returns a hpx::future<hpx::traits::range_iterator_t<Rng> if the
execution policy is of type sequenced_task_policy or parallel_task_policy and returns
hpx::traits::range_iterator_t<Rng> otherwise. It returns last.

2.8. API reference 873

HPX Documentation, master

hpx::ranges::stable_sort

Defined in header hpx/algorithm.hpp679.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename RandomIt, typename Sent, typename Comp = ranges::less, typename Proj =
hpx::identity>
RandomIt stable_sort(RandomIt first, Sent last, Comp &&comp = Comp(), Proj &&proj = Proj())

Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements
is preserved. The function uses the given comparison function object comp (defaults to using opera-
tor<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

comp has to induce a strict weak ordering on the values.

The assignments in the parallel stable_sort algorithm invoked without an execution policy object ex-
ecute in sequential order in the calling thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters
• RandomIt – The type of the source iterators used (deduced). This iterator type must

meet the requirements of an random iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for RandomIt.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

679 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

874 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Returns The stable_sort algorithm returns RandomIt. The algorithm returns an iterator
pointing to the first element after the last element in the input sequence.

template<typename ExPolicy, typename RandomIt, typename Sent, typename Comp = ranges::less,
typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, RandomIt>::type stable_sort(ExPolicy &&policy,

RandomIt first, Sent
last, Comp &&comp =
Comp(), Proj &&proj
= Proj())

Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements
is preserved. The function uses the given comparison function object comp (defaults to using opera-
tor<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• RandomIt – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an random iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for RandomIt.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The stable_sort algorithm returns a hpx::future<RandomIt> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns RandomIt otherwise.

2.8. API reference 875

HPX Documentation, master

The algorithm returns an iterator pointing to the first element after the last element in the
input sequence.

template<typename Rng, typename Comp = ranges::less, typename Proj = hpx::identity>
hpx::traits::range_iterator_t<Rng> stable_sort(Rng &&rng, Comp &&comp = Comp(), Proj &&proj

= Proj())
Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements
is preserved. The function uses the given comparison function object comp (defaults to using opera-
tor<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

comp has to induce a strict weak ordering on the values.

The assignments in the parallel stable_sort algorithm invoked without an execution policy object ex-
ecute in sequential order in the calling thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The stable_sort algorithm returns hpx::traits::range_iterator_t<Rng>. It returns
last.

template<typename ExPolicy, typename Rng, typename Comp = ranges::less, typename Proj =
hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, hpx::traits::range_iterator_t<Rng>> stable_sort(ExPolicy

&&pol-
icy,
Rng
&&rng,
Comp
&&comp
=
Comp(),
Proj
&&proj
=
Proj())

876 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements
is preserved. The function uses the given comparison function object comp (defaults to using opera-
tor<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i)) ==
false.

comp has to induce a strict weak ordering on the values.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(N log(N)), where N = std::distance(first, last) comparisons.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
applies user-provided function objects.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Comp – The type of the function/function object to use (deduced).
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• comp – comp is a callable object. The return value of the INVOKE operation applied

to an object of type Comp, when contextually converted to bool, yields true if the first
argument of the call is less than the second, and false otherwise. It is assumed that comp
will not apply any non-constant function through the dereferenced iterator.

• proj – Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

Returns The stable_sort algorithm returns a hpx::future<hpx::traits::range_iterator_t<Rng>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
hpx::traits::range_iterator_t<Rng> otherwise. It returns last.

hpx::ranges::starts_with

Defined in header hpx/algorithm.hpp680.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

680 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 877

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred =
ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
bool starts_with(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2, Pred &&pred = Pred(), Proj1

&&proj1 = Proj1(), Proj2 &&proj2 = Proj2())
Checks whether the second range defined by [first1, last1) matches the prefix of the first range defined
by [first2, last2)

The assignments in the parallel starts_with algorithm invoked without an execution policy object ex-
ecute in sequential order in the calling thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters
• Iter1 – The type of the begin source iterators used (deduced). This iterator type must

meet the requirements of an input iterator.
• Sent1 – The type of the end source iterators used(deduced). This iterator type must meet

the requirements of an sentinel for Iter1.
• Iter2 – The type of the begin destination iterators used deduced). This iterator type

must meet the requirements of a input iterator.
• Sent2 – The type of the end destination iterators used (deduced). This iterator type must

meet the requirements of an sentinel for Iter2.
• Pred – The binary predicate that compares the projected elements.
• Proj1 – The type of an optional projection function for the source range. This defaults

to hpx::identity
• Proj2 – The type of an optional projection function for the destination range. This de-

faults to hpx::identity
Parameters

• first1 – Refers to the beginning of the source range.
• last1 – Sentinel value referring to the end of the source range.
• first2 – Refers to the beginning of the destination range.
• last2 – Sentinel value referring to the end of the destination range.
• pred – Specifies the binary predicate function (or function object) which will be invoked

for comparison of the elements in the in two ranges projected by proj1 and proj2 respec-
tively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements in the source range as a projection operation before the actual predicate is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate is
invoked.

Returns The starts_with algorithm returns bool. The starts_with algorithm returns a boolean
with the value true if the second range matches the prefix of the first range, false otherwise.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter2, typename
Sent2, typename Pred = ranges::equal_to, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>

878 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> starts_with(ExPolicy &&policy,
FwdIter1 first1, Sent1
last1, FwdIter2 first2,
Sent2 last2, Pred &&pred
= Pred(), Proj1 &&proj1 =
Proj1(), Proj2 &&proj2 =
Proj2())

Checks whether the second range defined by [first1, last1) matches the prefix of the first range defined
by [first2, last2)

The assignments in the parallel starts_with algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel starts_with algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the begin source iterators used (deduced). This iterator type
must meet the requirements of an forward iterator.

• Sent1 – The type of the end source iterators used(deduced). This iterator type must meet
the requirements of an sentinel for Iter1.

• FwdIter2 – The type of the begin destination iterators used deduced). This iterator type
must meet the requirements of a forward iterator.

• Sent2 – The type of the end destination iterators used (deduced). This iterator type must
meet the requirements of an sentinel for Iter2.

• Pred – The binary predicate that compares the projected elements.
• Proj1 – The type of an optional projection function for the source range. This defaults

to hpx::identity
• Proj2 – The type of an optional projection function for the destination range. This de-

faults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the source range.
• last1 – Sentinel value referring to the end of the source range.
• first2 – Refers to the beginning of the destination range.
• last2 – Sentinel value referring to the end of the destination range.
• pred – Specifies the binary predicate function (or function object) which will be invoked

for comparison of the elements in the in two ranges projected by proj1 and proj2 respec-
tively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements in the source range as a projection operation before the actual predicate is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate is
invoked.

Returns The starts_with algorithm returns a hpx::future<bool> if the execution policy is

2.8. API reference 879

HPX Documentation, master

of type sequenced_task_policy or parallel_task_policy and returns bool otherwise. The
starts_with algorithm returns a boolean with the value true if the second range matches the
prefix of the first range, false otherwise.

template<typename Rng1, typename Rng2, typename Pred = ranges::equal_to, typename Proj1 =
hpx::identity, typename Proj2 = hpx::identity>
bool starts_with(Rng1 &&rng1, Rng2 &&rng2, Pred &&pred = Pred(), Proj1 &&proj1 = Proj1(),

Proj2 &&proj2 = Proj2())
Checks whether the second range rng2 matches the prefix of the first range rng1.

The assignments in the parallel starts_with algorithm invoked without an execution policy object ex-
ecute in sequential order in the calling thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Rng2 – The type of the destination range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
• Pred – The binary predicate that compares the projected elements.
• Proj1 – The type of an optional projection function for the source range. This defaults

to hpx::identity
• Proj2 – The type of an optional projection function for the destination range. This de-

faults to hpx::identity
Parameters

• rng1 – Refers to the source range.
• rng2 – Refers to the destination range.
• pred – Specifies the binary predicate function (or function object) which will be invoked

for comparison of the elements in the in two ranges projected by proj1 and proj2 respec-
tively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements in the source range as a projection operation before the actual predicate is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate is
invoked.

Returns The starts_with algorithm returns bool. The starts_with algorithm returns a boolean
with the value true if the second range matches the prefix of the first range, false otherwise.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = ranges::equal_to,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, bool>::type starts_with(ExPolicy &&policy,

Rng1 &&rng1, Rng2
&&rng2, Pred
&&pred = Pred(),
Proj1 &&proj1 =
Proj1(), Proj2
&&proj2 = Proj2())

Checks whether the second range rng2 matches the prefix of the first range rng1.

880 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The assignments in the parallel starts_with algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel starts_with algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear: at most min(N1, N2) applications of the predicate and both projections.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Rng2 – The type of the destination range used (deduced). The iterators extracted from
this range type must meet the requirements of an forward iterator.

• Pred – The binary predicate that compares the projected elements.
• Proj1 – The type of an optional projection function for the source range. This defaults

to hpx::identity
• Proj2 – The type of an optional projection function for the destination range. This de-

faults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the source range.
• rng2 – Refers to the destination range.
• pred – Specifies the binary predicate function (or function object) which will be invoked

for comparison of the elements in the in two ranges projected by proj1 and proj2 respec-
tively.

• proj1 – Specifies the function (or function object) which will be invoked for each of
the elements in the source range as a projection operation before the actual predicate is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements in the destination range as a projection operation before the actual predicate is
invoked.

Returns The starts_with algorithm returns a hpx::future<bool> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns bool otherwise. The
starts_with algorithm returns a boolean with the value true if the second range matches the
prefix of the first range, false otherwise.

hpx::ranges::swap_ranges

Defined in header hpx/algorithm.hpp681.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

681 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 881

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename InIter1, typename Sent1, typename InIter2, typename Sent2>
swap_ranges_result<InIter1, InIter2> swap_ranges(InIter1 first1, Sent1 last1, InIter2 first2, Sent2 last2)

Exchanges elements between range [first1, last1) and another range starting at first2.

The swap operations in the parallel swap_ranges algorithm invoked without an execution policy object
execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first1 and last1

Template Parameters
• InIter1 – The type of the first range of iterators to swap (deduced).
• Sent1 – The type of the first sentinel (deduced). This sentinel type must be a sentinel

for InIter1.
• InIter2 – The type of the second range of iterators to swap (deduced).
• Sent2 – The type of the second sentinel (deduced). This sentinel type must be a sentinel

for InIter2.
Parameters

• first1 – Refers to the beginning of the sequence of elements for the first range.
• last1 – Refers to sentinel value denoting the end of the sequence of elements for the

first range.
• first2 – Refers to the beginning of the sequence of elements for the second range.
• last2 – Refers to sentinel value denoting the end of the sequence of elements for the

second range.
Returns The swap_ranges algorithm returns swap_ranges_result<InIter1, InIter2>. The

swap_ranges algorithm returns in_in_result with the first element as the iterator to the ele-
ment past the last element exchanged in range beginning with first1 and the second element
as the iterator to the element past the last element exchanged in the range beginning with
first2.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter2, typename
Sent2>
parallel::util::detail::algorithm_result<ExPolicy, swap_ranges_result<FwdIter1, FwdIter2>>::type swap_ranges(ExPolicy

&&pol-
icy,
FwdIter1
first1,
Sent1
last1,
FwdIter2
first2,
Sent2
last2)

Exchanges elements between range [first1, last1) and another range starting at first2.

The swap operations in the parallel swap_ranges algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The swap operations in the parallel swap_ranges algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in

882 Chapter 2. What’s so special about HPX?

HPX Documentation, master

unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first1 and last1

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the first range of iterators to swap (deduced).
• Sent1 – The type of the first sentinel (deduced). This sentinel type must be a sentinel

for FwdIter1.
• FwdIter2 – The type of the second range of iterators to swap (deduced).
• Sent2 – The type of the second sentinel (deduced). This sentinel type must be a sentinel

for FwdIter2.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements for the first range.
• last1 – Refers to sentinel value denoting the end of the sequence of elements for the

first range.
• first2 – Refers to the beginning of the sequence of elements for the second range.
• last2 – Refers to sentinel value denoting the end of the sequence of elements for the

second range.
Returns The swap_ranges algorithm returns a hpx::future<swap_ranges_result<FwdIter1,

FwdIter2>> if the execution policy is of type parallel_task_policy and returns FwdIter2
otherwise. The swap_ranges algorithm returns in_in_result with the first element as the
iterator to the element past the last element exchanged in range beginning with first1 and
the second element as the iterator to the element past the last element exchanged in the range
beginning with first2.

template<typename Rng1, typename Rng2>
swap_ranges_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>> swap_ranges(Rng1

&&rng1,
Rng2
&&rng2)

Exchanges elements between range [first1, last1) and another range starting at first2.

The swap operations in the parallel swap_ranges algorithm invoked without an execution policy object
execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first1 and last1

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the destination range used (deduced). The iterators extracted from

this range type must meet the requirements of an input iterator.
Parameters

• rng1 – Refers to the sequence of elements of the first range.
• rng2 – Refers to the sequence of elements of the second range.

Returns The swap_ranges algorithm returns swap_ranges_result<
hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng1>>. The

2.8. API reference 883

HPX Documentation, master

swap_ranges algorithm returns in_in_result with the first element as the iterator to
the element past the last element exchanged in range beginning with first1 and the second
element as the iterator to the element past the last element exchanged in the range beginning
with first2.

template<typename ExPolicy, typename Rng1, typename Rng2>
parallel::util::detail::algorithm_result<ExPolicy, swap_ranges_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>>> swap_ranges(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2)

Exchanges elements between range [first1, last1) and another range starting at first2.

The swap operations in the parallel swap_ranges algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The swap operations in the parallel swap_ranges algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first1 and last1

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the destination range used (deduced). The iterators extracted from
this range type must meet the requirements of an input iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the sequence of elements of the first range.
• rng2 – Refers to the sequence of elements of the second range.

Returns The swap_ranges algorithm returns a hpx::future<swap_ranges_result<
hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng1>>> if the
execution policy is of type parallel_task_policy and returns swap_ranges_result<
hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng1>>. otherwise.
The swap_ranges algorithm returns in_in_result with the first element as the iterator to
the element past the last element exchanged in range beginning with first1 and the second
element as the iterator to the element past the last element exchanged in the range beginning
with first2.

884 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::ranges::transform

Defined in header hpx/algorithm.hpp682.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter2, typename
F, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, ranges::unary_transform_result<FwdIter1, FwdIter2>>::type transform(ExPolicy

&&pol-
icy,
FwdIter1
first,
Sent1
last,
FwdIter2
dest,
F
&&f,
Proj
&&proj
=
Proj())

Applies the given function f to the given range rng and stores the result in another range, beginning at
dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly size(rng) applications of f

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• FwdIter1 – The type of the source iterators for the first range used (deduced). This
iterator type must meet the requirements of a forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of a sentinel for FwdIter1.

682 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 885

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• FwdIter2 – The type of the source iterators for the first range used (deduced). This
iterator type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of transform requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type FwdIter1 can be dereferenced and then implicitly converted to Type. The type Ret
must be such that an object of type FwdIter2 can be dereferenced and assigned a value
of type Ret.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The transform algorithm returns a hpx::future<ranges::unary_transform_result<FwdIter1,
FwdIter2> > if the execution policy is of type parallel_task_policy and returns
ranges::unary_transform_result<FwdIter1, FwdIter2> otherwise. The transform al-
gorithm returns a tuple holding an iterator referring to the first element after the input
sequence and the output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng, typename FwdIter, typename F, typename Proj =
hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, ranges::unary_transform_result<hpx::traits::range_iterator_t<Rng>, FwdIter>> transform(ExPolicy

&&pol-
icy,
Rng
&&rng,
FwdIter
dest,
F
&&f,
Proj
&&proj
=
Proj())

Applies the given function f to the given range rng and stores the result in another range, beginning at
dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified

886 Chapter 2. What’s so special about HPX?

HPX Documentation, master

threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly size(rng) applications of f

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of transform requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type range_iterator<Rng>::type can be dereferenced and then implicitly converted to
Type. The type Ret must be such that an object of type OutIter can be dereferenced and
assigned a value of type Ret.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The transform algorithm returns a hpx::future<ranges::unary_transform_result<range_iterator<Rng>::type,
FwdIter>> if the execution policy is of type parallel_task_policy and returns
ranges::unary_transform_result<range_iterator<Rng>::type, FwdIter> otherwise.
The transform algorithm returns a tuple holding an iterator referring to the first element
after the input sequence and the output iterator to the element in the destination range, one
past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter2, typename
Sent2, typename FwdIter3, typename F, typename Proj1 = hpx::identity, typename Proj2 =
hpx::identity>

2.8. API reference 887

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, ranges::binary_transform_result<FwdIter1, FwdIter2, FwdIter3>>::type transform(ExPolicy
&&pol-
icy,
FwdIter1
first1,
Sent1
last1,
FwdIter2
first2,
Sent2
last2,
FwdIter3
dest,
F
&&f,
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Applies the given function f to pairs of elements from two ranges: one defined by rng and the other
beginning at first2, and stores the result in another range, beginning at dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly size(rng) applications of f

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• FwdIter1 – The type of the source iterators for the first range used (deduced). This
iterator type must meet the requirements of a forward iterator.

• Sent1 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of a sentinel for FwdIter1.

• FwdIter2 – The type of the source iterators for the first range used (deduced). This
iterator type must meet the requirements of a forward iterator.

• Sent2 – The type of the end source iterators used (deduced). This iterator type must
meet the requirements of a sentinel for FwdIter2.

• FwdIter3 – The type of the source iterators for the first range used (deduced). This
iterator type must meet the requirements of a forward iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of transform requires F to meet the requirements of Copy-
Constructible.

888 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Proj1 – The type of an optional projection function to be used for elements of the first
sequence. This defaults to hpx::identity

• Proj2 – The type of an optional projection function to be used for elements of the second
sequence. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1 – Refers to the end of the first sequence of elements the algorithm will be applied

to.
• first2 – Refers to the beginning of the second sequence of elements the algorithm will

be applied to.
• last2 – Refers to the end of the second sequence of elements the algorithm will be

applied to.
• dest – Refers to the beginning of the destination range.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such
that objects of types FwdIter1 and FwdIter2 can be dereferenced and then implicitly
converted to Type1 and Type2 respectively. The type Ret must be such that an object of
type FwdIter3 can be dereferenced and assigned a value of type Ret.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate f is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate f
is invoked.

Returns The transform algorithm returns A hpx::future<ranges::binary_transform_result<FwdIter1,
FwdIter2, FwdIter3>> if the execution policy is of type parallel_task_policy and returns
ranges::binary_transform_result<FwdIter1, FwdIter2, FwdIter3> otherwise. The trans-
form algorithm returns a tuple holding an iterator referring to the first element after the first
input sequence, an iterator referring to the first element after the second input sequence,
and the output iterator referring to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng1, typename Rng2, typename FwdIter, typename F,
typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>

2.8. API reference 889

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, ranges::binary_transform_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, FwdIter>> transform_t(ExPolicy
&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
FwdIter
dest,
F
&&f,
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Applies the given function f to pairs of elements from two ranges: one defined by [first1, last1) and
the other beginning at first2, and stores the result in another range, beginning at dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The invocations of f in the parallel transform algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Exactly min(last2-first2, last1-first1) applications of f

Note: The algorithm will invoke the binary predicate until it reaches the end of the shorter of the two
given input sequences

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the invocations of f.

• Rng1 – The type of the first source range used (deduced). The iterators extracted from
this range type must meet the requirements of an input iterator.

• Rng2 – The type of the second source range used (deduced). The iterators extracted from
this range type must meet the requirements of an input iterator.

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of transform requires F to meet the requirements of Copy-
Constructible.

• Proj1 – The type of an optional projection function to be used for elements of the first
sequence. This defaults to hpx::identity

• Proj2 – The type of an optional projection function to be used for elements of the second
sequence. This defaults to hpx::identity

890 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such
that objects of types range_iterator<Rng1>::type and range_iterator<Rng2>::type can be
dereferenced and then implicitly converted to Type1 and Type2 respectively. The type Ret
must be such that an object of type FwdIter can be dereferenced and assigned a value of
type Ret.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate f is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate f
is invoked.

Returns The transform algorithm returns a hpx::future<ranges::binary_transform_result<
hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>,
FwdIter> > if the execution policy is of type parallel_task_policy and re-
turns ranges::binary_transform_result< hpx::traits::range_iterator_t<Rng1>,
hpx::traits::range_iterator_t<Rng2>, FwdIter> otherwise. The transform algorithm
returns a tuple holding an iterator referring to the first element after the first input
sequence, an iterator referring to the first element after the second input sequence, and the
output iterator referring to the element in the destination range, one past the last element
copied.

template<typename FwdIter1, typename Sent1, typename FwdIter2, typename F, typename Proj =
hpx::identity>
ranges::unary_transform_result<FwdIter1, FwdIter2> transform(FwdIter1 first, Sent1 last, FwdIter2

dest, F &&f, Proj &&proj = Proj())
Applies the given function f to the given range rng and stores the result in another range, beginning at
dest.

Note: Complexity: Exactly size(rng) applications of f

Template Parameters
• FwdIter1 – The type of the source iterators for the first range used (deduced). This

iterator type must meet the requirements of a forward iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of a sentinel for FwdIter1.
• FwdIter2 – The type of the source iterators for the first range used (deduced). This

iterator type must meet the requirements of a forward iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of transform requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

2.8. API reference 891

HPX Documentation, master

• first – Refers to the beginning of the first sequence of elements the algorithm will be
applied to.

• last – Refers to the end of the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type FwdIter1 can be dereferenced and then implicitly converted to Type. The type Ret
must be such that an object of type FwdIter2 can be dereferenced and assigned a value
of type Ret.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The transform algorithm returns ranges::unary_transform_result<FwdIter1,
FwdIter2>. The transform algorithm returns a tuple holding an iterator referring to
the first element after the input sequence and the output iterator to the element in the
destination range, one past the last element copied.

template<typename Rng, typename FwdIter, typename F, typename Proj = hpx::identity>
ranges::unary_transform_result<hpx::traits::range_iterator_t<Rng>, FwdIter> transform(Rng &&rng,

FwdIter dest,
F &&f, Proj
&&proj =
Proj())

Applies the given function f to the given range rng and stores the result in another range, beginning at
dest.

Note: Complexity: Exactly size(rng) applications of f

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of a forward iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of transform requires F to meet the requirements of Copy-
Constructible.

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object
of type range_iterator<Rng>::type can be dereferenced and then implicitly converted to
Type. The type Ret must be such that an object of type OutIter can be dereferenced and
assigned a value of type Ret.

892 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

Returns The transform algorithm returns ranges::unary_transform_result<range_iterator<Rng>::type,
FwdIter>. The transform algorithm returns a tuple holding an iterator referring to the first
element after the input sequence and the output iterator to the element in the destination
range, one past the last element copied.

template<typename FwdIter1, typename Sent1, typename FwdIter2, typename Sent2, typename
FwdIter3, typename F, typename Proj1 = hpx::identity, typename Proj2 = hpx::identity>
ranges::binary_transform_result<FwdIter1, FwdIter2, FwdIter3> transform(FwdIter1 first1, Sent1

last1, FwdIter2 first2,
Sent2 last2, FwdIter3 dest,
F &&f, Proj1 &&proj1 =
Proj1(), Proj2 &&proj2 =
Proj2())

Applies the given function f to pairs of elements from two ranges: one defined by rng and the other
beginning at first2, and stores the result in another range, beginning at dest.

Note: Complexity: Exactly size(rng) applications of f

Template Parameters
• FwdIter1 – The type of the source iterators for the first range used (deduced). This

iterator type must meet the requirements of a forward iterator.
• Sent1 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of a sentinel for FwdIter1.
• FwdIter2 – The type of the source iterators for the first range used (deduced). This

iterator type must meet the requirements of a forward iterator.
• Sent2 – The type of the end source iterators used (deduced). This iterator type must

meet the requirements of a sentinel for FwdIter2.
• FwdIter3 – The type of the source iterators for the first range used (deduced). This

iterator type must meet the requirements of a forward iterator.
• F – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of transform requires F to meet the requirements of Copy-
Constructible.

• Proj1 – The type of an optional projection function to be used for elements of the first
sequence. This defaults to hpx::identity

• Proj2 – The type of an optional projection function to be used for elements of the second
sequence. This defaults to hpx::identity

Parameters
• first1 – Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1 – Refers to the end of the first sequence of elements the algorithm will be applied

to.
• first2 – Refers to the beginning of the second sequence of elements the algorithm will

be applied to.
• last2 – Refers to the end of the second sequence of elements the algorithm will be

applied to.
• dest – Refers to the beginning of the destination range.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is a binary predicate. The signature
of this predicate should be equivalent to:

2.8. API reference 893

HPX Documentation, master

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such
that objects of types FwdIter1 and FwdIter2 can be dereferenced and then implicitly
converted to Type1 and Type2 respectively. The type Ret must be such that an object of
type FwdIter3 can be dereferenced and assigned a value of type Ret.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate f is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate f
is invoked.

Returns The transform algorithm returns ranges::binary_transform_result<FwdIter1,
FwdIter2, FwdIter3>. The transform algorithm returns a tuple holding an iterator refer-
ring to the first element after the first input sequence, an iterator referring to the first ele-
ment after the second input sequence, and the output iterator referring to the element in the
destination range, one past the last element copied.

template<typename Rng1, typename Rng2, typename FwdIter, typename F, typename Proj1 =
hpx::identity, typename Proj2 = hpx::identity>
ranges::binary_transform_result<hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, FwdIter> transform(Rng1

&&rng1,
Rng2
&&rng2,
FwdIter
dest,
F
&&f,
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Applies the given function f to pairs of elements from two ranges: one defined by [first1, last1) and
the other beginning at first2, and stores the result in another range, beginning at dest.

Note: Complexity: Exactly min(last2-first2, last1-first1) applications of f

Note: The algorithm will invoke the binary predicate until it reaches the end of the shorter of the two
given input sequences

Template Parameters
• Rng1 – The type of the first source range used (deduced). The iterators extracted from

this range type must meet the requirements of an input iterator.
• Rng2 – The type of the second source range used (deduced). The iterators extracted from

this range type must meet the requirements of an input iterator.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.

894 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• F – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of transform requires F to meet the requirements of Copy-
Constructible.

• Proj1 – The type of an optional projection function to be used for elements of the first
sequence. This defaults to hpx::identity

• Proj2 – The type of an optional projection function to be used for elements of the second
sequence. This defaults to hpx::identity

Parameters
• rng1 – Refers to the first sequence of elements the algorithm will be applied to.
• rng2 – Refers to the second sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• f – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such
that objects of types range_iterator<Rng1>::type and range_iterator<Rng2>::type can be
dereferenced and then implicitly converted to Type1 and Type2 respectively. The type Ret
must be such that an object of type FwdIter can be dereferenced and assigned a value of
type Ret.

• proj1 – Specifies the function (or function object) which will be invoked for each of the
elements of the first sequence as a projection operation before the actual predicate f is
invoked.

• proj2 – Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate f
is invoked.

Returns The transform algorithm returns ranges::binary_transform_result<
hpx::traits::range_iterator_t<Rng1>, hpx::traits::range_iterator_t<Rng2>, FwdIter>.
The transform algorithm returns a tuple holding an iterator referring to the first element
after the first input sequence, an iterator referring to the first element after the second input
sequence, and the output iterator referring to the element in the destination range, one past
the last element copied.

hpx::ranges::transform_exclusive_scan

Defined in header hpx/algorithm.hpp683.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

683 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 895

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename InIter, typename Sent, typename OutIter, typename BinOp, typename UnOp,
typename T = typename std::iterator_traits<InIter>::value_type>
transform_exclusive_scan_result<InIter, OutIter> transform_exclusive_scan(InIter first, Sent last,

OutIter dest, T init,
BinOp &&binary_op,
UnOp &&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result) - 1))).

The reduce operations in the parallel transform_exclusive_scan algorithm invoked without an execu-
tion policy object execute in sequential order in the calling thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_exclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• T – The type of the value to be used as initial (and intermediate) values (deduced).
• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• init – The initial value for the generalized sum.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

896 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

Returns The transform_exclusive_scan algorithm returns trans-
form_exclusive_scan_result<InIter, OutIter>. The transform_exclusive_scan algorithm
returns an input iterator to the point denoted by the sentinel and an output iterator to the
element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename
BinOp, typename UnOp, typename T = typename std::iterator_traits<FwdIter1>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, transform_exclusive_result<FwdIter1, FwdIter2>>::type transform_exclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
Sent
last,
FwdIter2
dest,
T
init,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result) - 1))).

The reduce operations in the parallel transform_exclusive_scan algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_exclusive_scan algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_exclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

2.8. API reference 897

HPX Documentation, master

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• init – The initial value for the generalized sum.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

Returns The transform_exclusive_scan algorithm returns a
hpx::future<transform_exclusive_result<FwdIter1, FwdIter2>> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns trans-
form_exclusive_result<FwdIter1, FwdIter2> otherwise. The transform_exclusive_scan
algorithm returns an input iterator to the point denoted by the sentinel and an output
iterator to the element in the destination range, one past the last element copied.

template<typename Rng, typename O, typename BinOp, typename UnOp, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>

898 Chapter 2. What’s so special about HPX?

HPX Documentation, master

transform_exclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O> transform_exclusive_scan(Rng
&&rng,
O
dest,
T
init,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result) - 1))).

The reduce operations in the parallel transform_exclusive_scan algorithm invoked without an execu-
tion policy object execute in sequential order in the calling thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_exclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• O – The type of the iterator representing the destination range (deduced).
• T – The type of the value to be used as initial (and intermediate) values (deduced).
• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• init – The initial value for the generalized sum.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

2.8. API reference 899

HPX Documentation, master

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

Returns The transform_exclusive_scan algorithm returns a returns trans-
form_exclusive_scan_result< traits::range_iterator_t<Rng>, O>. The trans-
form_exclusive_scan algorithm returns an input iterator to one past the end of the
range and an output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng, typename O, typename BinOp, typename UnOp, typename
T = typename std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, transform_exclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O>>::type transform_exclusive_scan(ExPolicy

&&pol-
icy,
Rng
&&rng,
O
dest,
T
init,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result) - 1))).

The reduce operations in the parallel transform_exclusive_scan algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_exclusive_scan algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_exclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1

900 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• O – The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator. This iterator type must meet the
requirements of an forward iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).
• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• init – The initial value for the generalized sum.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

Returns The transform_exclusive_scan algorithm returns a
hpx::future<transform_exclusive_scan_result< traits::range_iterator_t<Rng>, O>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
transform_exclusive_scan_result< traits::range_iterator_t<Rng>, O> otherwise. The
transform_exclusive_scan algorithm returns an input iterator to one past the end of the
range and an output iterator to the element in the destination range, one past the last
element copied.

2.8. API reference 901

HPX Documentation, master

hpx::ranges::transform_inclusive_scan

Defined in header hpx/algorithm.hpp684.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename InIter, typename Sent, typename OutIter, typename BinOp, typename UnOp>
transform_inclusive_scan_result<InIter, OutIter> transform_inclusive_scan(InIter first, Sent last,

OutIter dest, BinOp
&&binary_op, UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked without an execution
policy object execute in sequential order in the calling thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_inclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
684 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

902 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• dest – Refers to the beginning of the destination range.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

Returns The transform_inclusive_scan algorithm returns trans-
form_inclusive_scan_result<InIter, OutIter>. The transform_inclusive_scan algorithm
returns an input iterator to the point denoted by the sentinel and an output iterator to the
element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename
BinOp, typename UnOp>
parallel::util::detail::algorithm_result<ExPolicy, transform_inclusive_result<FwdIter1, FwdIter2>>::type transform_inclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
Sent
last,
FwdIter2
dest,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

2.8. API reference 903

HPX Documentation, master

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_inclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

Returns The transform_inclusive_scan algorithm returns a
hpx::future<transform_inclusive_result<FwdIter1, FwdIter2>> if the execution

904 Chapter 2. What’s so special about HPX?

HPX Documentation, master

policy is of type sequenced_task_policy or parallel_task_policy and returns trans-
form_inclusive_result<FwdIter1, FwdIter2> otherwise. The transform_inclusive_scan
algorithm returns an input iterator to the point denoted by the sentinel and an output
iterator to the element in the destination range, one past the last element copied.

template<typename Rng, typename O, typename BinOp, typename UnOp>
transform_inclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O> transform_inclusive_scan(Rng

&&rng,
O
dest,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked without an execution
policy object execute in sequential order in the calling thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_inclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• O – The type of the iterator representing the destination range (deduced).
• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by

2.8. API reference 905

HPX Documentation, master

the input sequence can be implicitly converted to any of those types.
• unary_op – Specifies the function (or function object) which will be invoked for each

of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

Returns The transform_inclusive_scan algorithm returns a returns trans-
form_inclusive_scan_result< traits::range_iterator_t<Rng>, O>. The trans-
form_inclusive_scan algorithm returns an input iterator to one past the end of the
range and an output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng, typename O, typename BinOp, typename UnOp>
parallel::util::detail::algorithm_result<ExPolicy, transform_inclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O>>::type transform_inclusive_scan(ExPolicy

&&pol-
icy,
Rng
&&rng,
O
dest,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_inclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

906 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• O – The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator. This iterator type must meet the
requirements of an forward iterator.

• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

Returns The transform_inclusive_scan algorithm returns a
hpx::future<transform_inclusive_scan_result< traits::range_iterator_t<Rng>, O>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
transform_inclusive_scan_result< traits::range_iterator_t<Rng>, O> otherwise. The
transform_inclusive_scan algorithm returns an input iterator to one past the end of the
range and an output iterator to the element in the destination range, one past the last
element copied.

template<typename InIter, typename Sent, typename OutIter, typename BinOp, typename UnOp,
typename T = typename std::iterator_traits<InIter>::value_type>
transform_inclusive_scan_result<InIter, OutIter> transform_inclusive_scan(InIter first, Sent last,

OutIter dest, BinOp
&&binary_op, UnOp
&&unary_op, T init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked without an execution

2.8. API reference 907

HPX Documentation, master

policy object execute in sequential order in the calling thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_inclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• OutIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of an output iterator.
• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

• init – The initial value for the generalized sum.

908 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The transform_inclusive_scan algorithm returns trans-
form_inclusive_scan_result<InIter, OutIter>. The transform_inclusive_scan algorithm
returns an input iterator to the point denoted by the sentinel and an output iterator to the
element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent, typename FwdIter2, typename
BinOp, typename UnOp, typename T = typename std::iterator_traits<FwdIter1>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, transform_inclusive_result<FwdIter1, FwdIter2>>::type transform_inclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
Sent
last,
FwdIter2
dest,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op,
T
init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_inclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

2.8. API reference 909

HPX Documentation, master

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• dest – Refers to the beginning of the destination range.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

• init – The initial value for the generalized sum.
Returns The transform_inclusive_scan algorithm returns a

hpx::future<transform_inclusive_result<FwdIter1, FwdIter2>> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns trans-
form_inclusive_result<FwdIter1, FwdIter2> otherwise. The transform_inclusive_scan
algorithm returns an input iterator to the point denoted by the sentinel and an output
iterator to the element in the destination range, one past the last element copied.

template<typename Rng, typename O, typename BinOp, typename UnOp, typename T = typename
std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
transform_inclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O> transform_inclusive_scan(Rng

&&rng,
O
dest,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op,
T
init)

910 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked without an execution
policy object execute in sequential order in the calling thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_inclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• O – The type of the iterator representing the destination range (deduced).
• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

• init – The initial value for the generalized sum.
Returns The transform_inclusive_scan algorithm returns a returns trans-

form_inclusive_scan_result< traits::range_iterator_t<Rng>, O>. The trans-

2.8. API reference 911

HPX Documentation, master

form_inclusive_scan algorithm returns an input iterator to one past the end of the
range and an output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng, typename O, typename BinOp, typename UnOp, typename
T = typename std::iterator_traits<hpx::traits::range_iterator_t<Rng>>::value_type>
parallel::util::detail::algorithm_result<ExPolicy, transform_inclusive_scan_result<hpx::traits::range_iterator_t<Rng>, O>>::type transform_inclusive_scan(ExPolicy

&&pol-
icy,
Rng
&&rng,
O
dest,
BinOp
&&bi-
nary_op,
UnOp
&&unary_op,
T
init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Neither conv nor op shall invalidate iterators or sub-ranges, or modify elements in the ranges [first,last)
or [result,result + (last - first)).

The behavior of transform_inclusive_scan may be non-deterministic for a non-associative predicate.

Note: Complexity: O(last - first) applications of the predicates op and conv.

Note: GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• O – The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator. This iterator type must meet the
requirements of an forward iterator.

912 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• BinOp – The type of the binary function object used for the reduction operation.
• UnOp – The type of the unary function object used for the conversion operation.
• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• binary_op – Specifies the function (or function object) which will be invoked for each

of the values of the input sequence. This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by
the input sequence can be implicitly converted to any of those types.

• unary_op – Specifies the function (or function object) which will be invoked for each
of the elements in the sequence specified by [first, last). This is a unary predicate. The
signature of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be derefer-
enced and then implicitly converted to Type. The type R must be such that an object of
this type can be implicitly converted to T.

• init – The initial value for the generalized sum.
Returns The transform_inclusive_scan algorithm returns a

hpx::future<transform_inclusive_scan_result< traits::range_iterator_t<Rng>, O>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
transform_inclusive_scan_result< traits::range_iterator_t<Rng>, O> otherwise. The
transform_inclusive_scan algorithm returns an input iterator to one past the end of the
range and an output iterator to the element in the destination range, one past the last
element copied.

hpx::ranges::transform_reduce

Defined in header hpx/algorithm.hpp685.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

685 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 913

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Functions

template<typename ExPolicy, typename Iter, typename Sent, typename T, typename Reduce, typename
Convert>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy, Iter

first, Sent last, T init, Reduce
&&red_op, Convert
&&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an random access iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce – The type of the binary function object used for the reduction operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

914 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.

• init – The initial value for the generalized sum.

• red_op – Specifies the function (or function object) which will be invoked for each of the
values returned from the invocation of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1, Type2, and Ret must be such that an object of a type as
returned from conv_op can be implicitly converted to any of those types.

• conv_op – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature
of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type Iter can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type parallel_task_policy and returns T otherwise. The transform_reduce algorithm returns
the result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename Iter, typename Sent, typename T, typename Reduce, typename Convert>
T transform_reduce(Iter first, Sent last, T init, Reduce &&red_op, Convert &&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an random access iterator.

2.8. API reference 915

HPX Documentation, master

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce – The type of the binary function object used for the reduction operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.

• init – The initial value for the generalized sum.

• red_op – Specifies the function (or function object) which will be invoked for each of the
values returned from the invocation of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1, Type2, and Ret must be such that an object of a type as
returned from conv_op can be implicitly converted to any of those types.

• conv_op – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature
of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type Iter can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

Returns The transform_reduce algorithm returns T. The transform_reduce algorithm returns the
result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename ExPolicy, typename Iter, typename Sent, typename Iter2, typename T>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy, Iter

first, Sent last, Iter2 first2, T
init)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

916 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an random access iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• Iter2 – The type of the source iterators used (deduced) representing the second sequence.
This iterator type must meet the requirements of an random access iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• init – The initial value for the generalized sum.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type parallel_task_policy and returns T otherwise. The transform_reduce algorithm returns
the result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename Iter, typename Sent, typename Iter2, typename T>
T transform_reduce(Iter first, Sent last, Iter2 first2, T init)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

2.8. API reference 917

HPX Documentation, master

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an random access iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• Iter2 – The type of the source iterators used (deduced) representing the second sequence.
This iterator type must meet the requirements of an random access iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• init – The initial value for the generalized sum.

Returns The transform_reduce algorithm returns T. The transform_reduce algorithm returns the
result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename ExPolicy, typename Iter, typename Sent, typename Iter2, typename T, typename
Reduce, typename Convert>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy, Iter

first, Sent last, Iter2 first2, T
init, Reduce &&red_op,
Convert &&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

918 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an random access iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• Iter2 – The type of the source iterators used (deduced) representing the second sequence.
This iterator type must meet the requirements of an random access iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce – The type of the binary function object used for the reduction operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• init – The initial value for the generalized sum.

• red_op – Specifies the function (or function object) which will be invoked for each of the
values returned from the invocation of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1, Type2, and Ret must be such that an object of a type as
returned from conv_op can be implicitly converted to any of those types.

• conv_op – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature
of this predicate should be equivalent to:

2.8. API reference 919

HPX Documentation, master

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type Iter can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type parallel_task_policy and returns T otherwise. The transform_reduce algorithm returns
the result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename Iter, typename Sent, typename Iter2, typename T, typename Reduce, typename
Convert>
T transform_reduce(Iter first, Sent last, Iter2 first2, T init, Reduce &&red_op, Convert &&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• Iter – The type of the source iterators used (deduced). This iterator type must meet the
requirements of an random access iterator.

• Sent – The type of the end source iterators used (deduced). This iterator type must meet
the requirements of an sentinel for Iter.

• Iter2 – The type of the source iterators used (deduced) representing the second sequence.
This iterator type must meet the requirements of an random access iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce – The type of the binary function object used for the reduction operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• first – Refers to the beginning of the first sorted range the algorithm will be applied to.

• last – Refers to the end of the second sorted range the algorithm will be applied to.

920 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first2 – Refers to the beginning of the sequence of elements of the second range the
algorithm will be applied to.

• init – The initial value for the generalized sum.

• red_op – Specifies the function (or function object) which will be invoked for each of the
values returned from the invocation of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1, Type2, and Ret must be such that an object of a type as
returned from conv_op can be implicitly converted to any of those types.

• conv_op – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature
of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type Iter can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

Returns The transform_reduce algorithm returns T. The transform_reduce algorithm returns the
result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename ExPolicy, typename Rng, typename T, typename Reduce, typename Convert>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy, Rng

&&rng, T init, Reduce
&&red_op, Convert
&&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

2.8. API reference 921

HPX Documentation, master

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce – The type of the binary function object used for the reduction operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• rng – Refers to the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

• red_op – Specifies the function (or function object) which will be invoked for each of the
values returned from the invocation of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1, Type2, and Ret must be such that an object of a type as
returned from conv_op can be implicitly converted to any of those types.

• conv_op – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature
of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type Iter can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type parallel_task_policy and returns T otherwise. The transform_reduce algorithm returns
the result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

template<typename Rng, typename T, typename Reduce, typename Convert>
T transform_reduce(Rng &&rng, T init, Reduce &&red_op, Convert &&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

922 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may be
non-deterministic for non-associative or non-commutative binary predicate.

Note: Complexity: O(last - first) applications of the predicates red_op and conv_op.

Note: GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Template Parameters

• Rng – The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• T – The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce – The type of the binary function object used for the reduction operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.

• init – The initial value for the generalized sum.

• red_op – Specifies the function (or function object) which will be invoked for each of the
values returned from the invocation of conv_op. This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1, Type2, and Ret must be such that an object of a type as
returned from conv_op can be implicitly converted to any of those types.

• conv_op – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature
of this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type Iter can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

Returns The transform_reduce algorithm returns T. The transform_reduce algorithm returns the
result of the generalized sum over the values returned from conv_op when applied to the
elements given by the input range [first, last).

2.8. API reference 923

HPX Documentation, master

template<typename ExPolicy, typename Rng, typename Iter2, typename T>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy, Rng

&&rng, Iter2 first2, T init)
Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(last - first) applications of the predicate op2.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• Iter2 – The type of the second source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• T – The type of the value to be used as return) values (deduced).

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• rng – Refers to the sequence of elements the algorithm will be applied to.

• first2 – Refers to the beginning of the second sequence of elements the result will be
calculated with.

• init – The initial value for the sum.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns T otherwise.

template<typename Rng, typename Iter2, typename T>
T transform_reduce(Rng &&rng, Iter2 first2, T init)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

Note: Complexity: O(last - first) applications of the predicate op2.

Template Parameters

• Rng – The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

924 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Iter2 – The type of the second source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• T – The type of the value to be used as return) values (deduced).

Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.

• first2 – Refers to the beginning of the second sequence of elements the result will be
calculated with.

• init – The initial value for the sum.

Returns The transform_reduce algorithm returns T.

template<typename ExPolicy, typename Rng, typename Iter2, typename T, typename Reduce, typename
Convert>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, T> transform_reduce(ExPolicy &&policy, Rng

&&rng, Iter2 first2, T init,
Reduce &&red_op, Convert
&&conv_op)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: O(last - first) applications of the predicate op2.

Template Parameters

• ExPolicy – The type of the execution policy to use (deduced). It describes the manner
in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• Iter2 – The type of the second source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• T – The type of the value to be used as return) values (deduced).

• Reduce – The type of the binary function object used for the multiplication operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• policy – The execution policy to use for the scheduling of the iterations.

• rng – Refers to the sequence of elements the algorithm will be applied to.

2.8. API reference 925

HPX Documentation, master

• first2 – Refers to the beginning of the second sequence of elements the result will be
calculated with.

• init – The initial value for the sum.

• red_op – Specifies the function (or function object) which will be invoked for the initial
value and each of the return values of op2. This is a binary predicate. The signature of this
predicate should be equivalent to should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Ret must be such that it can be implicitly converted to a type of T.

• conv_op – Specifies the function (or function object) which will be invoked for each of
the input values of the sequence. This is a binary predicate. The signature of this predicate
should be equivalent to

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Ret must be such that it can be implicitly converted to an object for
the second argument type of op1.

Returns The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns T otherwise.

template<typename Rng, typename Iter2, typename T, typename Reduce, typename Convert>
T transform_reduce(Rng &&rng, Iter2 first2, T init, Reduce &&red_op, Convert &&conv_op)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

Note: Complexity: O(last - first) applications of the predicate op2.

Template Parameters

• Rng – The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• Iter2 – The type of the second source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• T – The type of the value to be used as return) values (deduced).

• Reduce – The type of the binary function object used for the multiplication operation.

• Convert – The type of the unary function object used to transform the elements of the
input sequence before invoking the reduce function.

Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.

• first2 – Refers to the beginning of the second sequence of elements the result will be
calculated with.

• init – The initial value for the sum.

926 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• red_op – Specifies the function (or function object) which will be invoked for the initial
value and each of the return values of op2. This is a binary predicate. The signature of this
predicate should be equivalent to should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Ret must be such that it can be implicitly converted to a type of T.

• conv_op – Specifies the function (or function object) which will be invoked for each of
the input values of the sequence. This is a binary predicate. The signature of this predicate
should be equivalent to

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Ret must be such that it can be implicitly converted to an object for
the second argument type of op1.

Returns The transform_reduce algorithm returns T.

hpx::ranges::uninitialized_copy, hpx::ranges::uninitialized_copy_n

Defined in header hpx/algorithm.hpp686.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename InIter, typename Sent1, typename FwdIter, typename Sent2>
hpx::parallel::util::in_out_result<InIter, FwdIter> uninitialized_copy(InIter first1, Sent1 last1,

FwdIter first2, Sent2 last2)
Copies the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the copy operation, the function has no effects.

The assignments in the parallel uninitialized_copy algorithm invoked without an execution policy ob-
ject will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent1 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
686 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 927

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• FwdIter – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter2.

Parameters
• first1 – Refers to the beginning of the sequence of elements that will be copied from
• last1 – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied
• first2 – Refers to the beginning of the destination range.
• last2 – Refers to sentinel value denoting the end of the second range the algorithm will

be applied to.
Returns The uninitialized_copy algorithm returns an in_out_result<InIter, FwdIter>. The

uninitialized_copy algorithm returns an input iterator to one past the last element copied
from and the output iterator to the element in the destination range, one past the last element
copied.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter2, typename
Sent2>
parallel::util::detail::algorithm_result<ExPolicy, parallel::util::in_out_result<FwdIter1, FwdIter2>>::type uninitialized_copy(ExPolicy

&&pol-
icy,
FwdIter1
first1,
Sent1
last1,
FwdIter2
first2,
Sent2
last2)

Copies the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the copy operation, the function has no effects.

The assignments in the parallel uninitialized_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• Sent1 – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter2.

928 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements that will be copied from
• last1 – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• first2 – Refers to the beginning of the destination range.
• last2 – Refers to sentinel value denoting the end of the second range the algorithm will

be applied to.
Returns The uninitialized_copy algorithm returns a hpx::future<in_out_result<InIter,

FwdIter>>, if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns in_out_result<InIter, FwdIter> otherwise. The uninitial-
ized_copy algorithm returns an input iterator to one past the last element copied from and
the output iterator to the element in the destination range, one past the last element copied.

template<typename Rng1, typename Rng2>
hpx::parallel::util::in_out_result<typename hpx::traits::range_traits<Rng1>::iterator_type, typename hpx::traits::range_traits<Rng2>::iterator_type> uninitialized_copy(Rng1

&&rng1,
Rng2
&&rng2)

Copies the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the copy operation, the function has no effects.

The assignments in the parallel uninitialized_copy algorithm invoked without an execution policy ob-
ject will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the destination range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
Parameters

• rng1 – Refers to the range from which the elements will be copied from
• rng2 – Refers to the range to which the elements will be copied to

Returns The uninitialized_copy algorithm returns an in_out_result<typename
hpx::traits::range_traits<Rng1>::iterator_type, typename
hpx::traits::range_traits<Rng2>::iterator_type>. The uninitialized_copy algorithm
returns an input iterator to one past the last element copied from and the output iterator to
the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename Rng1, typename Rng2>
parallel::util::detail::algorithm_result<ExPolicy, hpx::parallel::util::in_out_result<typename hpx::traits::range_traits<Rng1>::iterator_type, typename hpx::traits::range_traits<Rng2>::iterator_type>>::type uninitialized_copy(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2)

Copies the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the copy operation, the function has no effects.

2.8. API reference 929

HPX Documentation, master

The assignments in the parallel uninitialized_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the destination range used (deduced). The iterators extracted from
this range type must meet the requirements of an forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the range from which the elements will be copied from
• rng2 – Refers to the range to which the elements will be copied to

Returns The uninitialized_copy algorithm returns a hpx::future<in_out_result<InIter,
FwdIter>>, if the execution policy is of type sequenced_task_policy
or parallel_task_policy and returns in_out_result< type-
name hpx::traits::range_traits<Rng1>::iterator_type , typename
hpx::traits::range_traits<Rng2>::iterator_type> otherwise. The uninitialized_copy al-
gorithm returns the input iterator to one past the last element copied from and the output
iterator to the element in the destination range, one past the last element copied.

template<typename InIter, typename Size, typename FwdIter, typename Sent2>
hpx::parallel::util::in_out_result<InIter, FwdIter> uninitialized_copy_n(InIter first1, Size count,

FwdIter first2, Sent2 last2)
Copies the elements in the range [first, first + count), starting from first and proceeding to first + count -
1., to another range beginning at dest. If an exception is thrown during the copy operation, the function
has no effects.

The assignments in the parallel uninitialized_copy_n algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Size – The type of the argument specifying the number of elements to apply f to.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of a forward iterator.
• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
Parameters

• first1 – Refers to the beginning of the sequence of elements that will be copied from

930 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• count – Refers to the number of elements starting at first the algorithm will be applied
to.

• first2 – Refers to the beginning of the destination range.
• last2 – Refers to sentinel value denoting the end of the second range the algorithm will

be applied to.
Returns The uninitialized_copy_n algorithm returns in_out_result<InIter, FwdIter>. The

uninitialized_copy_n algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2, typename
Sent2>
parallel::util::detail::algorithm_result<ExPolicy, parallel::util::in_out_result<FwdIter1, FwdIter2>>::type uninitialized_copy_n(ExPolicy

&&pol-
icy,
FwdIter1
first1,
Size
count,
FwdIter2
first2,
Sent2
last2)

Copies the elements in the range [first, first + count), starting from first and proceeding to first + count -
1., to another range beginning at dest. If an exception is thrown during the copy operation, the function
has no effects.

The assignments in the parallel uninitialized_copy_n algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_copy_n algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
• FwdIter2 – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of a forward iterator.
• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter2.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements that will be copied from
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
• first2 – Refers to the beginning of the destination range.

2.8. API reference 931

HPX Documentation, master

• last2 – Refers to sentinel value denoting the end of the second range the algorithm will
be applied to.

Returns The uninitialized_copy_n algorithm returns a hpx::future<in_out_result<FwdIter1,
FwdIter2>> if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns FwdIter2 otherwise. The uninitialized_copy_n algorithm re-
turns the output iterator to the element in the destination range, one past the last element
copied.

hpx::ranges::uninitialized_default_construct, hpx::ranges::uninitialized_default_construct_n

Defined in header hpx/algorithm.hpp687.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent>
FwdIter uninitialized_default_construct(FwdIter first, Sent last)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range by default-initialization. If an exception is thrown during the initialization, the
function has no effects.

The assignments in the parallel uninitialized_default_construct algorithm invoked without an execu-
tion policy object will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of a forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

Returns The uninitialized_default_construct algorithm returns a returns FwdIter. The unini-
tialized_default_construct algorithm returns the output iterator to the element in the range,
one past the last element constructed.

template<typename ExPolicy, typename FwdIter, typename Sent>
687 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

932 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_default_construct(ExPolicy
&&pol-
icy,
FwdIter
first,
Sent
last)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range by default-initialization. If an exception is thrown during the initialization, the
function has no effects.

The assignments in the parallel uninitialized_default_construct algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_default_construct algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
Returns The uninitialized_default_construct algorithm returns a hpx::future<FwdIter> if

the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
FwdIter otherwise. The uninitialized_default_construct algorithm returns the iterator to
the element in the source range, one past the last element constructed.

template<typename Rng>
hpx::traits::range_traits<Rng>::iterator_type uninitialized_default_construct(Rng &&rng)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range by default-initialization. If an exception is thrown during the initialization, the
function has no effects.

The assignments in the parallel uninitialized_default_construct algorithm invoked without an execu-
tion policy object will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

2.8. API reference 933

HPX Documentation, master

Template Parameters Rng – The type of the source range used (deduced). The iterators
extracted from this range type must meet the requirements of an input iterator.

Parameters rng – Refers to the range to which will be default constructed.
Returns The uninitialized_default_construct algorithm returns a returns

hpx::traits::range_traits<Rng>::iterator_type. The uninitialized_default_construct
algorithm returns the output iterator to the element in the range, one past the last element
constructed.

template<typename ExPolicy, typename Rng>
parallel::util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng>::iterator_type>::type uninitialized_default_construct(ExPolicy

&&pol-
icy,
Rng
&&rng)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range by default-initialization. If an exception is thrown during the initialization, the
function has no effects.

The assignments in the parallel uninitialized_default_construct algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_default_construct algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the range to which the value will be default constructed

Returns The uninitialized_default_construct algorithm returns a hpx::future<typename
hpx::traits::range_traits<Rng>::iterator_type>, if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns type-
name hpx::traits::range_traits<Rng>::iterator_type otherwise. The uninitial-
ized_default_construct algorithm returns the output iterator to the element in the
range, one past the last element constructed.

template<typename FwdIter, typename Size>
FwdIter uninitialized_default_construct_n(FwdIter first, Size count)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range [first, first + count) by default-initialization. If an exception is thrown during
the initialization, the function has no effects.

The assignments in the parallel uninitialized_default_construct_n algorithm invoked without an exe-
cution policy object execute in sequential order in the calling thread.

934 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of a forward iterator.
• Size – The type of the argument specifying the number of elements to apply f to.

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
Returns The uninitialized_default_construct_n algorithm returns a returns FwdIter. The

uninitialized_default_construct_n algorithm returns the iterator to the element in the source
range, one past the last element constructed.

template<typename ExPolicy, typename FwdIter, typename Size>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter>::type uninitialized_default_construct_n(ExPolicy

&&pol-
icy,
FwdIter
first,
Size
count)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range [first, first + count) by default-initialization. If an exception is thrown during
the initialization, the function has no effects.

The assignments in the parallel uninitialized_default_construct_n algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_default_construct_n algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
Returns The uninitialized_default_construct_n algorithm returns a hpx::future<FwdIter> if

the execution policy is of type sequenced_task_policy or parallel_task_policy and returns

2.8. API reference 935

HPX Documentation, master

FwdIter otherwise. The uninitialized_default_construct_n algorithm returns the iterator to
the element in the source range, one past the last element constructed.

hpx::ranges::uninitialized_fill, hpx::ranges::uninitialized_fill_n

Defined in header hpx/algorithm.hpp688.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent, typename T>
FwdIter uninitialized_fill(FwdIter first, Sent last, T const &value)

Copies the given value to an uninitialized memory area, defined by the range [first, last). If an exception
is thrown during the initialization, the function has no effects.

The assignments in the ranges uninitialized_fill algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first and last

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of a forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
• T – The type of the value to be assigned (deduced).

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• value – The value to be assigned.

Returns The uninitialized_fill algorithm returns a returns FwdIter. The uninitialized_fill al-
gorithm returns the output iterator to the element in the range, one past the last element
copied.

template<typename ExPolicy, typename FwdIter, typename Sent, typename T>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_fill(ExPolicy

&&policy,
FwdIter first,
Sent last, T
const
&value)

688 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

936 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Copies the given value to an uninitialized memory area, defined by the range [first, last). If an exception
is thrown during the initialization, the function has no effects.

The assignments in the parallel uninitialized_fill algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_fill algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• T – The type of the value to be assigned (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• value – The value to be assigned.

Returns The uninitialized_fill algorithm returns a returns FwdIter. The uninitialized_fill al-
gorithm returns the output iterator to the element in the range, one past the last element
copied.

template<typename Rng, typename T>
hpx::traits::range_traits<Rng>::iterator_type uninitialized_fill(Rng &&rng, T const &value)

Copies the given value to an uninitialized memory area, defined by the range [first, last). If an exception
is thrown during the initialization, the function has no effects.

The assignments in the parallel uninitialized_fill algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: Linear in the distance between first and last

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• T – The type of the value to be assigned (deduced).

Parameters
• rng – Refers to the range to which the value will be filled
• value – The value to be assigned.

2.8. API reference 937

HPX Documentation, master

Returns The uninitialized_fill algorithm returns a returns
hpx::traits::range_traits<Rng>::iterator_type. The uninitialized_fill algorithm returns
the output iterator to the element in the range, one past the last element copied.

template<typename ExPolicy, typename Rng, typename T>
parallel::util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng1>::iterator_type>::type uninitialized_fill(ExPolicy

&&pol-
icy,
Rng
&&rng,
T
const
&value)

Copies the given value to an uninitialized memory area, defined by the range [first, last). If an exception
is thrown during the initialization, the function has no effects.

The assignments in the parallel uninitialized_fill algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_fill algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Linear in the distance between first and last

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• T – The type of the value to be assigned (deduced).
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the range to which the value will be filled
• value – The value to be assigned.

Returns The uninitialized_fill algorithm returns a hpx::future<typename
hpx::traits::range_traits<Rng>::iterator_type>, if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns typename
hpx::traits::range_traits<Rng>::iterator_type otherwise. The uninitialized_fill algo-
rithm returns the iterator to one past the last element filled in the range.

template<typename FwdIter, typename Size, typename T>
FwdIter uninitialized_fill_n(FwdIter first, Size count, T const &value)

Copies the given value value to the first count elements in an uninitialized memory area beginning at
first. If an exception is thrown during the initialization, the function has no effects.

The assignments in the parallel uninitialized_fill_n algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

938 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of a forward iterator.
• Size – The type of the argument specifying the number of elements to apply f to.
• T – The type of the value to be assigned (deduced).

Parameters
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
• value – The value to be assigned.

Returns The uninitialized_fill_n algorithm returns a returns FwdIter. The uninitial-
ized_fill_n algorithm returns the output iterator to the element in the range, one past the
last element copied.

template<typename ExPolicy, typename FwdIter, typename Size, typename T>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_fill_n(ExPolicy

&&policy,
FwdIter
first, Size
count, T
const
&value)

Copies the given value value to the first count elements in an uninitialized memory area beginning at
first. If an exception is thrown during the initialization, the function has no effects.

The assignments in the parallel uninitialized_fill_n algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_fill_n algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
• T – The type of the value to be assigned (deduced).

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.

2.8. API reference 939

HPX Documentation, master

• value – The value to be assigned.
Returns The uninitialized_fill_n algorithm returns a hpx::future<FwdIter>, if the execution

policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter oth-
erwise. The uninitialized_fill_n algorithm returns the output iterator to the element in the
range, one past the last element copied.

hpx::ranges::uninitialized_move, hpx::ranges::uninitialized_move_n

Defined in header hpx/algorithm.hpp689.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename InIter, typename Sent1, typename FwdIter, typename Sent2>
hpx::parallel::util::in_out_result<InIter, FwdIter> uninitialized_move(InIter first1, Sent1 last1,

FwdIter first2, Sent2 last2)
Moves the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the initialization, some objects in [first, last) are left in a valid
but unspecified state.

The assignments in the parallel uninitialized_move algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent1 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of a forward iterator.
• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter2.
Parameters

• first1 – Refers to the beginning of the sequence of elements that will be moved from
• last1 – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied
• first2 – Refers to the beginning of the destination range.
• last2 – Refers to sentinel value denoting the end of the second range the algorithm will

be applied to.
689 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

940 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

Returns The uninitialized_move algorithm returns an in_out_result<InIter, FwdIter>. The
uninitialized_move algorithm returns an input iterator to one past the last element moved
from and the output iterator to the element in the destination range, one past the last element
moved.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter2, typename
Sent2>
parallel::util::detail::algorithm_result<ExPolicy, parallel::util::in_out_result<FwdIter1, FwdIter2>>::type uninitialized_move(ExPolicy

&&pol-
icy,
FwdIter1
first1,
Sent1
last1,
FwdIter2
first2,
Sent2
last2)

Moves the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the initialization, some objects in [first, last) are left in a valid
but unspecified state.

The assignments in the parallel uninitialized_move algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_move algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• Sent1 – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter.

• FwdIter2 – The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for InIter2.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements that will be moved from
• last1 – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• first2 – Refers to the beginning of the destination range.
• last2 – Refers to sentinel value denoting the end of the second range the algorithm will

be applied to.
Returns The uninitialized_move algorithm returns a hpx::future<in_out_result<InIter,

FwdIter>>, if the execution policy is of type sequenced_task_policy or paral-

2.8. API reference 941

HPX Documentation, master

lel_task_policy and returns in_out_result<InIter, FwdIter> otherwise. The uninitial-
ized_move algorithm returns an input iterator to one past the last element moved from and
the output iterator to the element in the destination range, one past the last element moved.

template<typename Rng1, typename Rng2>
hpx::parallel::util::in_out_result<typename hpx::traits::range_traits<Rng1>::iterator_type, typename hpx::traits::range_traits<Rng2>::iterator_type> uninitialized_move(Rng1

&&rng1,
Rng2
&&rng2)

Moves the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the initialization, some objects in [first, last) are left in a valid
but unspecified state.

The assignments in the parallel uninitialized_move algorithm invoked without an execution policy
object will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• Rng1 – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an input iterator.
• Rng2 – The type of the destination range used (deduced). The iterators extracted from

this range type must meet the requirements of an forward iterator.
Parameters

• rng1 – Refers to the range from which the elements will be moved from
• rng2 – Refers to the range to which the elements will be moved to

Returns The uninitialized_move algorithm returns an in_out_result<typename
hpx::traits::range_traits<Rng1>::iterator_type, typename
hpx::traits::range_traits<Rng2>::iterator_type>. The uninitialized_move algorithm
returns an input iterator to one past the last element moved from and the output iterator to
the element in the destination range, one past the last element moved.

template<typename ExPolicy, typename Rng1, typename Rng2>
parallel::util::detail::algorithm_result<ExPolicy, hpx::parallel::util::in_out_result<typename hpx::traits::range_traits<Rng1>::iterator_type, typename hpx::traits::range_traits<Rng2>::iterator_type>>::type uninitialized_move(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2)

Moves the elements in the range, defined by [first, last), to an uninitialized memory area beginning at
dest. If an exception is thrown during the initialization, some objects in [first, last) are left in a valid
but unspecified state.

The assignments in the parallel uninitialized_move algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_move algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

942 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng1 – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2 – The type of the destination range used (deduced). The iterators extracted from
this range type must meet the requirements of an forward iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng1 – Refers to the range from which the elements will be moved from
• rng2 – Refers to the range to which the elements will be moved to

Returns The uninitialized_move algorithm returns a hpx::future<in_out_result<InIter,
FwdIter>>, if the execution policy is of type sequenced_task_policy
or parallel_task_policy and returns in_out_result< type-
name hpx::traits::range_traits<Rng1>::iterator_type , typename
hpx::traits::range_traits<Rng2>::iterator_type> otherwise. The uninitialized_move
algorithm returns the input iterator to one past the last element moved from and the output
iterator to the element in the destination range, one past the last element moved.

template<typename InIter, typename Size, typename FwdIter, typename Sent2>
hpx::parallel::util::in_out_result<InIter, FwdIter> uninitialized_move_n(InIter first1, Size count,

FwdIter first2, Sent2 last2)
Moves the elements in the range [first, first + count), starting from first and proceeding to first + count -
1., to another range beginning at dest. If an exception is thrown during the initialization, some objects
in [first, first + count) are left in a valid but unspecified state.

The assignments in the parallel uninitialized_move_n algorithm invoked with an execution policy ob-
ject of type sequenced_policy execute in sequential order in the calling thread.

Note: Complexity: Performs exactly count movements, if count > 0, no move operations otherwise.

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Size – The type of the argument specifying the number of elements to apply f to.
• FwdIter – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of a forward iterator.
• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
Parameters

• first1 – Refers to the beginning of the sequence of elements that will be moved from
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
• first2 – Refers to the beginning of the destination range.
• last2 – Refers to sentinel value denoting the end of the second range the algorithm will

be applied to.
Returns The uninitialized_move_n algorithm returns in_out_result<InIter, FwdIter>. The

uninitialized_move_n algorithm returns the output iterator to the element in the destination

2.8. API reference 943

HPX Documentation, master

range, one past the last element moved.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2, typename
Sent2>
parallel::util::detail::algorithm_result<ExPolicy, parallel::util::in_out_result<FwdIter1, FwdIter2>>::type uninitialized_move_n(ExPolicy

&&pol-
icy,
FwdIter1
first1,
Size
count,
FwdIter2
first2,
Sent2
last2)

Moves the elements in the range [first, first + count), starting from first and proceeding to first + count -
1., to another range beginning at dest. If an exception is thrown during the initialization, some objects
in [first, first + count) are left in a valid but unspecified state.

The assignments in the parallel uninitialized_move_n algorithm invoked with an execution policy ob-
ject of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_move_n algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count movements, if count > 0, no move operations otherwise.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter1 – The type of the source iterators used (deduced). This iterator type must
meet the requirements of an input iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
• FwdIter2 – The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of a forward iterator.
• Sent2 – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter2.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first1 – Refers to the beginning of the sequence of elements that will be moved from
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
• first2 – Refers to the beginning of the destination range.
• last2 – Refers to sentinel value denoting the end of the second range the algorithm will

be applied to.
Returns The uninitialized_move_n algorithm returns a

hpx::future<in_out_result<FwdIter1, FwdIter2>> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
uninitialized_move_n algorithm returns the output iterator to the element in the destination
range, one past the last element moved.

944 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::ranges::uninitialized_value_construct, hpx::ranges::uninitialized_value_construct_n

Defined in header hpx/algorithm.hpp690.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent>
FwdIter uninitialized_value_construct(FwdIter first, Sent last)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range by value-initialization. If an exception is thrown during the initialization, the
function has no effects.

The assignments in the parallel uninitialized_value_construct algorithm invoked without an execution
policy object will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of a forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

Returns The uninitialized_value_construct algorithm returns a returns FwdIter. The unini-
tialized_value_construct algorithm returns the output iterator to the element in the range,
one past the last element constructed.

template<typename ExPolicy, typename FwdIter, typename Sent>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_value_construct(ExPolicy

&&pol-
icy,
FwdIter
first,
Sent
last)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range by value-initialization. If an exception is thrown during the initialization, the
function has no effects.

690 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 945

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

The assignments in the parallel uninitialized_value_construct algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_value_construct algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
Returns The uninitialized_value_construct algorithm returns a hpx::future<FwdIter> if the

execution policy is of type sequenced_task_policy or parallel_task_policy and returns
FwdIter otherwise. The uninitialized_value_construct algorithm returns the iterator to the
element in the source range, one past the last element constructed.

template<typename Rng>
hpx::traits::range_traits<Rng>::iterator_type uninitialized_value_construct(Rng &&rng)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range by value-initialization. If an exception is thrown during the initialization, the
function has no effects.

The assignments in the parallel uninitialized_value_construct algorithm invoked without an execution
policy object will execute in sequential order in the calling thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters Rng – The type of the source range used (deduced). The iterators
extracted from this range type must meet the requirements of an input iterator.

Parameters rng – Refers to the range to which will be value constructed.
Returns The uninitialized_value_construct algorithm returns a returns

hpx::traits::range_traits<Rng>::iterator_type. The uninitialized_value_construct al-
gorithm returns the output iterator to the element in the range, one past the last element
constructed.

template<typename ExPolicy, typename Rng>

946 Chapter 2. What’s so special about HPX?

HPX Documentation, master

parallel::util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng>::iterator_type>::type uninitialized_value_construct(ExPolicy
&&pol-
icy,
Rng
&&rng)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range by value-initialization. If an exception is thrown during the initialization, the
function has no effects.

The assignments in the parallel uninitialized_value_construct algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_value_construct algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly last - first assignments.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the range to which the value will be value consutrcted

Returns The uninitialized_value_construct algorithm returns a hpx::future<typename
hpx::traits::range_traits<Rng>::iterator_type>, if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns typename
hpx::traits::range_traits<Rng>::iterator_type otherwise. The uninitialized_value_construct
algorithm returns the output iterator to the element in the range, one past the last element
constructed.

template<typename FwdIter, typename Size>
FwdIter uninitialized_value_construct_n(FwdIter first, Size count)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range [first, first + count) by value-initialization. If an exception is thrown during
the initialization, the function has no effects.

The assignments in the parallel uninitialized_value_construct_n algorithm invoked without an execu-
tion policy object execute in sequential order in the calling thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of a forward iterator.
• Size – The type of the argument specifying the number of elements to apply f to.

Parameters

2.8. API reference 947

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• count – Refers to the number of elements starting at first the algorithm will be applied
to.

Returns The uninitialized_value_construct_n algorithm returns a returns FwdIter. The
uninitialized_value_construct_n algorithm returns the iterator to the element in the source
range, one past the last element constructed.

template<typename ExPolicy, typename FwdIter, typename Size>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter> uninitialized_value_construct_n(ExPolicy

&&pol-
icy,
FwdIter
first,
Size
count)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized storage
designated by the range [first, first + count) by value-initialization. If an exception is thrown during
the initialization, the function has no effects.

The assignments in the parallel uninitialized_value_construct_n algorithm invoked with an execution
policy object of type sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel uninitialized_value_construct_n algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Size – The type of the argument specifying the number of elements to apply f to.
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count – Refers to the number of elements starting at first the algorithm will be applied

to.
Returns The uninitialized_value_construct_n algorithm returns a hpx::future<FwdIter> if

the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
FwdIter otherwise. The uninitialized_value_construct_n algorithm returns the iterator to
the element in the source range, one past the last element constructed.

948 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::ranges::unique, hpx::ranges::unique_copy

Defined in header hpx/algorithm.hpp691.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace ranges

Functions

template<typename FwdIter, typename Sent, typename Pred = ranges::equal_to, typename Proj =
hpx::identity>
subrange_t<FwdIter, Sent> unique(FwdIter first, Sent last, Pred &&pred = Pred(), Proj &&proj =

Proj())
Eliminates all but the first element from every consecutive group of equivalent elements from the range
[first, last) and returns a past-the-end iterator for the new logical end of the range.

The assignments in the parallel unique algorithm invoked without an execution policy object execute
in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first - 1 applications
of the predicate pred and no more than twice as many applications of the projection proj.

Template Parameters
• FwdIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of a forward iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for FwdIter.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of unique requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• pred – Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is an binary predicate which re-
turns true for the required elements. The signature of this predicate should be equivalent
to:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter can
be dereferenced and then implicitly converted to both Type1 and Type2

691 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

2.8. API reference 949

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/algorithm.hpp

HPX Documentation, master

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The unique algorithm returns subrange_t<FwdIter, Sent>. The unique algorithm
returns an object {ret, last}, where ret is a past-the-end iterator for a new subrange.

template<typename ExPolicy, typename FwdIter, typename Sent, typename Pred = ranges::equal_to,
typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<FwdIter, Sent>>::type unique(ExPolicy

&&policy,
FwdIter
first, Sent
last, Pred
&&pred =
Pred(),
Proj
&&proj =
Proj())

Eliminates all but the first element from every consecutive group of equivalent elements from the range
[first, last) and returns a past-the-end iterator for the new logical end of the range.

The assignments in the parallel unique algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel unique algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first - 1 applications
of the predicate pred and no more than twice as many applications of the projection proj.

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of unique requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• first – Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last – Refers to sentinel value denoting the end of the sequence of elements the algo-

rithm will be applied.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an binary predicate which re-
turns true for the required elements. The signature of this predicate should be equivalent
to:

950 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter can
be dereferenced and then implicitly converted to both Type1 and Type2

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The unique algorithm returns subrange_t<FwdIter, Sent>. The unique algorithm
returns an object {ret, last}, where ret is a past-the-end iterator for a new subrange.

template<typename Rng, typename Pred = ranges::equal_to, typename Proj = hpx::identity>
subrange_t<hpx::traits::range_iterator_t<Rng>, hpx::traits::range_iterator_t<Rng>> unique(Rng

&&rng,
Pred
&&pred =
Pred(),
Proj
&&proj =
Proj())

Eliminates all but the first element from every consecutive group of equivalent elements from the range
rng and returns a past-the-end iterator for the new logical end of the range.

The assignments in the parallel unique algorithm invoked without an execution policy object execute
in sequential order in the calling thread.

Note: Complexity: Performs not more than N assignments, exactly N - 1 applications of the
predicate pred and no more than twice as many applications of the projection proj, where N =
std::distance(begin(rng), end(rng)).

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of unique requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an binary predicate which re-
turns true for the required elements. The signature of this predicate should be equivalent
to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter1 can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The unique algorithm returns subrange_t<hpx::traits::range_iterator_t<Rng>,
hpx::traits::range_iterator_t<Rng>>. The unique algorithm returns an object {ret, last},

2.8. API reference 951

HPX Documentation, master

where ret is a past-the-end iterator for a new subrange.

template<typename ExPolicy, typename Rng, typename Pred = ranges::equal_to, typename Proj =
hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, subrange_t<hpx::traits::range_iterator_t<Rng>, hpx::traits::range_iterator_t<Rng>>> unique(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred
=
Pred(),
Proj
&&proj
=
Proj())

Eliminates all but the first element from every consecutive group of equivalent elements from the range
rng and returns a past-the-end iterator for the new logical end of the range.

The assignments in the parallel unique algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel unique algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than N assignments, exactly N - 1 applications of the
predicate pred and no more than twice as many applications of the projection proj, where N =
std::distance(begin(rng), end(rng)).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of unique requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an binary predicate which re-
turns true for the required elements. The signature of this predicate should be equivalent
to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter1 can be

952 Chapter 2. What’s so special about HPX?

HPX Documentation, master

dereferenced and then implicitly converted to Type.
• proj – Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
Returns The unique algorithm returns a hpx::future <sub-

range_t<hpx::traits::range_iterator_t<Rng>, hpx::traits::range_iterator_t<Rng>>> if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
subrange_t<hpx::traits::range_iterator_t<Rng>, hpx::traits::range_iterator_t<Rng>>
otherwise. The unique algorithm returns an object {ret, last}, where ret is a past-the-end
iterator for a new subrange.

template<typename InIter, typename Sent, typename O, typename Pred = ranges::equal_to, typename
Proj = hpx::identity>
unique_copy_result<InIter, O> unique_copy(InIter first, Sent last, O dest, Pred &&pred = Pred(), Proj

&&proj = Proj())
Copies the elements from the range [first, last), to another range beginning at dest in such a way that
there are no consecutive equal elements. Only the first element of each group of equal elements is
copied.

The assignments in the parallel unique_copy algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first - 1 applications
of the predicate pred and no more than twice as many applications of the projection proj

Template Parameters
• InIter – The type of the source iterators used (deduced). This iterator type must meet

the requirements of an input iterator.
• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel

for InIter.
• O – The type of the iterator representing the destination range (deduced).
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of unique_copy requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• dest – Refers to the beginning of the destination range.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an binary predicate which re-
turns true for the required elements. The signature of this predicate should be equivalent
to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter1 can be dereferenced
and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

2.8. API reference 953

HPX Documentation, master

Returns The unique_copy algorithm returns a returns unique_copy_result<InIter, O>. The
unique_copy algorithm returns an in_out_result with the source iterator to one past the last
element and out containing the destination iterator to the end of the dest range.

template<typename ExPolicy, typename FwdIter, typename Sent, typename O, typename Pred =
ranges::equal_to, typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, unique_copy_result<FwdIter, O>>::type unique_copy(ExPolicy

&&pol-
icy,
FwdIter
first,
Sent
last,
O
dest,
Pred
&&pred
=
Pred(),
Proj
&&proj
=
Proj())

Copies the elements from the range [first, last), to another range beginning at dest in such a way that
there are no consecutive equal elements. Only the first element of each group of equal elements is
copied.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than last - first assignments, exactly last - first - 1 applications
of the predicate pred and no more than twice as many applications of the projection proj

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• FwdIter – The type of the source iterators used (deduced). This iterator type must meet
the requirements of a forward iterator.

• Sent – The type of the source sentinel (deduced). This sentinel type must be a sentinel
for FwdIter1.

• O – The type of the iterator representing the destination range (deduced).
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of unique_copy requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• policy – The execution policy to use for the scheduling of the iterations.

954 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first – Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last – Refers to sentinel value denoting the end of the sequence of elements the algo-
rithm will be applied.

• dest – Refers to the beginning of the destination range.
• pred – Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an binary predicate which re-
turns true for the required elements. The signature of this predicate should be equivalent
to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The unique_copy algorithm returns returns a hpx::future<
unique_copy_result<FwdIter, O>> if the execution policy is of type sequenced_task_policy
or parallel_task_policy and returns unique_copy_result<FwdIter, O> otherwise. The
unique_copy algorithm returns an in_out_result with the source iterator to one past the last
element and out containing the destination iterator to the end of the dest range.

template<typename Rng, typename O, typename Pred = ranges::equal_to, typename Proj =
hpx::identity>
unique_copy_result<hpx::traits::range_iterator_t<Rng>, O> unique_copy(Rng &&rng, O dest, Pred

&&pred = Pred(), Proj
&&proj = Proj())

Copies the elements from the range rng, to another range beginning at dest in such a way that there
are no consecutive equal elements. Only the first element of each group of equal elements is copied.

The assignments in the parallel unique_copy algorithm invoked without an execution policy object
will execute in sequential order in the calling thread.

Note: Complexity: Performs not more than N assignments, exactly N - 1 applications of the predicate
pred, where N = std::distance(begin(rng), end(rng)).

Template Parameters
• Rng – The type of the source range used (deduced). The iterators extracted from this

range type must meet the requirements of an forward iterator.
• O – The type of the iterator representing the destination range (deduced). This iterator

type must meet the requirements of a forward iterator.
• Pred – The type of the function/function object to use (deduced). Unlike its sequential

form, the parallel overload of unique_copy requires Pred to meet the requirements of
CopyConstructible. This defaults to std::equal_to<>

• Proj – The type of an optional projection function. This defaults to hpx::identity
Parameters

• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by the range rng. This is an binary predicate
which returns true for the required elements. The signature of this predicate should be

2.8. API reference 955

HPX Documentation, master

equivalent to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter1 can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The unique_copy algorithm returns unique_copy_result<
hpx::traits::range_iterator_t<Rng>, O>. The unique_copy algorithm returns the pair
of the source iterator to last, and the destination iterator to the end of the dest range.

template<typename ExPolicy, typename Rng, typename O, typename Pred = ranges::equal_to,
typename Proj = hpx::identity>
parallel::util::detail::algorithm_result<ExPolicy, unique_copy_result<hpx::traits::range_iterator_t<Rng>, O>> unique_copy(ExPolicy

&&pol-
icy,
Rng
&&rng,
O
dest,
Pred
&&pred
=
Pred(),
Proj
&&proj
=
Proj())

Copies the elements from the range rng, to another range beginning at dest in such a way that there
are no consecutive equal elements. Only the first element of each group of equal elements is copied.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note: Complexity: Performs not more than N assignments, exactly N - 1 applications of the predicate
pred, where N = std::distance(begin(rng), end(rng)).

Template Parameters
• ExPolicy – The type of the execution policy to use (deduced). It describes the manner

in which the execution of the algorithm may be parallelized and the manner in which it
executes the assignments.

• Rng – The type of the source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• O – The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of a forward iterator.

• Pred – The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of unique_copy requires Pred to meet the requirements of

956 Chapter 2. What’s so special about HPX?

HPX Documentation, master

CopyConstructible. This defaults to std::equal_to<>
• Proj – The type of an optional projection function. This defaults to hpx::identity

Parameters
• policy – The execution policy to use for the scheduling of the iterations.
• rng – Refers to the sequence of elements the algorithm will be applied to.
• dest – Refers to the beginning of the destination range.
• pred – Specifies the function (or function object) which will be invoked for each of

the elements in the sequence specified by the range rng. This is an binary predicate
which returns true for the required elements. The signature of this predicate should be
equivalent to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the ob-
jects passed to it. The type Type must be such that an object of type FwdIter1 can be
dereferenced and then implicitly converted to Type.

• proj – Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

Returns The unique_copy algorithm returns a hpx::future<unique_copy_result<
hpx::traits::range_iterator_t<Rng>, O>> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns unique_copy_result<
hpx::traits::range_iterator_t<Rng>, O> otherwise. The unique_copy algorithm re-
turns the pair of the source iterator to last, and the destination iterator to the end of the dest
range.

hpx/parallel/util/range.hpp

Defined in header hpx/parallel/util/range.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace util

Typedefs

template<typename Iterator, typename Sentinel = Iterator>

using range = hpx::util::iterator_range<Iterator, Sentinel>

2.8. API reference 957

HPX Documentation, master

Functions

template<typename Iter, typename Sent>
range<Iter, Sent> concat(range<Iter, Sent> const &it1, range<Iter, Sent> const &it2)

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2>
range<Iter2, Iter2> init_move(range<Iter2, Sent2> const &dest, range<Iter1, Sent1> const &src)

Move objects from the range src to dest.
Parameters

• dest – [in] : range where move the objects
• src – [in] : range from where move the objects

Returns range with the objects moved and the size adjusted

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2>
range<Iter2, Sent2> uninit_move(range<Iter2, Sent2> const &dest, range<Iter1, Sent1> const

&src)
Move objects from the range src creating them in dest.

Parameters
• dest – [in] : range where move and create the objects
• src – [in] : range from where move the objects

Returns range with the objects moved and the size adjusted

template<typename Iter, typename Sent>
void destroy_range(range<Iter, Sent> r)

destroy a range of objects
Parameters r – [in] : range to destroy

template<typename Iter, typename Sent>
range<Iter, Sent> init(range<Iter, Sent> const &r, typename std::iterator_traits<Iter>::value_type

&val)
initialize a range of objects with the object val moving across them

Parameters
• r – [in] : range of elements not initialized
• val – [in] : object used for the initialization

Returns range initialized

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename
Compare>
bool is_mergeable(range<Iter1, Sent1> const &src1, range<Iter2, Sent2> const &src2, Compare

comp)
: indicate if two ranges have a possible merge

Remark

Parameters
• src1 – [in] : first range
• src2 – [in] : second range
• comp – [in] : object for to compare elements

Returns true : they can be merged false : they can’t be merged

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3,
typename Sent3, typename Compare>

958 Chapter 2. What’s so special about HPX?

HPX Documentation, master

range<Iter3, Sent3> full_merge(range<Iter3, Sent3> const &dest, range<Iter1, Sent1> const
&src1, range<Iter2, Sent2> const &src2, Compare comp)

Merge two contiguous ranges src1 and src2 , and put the result in the range dest, returning the
range merged.

Parameters
• dest – [in] : range where locate the elements merged. the size of dest must be greater

or equal than the sum of the sizes of src1 and src2
• src1 – [in] : first range to merge
• src2 – [in] : second range to merge
• comp – [in] : comparison object

Returns range with the elements merged and the size adjusted

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Value,
typename Compare>
range<Value*> uninit_full_merge(range<Value*> const &dest, range<Iter1, Sent1> const

&src1, range<Iter2, Sent2> const &src2, Compare comp)
Merge two contiguous ranges src1 and src2 , and create and move the result in the uninitialized
range dest, returning the range merged.

Parameters
• dest – [in] : range where locate the elements merged. the size of dest must be greater

or equal than the sum of the sizes of src1 and src2. Initially is un-initialize memory
• src1 – [in] : first range to merge
• src2 – [in] : second range to merge
• comp – [in] : comparison object

Returns range with the elements merged and the size adjusted

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename
Compare>
range<Iter2, Sent2> half_merge(range<Iter2, Sent2> const &dest, range<Iter1, Sent1> const

&src1, range<Iter2, Sent2> const &src2, Compare comp)
: Merge two buffers. The first buffer is in a separate memory

Parameters
• dest – [in] : range where finish the two buffers merged
• src1 – [in] : first range to merge in a separate memory
• src2 – [in] : second range to merge, in the final part of the range where deposit the final

results
• comp – [in] : object for compare two elements of the type pointed by the Iter1 and Iter2

Returns : range with the two buffers merged

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3,
typename Sent3, typename Compare>
bool in_place_merge_uncontiguous(range<Iter1, Sent1> const &src1, range<Iter2, Sent2>

const &src2, range<Iter3, Sent3> &aux, Compare comp)
: merge two non contiguous buffers src1 , src2, using the range aux as auxiliary memory

Remark

Parameters
• src1 – [in] : first range to merge
• src2 – [in] : second range to merge

2.8. API reference 959

HPX Documentation, master

• aux – [in] : auxiliary range used in the merge
• comp – [in] : object for to compare elements

Returns true : not changes done false : changes in the buffers

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename
Compare>
range<Iter1, Sent1> in_place_merge(range<Iter1, Sent1> const &src1, range<Iter1, Sent1> const

&src2, range<Iter2, Sent2> &buf, Compare comp)
: merge two contiguous buffers (src1, src2) using buf as auxiliary memory

Remark

Parameters
• src1 – [in] : first range to merge
• src2 – [in] : second range to merge
• buf – [in] : auxiliary memory used in the merge
• comp – [in] : object for to compare elements

Returns true : not changes done false : changes in the buffers

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename
Compare>
void merge_flow(range<Iter1, Sent1> rng1, range<Iter2, Sent2> rbuf, range<Iter1, Sent1> rng2,

Compare cmp)

asio

See Public API for a list of names and headers that are part of the public HPX API.

hpx/asio/asio_util.hpp

Defined in header hpx/asio/asio_util.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

960 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Typedefs

using endpoint_iterator_type = asio::ip::tcp::resolver::iterator

Functions

bool get_endpoint(std::string const &addr, std::uint16_t port, asio::ip::tcp::endpoint &ep, bool
force_ipv4 = false)

std::string get_endpoint_name(asio::ip::tcp::endpoint const &ep)

asio::ip::tcp::endpoint resolve_hostname(std::string const &hostname, std::uint16_t port,
asio::io_context &io_service, bool force_ipv4 = false)

std::string resolve_public_ip_address()

std::string cleanup_ip_address(std::string const &addr)

endpoint_iterator_type connect_begin(std::string const &address, std::uint16_t port, asio::io_context
&io_service)

template<typename Locality>
endpoint_iterator_type connect_begin(Locality const &loc, asio::io_context &io_service)

Returns an iterator which when dereferenced will give an endpoint suitable for a call to connect()
related to this locality.

inline endpoint_iterator_type connect_end()

endpoint_iterator_type accept_begin(std::string const &address, std::uint16_t port, asio::io_context
&io_service)

template<typename Locality>
endpoint_iterator_type accept_begin(Locality const &loc, asio::io_context &io_service)

Returns an iterator which when dereferenced will give an endpoint suitable for a call to accept() related
to this locality.

inline endpoint_iterator_type accept_end()

bool split_ip_address(std::string const &v, std::string &host, std::uint16_t &port)

assertion

See Public API for a list of names and headers that are part of the public HPX API.

hpx/assertion/evaluate_assert.hpp

Defined in header hpx/assertion/evaluate_assert.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace assertion

2.8. API reference 961

HPX Documentation, master

HPX_CURRENT_SOURCE_LOCATION, hpx::source_location

Defined in header hpx/source_location.hpp692.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_CURRENT_SOURCE_LOCATION()

namespace hpx

Functions

std::ostream &operator<<(std::ostream &os, source_location const &loc)

struct source_location
#include <source_location.hpp> This contains the location information where HPX_ASSERT has been
called The source_location class represents certain information about the source code, such as file names,
line numbers, and function names. Previously, functions that desire to obtain this information about the
call site (for logging, testing, or debugging purposes) must use macros so that predefined macros like
and are expanded in the context of the caller. The source_location class provides a better alternative.
source_location meets the DefaultConstructible, CopyConstructible, CopyAssignable and Destructible re-
quirements. Lvalue of source_location meets the Swappable requirement. Additionally, the following con-
ditions are true:

•

std::is_nothrow_move_constructible_v<std::source_location>

•

std::is_nothrow_move_assignable_v<std::source_location>

•

std::is_nothrow_swappable_v<std::source_location>

It is intended that source_location has a small size and can be copied efficiently. It is unspecified
whether the copy/move constructors and the copy/move assignment operators of source_location are
trivial and/or constexpr.

692 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/source_
location.hpp

962 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/source_location.hpp

HPX Documentation, master

Public Functions

inline constexpr std::uint_least32_t line() const noexcept
return the line number represented by this object

inline constexpr char const *file_name() const noexcept
return the file name represented by this object

inline constexpr char const *function_name() const noexcept
return the name of the function represented by this object, if any

Public Members

char const *filename

std::uint_least32_t line_number

char const *functionname

Public Static Functions

static inline constexpr std::uint_least32_t column() noexcept
return the column number represented by this object

HPX_ASSERT, HPX_ASSERT_MSG

Defined in header hpx/assert.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_ASSERT(expr)
This macro asserts that expr evaluates to true.

If expr evaluates to false, The source location and msg is being printed along with the expression and ad-
ditional. Afterwards the program is being aborted. The assertion handler can be customized by calling
hpx::assertion::set_assertion_handler().

Asserts are enabled if HPX_DEBUG is set. This is the default for CMAKE_BUILD_TYPE=Debug

Parameters

• expr – The expression to assert on. This can either be an expression that’s convertible to
bool or a callable which returns bool

• msg – The optional message that is used to give further information if the assert fails. This
should be convertible to a std::string

2.8. API reference 963

HPX Documentation, master

HPX_ASSERT_MSG(expr, msg)

See also:

HPX_ASSERT

namespace hpx

namespace assertion

Typedefs

using assertion_handler = void (*)(hpx::source_location const &loc, const char *expr, std::string
const &msg)

The signature for an assertion handler.

Functions

void set_assertion_handler(assertion_handler handler)
Set the assertion handler to be used within a program. If the handler has been set already once, the
call to this function will be ignored.

Note: This function is not thread safe

async_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx::async

Defined in header hpx/future.hpp693.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename F, typename ...Ts>
decltype(auto) async(F &&f, Ts&&... ts)

The function template async runs the function f asynchronously (potentially in a separate thread which
might be a part of a thread pool) and returns an hpx::future that will eventually hold the result of that
function call. If no policy is defined, async behaves as if it is called with policy being hpx::launch::async
| hpx::launch::deferred. Otherwise, it calls a function f with arguments ts according to a specific launch
policy.

693 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

964 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

• If the async flag is set (i.e. (policy & hpx::launch::async) != 0), then async executes the
callable object f on a new thread of execution (with all thread-locals initialized) as if spawned by
hpx::thread(std::forward<F>(f), std::forward<Ts>(ts). . .), except that if the function f returns a value
or throws an exception, it is stored in the shared state accessible through the hpx::future that async
returns to the caller.

• If the deferred flag is set (i.e. (policy & hpx::launch::deferred) != 0), then async converts f and ts. . .
the same way as by hpx::thread constructor, but does not spawn a new thread of execution. Instead,
lazy evaluation is performed: the first call to a non-timed wait function on the hpx::future that async
returned to the caller will cause the copy of f to be invoked (as an rvalue) with the copies of ts. . . (also
passed as rvalues) in the current thread (which does not have to be the thread that originally called
hpx::async). The result or exception is placed in the shared state associated with the future and only
then it is made ready. All further accesses to the same hpx::future will return the result immediately.

• If neither hpx::launch::async nor hpx::launch::deferred, nor any implementation-defined policy flag
is set in policy, the behavior is undefined.

If more than one flag is set, it is implementation-defined which policy is selected. For the default (both the
hpx::launch::async and hpx::launch::deferred flags are set in policy), standard recommends (but doesn’t
require) utilizing available concurrency, and deferring any additional tasks.

In any case, the call to hpx::async synchronizes-with (as defined in std::memory_order) the call to f, and
the completion of f is sequenced-before making the shared state ready. If the async policy is chosen,
the associated thread completion synchronizes-with the successful return from the first function that is
waiting on the shared state, or with the return of the last function that releases the shared state, whichever
comes first. If std::decay<Function>::type or each type in std::decay<Ts>::type is not constructible from
its corresponding argument, the program is ill-formed.

Parameters

• f – Callable object to call

• ts – parameters to pass to f

Returns hpx::future referring to the shared state created by this call to hpx::async.

hpx::dataflow

Defined in header hpx/future.hpp694.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename F, typename ...Ts>
decltype(auto) dataflow(F &&f, Ts&&... ts)

The function template dataflow runs the function f asynchronously (potentially in a separate thread which
might be a part of a thread pool) and returns a hpx::future that will eventually hold the result of that
function call. Its behavior is similar to hpx::async with the exception that if one of the arguments is a
future, then hpx::dataflow will wait for the future to be ready to launch the thread. Hence, the operation
is delayed until all the arguments are ready.

694 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

2.8. API reference 965

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

hpx::launch

Defined in header hpx/future.hpp695.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

struct launch : public detail::policy_holder<>
#include <launch_policy.hpp> Launch policies for hpx::async etc.

Public Functions

inline constexpr launch() noexcept
Default constructor. This creates a launch policy representing all possible launch modes

inline constexpr launch(detail::async_policy p) noexcept
Create a launch policy representing asynchronous execution.

inline constexpr launch(detail::fork_policy p) noexcept
Create a launch policy representing asynchronous execution. The new thread is executed in a preferred
way

inline constexpr launch(detail::sync_policy p) noexcept
Create a launch policy representing synchronous execution.

inline constexpr launch(detail::deferred_policy p) noexcept
Create a launch policy representing deferred execution.

inline constexpr launch(detail::apply_policy p) noexcept
Create a launch policy representing fire and forget execution.

template<typename F>
inline constexpr launch(detail::select_policy<F> const &p) noexcept

Create a launch policy representing fire and forget execution.

template<typename Launch, typename Enable =
std::enable_if_t<hpx::traits::is_launch_policy_v<Launch>>>
inline constexpr launch(Launch l, threads::thread_priority priority, threads::thread_stacksize stacksize,

threads::thread_schedule_hint hint) noexcept

Public Static Attributes

static const detail::async_policy async
Predefined launch policy representing asynchronous execution.

static const detail::fork_policy fork
Predefined launch policy representing asynchronous execution.The new thread is executed in a pre-
ferred way

695 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

966 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

static const detail::sync_policy sync
Predefined launch policy representing synchronous execution.

static const detail::deferred_policy deferred
Predefined launch policy representing deferred execution.

static const detail::apply_policy apply
Predefined launch policy representing fire and forget execution.

static const detail::select_policy_generator select
Predefined launch policy representing delayed policy selection.

Friends

inline friend launch tag_invoke(hpx::execution::experimental::with_priority_t, launch const &policy,
threads::thread_priority priority) noexcept

inline friend constexpr friend hpx::threads::thread_priority tag_invoke (hpx::execution::experimental::get_priority_t,
launch const &policy) noexcept

inline friend launch tag_invoke(hpx::execution::experimental::with_stacksize_t, launch const &policy,
threads::thread_stacksize stacksize) noexcept

inline friend constexpr friend hpx::threads::thread_stacksize tag_invoke (hpx::execution::experimental::get_stacksize_t,
launch const &policy) noexcept

inline friend launch tag_invoke(hpx::execution::experimental::with_hint_t, launch const &policy,
threads::thread_schedule_hint hint) noexcept

inline friend constexpr friend hpx::threads::thread_schedule_hint tag_invoke (hpx::execution::experimental::get_hint_t,
launch const &policy) noexcept

hpx::post

Defined in header hpx/future.hpp696.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

696 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

2.8. API reference 967

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Functions

template<typename F, typename ...Ts>
bool post(F &&f, Ts&&... ts)

Runs the function f asynchronously (potentially in a separate thread which might be a part of a thread pool).
This is done in a fire-and-forget manner, meaning there is no return value or way to synchronize with the
function execution (it does not return an hpx::future that would hold the result of that function call).

hpx::post is particularly useful when synchronization mechanisms as heavyweight as futures are not de-
sired, and instead, more lightweight mechanisms like latches or atomic variables are preferred. Essentially,
the post function enables the launch of a new thread without the overhead of creating a future.

Note: hpx::post is similar to hpx::async but does not return a future. This is why there is no way of
finding out the result/failure of the execution of this function.

hpx::sync

Defined in header hpx/future.hpp697.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename F, typename ...Ts>
decltype(auto) sync(F &&f, Ts&&... ts)

The function template sync runs the function f synchronously and returns an hpx::future that will eventually
hold the result of that function call.

async_combinators

See Public API for a list of names and headers that are part of the public HPX API.

hpx/async_combinators/split_future.hpp

Defined in header hpx/async_combinators/split_future.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

697 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

968 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Functions

template<typename ...Ts>
inline tuple<future<Ts>...> split_future(future<tuple<Ts...>> &&f)

The function split_future is an operator allowing to split a given future of a sequence of values (any tuple,
std::pair, or std::array) into an equivalent container of futures where each future represents one of the values
from the original future. In some sense this function provides the inverse operation of when_all.

Note: The following cases are special:

tuple<future<void> > split_future(future<tuple<> > && f);
array<future<void>, 1> split_future(future<array<T, 0> > && f);

here the returned futures are directly representing the futures which were passed to the function.

Parameters f – [in] A future holding an arbitrary sequence of values stored in a tuple-like con-
tainer. This facility supports hpx::tuple<>, std::pair<T1, T2>, and std::array<T, N>

Returns Returns an equivalent container (same container type as passed as the argument) of
futures, where each future refers to the corresponding value in the input parameter. All of the
returned futures become ready once the input future has become ready. If the input future is
exceptional, all output futures will be exceptional as well.

template<typename T>
inline std::vector<future<T>> split_future(future<std::vector<T>> &&f, std::size_t size)

The function split_future is an operator allowing to split a given future of a sequence of values (any
std::vector) into a std::vector of futures where each future represents one of the values from the original
std::vector. In some sense this function provides the inverse operation of when_all.

Parameters

• f – [in] A future holding an arbitrary sequence of values stored in a std::vector.

• size – [in] The number of elements the vector will hold once the input future has become
ready

Returns Returns a std::vector of futures, where each future refers to the corresponding value
in the input parameter. All of the returned futures become ready once the input future has
become ready. If the input future is exceptional, all output futures will be exceptional as well.

hpx::wait_all

Defined in header hpx/future.hpp698.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

698 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

2.8. API reference 969

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Functions

template<typename InputIter>
void wait_all(InputIter first, InputIter last)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note: The function wait_all returns after all futures have become ready. All input futures are still valid
after wait_all returns.

Note: The function wait_all will rethrow any exceptions captured by the futures while becoming ready. If
this behavior is undesirable, use wait_all_nothrow instead.

Parameters

• first – The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_all should wait.

• last – The iterator pointing to the last element of a sequence of future or shared_future
objects for which wait_all should wait.

template<typename R>
void wait_all(std::vector<future<R>> &&futures)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note: The function wait_all returns after all futures have become ready. All input futures are still valid
after wait_all returns.

Note: The function wait_all will rethrow any exceptions captured by the futures while becoming ready. If
this behavior is undesirable, use wait_all_nothrow instead.

Parameters futures – A vector or array holding an arbitrary amount of future or shared_future
objects for which wait_all should wait.

template<typename R, std::size_t N>
void wait_all(std::array<future<R>, N> &&futures)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note: The function wait_all returns after all futures have become ready. All input futures are still valid
after wait_all returns.

Note: The function wait_all will rethrow any exceptions captured by the futures while becoming ready. If
this behavior is undesirable, use wait_all_nothrow instead.

970 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters futures – A vector or array holding an arbitrary amount of future or shared_future
objects for which wait_all should wait.

template<typename T>
void wait_all(hpx::future<T> const &f)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note: The function wait_all returns after the future has become ready. The input future is still valid after
wait_all returns.

Note: The function wait_all will rethrow any exceptions captured by the future while becoming ready. If
this behavior is undesirable, use wait_all_nothrow instead.

Parameters f – A future or shared_future for which wait_all should wait.

template<typename ...T>
void wait_all(T&&... futures)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note: The function wait_all returns after all futures have become ready. All input futures are still valid
after wait_all returns.

Note: The function wait_all will rethrow any exceptions captured by the futures while becoming ready. If
this behavior is undesirable, use wait_all_nothrow instead.

Parameters futures – An arbitrary number of future or shared_future objects, possibly holding
different types for which wait_all should wait.

template<typename InputIter>
void wait_all_n(InputIter begin, std::size_t count)

The function wait_all_n is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note: The function wait_all_n returns after all futures have become ready. All input futures are still valid
after wait_all_n returns.

Note: The function wait_all_n will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_all_n_nothrow instead.

Parameters

• begin – The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_all_n should wait.

2.8. API reference 971

HPX Documentation, master

• count – The number of elements in the sequence starting at first.

Returns The function wait_all_n will return an iterator referring to the first element in the input
sequence after the last processed element.

hpx::wait_any

Defined in header hpx/future.hpp699.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

Functions

template<typename InputIter>
void wait_any(InputIter first, InputIter last)

The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note: The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

Note: The function wait_any will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_any_nothrow instead.

Parameters

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which wait_any should wait.

• last – [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which wait_any should wait.

template<typename R>
void wait_any(std::vector<future<R>> &futures)

The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note: The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

Note: The function wait_any will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_any_nothrow instead.

699 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

972 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Parameters futures – [in] A vector holding an arbitrary amount of future or shared_future
objects for which wait_any should wait.

template<typename R, std::size_t N>
void wait_any(std::array<future<R>, N> &futures)

The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note: The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

Note: The function wait_any will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_any_nothrow instead.

Parameters futures – [in] Amn array holding an arbitrary amount of future or shared_future
objects for which wait_any should wait.

template<typename ...T>
void wait_any(T&&... futures)

The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note: The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

Note: The function wait_any will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_any_nothrow instead.

Parameters futures – [in] An arbitrary number of future or shared_future objects, possibly
holding different types for which wait_any should wait.

template<typename InputIter>
void wait_any_n(InputIter first, std::size_t count)

The function wait_any_n is a non-deterministic choice operator. It OR-composes all future objects given
and returns after one future of that list finishes execution.

Note: The function wait_any_n returns after at least one future has become ready. All input futures are
still valid after wait_any_n returns.

Note: The function wait_any_n will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_any_n_nothrow instead.

Parameters

2.8. API reference 973

HPX Documentation, master

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which wait_any_n should wait.

• count – [in] The number of elements in the sequence starting at first.

hpx::wait_each

Defined in header hpx/future.hpp700.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

Functions

template<typename F, typename Future>
void wait_each(F &&f, std::vector<Future> &&futures)

The function wait_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns after they finished executing. Additionally, the supplied function is called
for each of the passed futures as soon as the future has become ready. wait_each returns after all futures
have been become ready.

Note: This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t is
implicitly convertible to as the first parameter and the future as the second parameter. The first parameter
will correspond to the index of the current future in the collection.

Parameters

• f – The function which will be called for each of the input futures once the future has
become ready.

• futures – A vector holding an arbitrary amount of future or shared_future objects for
which wait_each should wait.

template<typename F, typename Iterator>
void wait_each(F &&f, Iterator begin, Iterator end)

The function wait_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns after they finished executing. Additionally, the supplied function is called
for each of the passed futures as soon as the future has become ready. wait_each returns after all futures
have been become ready.

Note: This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t is
implicitly convertible to as the first parameter and the future as the second parameter. The first parameter
will correspond to the index of the current future in the collection.

Parameters
700 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

974 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

• f – The function which will be called for each of the input futures once the future has
become ready.

• begin – The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_each should wait.

• end – The iterator pointing to the last element of a sequence of future or shared_future
objects for which wait_each should wait.

template<typename F, typename ...T>
void wait_each(F &&f, T&&... futures)

The function wait_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns after they finished executing. Additionally, the supplied function is called
for each of the passed futures as soon as the future has become ready. wait_each returns after all futures
have been become ready.

Note: This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t is
implicitly convertible to as the first parameter and the future as the second parameter. The first parameter
will correspond to the index of the current future in the collection.

Parameters

• f – The function which will be called for each of the input futures once the future has
become ready.

• futures – An arbitrary number of future or shared_future objects, possibly holding dif-
ferent types for which wait_each should wait.

template<typename F, typename Iterator>
void wait_each_n(F &&f, Iterator begin, std::size_t count)

The function wait_each is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing. Additionally, the supplied function is
called for each of the passed futures as soon as the future has become ready.

Note: This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t is
implicitly convertible to as the first parameter and the future as the second parameter. The first parameter
will correspond to the index of the current future in the collection.

Parameters

• f – The function which will be called for each of the input futures once the future has
become ready.

• begin – The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_each_n should wait.

• count – The number of elements in the sequence starting at first.

2.8. API reference 975

HPX Documentation, master

hpx::wait_some

Defined in header hpx/future.hpp701.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

Functions

template<typename InputIter>
void wait_some(std::size_t n, InputIter first, InputIter last)

The function wait_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note: The function wait_some returns after n futures have become ready. All input futures are still valid
after wait_some returns.

Note: The function wait_some will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_some_nothrow instead.

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the function to return.

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which when_all should wait.

• last – [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which when_all should wait.

template<typename R>
void wait_some(std::size_t n, std::vector<future<R>> &&futures)

The function wait_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note: The function wait_some returns after n futures have become ready. All input futures are still valid
after wait_some returns.

Note: The function wait_some will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_some_nothrow instead.

701 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

976 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the returned future to get ready.

• futures – [in] A vector holding an arbitrary amount of future or shared_future objects for
which wait_some should wait.

template<typename R, std::size_t N>
void wait_some(std::size_t n, std::array<future<R>, N> &&futures)

The function wait_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note: The function wait_some returns after n futures have become ready. All input futures are still valid
after wait_some returns.

Note: The function wait_some will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_some_nothrow instead.

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the returned future to get ready.

• futures – [in] An array holding an arbitrary amount of future or shared_future objects for
which wait_some should wait.

template<typename ...T>
void wait_some(std::size_t n, T&&... futures)

The function wait_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note: The function wait_all returns after n futures have become ready. All input futures are still valid
after wait_some returns.

Note: The function wait_some will rethrow any exceptions captured by the futures while becoming ready.
If this behavior is undesirable, use wait_some_nothrow instead.

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the returned future to get ready.

• futures – [in] An arbitrary number of future or shared_future objects, possibly holding
different types for which wait_some should wait.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

2.8. API reference 977

HPX Documentation, master

template<typename InputIter>
void wait_some_n(std::size_t n, InputIter first, std::size_t count)

The function wait_some_n is an operator allowing to join on the result of all given futures. It AND-
composes all future objects given and returns a new future object representing the same list of futures
after n of them finished executing.

Note: The function wait_some_n returns after n futures have become ready. All input futures are still valid
after wait_some_n returns.

Note: The function wait_some_n will rethrow any exceptions captured by the futures while becoming
ready. If this behavior is undesirable, use wait_some_n_nothrow instead.

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the returned future to get ready.

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which when_all should wait.

• count – [in] The number of elements in the sequence starting at first.

hpx::when_all

Defined in header hpx/future.hpp702.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

Functions

template<typename InputIter, typename Container = vector<future<typename
std::iterator_traits<InputIter>::value_type>>>
hpx::future<Container> when_all(InputIter first, InputIter last)

function when_all creates a future object that becomes ready when all elements in a set of future and
shared_future objects become ready. It is an operator allowing to join on the result of all given futures. It
AND-composes all given future objects and returns a new future object representing the same list of futures
after they finished executing.

Note: Calling this version of when_all where first == last, returns a future with an empty container that is
immediately ready. Each future and shared_future is waited upon and then copied into the collection of the
output (returned) future, maintaining the order of the futures in the input collection. The future returned
by when_all will not throw an exception, but the futures held in the output collection may.

Parameters
702 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

978 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which when_all should wait.

• last – [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which when_all should wait.

Returns Returns a future holding the same list of futures as has been passed to when_all.

• future<Container<future<R>>>: If the input cardinality is unknown at compile time and
the futures are all of the same type. The order of the futures in the output container will be
the same as given by the input iterator.

template<typename Range>
hpx::future<Range> when_all(Range &&values)

function when_all creates a future object that becomes ready when all elements in a set of future and
shared_future objects become ready. It is an operator allowing to join on the result of all given futures. It
AND-composes all given future objects and returns a new future object representing the same list of futures
after they finished executing.

Note: Calling this version of when_all where the input container is empty, returns a future with an empty
container that is immediately ready. Each future and shared_future is waited upon and then copied into the
collection of the output (returned) future, maintaining the order of the futures in the input collection. The
future returned by when_all will not throw an exception, but the futures held in the output collection may.

Parameters values – [in] A range holding an arbitrary amount of future or shared_future objects
for which when_all should wait.

Returns Returns a future holding the same list of futures as has been passed to when_all.

• future<Container<future<R>>>: If the input cardinality is unknown at compile time and
the futures are all of the same type.

template<typename ...T>
hpx::future<hpx::tuple<hpx::future<T>...>> when_all(T&&... futures)

function when_all creates a future object that becomes ready when all elements in a set of future and
shared_future objects become ready. It is an operator allowing to join on the result of all given futures. It
AND-composes all given future objects and returns a new future object representing the same list of futures
after they finished executing.

Note: Each future and shared_future is waited upon and then copied into the collection of the output (re-
turned) future, maintaining the order of the futures in the input collection. The future returned by when_all
will not throw an exception, but the futures held in the output collection may.

Parameters futures – [in] An arbitrary number of future or shared_future objects, possibly
holding different types for which when_all should wait.

Returns Returns a future holding the same list of futures as has been passed to when_all.

• future<tuple<future<T0>, future<T1>, future<T2>. . .>>: If inputs are fixed in number and
are of heterogeneous types. The inputs can be any arbitrary number of future objects.

• future<tuple<>> if when_all is called with zero arguments. The returned future will be
initially ready.

2.8. API reference 979

HPX Documentation, master

template<typename InputIter, typename Container = vector<future<typename
std::iterator_traits<InputIter>::value_type>>>
hpx::future<Container> when_all_n(InputIter begin, std::size_t count)

function when_all creates a future object that becomes ready when all elements in a set of future and
shared_future objects become ready. It is an operator allowing to join on the result of all given futures. It
AND-composes all given future objects and returns a new future object representing the same list of futures
after they finished executing.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: None of the futures in the input sequence are invalidated.

Parameters

• begin – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which wait_all_n should wait.

• count – [in] The number of elements in the sequence starting at first.

Throws This – function will throw errors which are encountered while setting up the requested
operation only. Errors encountered while executing the operations delivering the results to be
stored in the futures are reported through the futures themselves.

Returns Returns a future holding the same list of futures as has been passed to when_all_n.

• future<Container<future<R>>>: If the input cardinality is unknown at compile time and
the futures are all of the same type. The order of the futures in the output vector will be the
same as given by the input iterator.

hpx::when_any

Defined in header hpx/future.hpp703.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

Functions

template<typename InputIter, typename Container = vector<future<typename
std::iterator_traits<InputIter>::value_type>>>
future<when_any_result<Container>> when_any(InputIter first, InputIter last)

function when_any creates a future object that becomes when at least one element in a set of future and
shared_future objects becomes ready. It is a non-deterministic choice operator. It OR-composes all given
future objects and returns a new future object representing the same list of futures after one future of that
list finishes execution.

Parameters
703 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

980 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which when_any should wait.

• last – [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which when_any should wait.

Returns Returns a when_any_result holding the same list of futures as has been passed to
when_any and an index pointing to a ready future.

• future<when_any_result<Container<future<R>>>>: If the input cardinality is unknown at
compile time and the futures are all of the same type. The order of the futures in the output
container will be the same as given by the input iterator.

template<typename Range>
future<when_any_result<Range>> when_any(Range &values)

function when_any creates a future object that becomes when at least one element in a set of future and
shared_future objects becomes ready. It is a non-deterministic choice operator. It OR-composes all given
future objects and returns a new future object representing the same list of futures after one future of that
list finishes execution.

Parameters values – [in] A range holding an arbitrary amount of futures or shared_future ob-
jects for which when_any should wait.

Returns Returns a when_any_result holding the same list of futures as has been passed to
when_any and an index pointing to a ready future.

• future<when_any_result<Container<future<R>>>>: If the input cardinality is unknown at
compile time and the futures are all of the same type. The order of the futures in the output
container will be the same as given by the input iterator.

template<typename ...T>
future<when_any_result<tuple<future<T>...>>> when_any(T&&... futures)

function when_any creates a future object that becomes when at least one element in a set of future and
shared_future objects becomes ready. It is a non-deterministic choice operator. It OR-composes all given
future objects and returns a new future object representing the same list of futures after one future of that
list finishes execution.

Parameters futures – [in] An arbitrary number of future or shared_future objects, possibly
holding different types for which when_any should wait.

Returns Returns a when_any_result holding the same list of futures as has been passed to
when_any and an index pointing to a ready future..

• future<when_any_result<tuple<future<T0>, future<T1>. . .>>>: If inputs are fixed in
number and are of heterogeneous types. The inputs can be any arbitrary number of fu-
ture objects.

• future<when_any_result<tuple<>>> if when_any is called with zero arguments. The re-
turned future will be initially ready.

template<typename InputIter, typename Container = vector<future<typename
std::iterator_traits<InputIter>::value_type>>>
future<when_any_result<Container>> when_any_n(InputIter first, std::size_t count)

function when_any_n creates a future object that becomes when at least one element in a set of future and
shared_future objects becomes ready. It is a non-deterministic choice operator. It OR-composes all given
future objects and returns a new future object representing the same list of futures after one future of that
list finishes execution.

2.8. API reference 981

HPX Documentation, master

Note: None of the futures in the input sequence are invalidated.

Parameters

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which when_any_n should wait.

• count – [in] The number of elements in the sequence starting at first.

Returns Returns a when_any_result holding the same list of futures as has been passed to
when_any and an index pointing to a ready future.

• future<when_any_result<Container<future<R>>>>: If the input cardinality is unknown at
compile time and the futures are all of the same type. The order of the futures in the output
container will be the same as given by the input iterator.

template<typename Sequence>

struct when_any_result
#include <when_any.hpp> Result type for when_any, contains a sequence of futures and an index pointing
to a ready future.

Public Members

std::size_t index
The index of a future which has become ready.

Sequence futures
The sequence of futures as passed to hpx::when_any

hpx::when_each

Defined in header hpx/future.hpp704.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

Functions

template<typename F, typename Future>
future<void> when_each(F &&f, std::vector<Future> &&futures)

The function when_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns a new future object representing the event of all those futures having
finished executing. It also calls the supplied callback for each of the futures which becomes ready.

704 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

982 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Note: This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t is
implicitly convertible to as the first parameter and the future as the second parameter. The first parameter
will correspond to the index of the current future in the collection.

Parameters

• f – The function which will be called for each of the input futures once the future has
become ready.

• futures – A vector holding an arbitrary amount of future or shared_future objects for
which wait_each should wait.

Returns Returns a future representing the event of all input futures being ready.

template<typename F, typename Iterator>
future<Iterator> when_each(F &&f, Iterator begin, Iterator end)

The function when_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns a new future object representing the event of all those futures having
finished executing. It also calls the supplied callback for each of the futures which becomes ready.

Note: This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t is
implicitly convertible to as the first parameter and the future as the second parameter. The first parameter
will correspond to the index of the current future in the collection.

Parameters

• f – The function which will be called for each of the input futures once the future has
become ready.

• begin – The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_each should wait.

• end – The iterator pointing to the last element of a sequence of future or shared_future
objects for which wait_each should wait.

Returns Returns a future representing the event of all input futures being ready.

template<typename F, typename ...Ts>
future<void> when_each(F &&f, Ts&&... futures)

The function when_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns a new future object representing the event of all those futures having
finished executing. It also calls the supplied callback for each of the futures which becomes ready.

Note: This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t is
implicitly convertible to as the first parameter and the future as the second parameter. The first parameter
will correspond to the index of the current future in the collection.

Parameters

2.8. API reference 983

HPX Documentation, master

• f – The function which will be called for each of the input futures once the future has
become ready.

• futures – An arbitrary number of future or shared_future objects, possibly holding dif-
ferent types for which wait_each should wait.

Returns Returns a future representing the event of all input futures being ready.

template<typename F, typename Iterator>
future<Iterator> when_each_n(F &&f, Iterator begin, std::size_t count)

The function when_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns a new future object representing the event of all those futures having
finished executing. It also calls the supplied callback for each of the futures which becomes ready.

Note: This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t is
implicitly convertible to as the first parameter and the future as the second parameter. The first parameter
will correspond to the index of the current future in the collection.

Parameters

• f – The function which will be called for each of the input futures once the future has
become ready.

• begin – The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_each_n should wait.

• count – The number of elements in the sequence starting at first.

Returns Returns a future holding the iterator pointing to the first element after the last one.

hpx::when_some

Defined in header hpx/future.hpp705.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

Functions

template<typename InputIter, typename Container = vector<future<typename
std::iterator_traits<InputIter>::value_type>>>
future<when_some_result<Container>> when_some(std::size_t n, Iterator first, Iterator last)

The function when_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note: The future returned by the function when_some becomes ready when at least n argument futures
have become ready.

705 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

984 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Note: Calling this version of when_some where first == last, returns a future with an empty container that
is immediately ready. Each future and shared_future is waited upon and then copied into the collection of
the output (returned) future, maintaining the order of the futures in the input collection. The future returned
by when_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the returned future to get ready.

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which when_all should wait.

• last – [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which when_all should wait.

Returns Returns a when_some_result holding the same list of futures as has been passed to
when_some and indices pointing to ready futures.

• future<when_some_result<Container<future<R>>>>: If the input cardinality is unknown
at compile time and the futures are all of the same type. The order of the futures in the
output container will be the same as given by the input iterator.

template<typename Range>
future<when_some_result<Range>> when_some(std::size_t n, Range &&futures)

The function when_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note: The future returned by the function when_some becomes ready when at least n argument futures
have become ready.

Note: Each future and shared_future is waited upon and then copied into the collection of the output
(returned) future, maintaining the order of the futures in the input collection. The future returned by
when_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the returned future to get ready.

• futures – [in] A container holding an arbitrary amount of future or shared_future objects
for which when_some should wait.

Returns Returns a when_some_result holding the same list of futures as has been passed to
when_some and indices pointing to ready futures.

• future<when_some_result<Container<future<R>>>>: If the input cardinality is unknown
at compile time and the futures are all of the same type. The order of the futures in the
output container will be the same as given by the input iterator.

template<typename ...Ts>

2.8. API reference 985

HPX Documentation, master

future<when_some_result<tuple<future<T>...>>> when_some(std::size_t n, Ts&&... futures)
The function when_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note: The future returned by the function when_some becomes ready when at least n argument futures
have become ready.

Note: Each future and shared_future is waited upon and then copied into the collection of the output
(returned) future, maintaining the order of the futures in the input collection. The future returned by
when_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the returned future to get ready.

• futures – [in] An arbitrary number of future or shared_future objects, possibly holding
different types for which when_some should wait.

Returns Returns a when_some_result holding the same list of futures as has been passed to
when_some and an index pointing to a ready future..

• future<when_some_result<tuple<future<T0>, future<T1>. . .>>>: If inputs are fixed in
number and are of heterogeneous types. The inputs can be any arbitrary number of fu-
ture objects.

• future<when_some_result<tuple<>>> if when_some is called with zero arguments. The
returned future will be initially ready.

template<typename InputIter, typename Container = vector<future<typename
std::iterator_traits<InputIter>::value_type>>>
future<when_some_result<Container>> when_some_n(std::size_t n, Iterator first, std::size_t count)

The function when_some_n is an operator allowing to join on the result of all given futures. It AND-
composes all future objects given and returns a new future object representing the same list of futures after
n of them finished executing.

Note: The future returned by the function when_some_n becomes ready when at least n argument futures
have become ready.

Note: Calling this version of when_some_n where count == 0, returns a future with the same elements
as the arguments that is immediately ready. Possibly none of the futures in that container are ready. Each
future and shared_future is waited upon and then copied into the collection of the output (returned) future,
maintaining the order of the futures in the input collection. The future returned by when_some_n will not
throw an exception, but the futures held in the output collection may.

Parameters

• n – [in] The number of futures out of the arguments which have to become ready in order
for the returned future to get ready.

986 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• first – [in] The iterator pointing to the first element of a sequence of future or
shared_future objects for which when_all should wait.

• count – [in] The number of elements in the sequence starting at first.

Returns Returns a when_some_result holding the same list of futures as has been passed to
when_some and indices pointing to ready futures.

• future<when_some_result<Container<future<R>>>>: If the input cardinality is unknown
at compile time and the futures are all of the same type. The order of the futures in the
output container will be the same as given by the input iterator.

template<typename Sequence>

struct when_some_result
#include <when_some.hpp> Result type for when_some, contains a sequence of futures and indices point-
ing to ready futures.

Public Members

std::vector<std::size_t> indices
List of indices of futures that have become ready.

Sequence futures
The sequence of futures as passed to hpx::when_some.

async_cuda

See Public API for a list of names and headers that are part of the public HPX API.

hpx/async_cuda/cublas_executor.hpp

Defined in header hpx/async_cuda/cublas_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/async_cuda/cuda_executor.hpp

Defined in header hpx/async_cuda/cuda_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace cuda

namespace experimental

struct cuda_executor : public hpx::cuda::experimental::cuda_executor_base

2.8. API reference 987

HPX Documentation, master

Public Functions

inline explicit cuda_executor(std::size_t device, bool event_mode = true)

inline ~cuda_executor()

template<typename F, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::post_t, cuda_executor const

&exec, F &&f, Ts&&... ts)

template<typename F, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::async_execute_t,

cuda_executor const &exec, F &&f, Ts&&... ts)

Protected Functions

template<typename R, typename ...Params, typename ...Args>
inline void post(R (*cuda_function)(Params...), Args&&... args) const

template<typename R, typename ...Params, typename ...Args>
inline hpx::future<void> async(R (*cuda_kernel)(Params...), Args&&... args) const

struct cuda_executor_base
Subclassed by hpx::cuda::experimental::cuda_executor

Public Types

using future_type = hpx::future<void>

Public Functions

inline cuda_executor_base(std::size_t device, bool event_mode)

inline future_type get_future() const

Protected Attributes

int device_

bool event_mode_

cudaStream_t stream_

std::shared_ptr<hpx::cuda::experimental::target> target_

namespace execution

988 Chapter 2. What’s so special about HPX?

HPX Documentation, master

namespace experimental

async_mpi

See Public API for a list of names and headers that are part of the public HPX API.

hpx/async_mpi/mpi_executor.hpp

Defined in header hpx/async_mpi/mpi_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace mpi

namespace experimental

struct executor

Public Types

using execution_category = hpx::execution::parallel_execution_tag

using executor_parameters_type = hpx::execution::experimental::default_parameters

Public Functions

inline explicit constexpr executor(MPI_Comm communicator = MPI_COMM_WORLD)

template<typename F, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::async_execute_t, executor

const &exec, F &&f, Ts&&... ts)

inline std::size_t in_flight_estimate() const

Private Members

MPI_Comm communicator_

2.8. API reference 989

HPX Documentation, master

hpx/async_mpi/transform_mpi.hpp

Defined in header hpx/async_mpi/transform_mpi.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace mpi

namespace experimental

Variables

hpx::mpi::experimental::transform_mpi_t transform_mpi

struct transform_mpi_t : public hpx::functional::detail::tag_fallback<transform_mpi_t>

Friends

template<typename Sender,
typename F> inline friend constexpr friend auto tag_fallback_invoke (transform_mpi_t,
Sender &&s, F &&f)

template<typename F> inline friend constexpr friend auto tag_fallback_invoke (transform_mpi_t,
F &&f)

cache

See Public API for a list of names and headers that are part of the public HPX API.

hpx/cache/local_cache.hpp

Defined in header hpx/cache/local_cache.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

template<typename Key, typename Entry, typename UpdatePolicy = std::less<Entry>, typename
InsertPolicy = policies::always<Entry>, typename CacheStorage = std::map<Key, Entry>,
typename Statistics = statistics::no_statistics>

990 Chapter 2. What’s so special about HPX?

HPX Documentation, master

class local_cache
#include <hpx/cache/local_cache.hpp> The local_cache implements the basic functionality
needed for a local (non-distributed) cache.

Template Parameters
• Key – The type of the keys to use to identify the entries stored in the cache
• Entry – The type of the items to be held in the cache, must model the CacheEntry

concept
• UpdatePolicy – A (optional) type specifying a (binary) function object used to sort

the cache entries based on their ‘age’. The ‘oldest’ entries (according to this sorting
criteria) will be discarded first if the maximum capacity of the cache is reached. The
default is std::less<Entry>. The function object will be invoked using 2 entry instances
of the type Entry. This type must model the UpdatePolicy model.

• InsertPolicy – A (optional) type specifying a (unary) function object used to allow
global decisions whether a particular entry should be added to the cache or not. The
default is policies::always, imposing no global insert related criteria on the cache. The
function object will be invoked using the entry instance to be inserted into the cache.
This type must model the InsertPolicy model.

• CacheStorage – A (optional) container type used to store the cache items. The
container must be an associative and STL compatible container.The default is a
std::map<Key, Entry>.

• Statistics – A (optional) type allowing to collect some basic statistics about the oper-
ation of the cache instance. The type must conform to the CacheStatistics concept. The
default value is the type statistics::no_statistics which does not collect any numbers, but
provides empty stubs allowing the code to compile.

Public Types

using key_type = Key

using entry_type = Entry

using update_policy_type = UpdatePolicy

using insert_policy_type = InsertPolicy

using storage_type = CacheStorage

using statistics_type = Statistics

using value_type = typename entry_type::value_type

using size_type = typename storage_type::size_type

using storage_value_type = typename storage_type::value_type

2.8. API reference 991

HPX Documentation, master

Public Functions

inline explicit local_cache(size_type max_size = 0, update_policy_type const &up =
update_policy_type(), insert_policy_type const &ip =
insert_policy_type())

Construct an instance of a local_cache.
Parameters

• max_size – [in] The maximal size this cache is allowed to reach any time. The default
is zero (no size limitation). The unit of this value is usually determined by the unit of
the values returned by the entry’s get_size function.

• up – [in] An instance of the UpdatePolicy to use for this cache. The default is to use
a default constructed instance of the type as defined by the UpdatePolicy template
parameter.

• ip – [in] An instance of the InsertPolicy to use for this cache. The default is to use
a default constructed instance of the type as defined by the InsertPolicy template pa-
rameter.

local_cache(local_cache const &other) = default

local_cache(local_cache &&other) = default

local_cache &operator=(local_cache const &other) = default

local_cache &operator=(local_cache &&other) = default

~local_cache() = default

inline constexpr size_type size() const noexcept
Return current size of the cache.

Returns The current size of this cache instance.

inline constexpr size_type capacity() const noexcept
Access the maximum size the cache is allowed to grow to.

Note: The unit of this value is usually determined by the unit of the return values of the entry’s
function entry::get_size.

Returns The maximum size this cache instance is currently allowed to reach. If this num-
ber is zero the cache has no limitation with regard to a maximum size.

inline bool reserve(size_type max_size)
Change the maximum size this cache can grow to.

Parameters max_size – [in] The new maximum size this cache will be allowed to grow
to.

Returns This function returns true if successful. It returns false if the new max_size is
smaller than the current limit and the cache could not be shrunk to the new maximum
size.

inline bool holds_key(key_type const &k) const
Check whether the cache currently holds an entry identified by the given key.

Note: This function does not call the entry’s function entry::touch. It just checks if the cache
contains an entry corresponding to the given key.

992 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters k – [in] The key for the entry which should be looked up in the cache.
Returns This function returns true if the cache holds the referenced entry, otherwise it

returns false.

inline bool get_entry(key_type const &k, key_type &realkey, entry_type &val)
Get a specific entry identified by the given key.

Note: The function will call the entry’s entry::touch function if the value corresponding to the
provided key is found in the cache.

Parameters
• k – [in] The key for the entry which should be retrieved from the cache.
• realkey[out] – Return the full real key found in the cache
• val – [out] If the entry indexed by the key is found in the cache this value on successful

return will be a copy of the corresponding entry.
Returns This function returns true if the cache holds the referenced entry, otherwise it

returns false.

inline bool get_entry(key_type const &k, entry_type &val)
Get a specific entry identified by the given key.

Note: The function will call the entry’s entry::touch function if the value corresponding to the
provided key is found in the cache.

Parameters
• k – [in] The key for the entry which should be retrieved from the cache.
• val – [out] If the entry indexed by the key is found in the cache this value on successful

return will be a copy of the corresponding entry.
Returns This function returns true if the cache holds the referenced entry, otherwise it

returns false.

inline bool get_entry(key_type const &k, value_type &val)
Get a specific entry identified by the given key.

Note: The function will call the entry’s entry::touch function if the value corresponding to the
provided is found in the cache.

Parameters
• k – [in] The key for the entry which should be retrieved from the cache
• val – [out] If the entry indexed by the key is found in the cache this value on successful

return will be a copy of the corresponding value.
Returns This function returns true if the cache holds the referenced entry, otherwise it

returns false.

inline bool insert(key_type const &k, value_type const &val)
Insert a new element into this cache.

Note: This function invokes both, the insert policy as provided to the constructor and the
function entry::insert of the newly constructed entry instance. If either of these functions returns
false the key/value pair doesn’t get inserted into the cache and the insert function will return
false. Other reasons for this function to fail (return false) are a) the key/value pair is already

2.8. API reference 993

HPX Documentation, master

held in the cache or b) inserting the new value into the cache maxed out its capacity and it was
not possible to free any of the existing entries.

Parameters
• k – [in] The key for the entry which should be added to the cache.
• val – [in] The value which should be added to the cache.

Returns This function returns true if the entry has been successfully added to the cache,
otherwise it returns false.

inline bool insert(key_type const &k, value_type &&val)

template<typename Entry_, std::enable_if_t<std::is_convertible_v<std::decay_t<Entry_>,
entry_type>, int> = 0>
inline bool insert(key_type const &k, Entry_ &&e)

Insert a new entry into this cache.

Note: This function invokes both, the insert policy as provided to the constructor and the
function entry::insert of the provided entry instance. If either of these functions returns false
the key/value pair doesn’t get inserted into the cache and the insert function will return false.
Other reasons for this function to fail (return false) are a) the key/value pair is already held in the
cache or b) inserting the new value into the cache maxed out its capacity and it was not possible
to free any of the existing entries.

Parameters
• k – [in] The key for the entry which should be added to the cache.
• e – [in] The entry which should be added to the cache.

Returns This function returns true if the entry has been successfully added to the cache,
otherwise it returns false.

template<typename Value, std::enable_if_t<std::is_convertible_v<std::decay_t<Value>,
value_type>, int> = 0>
inline bool update(key_type const &k, Value &&val)

Update an existing element in this cache.

Note: The function will call the entry’s entry::touch function if the indexed value is found in
the cache.

Note: The difference to the other overload of the insert function is that this overload replaces
the cached value only, while the other overload replaces the whole cache entry, updating the
cache entry properties.

Parameters
• k – [in] The key for the value which should be updated in the cache.
• val – [in] The value which should be used as a replacement for the existing value in

the cache. Any existing cache entry is not changed except for its value.
Returns This function returns true if the entry has been successfully updated, otherwise

it returns false. If the entry currently is not held by the cache it is added and the return
value reflects the outcome of the corresponding insert operation.

template<typename F, typename Value, typename =
std::enable_if_t<std::is_convertible_v<std::decay_t<Value>, value_type>>>

994 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline bool update_if(key_type const &k, Value &&val, F &&f)
Update an existing element in this cache.

Note: The function will call the entry’s entry::touch function if the indexed value is found in
the cache.

Note: The difference to the other overload of the insert function is that this overload replaces
the cached value only, while the other overload replaces the whole cache entry, updating the
cache entry properties.

Parameters
• k – [in] The key for the value which should be updated in the cache.
• val – [in] The value which should be used as a replacement for the existing value in

the cache. Any existing cache entry is not changed except for its value.
• f – [in] A callable taking two arguments, k and the key found in the cache (in that

order). If f returns true, then the update will continue. If f returns false, then the
update will not succeed.

Returns This function returns true if the entry has been successfully updated, otherwise
it returns false. If the entry currently is not held by the cache it is added and the return
value reflects the outcome of the corresponding insert operation.

template<typename Entry_, std::enable_if_t<std::is_convertible_v<std::decay_t<Entry_>,
entry_type>, int> = 0>
inline bool update(key_type const &k, Entry_ &&e)

Update an existing entry in this cache.

Note: The function will call the entry’s entry::touch function if the indexed value is found in
the cache.

Note: The difference to the other overload of the insert function is that this overload replaces
the whole cache entry, while the other overload retplaces the cached value only, leaving the
cache entry properties untouched.

Parameters
• k – [in] The key for the entry which should be updated in the cache.
• e – [in] The entry which should be used as a replacement for the existing entry in the

cache. Any existing entry is first removed and then this entry is added.
Returns This function returns true if the entry has been successfully updated, otherwise

it returns false. If the entry currently is not held by the cache it is added and the return
value reflects the outcome of the corresponding insert operation.

template<typename Func = policies::always<storage_value_type>>
inline size_type erase(Func &&ep = Func())

Remove stored entries from the cache for which the supplied function object returns true.
Parameters ep – [in] This parameter has to be a (unary) function object. It is invoked for

each of the entries currently held in the cache. An entry is considered for removal from
the cache whenever the value returned from this invocation is true. Even then the entry
might not be removed from the cache as its entry::remove function might return false.

2.8. API reference 995

HPX Documentation, master

Returns This function returns the overall size of the removed entries (which is the sum of
the values returned by the entry::get_size functions of the removed entries).

inline size_type erase()
Remove all stored entries from the cache.

Note: All entries are considered for removal, but in the end an entry might not be removed
from the cache as its entry::remove function might return false. This function is very useful for
instance in conjunction with an entry’s entry::remove function enforcing additional criteria like
entry expiration, etc.

Returns This function returns the overall size of the removed entries (which is the sum of
the values returned by the entry::get_size functions of the removed entries).

inline void clear()
Clear the cache.

Unconditionally removes all stored entries from the cache.

inline constexpr statistics_type const &get_statistics() const noexcept
Allow to access the embedded statistics instance.

Returns This function returns a reference to the statistics instance embedded inside this
cache

inline statistics_type &get_statistics() noexcept

Protected Functions

inline bool free_space(long num_free)

Private Types

using iterator = typename storage_type::iterator

using const_iterator = typename storage_type::const_iterator

using heap_type = std::deque<iterator>

using heap_iterator = typename heap_type::iterator

using adapted_update_policy_type = adapt<UpdatePolicy, iterator>

using update_on_exit = typename statistics_type::update_on_exit

996 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Members

size_type max_size_

size_type current_size_

storage_type store_

heap_type entry_heap_

adapted_update_policy_type update_policy_

insert_policy_type insert_policy_

statistics_type statistics_

template<typename Func, typename Iterator>

struct adapt

Public Functions

inline explicit adapt(Func const &f)

inline explicit adapt(Func &&f) noexcept

inline bool operator()(Iterator const &lhs, Iterator const &rhs) const

Public Members

Func f_

hpx/cache/lru_cache.hpp

Defined in header hpx/cache/lru_cache.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

template<typename Key, typename Entry, typename Statistics = statistics::no_statistics>

2.8. API reference 997

HPX Documentation, master

class lru_cache
#include <hpx/cache/lru_cache.hpp> The lru_cache implements the basic functionality needed
for a local (non-distributed) LRU cache.

Template Parameters
• Key – The type of the keys to use to identify the entries stored in the cache
• Entry – The type of the items to be held in the cache.
• Statistics – A (optional) type allowing to collect some basic statistics about the oper-

ation of the cache instance. The type must conform to the CacheStatistics concept. The
default value is the type statistics::no_statistics which does not collect any numbers, but
provides empty stubs allowing the code to compile.

Public Types

using key_type = Key

using entry_type = Entry

using statistics_type = Statistics

using entry_pair = std::pair<key_type, entry_type>

using storage_type = std::list<entry_pair>

using map_type = std::map<Key, typename storage_type::iterator>

using size_type = std::size_t

Public Functions

inline explicit lru_cache(size_type max_size = 0)
Construct an instance of a lru_cache.

Parameters max_size – [in] The maximal size this cache is allowed to reach any time.
The default is zero (no size limitation). The unit of this value is usually determined by
the unit of the values returned by the entry’s get_size function.

lru_cache(lru_cache const &other) = default

lru_cache(lru_cache &&other) = default

lru_cache &operator=(lru_cache const &other) = default

lru_cache &operator=(lru_cache &&other) = default

~lru_cache() = default

inline constexpr size_type size() const noexcept
Return current size of the cache.

Returns The current size of this cache instance.

998 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline constexpr size_type capacity() const noexcept
Access the maximum size the cache is allowed to grow to.

Note: The unit of this value is usually determined by the unit of the return values of the entry’s
function entry::get_size.

Returns The maximum size this cache instance is currently allowed to reach. If this num-
ber is zero the cache has no limitation with regard to a maximum size.

inline void reserve(size_type max_size)
Change the maximum size this cache can grow to.

Parameters max_size – [in] The new maximum size this cache will be allowed to grow
to.

inline bool holds_key(key_type const &key) const
Check whether the cache currently holds an entry identified by the given key.

Note: This function does not call the entry’s function entry::touch. It just checks if the cache
contains an entry corresponding to the given key.

Parameters key – [in] The key for the entry which should be looked up in the cache.
Returns This function returns true if the cache holds the referenced entry, otherwise it

returns false.

inline bool get_entry(key_type const &key, key_type &realkey, entry_type &entry)
Get a specific entry identified by the given key.

Note: The function will “touch” the entry and mark it as recently used if the key was found in
the cache.

Parameters
• key – [in] The key for the entry which should be retrieved from the cache.
• realkey[out] – Return the full real key found in the cache
• entry – [out] If the entry indexed by the key is found in the cache this value on

successful return will be a copy of the corresponding entry.
Returns This function returns true if the cache holds the referenced entry, otherwise it

returns false.

inline bool get_entry(key_type const &key, entry_type const &entry)
Get a specific entry identified by the given key.

Note: The function will “touch” the entry and mark it as recently used if the key was found in
the cache.

Parameters
• key – [in] The key for the entry which should be retrieved from the cache.
• entry – [out] If the entry indexed by the key is found in the cache this value on

successful return will be a copy of the corresponding entry.
Returns This function returns true if the cache holds the referenced entry, otherwise it

returns false.

2.8. API reference 999

HPX Documentation, master

template<typename Entry_, typename =
std::enable_if_t<std::is_convertible_v<std::decay_t<Entry_>, entry_type>>>
inline bool insert(key_type const &key, Entry_ &&entry)

Insert a new entry into this cache.

Note: This function assumes that the entry is not in the cache already. Inserting an already
existing entry is considered undefined behavior

Parameters
• key – [in] The key for the entry which should be added to the cache.
• entry – [in] The entry which should be added to the cache.

template<typename Entry_, typename =
std::enable_if_t<std::is_convertible_v<std::decay_t<Entry_>, entry_type>>>
inline void update(key_type const &key, Entry_ &&entry)

Update an existing element in this cache.

Note: The function will “touch” the entry and mark it as recently used if the key was found in
the cache.

Note: The difference to the other overload of the insert function is that this overload replaces
the cached value only, while the other overload replaces the whole cache entry, updating the
cache entry properties.

Parameters
• key – [in] The key for the value which should be updated in the cache.
• entry – [in] The entry which should be used as a replacement for the existing value

in the cache. Any existing cache entry is not changed except for its value.

template<typename F, typename Entry_,
std::enable_if_t<std::is_convertible_v<std::decay_t<Entry_>, entry_type>, int> = 0>
inline bool update_if(key_type const &key, Entry_ &&entry, F &&f)

Update an existing element in this cache.

Note: The function will “touch” the entry and mark it as recently used if the key was found in
the cache.

Note: The difference to the other overload of the insert function is that this overload replaces
the cached value only, while the other overload replaces the whole cache entry, updating the
cache entry properties.

Parameters
• key – [in] The key for the value which should be updated in the cache.
• entry – [in] The value which should be used as a replacement for the existing value

in the cache. Any existing cache entry is not changed except for its value.
• f – [in] A callable taking two arguments, k and the key found in the cache (in that

order). If f returns true, then the update will continue. If f returns false, then the
update will not succeed.

1000 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns This function returns true if the entry has been successfully updated, otherwise
it returns false. If the entry currently is not held by the cache it is added and the return
value reflects the outcome of the corresponding insert operation.

template<typename Func>
inline size_type erase(Func const &ep)

Remove stored entries from the cache for which the supplied function object returns true.
Parameters ep – [in] This parameter has to be a (unary) function object. It is invoked for

each of the entries currently held in the cache. An entry is considered for removal from
the cache whenever the value returned from this invocation is true.

Returns This function returns the overall size of the removed entries (which is the sum of
the values returned by the entry::get_size functions of the removed entries).

inline size_type erase()
Remove all stored entries from the cache.

Returns This function returns the overall size of the removed entries (which is the sum of
the values returned by the entry::get_size functions of the removed entries).

inline size_type clear()
Clear the cache.

Unconditionally removes all stored entries from the cache.

inline constexpr statistics_type const &get_statistics() const noexcept
Allow to access the embedded statistics instance.

Returns This function returns a reference to the statistics instance embedded inside this
cache

inline statistics_type &get_statistics() noexcept

Private Types

using update_on_exit = typename statistics_type::update_on_exit

Private Functions

template<typename Entry_, typename =
std::enable_if_t<std::is_convertible_v<std::decay_t<Entry_>, entry_type>>>
inline void insert_nonexist(key_type const &key, Entry_ &&entry)

inline void touch(typename storage_type::iterator it)

inline void evict()

2.8. API reference 1001

HPX Documentation, master

Private Members

size_type max_size_

size_type current_size_ = 0

storage_type storage_

map_type map_

statistics_type statistics_

hpx/cache/entries/entry.hpp

Defined in header hpx/cache/entries/entry.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

namespace entries

class entry
#include <hpx/cache/entries/entry.hpp>

Template Parameters
• Value – The data type to be stored in a cache. It has to be default constructible, copy

constructible and less_than_comparable.
• Derived – The (optional) type for which this type is used as a base class.

Public Types

using value_type = Value

1002 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

entry() = default
Any cache entry has to be default constructible.

inline explicit entry(value_type const &val)
noexcept(std::is_nothrow_copy_constructible_v<value_type>)

Construct a new instance of a cache entry holding the given value.

inline explicit entry(value_type &&val) noexcept
Construct a new instance of a cache entry holding the given value.

inline value_type &get() noexcept
Get a reference to the stored data value.

Note: This function is part of the CacheEntry concept

inline constexpr value_type const &get() const noexcept

Public Static Functions

static inline constexpr bool touch() noexcept
The function touch is called by a cache holding this instance whenever it has been requested
(touched).

Note: It is possible to change the entry in a way influencing the sort criteria mandated by
the UpdatePolicy. In this case the function should return true to indicate this to the cache,
forcing to reorder the cache entries.

Note: This function is part of the CacheEntry concept

Returns This function should return true if the cache needs to update it’s internal heap.
Usually this is needed if the entry has been changed by touch() in a way influencing
the sort order as mandated by the cache’s UpdatePolicy

static inline constexpr bool insert() noexcept
The function insert is called by a cache whenever it is about to be inserted into the cache.

Note: This function is part of the CacheEntry concept

Returns This function should return true if the entry should be added to the cache,
otherwise it should return false.

static inline constexpr bool remove() noexcept
The function remove is called by a cache holding this instance whenever it is about to be
removed from the cache.

Note: This function is part of the CacheEntry concept

2.8. API reference 1003

HPX Documentation, master

Returns The return value can be used to avoid removing this instance from the cache.
If the value is true it is ok to remove the entry, other wise it will stay in the cache.

static inline constexpr std::size_t get_size() noexcept
Return the ‘size’ of this entry. By default the size of each entry is just one (1), which is
sensible if the cache has a limit (capacity) measured in number of entries.

Private Members

value_type value_

Friends

inline friend bool operator<(entry const &lhs, entry const &rhs)
noexcept(noexcept(std::declval<value_type const&>() <
std::declval<value_type const&>()))

Forwarding operator< allowing to compare entries instead of the values.

hpx/cache/entries/fifo_entry.hpp

Defined in header hpx/cache/entries/fifo_entry.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

namespace entries

template<typename Value>

class fifo_entry : public hpx::util::cache::entries::entry<Value, fifo_entry<Value>>
#include <hpx/cache/entries/fifo_entry.hpp> The fifo_entry type can be used to store arbitrary
values in a cache. Using this type as the cache’s entry type makes sure that the least recently
inserted entries are discarded from the cache first.

Note: The fifo_entry conforms to the CacheEntry concept.

Note: This type can be used to model a ‘last in first out’ cache policy if it is used with a
std::greater as the caches’ UpdatePolicy (instead of the default std::less).

Template Parameters Value – The data type to be stored in a cache. It has to be default
constructible, copy constructible and less_than_comparable.

1004 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

fifo_entry() = default
Any cache entry has to be default constructible.

inline explicit fifo_entry(Value const &val)
noexcept(std::is_nothrow_constructible_v<base_type, Value
const&>)

Construct a new instance of a cache entry holding the given value.

inline explicit fifo_entry(Value &&val) noexcept
Construct a new instance of a cache entry holding the given value.

inline constexpr bool insert()
The function insert is called by a cache whenever it is about to be inserted into the cache.

Note: This function is part of the CacheEntry concept

Returns This function should return true if the entry should be added to the cache,
otherwise it should return false.

inline constexpr time_point const &get_creation_time() const noexcept

Private Types

using base_type = entry<Value, fifo_entry<Value>>

using time_point = std::chrono::steady_clock::time_point

Private Members

time_point insertion_time_

Friends

inline friend bool operator<(fifo_entry const &lhs, fifo_entry const &rhs)
noexcept(noexcept(std::declval<time_point const&>() <
std::declval<time_point const&>()))

Compare the ‘age’ of two entries. An entry is ‘older’ than another entry if it has been created
earlier (FIFO).

2.8. API reference 1005

HPX Documentation, master

hpx/cache/entries/lfu_entry.hpp

Defined in header hpx/cache/entries/lfu_entry.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

namespace entries

template<typename Value>

class lfu_entry : public hpx::util::cache::entries::entry<Value, lfu_entry<Value>>
#include <hpx/cache/entries/lfu_entry.hpp> The lfu_entry type can be used to store arbitrary
values in a cache. Using this type as the cache’s entry type makes sure that the least frequently
used entries are discarded from the cache first.

Note: The lfu_entry conforms to the CacheEntry concept.

Note: This type can be used to model a ‘most frequently used’ cache policy if it is used with
a std::greater as the caches’ UpdatePolicy (instead of the default std::less).

Template Parameters Value – The data type to be stored in a cache. It has to be default
constructible, copy constructible and less_than_comparable.

Public Functions

lfu_entry() = default
Any cache entry has to be default constructible.

inline explicit lfu_entry(Value const &val)
noexcept(std::is_nothrow_constructible_v<base_type, Value
const&>)

Construct a new instance of a cache entry holding the given value.

inline explicit lfu_entry(Value &&val) noexcept
Construct a new instance of a cache entry holding the given value.

inline bool touch() noexcept
The function touch is called by a cache holding this instance whenever it has been requested
(touched).

In the case of the LFU entry we store the reference count tracking the number of times this
entry has been requested. This which will be used to compare the age of an entry during the
invocation of the operator<().

1006 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns This function should return true if the cache needs to update it’s internal heap.
Usually this is needed if the entry has been changed by touch() in a way influencing
the sort order as mandated by the cache’s UpdatePolicy

inline constexpr unsigned long const &get_access_count() const noexcept

Private Types

using base_type = entry<Value, lfu_entry<Value>>

Private Members

unsigned long ref_count_ = 0

Friends

inline friend bool operator<(lfu_entry const &lhs, lfu_entry const &rhs) noexcept
Compare the ‘age’ of two entries. An entry is ‘older’ than another entry if it has been accessed
less frequently (LFU).

hpx/cache/entries/lru_entry.hpp

Defined in header hpx/cache/entries/lru_entry.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

namespace entries

template<typename Value>

class lru_entry : public hpx::util::cache::entries::entry<Value, lru_entry<Value>>
#include <hpx/cache/entries/lru_entry.hpp> The lru_entry type can be used to store arbitrary
values in a cache. Using this type as the cache’s entry type makes sure that the least recently
used entries are discarded from the cache first.

Note: The lru_entry conforms to the CacheEntry concept.

Note: This type can be used to model a ‘most recently used’ cache policy if it is used with a
std::greater as the caches’ UpdatePolicy (instead of the default std::less).

2.8. API reference 1007

HPX Documentation, master

Template Parameters Value – The data type to be stored in a cache. It has to be default
constructible, copy constructible and less_than_comparable.

Public Functions

inline lru_entry()
Any cache entry has to be default constructible.

inline explicit lru_entry(Value const &val)
noexcept(std::is_nothrow_constructible_v<base_type, Value
const&>)

Construct a new instance of a cache entry holding the given value.

inline explicit lru_entry(Value &&val) noexcept
Construct a new instance of a cache entry holding the given value.

inline bool touch()
The function touch is called by a cache holding this instance whenever it has been requested
(touched).

In the case of the LRU entry we store the time of the last access which will be used to compare
the age of an entry during the invocation of the operator<().

Returns This function should return true if the cache needs to update it’s internal heap.
Usually this is needed if the entry has been changed by touch() in a way influencing
the sort order as mandated by the cache’s UpdatePolicy

inline constexpr time_point const &get_access_time() const noexcept
Returns the last access time of the entry.

Private Types

using base_type = entry<Value, lru_entry<Value>>

using time_point = std::chrono::steady_clock::time_point

Private Members

time_point access_time_

Friends

inline friend bool operator<(lru_entry const &lhs, lru_entry const &rhs)
noexcept(noexcept(std::declval<time_point const&>() <
std::declval<time_point const&>()))

Compare the ‘age’ of two entries. An entry is ‘older’ than another entry if it has been accessed
less recently (LRU).

1008 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/cache/entries/size_entry.hpp

Defined in header hpx/cache/entries/size_entry.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

namespace entries

class size_entry
#include <hpx/cache/entries/size_entry.hpp> The size_entry type can be used to store values
in a cache which have a size associated (such as files, etc.). Using this type as the cache’s entry
type makes sure that the entries with the biggest size are discarded from the cache first.

Note: The size_entry conforms to the CacheEntry concept.

Note: This type can be used to model a ‘discard smallest first’ cache policy if it is used with a
std::greater as the caches’ UpdatePolicy (instead of the default std::less).

Template Parameters
• Value – The data type to be stored in a cache. It has to be default constructible, copy

constructible and less_than_comparable.
• Derived – The (optional) type for which this type is used as a base class.

Public Functions

size_entry() = default
Any cache entry has to be default constructible.

inline explicit size_entry(Value const &val, std::size_t size = 0)
noexcept(std::is_nothrow_constructible_v<base_type, Value
const&>)

Construct a new instance of a cache entry holding the given value.

inline explicit size_entry(Value &&val, std::size_t size = 0) noexcept
Construct a new instance of a cache entry holding the given value.

inline constexpr std::size_t get_size() const noexcept
Return the ‘size’ of this entry.

2.8. API reference 1009

HPX Documentation, master

Private Types

using derived_type = typename detail::size_derived<Value, Derived>::type

using base_type = entry<Value, derived_type>

Private Members

std::size_t size_ = 0

Friends

inline friend constexpr friend bool operator< (size_entry const &lhs,
size_entry const &rhs) noexcept

Compare the ‘age’ of two entries. An entry is ‘older’ than another entry if it has a bigger size.

hpx/cache/statistics/local_statistics.hpp

Defined in header hpx/cache/statistics/local_statistics.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

namespace statistics

class local_statistics : public hpx::util::cache::statistics::no_statistics

Public Functions

local_statistics() = default

inline constexpr std::size_t hits() const noexcept

inline constexpr std::size_t misses() const noexcept

inline constexpr std::size_t insertions() const noexcept

inline constexpr std::size_t evictions() const noexcept

inline std::size_t hits(bool reset) noexcept

1010 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline std::size_t misses(bool reset) noexcept

inline std::size_t insertions(bool reset) noexcept

inline std::size_t evictions(bool reset) noexcept

inline void got_hit() noexcept
The function got_hit will be called by a cache instance whenever a entry got touched.

inline void got_miss() noexcept
The function got_miss will be called by a cache instance whenever a requested entry has not
been found in the cache.

inline void got_insertion() noexcept
The function got_insertion will be called by a cache instance whenever a new entry has been
inserted.

inline void got_eviction() noexcept
The function got_eviction will be called by a cache instance whenever an entry has been
removed from the cache because a new inserted entry let the cache grow beyond its capacity.

inline void clear() noexcept
Reset all statistics.

Private Members

std::size_t hits_ = 0

std::size_t misses_ = 0

std::size_t insertions_ = 0

std::size_t evictions_ = 0

Private Static Functions

static inline std::size_t get_and_reset(std::size_t &value, bool reset) noexcept

hpx/cache/statistics/no_statistics.hpp

Defined in header hpx/cache/statistics/no_statistics.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

namespace cache

2.8. API reference 1011

HPX Documentation, master

namespace statistics

Enums

enum class method
Values:

enumerator get_entry

enumerator insert_entry

enumerator update_entry

enumerator erase_entry

class no_statistics
Subclassed by hpx::util::cache::statistics::local_statistics

Public Static Functions

static inline constexpr void got_hit() noexcept
The function got_hit will be called by a cache instance whenever a entry got touched.

static inline constexpr void got_miss() noexcept
The function got_miss will be called by a cache instance whenever a requested entry has not
been found in the cache.

static inline constexpr void got_insertion() noexcept
The function got_insertion will be called by a cache instance whenever a new entry has been
inserted.

static inline constexpr void got_eviction() noexcept
The function got_eviction will be called by a cache instance whenever an entry has been
removed from the cache because a new inserted entry let the cache grow beyond its capacity.

static inline constexpr void clear() noexcept
Reset all statistics.

static inline constexpr std::int64_t get_get_entry_count(bool) noexcept
The function get_get_entry_count returns the number of invocations of the get_entry() API
function of the cache.

static inline constexpr std::int64_t get_insert_entry_count(bool) noexcept
The function get_insert_entry_count returns the number of invocations of the insert_entry()
API function of the cache.

static inline constexpr std::int64_t get_update_entry_count(bool) noexcept
The function get_update_entry_count returns the number of invocations of the update_entry()
API function of the cache.

1012 Chapter 2. What’s so special about HPX?

HPX Documentation, master

static inline constexpr std::int64_t get_erase_entry_count(bool) noexcept
The function get_erase_entry_count returns the number of invocations of the erase() API
function of the cache.

static inline constexpr std::int64_t get_get_entry_time(bool) noexcept
The function get_get_entry_time returns the overall time spent executing of the get_entry()
API function of the cache.

static inline constexpr std::int64_t get_insert_entry_time(bool) noexcept
The function get_insert_entry_time returns the overall time spent executing of the in-
sert_entry() API function of the cache.

static inline constexpr std::int64_t get_update_entry_time(bool) noexcept
The function get_update_entry_time returns the overall time spent executing of the up-
date_entry() API function of the cache.

static inline constexpr std::int64_t get_erase_entry_time(bool) noexcept
The function get_erase_entry_time returns the overall time spent executing of the erase() API
function of the cache.

struct update_on_exit
#include <no_statistics.hpp> Helper class to update timings and counts on function exit.

Public Functions

inline constexpr update_on_exit(no_statistics const&, method) noexcept

compute_local

See Public API for a list of names and headers that are part of the public HPX API.

hpx/compute_local/vector.hpp

Defined in header hpx/compute_local/vector.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace compute

Functions

template<typename T, typename Allocator>
void swap(vector<T , Allocator> &x, vector<T , Allocator> &y) noexcept

Effects: x.swap(y);.

template<typename T, typename Allocator = std::allocator<T>>

class vector

2.8. API reference 1013

HPX Documentation, master

Public Types

using value_type = T
Member types (FIXME: add reference to std.

using allocator_type = Allocator

using access_target = typename alloc_traits::access_target

using size_type = std::size_t

using difference_type = std::ptrdiff_t

using reference = typename alloc_traits::reference

using const_reference = typename alloc_traits::const_reference

using pointer = typename alloc_traits::pointer

using const_pointer = typename alloc_traits::const_pointer

using iterator = detail::iterator<T , Allocator>

using const_iterator = detail::iterator<T const, Allocator>

using reverse_iterator = detail::reverse_iterator<T , Allocator>

using const_reverse_iterator = detail::const_reverse_iterator<T , Allocator>

Public Functions

inline explicit vector(Allocator const &alloc = Allocator())

inline vector(size_type count, T const &value, Allocator const &alloc = Allocator())

inline explicit vector(size_type count, Allocator const &alloc = Allocator())

template<typename InIter, typename Enable = typename
std::enable_if<hpx::traits::is_input_iterator<InIter>::value>::type>
inline vector(InIter first, InIter last, Allocator const &alloc)

inline vector(vector const &other)

inline vector(vector const &other, Allocator const &alloc)

inline vector(vector &&other) noexcept

1014 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline vector(vector &&other, Allocator const &alloc)

inline vector(std::initializer_list<T> init, Allocator const &alloc)

inline ~vector()

inline vector &operator=(vector const &other)

inline vector &operator=(vector &&other) noexcept

inline allocator_type get_allocator() const noexcept
Returns the allocator associated with the container.

inline reference operator[](size_type pos)

inline const_reference operator[](size_type pos) const

inline pointer data() noexcept
Returns pointer to the underlying array serving as element storage. The pointer is such that range
[data(); data() + size()) is always a valid range, even if the container is empty (data() is not
dereference-able in that case).

inline const_pointer data() const noexcept
Returns pointer to the underlying array serving as element storage. The pointer is such that range
[data(); data() + size()) is always a valid range, even if the container is empty (data() is not
dereference-able in that case).

inline T *device_data() const noexcept
Returns a raw pointer corresponding to the address of the data allocated on the device.

inline std::size_t size() const noexcept

inline std::size_t capacity() const noexcept

inline bool empty() const noexcept
Returns: size() == 0.

inline void resize(size_type, T const&)

Effects: If size <= size(), equivalent to calling pop_back() size() - size times. If size() < size,
appends size - size() copies of val to the sequence.

Requires: T shall be CopyInsertable into *this.

Remarks: If an exception is thrown there are no effects.

inline iterator begin() noexcept

inline iterator end() noexcept

inline const_iterator cbegin() const noexcept

inline const_iterator cend() const noexcept

inline const_iterator begin() const noexcept

inline const_iterator end() const noexcept

inline void swap(vector &other) noexcept
Effects: Exchanges the contents and capacity() of *this with that of x.

Complexity: Constant time.

2.8. API reference 1015

HPX Documentation, master

inline void clear() noexcept
Effects: Erases all elements in the range [begin(),end()). Destroys all elements in ‘a’. Invalidates
all references, pointers, and iterators referring to the elements of a and may invalidate the past-
the-end iterator.

Post: a.empty() returns true.

Complexity: Linear.

Public Static Functions

static inline void resize(size_type)
Effects: If size <= size(), equivalent to calling pop_back() size()
• size times. If size() < size, appends size - size() default-inserted elements to the sequence.
Requires: T shall be MoveInsertable and DefaultInsertable into *this.

Remarks: If an exception is thrown other than by the move constructor of a non-CopyInsertable T
there are no effects.

Private Types

using alloc_traits = traits::allocator_traits<Allocator>

Private Members

size_type size_

size_type capacity_

allocator_type alloc_

pointer data_

hpx/compute_local/host/block_executor.hpp

Defined in header hpx/compute_local/host/block_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename Executor>

struct
hpx::execution::experimental::executor_execution_category<compute::host::block_executor<Executor>>

1016 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Types

using type = hpx::execution::parallel_execution_tag

template<typename Executor>

struct is_one_way_executor<compute::host::block_executor<Executor>> : public true_type

template<typename Executor>

struct is_two_way_executor<compute::host::block_executor<Executor>> : public true_type

template<typename Executor>

struct is_bulk_one_way_executor<compute::host::block_executor<Executor>> : public true_type

template<typename Executor>

struct is_bulk_two_way_executor<compute::host::block_executor<Executor>> : public true_type

namespace hpx

namespace compute

namespace host

template<typename Executor = hpx::execution::experimental::restricted_thread_pool_executor>

struct block_executor
#include <block_executor.hpp> The block executor can be used to build NUMA aware programs.
It will distribute work evenly across the passed targets

Template Parameters Executor – The underlying executor to use

Public Types

using executor_parameters_type = hpx::execution::experimental::default_parameters

Public Functions

inline explicit block_executor(std::vector<host::target> const &targets,
threads::thread_priority priority =
threads::thread_priority::high, threads::thread_stacksize
stacksize = threads::thread_stacksize::default_,
threads::thread_schedule_hint schedulehint = {})

inline explicit block_executor(std::vector<host::target> &&targets)

inline block_executor(block_executor const &other)

inline block_executor(block_executor &&other) noexcept

2.8. API reference 1017

HPX Documentation, master

inline block_executor &operator=(block_executor const &other)

inline block_executor &operator=(block_executor &&other) noexcept

inline std::vector<host::target> const &targets() const noexcept

Private Functions

inline auto get_next_executor() const

template<typename F, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::post_t, block_executor const

&exec, F &&f, Ts&&... ts)

template<typename F, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::async_execute_t,

block_executor const &exec, F &&f, Ts&&... ts)

template<typename F, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::sync_execute_t,

block_executor const &exec, F &&f, Ts&&... ts)

template<typename F, typename Shape, typename ...Ts>
inline decltype(auto) bulk_async_execute_impl(F &&f, Shape const &shape, Ts&&... ts)

const

template<typename F, typename Shape, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::bulk_async_execute_t,

block_executor const &exec, F &&f, Shape const
&shape, Ts&&... ts)

template<typename F, typename Shape, typename ...Ts>
inline decltype(auto) bulk_sync_execute_impl(F &&f, Shape const &shape, Ts&&... ts)

const

template<typename F, typename Shape, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::bulk_sync_execute_t,

block_executor const &exec, F &&f, Shape const
&shape, Ts&&... ts)

inline void init_executors()

Private Members

std::vector<host::target> targets_

mutable std::atomic<std::size_t> current_

std::vector<Executor> executors_

threads::thread_priority priority_ = threads::thread_priority::high

1018 Chapter 2. What’s so special about HPX?

HPX Documentation, master

threads::thread_stacksize stacksize_ = threads::thread_stacksize::default_

threads::thread_schedule_hint schedulehint_ = {}

namespace execution

namespace experimental

template<typename Executor> block_executor< Executor > >

Public Types

using type = hpx::execution::parallel_execution_tag

template<typename Executor> block_executor< Executor > > : public true_type

template<typename Executor> block_executor< Executor > > : public true_type

template<typename Executor> block_executor< Executor > > : public true_type

template<typename Executor> block_executor< Executor > > : public true_type

hpx/compute_local/host/block_fork_join_executor.hpp

Defined in header hpx/compute_local/host/block_fork_join_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

class block_fork_join_executor
#include <block_fork_join_executor.hpp> An executor with fork-join (blocking) semantics.

The block_fork_join_executor creates on construction a set of worker threads that are kept alive
for the duration of the executor. Copying the executor has reference semantics, i.e. copies of a
fork_join_executor hold a reference to the worker threads of the original instance. Scheduling
work through the executor concurrently from different threads is undefined behaviour.

The executor keeps a set of worker threads alive for the lifetime of the executor, meaning other
work will not be executed while the executor is busy or waiting for work. The executor has a
customizable delay after which it will yield to other work. Since starting and resuming the worker

2.8. API reference 1019

HPX Documentation, master

threads is a slow operation the executor should be reused whenever possible for multiple adjacent
parallel algorithms or invocations of bulk_(a)sync_execute.

This behaviour is similar to the plain fork_join_executor except that the block_fork_join_executor
creates a hierarchy of fork_join_executors, one for each target used to initialize it.

Public Functions

inline explicit block_fork_join_executor(threads::thread_priority priority =
threads::thread_priority::bound,
threads::thread_stacksize stacksize =
threads::thread_stacksize::small_,
fork_join_executor::loop_schedule const
schedule =
fork_join_executor::loop_schedule::static_,
std::chrono::nanoseconds yield_delay =
std::chrono::milliseconds(1))

Construct a block_fork_join_executor.

Note: This constructor will create one fork_join_executor for each numa domain

Parameters
• priority – The priority of the worker threads.
• stacksize – The stacksize of the worker threads. Must not be nostack.
• schedule – The loop schedule of the parallel regions.
• yield_delay – The time after which the executor yields to other work if it has not

received any new work for execution.

inline explicit block_fork_join_executor(std::vector<compute::host::target> const
&targets, threads::thread_priority priority =
threads::thread_priority::bound,
threads::thread_stacksize stacksize =
threads::thread_stacksize::small_,
fork_join_executor::loop_schedule const
schedule =
fork_join_executor::loop_schedule::static_,
std::chrono::nanoseconds yield_delay =
std::chrono::milliseconds(1))

Construct a block_fork_join_executor.

Note: This constructor will create one fork_join_executor for each given target

Parameters
• targets – The list of targets to use for thread placement
• priority – The priority of the worker threads.
• stacksize – The stacksize of the worker threads. Must not be nostack.
• schedule – The loop schedule of the parallel regions.
• yield_delay – The time after which the executor yields to other work if it has not

received any new work for execution.

template<typename F, typename S, typename ...Ts>

1020 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline void bulk_sync_execute_helper(F &&f, S const &shape, Ts&&... ts)

template<typename F, typename S, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::bulk_async_execute_t,

block_fork_join_executor &exec, F &&f, S const
&shape, Ts&&... ts)

template<typename ...Fs>
inline void sync_invoke_helper(Fs&&... fs) const

template<typename F, typename ...Fs>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::sync_invoke_t,

block_fork_join_executor const &exec, F &&f,
Fs&&... fs)

template<typename F, typename ...Fs>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::async_invoke_t,

block_fork_join_executor const &exec, F &&f,
Fs&&... fs)

template<typename Tag>
inline decltype(auto) friend tag_invoke(Tag tag, block_fork_join_executor const &exec)

noexcept

Private Members

fork_join_executor exec_

std::vector<fork_join_executor> block_execs_

Private Static Functions

static inline hpx::threads::mask_type cores_for_targets(std::vector<compute::host::target>
const &targets)

Friends

template<typename F, typename S, typename ...Ts>
inline friend void tag_invoke(hpx::parallel::execution::bulk_sync_execute_t,

block_fork_join_executor &exec, F &&f, S const &shape,
Ts&&... ts)

template<typename Tag, typename Property>
inline friend block_fork_join_executor tag_invoke(Tag tag, block_fork_join_executor const

&exec, Property &&prop) noexcept

2.8. API reference 1021

HPX Documentation, master

config

See Public API for a list of names and headers that are part of the public HPX API.

hpx/config/endian.hpp

Defined in header hpx/config/endian.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

coroutines

See Public API for a list of names and headers that are part of the public HPX API.

hpx/coroutines/thread_enums.hpp

Defined in header hpx/coroutines/thread_enums.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

Enums

enum class thread_schedule_state : std::int8_t
The thread_schedule_state enumerator encodes the current state of a thread instance

Values:

enumerator unknown

enumerator active
thread is currently active (running, has resources)

enumerator pending
thread is pending (ready to run, but no hardware resource available)

enumerator suspended
thread has been suspended (waiting for synchronization event, but still known and under control
of the thread-manager)

enumerator depleted
thread has been depleted (deeply suspended, it is not known to the thread-manager)

1022 Chapter 2. What’s so special about HPX?

HPX Documentation, master

enumerator terminated
thread has been stopped an may be garbage collected

enumerator staged
this is not a real thread state, but allows to reference staged task descriptions, which eventually
will be converted into thread objects

enumerator pending_do_not_schedule
this is not a real thread state, but allows to create a thread in pending state without scheduling it
(internal, do not use)

enumerator pending_boost
this is not a real thread state, but allows to suspend a thread in pending state without high priority
rescheduling

enumerator deleted
thread has been stopped and was deleted

enum class thread_priority : std::int8_t
This enumeration lists all possible thread-priorities for HPX threads.

Values:

enumerator unknown

enumerator default_
Will assign the priority of the task to the default (normal) priority.

enumerator low
Task goes onto a special low priority queue and will not be executed until all high/normal priority
tasks are done, even if they are added after the low priority task.

enumerator normal
Task will be executed when it is taken from the normal priority queue, this is usually a first in-
first-out ordering of tasks (depending on scheduler choice). This is the default priority.

enumerator high_recursive
The task is a high priority task and any child tasks spawned by this task will be made high priority
as well - unless they are specifically flagged as non default priority.

enumerator boost
Same as thread_priority_high except that the thread will fall back to thread_priority_normal if
resumed after being suspended.

enumerator high
Task goes onto a special high priority queue and will be executed before normal/low priority tasks
are taken (some schedulers modify the behavior slightly and the documentation for those should
be consulted).

2.8. API reference 1023

HPX Documentation, master

enumerator bound
Task goes onto a special high priority queue and will never be stolen by another thread after initial
assignment. This should be used for thread placement tasks such as OpenMP type for loops.

enum class thread_restart_state : std::int8_t
The thread_restart_state enumerator encodes the reason why a thread is being restarted

Values:

enumerator unknown

enumerator signaled
The thread has been signaled.

enumerator timeout
The thread has been reactivated after a timeout.

enumerator terminate
The thread needs to be terminated.

enumerator abort
The thread needs to be aborted.

enum class thread_stacksize : std::int8_t
A thread_stacksize references any of the possible stack-sizes for HPX threads.

Values:

enumerator unknown

enumerator small_
use small stack size (the underscore is to work around ‘small’ being defined to char on Windows)

enumerator medium
use medium sized stack size

enumerator large
use large stack size

enumerator huge
use very large stack size

enumerator nostack
this thread does not suspend (does not need a stack)

enumerator current
use size of current thread’s stack

1024 Chapter 2. What’s so special about HPX?

HPX Documentation, master

enumerator default_
use default stack size

enumerator minimal
use minimally stack size

enumerator maximal
use maximally stack size

enum class thread_schedule_hint_mode : std::int8_t
The type of hint given when creating new tasks.

Values:

enumerator none
A hint that leaves the choice of scheduling entirely up to the scheduler.

enumerator thread
A hint that tells the scheduler to prefer scheduling a task on the local thread number associated
with this hint. Local thread numbers are indexed from zero. It is up to the scheduler to decide how
to interpret thread numbers that are larger than the number of threads available to the scheduler.
Typically thread numbers will wrap around when too large.

enumerator numa
A hint that tells the scheduler to prefer scheduling a task on the NUMA domain associated with
this hint. NUMA domains are indexed from zero. It is up to the scheduler to decide how to
interpret NUMA domain indices that are larger than the number of available NUMA domains to
the scheduler. Typically indices will wrap around when too large.

enum class thread_placement_hint : std::int8_t
The type of hint given to the scheduler related to thread placement

The type of hint given to the scheduler related running a thread as a child directly in the context of the
parent thread

Values:

enumerator none
No hint is specified. The implementation is free to chose what placement methods to use.

enumerator depth_first
A hint that tells the scheduler to prefer spreading thread placement on a depth-first basis (i.e.
consecutively scheduled threads are placed on the same core).

enumerator breadth_first
A hint that tells the scheduler to prefer spreading thread placement on a breadth-first basis (i.e.
consecutively scheduled threads are placed on the neighboring cores).

2.8. API reference 1025

HPX Documentation, master

enumerator depth_first_reverse
A hint that tells the scheduler to prefer spreading thread placement on a depth-first basis (i.e.
consecutively scheduled threads are placed on the same core). Threads are being scheduled in
reverse order.

enumerator breadth_first_reverse
A hint that tells the scheduler to prefer spreading thread placement on a breadth-first basis (i.e.
consecutively scheduled threads are placed on the neighboring cores). Threads are being scheduled
in reverse order.

enum class thread_sharing_hint : std::int8_t
The type of hint given to the scheduler related to whether it is ok to share the invoked function object
between threads

Values:

enumerator none
No hint is specified. The implementation is free to chose what sharing methods to use.

enumerator do_not_share_function
A hint that tells the scheduler to avoid sharing the given function (object) between threads.

enumerator do_not_combine_tasks
A hint that tells the scheduler to avoid combining tasks on the same thread. This is important for
tasks that may synchronize between each other, which could lead to deadlocks if those tasks are
combined running by the same thread.

enum class thread_execution_hint : std::int8_t
Values:

enumerator none
No hint is specified. Always run the thread in its own execution environment.

enumerator run_as_child
Attempt to run the thread in the execution context of the parent thread.

Functions

std::ostream &operator<<(std::ostream &os, thread_schedule_state t)

char const *get_thread_state_name(thread_schedule_state state) noexcept
Returns the name of the given state.

Get the readable string representing the name of the given thread_state constant.
Parameters state – this represents the thread state.

std::ostream &operator<<(std::ostream &os, thread_priority t)

1026 Chapter 2. What’s so special about HPX?

HPX Documentation, master

char const *get_thread_priority_name(thread_priority priority) noexcept
Return the thread priority name.

Get the readable string representing the name of the given thread_priority constant.
Parameters priority – this represents the thread priority.

std::ostream &operator<<(std::ostream &os, thread_restart_state t)

char const *get_thread_state_ex_name(thread_restart_state state) noexcept
Get the readable string representing the name of the given thread_restart_state constant.

char const *get_thread_state_name(thread_state state) noexcept
Get the readable string representing the name of the given thread_state constant.

std::ostream &operator<<(std::ostream &os, thread_stacksize t)

char const *get_stack_size_enum_name(thread_stacksize size) noexcept
Returns the stack size name.

Get the readable string representing the given stack size constant.
Parameters size – this represents the stack size

constexpr bool do_not_share_function(thread_sharing_hint hint) noexcept

constexpr bool do_not_combine_tasks(thread_sharing_hint hint) noexcept

constexpr thread_sharing_hint operator|(thread_sharing_hint lhs, thread_sharing_hint rhs) noexcept

constexpr bool run_as_child(thread_execution_hint hint) noexcept

Variables

constexpr thread_execution_hint default_runs_as_child_hint = thread_execution_hint::none
Default value to use for runs-as-child mode (if true, then futures will attempt to execute associated
threads directly if they have not started running).

struct thread_schedule_hint
#include <thread_enums.hpp> A hint given to a scheduler to guide where a task should be scheduled.

A scheduler is free to ignore the hint, or modify the hint to suit the resources available to the scheduler.

Public Functions

inline constexpr thread_schedule_hint() noexcept
Construct a default hint with mode thread_schedule_hint_mode::none.

inline explicit constexpr thread_schedule_hint(std::int16_t thread_hint, thread_placement_hint
placement = thread_placement_hint::none,
thread_execution_hint runs_as_child =
default_runs_as_child_hint,
thread_sharing_hint sharing =
thread_sharing_hint::none) noexcept

Construct a hint with mode thread_schedule_hint_mode::thread and the given hint as the local
thread number.

2.8. API reference 1027

HPX Documentation, master

inline constexpr thread_schedule_hint(thread_schedule_hint_mode mode, std::int16_t hint,
thread_placement_hint placement =
thread_placement_hint::none, thread_execution_hint
runs_as_child = default_runs_as_child_hint,
thread_sharing_hint sharing =
thread_sharing_hint::none) noexcept

Construct a hint with the given mode and hint. The numerical hint is unused when the mode is
thread_schedule_hint_mode::none.

inline constexpr thread_placement_hint placement_mode() const noexcept

inline void placement_mode(thread_placement_hint bits) noexcept

inline constexpr thread_sharing_hint sharing_mode() const noexcept

inline void sharing_mode(thread_sharing_hint bits) noexcept

inline constexpr thread_execution_hint runs_as_child_mode() const noexcept

inline void runs_as_child_mode(thread_execution_hint bits) noexcept

Public Members

std::int16_t hint = -1
The hint associated with the mode. The interpretation of this hint depends on the given mode.

thread_schedule_hint_mode mode = thread_schedule_hint_mode::none
The mode of the scheduling hint.

std::uint8_t placement_mode_bits
The mode of the desired thread placement.

std::uint8_t sharing_mode_bits
The mode of the desired sharing hint.

std::uint8_t runs_as_child_mode_bits
The thread will run as a child directly in the context of the current thread

hpx/coroutines/thread_id_type.hpp

Defined in header hpx/coroutines/thread_id_type.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<>

struct std::hash<::hpx::threads::thread_id>

1028 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

inline std::size_t operator()(::hpx::threads::thread_id const &v) const noexcept

template<>

struct std::hash<::hpx::threads::thread_id_ref >

Public Functions

inline std::size_t operator()(::hpx::threads::thread_id_ref const &v) const noexcept

namespace hpx

namespace threads

Enums

enum class thread_id_addref
Values:

enumerator yes

enumerator no

Variables

constexpr const thread_id invalid_thread_id

struct thread_id

Public Functions

constexpr thread_id() noexcept = default

thread_id(thread_id const&) = default

thread_id &operator=(thread_id const&) = default

~thread_id() = default

inline constexpr thread_id(thread_id &&rhs) noexcept

inline constexpr thread_id &operator=(thread_id &&rhs) noexcept

inline explicit constexpr thread_id(thread_id_repr thrd) noexcept

2.8. API reference 1029

HPX Documentation, master

inline constexpr thread_id &operator=(thread_id_repr rhs) noexcept

inline explicit constexpr operator bool() const noexcept

inline constexpr thread_id_repr get() const noexcept

inline constexpr void reset() noexcept

Private Types

using thread_id_repr = void*

Private Members

thread_id_repr thrd_ = nullptr

Friends

inline friend constexpr friend bool operator== (std::nullptr_t,
thread_id const &rhs) noexcept

inline friend constexpr friend bool operator!= (std::nullptr_t,
thread_id const &rhs) noexcept

inline friend constexpr friend bool operator== (thread_id const &lhs,
std::nullptr_t) noexcept

inline friend constexpr friend bool operator!= (thread_id const &lhs,
std::nullptr_t) noexcept

inline friend constexpr friend bool operator== (thread_id const &lhs,
thread_id const &rhs) noexcept

inline friend constexpr friend bool operator!= (thread_id const &lhs,
thread_id const &rhs) noexcept

inline friend constexpr friend bool operator< (thread_id const &lhs,
thread_id const &rhs) noexcept

inline friend constexpr friend bool operator> (thread_id const &lhs,
thread_id const &rhs) noexcept

inline friend constexpr friend bool operator<= (thread_id const &lhs,
thread_id const &rhs) noexcept

1030 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline friend constexpr friend bool operator>= (thread_id const &lhs,
thread_id const &rhs) noexcept

friend std::ostream &operator<<(std::ostream &os, thread_id const &id)

friend void format_value(std::ostream &os, std::string_view spec, thread_id const &id)

struct thread_id_ref

Public Types

using thread_repr = detail::thread_data_reference_counting

Public Functions

thread_id_ref() noexcept = default

thread_id_ref(thread_id_ref const&) = default

thread_id_ref &operator=(thread_id_ref const&) = default

thread_id_ref(thread_id_ref &&rhs) noexcept = default

thread_id_ref &operator=(thread_id_ref &&rhs) noexcept = default

~thread_id_ref() = default

inline explicit thread_id_ref(thread_id_repr const &thrd) noexcept

inline explicit thread_id_ref(thread_id_repr &&thrd) noexcept

inline thread_id_ref &operator=(thread_id_repr const &rhs) noexcept

inline thread_id_ref &operator=(thread_id_repr &&rhs) noexcept

inline explicit thread_id_ref(thread_repr *thrd, thread_id_addref addref =
thread_id_addref ::yes) noexcept

inline thread_id_ref &operator=(thread_repr *rhs) noexcept

inline thread_id_ref(thread_id const &noref)

inline thread_id_ref(thread_id &&noref) noexcept

inline thread_id_ref &operator=(thread_id const &noref)

inline thread_id_ref &operator=(thread_id &&noref) noexcept

inline explicit constexpr operator bool() const noexcept

inline constexpr thread_id noref() const noexcept

inline constexpr thread_id_repr &get() & noexcept

inline thread_id_repr &&get() && noexcept

2.8. API reference 1031

HPX Documentation, master

inline constexpr thread_id_repr const &get() const & noexcept

inline void reset() noexcept

inline void reset(thread_repr *thrd, bool add_ref = true) noexcept

inline constexpr thread_repr *detach() noexcept

Private Types

using thread_id_repr = hpx::intrusive_ptr<detail::thread_data_reference_counting>

Private Members

thread_id_repr thrd_

Friends

inline friend constexpr friend bool operator== (std::nullptr_t,
thread_id_ref const &rhs) noexcept

inline friend constexpr friend bool operator!= (std::nullptr_t,
thread_id_ref const &rhs) noexcept

inline friend constexpr friend bool operator== (thread_id_ref const &lhs,
std::nullptr_t) noexcept

inline friend constexpr friend bool operator!= (thread_id_ref const &lhs,
std::nullptr_t) noexcept

inline friend constexpr friend bool operator== (thread_id_ref const &lhs,
thread_id_ref const &rhs) noexcept

inline friend constexpr friend bool operator!= (thread_id_ref const &lhs,
thread_id_ref const &rhs) noexcept

inline friend constexpr friend bool operator< (thread_id_ref const &lhs,
thread_id_ref const &rhs) noexcept

inline friend constexpr friend bool operator> (thread_id_ref const &lhs,
thread_id_ref const &rhs) noexcept

inline friend constexpr friend bool operator<= (thread_id_ref const &lhs,
thread_id_ref const &rhs) noexcept

1032 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline friend constexpr friend bool operator>= (thread_id_ref const &lhs,
thread_id_ref const &rhs) noexcept

friend std::ostream &operator<<(std::ostream &os, thread_id_ref const &id)

friend void format_value(std::ostream &os, std::string_view spec, thread_id_ref const &id)

namespace std

template<> thread_id >

Public Functions

inline std::size_t operator()(::hpx::threads::thread_id const &v) const noexcept

template<> thread_id_ref >

Public Functions

inline std::size_t operator()(::hpx::threads::thread_id_ref const &v) const noexcept

datastructures

See Public API for a list of names and headers that are part of the public HPX API.

hpx::any_nonser. hpx::bad_any_cast, hpx::unique_any_nonser, hpx::any_cast,
hpx::make_any_nonser, hpx::make_unique_any_nonser

Defined in header hpx/any.hpp706.

See Public API for a list of names and headers that are part of the public HPX API.

template<>

class hpx::util::basic_any<void, void, void, std::true_type>

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any const &x)

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>>>
706 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/any.hpp

2.8. API reference 1033

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/any.hpp

HPX Documentation, master

inline explicit basic_any(T &&x, std::enable_if_t<std::is_copy_constructible_v<std::decay_t<T>>>* =
nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

inline ~basic_any()

inline basic_any &operator=(basic_any const &x)

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>
&& std::is_copy_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs)

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

Private Functions

inline basic_any &assign(basic_any const &x)

Private Members

detail::any::fxn_ptr_table<void, void, void, std::true_type> *table

void *object

1034 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

template<typename Char>

class hpx::util::basic_any<void, void, Char, std::true_type>

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any const &x)

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>>>
inline explicit basic_any(T &&x, std::enable_if_t<std::is_copy_constructible_v<std::decay_t<T>>>* =

nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

inline ~basic_any()

inline basic_any &operator=(basic_any const &x)

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>
&& std::is_copy_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs) noexcept

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

2.8. API reference 1035

HPX Documentation, master

Private Functions

inline basic_any &assign(basic_any const &x)

Private Members

detail::any::fxn_ptr_table<void, void, Char, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

template<>

class hpx::util::basic_any<void, void, void, std::false_type>

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>>>
inline explicit basic_any(T &&x, std::enable_if_t<std::is_move_constructible_v<std::decay_t<T>>>* =

nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

basic_any(basic_any const &x) = delete

basic_any &operator=(basic_any const &x) = delete

inline ~basic_any()

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>
&& std::is_move_constructible_v<std::decay_t<T>>>>

1036 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline basic_any &operator=(T &&rhs)

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

Private Members

detail::any::fxn_ptr_table<void, void, void, std::false_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

template<typename Char>

class hpx::util::basic_any<void, void, Char, std::false_type>

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>>>
inline explicit basic_any(T &&x, std::enable_if_t<std::is_move_constructible_v<std::decay_t<T>>>* =

nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

basic_any(basic_any const &x) = delete

2.8. API reference 1037

HPX Documentation, master

basic_any &operator=(basic_any const &x) = delete

inline ~basic_any()

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>
&& std::is_move_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs) noexcept

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

Private Members

detail::any::fxn_ptr_table<void, void, Char, std::false_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

namespace hpx
Top level HPX namespace.

Typedefs

using any_nonser = util::basic_any<void, void, void, std::true_type>

using unique_any_nonser = util::basic_any<void, void, void, std::false_type>

1038 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename T, typename ...Ts>
util::basic_any<void, void, void, std::true_type> make_any_nonser(Ts&&... ts)

template<typename T, typename U, typename ...Ts>
util::basic_any<void, void, void, std::true_type> make_any_nonser(std::initializer_list<U> il, Ts&&... ts)

template<typename T, typename ...Ts>
util::basic_any<void, void, void, std::false_type> make_unique_any_nonser(Ts&&... ts)

template<typename T, typename U, typename ...Ts>
util::basic_any<void, void, void, std::false_type> make_unique_any_nonser(std::initializer_list<U> il,

Ts&&... ts)

template<typename T>
util::basic_any<void, void, void, std::true_type> make_any_nonser(T &&t)

template<typename T>
util::basic_any<void, void, void, std::false_type> make_unique_any_nonser(T &&t)

template<typename T, typename IArch, typename OArch, typename Char, typename Copyable>
T *any_cast(util::basic_any<IArch, OArch, Char, Copyable> *operand) noexcept

Performs type-safe access to the contained object.

Parameters operand – target any object

Returns If operand is not a null pointer, and the typeid of the requested T matches that of the
contents of operand, a pointer to the value contained by operand, otherwise a null pointer.

template<typename T, typename IArch, typename OArch, typename Char, typename Copyable>
T const *any_cast(util::basic_any<IArch, OArch, Char, Copyable> const *operand) noexcept

Performs type-safe access to the contained object.

Parameters operand – target any object

Returns If operand is not a null pointer, and the typeid of the requested T matches that of the
contents of operand, a pointer to the value contained by operand, otherwise a null pointer.

template<typename T, typename IArch, typename OArch, typename Char, typename Copyable>
T any_cast(util::basic_any<IArch, OArch, Char, Copyable> &operand)

Performs type-safe access to the contained object. Let U be
std::remove_cv_t<std::remove_reference_t<T>> The program is ill-formed if std::is_constructible_v<T,
U&> is false.

Parameters operand – target any object

Returns static_cast<T>(*std::any_cast<U>(&operand))

template<typename T, typename IArch, typename OArch, typename Char, typename Copyable>
T const &any_cast(util::basic_any<IArch, OArch, Char, Copyable> const &operand)

Performs type-safe access to the contained object. Let U be
std::remove_cv_t<std::remove_reference_t<T>> The program is ill-formed if std::is_constructible_v<T,
const U&> is false.

Parameters operand – target any object

Returns static_cast<T>(*std::any_cast<U>(&operand))

2.8. API reference 1039

HPX Documentation, master

struct bad_any_cast : public bad_cast
#include <any.hpp> Defines a type of object to be thrown by the value-returning forms of hpx::any_cast
on failure.

Public Functions

inline bad_any_cast(std::type_info const &src, std::type_info const &dest)
Constructs a new bad_any_cast object with an implementation-defined null-terminated byte string
which is accessible through what().

inline char const *what() const noexcept override
Returns the explanatory string.

Note: Implementations are allowed but not required to override what().

Returns Pointer to a null-terminated string with explanatory information. The string is suit-
able for conversion and display as a std::wstring. The pointer is guaranteed to be valid at
least until the exception object from which it is obtained is destroyed, or until a non-const
member function (e.g. copy assignment operator) on the exception object is called.

Public Members

char const *from

char const *to

namespace util

Typedefs

using streamable_any_nonser = basic_any<void, void, char, std::true_type>

using streamable_wany_nonser = basic_any<void, void, wchar_t, std::true_type>

using streamable_unique_any_nonser = basic_any<void, void, char, std::false_type>

using streamable_unique_wany_nonser = basic_any<void, void, wchar_t, std::false_type>

1040 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename IArch, typename OArch, typename Char, typename Copyable, typename Enable =
std::enable_if_t<!std::is_void_v<Char>>>
std::basic_istream<Char> &operator>>(std::basic_istream<Char> &i, basic_any<IArch, OArch,

Char, Copyable> &obj)

template<typename IArch, typename OArch, typename Char, typename Copyable, typename Enable =
std::enable_if_t<!std::is_void_v<Char>>>
std::basic_ostream<Char> &operator<<(std::basic_ostream<Char> &o, basic_any<IArch, OArch,

Char, Copyable> const &obj)

template<typename IArch, typename OArch, typename Char, typename Copyable>
void swap(basic_any<IArch, OArch, Char, Copyable> &lhs, basic_any<IArch, OArch, Char, Copyable>

&rhs) noexcept

template<typename T, typename Char, typename ...Ts>
basic_any<void, void, Char, std::true_type> make_streamable_any_nonser(Ts&&... ts)

template<typename T, typename Char, typename U, typename ...Ts>
basic_any<void, void, Char, std::true_type> make_streamable_any_nonser(std::initializer_list<U>

il, Ts&&... ts)

template<typename T, typename Char, typename ...Ts>
basic_any<void, void, Char, std::false_type> make_streamable_unique_any_nonser(Ts&&... ts)

template<typename T, typename Char, typename U, typename ...Ts>
basic_any<void, void, Char, std::false_type> make_streamable_unique_any_nonser(std::initializer_list<U>

il, Ts&&... ts)

template<typename T, typename Char>
basic_any<void, void, Char, std::true_type> make_streamable_any_nonser(T &&t)

template<typename T, typename Char>
basic_any<void, void, Char, std::false_type> make_streamable_unique_any_nonser(T &&t)

template<typename IArch, typename OArch, typename Char = char, typename Copyable =
std::true_type>
class basic_any

template<typename Char> false_type >

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>>>>
inline explicit basic_any(T &&x,

std::enable_if_t<std::is_move_constructible_v<std::decay_t<T>>>* =
nullptr)

2.8. API reference 1041

HPX Documentation, master

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

basic_any(basic_any const &x) = delete

basic_any &operator=(basic_any const &x) = delete

inline ~basic_any()

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>> && std::is_move_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs) noexcept

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

Private Members

detail::any::fxn_ptr_table<void, void, Char, std::false_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

template<typename Char> true_type >

1042 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any const &x)

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>>>>
inline explicit basic_any(T &&x,

std::enable_if_t<std::is_copy_constructible_v<std::decay_t<T>>>* =
nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

inline ~basic_any()

inline basic_any &operator=(basic_any const &x)

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>> && std::is_copy_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs) noexcept

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

Private Functions

inline basic_any &assign(basic_any const &x)

2.8. API reference 1043

HPX Documentation, master

Private Members

detail::any::fxn_ptr_table<void, void, Char, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

template<> false_type >

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>>>>
inline explicit basic_any(T &&x,

std::enable_if_t<std::is_move_constructible_v<std::decay_t<T>>>* =
nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

basic_any(basic_any const &x) = delete

basic_any &operator=(basic_any const &x) = delete

inline ~basic_any()

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>> && std::is_move_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs)

inline basic_any &swap(basic_any &x) noexcept

1044 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

Private Members

detail::any::fxn_ptr_table<void, void, void, std::false_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

template<> true_type >

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any const &x)

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>>>>
inline explicit basic_any(T &&x,

std::enable_if_t<std::is_copy_constructible_v<std::decay_t<T>>>* =
nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

inline ~basic_any()

2.8. API reference 1045

HPX Documentation, master

inline basic_any &operator=(basic_any const &x)

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>> && std::is_copy_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs)

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

Private Functions

inline basic_any &assign(basic_any const &x)

Private Members

detail::any::fxn_ptr_table<void, void, void, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

hpx::ignore, hpx::tuple, hpx::tuple_size, hpx::tuple_element, hpx::make_tuple, hpx::tie,
hpx::forward_as_tuple, hpx::tuple_cat, hpx::get

Defined in header hpx/tuple.hpp707.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

707 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/tuple.
hpp

1046 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/tuple.hpp

HPX Documentation, master

Functions

template<typename ...Ts>
constexpr tuple<util::decay_unwrap_t<Ts>...> make_tuple(Ts&&... ts)

Provides compile-time indexed access to the types of the elements of the tuple.

template<typename ...Ts>
constexpr tuple<Ts&&...> forward_as_tuple(Ts&&... ts)

Constructs a tuple of references to the arguments in args suitable for forwarding as an argument to a function.
The tuple has rvalue reference data members when rvalues are used as arguments, and otherwise has lvalue
reference data members.

Parameters ts – zero or more arguments to construct the tuple from

Returns hpx::tuple object created as if by

hpx::tuple<Ts&&...>(HPX_FORWARD(Ts, ts)...)

template<typename ...Ts>
constexpr tuple<Ts&...> tie(Ts&... ts)

Creates a tuple of lvalue references to its arguments or instances of hpx::ignore.

Parameters ts – zero or more lvalue arguments to construct the tuple from.

Returns hpx::tuple object containing lvalue references.

template<typename ...Tuples>
constexpr auto tuple_cat(Tuples&&... tuples)

Constructs a tuple that is a concatenation of all tuples in tuples. The behavior is undefined if any type
in std::decay_t<Tuples>. . . is not a specialization of hpx::tuple. However, an implementation may
choose to support types (such as std::array and std::pair) that follow the tuple-like protocol.

Parameters tuples – - zero or more tuples to concatenate

Returns hpx::tuple object composed of all elements of all argument tuples constructed from
hpx::get<Is>(HPX_FORWARD(UTuple,t) for each individual element.

template<std::size_t I>
util::at_index<I , Ts...>::type &get() noexcept

Extracts the Ith element from the tuple. I must be an integer value in [0, sizeof. . . (Ts)).

template<std::size_t I>
util::at_index<I , Ts...>::type const &get() const noexcept

Extracts the Ith element from the tuple. I must be an integer value in [0, sizeof. . . (Ts)).

Variables

constexpr hpx::detail::ignore_type ignore = {}
An object of unspecified type such that any value can be assigned to it with no effect. Intended for use
with hpx::tie when unpacking a hpx::tuple, as a placeholder for the arguments that are not used. While the
behavior of hpx::ignore outside of hpx::tie is not formally specified, some code guides recommend using
hpx::ignore to avoid warnings from unused return values of [[nodiscard]] functions.

template<typename ...Ts>

2.8. API reference 1047

HPX Documentation, master

class tuple
#include <tuple.hpp> Class template hpx::tuple is a fixed-size collection of heterogeneous values. It is
a generalization of hpx::pair. If std::is_trivially_destructible<Ti>::value is true for every Ti in Ts, the
destructor of tuple is trivial.

Param Ts. . . the types of the elements that the tuple stores.

template<std::size_t I, typename T, typename Enable = void>

struct tuple_element
#include <tuple.hpp> Provides compile-time indexed access to the types of the elements of a tuple-like
type.

The primary template is not defined. An explicit (full) or partial specialization is required to make a type
tuple-like.

template<typename T>

struct tuple_size
#include <tuple.hpp> Provides access to the number of elements in a tuple-like type as a compile-time
constant expression.

The primary template is not defined. An explicit (full) or partial specialization is required to make a type
tuple-like.

hpx::any, hpx::make_any

Defined in header hpx/any.hpp708.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename IArch, typename OArch, typename Char>

class hpx::util::basic_any<IArch, OArch, Char, std::true_type>

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any const &x)

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any, std::decay_t<T>>>>
inline basic_any(T &&x, std::enable_if_t<std::is_copy_constructible_v<std::decay_t<T>>>* = nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>

708 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/any.hpp

1048 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/any.hpp

HPX Documentation, master

inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

inline ~basic_any()

inline basic_any &operator=(basic_any const &x)

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if<!std::is_same_v<basic_any, std::decay_t<T>> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs)

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

inline bool equal_to(basic_any const &rhs) const noexcept

Private Functions

inline basic_any &assign(basic_any const &x)

inline void load(IArch &ar, unsigned const version)

inline void save(OArch &ar, unsigned const version) const

Private Members

detail::any::fxn_ptr_table<IArch, OArch, Char, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

2.8. API reference 1049

HPX Documentation, master

Friends

friend class hpx::serialization::access

namespace hpx
Top level HPX namespace.

Typedefs

using any = util::basic_any<serialization::input_archive, serialization::output_archive, char, std::true_type>

Functions

template<typename T, typename Char>
util::basic_any<serialization::input_archive, serialization::output_archive, Char> make_any(T &&t)

Constructs an any object containing an object of type T, passing the provided arguments to T’s constructor.
Equivalent to:

return std::any(std::in_place_type<T>, std::forward<Args>(args)...);

namespace util

Typedefs

using wany = basic_any<serialization::input_archive, serialization::output_archive, wchar_t,
std::true_type>

Functions

template<typename T, typename Char, typename ...Ts>
basic_any<serialization::input_archive, serialization::output_archive, Char> make_any(Ts&&... ts)

template<typename T, typename Char, typename U, typename ...Ts>
basic_any<serialization::input_archive, serialization::output_archive, Char> make_any(std::initializer_list<U>

il, Ts&&... ts)

template<typename IArch, typename OArch, typename Char> true_type >

1050 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

inline constexpr basic_any() noexcept

inline basic_any(basic_any const &x)

inline basic_any(basic_any &&x) noexcept

template<typename T, typename Enable = std::enable_if_t<!std::is_same_v<basic_any,
std::decay_t<T>>>>
inline basic_any(T &&x, std::enable_if_t<std::is_copy_constructible_v<std::decay_t<T>>>* =

nullptr)

template<typename T, typename ...Ts, typename Enable =
std::enable_if_t<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, Ts&&... ts)

template<typename T, typename U, typename ...Ts, typename Enable =
std::enable_if<std::is_constructible_v<std::decay_t<T>, Ts...> &&
std::is_copy_constructible_v<std::decay_t<T>>>>
inline explicit basic_any(std::in_place_type_t<T>, std::initializer_list<U> il, Ts&&... ts)

inline ~basic_any()

inline basic_any &operator=(basic_any const &x)

inline basic_any &operator=(basic_any &&rhs) noexcept

template<typename T, typename Enable = std::enable_if<!std::is_same_v<basic_any,
std::decay_t<T>> && std::is_copy_constructible_v<std::decay_t<T>>>>
inline basic_any &operator=(T &&rhs)

inline basic_any &swap(basic_any &x) noexcept

inline std::type_info const &type() const

template<typename T>
inline T const &cast() const

inline bool has_value() const noexcept

inline void reset()

inline bool equal_to(basic_any const &rhs) const noexcept

Private Functions

inline basic_any &assign(basic_any const &x)

inline void load(IArch &ar, unsigned const version)

inline void save(OArch &ar, unsigned const version) const

2.8. API reference 1051

HPX Documentation, master

Private Members

detail::any::fxn_ptr_table<IArch, OArch, Char, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static inline void new_object(void *&object, std::false_type, Ts&&... ts)

Friends

friend class hpx::serialization::access

struct hash_any

Public Functions

template<typename Char>
std::size_t operator()(basic_any<serialization::input_archive, serialization::output_archive,

Char, std::true_type> const &elem) const

debugging

See Public API for a list of names and headers that are part of the public HPX API.

hpx/debugging/print.hpp

Defined in header hpx/debugging/print.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_DP_LAZY(Expr, printer)

1052 Chapter 2. What’s so special about HPX?

HPX Documentation, master

errors

See Public API for a list of names and headers that are part of the public HPX API.

hpx/errors/error.hpp

Defined in header hpx/errors/error.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_ERROR_UNSCOPED_ENUM_DEPRECATION_MSG

namespace hpx

Enums

enum class error : std::int16_t
Possible error conditions.

This enumeration lists all possible error conditions which can be reported from any of the API functions.

Values:

enumerator success
The operation was successful.

enumerator no_success
The operation did failed, but not in an unexpected manner.

enumerator not_implemented
The operation is not implemented.

enumerator out_of_memory
The operation caused an out of memory condition.

enumerator bad_action_code

enumerator bad_component_type
The specified component type is not known or otherwise invalid.

enumerator network_error
A generic network error occurred.

2.8. API reference 1053

HPX Documentation, master

enumerator version_too_new
The version of the network representation for this object is too new.

enumerator version_too_old
The version of the network representation for this object is too old.

enumerator version_unknown
The version of the network representation for this object is unknown.

enumerator unknown_component_address

enumerator duplicate_component_address
The given global id has already been registered.

enumerator invalid_status
The operation was executed in an invalid status.

enumerator bad_parameter
One of the supplied parameters is invalid.

enumerator internal_server_error

enumerator service_unavailable

enumerator bad_request

enumerator repeated_request

enumerator lock_error

enumerator duplicate_console
There is more than one console locality.

enumerator no_registered_console
There is no registered console locality available.

enumerator startup_timed_out

enumerator uninitialized_value

enumerator bad_response_type

enumerator deadlock

1054 Chapter 2. What’s so special about HPX?

HPX Documentation, master

enumerator assertion_failure

enumerator null_thread_id
Attempt to invoke an API function from a non-HPX thread.

enumerator invalid_data

enumerator yield_aborted
The yield operation was aborted.

enumerator dynamic_link_failure

enumerator commandline_option_error
One of the options given on the command line is erroneous.

enumerator serialization_error
There was an error during serialization of this object.

enumerator unhandled_exception
An unhandled exception has been caught.

enumerator kernel_error
The OS kernel reported an error.

enumerator broken_task
The task associated with this future object is not available anymore.

enumerator task_moved
The task associated with this future object has been moved.

enumerator task_already_started
The task associated with this future object has already been started.

enumerator future_already_retrieved
The future object has already been retrieved.

enumerator promise_already_satisfied
The value for this future object has already been set.

enumerator future_does_not_support_cancellation
The future object does not support cancellation.

enumerator future_can_not_be_cancelled
The future can’t be canceled at this time.

2.8. API reference 1055

HPX Documentation, master

enumerator no_state
The future object has no valid shared state.

enumerator broken_promise
The promise has been deleted.

enumerator thread_resource_error

enumerator future_cancelled

enumerator thread_cancelled

enumerator thread_not_interruptable

enumerator duplicate_component_id
The component type has already been registered.

enumerator unknown_error
An unknown error occurred.

enumerator bad_plugin_type
The specified plugin type is not known or otherwise invalid.

enumerator filesystem_error
The specified file does not exist or other filesystem related error.

enumerator bad_function_call
equivalent of std::bad_function_call

enumerator task_canceled_exception
parallel::task_canceled_exception

enumerator task_block_not_active
task_region is not active

enumerator out_of_range
Equivalent to std::out_of_range.

enumerator length_error
Equivalent to std::length_error.

enumerator migration_needs_retry
migration failed because of global race, retry

1056 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

inline constexpr bool operator==(int lhs, error rhs) noexcept

inline constexpr bool operator==(error lhs, int rhs) noexcept

inline constexpr bool operator!=(int lhs, error rhs) noexcept

inline constexpr bool operator!=(error lhs, int rhs) noexcept

inline constexpr bool operator<(int lhs, error rhs) noexcept

inline constexpr bool operator>=(int lhs, error rhs) noexcept

inline constexpr int operator&(error lhs, error rhs) noexcept

inline constexpr int operator&(int lhs, error rhs) noexcept

inline constexpr int operator|=(int &lhs, error rhs) noexcept

char const *get_error_name(error e) noexcept

Variables

constexpr error success = error::success

constexpr error no_success = error::no_success

constexpr error not_implemented = error::not_implemented

constexpr error out_of_memory = error::out_of_memory

constexpr error bad_action_code = error::bad_action_code

constexpr error bad_component_type = error::bad_component_type

constexpr error network_error = error::network_error

constexpr error version_too_new = error::version_too_new

constexpr error version_too_old = error::version_too_old

constexpr error version_unknown = error::version_unknown

constexpr error unknown_component_address = error::unknown_component_address

constexpr error duplicate_component_address = error::duplicate_component_address

2.8. API reference 1057

HPX Documentation, master

constexpr error invalid_status = error::invalid_status

constexpr error bad_parameter = error::bad_parameter

constexpr error internal_server_error = error::internal_server_error

constexpr error service_unavailable = error::service_unavailable

constexpr error bad_request = error::bad_request

constexpr error repeated_request = error::repeated_request

constexpr error lock_error = error::lock_error

constexpr error duplicate_console = error::duplicate_console

constexpr error no_registered_console = error::no_registered_console

constexpr error startup_timed_out = error::startup_timed_out

constexpr error uninitialized_value = error::uninitialized_value

constexpr error bad_response_type = error::bad_response_type

constexpr error deadlock = error::deadlock

constexpr error assertion_failure = error::assertion_failure

constexpr error null_thread_id = error::null_thread_id

constexpr error invalid_data = error::invalid_data

constexpr error yield_aborted = error::yield_aborted

constexpr error dynamic_link_failure = error::dynamic_link_failure

constexpr error commandline_option_error = error::commandline_option_error

constexpr error serialization_error = error::serialization_error

constexpr error unhandled_exception = error::unhandled_exception

1058 Chapter 2. What’s so special about HPX?

HPX Documentation, master

constexpr error kernel_error = error::kernel_error

constexpr error broken_task = error::broken_task

constexpr error task_moved = error::task_moved

constexpr error task_already_started = error::task_already_started

constexpr error future_already_retrieved = error::future_already_retrieved

constexpr error promise_already_satisfied = error::promise_already_satisfied

constexpr error future_does_not_support_cancellation =
error::future_does_not_support_cancellation

constexpr error future_can_not_be_cancelled = error::future_can_not_be_cancelled

constexpr error no_state = error::no_state

constexpr error broken_promise = error::broken_promise

constexpr error thread_resource_error = error::thread_resource_error

constexpr error future_cancelled = error::future_cancelled

constexpr error thread_cancelled = error::thread_cancelled

constexpr error thread_not_interruptable = error::thread_not_interruptable

constexpr error duplicate_component_id = error::duplicate_component_id

constexpr error unknown_error = error::unknown_error

constexpr error bad_plugin_type = error::bad_plugin_type

constexpr error filesystem_error = error::filesystem_error

constexpr error bad_function_call = error::bad_function_call

constexpr error task_canceled_exception = error::task_canceled_exception

constexpr error task_block_not_active = error::task_block_not_active

2.8. API reference 1059

HPX Documentation, master

constexpr error out_of_range = error::out_of_range

constexpr error length_error = error::length_error

constexpr error migration_needs_retry = error::migration_needs_retry

hpx::error_code

Defined in header hpx/system_error.hpp709.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Unnamed Group

inline error_code make_error_code(error e, throwmode mode = throwmode::plain)
Returns a new error_code constructed from the given parameters.

inline error_code make_error_code(error e, char const *func, char const *file, long line, throwmode mode =
throwmode::plain)

inline error_code make_error_code(error e, char const *msg, throwmode mode = throwmode::plain)
Returns error_code(e, msg, mode).

inline error_code make_error_code(error e, char const *msg, char const *func, char const *file, long line,
throwmode mode = throwmode::plain)

inline error_code make_error_code(error e, std::string const &msg, throwmode mode = throwmode::plain)
Returns error_code(e, msg, mode).

inline error_code make_error_code(error e, std::string const &msg, char const *func, char const *file, long
line, throwmode mode = throwmode::plain)

inline error_code make_error_code(std::exception_ptr const &e)

Functions

std::error_category const &get_hpx_category() noexcept
Returns generic HPX error category used for new errors.

std::error_category const &get_hpx_rethrow_category() noexcept
Returns generic HPX error category used for errors re-thrown after the exception has been de-serialized.

inline error_code make_success_code(throwmode mode = throwmode::plain)
Returns error_code(hpx::error::success, “success”, mode).

709 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/system_
error.hpp

1060 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/system_error.hpp

HPX Documentation, master

class error_code : public error_code
#include <error_code.hpp> A hpx::error_code represents an arbitrary error condition.

The class hpx::error_code describes an object used to hold error code values, such as those originating
from the operating system or other low-level application program interfaces.

Note: Class hpx::error_code is an adjunct to error reporting by exception

Public Functions

inline explicit error_code(throwmode mode = throwmode::plain)
Construct an object of type error_code.

Parameters mode – The parameter mode specifies whether the constructed hpx::error_code
belongs to the error category hpx_category (if mode is plain, this is the default) or to the
category hpx_category_rethrow (if mode is rethrow).

Throws nothing –

explicit error_code(error e, throwmode mode = throwmode::plain)
Construct an object of type error_code.

Parameters
• e – The parameter e holds the hpx::error code the new exception should encapsulate.
• mode – The parameter mode specifies whether the constructed hpx::error_code belongs

to the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Throws nothing –

error_code(error e, char const *func, char const *file, long line, throwmode mode = throwmode::plain)
Construct an object of type error_code.

Parameters
• e – The parameter e holds the hpx::error code the new exception should encapsulate.
• func – The name of the function where the error was raised.
• file – The file name of the code where the error was raised.
• line – The line number of the code line where the error was raised.
• mode – The parameter mode specifies whether the constructed hpx::error_code belongs

to the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Throws nothing –

error_code(error e, char const *msg, throwmode mode = throwmode::plain)
Construct an object of type error_code.

Parameters
• e – The parameter e holds the hpx::error code the new exception should encapsulate.
• msg – The parameter msg holds the error message the new exception should encapsulate.
• mode – The parameter mode specifies whether the constructed hpx::error_code belongs

to the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Throws std::bad_alloc – (if allocation of a copy of the passed string fails).

error_code(error e, char const *msg, char const *func, char const *file, long line, throwmode mode =
throwmode::plain)

Construct an object of type error_code.
Parameters

2.8. API reference 1061

HPX Documentation, master

• e – The parameter e holds the hpx::error code the new exception should encapsulate.
• msg – The parameter msg holds the error message the new exception should encapsulate.
• func – The name of the function where the error was raised.
• file – The file name of the code where the error was raised.
• line – The line number of the code line where the error was raised.
• mode – The parameter mode specifies whether the constructed hpx::error_code belongs

to the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Throws std::bad_alloc – (if allocation of a copy of the passed string fails).

error_code(error e, std::string const &msg, throwmode mode = throwmode::plain)
Construct an object of type error_code.

Parameters
• e – The parameter e holds the hpx::error code the new exception should encapsulate.
• msg – The parameter msg holds the error message the new exception should encapsulate.
• mode – The parameter mode specifies whether the constructed hpx::error_code belongs

to the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Throws std::bad_alloc – (if allocation of a copy of the passed string fails).

error_code(error e, std::string const &msg, char const *func, char const *file, long line, throwmode
mode = throwmode::plain)

Construct an object of type error_code.
Parameters

• e – The parameter e holds the hpx::error code the new exception should encapsulate.
• msg – The parameter msg holds the error message the new exception should encapsulate.
• func – The name of the function where the error was raised.
• file – The file name of the code where the error was raised.
• line – The line number of the code line where the error was raised.
• mode – The parameter mode specifies whether the constructed hpx::error_code belongs

to the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Throws std::bad_alloc – (if allocation of a copy of the passed string fails).

std::string get_message() const
Return a reference to the error message stored in the hpx::error_code.

Throws nothing –

inline void clear()
Clear this error_code object. The postconditions of invoking this method are.

• value() == hpx::error::success and category() == hpx::get_hpx_category()

error_code(error_code const &rhs)
Copy constructor for error_code

Note: This function maintains the error category of the left hand side if the right hand side is a success
code.

error_code &operator=(error_code const &rhs)
Assignment operator for error_code

Note: This function maintains the error category of the left hand side if the right hand side is a success

1062 Chapter 2. What’s so special about HPX?

HPX Documentation, master

code.

Private Functions

error_code(int err, hpx::exception const &e)

explicit error_code(std::exception_ptr const &e)

Private Members

std::exception_ptr exception_

Friends

friend class exception

friend error_code make_error_code(std::exception_ptr const&)

hpx::exception

Defined in header hpx/exception.hpp710.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Typedefs

using custom_exception_info_handler_type = std::function<hpx::exception_info(std::string const&,
std::string const&, long, std::string const&)>

using pre_exception_handler_type = std::function<void()>

Functions

void set_custom_exception_info_handler(custom_exception_info_handler_type f)

void set_pre_exception_handler(pre_exception_handler_type f)

710 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
exception.hpp

2.8. API reference 1063

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/exception.hpp

HPX Documentation, master

std::string get_error_what(exception_info const &xi)
Return the error message of the thrown exception.

The function hpx::get_error_what can be used to extract the diagnostic information element representing
the error message as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error() hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_config(),
hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

Returns The error message stored in the exception If the exception instance does not hold this
information, the function will return an empty string.

error get_error(hpx::exception const &e)
Return the error code value of the exception thrown.

The function hpx::get_error can be used to extract the diagnostic information element representing the
error value code as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters e – The parameter e will be inspected for the requested diagnostic information ele-
ments which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception, hpx::error_code, or std::exception_ptr.

Throws nothing –

Returns The error value code of the locality where the exception was thrown. If
the exception instance does not hold this information, the function will return
hpx::naming::invalid_locality_id.

error get_error(hpx::error_code const &e)

std::string get_error_function_name(hpx::exception_info const &xi)
Return the function name from which the exception was thrown.

The function hpx::get_error_function_name can be used to extract the diagnostic information element rep-
resenting the name of the function as stored in the given exception instance.

1064 Chapter 2. What’s so special about HPX?

HPX Documentation, master

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id()
hpx::get_error_file_name(), hpx::get_error_line_number(), hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

Returns The name of the function from which the exception was thrown. If the exception instance
does not hold this information, the function will return an empty string.

std::string get_error_file_name(hpx::exception_info const &xi)
Return the (source code) file name of the function from which the exception was thrown.

The function hpx::get_error_file_name can be used to extract the diagnostic information element repre-
senting the name of the source file as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_line_number(), hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

Returns The name of the source file of the function from which the exception was thrown. If the
exception instance does not hold this information, the function will return an empty string.

long get_error_line_number(hpx::exception_info const &xi)
Return the line number in the (source code) file of the function from which the exception was thrown.

The function hpx::get_error_line_number can be used to extract the diagnostic information element repre-
senting the line number as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name() hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

2.8. API reference 1065

HPX Documentation, master

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws nothing –

Returns The line number of the place where the exception was thrown. If the exception instance
does not hold this information, the function will return -1.

class bad_alloc_exception : public hpx::exception, public bad_alloc

Public Functions

bad_alloc_exception()

Construct a hpx::bad_alloc_exception.

error_code get_error_code(throwmode mode = throwmode::plain) const noexcept
The function get_error_code() returns a hpx::error_code which represents the same error condition as
this hpx::exception instance.

Parameters mode – The parameter mode specifies whether the returned hpx::error_code be-
longs to the error category hpx_category (if mode is throwmode::plain, this is the default)
or to the category hpx_category_rethrow (if mode is rethrow).

Public Static Functions

static inline constexpr error get_error() noexcept
The function get_error() returns hpx::error::out_of_memory

Throws nothing –

class exception : public system_error
#include <exception.hpp> A hpx::exception is the main exception type used by HPX to report errors.

The hpx::exception type is the main exception type used by HPX to report errors. Any exceptions thrown
by functions in the HPX library are either of this type or of a type derived from it. This implies that it is
always safe to use this type only in catch statements guarding HPX library calls.

Subclassed by hpx::bad_alloc_exception, hpx::exception_list

Public Functions

explicit exception(error e = hpx::error::success)
Construct a hpx::exception from a hpx::error.

Parameters e – The parameter e holds the hpx::error code the new exception should encap-
sulate.

explicit exception(std::system_error const &e)
Construct a hpx::exception from a boost::system_error.

explicit exception(std::error_code const &e)
Construct a hpx::exception from a boost::system::error_code (this is new for Boost V1.69). This con-
structor is required to compensate for the changes introduced as a resolution to LWG3162 (https:
//cplusplus.github.io/LWG/issue3162).

1066 Chapter 2. What’s so special about HPX?

https://cplusplus.github.io/LWG/issue3162
https://cplusplus.github.io/LWG/issue3162

HPX Documentation, master

exception(error e, char const *msg, throwmode mode = throwmode::plain)
Construct a hpx::exception from a hpx::error and an error message.

Parameters
• e – The parameter e holds the hpx::error code the new exception should encapsulate.
• msg – The parameter msg holds the error message the new exception should encapsulate.
• mode – The parameter mode specifies whether the returned hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

exception(error e, std::string const &msg, throwmode mode = throwmode::plain)
Construct a hpx::exception from a hpx::error and an error message.

Parameters
• e – The parameter e holds the hpx::error code the new exception should encapsulate.
• msg – The parameter msg holds the error message the new exception should encapsulate.
• mode – The parameter mode specifies whether the returned hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

~exception() override
Destruct a hpx::exception

Throws nothing –

error get_error() const noexcept
The function get_error() returns the hpx::error code stored in the referenced instance of a
hpx::exception. It returns the hpx::error code this exception instance was constructed from.

Throws nothing –

error_code get_error_code(throwmode mode = throwmode::plain) const noexcept
The function get_error_code() returns a hpx::error_code which represents the same error condition as
this hpx::exception instance.

Parameters mode – The parameter mode specifies whether the returned hpx::error_code be-
longs to the error category hpx_category (if mode is throwmode::plain, this is the default)
or to the category hpx_category_rethrow (if mode is rethrow).

struct thread_interrupted : public exception
#include <exception.hpp> A hpx::thread_interrupted is the exception type used by HPX to interrupt a
running HPX thread.

The hpx::thread_interrupted type is the exception type used by HPX to interrupt a running thread.

A running thread can be interrupted by invoking the interrupt() member function of the corresponding
hpx::thread object. When the interrupted thread next executes one of the specified interruption points (or
if it is currently blocked whilst executing one) with interruption enabled, then a hpx::thread_interrupted
exception will be thrown in the interrupted thread. If not caught, this will cause the execution of the in-
terrupted thread to terminate. As with any other exception, the stack will be unwound, and destructors for
objects of automatic storage duration will be executed.

If a thread wishes to avoid being interrupted, it can create an instance of
hpx::this_thread::disable_interruption. Objects of this class disable interruption for the thread that
created them on construction, and restore the interruption state to whatever it was before on destruction.

void f()
{

// interruption enabled here
(continues on next page)

2.8. API reference 1067

HPX Documentation, master

(continued from previous page)

{
hpx::this_thread::disable_interruption di;
// interruption disabled
{

hpx::this_thread::disable_interruption di2;
// interruption still disabled

} // di2 destroyed, interruption state restored
// interruption still disabled

} // di destroyed, interruption state restored
// interruption now enabled

}

The effects of an instance of hpx::this_thread::disable_interruption can be temporarily re-
versed by constructing an instance of hpx::this_thread::restore_interruption, passing in the
hpx::this_thread::disable_interruption object in question. This will restore the interruption state to
what it was when the hpx::this_thread::disable_interruption object was constructed, and then disable
interruption again when the hpx::this_thread::restore_interruption object is destroyed.

void g()
{

// interruption enabled here
{

hpx::this_thread::disable_interruption di;
// interruption disabled
{

hpx::this_thread::restore_interruption ri(di);
// interruption now enabled

} // ri destroyed, interruption disable again
} // di destroyed, interruption state restored
// interruption now enabled

}

At any point, the interruption state for the current thread can be queried by calling
hpx::this_thread::interruption_enabled().

hpx/errors/exception_fwd.hpp

Defined in header hpx/errors/exception_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

1068 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Enums

enum class throwmode : std::uint8_t
Encode error category for new error_code.

Values:

enumerator plain

enumerator rethrow

enumerator lightweight

Functions

constexpr bool operator&(throwmode lhs, throwmode rhs) noexcept

Variables

error_code throws
Predefined error_code object used as “throw on error” tag.

The predefined hpx::error_code object hpx::throws is supplied for use as a “throw on error” tag.

Functions that specify an argument in the form ‘error_code& ec=throws’ (with appropriate namespace
qualifiers), have the following error handling semantics:

If &ec != &throws and an error occurred: ec.value() returns the implementation specific error number for
the particular error that occurred and ec.category() returns the error_category for ec.value().

If &ec != &throws and an error did not occur, ec.clear().

If an error occurs and &ec == &throws, the function throws an exception of type hpx::exception or of a type
derived from it. The exception’s get_errorcode() member function returns a reference to an hpx::error_code
object with the behavior as specified above.

hpx/errors/exception_list.hpp

Defined in header hpx/errors/exception_list.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

class exception_list : public hpx::exception
#include <exception_list.hpp> The class exception_list is a container of exception_ptr objects parallel al-
gorithms may use to communicate uncaught exceptions encountered during parallel execution to the caller
of the algorithm

The type exception_list::const_iterator fulfills the requirements of a forward iterator.

2.8. API reference 1069

HPX Documentation, master

Public Types

using iterator = exception_list_type::const_iterator
bidirectional iterator

Public Functions

inline std::size_t size() const noexcept
The number of exception_ptr objects contained within the exception_list.

Note: Complexity: Constant time.

inline exception_list_type::const_iterator begin() const noexcept
An iterator referring to the first exception_ptr object contained within the exception_list.

inline exception_list_type::const_iterator end() const noexcept
An iterator which is the past-the-end value for the exception_list.

HPX_THROW_EXCEPTION, HPX_THROW_BAD_ALLOC, HPX_THROWS_IF

Defined in header hpx/exception.hpp711.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_THROW_EXCEPTION(errcode, f, ...)
Throw a hpx::exception initialized from the given parameters.

The macro HPX_THROW_EXCEPTION can be used to throw a hpx::exception. The purpose of this macro is to
prepend the source file name and line number of the position where the exception is thrown to the error message.
Moreover, this associates additional diagnostic information with the exception, such as file name and line number,
locality id and thread id, and stack backtrace from the point where the exception was thrown.

The parameter errcode holds the hpx::error code the new exception should encapsulate. The parameter f is
expected to hold the name of the function exception is thrown from and the parameter msg holds the error message
the new exception should encapsulate.

void raise_exception()
{

// Throw a hpx::exception initialized from the given parameters.
// Additionally associate with this exception some detailed
// diagnostic information about the throw-site.
HPX_THROW_EXCEPTION(hpx::error::no_success, "raise_exception",

"simulated error");
}

711 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
exception.hpp

1070 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/exception.hpp

HPX Documentation, master

Example:

HPX_THROW_BAD_ALLOC(f)
Throw a hpx::bad_alloc_exception initialized from the given parameters.

The macro HPX_THROW_BAD_ALLOC can be used to throw a hpx::exception. The purpose of this macro
is to prepend the source file name and line number of the position where the exception is thrown to the error
message. Moreover, this associates additional diagnostic information with the exception, such as file name and
line number, locality id and thread id, and stack backtrace from the point where the exception was thrown.

The parameter errcode holds the hpx::error code the new exception should encapsulate. The parameter f is
expected to hold the name of the function exception is thrown from and the parameter msg holds the error message
the new exception should encapsulate.

void raise_exception()
{

// Throw a hpx::exception initialized from the given parameters.
// Additionally associate with this exception some detailed
// diagnostic information about the throw-site.
HPX_THROW_BAD_ALLOC("raise_exception", "simulated error");

}

Example:

HPX_THROWS_IF(ec, errcode, f, ...)
Either throw a hpx::exception or initialize hpx::error_code from the given parameters.

The macro HPX_THROWS_IF can be used to either throw a hpx::exception or to initialize a hpx::error_code
from the given parameters. If &ec == &hpx::throws, the semantics of this macro are equivalent to
HPX_THROW_EXCEPTION. If &ec != &hpx::throws, the hpx::error_code instance ec is initialized instead.

The parameter errcode holds the hpx::error code from which the new exception should be initialized. The
parameter f is expected to hold the name of the function exception is thrown from and the parameter msg holds
the error message the new exception should encapsulate.

HPX_THROWS_BAD_ALLOC_IF(ec, f)
Either throw a hpx::bad_alloc_exception or hpx::error_code to out_of_memory.

The macro HPX_THROWS_BAD_ALLOC_IF can be used to either throw a hpx::bad_alloc_exception or to ini-
tialize a hpx::error_code to hpx::error::out_of_memory. If &ec == &hpx::throws, the semantics of this macro
are equivalent to HPX_THROW_BAD_ALLOC. If &ec != &hpx::throws, the hpx::error_code instance ec is ini-
tialized instead.

namespace hpx

2.8. API reference 1071

HPX Documentation, master

execution

See Public API for a list of names and headers that are part of the public HPX API.

hpx/execution/executors/adaptive_static_chunk_size.hpp

Defined in header hpx/execution/executors/adaptive_static_chunk_size.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

Typedefs

typedef hpx::execution::experimental::adaptive_static_chunk_size instead

namespace experimental

struct adaptive_static_chunk_size
#include <adaptive_static_chunk_size.hpp> Loop iterations are divided into pieces of size
chunk_size and then assigned to threads. If chunk_size is not specified, the iterations are evenly
(if possible) divided contiguously among the threads.

Note: This executor parameters type is equivalent to OpenMP’s STATIC scheduling directive.

Public Functions

adaptive_static_chunk_size() = default
Construct a adaptive_static_chunk_size executor parameters object

Note: By default the number of loop iterations is determined from the number of available
cores and the overall number of loop iterations to schedule.

inline explicit constexpr adaptive_static_chunk_size(std::size_t chunk_size) noexcept
Construct a adaptive_static_chunk_size executor parameters object

Parameters chunk_size – [in] The optional chunk size to use as the number of loop
iterations to run on a single thread.

1072 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::execution::experimental::auto_chunk_size

Defined in header hpx/execution.hpp712.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

struct auto_chunk_size
#include <auto_chunk_size.hpp> Loop iterations are divided into pieces and then assigned to
threads. The number of loop iterations combined is determined based on measurements of how
long the execution of 1% of the overall number of iterations takes. This executor parameters type
makes sure that as many loop iterations are combined as necessary to run for the amount of time
specified.

Public Functions

inline explicit constexpr auto_chunk_size(std::uint64_t num_iters_for_timing = 0) noexcept
Construct an auto_chunk_size executor parameters object

Note: Default constructed auto_chunk_size executor parameter types will use 80 microseconds
as the minimal time for which any of the scheduled chunks should run.

inline explicit auto_chunk_size(hpx::chrono::steady_duration const &rel_time, std::uint64_t
num_iters_for_timing = 0) noexcept

Construct an auto_chunk_size executor parameters object
Parameters

• rel_time – [in] The time duration to use as the minimum to decide how many loop
iterations should be combined.

• num_iters_for_timing – [in] The number of iterations to use for the timing oper-
ation

hpx/execution/executors/default_parameters.hpp

Defined in header hpx/execution/executors/default_parameters.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

712 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
execution.hpp

2.8. API reference 1073

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/execution.hpp

HPX Documentation, master

namespace experimental

struct default_parameters
#include <default_parameters.hpp> Loop iterations are divided into pieces of size chunk_size
and then assigned to threads. If chunk_size is not specified, the iterations are evenly (if possible)
divided contiguously among the threads.

Note: This executor parameters type is equivalent to OpenMP’s STATIC scheduling directive.

Public Functions

default_parameters() = default
Construct a default_parameters executor parameters object

Note: By default the number of loop iterations is determined from the number of available
cores and the overall number of loop iterations to schedule.

hpx::execution::experimental::dynamic_chunk_size

Defined in header hpx/execution.hpp713.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

struct dynamic_chunk_size
#include <dynamic_chunk_size.hpp> Loop iterations are divided into pieces of size chunk_size
and then dynamically scheduled among the threads; when a thread finishes one chunk, it is dy-
namically assigned another If chunk_size is not specified, the default chunk size is 1.

Note: This executor parameters type is equivalent to OpenMP’s DYNAMIC scheduling directive.

713 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
execution.hpp

1074 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/execution.hpp

HPX Documentation, master

Public Functions

dynamic_chunk_size() = default
Construct an dynamic_chunk_size executor parameters object

Note: Default constructed dynamic_chunk_size executor parameter types will use a chunk size
of ‘1’.

inline explicit constexpr dynamic_chunk_size(std::size_t chunk_size) noexcept
Construct a dynamic_chunk_size executor parameters object

Parameters chunk_size – [in] The optional chunk size to use as the number of loop
iterations to schedule together. The default chunk size is 1.

hpx/execution/executors/execution.hpp

Defined in header hpx/execution/executors/execution.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace execution

hpx/execution/executors/execution_information.hpp

Defined in header hpx/execution/executors/execution_information.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Variables

hpx::execution::experimental::has_pending_closures_t has_pending_closures

hpx::execution::experimental::get_pu_mask_t get_pu_mask

hpx::execution::experimental::set_scheduler_mode_t set_scheduler_mode

2.8. API reference 1075

HPX Documentation, master

struct get_pu_mask_t : public hpx::functional::detail::tag_fallback<get_pu_mask_t>
#include <execution_information.hpp> Retrieve the bitmask describing the processing units the
given thread is allowed to run on

All threads::executors invoke sched.get_pu_mask().

Note: If the executor does not support this operation, this call will always invoke
hpx::threads::get_pu_mask()

Param exec [in] The executor object to use for querying the number of pending tasks.
Param topo [in] The topology object to use to extract the requested information.
Param thream_num [in] The sequence number of the thread to retrieve information for.

Private Functions

template<typename Executor>
inline decltype(auto) friend tag_fallback_invoke(get_pu_mask_t, Executor&&,

threads::topology &topo, std::size_t
thread_num)

template<typename Executor>
inline decltype(auto) friend tag_invoke(get_pu_mask_t, Executor &&exec, threads::topology

&topo, std::size_t thread_num)

struct has_pending_closures_t : public
hpx::functional::detail::tag_fallback<has_pending_closures_t>

#include <execution_information.hpp> Retrieve whether this executor has operations pending or
not.

Note: If the executor does not expose this information, this call will always return false

Param exec [in] The executor object to use to extract the requested information for.

Private Functions

template<typename Executor>
inline decltype(auto) friend tag_fallback_invoke(has_pending_closures_t, Executor&&)

template<typename Executor>
inline decltype(auto) friend tag_invoke(has_pending_closures_t, Executor &&exec)

struct set_scheduler_mode_t : public
hpx::functional::detail::tag_fallback<set_scheduler_mode_t>

#include <execution_information.hpp> Set various modes of operation on the scheduler under-
neath the given executor.

Note: This calls exec.set_scheduler_mode(mode) if it exists; otherwise it does nothing.

1076 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Param exec [in] The executor object to use.
Param mode [in] The new mode for the scheduler to pick up

Friends

template<typename Executor, typename Mode>
inline friend void tag_fallback_invoke(set_scheduler_mode_t, Executor&&, Mode const&)

template<typename Executor, typename Mode>
inline friend void tag_invoke(set_scheduler_mode_t, Executor &&exec, Mode const &mode)

hpx/execution/executors/execution_parameters.hpp

Defined in header hpx/execution/executors/execution_parameters.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Functions

template<typename ...Params>
constexpr executor_parameters_join<Params...>::type join_executor_parameters(Params&&...

params)

template<typename Param>
constexpr Param &&join_executor_parameters(Param &¶m) noexcept

template<typename ...Params>

struct executor_parameters_join

Public Types

using type = detail::executor_parameters<std::decay_t<Params>...>

template<typename Param>

struct executor_parameters_join<Param>

2.8. API reference 1077

HPX Documentation, master

Public Types

using type = Param

hpx/execution/executors/execution_parameters_fwd.hpp

Defined in header hpx/execution/executors/execution_parameters_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Variables

constexpr struct hpx::execution::experimental::null_parameters_t null_parameters

hpx::execution::experimental::get_chunk_size_t get_chunk_size

hpx::execution::experimental::measure_iteration_t measure_iteration

hpx::execution::experimental::maximal_number_of_chunks_t maximal_number_of_chunks

hpx::execution::experimental::reset_thread_distribution_t reset_thread_distribution

hpx::execution::experimental::processing_units_count_t processing_units_count

hpx::execution::experimental::with_processing_units_count_t with_processing_units_count

hpx::execution::experimental::mark_begin_execution_t mark_begin_execution

hpx::execution::experimental::mark_end_of_scheduling_t mark_end_of_scheduling

hpx::execution::experimental::mark_end_execution_t mark_end_execution

struct get_chunk_size_t : public hpx::functional::detail::tag_priority<get_chunk_size_t>
#include <execution_parameters_fwd.hpp> Return the number of invocations of the given func-
tion f which should be combined into a single task

Param params [in] The executor parameters object to use for determining the chunk size
for the given number of tasks num_tasks.

Param exec [in] The executor object which will be used for scheduling of the loop iterations.

1078 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Param iteration_duration [in] The time one of the tasks require to be executed.
Param cores [in] The number of cores the number of chunks should be determined for.
Param num_tasks [in] The number of tasks the chunk size should be determined for
Return The size of the chunks (number of iterations per chunk) that should be used for

parallel execution.

Private Functions

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(get_chunk_size_t, Parameters &¶ms,

Executor &&exec,
hpx::chrono::steady_duration const
&iteration_duration, std::size_t cores,
std::size_t num_tasks)

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(get_chunk_size_t tag, Parameters

&¶ms, Executor &&exec, std::size_t
cores, std::size_t num_tasks)

template<>

struct is_scheduling_property<with_processing_units_count_t> : public true_type

struct mark_begin_execution_t : public
hpx::functional::detail::tag_priority<mark_begin_execution_t>

#include <execution_parameters_fwd.hpp> Mark the begin of a parallel algorithm execution

Note: This calls params.mark_begin_execution(exec) if it exists; otherwise it does nothing.

Param params [in] The executor parameters object to use as a fallback if the executor does
not expose

Private Functions

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(mark_begin_execution_t, Parameters

&¶ms, Executor &&exec)

struct mark_end_execution_t : public
hpx::functional::detail::tag_priority<mark_end_execution_t>

#include <execution_parameters_fwd.hpp> Mark the end of a parallel algorithm execution

Note: This calls params.mark_end_execution(exec) if it exists; otherwise it does nothing.

Param params [in] The executor parameters object to use as a fallback if the executor does
not expose

2.8. API reference 1079

HPX Documentation, master

Private Functions

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(mark_end_execution_t, Parameters

&¶ms, Executor &&exec)

struct mark_end_of_scheduling_t : public
hpx::functional::detail::tag_priority<mark_end_of_scheduling_t>

#include <execution_parameters_fwd.hpp> Mark the end of scheduling tasks during parallel al-
gorithm execution

Note: This calls params.mark_begin_execution(exec) if it exists; otherwise it does nothing.

Param params [in] The executor parameters object to use as a fallback if the executor does
not expose

Private Functions

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(mark_end_of_scheduling_t, Parameters

&¶ms, Executor &&exec)

struct maximal_number_of_chunks_t : public
hpx::functional::detail::tag_priority<maximal_number_of_chunks_t>

#include <execution_parameters_fwd.hpp> Return the largest reasonable number of chunks to
create for a single algorithm invocation.

Param params [in] The executor parameters object to use for determining the number of
chunks for the given number of cores.

Param exec [in] The executor object which will be used for scheduling of the loop iterations.
Param cores [in] The number of cores the number of chunks should be determined for.
Param num_tasks [in] The number of tasks the chunk size should be determined for

Private Functions

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(maximal_number_of_chunks_t,

Parameters &¶ms, Executor
&&exec, std::size_t cores, std::size_t
num_tasks)

struct measure_iteration_t : public hpx::functional::detail::tag_priority<measure_iteration_t>
#include <execution_parameters_fwd.hpp> Return the measured execution time for one iteration
based on running the given function.

Note: The parameter f is expected to be a nullary function returning a std::size_t representing
the number of iteration the function has already executed (i.e. which don’t have to be scheduled
anymore).

1080 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Param params [in] The executor parameters object to use for determining the chunk size
for the given number of tasks num_tasks.

Param exec [in] The executor object which will be used for scheduling of the loop iterations.
Param f [in] The function which will be optionally scheduled using the given executor.
Param num_tasks [in] The number of tasks the chunk size should be determined for
Return The execution time for one of the tasks.

Private Functions

template<typename Parameters, typename Executor, typename F>
inline decltype(auto) friend tag_fallback_invoke(measure_iteration_t, Parameters

&¶ms, Executor &&exec, F &&f,
std::size_t num_tasks)

struct null_parameters_t

struct processing_units_count_t : public
hpx::functional::detail::tag_priority<processing_units_count_t>

#include <execution_parameters_fwd.hpp> Retrieve the number of (kernel-)threads used by the
associated executor.

Note: This calls params.processing_units_count(Executor&&) if it exists; otherwise it forwards
the request to the executor parameters object.

Param params [in] The executor parameters object to use as a fallback if the executor does
not expose

Param iteration_duration [in] The time one of the tasks require to be executed.
Param num_tasks [in] The number of tasks the number of cores should be determined for
Return The number of cores to use

Private Functions

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(processing_units_count_t, Parameters

&¶ms, Executor &&exec,
hpx::chrono::steady_duration const
&iteration_duration, std::size_t
num_tasks)

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(processing_units_count_t tag, Parameters

&¶ms, Executor &&exec, std::size_t
num_tasks = 0)

template<typename Executor>
inline decltype(auto) friend tag_fallback_invoke(processing_units_count_t, Executor

&&exec, hpx::chrono::steady_duration
const &iteration_duration, std::size_t
num_tasks)

template<typename Executor>

2.8. API reference 1081

HPX Documentation, master

inline decltype(auto) friend tag_fallback_invoke(processing_units_count_t tag, Executor
&&exec, std::size_t num_tasks = 0)

struct reset_thread_distribution_t : public
hpx::functional::detail::tag_priority<reset_thread_distribution_t>

#include <execution_parameters_fwd.hpp> Reset the internal round robin thread distribution
scheme for the given executor.

Note: This calls params.reset_thread_distribution(exec) if it exists; otherwise it does nothing.

Param params [in] The executor parameters object to use for resetting the thread distribu-
tion scheme.

Param exec [in] The executor object to use.

Private Functions

template<typename Parameters, typename Executor>
inline decltype(auto) friend tag_fallback_invoke(reset_thread_distribution_t, Parameters

&¶ms, Executor &&exec)

struct with_processing_units_count_t : public
hpx::functional::detail::tag_priority<with_processing_units_count_t>

#include <execution_parameters_fwd.hpp> Generate a policy that supports setting the number of
cores for execution.

hpx::execution::experimental::guided_chunk_size

Defined in header hpx/execution.hpp714.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

struct guided_chunk_size
#include <guided_chunk_size.hpp> Iterations are dynamically assigned to threads in blocks as
threads request those until no blocks remain to be assigned. Similar to dynamic_chunk_size except
that the block size decreases each time a number of loop iterations is given to a thread. The size of
the initial block is proportional to number_of_iterations / number_of_cores. Subsequent blocks
are proportional to number_of_iterations_remaining / number_of_cores. The optional chunk size
parameter defines the minimum block size. The default chunk size is 1.

714 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
execution.hpp

1082 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/execution.hpp

HPX Documentation, master

Note: This executor parameters type is equivalent to OpenMP’s GUIDED scheduling directive.

Public Functions

guided_chunk_size() = default
Construct an dynamic_chunk_size executor parameters object

Note: Default constructed dynamic_chunk_size executor parameter types will use a chunk size
of ‘1’.

inline explicit constexpr guided_chunk_size(std::size_t min_chunk_size) noexcept
Construct a guided_chunk_size executor parameters object

Parameters min_chunk_size – [in] The optional minimal chunk size to use as the min-
imal number of loop iterations to schedule together. The default minimal chunk size is
1.

hpx::execution::experimental::num_cores

Defined in header hpx/execution.hpp715.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

struct num_cores
#include <num_cores.hpp> Control number of cores in executors which need a functionality for
setting the number of cores to be used by an algorithm directly

Public Functions

inline explicit constexpr num_cores(std::size_t cores = 1) noexcept
Construct a num_cores executor parameters object

Note: make sure the minimal number of cores is and the maximum number of cores is what’s
available to HPX

715 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
execution.hpp

2.8. API reference 1083

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/execution.hpp

HPX Documentation, master

hpx::execution::experimental::persistent_auto_chunk_size

Defined in header hpx/execution.hpp716.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

struct persistent_auto_chunk_size
#include <persistent_auto_chunk_size.hpp> Loop iterations are divided into pieces and then as-
signed to threads. The number of loop iterations combined is determined based on measurements
of how long the execution of 1% of the overall number of iterations takes. This executor parame-
ters type makes sure that as many loop iterations are combined as necessary to run for the amount
of time specified.

Public Functions

inline explicit constexpr persistent_auto_chunk_size(std::uint64_t num_iters_for_timing
= 0) noexcept

Construct an persistent_auto_chunk_size executor parameters object

Note: Default constructed persistent_auto_chunk_size executor parameter types will use 0
microseconds as the execution time for each chunk and 80 microseconds as the minimal time
for which any of the scheduled chunks should run.

inline explicit persistent_auto_chunk_size(hpx::chrono::steady_duration const &time_cs,
std::uint64_t num_iters_for_timing = 0)
noexcept

Construct an persistent_auto_chunk_size executor parameters object
Parameters

• time_cs – The execution time for each chunk.
• num_iters_for_timing – [in] The number of iterations to use for measuring the

execution time of one iteration

inline persistent_auto_chunk_size(hpx::chrono::steady_duration const &time_cs,
hpx::chrono::steady_duration const &rel_time,
std::uint64_t num_iters_for_timing = 0) noexcept

Construct an persistent_auto_chunk_size executor parameters object
Parameters

• rel_time – [in] The time duration to use as the minimum to decide how many loop
iterations should be combined.

• time_cs – The execution time for each chunk.
• num_iters_for_timing – [in] The number of iterations to use for measuring the

execution time of one iteration
716 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

execution.hpp

1084 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/execution.hpp

HPX Documentation, master

hpx/execution/executors/polymorphic_executor.hpp

Defined in header hpx/execution/executors/polymorphic_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

namespace parallel

namespace execution

template<typename Sig>

class polymorphic_executor

template<typename R, typename ...Ts>

class polymorphic_executor<R(Ts...)> : private
hpx::parallel::execution::detail::polymorphic_executor_base

Public Types

template<typename>

using future_type = hpx::future<R>

Public Functions

inline constexpr polymorphic_executor() noexcept

inline polymorphic_executor(polymorphic_executor const &other)

inline polymorphic_executor(polymorphic_executor &&other) noexcept

inline polymorphic_executor &operator=(polymorphic_executor const &other)

inline polymorphic_executor &operator=(polymorphic_executor &&other) noexcept

template<typename Exec, typename PE = std::decay_t<Exec>, typename Enable =
std::enable_if_t<!std::is_same_v<PE, polymorphic_executor>>>
inline polymorphic_executor(Exec &&exec)

template<typename Exec, typename PE = std::decay_t<Exec>, typename Enable =
std::enable_if_t<!std::is_same_v<PE, polymorphic_executor>>>
inline polymorphic_executor &operator=(Exec &&exec)

inline void reset() noexcept

2.8. API reference 1085

HPX Documentation, master

Private Types

using base_type = detail::polymorphic_executor_base

using vtable = detail::polymorphic_executor_vtable<R(Ts...)>

Private Functions

inline void assign(std::nullptr_t) noexcept

template<typename Exec>
inline void assign(Exec &&exec)

Private Static Functions

static inline constexpr vtable const *get_empty_vtable() noexcept

template<typename T>
static inline constexpr vtable const *get_vtable() noexcept

Friends

template<typename F>
inline friend void tag_invoke(hpx::parallel::execution::post_t, polymorphic_executor const

&exec, F &&f, Ts... ts)

template<typename F>
inline friend R tag_invoke(hpx::parallel::execution::sync_execute_t, polymorphic_executor

const &exec, F &&f, Ts... ts)

template<typename F>
inline friend hpx::future<R> tag_invoke(hpx::parallel::execution::async_execute_t,

polymorphic_executor const &exec, F &&f, Ts... ts)

template<typename F, typename Future>
inline friend hpx::future<R> tag_invoke(hpx::parallel::execution::then_execute_t,

polymorphic_executor const &exec, F &&f, Future
&&predecessor, Ts&&... ts)

template<typename F, typename Shape>
inline friend std::vector<R> tag_invoke(hpx::parallel::execution::bulk_sync_execute_t,

polymorphic_executor const &exec, F &&f, Shape
const &s, Ts&&... ts)

template<typename F, typename Shape>
inline friend std::vector<hpx::future<R>> tag_invoke(hpx::parallel::execution::bulk_async_execute_t,

polymorphic_executor const &exec, F
&&f, Shape const &s, Ts&&... ts)

template<typename F, typename Shape>

1086 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline friend hpx::future<std::vector<R>> tag_invoke(hpx::parallel::execution::bulk_then_execute_t,
polymorphic_executor const &exec, F
&&f, Shape const &s,
hpx::shared_future<void> const
&predecessor, Ts&&... ts)

hpx/execution/executors/rebind_executor.hpp

Defined in header hpx/execution/executors/rebind_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Typedefs

template<typename ExPolicy, typename Executor, typename Parameters>

using rebind_executor_t = typename rebind_executor<ExPolicy, Executor, Parameters>::type

Variables

constexpr struct hpx::execution::experimental::create_rebound_policy_t create_rebound_policy

struct create_rebound_policy_t

Public Functions

template<typename ExPolicy, typename Executor, typename Parameters>
inline constexpr decltype(auto) operator()(ExPolicy&&, Executor &&exec, Parameters

&¶meters) const

template<typename ExPolicy, typename Executor, typename Parameters>

struct rebind_executor
#include <rebind_executor.hpp> Rebind the type of executor used by an execution policy. The
execution category of Executor shall not be weaker than that of ExecutionPolicy.

2.8. API reference 1087

HPX Documentation, master

Public Types

using type = typename policy_type::template rebind<executor_type, parameters_type>::type
The type of the rebound execution policy.

hpx::execution::experimental::static_chunk_size

Defined in header hpx/execution.hpp717.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

struct static_chunk_size
#include <static_chunk_size.hpp> Loop iterations are divided into pieces of size chunk_size and
then assigned to threads. If chunk_size is not specified, the iterations are evenly (if possible)
divided contiguously among the threads.

Note: This executor parameters type is equivalent to OpenMP’s STATIC scheduling directive.

Public Functions

static_chunk_size() = default
Construct a static_chunk_size executor parameters object

Note: By default the number of loop iterations is determined from the number of available
cores and the overall number of loop iterations to schedule.

inline explicit constexpr static_chunk_size(std::size_t chunk_size) noexcept
Construct a static_chunk_size executor parameters object

Parameters chunk_size – [in] The optional chunk size to use as the number of loop
iterations to run on a single thread.

717 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
execution.hpp

1088 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/execution.hpp

HPX Documentation, master

hpx/execution/traits/is_execution_policy.hpp

Defined in header hpx/execution/traits/is_execution_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Variables

template<typename T>

constexpr bool is_execution_policy_v = is_execution_policy<T>::value

template<typename T>

constexpr bool is_parallel_execution_policy_v = is_parallel_execution_policy<T>::value

template<typename T>

constexpr bool is_sequenced_execution_policy_v = is_sequenced_execution_policy<T>::value

template<typename T>

constexpr bool is_async_execution_policy_v = is_async_execution_policy<T>::value

template<typename T>

struct is_async_execution_policy : public hpx::detail::is_async_execution_policy<std::decay_t<T>>
#include <is_execution_policy.hpp> Extension: Detect whether given execution policy makes algorithms
asynchronous

i. The type is_async_execution_policy can be used to detect asynchronous execution policies for the
purpose of excluding function signatures from otherwise ambiguous overload resolution participation.

ii. If T is the type of a standard or implementation-defined execution policy,
is_async_execution_policy<T> shall be publicly derived from integral_constant<bool, true>,
otherwise from integral_constant<bool, false>.

iii. The behavior of a program that adds specializations for is_async_execution_policy is undefined.

template<typename T>

struct is_execution_policy : public hpx::detail::is_execution_policy<std::decay_t<T>>
#include <is_execution_policy.hpp>

i. The type is_execution_policy can be used to detect execution policies for the purpose of excluding
function signatures from otherwise ambiguous overload resolution participation.

ii. If T is the type of a standard or implementation-defined execution policy, is_execution_policy<T>
shall be publicly derived from integral_constant<bool, true>, otherwise from integral_constant<bool,
false>.

iii. The behavior of a program that adds specializations for is_execution_policy is undefined.

template<typename T>

2.8. API reference 1089

HPX Documentation, master

struct is_parallel_execution_policy : public
hpx::detail::is_parallel_execution_policy<std::decay_t<T>>

#include <is_execution_policy.hpp> Extension: Detect whether given execution policy enables paralleliza-
tion

i. The type is_parallel_execution_policy can be used to detect parallel execution policies for the purpose
of excluding function signatures from otherwise ambiguous overload resolution participation.

ii. If T is the type of a standard or implementation-defined execution policy,
is_parallel_execution_policy<T> shall be publicly derived from integral_constant<bool, true>,
otherwise from integral_constant<bool, false>.

iii. The behavior of a program that adds specializations for is_parallel_execution_policy is undefined.

template<typename T>

struct is_sequenced_execution_policy : public
hpx::detail::is_sequenced_execution_policy<std::decay_t<T>>

#include <is_execution_policy.hpp> Extension: Detect whether given execution policy does not enable
parallelization

i. The type is_sequenced_execution_policy can be used to detect non-parallel execution policies for the
purpose of excluding function signatures from otherwise ambiguous overload resolution participation.

ii. If T is the type of a standard or implementation-defined execution policy,
is_sequenced_execution_policy<T> shall be publicly derived from integral_constant<bool, true>,
otherwise from integral_constant<bool, false>.

iii. The behavior of a program that adds specializations for is_sequenced_execution_policy is undefined.

execution_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx/execution_base/execution.hpp

Defined in header hpx/execution_base/execution.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

struct parallel_execution_tag
#include <execution.hpp> Function invocations executed by a group of parallel execution agents ex-
ecute in unordered fashion. Any such invocations executing in the same thread are indeterminately
sequenced with respect to each other.

Note: parallel_execution_tag is weaker than sequenced_execution_tag.

1090 Chapter 2. What’s so special about HPX?

HPX Documentation, master

struct sequenced_execution_tag
#include <execution.hpp> Function invocations executed by a group of sequential execution agents
execute in sequential order.

struct unsequenced_execution_tag
#include <execution.hpp> Function invocations executed by a group of vector execution agents are
permitted to execute in unordered fashion when executed in different threads, and un-sequenced with
respect to one another when executed in the same thread.

Note: unsequenced_execution_tag is weaker than parallel_execution_tag.

namespace parallel

namespace execution

Variables

hpx::parallel::execution::sync_execute_t sync_execute

hpx::parallel::execution::async_execute_t async_execute

hpx::parallel::execution::then_execute_t then_execute

hpx::parallel::execution::post_t post

hpx::parallel::execution::bulk_sync_execute_t bulk_sync_execute

hpx::parallel::execution::bulk_async_execute_t bulk_async_execute

hpx::parallel::execution::bulk_then_execute_t bulk_then_execute

hpx::parallel::execution::async_invoke_t async_invoke

hpx::parallel::execution::sync_invoke_t sync_invoke

struct async_execute_t : public hpx::functional::detail::tag_fallback<async_execute_t>
#include <execution.hpp> Customization point for asynchronous execution agent creation.

This asynchronously creates a single function invocation f() using the associated executor.

Note: Executors have to implement only async_execute(). All other functions will be emu-
lated by this or other customization points in terms of this single basic primitive. However, some
executors will naturally specialize all operations for maximum efficiency.

2.8. API reference 1091

HPX Documentation, master

Note: This is valid for one way executors (calls make_ready_future(exec.sync_execute(f, ts. . .)
if it exists) and for two way executors (calls exec.async_execute(f, ts. . .) if it exists).

Param exec [in] The executor object to use for scheduling of the function f.
Param f [in] The function which will be scheduled using the given executor.
Param ts [in] Additional arguments to use to invoke f.
Return f(ts. . .)’s result through a future

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(async_execute_t, Executor &&exec, F

&&f, Ts&&... ts)

struct async_invoke_t : public hpx::functional::detail::tag_fallback<async_invoke_t>
#include <execution.hpp> Asynchronously invoke the given set of nullary functions, each on its
own execution agent

This creates a group of function invocations whose ordering is given by the execution_category
associated with the executor.

All exceptions thrown by invocations of the functions are reported in a manner consistent with
parallel algorithm execution through the returned future.

Note: This calls exec.async_invoke(fs. . .) if it exists; otherwise it executes async_execute(fs) for
each fs.

Param exec [in] The executor object to use for scheduling of the functions fs.
Param fs [in] The functions which will be scheduled using the given executor.
Return The return type of executor_type::async_invoke if defined by executor_type. Other-

wise a future<void> representing finishing the execution of all functions fs.

Private Functions

template<typename Executor, typename F, typename ...Fs>
inline decltype(auto) friend tag_fallback_invoke(async_invoke_t, Executor &&exec, F

&&f, Fs&&... fs)

struct bulk_async_execute_t : public
hpx::functional::detail::tag_fallback<bulk_async_execute_t>

#include <execution.hpp> Bulk form of asynchronous execution agent creation.

This asynchronously creates a group of function invocations f(i) whose ordering is given by the
execution_category associated with the executor.

Here i takes on all values in the index space implied by shape. All exceptions thrown by invocations
of f(i) are reported in a manner consistent with parallel algorithm execution through the returned
future.

1092 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: This is deliberately different from the bulk_async_execute customization points specified
in P0443.The bulk_async_execute customization point defined here is more generic and is used
as the workhorse for implementing the specified APIs.

Note: This calls exec.bulk_async_execute(f, shape, ts. . .) if it exists; otherwise it executes
async_execute(f, shape, ts. . .) as often as needed.

Param exec [in] The executor object to use for scheduling of the function f.
Param f [in] The function which will be scheduled using the given executor.
Param shape [in] The shape objects which defines the iteration boundaries for the argu-

ments to be passed to f.
Param ts [in] Additional arguments to use to invoke f.
Return The return type of executor_type::bulk_async_execute if defined by executor_type.

Otherwise a vector of futures holding the returned values of each invocation of f.

Private Functions

template<typename Executor, typename F, typename Shape, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(bulk_async_execute_t, Executor &&exec,

F &&f, Shape const &shape, Ts&&... ts)

template<typename Executor, typename F, typename Shape, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(bulk_async_execute_t tag, Executor

&&exec, F &&f, Shape const &shape,
Ts&&... ts)

struct bulk_sync_execute_t : public hpx::functional::detail::tag_fallback<bulk_sync_execute_t>
#include <execution.hpp> Bulk form of synchronous execution agent creation.

This synchronously creates a group of function invocations f(i) whose ordering is given by the
execution_category associated with the executor. The function synchronizes the execution of all
scheduled functions with the caller.

Here i takes on all values in the index space implied by shape. All exceptions thrown by invocations
of f(i) are reported in a manner consistent with parallel algorithm execution through the returned
future.

Note: This is deliberately different from the bulk_sync_execute customization points specified
in P0443.The bulk_sync_execute customization point defined here is more generic and is used as
the workhorse for implementing the specified APIs.

Note: This calls exec.bulk_sync_execute(f, shape, ts. . .) if it exists; otherwise it executes
sync_execute(f, shape, ts. . .) as often as needed.

Param exec [in] The executor object to use for scheduling of the function f.
Param f [in] The function which will be scheduled using the given executor.

2.8. API reference 1093

HPX Documentation, master

Param shape [in] The shape objects which defines the iteration boundaries for the argu-
ments to be passed to f.

Param ts [in] Additional arguments to use to invoke f.
Return The return type of executor_type::bulk_sync_execute if defined by executor_type.

Otherwise a vector holding the returned values of each invocation of f except when f re-
turns void, which case void is returned.

Private Functions

template<typename Executor, typename F, typename Shape, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(bulk_sync_execute_t, Executor &&exec,

F &&f, Shape const &shape, Ts&&... ts)

template<typename Executor, typename F, typename Shape, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(bulk_sync_execute_t tag, Executor

&&exec, F &&f, Shape const &shape,
Ts&&... ts)

struct bulk_then_execute_t : public hpx::functional::detail::tag_fallback<bulk_then_execute_t>
#include <execution.hpp> Bulk form of execution agent creation depending on a given future.

This creates a group of function invocations f(i) whose ordering is given by the execution_category
associated with the executor.

Here i takes on all values in the index space implied by shape. All exceptions thrown by invocations
of f(i) are reported in a manner consistent with parallel algorithm execution through the returned
future.

Note: This is deliberately different from the then_sync_execute customization points specified
in P0443.The bulk_then_execute customization point defined here is more generic and is used as
the workhorse for implementing the specified APIs.

Note: This calls exec.bulk_then_execute(f, shape, pred, ts. . .) if it exists; otherwise it exe-
cutes sync_execute(f, shape, pred.share(), ts. . .) (if this executor is also an OneWayExecutor),
or async_execute(f, shape, pred.share(), ts. . .) (if this executor is also a TwoWayExecutor) - as
often as needed.

Param exec [in] The executor object to use for scheduling of the function f.
Param f [in] The function which will be scheduled using the given executor.
Param shape [in] The shape objects which defines the iteration boundaries for the argu-

ments to be passed to f.
Param predecessor [in] The future object the execution of the given function depends on.
Param ts [in] Additional arguments to use to invoke f.
Return The return type of executor_type::bulk_then_execute if defined by executor_type.

Otherwise a vector holding the returned values of each invocation of f.

1094 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Functions

template<typename Executor, typename F, typename Shape, typename Future, typename
...Ts>
inline decltype(auto) friend tag_fallback_invoke(bulk_then_execute_t, Executor &&exec,

F &&f, Shape const &shape, Future
&&predecessor, Ts&&... ts)

template<typename Executor, typename F, typename Shape, typename Future, typename
...Ts>
inline decltype(auto) friend tag_fallback_invoke(bulk_then_execute_t tag, Executor

&&exec, F &&f, Shape const &shape,
Future &&predecessor, Ts&&... ts)

struct post_t : public hpx::functional::detail::tag_fallback<post_t>
#include <execution.hpp> Customization point for asynchronous fire & forget execution agent
creation.

This asynchronously (fire & forget) creates a single function invocation f() using the associated
executor.

Note: This is valid for two way executors (calls exec.post(f, ts. . .), if available, otherwise it calls
exec.async_execute(f, ts. . .) while discarding the returned future), and for non-blocking two way
executors (calls exec.post(f, ts. . .) if it exists).

Param exec [in] The executor object to use for scheduling of the function f.
Param f [in] The function which will be scheduled using the given executor.
Param ts [in] Additional arguments to use to invoke f.

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(post_t, Executor &&exec, F &&f,

Ts&&... ts)

struct sync_execute_t : public hpx::functional::detail::tag_fallback<sync_execute_t>
#include <execution.hpp> Customization point for synchronous execution agent creation.

This synchronously creates a single function invocation f() using the associated executor. The
execution of the supplied function synchronizes with the caller

Note: It will call tag_invoke(sync_execute_t, exec, f, ts. . .) if it exists. For two-way executors it
will invoke asynch_execute_t and wait for the task’s completion before returning.

Param exec [in] The executor object to use for scheduling of the function f.
Param f [in] The function which will be scheduled using the given executor.
Param ts [in] Additional arguments to use to invoke f.
Return f(ts. . .)’s result

2.8. API reference 1095

HPX Documentation, master

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(sync_execute_t, Executor &&exec, F

&&f, Ts&&... ts)

struct sync_invoke_t : public hpx::functional::detail::tag_fallback<sync_invoke_t>
#include <execution.hpp> Synchronously invoke the given set of nullary functions, each on its
own execution agent

This creates a group of function invocations whose ordering is given by the execution_category
associated with the executor.

All exceptions thrown by invocations of the functions are reported in a manner consistent with
parallel algorithm execution through the returned future.

Note: This calls exec.sync_invoke(fs. . .) if it exists; otherwise it executes sync_execute(fs) for
each fs.

Param exec [in] The executor object to use for scheduling of the functions fs.
Param fs [in] The functions which will be scheduled using the given executor.
Return The return type of executor_type::async_invoke if defined by executor_type.

Private Functions

template<typename Executor, typename F, typename ...Fs>
inline decltype(auto) friend tag_fallback_invoke(sync_invoke_t, Executor &&exec, F &&f,

Fs&&... fs)

struct then_execute_t : public hpx::functional::detail::tag_fallback<then_execute_t>
#include <execution.hpp> Customization point for execution agent creation depending on a given
future.

This creates a single function invocation f() using the associated executor after the given future
object has become ready.

Note: This is valid for two way executors (calls exec.then_execute(f, predecessor, ts. . .) if it
exists) and for one way executors (calls predecessor.then(bind(f, ts. . .))).

Param exec [in] The executor object to use for scheduling of the function f.
Param f [in] The function which will be scheduled using the given executor.
Param predecessor [in] The future object the execution of the given function depends on.
Param ts [in] Additional arguments to use to invoke f.
Return f(ts. . .)’s result through a future

1096 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Functions

template<typename Executor, typename F, typename Future, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(then_execute_t, Executor &&exec, F

&&f, Future &&predecessor, Ts&&... ts)

hpx/execution_base/receiver.hpp

Defined in header hpx/execution_base/receiver.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Functions

template<typename R, typename ...As>
void set_value(R &&r, As&&... as)

set_value is a customization point object. The expression hpx::execution::set_value(r,
as...) is equivalent to:
• r.set_value(as...), if that expression is valid. If the function selected does not send the

value(s) as... to the Receiver r’s value channel, the program is ill-formed (no diagnostic re-
quired).

• Otherwise, `set_value(r, as. . .), if that expression is valid, with overload resolution performed
in a context that include the declaration void set_value();

• Otherwise, the expression is ill-formed.
The customization is implemented in terms of hpx::functional::tag_invoke.

template<typename R>
void set_stopped(R &&r)

set_stopped is a customization point object. The expression
hpx::execution::set_stopped(r) is equivalent to:
• r.set_stopped(), if that expression is valid. If the function selected does not signal the

Receiver r’s done channel, the program is ill-formed (no diagnostic required).
• Otherwise, `set_stopped(r), if that expression is valid, with overload resolution performed in a

context that include the declaration void set_stopped();
• Otherwise, the expression is ill-formed.
The customization is implemented in terms of hpx::functional::tag_invoke.

template<typename R, typename E>
void set_error(R &&r, E &&e)

set_error is a customization point object. The expression hpx::execution::set_error(r, e)
is equivalent to:
• r.set_stopped(e), if that expression is valid. If the function selected does not send the error
e the Receiver r’s error channel, the program is ill-formed (no diagnostic required).

• Otherwise, `set_error(r, e), if that expression is valid, with overload resolution performed in a
context that include the declaration void set_error();

2.8. API reference 1097

HPX Documentation, master

• Otherwise, the expression is ill-formed.
The customization is implemented in terms of hpx::functional::tag_invoke.

Variables

hpx::execution::experimental::set_value_t set_value

hpx::execution::experimental::set_error_t set_error

hpx::execution::experimental::set_stopped_t set_stopped

template<typename T, typename E = std::exception_ptr>

constexpr bool is_receiver_v = is_receiver<T , E>::value

template<typename T, typename CS>

constexpr bool is_receiver_of_v = is_receiver_of <T , CS>::value

template<typename T, typename CS>

constexpr bool is_nothrow_receiver_of_v = is_nothrow_receiver_of <T , CS>::value

template<typename T, typename CS>

struct is_nothrow_receiver_of : public
hpx::execution::experimental::detail::is_nothrow_receiver_of_impl<is_receiver_v<T> &&
is_receiver_of_v<T , CS>, T , CS>

template<typename T, typename E>

struct is_receiver
#include <receiver.hpp> Receiving values from asynchronous computations is handled by the
Receiver concept. A Receiver needs to be able to receive an error or be marked as being
canceled. As such, the Receiver concept is defined by having the following two customization
points defined, which form the completion-signal operations:
• hpx::execution::experimental::set_stopped * hpx::execution::experimental::set_error
Those two functions denote the completion-signal operations. The Receiver contract is as follows:
• None of a Receiver’s completion-signal operation shall be invoked before
hpx::execution::experimental::start has been called on the opera-
tion state object that was returned by connecting a Receiver to a sender
hpx::execution::experimental::connect.

• Once hpx::execution::start has been called on the operation state object, exactly one of
the Receiver’s completion-signal operation shall complete without an exception before the Re-
ceiver is destroyed

Once one of the Receiver’s completion-signal operation has been completed without throwing an
exception, the Receiver contract has been satisfied. In other words: The asynchronous operation
has been completed.

See also:

hpx::execution::experimental::is_receiver_of

template<typename T, typename CS>

1098 Chapter 2. What’s so special about HPX?

HPX Documentation, master

struct is_receiver_of
#include <receiver.hpp> The receiver_of concept is a refinement of the Receiver concept by
requiring one additional completion-signal operation:
• hpx::execution::set_value
The receiver_of concept takes a receiver and an instance of the completion_signatures<>
class template. The receiver_of concept, rather than accepting a receiver and some value types,
is changed to take a receiver and an instance of the completion_signatures<> class template.
A sender uses completion_signatures<> to describe the signals with which it completes. The
receiver_of concept ensures that a particular receiver is capable of receiving those signals.

This completion-signal operation adds the following to the Receiver’s contract:
• If hpx::execution::set_value exits with an exception, it is still valid to call
hpx::execution::set_error or hpx::execution::set_stopped

See also:

hpx::execution::traits::is_receiver

struct set_error_t : public hpx::functional::tag_noexcept<set_error_t>

struct set_stopped_t : public hpx::functional::tag_noexcept<set_stopped_t>

struct set_value_t : public hpx::functional::tag<set_value_t>

hpx/execution_base/traits/is_executor_parameters.hpp

Defined in header hpx/execution_base/traits/is_executor_parameters.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename Executor>

struct hpx::execution::experimental::extract_executor_parameters<Executor, std::void_t<typename
Executor::executor_parameters_type>>

Public Types

using type = typename Executor::executor_parameters_type

template<typename Parameters>

struct extract_has_variable_chunk_size<Parameters, std::void_t<typename
Parameters::has_variable_chunk_size>> : public true_type

template<typename Parameters>

struct extract_has_variable_chunk_size<::std::reference_wrapper<Parameters>> : public
hpx::execution::experimental::extract_has_variable_chunk_size<Parameters>

template<typename Parameters>

2.8. API reference 1099

HPX Documentation, master

struct extract_invokes_testing_function<::std::reference_wrapper<Parameters>> : public
hpx::execution::experimental::extract_invokes_testing_function<Parameters>

namespace hpx

namespace execution

namespace experimental

Typedefs

template<typename Executor>

using extract_executor_parameters_t = typename
extract_executor_parameters<Executor>::type

Variables

template<typename Parameters>

constexpr bool extract_has_variable_chunk_size_v =
extract_has_variable_chunk_size<Parameters>::value

template<typename Parameters>

constexpr bool extract_invokes_testing_function_v =
extract_invokes_testing_function<Parameters>::value

template<typename T>

constexpr bool is_executor_parameters_v = is_executor_parameters<T>::value

template<typename Executor, typename Enable = void>

struct extract_executor_parameters

Public Types

using type = sequential_executor_parameters

template<typename Executor> executor_parameters_type > >

1100 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Types

using type = typename Executor::executor_parameters_type

template<typename Parameters, typename Enable = void>

struct extract_has_variable_chunk_size : public false_type

template<typename Parameters> has_variable_chunk_size > > : public true_type

template<typename Parameters> reference_wrapper< Parameters > > : public hpx::execution::experimental::extract_has_variable_chunk_size< Parameters >

template<typename Parameters, typename Enable = void>

struct extract_invokes_testing_function : public false_type

template<typename Parameters> reference_wrapper< Parameters > > : public hpx::execution::experimental::extract_invokes_testing_function< Parameters >

template<typename T>

struct is_executor_parameters : public detail::is_executor_parameters<std::decay_t<T>>

struct sequential_executor_parameters

namespace traits

Variables

template<typename T>

constexpr bool is_executor_parameters_v = is_executor_parameters<T>::value

template<typename Parameters, typename Enable>

struct is_executor_parameters

executors

See Public API for a list of names and headers that are part of the public HPX API.

hpx/executors/annotating_executor.hpp

Defined in header hpx/executors/annotating_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

2.8. API reference 1101

HPX Documentation, master

namespace experimental

Functions

template<typename Tag, typename BaseExecutor, typename Property>
auto tag_invoke(Tag tag, annotating_executor<BaseExecutor> const &exec, Property &&prop)

-> de-
cltype(annotating_executor<BaseExecutor>(std::declval<Tag>()(std::declval<BaseExecutor>(),
std::declval<Property>())))

template<typename Tag, typename BaseExecutor>
auto tag_invoke(Tag tag, annotating_executor<BaseExecutor> const &exec) ->

decltype(std::declval<Tag>()(std::declval<BaseExecutor>()))

template<typename Executor>
constexpr auto tag_fallback_invoke(with_annotation_t, Executor &&exec, char const

*annotation)

template<typename Executor>
auto tag_fallback_invoke(with_annotation_t, Executor &&exec, std::string annotation)

template<typename BaseExecutor>

struct annotating_executor
#include <annotating_executor.hpp> An annotating_executor wraps any other executor and adds
the capability to add annotations to the launched threads.

Public Functions

template<typename Executor, typename Enable =
std::enable_if_t<hpx::traits::is_executor_any_v<Executor> &&
!std::is_same_v<std::decay_t<Executor>, annotating_executor>>>
inline explicit constexpr annotating_executor(Executor &&exec, char const *annotation =

nullptr)

template<typename Executor, typename Enable =
std::enable_if_t<hpx::traits::is_executor_any_v<Executor>>>
inline explicit annotating_executor(Executor &&exec, std::string annotation)

hpx/executors/current_executor.hpp

Defined in header hpx/executors/current_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace execution

1102 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Typedefs

typedef hpx::execution::parallel_executor instead

namespace this_thread

Functions

hpx::execution::parallel_executor get_executor(error_code &ec = throws)
Returns a reference to the executor that was used to create the current thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

namespace threads

Functions

hpx::execution::parallel_executor get_executor(thread_id_type const &id, error_code &ec = throws)
Returns a reference to the executor that was used to create the given thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

hpx/executors/exception_list.hpp

Defined in header hpx/executors/exception_list.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

2.8. API reference 1103

HPX Documentation, master

hpx::execution::seq, hpx::execution::par, hpx::execution::par_unseq,
hpx::execution::task, hpx::execution::sequenced_policy, hpx::execution::parallel_policy,
hpx::execution::parallel_unsequenced_policy, hpx::execution::sequenced_task_policy,
hpx::execution::parallel_task_policy

Defined in header hpx/execution.hpp718.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

Typedefs

using sequenced_task_policy = detail::sequenced_task_policy_shim<sequenced_executor,
hpx::traits::executor_parameters_type_t<sequenced_executor>>

Extension: The class sequenced_task_policy is an execution policy type used as a unique type to
disambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution may not
be parallelized (has to run sequentially).

The algorithm returns a future representing the result of the corresponding algorithm when invoked
with the sequenced_policy.

using sequenced_policy = detail::sequenced_policy_shim<sequenced_executor,
hpx::traits::executor_parameters_type_t<sequenced_executor>>

The class sequenced_policy is an execution policy type used as a unique type to disambiguate parallel
algorithm overloading and require that a parallel algorithm’s execution may not be parallelized.

using parallel_task_policy = detail::parallel_task_policy_shim<parallel_executor,
hpx::traits::executor_parameters_type_t<parallel_executor>>

Extension: The class parallel_task_policy is an execution policy type used as a unique type to dis-
ambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution may be
parallelized.

The algorithm returns a future representing the result of the corresponding algorithm when invoked
with the parallel_policy.

using parallel_policy = detail::parallel_policy_shim<parallel_executor,
hpx::traits::executor_parameters_type_t<parallel_executor>>

The class parallel_policy is an execution policy type used as a unique type to disambiguate parallel
algorithm overloading and indicate that a parallel algorithm’s execution may be parallelized.

using parallel_unsequenced_task_policy =
detail::parallel_unsequenced_task_policy_shim<parallel_executor,
hpx::traits::executor_parameters_type_t<parallel_executor>>

The class parallel_unsequenced_task_policy is an execution policy type used as a unique type to dis-
ambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution may be
parallelized and vectorized.

718 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
execution.hpp

1104 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/execution.hpp

HPX Documentation, master

using parallel_unsequenced_policy =
detail::parallel_unsequenced_policy_shim<parallel_executor,
hpx::traits::executor_parameters_type_t<parallel_executor>>

The class parallel_unsequenced_policy is an execution policy type used as a unique type to disam-
biguate parallel algorithm overloading and indicate that a parallel algorithm’s execution may be paral-
lelized and vectorized.

using unsequenced_task_policy = detail::unsequenced_task_policy_shim<sequenced_executor,
hpx::traits::executor_parameters_type_t<sequenced_executor>>

The class unsequenced_task_policy is an execution policy type used as a unique type to disambiguate
parallel algorithm overloading and indicate that a parallel algorithm’s execution may be vectorized.

using unsequenced_policy = detail::unsequenced_policy_shim<sequenced_executor,
hpx::traits::executor_parameters_type_t<sequenced_executor>>

The class unsequenced_policy is an execution policy type used as a unique type to disambiguate par-
allel algorithm overloading and indicate that a parallel algorithm’s execution may be vectorized.

Variables

constexpr task_policy_tag task = {}

constexpr non_task_policy_tag non_task = {}

constexpr sequenced_policy seq = {}
Default sequential execution policy object.

constexpr parallel_policy par = {}
Default parallel execution policy object.

constexpr parallel_unsequenced_policy par_unseq = {}
Default vector execution policy object.

constexpr unsequenced_policy unseq = {}
Default vector execution policy object.

struct non_task_policy_tag : public hpx::execution::experimental::to_non_task_t

struct task_policy_tag : public hpx::execution::experimental::to_task_t

namespace experimental

template<>

struct is_execution_policy_mapping<non_task_policy_tag> : public true_type

template<>

struct is_execution_policy_mapping<task_policy_tag> : public true_type

2.8. API reference 1105

HPX Documentation, master

hpx/executors/execution_policy_annotation.hpp

Defined in header hpx/executors/execution_policy_annotation.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Functions

template<typename ExPolicy>
constexpr decltype(auto) tag_invoke(hpx::execution::experimental::with_annotation_t, ExPolicy

&&policy, char const *annotation)

template<typename ExPolicy>
decltype(auto) tag_invoke(hpx::execution::experimental::with_annotation_t, ExPolicy &&policy,

std::string annotation)

template<typename ExPolicy>
constexpr decltype(auto) tag_invoke(hpx::execution::experimental::get_annotation_t, ExPolicy

&&policy)

hpx/executors/execution_policy_mappings.hpp

Defined in header hpx/executors/execution_policy_mappings.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Variables

template<typename Tag>

constexpr bool is_execution_policy_mapping_v = is_execution_policy_mapping<Tag>::value

hpx::execution::experimental::to_non_par_t to_non_par

hpx::execution::experimental::to_par_t to_par

1106 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::execution::experimental::to_non_task_t to_non_task

hpx::execution::experimental::to_task_t to_task

hpx::execution::experimental::to_non_unseq_t to_non_unseq

hpx::execution::experimental::to_unseq_t to_unseq

template<typename Tag>

struct is_execution_policy_mapping : public false_type

template<>

struct is_execution_policy_mapping<to_non_par_t> : public true_type

template<>

struct is_execution_policy_mapping<to_non_task_t> : public true_type

template<>

struct is_execution_policy_mapping<to_non_unseq_t> : public true_type

template<>

struct is_execution_policy_mapping<to_par_t> : public true_type

template<>

struct is_execution_policy_mapping<to_task_t> : public true_type

template<>

struct is_execution_policy_mapping<to_unseq_t> : public true_type

struct to_non_par_t : public hpx::functional::detail::tag_fallback<to_non_par_t>

Private Functions

template<typename ExPolicy>
inline constexpr decltype(auto) friend tag_fallback_invoke(to_non_par_t, ExPolicy

&&policy) noexcept

struct to_non_task_t : public hpx::functional::detail::tag_fallback<to_non_task_t>
Subclassed by hpx::execution::non_task_policy_tag

2.8. API reference 1107

HPX Documentation, master

Private Functions

template<typename ExPolicy>
inline constexpr decltype(auto) friend tag_fallback_invoke(to_non_task_t, ExPolicy

&&policy) noexcept

struct to_non_unseq_t : public hpx::functional::detail::tag_fallback<to_non_unseq_t>

Private Functions

template<typename ExPolicy>
inline constexpr decltype(auto) friend tag_fallback_invoke(to_non_unseq_t, ExPolicy

&&policy) noexcept

struct to_par_t : public hpx::functional::detail::tag_fallback<to_par_t>

Private Functions

template<typename ExPolicy>
inline constexpr decltype(auto) friend tag_fallback_invoke(to_par_t, ExPolicy &&policy)

noexcept

struct to_task_t : public hpx::functional::detail::tag_fallback<to_task_t>
Subclassed by hpx::execution::task_policy_tag

Private Functions

template<typename ExPolicy>
inline constexpr decltype(auto) friend tag_fallback_invoke(to_task_t, ExPolicy &&policy)

noexcept

struct to_unseq_t : public hpx::functional::detail::tag_fallback<to_unseq_t>

Private Functions

template<typename ExPolicy>
inline constexpr decltype(auto) friend tag_fallback_invoke(to_unseq_t, ExPolicy

&&policy) noexcept

1108 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/executors/execution_policy_parameters.hpp

Defined in header hpx/executors/execution_policy_parameters.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Functions

template<typename ExPolicy>
constexpr decltype(auto) tag_invoke(with_processing_units_count_t, ExPolicy &&policy,

std::size_t num_cores)

template<typename ExPolicy, typename Params>
constexpr decltype(auto) tag_invoke(with_processing_units_count_t, ExPolicy &&policy, Params

&¶ms)

template<typename ParametersProperty, typename ExPolicy, typename Params>
constexpr decltype(auto) tag_fallback_invoke(ParametersProperty, ExPolicy &&policy,

Params &¶ms)

template<typename ParametersProperty, typename ExPolicy, typename ...Ts>
constexpr auto tag_fallback_invoke(ParametersProperty prop, ExPolicy &&policy, Ts&&... ts)

-> de-
cltype(std::declval<ParametersProperty>()(std::declval<typename
std::decay_t<ExPolicy>::executor_type>(),
std::declval<Ts>()...))

hpx/executors/execution_policy_scheduling_property.hpp

Defined in header hpx/executors/execution_policy_scheduling_property.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

2.8. API reference 1109

HPX Documentation, master

Functions

template<typename Tag, typename ExPolicy, typename Property>
constexpr decltype(auto) tag_invoke(Tag tag, ExPolicy &&policy, Property prop)

template<typename Tag, typename ExPolicy>
constexpr decltype(auto) tag_invoke(Tag tag, ExPolicy &&policy)

hpx/executors/explicit_scheduler_executor.hpp

Defined in header hpx/executors/explicit_scheduler_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Functions

template<typename BaseScheduler>
explicit explicit_scheduler_executor(BaseScheduler &&sched) -> ex-

plicit_scheduler_executor<std::decay_t<BaseScheduler>>

template<typename Tag, typename BaseScheduler, typename Property>
auto tag_invoke(Tag tag, explicit_scheduler_executor<BaseScheduler> const &exec, Property

&&prop) -> de-
cltype(explicit_scheduler_executor<BaseScheduler>(std::declval<Tag>()(std::declval<BaseScheduler>(),
std::declval<Property>())))

template<typename Tag, typename BaseScheduler>
auto tag_invoke(Tag tag, explicit_scheduler_executor<BaseScheduler> const &exec) ->

decltype(std::declval<Tag>()(std::declval<BaseScheduler>()))

template<typename BaseScheduler>

struct explicit_scheduler_executor

hpx/executors/fork_join_executor.hpp

Defined in header hpx/executors/fork_join_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

1110 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/executors/parallel_executor.hpp

Defined in header hpx/executors/parallel_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

Typedefs

using parallel_executor = parallel_policy_executor<hpx::launch>

Functions

template<typename Tag, typename Policy, typename Property>
auto tag_invoke(Tag tag, parallel_policy_executor<Policy> const &exec, Property &&prop) -> de-

cltype(std::declval<parallel_policy_executor<Policy>>().policy(std::declval<Tag>()(std::declval<Policy>(),
std::declval<Property>())), parallel_policy_executor<Policy>())

template<typename Tag, typename Policy>
auto tag_invoke(Tag tag, parallel_policy_executor<Policy> const &exec) ->

decltype(std::declval<Tag>()(std::declval<Policy>()))

template<typename Policy>

struct parallel_policy_executor
#include <parallel_executor.hpp> A parallel_executor creates groups of parallel execution agents
which execute in threads implicitly created by the executor. This executor prefers continuing with the
creating thread first before executing newly created threads.

This executor conforms to the concepts of a TwoWayExecutor, and a BulkTwoWayExecutor

Public Types

using execution_category = std::conditional_t<std::is_same_v<Policy, launch::sync_policy>,
sequenced_execution_tag, parallel_execution_tag>

Associate the parallel_execution_tag executor tag type as a default with this executor, except if the
given launch policy is synch.

using executor_parameters_type = experimental::default_parameters
Associate the default_parameters executor parameters type as a default with this executor.

2.8. API reference 1111

HPX Documentation, master

Public Functions

inline explicit constexpr parallel_policy_executor(threads::thread_priority priority,
threads::thread_stacksize stacksize =
threads::thread_stacksize::default_,
threads::thread_schedule_hint
schedulehint = {}, Policy l = paral-
lel::execution::detail::get_default_policy<Policy>::call(),
std::size_t hierarchical_threshold =
hierarchical_threshold_default_)

Create a new parallel executor.

inline explicit constexpr parallel_policy_executor(threads::thread_stacksize stacksize,
threads::thread_schedule_hint
schedulehint = {}, Policy l = paral-
lel::execution::detail::get_default_policy<Policy>::call())

inline explicit constexpr parallel_policy_executor(threads::thread_schedule_hint
schedulehint, Policy l = paral-
lel::execution::detail::get_default_policy<Policy>::call())

inline explicit constexpr parallel_policy_executor(Policy l)

inline constexpr parallel_policy_executor()

inline explicit constexpr parallel_policy_executor(threads::thread_pool_base *pool, Policy l,
std::size_t hierarchical_threshold =
hierarchical_threshold_default_)

inline explicit constexpr parallel_policy_executor(threads::thread_pool_base *pool,
threads::thread_priority priority =
threads::thread_priority::default_,
threads::thread_stacksize stacksize =
threads::thread_stacksize::default_,
threads::thread_schedule_hint
schedulehint = {}, Policy l = paral-
lel::execution::detail::get_default_policy<Policy>::call(),
std::size_t hierarchical_threshold =
hierarchical_threshold_default_)

inline constexpr void set_hierarchical_threshold(std::size_t threshold) noexcept

template<typename Parameters>
inline std::size_t processing_units_count(Parameters&&, hpx::chrono::steady_duration const&

= hpx::chrono::null_duration, std::size_t = 0) const

1112 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Friends

template<typename Executor_> inline friend constexpr friend auto tag_invoke (hpx::execution::experimental::with_processing_units_count_t,
Executor_ const &exec, std::size_t num_cores) noexcept

template<typename Parameters> inline friend constexpr friend std::size_t tag_invoke (hpx::execution::experimental::processing_units_count_t,
Parameters &&, parallel_policy_executor const &exec,
hpx::chrono::steady_duration const &=hpx::chrono::null_duration,
std::size_t=0)

template<typename Executor_> inline friend constexpr friend auto tag_invoke (hpx::execution::experimental::with_first_core_t,
Executor_ const &exec, std::size_t first_core) noexcept

inline friend constexpr friend std::size_t tag_invoke (hpx::execution::experimental::get_first_core_t,
parallel_policy_executor const &exec) noexcept

inline friend auto tag_invoke(hpx::execution::experimental::get_processing_units_mask_t,
parallel_policy_executor const &exec)

inline friend auto tag_invoke(hpx::execution::experimental::get_cores_mask_t,
parallel_policy_executor const &exec)

namespace experimental

namespace parallel

namespace execution

hpx/executors/parallel_executor_aggregated.hpp

Defined in header hpx/executors/parallel_executor_aggregated.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace execution

2.8. API reference 1113

HPX Documentation, master

hpx/executors/restricted_thread_pool_executor.hpp

Defined in header hpx/executors/restricted_thread_pool_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Typedefs

using restricted_thread_pool_executor = restricted_policy_executor<hpx::launch>

template<typename Policy>

class restricted_policy_executor

Public Types

using execution_category = typename embedded_executor::execution_category
Associate the parallel_execution_tag executor tag type as a default with this executor.

using executor_parameters_type = typename
embedded_executor::executor_parameters_type

Public Functions

inline explicit restricted_policy_executor(std::size_t first_thread = 0, std::size_t
num_threads = 1, threads::thread_priority
priority = threads::thread_priority::default_,
threads::thread_stacksize stacksize =
threads::thread_stacksize::default_,
threads::thread_schedule_hint schedulehint =
{}, std::size_t hierarchical_threshold =
hierarchical_threshold_default_)

Create a new parallel executor.

inline restricted_policy_executor(restricted_policy_executor const &other)

inline restricted_policy_executor &operator=(restricted_policy_executor const &rhs)

1114 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Types

using embedded_executor = hpx::execution::parallel_policy_executor<Policy>

Private Members

std::uint16_t first_thread_

mutable std::atomic<std::size_t> os_thread_

embedded_executor exec_

Private Static Attributes

static constexpr std::size_t hierarchical_threshold_default_ = 6

hpx/executors/scheduler_executor.hpp

Defined in header hpx/executors/scheduler_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Functions

template<typename BaseScheduler>
explicit scheduler_executor(BaseScheduler &&sched) ->

scheduler_executor<std::decay_t<BaseScheduler>>

template<typename Tag, typename BaseScheduler, typename Property>
auto tag_invoke(Tag tag, scheduler_executor<BaseScheduler> const &exec, Property &&prop)

-> de-
cltype(scheduler_executor<BaseScheduler>(std::declval<Tag>()(std::declval<BaseScheduler>(),
std::declval<Property>())))

template<typename Tag, typename BaseScheduler>
auto tag_invoke(Tag tag, scheduler_executor<BaseScheduler> const &exec) ->

decltype(std::declval<Tag>()(std::declval<BaseScheduler>()))

template<typename BaseScheduler>

struct scheduler_executor

2.8. API reference 1115

HPX Documentation, master

hpx/executors/sequenced_executor.hpp

Defined in header hpx/executors/sequenced_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

struct sequenced_executor
#include <sequenced_executor.hpp> A sequential_executor creates groups of sequential execution
agents which execute in the calling thread. The sequential order is given by the lexicographical order
of indices in the index space.

namespace experimental

hpx/executors/service_executors.hpp

Defined in header hpx/executors/service_executors.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace execution

hpx/executors/std_execution_policy.hpp

Defined in header hpx/executors/std_execution_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/executors/thread_pool_scheduler.hpp

Defined in header hpx/executors/thread_pool_scheduler.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

1116 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Typedefs

using thread_pool_scheduler = thread_pool_policy_scheduler<hpx::launch>

Functions

template<typename Tag, typename Policy, typename Property>
auto tag_invoke(Tag tag, thread_pool_policy_scheduler<Policy> const &scheduler, Property

&&prop) -> de-
cltype(std::declval<thread_pool_policy_scheduler<Policy>>().policy(std::declval<Tag>()(std::declval<Policy>(),
std::declval<Property>())), thread_pool_policy_scheduler<Policy>())

template<typename Tag, typename Policy>
auto tag_invoke(Tag tag, thread_pool_policy_scheduler<Policy> const &scheduler) ->

decltype(std::declval<Tag>()(std::declval<Policy>()))

template<typename Policy>

struct thread_pool_policy_scheduler

Public Types

using execution_category = std::conditional_t<std::is_same_v<Policy,
launch::sync_policy>, sequenced_execution_tag, parallel_execution_tag>

Public Functions

inline explicit constexpr thread_pool_policy_scheduler(Policy l = experimen-
tal::detail::get_default_scheduler_policy<Policy>::call())

inline explicit thread_pool_policy_scheduler(hpx::threads::thread_pool_base *pool,
Policy l = experimen-
tal::detail::get_default_scheduler_policy<Policy>::call())
noexcept

hpx/executors/datapar/execution_policy.hpp

Defined in header hpx/executors/datapar/execution_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

2.8. API reference 1117

HPX Documentation, master

hpx/executors/datapar/execution_policy_mappings.hpp

Defined in header hpx/executors/datapar/execution_policy_mappings.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

filesystem

See Public API for a list of names and headers that are part of the public HPX API.

hpx/modules/filesystem.hpp

Defined in header hpx/modules/filesystem.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

This file provides a compatibility layer using Boost.Filesystem for the C++17 filesystem library. It is not intended to
be a complete compatibility layer. It only contains functions required by the HPX codebase. It also provides some
functions only available in Boost.Filesystem when using C++17 filesystem.

namespace hpx

namespace filesystem

Functions

inline path initial_path()

inline std::string basename(path const &p)

inline path canonical(path const &p, path const &base)

inline path canonical(path const &p, path const &base, std::error_code &ec)

namespace filesystem

functional

See Public API for a list of names and headers that are part of the public HPX API.

hpx::bind, hpx::placeholders::_1, hpx::placeholders::_2, . . . , hpx::placeholders::_9

Defined in header hpx/functional.hpp719.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

719 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

1118 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

Functions

template<typename F, typename ...Ts, typename Enable =
std::enable_if_t<!traits::is_action_v<std::decay_t<F>>>>
constexpr detail::bound<std::decay_t<F>, util::make_index_pack_t<sizeof...(Ts)>, util::decay_unwrap_t<Ts>...> bind(F

&&f,
Ts&&...
vs)

The function template bind generates a forwarding call wrapper for f. Calling this wrapper is equivalent to
invoking f with some of its arguments bound to vs.

Parameters

• f – Callable object (function object, pointer to function, reference to function, pointer to
member function, or pointer to data member) that will be bound to some arguments

• vs – list of arguments to bind, with the unbound arguments replaced by the placeholders
_1, _2, _3. . . of namespace hpx::placeholders

Returns A function object of unspecified type T, for which

hpx::is_bind_expression<T>::value == true.

namespace placeholders
The hpx::placeholders namespace contains the placeholder objects [_1, . . . , _N] where N is an implemen-
tation defined maximum number.

When used as an argument in a hpx::bind expression, the placeholder objects are stored in the generated
function object, and when that function object is invoked with unbound arguments, each placeholder _N is
replaced by the corresponding Nth unbound argument.

The types of the placeholder objects are DefaultConstructible and CopyConstructible, their de-
fault copy/move constructors do not throw exceptions, and for any placeholder _N, the type
hpx::is_placeholder<decltype(_N)> is defined, where hpx::is_placeholder<decltype(_N)> is derived from
std::integral_constant<int, N>.

Variables

constexpr detail::placeholder<1> _1 = {}

constexpr detail::placeholder<2> _2 = {}

constexpr detail::placeholder<3> _3 = {}

constexpr detail::placeholder<4> _4 = {}

constexpr detail::placeholder<5> _5 = {}

constexpr detail::placeholder<6> _6 = {}

2.8. API reference 1119

HPX Documentation, master

constexpr detail::placeholder<7> _7 = {}

constexpr detail::placeholder<8> _8 = {}

constexpr detail::placeholder<9> _9 = {}

namespace serialization

Functions

template<typename Archive, typename F, typename ...Ts>
void serialize(Archive &ar, ::hpx::detail::bound<F, Ts...> &bound, unsigned int const version = 0)

template<typename Archive, std::size_t I>
constexpr void serialize(Archive&, ::hpx::detail::placeholder<I>&, unsigned int const = 0) noexcept

hpx::bind_back

Defined in header hpx/functional.hpp720.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

Functions

template<typename F, typename ...Ts>
constexpr hpx::detail::bound_back<std::decay_t<F>, util::make_index_pack_t<sizeof...(Ts)>, util::decay_unwrap_t<Ts>...> bind_back(F

&&f,
Ts&&...
vs)

Function templates bind_back generate a forwarding call wrapper for f. Calling this wrapper is equivalent
to invoking f with its last sizeof. . . (Ts) parameters bound to vs.

Parameters

• f – Callable object (function object, pointer to function, reference to function, pointer to
member function, or pointer to data member) that will be bound to some arguments

• vs – list of the arguments to bind to the last sizeof. . . (Ts) parameters of f

Returns A function object of type T that is unspecified, except that the types of objects returned
by two calls to hpx::bind_back with the same arguments are the same.

template<typename F>
constexpr std::decay_t<F> bind_back(F &&f)

namespace serialization

720 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

1120 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

Functions

template<typename Archive, typename F, typename ...Ts>
void serialize(Archive &ar, ::hpx::detail::bound_back<F, Ts...> &bound, unsigned int const version =

0)

hpx::bind_front

Defined in header hpx/functional.hpp721.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

Functions

template<typename F, typename ...Ts>
constexpr detail::bound_front<std::decay_t<F>, util::make_index_pack_t<sizeof...(Ts)>, util::decay_unwrap_t<Ts>...> bind_front(F

&&f,
Ts&&...
vs)

Function template bind_front generates a forwarding call wrapper for f. Calling this wrapper is equiva-
lent to invoking f with its first sizeof. . . (Ts) parameters bound to vs.

Parameters

• f – Callable object (function object, pointer to function, reference to function, pointer to
member function, or pointer to data member) that will be bound to some arguments

• vs – list of the arguments to bind to the first or sizeof. . . (Ts) parameters of f

Returns A function object of type T that is unspecified, except that the types of objects returned
by two calls to hpx::bind_front with the same arguments are the same.

template<typename F>
constexpr std::decay_t<F> bind_front(F &&f)

namespace serialization

Functions

template<typename Archive, typename F, typename ...Ts>
void serialize(Archive &ar, ::hpx::detail::bound_front<F, Ts...> &bound, unsigned int const version =

0)

721 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

2.8. API reference 1121

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

hpx::function

Defined in header hpx/functional.hpp722.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_UTIL_REGISTER_FUNCTION_DECLARATION(Sig, F, Name)

HPX_UTIL_REGISTER_FUNCTION(Sig, F, Name)

namespace hpx
Top level namespace.

template<typename Sig, bool Serializable = false>

class function
#include <function.hpp> Class template hpx::function is a general-purpose polymorphic function wrapper.
Instances of hpx::function can store, copy, and invoke any CopyConstructible Callable target —
functions, lambda expressions, bind expressions, or other function objects, as well as pointers to member
functions and pointers to data members. The stored callable object is called the target of hpx::function.
If an hpx::function contains no target, it is called empty. Invoking the target of an empty hpx::function
results in hpx::error::bad_function_call exception being thrown. hpx::function satisfies the requirements
of CopyConstructible and CopyAssignable.

template<typename R, typename ...Ts, bool Serializable>

class function<R(Ts...), Serializable> : public util::detail::basic_function<R(Ts...), true, Serializable>

Public Types

using result_type = R

Public Functions

inline constexpr function(std::nullptr_t = nullptr) noexcept

function(function const&) = default

function(function&&) noexcept = default

function &operator=(function const&) = default

function &operator=(function&&) noexcept = default

~function() = default

template<typename F, typename FD = std::decay_t<F>, typename Enable1 =
std::enable_if_t<!std::is_same_v<FD, function>>, typename Enable2 =
std::enable_if_t<is_invocable_r_v<R, FD&, Ts...>>>

722 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

1122 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

inline function(F &&f)

template<typename F, typename FD = std::decay_t<F>, typename Enable1 =
std::enable_if_t<!std::is_same_v<FD, function>>, typename Enable2 =
std::enable_if_t<is_invocable_r_v<R, FD&, Ts...>>>
inline function &operator=(F &&f)

Private Types

using base_type = util::detail::basic_function<R(Ts...), true, Serializable>

namespace distributed

Typedefs

template<typename Sig>

using function = hpx::function<Sig, true>

hpx::function_ref

Defined in header hpx/functional.hpp723.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

template<typename Sig>

class function_ref
#include <function_ref.hpp> function_ref class is a vocabulary type with reference semantics for pass-
ing entities to call.

An example use case that benefits from higher-order functions is retry(n,f) which attempts to call f up
to n times synchronously until success. This example might model the real-world scenario of repeatedly
querying a flaky web service.

using payload = std::optional< /* ... */ >;
// Repeatedly invokes `action` up to `times` repetitions.
// Immediately returns if `action` returns a valid `payload`.
// Returns `std::nullopt` otherwise.
payload retry(size_t times, /* ????? */ action);

The passed-in action should be a callable entity that takes no arguments and returns a payload. This can be
done with function pointers, hpx::function or a template but it is much simpler with function_ref as
seen below:

723 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

2.8. API reference 1123

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

payload retry(size_t times, function_ref<payload()> action);

template<typename R, typename ...Ts>

class function_ref<R(Ts...)>

Public Functions

template<typename F, typename FD = std::decay_t<F>, typename Enable =
std::enable_if_t<!std::is_same_v<FD, function_ref > && is_invocable_r_v<R, F&, Ts...>>>
inline function_ref(F &&f)

inline function_ref(function_ref const &other) noexcept

template<typename F, typename FD = std::decay_t<F>, typename Enable =
std::enable_if_t<!std::is_same_v<FD, function_ref > && is_invocable_r_v<R, F&, Ts...>>>
inline function_ref &operator=(F &&f)

inline function_ref &operator=(function_ref const &other) noexcept

template<typename F, typename T = std::remove_reference_t<F>, typename Enable =
std::enable_if_t<!std::is_pointer_v<T>>>
inline void assign(F &&f)

template<typename T>
inline void assign(std::reference_wrapper<T> f_ref) noexcept

template<typename T>
inline void assign(T *f_ptr) noexcept

inline void swap(function_ref &f) noexcept

inline R operator()(Ts... vs) const

inline std::size_t get_function_address() const

inline char const *get_function_annotation() const

inline util::itt::string_handle get_function_annotation_itt() const

Protected Attributes

R (*vptr)(void*, Ts&&...)

void *object

1124 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Types

using VTable = util::detail::function_ref_vtable<R(Ts...)>

Private Static Functions

template<typename T>
static inline constexpr VTable const *get_vtable() noexcept

namespace util

hpx::invoke

Defined in header hpx/functional.hpp724.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_INVOKE_R(R, F, ...)

namespace hpx
Top level namespace.

Functions

template<typename F, typename ...Ts>
constexpr util::invoke_result_t<F, Ts&&...> invoke(F &&f, Ts&&... vs)

noexcept(noexcept(HPX_INVOKE(HPX_FORWARD(F,
f), HPX_FORWARD(Ts, vs)...)))

Invokes the given callable object f with the content of the argument pack vs

Note: This function is similar to std::invoke (C++17)

Parameters

• f – Requires to be a callable object. If f is a member function pointer, the first argument in
the pack will be treated as the callee (this object).

• vs – An arbitrary pack of arguments

Throws std::exception – like objects thrown by call to object f with the argument types vs.

Returns The result of the callable object when it’s called with the given argument types.

template<typename R, typename F, typename ...Ts>
724 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

functional.hpp

2.8. API reference 1125

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

constexpr R invoke_r(F &&f, Ts&&... vs) noexcept(noexcept(HPX_INVOKE(HPX_FORWARD(F, f),
HPX_FORWARD(Ts, vs)...)))

Invokes the given callable object f with the content of the argument pack vs

Note: This function is similar to std::invoke (C++17)

Parameters

• f – Requires to be a callable object. If f is a member function pointer, the first argument in
the pack will be treated as the callee (this object).

• vs – An arbitrary pack of arguments

Throws std::exception – like objects thrown by call to object f with the argument types vs.

Template Parameters R – The result type of the function when it’s called with the content of the
given argument types vs.

Returns The result of the callable object when it’s called with the given argument types.

namespace functional

struct invoke

Public Functions

template<typename F, typename ...Ts>
inline constexpr util::invoke_result_t<F, Ts&&...> operator()(F &&f, Ts&&... vs) const noex-

cept(noexcept(HPX_INVOKE(HPX_FORWARD(F,
f), HPX_FORWARD(Ts, vs)...)))

template<typename R>

struct invoke_r

Public Functions

template<typename F, typename ...Ts>
inline constexpr R operator()(F &&f, Ts&&... vs) const

noexcept(noexcept(HPX_INVOKE(HPX_FORWARD(F, f),
HPX_FORWARD(Ts, vs)...)))

1126 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::invoke_fused, hpx::invoke_fused_r

Defined in header hpx/functional.hpp725.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

Functions

template<typename F, typename Tuple>
constexpr detail::invoke_fused_result_t<F, Tuple> invoke_fused(F &&f, Tuple &&t) noex-

cept(noexcept(detail::invoke_fused_impl(detail::fused_index_pack_t<Tuple>{},
HPX_FORWARD(F, f),
HPX_FORWARD(Tuple, t))))

Invokes the given callable object f with the content of the sequenced type t (tuples, pairs).

Note: This function is similar to std::apply (C++17). The difference between hpx::invoke and
hpx::invoke_fused is that the later unpacks the tuples while the former cannot. Turning a tuple into a
parameter pack is not a trivial operation which makes hpx::invoke_fused rather useful.

Parameters

• f – Must be a callable object. If f is a member function pointer, the first argument in the
sequenced type will be treated as the callee (this object).

• t – A type whose contents are accessible through a call to hpx::get.

Throws std::exception – like objects thrown by call to object f with the arguments contained
in the sequenceable type t.

Returns The result of the callable object when it’s called with the content of the given sequenced
type.

template<typename R, typename F, typename Tuple>
constexpr R invoke_fused_r(F &&f, Tuple &&t) noex-

cept(noexcept(detail::invoke_fused_impl(detail::fused_index_pack_t<Tuple>{},
HPX_FORWARD(F, f), HPX_FORWARD(Tuple, t))))

Invokes the given callable object f with the content of the sequenced type t (tuples, pairs).

Note: This function is similar to std::apply (C++17). The difference between hpx::invoke and
hpx::invoke_fused is that the later unpacks the tuples while the former cannot. Turning a tuple into a
parameter pack is not a trivial operation which makes hpx::invoke_fused rather useful.

Note: The difference between hpx::invoke_fused and hpx::invoke_fused_r is that the later allows
to specify the return type as well.

725 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

2.8. API reference 1127

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

Parameters

• f – Must be a callable object. If f is a member function pointer, the first argument in the
sequenced type will be treated as the callee (this object).

• t – A type whose contents are accessible through a call to hpx::get.

Throws std::exception – like objects thrown by call to object f with the arguments contained
in the sequenceable type t.

Template Parameters R – The result type of the function when it’s called with the content of the
given sequenced type.

Returns The result of the callable object when it’s called with the content of the given sequenced
type.

hpx::mem_fn

Defined in header hpx/functional.hpp726.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

Functions

template<typename M, typename C>
constexpr detail::mem_fn<M C::*> mem_fn(M C::* pm) noexcept

Function template hpx::mem_fn generates wrapper objects for pointers to members, which can store, copy,
and invoke a pointer to member. Both references and pointers (including smart pointers) to an object can
be used when invoking a hpx::mem_fn.

Parameters pm – pointer to member that will be wrapped

Returns a call wrapper of unspecified type with the following member:

template <typename... Ts>
constexpr typename util::invoke_result<MemberPointer, Ts...>::type
operator()(Ts&&... vs) noexcept;

Let fn be the call wrapper returned by a call to hpx::mem_fn with a
pointer to member pm. Then the expression fn(t,a2,...,aN) is equiv-
alent to HPX_INVOKE(pm,t,a2,...,aN). Thus, the return type of opera-
tor() is std::result_of<decltype(pm)(Ts&&...)>::type or equivalently
std::invoke_result_t<decltype(pm),Ts&&...>, and the value in noexcept
specifier is equal to std::is_nothrow_invocable_v<decltype(pm),Ts&&...>) . Each
argument in vs is perfectly forwarded, as if by std::forward<Ts>(vs). . . .

template<typename R, typename C, typename ...Ps>
constexpr detail::mem_fn<R (C::*)(Ps...)> mem_fn(R (C::* pm)(Ps...)) noexcept

Function template hpx::mem_fn generates wrapper objects for pointers to members, which can store, copy,
and invoke a pointer to member. Both references and pointers (including smart pointers) to an object can
be used when invoking a hpx::mem_fn.

726 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

1128 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

Parameters pm – pointer to member that will be wrapped

Returns a call wrapper of unspecified type with the following member:

template <typename... Ts>
constexpr typename util::invoke_result<MemberPointer, Ts...>::type
operator()(Ts&&... vs) noexcept;

Let fn be the call wrapper returned by a call to hpx::mem_fn with a
pointer to member pm. Then the expression fn(t,a2,...,aN) is equiv-
alent to HPX_INVOKE(pm,t,a2,...,aN). Thus, the return type of opera-
tor() is std::result_of<decltype(pm)(Ts&&...)>::type or equivalently
std::invoke_result_t<decltype(pm),Ts&&...>, and the value in noexcept
specifier is equal to std::is_nothrow_invocable_v<decltype(pm),Ts&&...>) . Each
argument in vs is perfectly forwarded, as if by std::forward<Ts>(vs). . . .

template<typename R, typename C, typename ...Ps>
constexpr detail::mem_fn<R (C::*)(Ps...) const> mem_fn(R (C::* pm)(Ps...) const) noexcept

Function template hpx::mem_fn generates wrapper objects for pointers to members, which can store, copy,
and invoke a pointer to member. Both references and pointers (including smart pointers) to an object can
be used when invoking a hpx::mem_fn.

Parameters pm – pointer to member that will be wrapped

Returns a call wrapper of unspecified type with the following member:

template <typename... Ts>
constexpr typename util::invoke_result<MemberPointer, Ts...>::type
operator()(Ts&&... vs) noexcept;

Let fn be the call wrapper returned by a call to hpx::mem_fn with a
pointer to member pm. Then the expression fn(t,a2,...,aN) is equiv-
alent to HPX_INVOKE(pm,t,a2,...,aN). Thus, the return type of opera-
tor() is std::result_of<decltype(pm)(Ts&&...)>::type or equivalently
std::invoke_result_t<decltype(pm),Ts&&...>, and the value in noexcept
specifier is equal to std::is_nothrow_invocable_v<decltype(pm),Ts&&...>) . Each
argument in vs is perfectly forwarded, as if by std::forward<Ts>(vs). . . .

hpx::move_only_function

Defined in header hpx/functional.hpp727.

See Public API for a list of names and headers that are part of the public HPX API.
727 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

functional.hpp

2.8. API reference 1129

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

Defines

HPX_UTIL_REGISTER_UNIQUE_FUNCTION_DECLARATION(Sig, F, Name)

HPX_UTIL_REGISTER_UNIQUE_FUNCTION(Sig, F, Name)

namespace hpx
Top level namespace.

template<typename Sig, bool Serializable = false>

class move_only_function
#include <move_only_function.hpp> Class template hpx::move_only_function is a general-purpose poly-
morphic function wrapper. hpx::move_only_function objects can store and invoke any constructible (not
required to be move constructible) Callable target — functions, lambda expressions, bind expres-
sions, or other function objects, as well as pointers to member functions and pointers to member objects.

The stored callable object is called the target of hpx::move_only_function. If an hpx::move_only_function
contains no target, it is called empty. Unlike hpx::function, invoking an empty hpx::move_only_function
results in undefined behavior.

hpx::move_only_functions supports every possible combination of cv-qualifiers, ref-qualifiers, and
noexcept-specifiers not including volatile provided in its template parameter. These qualifiers and spec-
ifier (if any) are added to its operator(). hpx::move_only_function satisfies the requirements of MoveCon-
structible and MoveAssignable, but does not satisfy CopyConstructible or CopyAssignable.

template<typename R, typename ...Ts, bool Serializable>

class move_only_function<R(Ts...), Serializable> : public util::detail::basic_function<R(Ts...), false,
Serializable>

Public Types

using result_type = R

Public Functions

inline constexpr move_only_function(std::nullptr_t = nullptr) noexcept

move_only_function(move_only_function const&) = delete

move_only_function(move_only_function&&) noexcept = default

move_only_function &operator=(move_only_function const&) = delete

move_only_function &operator=(move_only_function&&) noexcept = default

~move_only_function() = default

template<typename F, typename FD = std::decay_t<F>, typename Enable1 =
std::enable_if_t<!std::is_same_v<FD, move_only_function>>, typename Enable2 =
std::enable_if_t<is_invocable_r_v<R, FD&, Ts...>>>

1130 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline move_only_function(F &&f)

template<typename F, typename FD = std::decay_t<F>, typename Enable1 =
std::enable_if_t<!std::is_same_v<FD, move_only_function>>, typename Enable2 =
std::enable_if_t<is_invocable_r_v<R, FD&, Ts...>>>
inline move_only_function &operator=(F &&f)

Private Types

using base_type = util::detail::basic_function<R(Ts...), false, Serializable>

namespace distributed

Typedefs

template<typename Sig>

using move_only_function = hpx::move_only_function<Sig, true>

hpx::reference_wrapper, hpx::ref, hpx::cref

Defined in header hpx/functional.hpp728.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename T>

struct hpx::reference_wrapper<T , std::enable_if_t<traits::needs_reference_semantics_v<T>>>

Public Types

using type = T

Public Functions

reference_wrapper() = default

template<typename U, typename Enable = std::enable_if_t<!std::is_same_v<std::decay_t<U>,
reference_wrapper>>>
inline reference_wrapper(U &&val)

inline reference_wrapper(reference_wrapper const &rhs)

reference_wrapper(reference_wrapper &&rhs) = default

inline reference_wrapper &operator=(reference_wrapper const &rhs)

728 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

2.8. API reference 1131

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

reference_wrapper &operator=(reference_wrapper &&rhs) = default

inline operator type() const

inline type get() const

Private Members

T ptr = {}

template<typename T>

struct hpx::util::unwrap_reference<::hpx::reference_wrapper<T>>

Public Types

using type = T

template<typename T>

struct hpx::util::unwrap_reference<::hpx::reference_wrapper<T> const>

Public Types

using type = T

namespace hpx
Top level namespace.

Functions

template<typename T>
reference_wrapper(T&) -> reference_wrapper<T>

template<typename T>
constexpr reference_wrapper<T> ref(T &val) noexcept

template<typename T>
void ref(T const&&) = delete

template<typename T>
constexpr reference_wrapper<T> ref(reference_wrapper<T> val) noexcept

template<typename T>
constexpr reference_wrapper<T const> cref(T const &val) noexcept

template<typename T>
void cref(T const&&) = delete

template<typename T>

1132 Chapter 2. What’s so special about HPX?

HPX Documentation, master

constexpr reference_wrapper<T const> cref(reference_wrapper<T> val) noexcept

template<typename T, typename Enable = std::enable_if_t<traits::needs_reference_semantics_v<T>>>
reference_wrapper<T> ref(T &&val) noexcept

template<typename T, typename Enable = void>

struct reference_wrapper : public std::reference_wrapper<T>

Public Functions

reference_wrapper() = delete

template<typename T> needs_reference_semantics_v< T > > >

Public Types

using type = T

Public Functions

reference_wrapper() = default

template<typename U, typename Enable = std::enable_if_t<!std::is_same_v<std::decay_t<U>,
reference_wrapper>>>
inline reference_wrapper(U &&val)

inline reference_wrapper(reference_wrapper const &rhs)

reference_wrapper(reference_wrapper &&rhs) = default

inline reference_wrapper &operator=(reference_wrapper const &rhs)

reference_wrapper &operator=(reference_wrapper &&rhs) = default

inline operator type() const

inline type get() const

Private Members

T ptr = {}

namespace traits

2.8. API reference 1133

HPX Documentation, master

Variables

template<typename T>

constexpr bool needs_reference_semantics_v = needs_reference_semantics<T>::value

template<typename T>

struct needs_reference_semantics : public false_type
Subclassed by hpx::traits::needs_reference_semantics< T const >

template<typename T>

struct needs_reference_semantics<T const> : public hpx::traits::needs_reference_semantics<T>

namespace util

template<typename T> reference_wrapper< T > >

Public Types

using type = T

template<typename T> reference_wrapper< T > const >

Public Types

using type = T

hpx::experimental::scope_exit

Defined in header hpx/experimental/scope.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

namespace experimental

1134 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename F>
auto scope_exit(F &&f)

The class template scope_exit is a general-purpose scope guard intended to call its exit function when
a scope is exited.

Template Parameters F – type of stored exit function
Parameters f – stored exit function

hpx::experimental::scope_fail

Defined in header hpx/experimental/scope.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

namespace experimental

Functions

template<typename F>
auto scope_fail(F &&f)

The class template scope_fail is a general-purpose scope guard intended to call its exit function when
a scope is exited via an exception.

Template Parameters F – type of stored exit function
Parameters f – stored exit function

hpx::experimental::scope_success

Defined in header hpx/experimental/scope.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

namespace experimental

2.8. API reference 1135

HPX Documentation, master

Functions

template<typename F>
auto scope_success(F &&f)

The class template scope_success is a general-purpose scope guard intended to call its exit function
when a scope is normally exited.

Template Parameters F – type of stored exit function
Parameters f – stored exit function

hpx::is_bind_expression

Defined in header hpx/functional.hpp729.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

Variables

template<typename T>

constexpr bool is_bind_expression_v = is_bind_expression<T>::value

template<typename T>

struct is_bind_expression : public std::is_bind_expression<T>
#include <is_bind_expression.hpp> If T is the type produced by a call to hpx::bind , this template is
derived from std::true_type. For any other type, this template is derived from std::false_type.

This template may be specialized for a user-defined type T to implement UnaryTypeTrait with base charac-
teristic of std::true_type to indicate that T should be treated by hpx::bind as if it were the type of a
bind subexpression: when a bind-generated function object is invoked, a bound argument of this type will
be invoked as a function object and will be given all the unbound arguments passed to the bind-generated
object.

Subclassed by hpx::is_bind_expression< T const >

template<typename T>

struct is_bind_expression<T const> : public hpx::is_bind_expression<T>

729 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

1136 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

hpx::is_placeholder

Defined in header hpx/functional.hpp730.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level namespace.

template<typename T>

struct is_placeholder
#include <is_placeholder.hpp> If T is a standard, Boost, or HPX placeholder (_1, _2, _3, . . .) then this
template is derived from std::integral_constant<int,1>, std::integral_constant<int,
2>, std::integral_constant<int,3>, respectively. Otherwise, it is derived from
std::integral_constant<int,0>.

The template may be specialized for any user-defined T type: the specialization must satisfy UnaryTypeTrait
with base characteristic of std::integral_constant<int,N> with N>0 to indicate that T should be
treated as N’th placeholder type. hpx::bind uses hpx::is_placeholder to detect placeholders for
unbound arguments.

futures

See Public API for a list of names and headers that are part of the public HPX API.

hpx::future, hpx::shared_future, hpx::make_future, hpx::make_shared_future,
hpx::make_ready_future, hpx::make_ready_future_alloc, hpx::make_ready_future_at,
hpx::make_ready_future_after, hpx::make_exceptional_future

Defined in header hpx/future.hpp731.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_MAKE_EXCEPTIONAL_FUTURE(T, errorcode, f, msg)

namespace hpx
Top level HPX namespace.

730 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

731 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

2.8. API reference 1137

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Functions

template<typename R, typename U>
hpx::future<R> make_future(hpx::future<U> &&f)

Converts any future of type U to any other future of type R based on an existing conversion path from U to
R.

template<typename R, typename U, typename Conv>
hpx::future<R> make_future(hpx::future<U> &&f, Conv &&conv)

Converts any future of type U to any other future of type R based on a given conversion function: R conv(U).

template<typename R, typename U>
hpx::future<R> make_future(hpx::shared_future<U> f)

Converts any shared_future of type U to any other future of type R based on an existing conversion path
from U to R.

template<typename R, typename U, typename Conv>
hpx::future<R> make_future(hpx::shared_future<U> f, Conv &&conv)

Converts any future of type U to any other future of type R based on an existing conversion path from U to
R.

template<typename R>
hpx::shared_future<R> make_shared_future(hpx::future<R> &&f) noexcept

Converts any future or shared_future of type T to a corresponding shared_future of type T.

template<typename R>
hpx::shared_future<R> &make_shared_future(hpx::shared_future<R> &f) noexcept

Converts any future or shared_future of type T to a corresponding shared_future of type T.

template<typename R>
hpx::shared_future<R> &&make_shared_future(hpx::shared_future<R> &&f) noexcept

Converts any future or shared_future of type T to a corresponding shared_future of type T.

template<typename R>
hpx::shared_future<R> const &make_shared_future(hpx::shared_future<R> const &f) noexcept

Converts any future or shared_future of type T to a corresponding shared_future of type T.

template<typename T, typename Allocator, typename ...Ts>
std::enable_if_t<std::is_constructible_v<T , Ts&&...> || std::is_void_v<T>, future<T>> make_ready_future_alloc(Allocator

const
&a,
Ts&&...
ts)

Creates a pre-initialized future object with allocator (extension)

template<typename T, typename ...Ts>
std::enable_if_t<std::is_constructible_v<T , Ts&&...> || std::is_void_v<T>, future<T>> make_ready_future(Ts&&...

ts)
The function creates a shared state that is immediately ready and returns a future associated with that shared
state. For the returned future, valid() == true and is_ready() == true.

template<int DeductionGuard = 0, typename Allocator, typename T>
future<hpx::util::decay_unwrap_t<T>> make_ready_future_alloc(Allocator const &a, T &&init)

template<int DeductionGuard = 0, typename T>

1138 Chapter 2. What’s so special about HPX?

HPX Documentation, master

future<hpx::util::decay_unwrap_t<T>> make_ready_future(T &&init)
The function creates a shared state that is immediately ready and returns a future associated with that shared
state. For the returned future, valid() == true and is_ready() == true.

template<typename T>
future<T> make_exceptional_future(std::exception_ptr const &e)

Creates a pre-initialized future object which holds the given error (extension)

template<typename T, typename E>
future<T> make_exceptional_future(E e)

Creates a pre-initialized future object which holds the given error (extension)

template<int DeductionGuard = 0, typename T>
future<hpx::util::decay_unwrap_t<T>> make_ready_future_at(hpx::chrono::steady_time_point const

&abs_time, T &&init)
Creates a pre-initialized future object which gets ready at a given point in time (extension)

template<int DeductionGuard = 0, typename T>
future<hpx::util::decay_unwrap_t<T>> make_ready_future_after(hpx::chrono::steady_duration const

&rel_time, T &&init)
Creates a pre-initialized future object which gets ready after a given point in time (extension)

template<typename Allocator>
inline future<void> make_ready_future_alloc(Allocator const &a)

future<void> make_ready_future()
The function creates a shared state that is immediately ready and returns a future associated with that shared
state. For the returned future, valid() == true and is_ready() == true.

inline future<void> make_ready_future_at(hpx::chrono::steady_time_point const &abs_time)
Creates a pre-initialized future object which gets ready at a given point in time (extension)

inline future<void> make_ready_future_after(hpx::chrono::steady_duration const &rel_time)
Creates a pre-initialized future object which gets ready after a given point in time (extension)

template<typename R>

class future : public hpx::lcos::detail::future_base<future<R>, R>
#include <future_fwd.hpp> The class template hpx::future provides a mechanism to access the result of
asynchronous operations:

• An asynchronous operation (created via hpx::async, hpx::packaged_task, or hpx::promise) can provide
a hpx::future object to the creator of that asynchronous operation.

• The creator of the asynchronous operation can then use a variety of methods to query, wait for, or
extract a value from the hpx::future. These methods may block if the asynchronous operation has not
yet provided a value.

• When the asynchronous operation is ready to send a result to the creator, it can do so by modify-
ing shared state (e.g. hpx::promise::set_value) that is linked to the creator’s hpx::future. Note that
hpx::future references shared state that is not shared with any other asynchronous return objects (as
opposed to hpx::shared_future).

2.8. API reference 1139

HPX Documentation, master

Public Types

using result_type = R

using shared_state_type = typename base_type::shared_state_type

Public Functions

constexpr future() noexcept = default

future(future &&other) noexcept = default

future(future const &other) noexcept = delete

inline future(future<future> &&other) noexcept

inline future(future<shared_future<R>> &&other) noexcept

template<typename T>
inline future(future<T> &&other, std::enable_if_t<std::is_void_v<R> && !traits::is_future_v<T>,

T>* = nullptr) noexcept

~future() = default

future &operator=(future &&other) noexcept = default

future &operator=(future const &other) noexcept = delete

inline shared_future<R> share() noexcept

inline hpx::traits::future_traits<future>::result_type get()

inline hpx::traits::future_traits<future>::result_type get(error_code &ec)

template<typename F>
inline decltype(auto) then(F &&f, error_code &ec = throws)

Attaches a continuation to *this. The behavior is undefined if *this has no associated shared state (i.e.,
valid()==false).

In cases where decltype(func(*this)) is future<R>, the resulting type is future<R> instead of fu-
ture<future<R>>. Effects:

• The continuation is called when the object’s shared state is ready (has a value or exception stored).
• The continuation launches according to the specified launch policy or executor.
• When the executor or launch policy is not provided the continuation inherits the parent’s launch

policy or executor.
• If the parent was created with std::promise or with a packaged_task (has no associated launch

policy), the continuation behaves the same as the third overload with a policy argument of
launch::async | launch::deferred and the same argument for func.

• If the parent has a policy of launch::deferred and the continuation does not have a specified launch
policy or scheduler, then the parent is filled by immediately calling .wait(), and the policy of the
antecedent is launch::deferred

Note: Postcondition:
• The future object is moved to the parameter of the continuation function.
• valid() == false on original future object immediately after it returns.

1140 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters
• F – The type of the function/function object to use (deduced). F must meet requirements

of MoveConstructible.
• error_code – The type of error code.

Parameters
• f – A continuation to be attached.
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns An object of type future<decltype(func(*this))> that refers to the shared state cre-

ated by the continuation.

template<typename T0, typename F>
inline decltype(auto) then(T0 &&t0, F &&f, error_code &ec = throws)

Attaches a continuation to *this. The behavior is undefined if *this has no associated shared state (i.e.,
valid()==false). \copydetail hpx::future::then(F&& f, error_code& ec = throws)

Note: Postcondition:
• The future object is moved to the parameter of the continuation function.
• valid() == false on original future object immediately after it returns.

Template Parameters
• T0 – The type of executor or launch policy.
• F – The type of the function/function object to use (deduced). F must meet requirements

of MoveConstructible.
• error_code – The type of error code.

Parameters
• t0 – The executor or launch policy to be used.
• f – A continuation to be attached.
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns An object of type future<decltype(func(*this))> that refers to the shared state cre-

ated by the continuation.

template<typename Allocator, typename F>
inline auto then_alloc(Allocator const &alloc, F &&f, error_code &ec = throws) ->

decltype(base_type::then_alloc(alloc, HPX_MOVE(*this),
HPX_FORWARD(F, f), ec))

2.8. API reference 1141

HPX Documentation, master

Private Types

using base_type = lcos::detail::future_base<future<R>, R>

Private Functions

inline explicit future(hpx::intrusive_ptr<shared_state_type> const &state)

inline explicit future(hpx::intrusive_ptr<shared_state_type> &&state)

template<typename SharedState>
inline explicit future(hpx::intrusive_ptr<SharedState> const &state)

Friends

friend struct hpx::traits::future_access

template<typename R>

class shared_future : public hpx::lcos::detail::future_base<shared_future<R>, R>
#include <future_fwd.hpp> The class template hpx::shared_future provides a mechanism to access the
result of asynchronous operations, similar to hpx::future, except that multiple threads are allowed to wait
for the same shared state. Unlike hpx::future, which is only moveable (so only one instance can refer to
any particular asynchronous result), hpx::shared_future is copyable and multiple shared future objects may
refer to the same shared state. Access to the same shared state from multiple threads is safe if each thread
does it through its own copy of a shared_future object.

Public Types

using result_type = R

using shared_state_type = typename base_type::shared_state_type

Public Functions

constexpr shared_future() noexcept = default

shared_future(shared_future const &other) = default

shared_future(shared_future &&other) noexcept = default

inline shared_future(future<R> &&other) noexcept

inline shared_future(future<shared_future> &&other) noexcept

template<typename T>
inline shared_future(shared_future<T> const &other, std::enable_if_t<std::is_void_v<R> &&

!traits::is_future_v<T>, T>* = nullptr)

~shared_future() = default

1142 Chapter 2. What’s so special about HPX?

HPX Documentation, master

shared_future &operator=(shared_future const &other) = default

shared_future &operator=(shared_future &&other) noexcept = default

inline hpx::traits::future_traits<shared_future>::result_type get() const

inline hpx::traits::future_traits<shared_future>::result_type get(error_code &ec) const

template<typename F>
inline decltype(auto) then(F &&f, error_code &ec = throws) const

Attaches a continuation to *this. The behavior is undefined if *this has no associated shared state (i.e.,
valid()==false).

In cases where decltype(func(*this)) is future<R>, the resulting type is future<R> instead of fu-
ture<future<R>>. Effects:

• The continuation is called when the object’s shared state is ready (has a value or exception stored).
• The continuation launches according to the specified launch policy or executor.
• When the executor or launch policy is not provided the continuation inherits the parent’s launch

policy or executor.
• If the parent was created with std::promise or with a packaged_task (has no associated launch

policy), the continuation behaves the same as the third overload with a policy argument of
launch::async | launch::deferred and the same argument for func.

• If the parent has a policy of launch::deferred and the continuation does not have a specified launch
policy or scheduler, then the parent is filled by immediately calling .wait(), and the policy of the
antecedent is launch::deferred

Note: Postcondition:
• The future object is moved to the parameter of the continuation function.
• valid() == false on original future object immediately after it returns.

Template Parameters
• F – The type of the function/function object to use (deduced). F must meet requirements

of MoveConstructible.
• error_code – The type of error code.

Parameters
• f – A continuation to be attached.
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns An object of type future<decltype(func(*this))> that refers to the shared state cre-

ated by the continuation.

template<typename T0, typename F>
inline decltype(auto) then(T0 &&t0, F &&f, error_code &ec = throws) const

Attaches a continuation to *this. The behavior is undefined if *this has no associated shared state (i.e.,
valid()==false). \copydetail hpx::future::then(F&& f, error_code& ec = throws)

Note: Postcondition:
• The future object is moved to the parameter of the continuation function.
• valid() == false on original future object immediately after it returns.

Template Parameters
• T0 – The type of executor or launch policy.
• F – The type of the function/function object to use (deduced). F must meet requirements

of MoveConstructible.

2.8. API reference 1143

HPX Documentation, master

• error_code – The type of error code.
Parameters

• t0 – The executor or launch policy to be used.
• f – A continuation to be attached.
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns An object of type future<decltype(func(*this))> that refers to the shared state cre-

ated by the continuation.

template<typename Allocator, typename F>
inline auto then_alloc(Allocator const &alloc, F &&f, error_code &ec = throws) ->

decltype(base_type::then_alloc(alloc, HPX_MOVE(*this),
HPX_FORWARD(F, f), ec))

Private Types

using base_type = lcos::detail::future_base<shared_future<R>, R>

Private Functions

inline explicit shared_future(hpx::intrusive_ptr<shared_state_type> const &state)

inline explicit shared_future(hpx::intrusive_ptr<shared_state_type> &&state)

template<typename SharedState>
inline explicit shared_future(hpx::intrusive_ptr<SharedState> const &state)

Friends

friend struct hpx::traits::future_access

namespace lcos

namespace serialization

Functions

template<typename Archive, typename T>
void serialize(Archive &ar, ::hpx::future<T> &f, unsigned version)

template<typename Archive, typename T>
void serialize(Archive &ar, ::hpx::shared_future<T> &f, unsigned version)

1144 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/futures/future_fwd.hpp

Defined in header hpx/futures/future_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

template<typename R>

class future : public hpx::lcos::detail::future_base<future<R>, R>
#include <future_fwd.hpp>

template<typename R>

class shared_future : public hpx::lcos::detail::future_base<shared_future<R>, R>
#include <future_fwd.hpp>

namespace lcos

namespace lcos

hpx::packaged_task

Defined in header hpx/future.hpp732.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename Sig, typename Allocator>

struct uses_allocator<hpx::packaged_task<Sig>, Allocator> : public true_type

namespace hpx
Top level HPX namespace.

template<typename Sig>

class packaged_task
#include <packaged_task.hpp> The class template hpx::packaged_task wraps any Callable` target (func-
tion, lambda expression, bind expression, or another function object) so that it can be invoked asyn-
chronously. Its return value or exception thrown is stored in a shared state which can be accessed through
hpx::future objects. Just like hpx::function, hpx::packaged_task is a polymorphic, allocator-aware con-
tainer: the stored callable target may be allocated on heap or with a provided allocator.

template<typename R, typename ...Ts>

class packaged_task<R(Ts...)>

732 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

2.8. API reference 1145

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Public Functions

packaged_task() = default

template<typename F, typename FD = std::decay_t<F>, typename Enable =
std::enable_if_t<!std::is_same_v<FD, packaged_task> && is_invocable_r_v<R, FD&, Ts...>>>
inline explicit packaged_task(F &&f)

template<typename Allocator, typename F, typename FD = std::decay_t<F>, typename Enable =
std::enable_if_t<!std::is_same_v<FD, packaged_task> && is_invocable_r_v<R, FD&, Ts...>>>
inline explicit packaged_task(std::allocator_arg_t, Allocator const &a, F &&f)

packaged_task(packaged_task const &rhs) noexcept = delete

packaged_task(packaged_task &&rhs) noexcept = default

packaged_task &operator=(packaged_task const &rhs) noexcept = delete

packaged_task &operator=(packaged_task &&rhs) noexcept = default

inline void swap(packaged_task &rhs) noexcept

inline void operator()(Ts... ts)

inline hpx::future<R> get_future(error_code &ec = throws)

inline bool valid() const noexcept

inline void reset(error_code &ec = throws)

inline void set_exception(std::exception_ptr const &e)

Private Types

using function_type = hpx::move_only_function<R(Ts...)>

Private Members

function_type function_

hpx::promise<R> promise_

namespace std

1146 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename Sig>
void swap(hpx::packaged_task<Sig> &lhs, hpx::packaged_task<Sig> &rhs) noexcept

template<typename Sig, typename Allocator> packaged_task< Sig >,
Allocator > : public true_type

hpx::promise

Defined in header hpx/future.hpp733.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename R, typename Allocator>

struct uses_allocator<hpx::promise<R>, Allocator> : public true_type

namespace hpx
Top level HPX namespace.

template<typename R>

class promise : public hpx::detail::promise_base<R>
#include <promise.hpp> The class template hpx::promise provides a facility to store a value or an exception
that is later acquired asynchronously via a hpx::future object created by the hpx::promise object. Note that
the hpx::promise object is meant to be used only once. Each promise is associated with a shared state,
which contains some state information and a result which may be not yet evaluated, evaluated to a value
(possibly void) or evaluated to an exception. A promise may do three things with the shared state:

• make ready: the promise stores the result or the exception in the shared state. Marks the state ready
and unblocks any thread waiting on a future associated with the shared state.

• release: the promise gives up its reference to the shared state. If this was the last such reference, the
shared state is destroyed. Unless this was a shared state created by hpx::async which is not yet ready,
this operation does not block.

• abandon: the promise stores the exception of type hpx::future_error with error code
hpx::error::broken_promise, makes the shared state ready, and then releases it. The promise is
the “push” end of the promise-future communication channel: the operation that stores a value in
the shared state synchronizes-with (as defined in hpx::memory_order) the successful return from any
function that is waiting on the shared state (such as hpx::future::get). Concurrent access to the same
shared state may conflict otherwise: for example multiple callers of hpx::shared_future::get must
either all be read-only or provide external synchronization.

733 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

2.8. API reference 1147

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

Public Functions

promise() = default

template<typename Allocator>
inline promise(std::allocator_arg_t, Allocator const &a)

promise(promise &&other) noexcept = default

promise(promise const &other) = delete

~promise() = default

promise &operator=(promise &&other) noexcept = default

promise &operator=(promise const &other) = delete

inline void swap(promise &other) noexcept

inline void set_value(R const &r)

inline void set_value(R &&r)

template<typename ...Ts>
inline void set_value(Ts&&... ts)

Private Types

using base_type = detail::promise_base<R>

template<typename R>

class promise<R&> : public hpx::detail::promise_base<R&>

Public Functions

promise() = default

template<typename Allocator>
inline promise(std::allocator_arg_t, Allocator const &a)

promise(promise &&other) noexcept = default

promise(promise const &other) = delete

~promise() = default

promise &operator=(promise &&other) noexcept = default

promise &operator=(promise const &other) = delete

inline void swap(promise &other) noexcept

inline void set_value(R &r)

1148 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Types

using base_type = detail::promise_base<R&>

template<>

class promise<void> : public hpx::detail::promise_base<void>

Public Functions

promise() = default

template<typename Allocator>
inline promise(std::allocator_arg_t, Allocator const &a)

promise(promise &&other) noexcept = default

promise(promise const &other) noexcept = delete

~promise() = default

promise &operator=(promise &&other) noexcept = default

promise &operator=(promise const &other) noexcept = delete

inline void swap(promise &other) noexcept

inline void set_value()

Private Types

using base_type = detail::promise_base<void>

namespace std

Functions

template<typename R>
void swap(hpx::promise<R> &x, hpx::promise<R> &y) noexcept

template<typename R, typename Allocator> promise< R >,
Allocator > : public true_type

2.8. API reference 1149

HPX Documentation, master

io_service

See Public API for a list of names and headers that are part of the public HPX API.

hpx/io_service/io_service_pool.hpp

Defined in header hpx/io_service/io_service_pool.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

class io_service_pool
#include <io_service_pool.hpp> A pool of io_service objects.

Public Functions

explicit io_service_pool(std::size_t pool_size = 2, threads::policies::callback_notifier const
¬ifier = threads::policies::callback_notifier(), char const
*pool_name = "", char const *name_postfix = "")

Construct the io_service pool.
Parameters

• pool_size – [in] The number of threads to run to serve incoming requests
• notifier – [in]
• pool_name – [in]
• name_postfix – [in]

explicit io_service_pool(threads::policies::callback_notifier const ¬ifier, char const
*pool_name = "", char const *name_postfix = "")

Construct the io_service pool.
Parameters

• notifier – [in]
• pool_name – [in]
• name_postfix – [in]

io_service_pool(io_service_pool const&) = delete

io_service_pool(io_service_pool&&) = delete

io_service_pool &operator=(io_service_pool const&) = delete

io_service_pool &operator=(io_service_pool&&) = delete

~io_service_pool()

bool run(bool join_threads = true, barrier *startup = nullptr)
Run all io_service objects in the pool. If join_threads is true this will also wait for all threads to
complete

1150 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool run(std::size_t num_threads, bool join_threads = true, barrier *startup = nullptr)
Run all io_service objects in the pool. If join_threads is true this will also wait for all threads to
complete

void stop()
Stop all io_service objects in the pool.

void join()
Join all io_service threads in the pool.

void clear()
Clear all internal data structures.

void wait()
Wait for all work to be done.

bool stopped()

asio::io_context &get_io_service(int index = -1)
Get an io_service to use.

std::thread &get_os_thread_handle(std::size_t thread_num)

access underlying thread handle

inline constexpr std::size_t size() const noexcept
Get number of threads associated with this I/O service.

void thread_run(std::size_t index, barrier *startup = nullptr) const
Activate the thread index for this thread pool.

inline constexpr char const *get_name() const noexcept
Return name of this pool.

void init(std::size_t pool_size)

Protected Functions

bool run_locked(std::size_t num_threads, bool join_threads, barrier *startup)

void stop_locked()

void join_locked()

void clear_locked()

void wait_locked()

Private Types

using io_service_ptr = std::unique_ptr<asio::io_context>

using raw_work_type = asio::executor_work_guard<asio::io_context::executor_type>

using work_type = std::unique_ptr<raw_work_type>

2.8. API reference 1151

HPX Documentation, master

Private Members

std::mutex mtx_

std::vector<io_service_ptr> io_services_
The pool of io_services.

std::vector<std::thread> threads_

std::vector<work_type> work_
The work that keeps the io_services running.

std::size_t next_io_service_
The next io_service to use for a connection.

bool stopped_
set to true if stopped

std::size_t pool_size_
initial number of OS threads to execute in this pool

threads::policies::callback_notifier const ¬ifier_
call this for each thread start/stop

char const *pool_name_

char const *pool_name_postfix_

bool waiting_
Set to true if waiting for work to finish.

std::unique_ptr<barrier> wait_barrier_

std::unique_ptr<barrier> continue_barrier_

Private Static Functions

static work_type initialize_work(asio::io_context &io_service)

1152 Chapter 2. What’s so special about HPX?

HPX Documentation, master

lcos_local

See Public API for a list of names and headers that are part of the public HPX API.

hpx/lcos_local/trigger.hpp

Defined in header hpx/lcos_local/trigger.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace lcos

namespace local

template<typename Mutex = hpx::spinlock>

struct base_trigger

Public Functions

inline base_trigger() noexcept

inline base_trigger(base_trigger &&rhs) noexcept

inline base_trigger &operator=(base_trigger &&rhs) noexcept

inline hpx::future<void> get_future(std::size_t *generation_value = nullptr, error_code &ec
= hpx::throws)

get a future allowing to wait for the trigger to fire

inline bool set(error_code &ec = throws)
Trigger this object.

inline void synchronize(std::size_t generation_value, char const *function_name =
"trigger::synchronize", error_code &ec = throws)

Wait for the generational counter to reach the requested stage.

inline std::size_t next_generation()

inline std::size_t generation() const

Protected Types

using mutex_type = Mutex

2.8. API reference 1153

HPX Documentation, master

Protected Functions

inline bool trigger_conditions(error_code &ec = throws)

template<typename Lock>
inline void synchronize(std::size_t generation_value, Lock &l, char const *function_name =

"trigger::synchronize", error_code &ec = throws)

Private Types

using condition_list_type = hpx::detail::intrusive_list<condition_list_entry>

Private Functions

inline bool test_condition(std::size_t const generation_value) const noexcept

Private Members

mutable mutex_type mtx_

hpx::promise<void> promise_

std::size_t generation_

condition_list_type conditions_

struct condition_list_entry : public conditional_trigger

Public Functions

condition_list_entry() = default

Public Members

condition_list_entry *prev = nullptr

condition_list_entry *next = nullptr

struct manage_condition

1154 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

inline manage_condition(base_trigger &gate, condition_list_entry &cond) noexcept

inline ~manage_condition()

template<typename Condition>
inline hpx::future<void> get_future(Condition &&func, error_code &ec = hpx::throws)

Public Members

base_trigger &this_

condition_list_entry &e_

struct trigger : public hpx::lcos::local::base_trigger<hpx::no_mutex>

Public Functions

trigger() = default

inline trigger(trigger &&rhs) noexcept

inline trigger &operator=(trigger &&rhs) noexcept

template<typename Lock>
inline void synchronize(std::size_t generation_value, Lock &l, char const *function_name =

"trigger::synchronize", error_code &ec = throws)

Private Types

using base_type = base_trigger<hpx::no_mutex>

pack_traversal

See Public API for a list of names and headers that are part of the public HPX API.

hpx/pack_traversal/pack_traversal.hpp

Defined in header hpx/pack_traversal/pack_traversal.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

2.8. API reference 1155

HPX Documentation, master

Functions

template<typename Mapper, typename...
T> < unspecified > map_pack (Mapper &&mapper, T &&... pack)

Maps the pack with the given mapper.

This function tries to visit all plain elements which may be wrapped in:
• homogeneous containers (std::vector, std::list)
• heterogeneous containers (hpx::tuple, std::pair, std::array) and re-assembles the pack

with the result of the mapper. Mapping from one type to a different one is supported.
Elements that aren’t accepted by the mapper are routed through and preserved through the hierarchy.

// Maps all integers to floats
map_pack([](int value) {

return float(value);
},
1, hpx::make_tuple(2, std::vector<int>{3, 4}), 5);

Throws std::exception – like objects which are thrown by an invocation to the mapper.
Parameters

• mapper – A callable object, which accept an arbitrary type and maps it to another type
or the same one.

• pack – An arbitrary variadic pack which may contain any type.
Returns The mapped element or in case the pack contains multiple elements, the pack is

wrapped into a hpx::tuple.

hpx/pack_traversal/pack_traversal_async.hpp

Defined in header hpx/pack_traversal/pack_traversal_async.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

Functions

template<typename Visitor, typename ...T>
auto traverse_pack_async(Visitor &&visitor, T&&... pack) ->

decltype(detail::apply_pack_transform_async(HPX_FORWARD(Visitor,
visitor), HPX_FORWARD(T , pack)...))

Traverses the pack with the given visitor in an asynchronous way.

This function works in the same way as traverse_pack, however, we are able to suspend and continue
the traversal at later time. Thus we require a visitor callable object which provides three operator()
overloads as depicted by the code sample below:

1156 Chapter 2. What’s so special about HPX?

HPX Documentation, master

// The synchronous overload is called for each object, // it may
return false to suspend the current control. // In that case the
overload below is called. template <typename T> bool
operator()(async_traverse_visit_tag, T&& element) {

return true;
}

// The asynchronous overload this is called when the //
synchronous overload returned false. // In addition to the
current visited element the overload is // called with a
continuation callable object which resumes the // traversal when
it's called later. // The continuation next may be stored and
called later or // dropped completely to abort the traversal
early. template <typename T, typename N> void
operator()(async_traverse_detach_tag, T&& element, N&& next) { }

// The overload is called when the traversal was finished. // As
argument the whole pack is passed over which we // traversed
asynchronously. template <typename T> void
operator()(async_traverse_complete_tag, T&& pack) { }

};

See traverse_pack for a detailed description about the traversal behavior and capabilities.
Parameters

• visitor – A visitor object which provides the three operator() overloads that were
described above. Additionally the visitor must be compatible for referencing it from a
hpx::intrusive_ptr. The visitor should must have a virtual destructor!

• pack – The arbitrary parameter pack which is traversed asynchronously. Nested objects
inside containers and tuple like types are traversed recursively.

Returns A hpx::intrusive_ptr that references an instance of the given visitor object.

hpx::functional::unwrap, hpx::functional::unwrap_n, hpx::functional::unwrap_all, hpx::unwrap,
hpx::unwrap_n, hpx::unwrap_all, hpx::unwrapping, hpx::unwrapping_n, hpx::unwrapping_all

Defined in header hpx/unwrap.hpp734.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

734 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/unwrap.
hpp

2.8. API reference 1157

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/unwrap.hpp

HPX Documentation, master

Functions

template<typename ...Args>
auto unwrap(Args&&... args) -> decltype(util::detail::unwrap_depth_impl<1U>(HPX_FORWARD(Args,

args)...))
A helper function for retrieving the actual result of any hpx::future like type which is wrapped in an arbitrary
way.

Unwraps the given pack of arguments, so that any hpx::future object is replaced by its future result type in
the argument pack:

• hpx::future<int> -> int

• hpx::future<std::vector<float>> -> std::vector<float>

• std::vector<future<float>> -> std::vector<float>

The function is capable of unwrapping hpx::future like objects that are wrapped inside any container or tuple
like type, see hpx::util::map_pack() for a detailed description about which surrounding types are supported.
Non hpx::future like types are permitted as arguments and passed through.

hpx:unwrap(hpx::make_ready_future(0));

// Multiple arguments hpx::tuple<int, int> i2 =
hpx:unwrap(hpx::make_ready_future(1),

hpx::make_ready_future(2));

Note: This function unwraps the given arguments until the first traversed nested hpx::future which cor-
responds to an unwrapping depth of one. See hpx::unwrap_n() for a function which unwraps the given
arguments to a particular depth or hpx::unwrap_all() that unwraps all future like objects recursively which
are contained in the arguments.

Parameters args – the arguments that are unwrapped which may contain any arbitrary future or
non future type.

Throws std::exception – like objects in case any of the given wrapped hpx::future objects
were resolved through an exception. See hpx::future::get() for details.

Returns Depending on the count of arguments this function returns a hpx::tuple containing the
unwrapped arguments if multiple arguments are given. In case the function is called with a
single argument, the argument is unwrapped and returned.

template<std::size_t Depth, typename ...Args>
auto unwrap_n(Args&&... args) ->

decltype(util::detail::unwrap_depth_impl<Depth>(HPX_FORWARD(Args, args)...))
An alterntive version of hpx::unwrap(), which unwraps the given arguments to a certain depth of hpx::future
like objects.

See unwrap for a detailed description.

Template Parameters Depth – The count of hpx::future like objects which are unwrapped max-
imally.

1158 Chapter 2. What’s so special about HPX?

HPX Documentation, master

template<typename ...Args>
auto unwrap_all(Args&&... args) ->

decltype(util::detail::unwrap_depth_impl<0U>(HPX_FORWARD(Args, args)...))
An alterntive version of hpx::unwrap(), which unwraps the given arguments recursively so that all contained
hpx::future like objects are replaced by their actual value.

See hpx::unwrap() for a detailed description.

template<typename T>
auto unwrapping(T &&callable) ->

decltype(util::detail::functional_unwrap_depth_impl<1U>(HPX_FORWARD(T , callable)))
Returns a callable object which unwraps its arguments upon invocation using the hpx::unwrap() function
and then passes the result to the given callable object.

return left + right;
});

int i1 = callable(hpx::make_ready_future(1),
hpx::make_ready_future(2));

See hpx::unwrap() for a detailed description.

Parameters callable – the callable object which which is called with the result of the corre-
sponding unwrap function.

template<std::size_t Depth, typename T>
auto unwrapping_n(T &&callable) ->

decltype(util::detail::functional_unwrap_depth_impl<Depth>(HPX_FORWARD(T ,
callable)))

Returns a callable object which unwraps its arguments upon invocation using the hpx::unwrap_n() function
and then passes the result to the given callable object.

See hpx::unwrapping() for a detailed description.

template<typename T>
auto unwrapping_all(T &&callable) ->

decltype(util::detail::functional_unwrap_depth_impl<0U>(HPX_FORWARD(T ,
callable)))

Returns a callable object which unwraps its arguments upon invocation using the hpx::unwrap_all() function
and then passes the result to the given callable object.

See hpx::unwrapping() for a detailed description.

namespace functional

struct unwrap
#include <unwrap.hpp> A helper function object for functionally invoking hpx::unwrap. For more
information please refer to its documentation.

struct unwrap_all
#include <unwrap.hpp> A helper function object for functionally invoking hpx::unwrap_all. For
more information please refer to its documentation.

template<std::size_t Depth>

2.8. API reference 1159

HPX Documentation, master

struct unwrap_n
#include <unwrap.hpp> A helper function object for functionally invoking hpx::unwrap_n. For
more information please refer to its documentation.

preprocessor

See Public API for a list of names and headers that are part of the public HPX API.

hpx/preprocessor/cat.hpp

Defined in header hpx/preprocessor/cat.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_PP_CAT(A, B)
Concatenates the tokens A and B into a single token. Evaluates to AB

Parameters

• A – First token

• B – Second token

hpx/preprocessor/expand.hpp

Defined in header hpx/preprocessor/expand.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_PP_EXPAND(X)

The HPX_PP_EXPAND macro performs a double macro-expansion on its argument.

This macro can be used to produce a delayed preprocessor expansion.

Example:

#define MACRO(a, b, c) (a)(b)(c)
#define ARGS() (1, 2, 3)

HPX_PP_EXPAND(MACRO ARGS()) // expands to (1)(2)(3)

Parameters

• X – Token to be expanded twice

1160 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/preprocessor/nargs.hpp

Defined in header hpx/preprocessor/nargs.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_PP_NARGS(...)
Expands to the number of arguments passed in

Example Usage:

HPX_PP_NARGS(hpx, pp, nargs)
HPX_PP_NARGS(hpx, pp)
HPX_PP_NARGS(hpx)

Expands to:

3
2
1

Parameters

• ... – The variadic number of arguments

hpx/preprocessor/stringize.hpp

Defined in header hpx/preprocessor/stringize.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_PP_STRINGIZE(X)

The HPX_PP_STRINGIZE macro stringizes its argument after it has been expanded.

The passed argument X will expand to "X". Note that the stringizing operator (#) prevents arguments from
expanding. This macro circumvents this shortcoming.

Parameters

• X – The text to be converted to a string literal

2.8. API reference 1161

HPX Documentation, master

hpx/preprocessor/strip_parens.hpp

Defined in header hpx/preprocessor/strip_parens.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_PP_STRIP_PARENS(X)

For any symbol X, this macro returns the same symbol from which potential outer parens have been removed. If
no outer parens are found, this macros evaluates to X itself without error.

The original implementation of this macro is from Steven Watanbe as shown in http://boost.2283326.n4.nabble.
com/preprocessor-removing-parentheses-td2591973.html#a2591976

HPX_PP_STRIP_PARENS(no_parens)
HPX_PP_STRIP_PARENS((with_parens))

Example Usage:

This produces the following output

no_parens
with_parens

Parameters

• X – Symbol to strip parens from

resiliency

See Public API for a list of names and headers that are part of the public HPX API.

hpx/resiliency/replay_executor.hpp

Defined in header hpx/resiliency/replay_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename BaseExecutor, typename Validator>

struct is_two_way_executor<hpx::resiliency::experimental::replay_executor<BaseExecutor, Validator>> : public
true_type

template<typename BaseExecutor, typename Validator>

struct is_bulk_two_way_executor<hpx::resiliency::experimental::replay_executor<BaseExecutor, Validator>> :
public true_type

namespace hpx

1162 Chapter 2. What’s so special about HPX?

http://boost.2283326.n4.nabble.com/preprocessor-removing-parentheses-td2591973.html#a2591976
http://boost.2283326.n4.nabble.com/preprocessor-removing-parentheses-td2591973.html#a2591976

HPX Documentation, master

namespace execution

namespace experimental

template<typename BaseExecutor,
typename Validator> replay_executor< BaseExecutor,
Validator > > : public true_type

template<typename BaseExecutor,
typename Validator> replay_executor< BaseExecutor,
Validator > > : public true_type

namespace resiliency

namespace experimental

Functions

template<typename Tag, typename BaseExecutor, typename Validate, typename Property>
auto tag_invoke(Tag tag, replay_executor<BaseExecutor, Validate> const &exec, Property

&&prop) -> decltype(replay_executor<BaseExecutor,
Validate>(std::declval<Tag>()(std::declval<BaseExecutor>(),
std::declval<Property>()), std::declval<std::size_t>(), std::declval<Validate>()))

template<typename Tag, typename BaseExecutor, typename Validate>
auto tag_invoke(Tag tag, replay_executor<BaseExecutor, Validate> const &exec) ->

decltype(std::declval<Tag>()(std::declval<BaseExecutor>()))

template<typename BaseExecutor, typename Validate>
replay_executor<BaseExecutor, std::decay_t<Validate>> make_replay_executor(BaseExecutor

&exec,
std::size_t n,
Validate
&&validate)

template<typename BaseExecutor>
replay_executor<BaseExecutor, detail::replay_validator> make_replay_executor(BaseExecutor

&exec,
std::size_t n)

template<typename BaseExecutor, typename Validate>

class replay_executor

2.8. API reference 1163

HPX Documentation, master

Public Types

using execution_category = hpx::traits::executor_execution_category_t<BaseExecutor>

using executor_parameters_type = hpx::traits::executor_parameters_type_t<BaseExecutor>

template<typename Result>

using future_type = hpx::traits::executor_future_t<BaseExecutor, Result>

Public Functions

template<typename BaseExecutor_, typename F>
inline explicit replay_executor(BaseExecutor_ &&exec, std::size_t n, F &&f)

inline bool operator==(replay_executor const &rhs) const noexcept

inline bool operator!=(replay_executor const &rhs) const noexcept

inline constexpr replay_executor const &context() const noexcept

inline BaseExecutor const &get_executor() const

inline std::size_t get_replay_count() const

inline Validate const &get_validator() const

Public Static Attributes

static constexpr int num_spread = 4

static constexpr int num_tasks = 128

Private Functions

template<typename F, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::async_execute_t,

replay_executor const &exec, F &&f, Ts&&... ts)

template<typename F, typename S, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::bulk_async_execute_t,

replay_executor const &exec, F &&f, S const
&shape, Ts&&... ts)

1164 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Members

BaseExecutor exec_

std::size_t replay_count_

Validate validator_

hpx/resiliency/replicate_executor.hpp

Defined in header hpx/resiliency/replicate_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename BaseExecutor, typename Voter, typename Validator>

struct is_two_way_executor<hpx::resiliency::experimental::replicate_executor<BaseExecutor, Voter,
Validator>> : public true_type

template<typename BaseExecutor, typename Voter, typename Validator>

struct is_bulk_two_way_executor<hpx::resiliency::experimental::replicate_executor<BaseExecutor, Voter,
Validator>> : public true_type

namespace hpx

namespace execution

namespace experimental

template<typename BaseExecutor, typename Voter,
typename Validator> replicate_executor< BaseExecutor, Voter,
Validator > > : public true_type

template<typename BaseExecutor, typename Voter,
typename Validator> replicate_executor< BaseExecutor, Voter,
Validator > > : public true_type

namespace resiliency

namespace experimental

2.8. API reference 1165

HPX Documentation, master

Functions

template<typename Tag, typename BaseExecutor, typename Vote, typename Validate,
typename Property>
auto tag_invoke(Tag tag, replicate_executor<BaseExecutor, Vote, Validate> const &exec,

Property &&prop) -> decltype(replicate_executor<BaseExecutor, Vote,
Validate>(std::declval<Tag>()(std::declval<BaseExecutor>(),
std::declval<Property>()), std::declval<std::size_t>(), std::declval<Vote>(),
std::declval<Validate>()))

template<typename Tag, typename BaseExecutor, typename Vote, typename Validate>
auto tag_invoke(Tag tag, replicate_executor<BaseExecutor, Vote, Validate> const &exec) ->

decltype(std::declval<Tag>()(std::declval<BaseExecutor>()))

template<typename BaseExecutor, typename Voter, typename Validate>
replicate_executor<BaseExecutor, std::decay_t<Voter>, std::decay_t<Validate>> make_replicate_executor(BaseExecutor

&exec,
std::size_t
n,
Voter
&&voter,
Val-
i-
date
&&val-
i-
date)

template<typename BaseExecutor, typename Validate>
replicate_executor<BaseExecutor, detail::replicate_voter, std::decay_t<Validate>> make_replicate_executor(BaseExecutor

&exec,
std::size_t
n,
Val-
i-
date
&&val-
i-
date)

template<typename BaseExecutor>
replicate_executor<BaseExecutor, detail::replicate_voter, detail::replicate_validator> make_replicate_executor(BaseExecutor

&exec,
std::size_t
n)

template<typename BaseExecutor, typename Vote, typename Validate>

class replicate_executor

1166 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Types

using execution_category = hpx::traits::executor_execution_category_t<BaseExecutor>

using executor_parameters_type = hpx::traits::executor_parameters_type_t<BaseExecutor>

template<typename Result>

using future_type = hpx::traits::executor_future_t<BaseExecutor, Result>

Public Functions

template<typename BaseExecutor_, typename V, typename F>
inline explicit replicate_executor(BaseExecutor_ &&exec, std::size_t n, V &&v, F &&f)

inline bool operator==(replicate_executor const &rhs) const noexcept

inline bool operator!=(replicate_executor const &rhs) const noexcept

inline constexpr replicate_executor const &context() const noexcept

inline BaseExecutor const &get_executor() const

inline std::size_t get_replicate_count() const

inline Vote const &get_voter() const

inline Validate const &get_validator() const

Public Static Attributes

static constexpr int num_spread = 4

static constexpr int num_tasks = 128

Private Functions

template<typename F, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::async_execute_t,

replicate_executor const &exec, F &&f, Ts&&... ts)

template<typename F, typename S, typename ...Ts>
inline decltype(auto) friend tag_invoke(hpx::parallel::execution::bulk_async_execute_t,

replicate_executor const &exec, F &&f, S const
&shape, Ts&&... ts)

2.8. API reference 1167

HPX Documentation, master

Private Members

BaseExecutor exec_

std::size_t replicate_count_

Vote voter_

Validate validator_

runtime_configuration

See Public API for a list of names and headers that are part of the public HPX API.

hpx::components::component_commandline_base

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_COMMANDLINE_REGISTRY(RegistryType, componentname)
The macro HPX_REGISTER_COMMANDLINE_REGISTRY is used to register the given component factory with
Hpx.Plugin. This macro has to be used for each of the components.

HPX_REGISTER_COMMANDLINE_REGISTRY_DYNAMIC(RegistryType, componentname)

HPX_REGISTER_COMMANDLINE_OPTIONS()

The macro HPX_REGISTER_COMMANDLINE_OPTIONS is used to define the required Hpx.Plugin entry point
for the command line option registry. This macro has to be used in not more than one compilation unit of a
component module.

HPX_REGISTER_COMMANDLINE_OPTIONS_DYNAMIC()

namespace hpx

namespace components

struct component_commandline_base
#include <component_commandline_base.hpp> The component_commandline_base has to be used
as a base class for all component command-line line handling registries.

1168 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

virtual ~component_commandline_base() = default

virtual hpx::program_options::options_description add_commandline_options() = 0
Return any additional command line options valid for this component.

Note: This function will be executed by the runtime system during system startup.

Returns The module is expected to fill a options_description object with any additional com-
mand line options this component will handle.

HPX_REGISTER_COMPONENT_MODULE

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_COMPONENT_FACTORY(componentname)
This macro is used to register the given component factory with Hpx.Plugin. This macro has to be used for each
of the component factories.

HPX_REGISTER_COMPONENT_MODULE()

This macro is used to define the required Hpx.Plugin entry points. This macro has to be used in exactly one
compilation unit of a component module.

HPX_REGISTER_COMPONENT_MODULE_DYNAMIC()

namespace hpx

namespace components

hpx/runtime_configuration/component_registry_base.hpp

Defined in header hpx/runtime_configuration/component_registry_base.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_COMPONENT_REGISTRY(RegistryType, componentname)
This macro is used to register the given component factory with Hpx.Plugin. This macro has to be used for each
of the components.

HPX_REGISTER_COMPONENT_REGISTRY_DYNAMIC(RegistryType, componentname)

2.8. API reference 1169

HPX Documentation, master

HPX_REGISTER_REGISTRY_MODULE()

This macro is used to define the required Hpx.Plugin entry points. This macro has to be used in exactly one
compilation unit of a component module.

HPX_REGISTER_REGISTRY_MODULE_DYNAMIC()

namespace hpx

namespace components

struct component_registry_base
#include <component_registry_base.hpp> The component_registry_base has to be used as a base
class for all component registries.

Public Functions

virtual ~component_registry_base() = default

virtual bool get_component_info(std::vector<std::string> &fillini, std::string const &filepath,
bool is_static = false) = 0

Return the ini-information for all contained components.
Parameters

• fillini – [in, out] The module is expected to fill this vector with the ini-information
(one line per vector element) for all components implemented in this module.

• filepath – [in]
• is_static – [in]

Returns Returns true if the parameter fillini has been successfully initialized with the reg-
istry data of all implemented in this module.

virtual void register_component_type() = 0
Register the component type represented by this component.

hpx/runtime_configuration/plugin_registry_base.hpp

Defined in header hpx/runtime_configuration/plugin_registry_base.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_PLUGIN_BASE_REGISTRY(PluginType, name)
This macro is used to register the given component factory with Hpx.Plugin. This macro has to be used for each
of the components.

HPX_REGISTER_PLUGIN_REGISTRY_MODULE()

This macro is used to define the required Hpx.Plugin entry points. This macro has to be used in exactly one
compilation unit of a component module.

HPX_REGISTER_PLUGIN_REGISTRY_MODULE_DYNAMIC()

1170 Chapter 2. What’s so special about HPX?

HPX Documentation, master

namespace hpx

namespace plugins

struct plugin_registry_base
#include <plugin_registry_base.hpp> The plugin_registry_base has to be used as a base class for all
plugin registries.

Public Functions

virtual ~plugin_registry_base() = default

virtual bool get_plugin_info(std::vector<std::string> &fillini) = 0
Return the configuration information for any plugin implemented by this module

Parameters fillini – [in, out] The module is expected to fill this vector with the ini-
information (one line per vector element) for all plugins implemented in this module.

Returns Returns true if the parameter fillini has been successfully initialized with the reg-
istry data of all implemented in this module.

inline virtual void init(int*, char***, util::runtime_configuration&)

hpx::runtime_mode

Defined in header hpx/init.hpp735.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Enums

enum class runtime_mode : std::int8_t
A HPX runtime can be executed in two different modes: console mode and worker mode.

Values:

enumerator invalid

enumerator console
The runtime is the console locality.

enumerator worker
The runtime is a worker locality.

735 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

2.8. API reference 1171

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

HPX Documentation, master

enumerator connect
The runtime is a worker locality connecting late

enumerator local
The runtime is fully local.

enumerator default_
The runtime mode will be determined based on the command line arguments

enumerator last

Functions

char const *get_runtime_mode_name(runtime_mode state) noexcept
Get the readable string representing the name of the given runtime_mode constant.

runtime_mode get_runtime_mode_from_name(std::string const &mode)
Returns the internal representation (runtime_mode constant) from the readable string representing the
name.

This represents the internal representation from the readable string representing the name.

Parameters mode – this represents the runtime mode

runtime_local

See Public API for a list of names and headers that are part of the public HPX API.

hpx/runtime_local/component_startup_shutdown_base.hpp

Defined in header hpx/runtime_local/component_startup_shutdown_base.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_STARTUP_SHUTDOWN_REGISTRY(RegistryType, componentname)
This macro is used to register the given component factory with Hpx.Plugin. This macro has to be used for each
of the components.

HPX_REGISTER_STARTUP_SHUTDOWN_REGISTRY_DYNAMIC(RegistryType, componentname)

HPX_REGISTER_STARTUP_SHUTDOWN_FUNCTIONS()

This macro is used to define the required Hpx.Plugin entry point for the startup/shutdown registry. This macro
has to be used in not more than one compilation unit of a component module.

HPX_REGISTER_STARTUP_SHUTDOWN_FUNCTIONS_DYNAMIC()

namespace hpx

1172 Chapter 2. What’s so special about HPX?

HPX Documentation, master

namespace components

struct component_startup_shutdown_base
#include <component_startup_shutdown_base.hpp> The component_startup_shutdown_base has to
be used as a base class for all component startup/shutdown registries.

Public Functions

virtual ~component_startup_shutdown_base() = default

virtual bool get_startup_function(startup_function_type &startup, bool &pre_startup) = 0
Return any startup function for this component.

Parameters
• startup – [in, out] The module is expected to fill this function object with a reference to

a startup function. This function will be executed by the runtime system during system
startup.

• pre_startup – [in, out] Will be set to true if the returned startup function is executed
during the first round of calls.

Returns Returns true if the parameter startup has been successfully initialized with the
startup function.

virtual bool get_shutdown_function(shutdown_function_type &shutdown, bool
&pre_shutdown) = 0

Return any startup function for this component.
Parameters

• shutdown – [in, out] The module is expected to fill this function object with a reference
to a startup function. This function will be executed by the runtime system during system
startup.

• pre_shutdown – [in, out] Will be set to true if the returned shutdown function is exe-
cuted during the first round of calls.

Returns Returns true if the parameter shutdown has been successfully initialized with the
shutdown function.

hpx/runtime_local/custom_exception_info.hpp

Defined in header hpx/runtime_local/custom_exception_info.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

2.8. API reference 1173

HPX Documentation, master

Functions

std::string diagnostic_information(exception_info const &xi)
Extract the diagnostic information embedded in the given exception and return a string holding a formatted
message.

The function hpx::diagnostic_information can be used to extract all diagnostic information stored in the
given exception instance as a formatted string. This simplifies debug output as it composes the diagnostics
into one, easy to use function call. This includes the name of the source file and line number, the sequence
number of the OS-thread and the HPX-thread id, the locality id and the stack backtrace of the point where
the original exception was thrown.

See also:

hpx::get_error_locality_id(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error(), hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(),
hpx::get_error_config(), hpx::get_error_state()

Parameters xi – The parameter ewill be inspected for all diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Throws std::bad_alloc – (if any of the required allocation operations fail)

Returns The formatted string holding all the available diagnostic information stored in the given
exception instance.

std::string default_diagnostic_information(std::exception_ptr const &e)

std::uint32_t get_error_locality_id(hpx::exception_info const &xi) noexcept
Return the locality id where the exception was thrown.

The function hpx::get_error_locality_id can be used to extract the diagnostic information element repre-
senting the locality id as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error(), hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(),
hpx::get_error_config(), hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws nothing –

Returns The locality id of the locality where the exception was thrown. If the exception instance
does not hold this information, the function will return hpx::naming::invalid_locality_id.

1174 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::string get_error_host_name(hpx::exception_info const &xi)
Return the hostname of the locality where the exception was thrown.

The function hpx::get_error_host_name can be used to extract the diagnostic information element repre-
senting the host name as stored in the given exception instance.

See also:

hpx::diagnostic_information() hpx::get_error_process_id(), hpx::get_error_function_name(),
hpx::get_error_file_name(), hpx::get_error_line_number(), hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error()
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

Returns The hostname of the locality where the exception was thrown. If the exception instance
does not hold this information, the function will return and empty string.

std::int64_t get_error_process_id(hpx::exception_info const &xi) noexcept
Return the (operating system) process id of the locality where the exception was thrown.

The function hpx::get_error_process_id can be used to extract the diagnostic information element repre-
senting the process id as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_function_name(),
hpx::get_error_file_name(), hpx::get_error_line_number(), hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws nothing –

Returns The process id of the OS-process which threw the exception If the exception instance
does not hold this information, the function will return 0.

std::string get_error_env(hpx::exception_info const &xi)
Return the environment of the OS-process at the point the exception was thrown.

The function hpx::get_error_env can be used to extract the diagnostic information element representing the
environment of the OS-process collected at the point the exception was thrown.

2.8. API reference 1175

HPX Documentation, master

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error(), hpx::get_error_backtrace(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

Returns The environment from the point the exception was thrown. If the exception instance
does not hold this information, the function will return an empty string.

std::string get_error_backtrace(hpx::exception_info const &xi)
Return the stack backtrace from the point the exception was thrown.

The function hpx::get_error_backtrace can be used to extract the diagnostic information element repre-
senting the stack backtrace collected at the point the exception was thrown.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

Returns The stack back trace from the point the exception was thrown. If the exception instance
does not hold this information, the function will return an empty string.

std::size_t get_error_os_thread(hpx::exception_info const &xi) noexcept
Return the sequence number of the OS-thread used to execute HPX-threads from which the exception was
thrown.

The function hpx::get_error_os_thread can be used to extract the diagnostic information element repre-
senting the sequence number of the OS-thread as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

1176 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws nothing –

Returns The sequence number of the OS-thread used to execute the HPX-thread from which the
exception was thrown. If the exception instance does not hold this information, the function
will return std::size(-1).

std::size_t get_error_thread_id(hpx::exception_info const &xi) noexcept
Return the unique thread id of the HPX-thread from which the exception was thrown.

The function hpx::get_error_thread_id can be used to extract the diagnostic information element repre-
senting the HPX-thread id as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread() hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws nothing –

Returns The unique thread id of the HPX-thread from which the exception was thrown. If the
exception instance does not hold this information, the function will return std::size_t(0).

std::string get_error_thread_description(hpx::exception_info const &xi)
Return any additionally available thread description of the HPX-thread from which the exception was
thrown.

The function hpx::get_error_thread_description can be used to extract the diagnostic information element
representing the additional thread description as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_backtrace(),
hpx::get_error_env(), hpx::get_error(), hpx::get_error_state(), hpx::get_error_what(),
hpx::get_error_config()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

2.8. API reference 1177

HPX Documentation, master

Returns Any additionally available thread description of the HPX-thread from which the excep-
tion was thrown. If the exception instance does not hold this information, the function will
return an empty string.

std::string get_error_config(hpx::exception_info const &xi)
Return the HPX configuration information point from which the exception was thrown.

The function hpx::get_error_config can be used to extract the HPX configuration information element rep-
resenting the full HPX configuration information as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_backtrace(),
hpx::get_error_env(), hpx::get_error(), hpx::get_error_state() hpx::get_error_what(),
hpx::get_error_thread_description()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

Returns Any additionally available HPX configuration information the point from which the
exception was thrown. If the exception instance does not hold this information, the function
will return an empty string.

std::string get_error_state(hpx::exception_info const &xi)
Return the HPX runtime state information at which the exception was thrown.

The function hpx::get_error_state can be used to extract the HPX runtime state information element rep-
resenting the state the runtime system is currently in as stored in the given exception instance.

See also:

hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_backtrace(),
hpx::get_error_env(), hpx::get_error(), hpx::get_error_what(), hpx::get_error_thread_description()

Parameters xi – The parameter e will be inspected for the requested diagnostic information
elements which have been stored at the point where the exception was thrown. This parameter
can be one of the following types: hpx::exception_info, hpx::error_code, std::exception, or
std::exception_ptr.

Throws std::bad_alloc – (if one of the required allocations fails)

Returns The point runtime state at the point at which the exception was thrown. If the exception
instance does not hold this information, the function will return an empty string.

1178 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::get_locality_id

Defined in header hpx/runtime.hpp736.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

std::uint32_t get_locality_id(error_code &ec = throws)
Return the number of the locality this function is being called from.

This function returns the id of the current locality.

Note: The returned value is zero based and its maximum value is smaller than the overall number of
localities the current application is running on (as returned by get_num_localities()).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise, it throws an instance of hpx::exception.

Note: This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

hpx::get_locality_name

Defined in header hpx/runtime.hpp737.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

std::string get_locality_name()
Return the name of the locality this function is called on.

This function returns the name for the locality on which this function is called.

See also:

future<std::string> get_locality_name(hpx::id_type const& id)
736 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp
737 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

2.8. API reference 1179

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

Returns This function returns the name for the locality on which the function is called. The
name is retrieved from the underlying networking layer and may be different for different
parcelports.

hpx::get_initial_num_localities, hpx::get_num_localities

Defined in header hpx/runtime.hpp738.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

std::uint32_t get_initial_num_localities()
Return the number of localities which were registered at startup for the running application.

The function get_initial_num_localities returns the number of localities which were connected to the con-
sole at application startup.

See also:

hpx::find_all_localities, hpx::get_num_localities

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise, it throws an instance of hpx::exception.

hpx::future<std::uint32_t> get_num_localities()
Asynchronously return the number of localities which are currently registered for the running application.

The function get_num_localities asynchronously returns the number of localities currently connected to the
console. The returned future represents the actual result.

See also:

hpx::find_all_localities, hpx::get_num_localities

Note: This function will return meaningful results only if called from an HPX-thread. It will return 0
otherwise.

std::uint32_t get_num_localities(launch::sync_policy, error_code &ec = throws)
Return the number of localities which are currently registered for the running application.

The function get_num_localities returns the number of localities currently connected to the console.

See also:

hpx::find_all_localities, hpx::get_num_localities
738 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

1180 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

Note: This function will return meaningful results only if called from an HPX-thread. It will return 0
otherwise.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise, it throws an instance of hpx::exception.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

hpx/runtime_local/get_os_thread_count.hpp

Defined in header hpx/runtime_local/get_os_thread_count.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

std::size_t get_os_thread_count()
Return the number of OS-threads running in the runtime instance the current HPX-thread is associated
with.

std::size_t get_os_thread_count(threads::executor const &exec)
Return the number of worker OS- threads used by the given executor to execute HPX threads.

This function returns the number of cores used to execute HPX threads for the given executor. If the function
is called while no HPX runtime system is active, it will return zero. If the executor is not valid, this function
will fall back to retrieving the number of OS threads used by HPX.

Parameters exec – [in] The executor to be used.

namespace threads

hpx::get_thread_name

Defined in header hpx/runtime.hpp739.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

739 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

2.8. API reference 1181

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

Functions

std::string get_thread_name()
Return the name of the calling thread.

This function returns the name of the calling thread. This name uniquely identifies the thread in the context
of HPX. If the function is called while no HPX runtime system is active, the result will be “<unknown>”.

hpx/runtime_local/get_worker_thread_num.hpp

Defined in header hpx/runtime_local/get_worker_thread_num.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/runtime_local/report_error.hpp

Defined in header hpx/runtime_local/report_error.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

void report_error(std::size_t num_thread, std::exception_ptr const &e)
The function report_error reports the given exception to the console.

void report_error(std::exception_ptr const &e)
The function report_error reports the given exception to the console.

hpx/runtime_local/runtime_local.hpp

Defined in header hpx/runtime_local/runtime_local.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

void set_error_handlers(hpx::util::runtime_configuration const &cfg)

class runtime

1182 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Types

using notification_policy_type = threads::policies::callback_notifier
Generate a new notification policy instance for the given thread name prefix

using hpx_main_function_type = int()
The hpx_main_function_type is the default function type usable as the main HPX thread function.

using hpx_errorsink_function_type = void(std::uint32_t, std::string const&)

Public Functions

virtual notification_policy_type get_notification_policy(char const *prefix,
runtime_local::os_thread_type type)

state get_state() const

void set_state(state s)

explicit runtime(hpx::util::runtime_configuration rtcfg, bool initialize)
Construct a new HPX runtime instance.

virtual ~runtime()
The destructor makes sure all HPX runtime services are properly shut down before exiting.

void on_exit(hpx::function<void()> const &f)
Manage list of functions to call on exit.

void starting()
Manage runtime ‘stopped’ state.

void stopping()
Call all registered on_exit functions.

bool stopped() const
This accessor returns whether the runtime instance has been stopped.

hpx::util::runtime_configuration &get_config()
access configuration information

hpx::util::runtime_configuration const &get_config() const

std::size_t get_instance_number() const

util::thread_mapper &get_thread_mapper() const
Return a reference to the internal PAPI thread manager.

threads::topology const &get_topology() const

virtual int run(hpx::function<hpx_main_function_type> const &func)
Run the HPX runtime system, use the given function for the main thread and block waiting for all
threads to finish.

2.8. API reference 1183

HPX Documentation, master

Note: The parameter func is optional. If no function is supplied, the runtime system will simply wait
for the shutdown action without explicitly executing any main thread.

Parameters func – [in] This is the main function of an HPX application. It will be scheduled
for execution by the thread manager as soon as the runtime has been initialized. This func-
tion is expected to expose an interface as defined by the typedef hpx_main_function_type.
This parameter is optional and defaults to none main thread function, in which case all
threads have to be scheduled explicitly.

Returns This function will return the value as returned as the result of the invocation of the
function object given by the parameter func.

virtual int run()
Run the HPX runtime system, initially use the given number of (OS) threads in the thread-manager
and block waiting for all threads to finish.

Returns This function will always return 0 (zero).

virtual void rethrow_exception()
Rethrow any stored exception (to be called after stop())

virtual int start(hpx::function<hpx_main_function_type> const &func, bool blocking = false)
Start the runtime system.

Parameters
• func – [in] This is the main function of an HPX application. It will be scheduled for

execution by the thread manager as soon as the runtime has been initialized. This function
is expected to expose an interface as defined by the typedef hpx_main_function_type.

• blocking – [in] This allows to control whether this call blocks until the runtime sys-
tem has been stopped. If this parameter is true the function runtime::start will call run-
time::wait internally.

Returns If a blocking is a true, this function will return the value as returned as the result of
the invocation of the function object given by the parameter func. Otherwise, it will return
zero.

virtual int start(bool blocking = false)
Start the runtime system.

Parameters blocking – [in] This allows to control whether this call blocks until the run-
time system has been stopped. If this parameter is true the function runtime::start will call
runtime::wait internally .

Returns If a blocking is a true, this function will return the value as returned as the result of
the invocation of the function object given by the parameter func. Otherwise, it will return
zero.

virtual int wait()
Wait for the shutdown action to be executed.

Returns This function will return the value as returned as the result of the invocation of the
function object given by the parameter func.

virtual void stop(bool blocking = true)
Initiate termination of the runtime system.

Parameters blocking – [in] This allows to control whether this call blocks until the runtime
system has been fully stopped. If this parameter is false then this call will initiate the stop
action but will return immediately. Use a second call to stop with this parameter set to true
to wait for all internal work to be completed.

virtual int suspend()
Suspend the runtime system.

1184 Chapter 2. What’s so special about HPX?

HPX Documentation, master

virtual int resume()
Resume the runtime system.

virtual int finalize(double)

virtual bool is_networking_enabled()
Return true if networking is enabled.

virtual hpx::threads::threadmanager &get_thread_manager()
Allow access to the thread manager instance used by the HPX runtime.

virtual std::string here() const
Returns a string of the locality endpoints (usable in debug output)

virtual bool report_error(std::size_t num_thread, std::exception_ptr const &e, bool terminate_all =
true)

Report a non-recoverable error to the runtime system.
Parameters

• num_thread – [in] The number of the operating system thread the error has been detected
in.

• e – [in] This is an instance encapsulating an exception which lead to this function call.
• terminate_all – [in] signal whether all localities should be terminated

virtual bool report_error(std::exception_ptr const &e, bool terminate_all = true)
Report a non-recoverable error to the runtime system.

Note: This function will retrieve the number of the current shepherd thread and forward to the re-
port_error function above.

Parameters
• e – [in] This is an instance encapsulating an exception which lead to this function call.
• terminate_all – [in] signal whether all localities should be terminated

virtual void add_pre_startup_function(startup_function_type f)
Add a function to be executed inside a HPX thread before hpx_main but guaranteed to be executed
before any startup function registered with add_startup_function.

Note: The difference to a startup function is that all pre-startup functions will be (system-wide)
executed before any startup function.

Parameters f – The function ‘f’ will be called from inside a HPX thread before hpx_main
is executed. This is very useful to set up the runtime environment of the application (install
performance counters, etc.)

virtual void add_startup_function(startup_function_type f)
Add a function to be executed inside a HPX thread before hpx_main

Parameters f – The function ‘f’ will be called from inside a HPX thread before hpx_main
is executed. This is very useful to set up the runtime environment of the application (install
performance counters, etc.)

virtual void add_pre_shutdown_function(shutdown_function_type f)
Add a function to be executed inside a HPX thread during hpx::finalize, but guaranteed before any of
the shutdown functions is executed.

2.8. API reference 1185

HPX Documentation, master

Note: The difference to a shutdown function is that all pre-shutdown functions will be (system-wide)
executed before any shutdown function.

Parameters f – The function ‘f’ will be called from inside a HPX thread while hpx::finalize
is executed. This is very useful to tear down the runtime environment of the application
(uninstall performance counters, etc.)

virtual void add_shutdown_function(shutdown_function_type f)
Add a function to be executed inside a HPX thread during hpx::finalize

Parameters f – The function ‘f’ will be called from inside a HPX thread while hpx::finalize
is executed. This is very useful to tear down the runtime environment of the application
(uninstall performance counters, etc.)

virtual hpx::util::io_service_pool *get_thread_pool(char const *name)
Access one of the internal thread pools (io_service instances) HPX is using to perform specific tasks.
The three possible values for the argument name are “main_pool”, “io_pool”, “parcel_pool”, and
“timer_pool”. For any other argument value the function will return zero.

virtual bool register_thread(char const *name, std::size_t num = 0, bool service_thread = true,
error_code &ec = throws)

Register an external OS-thread with HPX.

This function should be called from any OS-thread which is external to HPX (not created by HPX),
but which needs to access HPX functionality, such as setting a value on a promise or similar.

‘main’, ‘io’, ‘timer’, ‘parcel’, ‘worker’

Note: The function will compose a thread name of the form ‘<name>-thread#<num>’ which is used
to register the thread. It is the user’s responsibility to ensure that each (composed) thread name is
unique. HPX internally uses the following names for the threads it creates, do not reuse those:

Note: This function should be called for each thread exactly once. It will fail if it is called more than
once.

Parameters
• name – [in] The name to use for thread registration.
• num – [in] The sequence number to use for thread registration. The default for this pa-

rameter is zero.
• service_thread – [in] The thread should be registered as a service thread. The default

for this parameter is ‘true’. Any service threads will be pinned to cores not currently used
by any of the HPX worker threads.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns This function will return whether the requested operation succeeded or not.

virtual bool unregister_thread()
Unregister an external OS-thread with HPX.

This function will unregister any external OS-thread from HPX.

1186 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: This function should be called for each thread exactly once. It will fail if it is called more than
once. It will fail as well if the thread has not been registered before (see register_thread).

Returns This function will return whether the requested operation succeeded or not.

virtual runtime_local::os_thread_data get_os_thread_data(std::string const &label) const
Access data for a given OS thread that was previously registered by register_thread.

virtual bool enumerate_os_threads(hpx::function<bool(runtime_local::os_thread_data const&)>
const &f) const

Enumerate all OS threads that have registered with the runtime.

notification_policy_type::on_startstop_type on_start_func() const

notification_policy_type::on_startstop_type on_stop_func() const

notification_policy_type::on_error_type on_error_func() const

notification_policy_type::on_startstop_type on_start_func(notification_policy_type::on_startstop_type&&)

notification_policy_type::on_startstop_type on_stop_func(notification_policy_type::on_startstop_type&&)

notification_policy_type::on_error_type on_error_func(notification_policy_type::on_error_type&&)

virtual std::uint32_t get_locality_id(error_code &ec) const

virtual std::size_t get_num_worker_threads() const

virtual std::uint32_t get_num_localities(hpx::launch::sync_policy, error_code &ec) const

virtual std::uint32_t get_initial_num_localities() const

virtual hpx::future<std::uint32_t> get_num_localities() const

virtual std::string get_locality_name() const

virtual std::uint32_t assign_cores(std::string const&, std::uint32_t)

virtual std::uint32_t assign_cores()

inline hpx::program_options::options_description const &get_app_options() const

inline void set_app_options(hpx::program_options::options_description const &app_options)

Public Static Functions

static std::uint64_t get_system_uptime()
Return the system uptime measure on the thread executing this call.

2.8. API reference 1187

HPX Documentation, master

Protected Types

using on_exit_type = std::vector<hpx::function<void()>>

Protected Functions

explicit runtime(hpx::util::runtime_configuration rtcfg)

void set_notification_policies(notification_policy_type &¬ifier,
threads::detail::network_background_callback_type const
&network_background_callback)

void init()
Common initialization for different constructors.

void init_global_data()

threads::thread_result_type run_helper(hpx::function<runtime::hpx_main_function_type> const
&func, int &result, bool call_startup_functions, void
(*handle_print_bind)(std::size_t) = nullptr)

void wait_helper(std::mutex &mtx, std::condition_variable &cond, bool &running)

Protected Attributes

on_exit_type on_exit_functions_

mutable std::mutex mtx_

hpx::util::runtime_configuration rtcfg_

long instance_number_

std::unique_ptr<util::thread_mapper> thread_support_

threads::topology &topology_

std::atomic<state> state_

notification_policy_type::on_startstop_type on_start_func_

notification_policy_type::on_startstop_type on_stop_func_

notification_policy_type::on_error_type on_error_func_

int result_

1188 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::exception_ptr exception_

notification_policy_type main_pool_notifier_

std::unique_ptr<util::io_service_pool> main_pool_

notification_policy_type notifier_

std::unique_ptr<hpx::threads::threadmanager> thread_manager_

Protected Static Functions

static void deinit_global_data()

Protected Static Attributes

static std::atomic<int> instance_number_counter_

Private Functions

void stop_helper(bool blocking, std::condition_variable &cond, std::mutex &mtx) const
Helper function to stop the runtime.

Parameters
• blocking – [in] This allows to control whether this call blocks until the runtime system

has been fully stopped. If this parameter is false then this call will initiate the stop action
but will return immediately. Use a second call to stop with this parameter set to true to
wait for all internal work to be completed.

• cond –
• mtx –

void deinit_tss_helper(char const *context, std::size_t num) const

void init_tss_ex(char const *context, runtime_local::os_thread_type type, std::size_t
local_thread_num, std::size_t global_thread_num, char const *pool_name, char
const *postfix, bool service_thread, error_code &ec) const

void init_tss_helper(char const *context, runtime_local::os_thread_type type, std::size_t
local_thread_num, std::size_t global_thread_num, char const *pool_name, char
const *postfix, bool service_thread) const

void notify_finalize()

void wait_finalize()

void call_startup_functions(bool pre_startup)

2.8. API reference 1189

HPX Documentation, master

Private Members

std::list<startup_function_type> pre_startup_functions_

std::list<startup_function_type> startup_functions_

std::list<shutdown_function_type> pre_shutdown_functions_

std::list<shutdown_function_type> shutdown_functions_

bool stop_called_

bool stop_done_

std::condition_variable wait_condition_

hpx::program_options::options_description app_options_

namespace threads

Functions

char const *get_stack_size_name(std::ptrdiff_t size)
Returns the stack size name.

Get the readable string representing the given stack size constant.
Parameters size – this represents the stack size

std::ptrdiff_t get_default_stack_size()
Returns the default stack size.

Get the default stack size in bytes.

std::ptrdiff_t get_stack_size(thread_stacksize)
Returns the stack size corresponding to the given stack size enumeration.

Get the stack size corresponding to the given stack size enumeration.
Parameters size – this represents the stack size

namespace util

1190 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

bool retrieve_commandline_arguments(hpx::program_options::options_description const
&app_options, hpx::program_options::variables_map
&vm)

bool retrieve_commandline_arguments(std::string const &appname,
hpx::program_options::variables_map &vm)

hpx::register_thread, hpx::unregister_thread, hpx::get_os_thread_data,
hpx::enumerate_os_threads, hpx::get_runtime_instance_number, hpx::register_on_exit,
hpx::is_starting, hpx::tolerate_node_faults, hpx::is_running, hpx::is_stopped,
hpx::is_stopped_or_shutting_down, hpx::get_num_worker_threads, hpx::get_system_uptime

Defined in header hpx/runtime.hpp740.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

bool register_thread(runtime *rt, char const *name, error_code &ec = throws)
Register the current kernel thread with HPX, this should be done once for each external OS-thread intended
to invoke HPX functionality. Calling this function more than once will return false.

void unregister_thread(runtime *rt)
Unregister the thread from HPX, this should be done once in the end before the external thread exists.

runtime_local::os_thread_data get_os_thread_data(std::string const &label)
Access data for a given OS thread that was previously registered by register_thread. This function must be
called from a thread that was previously registered with the runtime.

bool enumerate_os_threads(hpx::function<bool(os_thread_data const&)> const &f)
Enumerate all OS threads that have registered with the runtime.

std::size_t get_runtime_instance_number()
Return the runtime instance number associated with the runtime instance the current thread is running in.

bool register_on_exit(hpx::function<void()> const&)

Register a function to be called during system shutdown.

bool is_starting()
Test whether the runtime system is currently being started.

This function returns whether the runtime system is currently being started or not, e.g. whether the current
state of the runtime system is hpx::state::startup

Note: This function needs to be executed on a HPX-thread. It will return false otherwise.

740 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

2.8. API reference 1191

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

bool tolerate_node_faults()
Test if HPX runs in fault-tolerant mode.

This function returns whether the runtime system is running in fault-tolerant mode

bool is_running()
Test whether the runtime system is currently running.

This function returns whether the runtime system is currently running or not, e.g. whether the current state
of the runtime system is hpx::state::running

Note: This function needs to be executed on a HPX-thread. It will return false otherwise.

bool is_stopped()
Test whether the runtime system is currently stopped.

This function returns whether the runtime system is currently stopped or not, e.g. whether the current state
of the runtime system is hpx::state::stopped

Note: This function needs to be executed on a HPX-thread. It will return false otherwise.

bool is_stopped_or_shutting_down()
Test whether the runtime system is currently being shut down.

This function returns whether the runtime system is currently being shut down or not, e.g. whether the
current state of the runtime system is hpx::state::stopped or hpx::state::shutdown

Note: This function needs to be executed on a HPX-thread. It will return false otherwise.

std::size_t get_num_worker_threads()
Return the number of worker OS- threads used to execute HPX threads.

This function returns the number of OS-threads used to execute HPX threads. If the function is called while
no HPX runtime system is active, it will return zero.

std::uint64_t get_system_uptime()
Return the system uptime measure on the thread executing this call.

This function returns the system uptime measured in nanoseconds for the thread executing this call. If the
function is called while no HPX runtime system is active, it will return zero.

namespace threads

1192 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/runtime_local/service_executors.hpp

Defined in header hpx/runtime_local/service_executors.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Enums

enum class service_executor_type : std::uint8_t
Values:

enumerator io_thread_pool
Selects creating a service executor using the I/O pool of threads

enumerator parcel_thread_pool
Selects creating a service executor using the parcel pool of threads

enumerator timer_thread_pool
Selects creating a service executor using the timer pool of threads

enumerator main_thread
Selects creating a service executor using the main thread

struct io_pool_executor : public hpx::execution::experimental::service_executor

Public Functions

io_pool_executor()

struct main_pool_executor : public hpx::execution::experimental::service_executor

2.8. API reference 1193

HPX Documentation, master

Public Functions

main_pool_executor()

struct parcel_pool_executor : public hpx::execution::experimental::service_executor

Public Functions

explicit parcel_pool_executor(char const *name_suffix = "-tcp")

struct service_executor : public service_executor
Subclassed by hpx::execution::experimental::io_pool_executor,
hpx::execution::experimental::main_pool_executor, hpx::execution::experimental::parcel_pool_executor,
hpx::execution::experimental::timer_pool_executor

Public Functions

explicit service_executor(service_executor_type t, char const *name_suffix = "")

struct timer_pool_executor : public hpx::execution::experimental::service_executor

Public Functions

timer_pool_executor()

hpx::shutdown_function_type, hpx::register_pre_shutdown_function, hpx::register_shutdown_function

Defined in header hpx/runtime.hpp741.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Typedefs

using shutdown_function_type = hpx::move_only_function<void()>
The type of the function which is registered to be executed as a shutdown or pre-shutdown function.

741 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

1194 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

Functions

void register_pre_shutdown_function(shutdown_function_type f)
Add a function to be executed by a HPX thread during hpx::finalize() but guaranteed before any shutdown
function is executed (system-wide)

Any of the functions registered with register_pre_shutdown_function are guaranteed to be executed by an
HPX thread during the execution of hpx::finalize() before any of the registered shutdown functions are
executed (see: hpx::register_shutdown_function()).

See also:

hpx::register_shutdown_function()

Note: If this function is called while the pre-shutdown functions are being executed, or after that point, it
will raise an invalid_status exception.

Parameters f – [in] The function to be registered to run by an HPX thread as a pre-shutdown
function.

void register_shutdown_function(shutdown_function_type f)
Add a function to be executed by a HPX thread during hpx::finalize() but guaranteed after any pre-shutdown
function is executed (system-wide)

Any of the functions registered with register_shutdown_function are guaranteed to be executed by an HPX
thread during the execution of hpx::finalize() after any of the registered pre-shutdown functions are executed
(see: hpx::register_pre_shutdown_function()).

See also:

hpx::register_pre_shutdown_function()

Note: If this function is called while the shutdown functions are being executed, or after that point, it will
raise an invalid_status exception.

Parameters f – [in] The function to be registered to run by an HPX thread as a shutdown func-
tion.

hpx::startup_function_type, hpx::register_pre_startup_function, hpx::register_startup_function

Defined in header hpx/runtime.hpp742.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

742 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

2.8. API reference 1195

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

Typedefs

using startup_function_type = hpx::move_only_function<void()>
The type of the function which is registered to be executed as a startup or pre-startup function.

Functions

void register_pre_startup_function(startup_function_type f)
Add a function to be executed by a HPX thread before hpx_main but guaranteed before any startup function
is executed (system-wide).

Any of the functions registered with register_pre_startup_function are guaranteed to be executed by an HPX
thread before any of the registered startup functions are executed (see hpx::register_startup_function()).

This function is one of the few API functions which can be called before the runtime system has been
fully initialized. It will automatically stage the provided startup function to the runtime system during its
initialization (if necessary).

See also:

hpx::register_startup_function()

Note: If this function is called while the pre-startup functions are being executed or after that point, it will
raise aninvalid_status exception.

Parameters f – [in] The function to be registered to run by an HPX thread as a pre-startup
function.

void register_startup_function(startup_function_type f)
Add a function to be executed by a HPX thread before hpx_main but guaranteed after any pre-startup
function is executed (system-wide).

Any of the functions registered with register_startup_function are guaranteed to be exe-
cuted by an HPX thread after any of the registered pre-startup functions are executed (see:
hpx::register_pre_startup_function()), but before hpx_main is being called.

This function is one of the few API functions which can be called before the runtime system has been
fully initialized. It will automatically stage the provided startup function to the runtime system during its
initialization (if necessary).

See also:

hpx::register_pre_startup_function()

Note: If this function is called while the startup functions are being executed or after that point, it will
raise an invalid_status exception.

1196 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters f – [in] The function to be registered to run by an HPX thread as a startup function.

hpx/runtime_local/thread_hooks.hpp

Defined in header hpx/runtime_local/thread_hooks.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

threads::policies::callback_notifier::on_startstop_type get_thread_on_start_func()
Retrieve the currently installed start handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered start function chains into the previous one (see
register_thread_on_start_func).

Note: This function can be called before the HPX runtime is initialized.

Returns The currently installed error handler function.

threads::policies::callback_notifier::on_startstop_type get_thread_on_stop_func()
Retrieve the currently installed stop handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered stop function chains into the previous one (see
register_thread_on_stop_func).

Note: This function can be called before the HPX runtime is initialized.

Returns The currently installed error handler function.

threads::policies::callback_notifier::on_error_type get_thread_on_error_func()
Retrieve the currently installed error handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered error function chains into the previous one (see
register_thread_on_error_func).

Note: This function can be called before the HPX runtime is initialized.

Returns The currently installed error handler function.

threads::policies::callback_notifier::on_startstop_type register_thread_on_start_func(threads::policies::callback_notifier::on_startstop_type
&&f)

Set the currently installed start handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,

2.8. API reference 1197

HPX Documentation, master

thus the caller needs to make sure any newly registered start function chains into the previous one (see
get_thread_on_start_func).

Note: This function can be called before the HPX runtime is initialized.

Parameters f – The function to install as the new start handler.

Returns The previously registered function of this category. It is the user’s responsibility to call
that function if the callback is invoked by HPX.

threads::policies::callback_notifier::on_startstop_type register_thread_on_stop_func(threads::policies::callback_notifier::on_startstop_type
&&f)

Set the currently installed stop handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered stop function chains into the previous one (see
get_thread_on_stop_func).

Note: This function can be called before the HPX runtime is initialized.

Parameters f – The function to install as the new stop handler.

Returns The previously registered function of this category. It is the user’s responsibility to call
that function if the callback is invoked by HPX.

threads::policies::callback_notifier::on_error_type register_thread_on_error_func(threads::policies::callback_notifier::on_error_type
&&f)

Set the currently installed error handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered error function chains into the previous one (see
get_thread_on_error_func).

Note: This function can be called before the HPX runtime is initialized.

Parameters f – The function to install as the new error handler.

Returns The previously registered function of this category. It is the user’s responsibility to call
that function if the callback is invoked by HPX.

hpx/runtime_local/thread_pool_helpers.hpp

Defined in header hpx/runtime_local/thread_pool_helpers.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace resource

1198 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

std::size_t get_num_thread_pools()
Return the number of thread pools currently managed by the resource_partitioner

std::size_t get_num_threads()
Return the number of threads in all thread pools currently managed by the resource_partitioner

std::size_t get_num_threads(std::string const &pool_name)
Return the number of threads in the given thread pool currently managed by the resource_partitioner

std::size_t get_num_threads(std::size_t pool_index)
Return the number of threads in the given thread pool currently managed by the resource_partitioner

std::size_t get_pool_index(std::string const &pool_name)
Return the internal index of the pool given its name.

std::string const &get_pool_name(std::size_t pool_index)
Return the name of the pool given its internal index.

threads::thread_pool_base &get_thread_pool(std::string const &pool_name)
Return the name of the pool given its name.

threads::thread_pool_base &get_thread_pool(std::size_t pool_index)
Return the thread pool given its internal index.

bool pool_exists(std::string const &pool_name)
Return true if the pool with the given name exists.

bool pool_exists(std::size_t pool_index)
Return true if the pool with the given index exists.

namespace threads

Functions

std::int64_t get_thread_count(thread_schedule_state state = thread_schedule_state::unknown)
The function get_thread_count returns the number of currently known threads.

Note: If state == unknown this function will not only return the number of currently existing threads,
but will add the number of registered task descriptions (which have not been converted into threads
yet).

Parameters state – [in] This specifies the thread-state for which the number of threads
should be retrieved.

std::int64_t get_thread_count(thread_priority priority, thread_schedule_state state =
thread_schedule_state::unknown)

The function get_thread_count returns the number of currently known threads.

Note: If state == unknown this function will not only return the number of currently existing threads,
but will add the number of registered task descriptions (which have not been converted into threads
yet).

2.8. API reference 1199

HPX Documentation, master

Parameters
• priority – [in] This specifies the thread-priority for which the number of threads should

be retrieved.
• state – [in] This specifies the thread-state for which the number of threads should be

retrieved.

std::int64_t get_idle_core_count()
The function get_idle_core_count returns the number of currently idling threads (cores).

mask_type get_idle_core_mask()
The function get_idle_core_mask returns a bit-mask representing the currently idling threads (cores).

bool enumerate_threads(hpx::function<bool(thread_id_type)> const &f, thread_schedule_state state
= thread_schedule_state::unknown)

The function enumerate_threads will invoke the given function f for each thread with a matching thread
state.

Parameters
• f – [in] The function which should be called for each matching thread. Returning ‘false’

from this function will stop the enumeration process.
• state – [in] This specifies the thread-state for which the threads should be enumerated.

serialization

See Public API for a list of names and headers that are part of the public HPX API.

hpx/serialization/base_object.hpp

Defined in header hpx/serialization/base_object.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename Derived, typename Base>

struct hpx::serialization::base_object_type<Derived, Base,
std::enable_if_t<hpx::traits::is_intrusive_polymorphic_v<Derived>>>

Public Functions

inline explicit constexpr base_object_type(Derived &d) noexcept

template<typename Archive>
inline void save(Archive &ar, unsigned) const

template<typename Archive>
inline void load(Archive &ar, unsigned)

HPX_SERIALIZATION_SPLIT_MEMBER()

1200 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Members

Derived &d_

namespace hpx

namespace serialization

Functions

template<typename Base, typename Derived>
constexpr base_object_type<Derived, Base> base_object(Derived &d) noexcept

template<typename D, typename B>
output_archive &operator<<(output_archive &ar, base_object_type<D, B> t)

template<typename D, typename B>
input_archive &operator>>(input_archive &ar, base_object_type<D, B> t)

template<typename D, typename B>
output_archive &operator&(output_archive &ar, base_object_type<D, B> t)

template<typename D, typename B>
input_archive &operator&(input_archive &ar, base_object_type<D, B> t)

template<typename Derived, typename Base, typename Enable = void>

struct base_object_type

Public Functions

inline explicit constexpr base_object_type(Derived &d) noexcept

template<typename Archive>
inline void serialize(Archive &ar, unsigned)

Public Members

Derived &d_

template<typename Derived,
typename Base> is_intrusive_polymorphic_v< Derived > > >

2.8. API reference 1201

HPX Documentation, master

Public Functions

inline explicit constexpr base_object_type(Derived &d) noexcept

template<typename Archive>
inline void save(Archive &ar, unsigned) const

template<typename Archive>
inline void load(Archive &ar, unsigned)

HPX_SERIALIZATION_SPLIT_MEMBER()

Public Members

Derived &d_

synchronization

See Public API for a list of names and headers that are part of the public HPX API.

hpx::barrier

Defined in header hpx/barrier.hpp743.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

template<typename OnCompletion = detail::empty_oncompletion>

class barrier
#include <barrier.hpp> A barrier is a thread coordination mechanism whose lifetime consists of a sequence
of barrier phases, where each phase allows at most an expected number of threads to block until the expected
number of threads arrive at the barrier. [Note: A barrier is useful for managing repeated tasks that are
handled by multiple threads. - end note] Each barrier phase consists of the following steps:

• The expected count is decremented by each call to arrive or arrive_and_drop.

• When the expected count reaches zero, the phase completion step is run. For the specialization with the
default value of the CompletionFunction template parameter, the completion step is run as part of the
call to arrive or arrive_and_drop that caused the expected count to reach zero. For other specializations,
the completion step is run on one of the threads that arrived at the barrier during the phase.

• When the completion step finishes, the expected count is reset to what was specified by the expected
argument to the constructor, possibly adjusted by calls to arrive_and_drop, and the next phase starts.

Each phase defines a phase synchronization point. Threads that arrive at the barrier during the phase can
block on the phase synchronization point by calling wait, and will remain blocked until the phase completion
step is run. The phase completion step that is executed at the end of each phase has the following effects:

743 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/barrier.hpp

1202 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/barrier.hpp

HPX Documentation, master

• Invokes the completion function, equivalent to completion().

• Unblocks all threads that are blocked on the phase synchronization point.

The end of the completion step strongly happens before the returns from all calls that were unblocked by the
completion step. For specializations that do not have the default value of the CompletionFunction template
parameter, the behavior is undefined if any of the barrier object’s member functions other than wait are
called while the completion step is in progress.

Concurrent invocations of the member functions of barrier, other than its destructor, do not introduce data
races. The member functions arrive and arrive_and_drop execute atomically.

CompletionFunction shall meet the Cpp17MoveConstructible (Table 28) and Cpp17Destructible (Table 32)
requirements. std::is_nothrow_invocable_v<CompletionFunction&> shall be true.

The default value of the CompletionFunction template parameter is an unspecified type, such that, in ad-
dition to satisfying the requirements of CompletionFunction, it meets the Cpp17DefaultConstructible re-
quirements (Table 27) and completion() has no effects.

barrier::arrival_token is an unspecified type, such that it meets the Cpp17MoveConstructible (Table 28),
Cpp17MoveAssignable (Table 30), and Cpp17Destructible (Table 32) requirements.

Public Types

using arrival_token = bool

Public Functions

inline explicit constexpr barrier(std::ptrdiff_t expected, OnCompletion completion = OnCompletion())
Preconditions: expected >= 0 is true and expected <= max() is true.

Effects: Sets both the initial expected count for each barrier phase and the current expected count for
the first phase to expected. Initializes completion with std::move(f). Starts the first phase. [Note: If
expected is 0 this object can only be destroyed.- end note]

Throws: Any exception thrown by CompletionFunction’s move constructor.

~barrier() = default

inline arrival_token arrive(std::ptrdiff_t update = 1)
Preconditions: update > 0 is true, and update is less than or equal to the expected count for the current
barrier phase.

Effects: Constructs an object of type arrival_token that is associated with the phase synchronization
point for the current phase. Then, decrements the expected count by update.

Synchronization: The call to arrive strongly happens before the start of the phase completion step for
the current phase.

Error conditions: Any of the error conditions allowed for mutex
types([thread.mutex.requirements.mutex]). [Note: This call can cause the completion step for
the current phase to start.- end note]

Throws system_error – when an exception is required ([thread.req.exception]).
Returns : The constructed arrival_token object.

2.8. API reference 1203

HPX Documentation, master

inline void wait(arrival_token &&old_phase) const
Preconditions: arrival is associated with the phase synchronization point for the current phase or the
immediately preceding phase of the same barrier object.

Effects: Blocks at the synchronization point associated with HPX_MOVE(arrival) until the phase com-
pletion step of the synchronization point’s phase is run. [Note: If arrival is associated with the syn-
chronization point for a previous phase, the call returns immediately. - end note]

Throws system_error – when an exception is required ([thread.req.exception]).
Error conditions: Any of the error conditions allowed for mutex types
([thread.mutex.requirements.mutex]).

inline void arrive_and_wait()
Effects: Equivalent to: wait(arrive()).

inline void arrive_and_drop()
Preconditions: The expected count for the current barrier phase is greater than zero.

Effects: Decrements the initial expected count for all subsequent phases by one. Then decrements the
expected count for the current phase by one.

Synchronization: The call to arrive_and_drop strongly happens before the start of the phase completion
step for the current phase.

Throws system_error – when an exception is required ([thread.req.exception]).Error
conditions: Any of the error conditions allowed for mutex types
([thread.mutex.requirements.mutex]). [Note: This call can cause the completion
step for the current phase to start.- end note]

Public Static Functions

static inline constexpr std::ptrdiff_t() max () noexcept

Private Types

using mutex_type = hpx::spinlock

Private Members

hpx::intrusive_ptr<detail::barrier_data> mtx_

mutable hpx::lcos::local::detail::condition_variable cond_

std::ptrdiff_t expected_

std::ptrdiff_t arrived_

OnCompletion completion_

bool phase_

1204 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::binary_semaphore

Defined in header hpx/semaphore.hpp744.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

class binary_semaphore
#include <binary_semaphore.hpp> A binary semaphore is a semaphore object that has only two states.
binary_semaphore is an alias for specialization of hpx::counting_semaphore with LeastMaxValue being 1.
HPX’s implementation of binary_semaphore is more efficient than the default implementation of a counting
semaphore with a unit resource count (hpx::counting_semaphore).

Public Functions

binary_semaphore(binary_semaphore const&) = delete

binary_semaphore &operator=(binary_semaphore const&) = delete

binary_semaphore(binary_semaphore&&) = delete

binary_semaphore &operator=(binary_semaphore&&) = delete

explicit binary_semaphore(std::ptrdiff_t value = 1)
Constructs an object of type hpx::binary_semaphore with the internal counter initialized to value.

Parameters value – The initial value of the internal semaphore lock count. Normally this
value should be zero (which is the default), values greater than zero are equivalent to the
same number of signals pre-set, and negative values are equivalent to the same number of
waits pre-set.

~binary_semaphore() = default

void release(std::ptrdiff_t update = 1)
Atomically increments the internal counter by the value of update. Any thread(s) waiting for the
counter to be greater than 0, such as due to being blocked in acquire, will subsequently be unblocked.

Note: Synchronization: Strongly happens before invocations of try_acquire that observe the result of
the effects.

Throws std::system_error –
Parameters update – the amount to increment the internal counter by
Pre Both update >= 0 and update <= max() - counter are true, where counter is the

value of the internal counter.

bool try_acquire() noexcept
Tries to atomically decrement the internal counter by 1 if it is greater than 0; no blocking occurs
regardless.

Returns true if it decremented the internal counter, otherwise false

744 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
semaphore.hpp

2.8. API reference 1205

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/semaphore.hpp

HPX Documentation, master

void acquire()
Repeatedly performs the following steps, in order:

• Evaluates try_acquire. If the result is true, returns.
Blocks on *this until counter is greater than zero.

Throws std::system_error –
Returns void.

bool try_acquire_until(hpx::chrono::steady_time_point const &abs_time)
Tries to atomically decrement the internal counter by 1 if it is greater than 0; otherwise blocks until it
is greater than 0 and can successfully decrement the internal counter, or the abs_time time point has
been passed.

Parameters abs_time – the earliest time the function must wait until in order to fail
Throws std::system_error –
Returns true if it decremented the internal counter, otherwise false.

bool try_acquire_for(hpx::chrono::steady_duration const &rel_time)
Tries to atomically decrement the internal counter by 1 if it is greater than 0; otherwise blocks until it
is greater than 0 and can successfully decrement the internal counter, or the rel_time duration has been
exceeded.

Throws std::system_error –
Parameters rel_time – the minimum duration the function must wait for to fail
Returns true if it decremented the internal counter, otherwise false

Public Static Functions

static constexpr std::ptrdiff_t max() noexcept
Returns The maximum value of counter. This value is greater than or equal to LeastMaxValue.

Returns The internal counter’s maximum possible value, as a std::ptrdiff_t.

hpx::condition_variable, hpx::condition_variable_any, hpx::cv_status

Defined in header hpx/condition_variable.hpp745.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Enums

enum class cv_status
The scoped enumeration hpx::cv_status describes whether a timed wait returned because of timeout or not.
hpx::cv_status is used by the wait_for and wait_until member functions of hpx::condition_variable and
hpx::condition_variable_any.

Values:

745 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
condition_variable.hpp

1206 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/condition_variable.hpp

HPX Documentation, master

enumerator no_timeout
The condition variable was awakened with notify_all, notify_one, or spuriously

enumerator timeout
the condition variable was awakened by timeout expiration

enumerator error
there was an error

class condition_variable
#include <condition_variable.hpp> The condition_variable class is a synchronization primitive that can
be used to block a thread, or multiple threads at the same time, until another thread both modifies a shared
variable (the condition), and notifies the condition_variable.

The thread that intends to modify the shared variable has to

i. acquire a hpx::mutex (typically via std::lock_guard)

ii. perform the modification while the lock is held

iii. execute notify_one or notify_all on the condition_variable (the lock does not need to be held for noti-
fication)

Even if the shared variable is atomic, it must be modified under the mutex in order to correctly publish the
modification to the waiting thread. Any thread that intends to wait on condition_variable has to

i. acquire a std::unique_lock<hpx::mutex>, on the same mutex as used to protect the shared variable

ii. either

A. check the condition, in case it was already updated and notified

B. execute wait, await_for, or wait_until. The wait operations atomically release the mutex and sus-
pend the execution of the thread.

C. When the condition variable is notified, a timeout expires, or a spurious wakeup occurs, the thread
is awakened, and the mutex is atomically reacquired. The thread should then check the condition
and resume waiting if the wake up was spurious. or

A. use the predicated overload of wait, wait_for, and wait_until, which takes care of the three steps
above.

hpx::condition_variable works only with std::unique_lock<hpx::mutex>. This restriction allows for max-
imal efficiency on some platforms. hpx::condition_variable_any provides a condition variable that works
with any BasicLockable746 object, such as std::shared_lock.

Condition variables permit concurrent invocation of the wait, wait_for, wait_until, notify_one and notify_all
member functions.

The class hpx::condition_variable is a StandardLayoutType747. It is not CopyConstructible748, MoveCon-
structible749, CopyAssignable750, or MoveAssignable751.

2.8. API reference 1207

https://en.cppreference.com/w/cpp/named_req/BasicLockable
https://en.cppreference.com/w/cpp/named_req/StandardLayoutType
https://en.cppreference.com/w/cpp/named_req/CopyConstructible
https://en.cppreference.com/w/cpp/named_req/MoveConstructible
https://en.cppreference.com/w/cpp/named_req/MoveConstructible
https://en.cppreference.com/w/cpp/named_req/CopyAssignable
https://en.cppreference.com/w/cpp/named_req/MoveAssignable

HPX Documentation, master

Public Functions

inline condition_variable()
Construct an object of type hpx::condition_variable.

~condition_variable() = default
Destroys the object of type hpx::condition_variable.

IOW, ~condition_variable() can execute before a signaled thread returns from a wait. If this happens
with condition_variable, that waiting thread will attempt to lock the destructed mutex. To fix this, there
must be shared ownership of the data members between the condition_variable object and the member
functions wait (wait_for, etc.).

Note: Preconditions: There is no thread blocked on *this. [Note: That is, all threads have been
notified; they could subsequently block on the lock specified in the wait.This relaxes the usual rules,
which would have required all wait calls to happen before destruction. Only the notification to unblock
the wait needs to happen before destruction.The user should take care to ensure that no threads wait
on *this once the destructor has been started, especially when the waiting threads are calling the wait
functions in a loop or using the overloads of wait, wait_for, or wait_until that take a predicate. end
note]

condition_variable(condition_variable const&) = delete

condition_variable(condition_variable&&) = delete

condition_variable &operator=(condition_variable const&) = delete

condition_variable &operator=(condition_variable&&) = delete

inline void notify_one(error_code &ec = throws) const
If any threads are waiting on *this, calling notify_one unblocks one of the waiting threads.

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns notify_one returns void.

inline void notify_all(error_code &ec = throws) const
Unblocks all threads currently waiting for *this.

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns notify_all returns void.

template<typename Mutex>
inline void wait(std::unique_lock<Mutex> &lock, error_code &ec = throws)

wait causes the current thread to block until the condition variable is notified or a spurious wakeup
occurs, optionally looping until some predicate is satisfied (bool(pred())==true).

Atomically unlocks lock, blocks the current executing thread, and adds it to the list of threads waiting
on *this. The thread will be unblocked when notify_all() or notify_one() is executed. It may also be
unblocked spuriously. When unblocked, regardless of the reason, lock is reacquired and wait exits.

Note: 1. Calling this function if lock.mutex() is not locked by the current thread is undefined behavior.
A. Calling this function if lock.mutex() is not the same mutex as the one used by all other threads that

are currently waiting on the same condition variable is undefined behavior.

1208 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Template Parameters Mutex – Type of mutex to wait on.
Parameters

• lock – unique_lock that must be locked by the current thread
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns wait returns void.

template<typename Mutex, typename Predicate>
inline void wait(std::unique_lock<Mutex> &lock, Predicate pred, error_code& = throws)

wait causes the current thread to block until the condition variable is notified or a spurious wakeup
occurs, optionally looping until some predicate is satisfied (bool(pred())==true).

Equivalent to

while (!pred()) {
wait(lock);

}

This overload may be used to ignore spurious awakenings while waiting for a specific condition to
become true. Note that lock must be acquired before entering this method, and it is reacquired after
wait(lock) exits, which means that lock can be used to guard access to pred().

Note: 1. Calling this function if lock.mutex() is not locked by the current thread is undefined behavior.
A. Calling this function if lock.mutex() is not the same mutex as the one used by all other threads that

are currently waiting on the same condition variable is undefined behavior.

Template Parameters
• Mutex – Type of mutex to wait on.
• Predicate – Type of predicate pred function.

Parameters
• lock – unique_lock that must be locked by the current thread
• pred – Predicate which returns false if the waiting should be continued

(bool(pred())==false). The signature of the predicate function should be equiva-
lent to the following: bool pred();

Returns wait returns void.

template<typename Mutex>
inline cv_status wait_until(std::unique_lock<Mutex> &lock, hpx::chrono::steady_time_point const

&abs_time, error_code &ec = throws)
wait_until causes the current thread to block until the condition variable is notified, a specific
time is reached, or a spurious wakeup occurs, optionally looping until some predicate is satisfied
(bool(pred())==true).

Atomically releases lock, blocks the current executing thread, and adds it to the list of threads waiting
on *this. The thread will be unblocked when notify_all() or notify_one() is executed, or when the
absolute time point abs_time is reached. It may also be unblocked spuriously. When unblocked,
regardless of the reason, lock is reacquired and wait_until exits.

Note: 1. Calling this function if lock.mutex() is not locked by the current thread is undefined behavior.
A. Calling this function if lock.mutex() is not the same mutex as the one used by all other threads that

are currently waiting on the same condition variable is undefined behavior.

2.8. API reference 1209

HPX Documentation, master

Template Parameters Mutex – Type of mutex to wait on.
Parameters

• lock – unique_lock that must be locked by the current thread
• abs_time – Represents the time when waiting should be stopped
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns cv_status wait_until returns hpx::cv_status::timeout if the absolute timeout speci-

fied by abs_time was reached and hpx::cv_status::no_timeout otherwise.

template<typename Mutex, typename Predicate>
inline bool wait_until(std::unique_lock<Mutex> &lock, hpx::chrono::steady_time_point const

&abs_time, Predicate pred, error_code &ec = throws)
wait_until causes the current thread to block until the condition variable is notified, a specific
time is reached, or a spurious wakeup occurs, optionally looping until some predicate is satisfied
(bool(pred())==true).

Equivalent to

while (!pred()) {
if (wait_until(lock, abs_time) == hpx::cv_status::timeout) {

return pred();
}

}
return true;

This overload may be used to ignore spurious wakeups.

Note: 1. Calling this function if lock.mutex() is not locked by the current thread is undefined behavior.
A. Calling this function if lock.mutex() is not the same mutex as the one used by all other threads that

are currently waiting on the same condition variable is undefined behavior.

Template Parameters
• Mutex – Type of mutex to wait on.
• Predicate – Type of predicate pred function.

Parameters
• lock – unique_lock that must be locked by the current thread
• abs_time – Represents the time when waiting should be stopped
• pred – Predicate which returns false if the waiting should be continued

(bool(pred())==false). The signature of the predicate function should be equiva-
lent to the following: bool pred();

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

Returns bool wait_until returns false if the predicate pred still evaluates to false after the
abs_time timeout has expired, otherwise true. If the timeout had already expired, evaluates
and returns the result of pred.

template<typename Mutex>
inline cv_status wait_for(std::unique_lock<Mutex> &lock, hpx::chrono::steady_duration const

&rel_time, error_code &ec = throws)
Atomically releases lock, blocks the current executing thread, and adds it to the list of threads waiting
on *this. The thread will be unblocked when notify_all() or notify_one() is executed, or when the
relative timeout rel_time expires. It may also be unblocked spuriously. When unblocked, regardless
of the reason, lock is reacquired and wait_for() exits.

1210 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The standard recommends that a steady clock be used to measure the duration. This function may
block for longer than rel_time due to scheduling or resource contention delays.

Note: 1. Calling this function if lock.mutex() is not locked by the current thread is undefined behavior.
A. Calling this function if lock.mutex() is not the same mutex as the one used by all other threads that

are currently waiting on the same condition variable is undefined behavior.
B. Even if notified under lock, this overload makes no guarantees about the state of the associated

predicate when returning due to timeout.

Template Parameters Mutex – Type of mutex to wait on.
Parameters

• lock – unique_lock that must be locked by the current thread
• rel_time – represents the maximum time to spend waiting. Note that rel_time must be

small enough not to overflow when added to hpx::chrono::steady_clock::now().
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns cv_status hpx::cv_status::timeout if the relative timeout specified by rel_time ex-

pired, hpx::cv_status::no_timeout otherwise.

template<typename Mutex, typename Predicate>
inline bool wait_for(std::unique_lock<Mutex> &lock, hpx::chrono::steady_duration const &rel_time,

Predicate pred, error_code &ec = throws)
Equivalent to.

return wait_until(lock,
hpx::chrono::steady_clock::now() + rel_time,
hpx::move(pred));

This overload may be used to ignore spurious awakenings by looping until some predicate is satisfied
(bool(pred())==true).

The standard recommends that a steady clock be used to measure the duration. This function may
block for longer than rel_time due to scheduling or resource contention delays.

Note: 1. Calling this function if lock.mutex() is not locked by the current thread is undefined behavior.
A. Calling this function if lock.mutex() is not the same mutex as the one used by all other threads that

are currently waiting on the same condition variable is undefined behavior.

Template Parameters
• Mutex – Type of mutex to wait on.
• Predicate – Type of predicate pred function.

Parameters
• lock – unique_lock that must be locked by the current thread
• rel_time – represents the maximum time to spend waiting. Note that rel_time must be

small enough not to overflow when added to hpx::chrono::steady_clock::now().
• pred – Predicate which returns false if the waiting should be continued

(bool(pred())==false). The signature of the predicate function should be equiva-
lent to the following: bool pred();

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

2.8. API reference 1211

HPX Documentation, master

Returns bool wait_for returns false if the predicate pred still evaluates to false after the
rel_time timeout expired, otherwise true.

Private Types

using mutex_type = lcos::local::detail::condition_variable_data::mutex_type

using data_type = hpx::intrusive_ptr<lcos::local::detail::condition_variable_data>

Private Members

hpx::util::cache_aligned_data_derived<data_type> data_

class condition_variable_any
#include <condition_variable.hpp> The condition_variable_any class is a generalization of
hpx::condition_variable. Whereas hpx::condition_variable works only on std::unique_lock<std::mutex>,
a condition_variable_any can operate on any lock that meets the BasicLockable752 requirements.

See hpx::condition_variable for the description of the semantics of condition variables. It is not CopyCon-
structible753, MoveConstructible754, CopyAssignable755, or MoveAssignable756.

Public Functions

inline condition_variable_any()
Constructs an object of type hpx::condition_variable_any.

~condition_variable_any() = default
Destroys the object of type hpx::condition_variable_any.

It is only safe to invoke the destructor if all threads have been notified. It is not required that they have
exited their respective wait functions: some threads may still be waiting to reacquire the associated
lock, or may be waiting to be scheduled to run after reacquiring it.

The programmer must ensure that no threads attempt to wait on *this once the destructor has been
started, especially when the waiting threads are calling the wait functions in a loop or are using the
overloads of the wait functions that take a predicate.

Preconditions: There is no thread blocked on *this. [Note: That is, all threads have been notified; they
could subsequently block on the lock specified in the wait.This relaxes the usual rules, which would
have required all wait calls to happen before destruction. Only the notification to unblock the wait
needs to happen before destruction. The user should take care to ensure that no threads wait on *this
once the destructor has been started, especially when the waiting threads are calling the wait functions
in a loop or using the overloads of wait, wait_for, or wait_until that take a predicate. end note]

IOW, ~condition_variable_any() can execute before a signaled thread returns from a wait. If this hap-
pens with condition_variable_any, that waiting thread will attempt to lock the destructed mutex. To fix
this, there must be shared ownership of the data members between the condition_variable_any object
and the member functions wait (wait_for, etc.).

condition_variable_any(condition_variable_any const&) = delete

1212 Chapter 2. What’s so special about HPX?

https://en.cppreference.com/w/cpp/named_req/BasicLockable
https://en.cppreference.com/w/cpp/named_req/CopyConstructible
https://en.cppreference.com/w/cpp/named_req/CopyConstructible
https://en.cppreference.com/w/cpp/named_req/MoveConstructible
https://en.cppreference.com/w/cpp/named_req/CopyAssignable
https://en.cppreference.com/w/cpp/named_req/MoveAssignable

HPX Documentation, master

condition_variable_any(condition_variable_any&&) = delete

condition_variable_any &operator=(condition_variable_any const&) = delete

condition_variable_any &operator=(condition_variable_any&&) = delete

inline void notify_one(error_code &ec = throws) const
If any threads are waiting on *this, calling notify_one unblocks one of the waiting threads.

The notifying thread does not need to hold the lock on the same mutex as the one held by the waiting
thread(s); in fact doing so is a pessimization, since the notified thread would immediately block again,
waiting for the notifying thread to release the lock. However, some implementations (in particular many
implementations of pthreads) recognize this situation and avoid this “hurry up and wait” scenario by
transferring the waiting thread from the condition variable’s queue directly to the queue of the mutex
within the notify call, without waking it up.

Notifying while under the lock may nevertheless be necessary when precise scheduling of events is re-
quired, e.g. if the waiting thread would exit the program if the condition is satisfied, causing destruction
of the notifying thread’s condition variable. A spurious wakeup after mutex unlock but before notify
would result in notify called on a destroyed object.

Note: The effects of notify_one()/notify_all() and each of the three atomic parts of
wait()/wait_for()/wait_until() (unlock+wait wakeup, and lock) take place in a single total order that
can be viewed as modification order of an atomic variable: the order is specific to this individual con-
dition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock a
thread that started waiting just after the call to notify_one() was made.

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns notify_one returns void.

inline void notify_all(error_code &ec = throws) const
Unblocks all threads currently waiting for *this.

The notifying thread does not need to hold the lock on the same mutex as the one held by the waiting
thread(s); in fact doing so is a pessimization, since the notified thread would immediately block again,
waiting for the notifying thread to release the lock.

Note: The effects of notify_one()/notify_all() and each of the three atomic parts of
wait()/wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total order that
can be viewed as modification order of an atomic variable: the order is specific to this individual con-
dition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock a
thread that started waiting just after the call to notify_one() was made.

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns notify_all returns void.

template<typename Lock>
inline void wait(Lock &lock, error_code &ec = throws)

wait causes the current thread to block until the condition variable is notified or a spurious wakeup
occurs, optionally looping until some predicate is satisfied (bool(pred())==true).

2.8. API reference 1213

HPX Documentation, master

Atomically unlocks lock, blocks the current executing thread, and adds it to the list of threads waiting
on *this. The thread will be unblocked when notify_all() or notify_one() is executed. It may also be
unblocked spuriously. When unblocked, regardless of the reason, lock is reacquired and wait exits.

The effects of notify_one()/notify_all() and each of the three atomic parts of wait()/
wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total or-
der that can be viewed as modification order of an atomic variable: the order is specific to this individual
condition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock
a thread that started waiting just after the call to notify_one() was made.

Note: If these functions fail to meet the postconditions (lock is locked by the calling thread),
std::terminate is called. For example, this could happen if re-locking the mutex throws an exception.

Template Parameters Lock – Type of lock.
Parameters

• lock – An object of type Lock that meets the BasicLockable757 requirements, which
must be locked by the current thread

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special’throw on error’ error_code.

Returns wait returns void.

template<typename Lock, typename Predicate>
inline void wait(Lock &lock, Predicate pred, error_code& = throws)

wait causes the current thread to block until the condition variable is notified or a spurious wakeup
occurs, optionally looping until some predicate is satisfied (bool(pred())==true).

Equivalent to

while (!pred()) {
wait(lock);

}

This overload may be used to ignore spurious awakenings while waiting for a specific condition to
become true. Note that lock must be acquired before entering this method, and it is reacquired after
wait(lock) exits, which means that lock can be used to guard access to pred().

The effects of notify_one()/notify_all() and each of the three atomic parts of wait()/
wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total or-
der that can be viewed as modification order of an atomic variable: the order is specific to this individual
condition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock
a thread that started waiting just after the call to notify_one() was made.

Note: If these functions fail to meet the postconditions (lock is locked by the calling thread),
std::terminate is called. For example, this could happen if re-locking the mutex throws an exception.

Template Parameters
• Lock – Type of lock.
• Predicate – Type of pred.

Parameters
• lock – an object of type Lock that meets the BasicLockable758 requirements, which must

be locked by the current thread

1214 Chapter 2. What’s so special about HPX?

https://en.cppreference.com/w/cpp/named_req/BasicLockable
https://en.cppreference.com/w/cpp/named_req/BasicLockable

HPX Documentation, master

• pred – predicate which returns false if the waiting should be continued
(bool(pred()) == false). The signature of the predicate function should be equiv-
alent to the following: bool pred().

Returns wait returns void.

template<typename Lock>
inline cv_status wait_until(Lock &lock, hpx::chrono::steady_time_point const &abs_time, error_code

&ec = throws)
wait_until causes the current thread to block until the condition variable is notified, a specific
time is reached, or a spurious wakeup occurs, optionally looping until some predicate is satisfied
(bool(pred()) == true).

Atomically releases lock, blocks the current executing thread, and adds it to the list of threads waiting
on *this. The thread will be unblocked when notify_all() or notify_one() is executed, or when the
absolute time point abs_time is reached. It may also be unblocked spuriously. When unblocked,
regardless of the reason, lock is reacquired and wait_until exits.

Note: The effects of notify_one()/notify_all() and each of the three atomic parts of
wait()/wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total order that
can be viewed as modification order of an atomic variable: the order is specific to this individual con-
dition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock a
thread that started waiting just after the call to notify_one() was made.

Template Parameters Lock – Type of lock.
Parameters

• lock – an object of type Lock that meets the requirements of BasicLockable759, which
must be locked by the current thread

• abs_time – represents the time when waiting should be stopped.
• ec – used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns cv_status hpx::cv_status::timeout if the absolute timeout specified by abs_time was

reached, hpx::cv_status::no_timeout otherwise.

template<typename Lock, typename Predicate>
inline bool wait_until(Lock &lock, hpx::chrono::steady_time_point const &abs_time, Predicate pred,

error_code &ec = throws)
wait_until causes the current thread to block until the condition variable is notified, a specific
time is reached, or a spurious wakeup occurs, optionally looping until some predicate is satisfied
(bool(pred()) == true).

Equivalent to

while (!pred()) {
if (wait_until(lock, timeout_time) == hpx::cv_status::timeout) {
return pred();

}
}
return true;

This overload may be used to ignore spurious wakeups.

Note: The effects of notify_one()/notify_all() and each of the three atomic parts of
wait()/wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total order that

2.8. API reference 1215

https://en.cppreference.com/w/cpp/named_req/BasicLockable

HPX Documentation, master

can be viewed as modification order of an atomic variable: the order is specific to this individual con-
dition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock a
thread that started waiting just after the call to notify_one() was made.

Template Parameters
• Lock – Type of lock.
• Predicate – Type of pred.

Parameters
• lock – an object of type Lock that meets the requirements of BasicLockable760, which

must be locked by the current thread
• abs_time – represents the time when waiting should be stopped.
• pred – predicate which returns false if the waiting should be continued (bool(pred())
== false). The signature of the predicate function should be equivalent to the follow-
ing: bool pred();.

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

Returns bool false if the predicate pred still evaluates to false after the abs_time timeout
expired, otherwise true. If the timeout had already expired, evaluates and returns the result
of pred.

template<typename Lock>
inline cv_status wait_for(Lock &lock, hpx::chrono::steady_duration const &rel_time, error_code &ec

= throws)
Atomically releases lock, blocks the current executing thread, and adds it to the list of threads waiting
on *this. The thread will be unblocked when notify_all() or notify_one() is executed, or when the
relative timeout rel_time expires. It may also be unblocked spuriously. When unblocked, regardless
of the reason, lock is reacquired and wait_for() exits.

The effects of notify_one()/notify_all() and each of the three atomic parts of
wait()/wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total order
that can be viewed as modification order of an atomic variable: the order is specific to this individual
condition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock
a thread that started waiting just after the call to notify_one() was made.

Note: Even if notified under lock, this overload makes no guarantees about the state of the associated
predicate when returning due to timeout.

Template Parameters Lock – Type of lock.
Parameters

• lock – an object of type Lock that meets the BasicLockable761 requirements, which must
be locked by the current thread.

• rel_time – an object of type hpx::chrono::duration representing the maximum time to
spend waiting. Note that rel_time must be small enough not to overflow when added to
hpx::chrono::steady_clock::now().

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

Returns cv_status hpx::cv_status::timeout if the relative timeout specified by rel_time ex-
pired, hpx::cv_status::no_timeout otherwise.

template<typename Lock, typename Predicate>
inline bool wait_for(Lock &lock, hpx::chrono::steady_duration const &rel_time, Predicate pred,

error_code &ec = throws)

1216 Chapter 2. What’s so special about HPX?

https://en.cppreference.com/w/cpp/named_req/BasicLockable
https://en.cppreference.com/w/cpp/named_req/BasicLockable

HPX Documentation, master

Equivalent to.

return wait_until(lock,
hpx::chrono::steady_clock::now() + rel_time,
std::move(pred));

This overload may be used to ignore spurious awakenings by looping until some predicate is satisfied
(bool(pred()) == true).

Note: The effects of notify_one()/notify_all() and each of the three atomic parts of
wait()/wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total order that
can be viewed as modification order of an atomic variable: the order is specific to this individual con-
dition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock a
thread that started waiting just after the call to notify_one() was made.

Template Parameters
• Lock – Type of lock.
• Predicate – Type of pred.

Parameters
• lock – an object of type Lock that meets the BasicLockable762 requirements,which must

be locked by the current thread.
• rel_time – an object of type hpx::chrono::duration representing the maximum time to

spend waiting. Note that rel_time must be small enough not to overflow when added to
hpx::chrono::steady_clock::now().

• pred – predicate which returns false if the waiting should be continued (bool(pred())
== false). The signature of the predicate function should be equivalent to the follow-
ing: bool pred();.

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

Returns bool false if the predicate pred still evaluates to false after the rel_time timeout ex-
pired, otherwise true.

template<typename Lock, typename Predicate>
inline bool wait(Lock &lock, stop_token stoken, Predicate pred, error_code &ec = throws)

wait causes the current thread to block until the condition variable is notified or a spurious wakeup
occurs, optionally looping until some predicate is satisfied (bool(pred())==true).

An interruptible wait: registers the condition_variable_any for the duration of wait(), to be notified if
a stop request is made on the given stoken’s associated stop-state; it is then equivalent to

while (!stoken.stop_requested()) {
if (pred()) return true;
wait(lock);

}
return pred();

Note that the returned value indicates whether pred evaluated to true, regardless of whether there was
a stop requested or not.

Note: The effects of notify_one()/notify_all() and each of the three atomic parts of wait()/
wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total or-

2.8. API reference 1217

https://en.cppreference.com/w/cpp/named_req/BasicLockable

HPX Documentation, master

der that can be viewed as modification order of an atomic variable: the order is specific to this individual
condition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock
a thread that started waiting just after the call to notify_one() was made.

Template Parameters
• Lock – Type of lock.
• Predicate – Type of pred.

Parameters
• lock – an object of type Lock that meets the BasicLockable763 requirements, which must

be locked by the current thread
• stoken – a hpx::stop_token to register interruption for
• pred – predicate which returns false if the waiting should be continued
(bool(pred()) == false). The signature of the predicate function should be equiv-
alent to the following: bool pred().

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

Returns bool result of pred().

template<typename Lock, typename Predicate>
inline bool wait_until(Lock &lock, stop_token stoken, hpx::chrono::steady_time_point const

&abs_time, Predicate pred, error_code &ec = throws)
wait_until causes the current thread to block until the condition variable is notified, a specific
time is reached, or a spurious wakeup occurs, optionally looping until some predicate is satisfied
(bool(pred()) == true).

An interruptible wait: registers the condition_variable_any for the duration of wait_until(), to be noti-
fied if a stop request is made on the given stoken’s associated stop-state; it is then equivalent to

while (!stoken.stop_requested()) {
if (pred())

return true;
if (wait_until(lock, timeout_time) == hpx::cv_status::timeout)

return pred();
}
return pred();

Note: The effects of notify_one()/notify_all() and each of the three atomic parts of
wait()/wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total order that
can be viewed as modification order of an atomic variable: the order is specific to this individual con-
dition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock a
thread that started waiting just after the call to notify_one() was made.

Template Parameters
• Lock – Type of lock.
• Predicate – Type of pred.

Parameters
• lock – an object of type Lock that meets the requirements of BasicLockable764, which

must be locked by the current thread.
• stoken – a hpx::stop_token to register interruption for.
• abs_time – represents the time when waiting should be stopped.
• pred – predicate which returns false if the waiting should be continued (bool(pred())
== false). The signature of the predicate function should be equivalent to the follow-
ing: bool pred();.

1218 Chapter 2. What’s so special about HPX?

https://en.cppreference.com/w/cpp/named_req/BasicLockable
https://en.cppreference.com/w/cpp/named_req/BasicLockable

HPX Documentation, master

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

Returns bool pred(), regardless of whether the timeout was met or stop was requested.

template<typename Lock, typename Predicate>
inline bool wait_for(Lock &lock, stop_token stoken, hpx::chrono::steady_duration const &rel_time,

Predicate pred, error_code &ec = throws)
Equivalent to.

return wait_until(lock, std::move(stoken),
hpx::chrono::steady_clock::now() + rel_time,
std::move(pred));

Note: The effects of notify_one()/notify_all() and each of the three atomic parts of
wait()/wait_for()/wait_until() (unlock+wait, wakeup, and lock) take place in a single total order that
can be viewed as modification order of an atomic variable: the order is specific to this individual con-
dition variable. This makes it impossible for notify_one() to, for example, be delayed and unblock a
thread that started waiting just after the call to notify_one() was made.

Template Parameters
• Lock – Type of lock.
• Predicate – Type of pred.

Parameters
• lock – an object of type Lock that meets the BasicLockable765 requirements, which must

be locked by the current thread.
• stoken – a hpx::stop_token to register interruption for.
• rel_time – an object of type hpx::chrono::duration representing the maximum time to

spend waiting. Note that rel_time must be small enough not to overflow when added to
hpx::chrono::steady_clock::now().

• pred – predicate which returns false if the waiting should be continued (bool(pred())
== false). The signature of the predicate function should be equivalent to the follow-
ing: bool pred();.

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

Returns bool pred(), regardless of whether the timeout was met or stop was requested.

Private Types

using mutex_type = lcos::local::detail::condition_variable_data::mutex_type

using data_type = hpx::intrusive_ptr<lcos::local::detail::condition_variable_data>

2.8. API reference 1219

https://en.cppreference.com/w/cpp/named_req/BasicLockable

HPX Documentation, master

Private Members

hpx::util::cache_aligned_data_derived<data_type> data_

hpx::counting_semaphore

Defined in header hpx/semaphore.hpp766.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

template<std::ptrdiff_t LeastMaxValue = PTRDIFF_MAX>

class counting_semaphore
#include <counting_semaphore.hpp> A semaphore is a protected variable (an entity storing a value) or
abstract data type (an entity grouping several variables that may or may not be numerical) which constitutes
the classic method for restricting access to shared resources, such as shared memory, in a multiprogramming
environment. Semaphores exist in many variants, though usually the term refers to a counting semaphore,
since a binary semaphore is better known as a mutex. A counting semaphore is a counter for a set of
available resources, rather than a locked/unlocked flag of a single resource. It was invented by Edsger
Dijkstra. Semaphores are the classic solution to preventing race conditions in the dining philosophers
problem, although they do not prevent resource deadlocks.

Counting semaphores can be used for synchronizing multiple threads as well: one thread waiting for several
other threads to touch (signal) the semaphore, or several threads waiting for one other thread to touch
this semaphore. Unlike hpx::mutex a counting_semaphore is not tied to threads of execution —
acquiring a semaphore can occur on a different thread than releasing the semaphore, for example. All
operations on counting_semaphore can be performed concurrently and without any relation to specific
threads of execution, with the exception of the destructor which cannot be performed concurrently but can
be performed on a different thread.

Semaphores are lightweight synchronization primitives used to constrain concurrent access to a shared
resource. They are widely used to implement other synchronization primitives and, whenever both are
applicable, can be more efficient than condition variables.

746 https://en.cppreference.com/w/cpp/named_req/BasicLockable
747 https://en.cppreference.com/w/cpp/named_req/StandardLayoutType
748 https://en.cppreference.com/w/cpp/named_req/CopyConstructible
749 https://en.cppreference.com/w/cpp/named_req/MoveConstructible
750 https://en.cppreference.com/w/cpp/named_req/CopyAssignable
751 https://en.cppreference.com/w/cpp/named_req/MoveAssignable
752 https://en.cppreference.com/w/cpp/named_req/BasicLockable
753 https://en.cppreference.com/w/cpp/named_req/CopyConstructible
754 https://en.cppreference.com/w/cpp/named_req/MoveConstructible
755 https://en.cppreference.com/w/cpp/named_req/CopyAssignable
756 https://en.cppreference.com/w/cpp/named_req/MoveAssignable
757 https://en.cppreference.com/w/cpp/named_req/BasicLockable
758 https://en.cppreference.com/w/cpp/named_req/BasicLockable
759 https://en.cppreference.com/w/cpp/named_req/BasicLockable
760 https://en.cppreference.com/w/cpp/named_req/BasicLockable
761 https://en.cppreference.com/w/cpp/named_req/BasicLockable
762 https://en.cppreference.com/w/cpp/named_req/BasicLockable
763 https://en.cppreference.com/w/cpp/named_req/BasicLockable
764 https://en.cppreference.com/w/cpp/named_req/BasicLockable
765 https://en.cppreference.com/w/cpp/named_req/BasicLockable
766 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/

semaphore.hpp

1220 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/semaphore.hpp

HPX Documentation, master

A counting semaphore is a semaphore object that models a non-negative resource count.

Class template counting_semaphore maintains an internal counter that is initialized when the semaphore
is created. The counter is decremented when a thread acquires the semaphore, and is incremented when
a thread releases the semaphore. If a thread tries to acquire the semaphore when the counter is zero, the
thread will block until another thread increments the counter by releasing the semaphore.

Specializations of hpx::counting_semaphore are not DefaultConstructible767, CopyConstructible768, Move-
Constructible769, CopyAssignable770, or MoveAssignable771.

Note: counting_semaphore’s try_acquire() can spuriously fail.

Template Parameters LeastMaxValue – counting_semaphore allows more than one concurrent
access to the same resource, for at least LeastMaxValue concurrent accessors. As its name
indicates, the LeastMaxValue is the minimum max value, not the actual max value. Thus
max() can yield a number larger than LeastMaxValue.

Public Functions

counting_semaphore(counting_semaphore const&) = delete

counting_semaphore &operator=(counting_semaphore const&) = delete

counting_semaphore(counting_semaphore&&) = delete

counting_semaphore &operator=(counting_semaphore&&) = delete

explicit counting_semaphore(std::ptrdiff_t value)
Constructs an object of type hpx::counting_semaphore with the internal counter initialized to value.

Parameters value – The initial value of the internal semaphore lock count. Normally this
value should be zero (which is the default), values greater than zero are equivalent to the
same number of signals pre-set, and negative values are equivalent to the same number of
waits pre-set.

~counting_semaphore() = default

void release(std::ptrdiff_t update = 1)
Atomically increments the internal counter by the value of update. Any thread(s) waiting for the
counter to be greater than 0, such as due to being blocked in acquire, will subsequently be unblocked.

Note: Synchronization: Strongly happens before invocations of try_acquire that observe the result of
the effects.

Throws std::system_error –
Parameters update – the amount to increment the internal counter by
Pre Both update >= 0 and update <= max() - counter are true, where counter is the

value of the internal counter.

bool try_acquire() noexcept
Tries to atomically decrement the internal counter by 1 if it is greater than 0; no blocking occurs
regardless.

Returns true if it decremented the internal counter, otherwise false

2.8. API reference 1221

https://en.cppreference.com/w/cpp/named_req/DefaultConstructible
https://en.cppreference.com/w/cpp/named_req/CopyConstructible
https://en.cppreference.com/w/cpp/named_req/MoveConstructible
https://en.cppreference.com/w/cpp/named_req/MoveConstructible
https://en.cppreference.com/w/cpp/named_req/CopyAssignable
https://en.cppreference.com/w/cpp/named_req/MoveAssignable

HPX Documentation, master

void acquire()
Repeatedly performs the following steps, in order:

• Evaluates try_acquire. If the result is true, returns.
• Blocks on *this until counter is greater than zero.

Throws std::system_error –
Returns void.

bool try_acquire_until(hpx::chrono::steady_time_point const &abs_time)
Tries to atomically decrement the internal counter by 1 if it is greater than 0; otherwise blocks until it
is greater than 0 and can successfully decrement the internal counter, or the abs_time time point has
been passed.

Parameters abs_time – the earliest time the function must wait until in order to fail
Throws std::system_error –
Returns true if it decremented the internal counter, otherwise false.

bool try_acquire_for(hpx::chrono::steady_duration const &rel_time)
Tries to atomically decrement the internal counter by 1 if it is greater than 0; otherwise blocks until it
is greater than 0 and can successfully decrement the internal counter, or the rel_time duration has been
exceeded.

Throws std::system_error –
Parameters rel_time – the minimum duration the function must wait for to fail
Returns true if it decremented the internal counter, otherwise false

Public Static Functions

static constexpr std::ptrdiff_t max() noexcept
Returns The maximum value of counter. This value is greater than or equal to LeastMaxValue.

Returns The internal counter’s maximum possible value, as a std::ptrdiff_t.

template<typename Mutex = hpx::spinlock, int N = 0>

class counting_semaphore_var
#include <counting_semaphore.hpp> A semaphore is a protected variable (an entity storing a value) or
abstract data type (an entity grouping several variables that may or may not be numerical) which constitutes
the classic method for restricting access to shared resources, such as shared memory, in a multiprogramming
environment. Semaphores exist in many variants, though usually the term refers to a counting semaphore,
since a binary semaphore is better known as a mutex. A counting semaphore is a counter for a set of
available resources, rather than a locked/unlocked flag of a single resource. It was invented by Edsger
Dijkstra. Semaphores are the classic solution to preventing race conditions in the dining philosophers
problem, although they do not prevent resource deadlocks.

Counting semaphores can be used for synchronizing multiple threads as well: one thread waiting for several
other threads to touch (signal) the semaphore, or several threads waiting for one other thread to touch this
semaphore. Unlike hpx::mutex a counting_semaphore_var is not tied to threads of execution —
acquiring a semaphore can occur on a different thread than releasing the semaphore, for example. All
operations on counting_semaphore_var can be performed concurrently and without any relation to specific
threads of execution, with the exception of the destructor which cannot be performed concurrently but can
be performed on a different thread.

Semaphores are lightweight synchronization primitives used to constrain concurrent access to a shared
resource. They are widely used to implement other synchronization primitives and, whenever both are
applicable, can be more efficient than condition variables.

1222 Chapter 2. What’s so special about HPX?

HPX Documentation, master

A counting semaphore is a semaphore object that models a non-negative resource count.

Class template counting_semaphore_var maintains an internal counter that is initialized when the
semaphore is created. The counter is decremented when a thread acquires the semaphore, and is incre-
mented when a thread releases the semaphore. If a thread tries to acquire the semaphore when the counter
is zero, the thread will block until another thread increments the counter by releasing the semaphore.

Specializations of hpx::counting_semaphore_var are not DefaultConstructible772, CopyConstructible773,
MoveConstructible774, CopyAssignable775, or MoveAssignable776.

Note: counting_semaphore_var’s try_acquire() can spuriously fail.

Template Parameters

• Mutex – Type of mutex

• N – The initial value of the internal semaphore lock count.

Public Functions

explicit counting_semaphore_var(std::ptrdiff_t value = N)

Constructs an object of type hpx::counting_semaphore_value with the internal counter initialized to
N.

Parameters value – The initial value of the internal semaphore lock count. Normally this
value should be zero, values greater than zero are equivalent to the same number of signals
pre-set, and negative values are equivalent to the same number of waits pre-set. Defaults to
N (which in turn defaults to zero).

counting_semaphore_var(counting_semaphore_var const&) = delete

counting_semaphore_var &operator=(counting_semaphore_var const&) = delete

void wait(std::ptrdiff_t count = 1)
Wait for the semaphore to be signaled.

Parameters count – The value by which the internal lock count will be decremented. At the
same time this is the minimum value of the lock count at which the thread is not yielded.

bool try_wait(std::ptrdiff_t count = 1)
Try to wait for the semaphore to be signaled.

Parameters count – The value by which the internal lock count will be decremented. At the
same time this is the minimum value of the lock count at which the thread is not yielded.

Returns try_wait returns true if the calling thread was able to acquire the requested amount
of credits. try_wait returns false if not sufficient credits are available at this point in time.

void signal(std::ptrdiff_t count = 1)
Signal the semaphore.

Parameters count – The value by which the internal lock count will be incremented.

std::ptrdiff_t signal_all()
Unblock all acquirers.

Returns std::ptrdiff_t internal lock count after the operation.

void release(std::ptrdiff_t update = 1)
Atomically increments the internal counter by the value of update. Any thread(s) waiting for the
counter to be greater than 0, such as due to being blocked in acquire, will subsequently be unblocked.

2.8. API reference 1223

https://en.cppreference.com/w/cpp/named_req/DefaultConstructible
https://en.cppreference.com/w/cpp/named_req/CopyConstructible
https://en.cppreference.com/w/cpp/named_req/MoveConstructible
https://en.cppreference.com/w/cpp/named_req/CopyAssignable
https://en.cppreference.com/w/cpp/named_req/MoveAssignable

HPX Documentation, master

Note: Synchronization: Strongly happens before invocations of try_acquire that observe the result of
the effects.

Throws std::system_error –
Parameters update – the amount to increment the internal counter by
Pre Both update >= 0 and update <= max() - counter are true, where counter is the

value of the internal counter.

bool try_acquire() noexcept
Tries to atomically decrement the internal counter by 1 if it is greater than 0; no blocking occurs
regardless.

Returns true if it decremented the internal counter, otherwise false

void acquire()
Repeatedly performs the following steps, in order:

• Evaluates try_acquire. If the result is true, returns.
Blocks on *this until counter is greater than zero.

Throws std::system_error –
Returns void.

bool try_acquire_until(hpx::chrono::steady_time_point const &abs_time)
Tries to atomically decrement the internal counter by 1 if it is greater than 0; otherwise blocks until it
is greater than 0 and can successfully decrement the internal counter, or the abs_time time point has
been passed.

Parameters abs_time – the earliest time the function must wait until in order to fail
Throws std::system_error –
Returns true if it decremented the internal counter, otherwise false.

bool try_acquire_for(hpx::chrono::steady_duration const &rel_time)
Tries to atomically decrement the internal counter by 1 if it is greater than 0; otherwise blocks until it
is greater than 0 and can successfully decrement the internal counter, or the rel_time duration has been
exceeded.

Throws std::system_error –
Parameters rel_time – the minimum duration the function must wait for to fail
Returns true if it decremented the internal counter, otherwise false

1224 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Static Functions

static constexpr std::ptrdiff_t max() noexcept
Returns The maximum value of counter. This value is greater than or equal to LeastMaxValue.

Returns The internal counter’s maximum possible value, as a std::ptrdiff_t.

Private Types

using mutex_type = Mutex

hpx/synchronization/event.hpp

Defined in header hpx/synchronization/event.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace lcos

namespace local

class event
#include <event.hpp> Event semaphores can be used for synchronizing multiple threads that need
to wait for an event to occur. When the event occurs, all threads waiting for the event are woken
up.

Public Functions

inline event() noexcept
Construct a new event semaphore.

inline bool occurred() const noexcept
Check if the event has occurred.

inline void wait()
Wait for the event to occur.

inline void set()
Release all threads waiting on this semaphore.

767 https://en.cppreference.com/w/cpp/named_req/DefaultConstructible
768 https://en.cppreference.com/w/cpp/named_req/CopyConstructible
769 https://en.cppreference.com/w/cpp/named_req/MoveConstructible
770 https://en.cppreference.com/w/cpp/named_req/CopyAssignable
771 https://en.cppreference.com/w/cpp/named_req/MoveAssignable
772 https://en.cppreference.com/w/cpp/named_req/DefaultConstructible
773 https://en.cppreference.com/w/cpp/named_req/CopyConstructible
774 https://en.cppreference.com/w/cpp/named_req/MoveConstructible
775 https://en.cppreference.com/w/cpp/named_req/CopyAssignable
776 https://en.cppreference.com/w/cpp/named_req/MoveAssignable

2.8. API reference 1225

HPX Documentation, master

inline void reset() noexcept
Reset the event.

Private Types

using mutex_type = hpx::spinlock

Private Functions

inline void wait_locked(std::unique_lock<mutex_type> &l)

inline void set_locked(std::unique_lock<mutex_type> l)

Private Members

mutex_type mtx_
This mutex protects the queue.

local::detail::condition_variable cond_

std::atomic<bool> event_

hpx::latch

Defined in header hpx/latch.hpp777.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

class latch
#include <latch.hpp> Latches are a thread coordination mechanism that allow one or more threads to
block until an operation is completed. An individual latch is a single-use object; once the operation has
been completed, the latch cannot be reused.

Subclassed by hpx::lcos::local::latch
777 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/latch.hpp

1226 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/latch.hpp

HPX Documentation, master

Public Functions

latch(latch const&) = delete

latch(latch&&) = delete

latch &operator=(latch const&) = delete

latch &operator=(latch&&) = delete

inline explicit latch(std::ptrdiff_t count)
Initialize the latch

Requires: count >= 0. Synchronization: None Postconditions: counter_ == count.

~latch() = default
Requires: No threads are blocked at the synchronization point.

Note: May be called even if some threads have not yet returned from wait() or
count_down_and_wait(), provided that counter_ is 0.

Note: The destructor might not return until all threads have exited wait() or count_down_and_wait().

Note: It is the caller’s responsibility to ensure that no other thread enters wait() after one thread has
called the destructor. This may require additional coordination.

inline void count_down(std::ptrdiff_t update)
Decrements counter_ by n. Does not block.

Requires: counter_ >= n and n >= 0.

Synchronization: Synchronizes with all calls that block on this latch and with all try_wait calls on this
latch that return true .

Throws Nothing. –

inline bool try_wait() const noexcept
Returns: With very low probability false. Otherwise counter == 0.

inline void wait() const
If counter_ is 0, returns immediately. Otherwise, blocks the calling thread at the synchronization point
until counter_ reaches 0.

Throws Nothing. –

inline void arrive_and_wait(std::ptrdiff_t update = 1)
Effects: Equivalent to: count_down(update); wait();

2.8. API reference 1227

HPX Documentation, master

Public Static Functions

static inline constexpr std::ptrdiff_t() max () noexcept

Returns: The maximum value of counter that the implementation supports.

Protected Types

using mutex_type = hpx::spinlock

Protected Attributes

mutable util::cache_line_data<mutex_type> mtx_

mutable util::cache_line_data<hpx::lcos::local::detail::condition_variable> cond_

std::atomic<std::ptrdiff_t> counter_

bool notified_

namespace lcos

namespace local

class latch : public hpx::latch
#include <latch.hpp> A latch maintains an internal counter_ that is initialized when the latch is
created. Threads may block at a synchronization point waiting for counter_ to be decremented to
0. When counter_ reaches 0, all such blocked threads are released.

Calls to countdown_and_wait() , count_down() , wait() , is_ready(), count_up() , and reset() behave
as atomic operations.

Note: A hpx::latch is not an LCO in the sense that it has no global id and it can’t be triggered
using the action (parcel) mechanism. Use hpx::distributed::latch instead if this is required. It is
just a low level synchronization primitive allowing to synchronize a given number of threads.

Public Functions

HPX_NON_COPYABLE(latch)

inline explicit latch(std::ptrdiff_t count)
Initialize the latch

Requires: count >= 0. Synchronization: None Postconditions: counter_ == count.

1228 Chapter 2. What’s so special about HPX?

HPX Documentation, master

~latch() = default
Requires: No threads are blocked at the synchronization point.

Note: May be called even if some threads have not yet returned from wait() or
count_down_and_wait(), provided that counter_ is 0.

Note: The destructor might not return until all threads have exited wait() or
count_down_and_wait().

Note: It is the caller’s responsibility to ensure that no other thread enters wait() after one thread
has called the destructor. This may require additional coordination.

inline void count_down_and_wait()
Decrements counter_ by 1 . Blocks at the synchronization point until counter_ reaches 0.

Requires: counter_ > 0.

Synchronization: Synchronizes with all calls that block on this latch and with all is_ready calls
on this latch that return true.

Throws Nothing. –

inline bool is_ready() const noexcept
Returns: counter_ == 0. Does not block.

Throws Nothing. –

inline void abort_all() const

inline void count_up(std::ptrdiff_t n)
Increments counter_ by n. Does not block.

Requires: n >= 0.
Throws Nothing. –

inline void reset(std::ptrdiff_t n)
Reset counter_ to n. Does not block.

Requires: n >= 0.
Throws Nothing. –

inline bool reset_if_needed_and_count_up(std::ptrdiff_t n, std::ptrdiff_t count)
Effects: Equivalent to: if (is_ready()) reset(count); count_up(n); Returns: true if the latch was
reset

2.8. API reference 1229

HPX Documentation, master

hpx::mutex, hpx::timed_mutex

Defined in header hpx/mutex.hpp778.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

class mutex
#include <mutex.hpp> mutex class is a synchronization primitive that can be used to protect shared data
from being simultaneously accessed by multiple threads. mutex offers exclusive, non-recursive ownership
semantics:

• A calling thread owns a mutex from the time that it successfully calls either lock or try_lock until it
calls unlock.

• When a thread owns a mutex, all other threads will block (for calls to lock) or receive a false return
value (for try_lock) if they attempt to claim ownership of the mutex.

• A calling thread must not own the mutex prior to calling lock or try_lock.

The behavior of a program is undefined if a mutex is destroyed while still owned by any threads, or a thread
terminates while owning a mutex. The mutex class satisfies all requirements of Mutex779 and StandardLay-
outType780.

hpx::mutex is neither copyable nor movable.

Subclassed by hpx::timed_mutex

Public Functions

HPX_NON_COPYABLE(mutex)
hpx::mutex is neither copyable nor movable

inline HPX_HOST_DEVICE_CONSTEXPR mutex(char const*const = "") noexcept
Constructs the mutex. The mutex is in unlocked state after the constructor completes.

Note: Because the default constructor is constexpr, static mutexes are initialized as part of static
non-local initialization, before any dynamic non-local initialization begins. This makes it safe to lock
a mutex in a constructor of any static object.

Parameters description – description of the mutex.

~mutex()

Destroys the mutex. The behavior is undefined if the mutex is owned by any thread or if any thread
terminates while holding any ownership of the mutex.

void lock(char const *description, error_code &ec = throws)
Locks the mutex. If another thread has already locked the mutex, a call to lock will block execution
until the lock is acquired. If lock is called by a thread that already owns the mutex, the behavior
is undefined: for example, the program may deadlock. hpx::mutex can detect the invalid usage and

778 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.
hpp

1230 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.hpp
https://en.cppreference.com/w/cpp/named_req/Mutex
https://en.cppreference.com/w/cpp/named_req/StandardLayoutType
https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

HPX Documentation, master

throws a std::system_error with error condition resource_deadlock_would_occur instead of deadlock-
ing. Prior unlock() operations on the same mutex synchronize- with (as defined in std::memory_order)
this operation.

Note: lock() is usually not called directly: std::unique_lock, std::scoped_lock, and std::lock_guard
are used to manage exclusive locking.

Parameters
• description – Description of the mutex
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns void lock returns void.

inline void lock(error_code &ec = throws)
Locks the mutex. If another thread has already locked the mutex, a call to lock will block execution
until the lock is acquired. If lock is called by a thread that already owns the mutex, the behavior
is undefined: for example, the program may deadlock. hpx::mutex can detect the invalid usage and
throws a std::system_error with error condition resource_deadlock_would_occur instead of deadlock-
ing. Prior unlock() operations on the same mutex synchronize - with(as defined in std::memory_order)
this operation.

Note: lock() is usually not called directly: std::unique_lock, std::scoped_lock, and std::lock_guard
are used to manage exclusive locking. This overload essentially calls void lock(char const*
description, error_code& ec =throws); with description as mutex::lock .

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns void lock returns void.

bool try_lock(char const *description, error_code &ec = throws)
Tries to lock the mutex. Returns immediately. On successful lock acquisition returns true, otherwise
returns false. This function is allowed to fail spuriously and return false even if the mutex is not
currently locked by any other thread. If try_lock is called by a thread that already owns the mutex, the
behavior is undefined. Prior unlock() operation on the same mutex synchronizes-with (as defined in
std::memory_order) this operation if it returns true. Note that prior lock() does not synchronize with
this operation if it returns false.

Parameters
• description – Description of the mutex
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns bool try_lock returns true on successful lock acquisition, otherwise returns false.

inline bool try_lock(error_code &ec = throws)
Tries to lock the mutex. Returns immediately. On successful lock acquisition returns true, otherwise
returns false. This function is allowed to fail spuriously and return false even if the mutex is not
currently locked by any other thread. If try_lock is called by a thread that already owns the mutex, the
behavior is undefined. Prior unlock() operation on the same mutex synchronizes-with (as defined in
std::memory_order) this operation if it returns true. Note that prior lock() does not synchronize with
this operation if it returns false.

Note: This overload essentially calls

2.8. API reference 1231

HPX Documentation, master

void try_lock(char const* description,
error_code& ec = throws);

with description as mutex::try_lock .

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns bool try_lock returns true on successful lock acquisition, otherwise returns false.

void unlock(error_code &ec = throws)
Unlocks the mutex. The mutex must be locked by the current thread of execution, otherwise, the behav-
ior is undefined. This operation synchronizes-with (as defined in std::memory_order) any subsequent
lock operation that obtains ownership of the same mutex.

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns unlock returns void.

class timed_mutex : private hpx::mutex
#include <mutex.hpp> The timed_mutex class is a synchronization primitive that can be used to pro-
tect shared data from being simultaneously accessed by multiple threads. In a manner similar to mutex,
timed_mutex offers exclusive, non-recursive ownership semantics. In addition, timed_mutex provides
the ability to attempt to claim ownership of a timed_mutex with a timeout via the member functions
try_lock_for() and try_lock_until(). The timed_mutex class satisfies all requirements of TimedMutex781

and StandardLayoutType782.

hpx::timed_mutex is neither copyable nor movable.

Public Functions

HPX_NON_COPYABLE(timed_mutex)
hpx::timed_mutex is neither copyable nor movable

timed_mutex(char const *const description = "")
Constructs a timed_mutex. The mutex is in unlocked state after the call.

Parameters description – Description of the timed_mutex.

~timed_mutex()

Destroys the timed_mutex. The behavior is undefined if the mutex is owned by any thread or if any
thread terminates while holding any ownership of the mutex.

bool try_lock_until(hpx::chrono::steady_time_point const &abs_time, char const *description,
error_code &ec = throws)

Tries to lock the mutex. Blocks until specified abs_time has been reached or the lock is acquired,
whichever comes first. On successful lock acquisition returns true, otherwise returns false. If abs_time
has already passed, this function behaves like try_lock(). As with try_lock(), this function is al-
lowed to fail spuriously and return false even if the mutex was not locked by any other thread at some
point before abs_time. Prior unlock() operation on the same mutex synchronizes-with (as defined in
std::memory_order) this operation if it returns true. If try_lock_until is called by a thread that already
owns the mutex, the behavior is undefined.

Parameters
• abs_time – time point to block until
• description – Description of the timed_mutex

1232 Chapter 2. What’s so special about HPX?

https://en.cppreference.com/w/cpp/named_req/TimedMutex
https://en.cppreference.com/w/cpp/named_req/StandardLayoutType

HPX Documentation, master

• ec – Used to hold error code value originated during the operation. Defaults to throws
— A special ‘throw on error’ error_code.

Returns bool try_lock_until returns true if the lock was acquired successfully, otherwise
false.

inline bool try_lock_until(hpx::chrono::steady_time_point const &abs_time, error_code &ec =
throws)

Tries to lock the mutex. Blocks until specified abs_time has been reached or the lock is acquired,
whichever comes first. On successful lock acquisition returns true, otherwise returns false. If abs_time
has already passed, this function behaves like try_lock(). As with try_lock(), this function is al-
lowed to fail spuriously and return false even if the mutex was not locked by any other thread at some
point before abs_time. Prior unlock() operation on the same mutex synchronizes-with (as defined in
std::memory_order) this operation if it returns true. If try_lock_until is called by a thread that already
owns the mutex, the behavior is undefined.

Note: This overload essentially calls

bool try_lock_until(
hpx::chrono::steady_time_point const& abs_time,
char const* description, error_code& ec = throws);

with description as mutex::try_lock_until.

Parameters
• abs_time – time point to block until
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns bool try_lock_until returns true if the lock was acquired successfully, otherwise

false.

inline bool try_lock_for(hpx::chrono::steady_duration const &rel_time, char const *description,
error_code &ec = throws)

Tries to lock the mutex. Blocks until specified rel_time has elapsed or the lock is acquired, whichever
comes first. On successful lock acquisition returns true, otherwise returns false. If rel_time is less
or equal rel_time.zero(), the function behaves like try_lock(). This function may block for longer
than rel_time due to scheduling or resource contention delays. As with try_lock(), this function is
allowed to fail spuriously and return false even if the mutex was not locked by any other thread at some
point during rel_time. Prior unlock() operation on the same mutex synchronizes-with (as defined in
std::memory_order) this operation if it returns true. If try_lock_for is called by a thread that already
owns the mutex, the behavior is undefined.

Parameters
• rel_time – minimum duration to block for
• description – Description of the timed_mutex
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns bool try_lock_for returns true if the lock was acquired successfully, otherwise false.

inline bool try_lock_for(hpx::chrono::steady_duration const &rel_time, error_code &ec = throws)
Tries to lock the mutex. Blocks until specified rel_time has elapsed or the lock is acquired, whichever
comes first. On successful lock acquisition returns true, otherwise returns false. If rel_time is less
or equal rel_time.zero(), the function behaves like try_lock(). This function may block for longer
than rel_time due to scheduling or resource contention delays. As with try_lock(), this function is
allowed to fail spuriously and return false even if the mutex was not locked by any other thread at some
point during rel_time. Prior unlock() operation on the same mutex synchronizes-with (as defined in

2.8. API reference 1233

HPX Documentation, master

std::memory_order) this operation if it returns true. If try_lock_for is called by a thread that already
owns the mutex, the behavior is undefined.

Note: This overload essentially calls

bool try_lock_for(
hpx::chrono::steady_duration const& rel_time,
char const* description, error_code& ec = throws)

with description as mutex::try_lock_for.

Parameters
• rel_time – minimum duration to block for
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns bool try_lock_for returns true if the lock was acquired successfully, otherwise false.

void lock(char const *description, error_code &ec = throws)
Locks the mutex. If another thread has already locked the mutex, a call to lock will block execution
until the lock is acquired. If lock is called by a thread that already owns the mutex, the behavior
is undefined: for example, the program may deadlock. hpx::mutex can detect the invalid usage and
throws a std::system_error with error condition resource_deadlock_would_occur instead of deadlock-
ing. Prior unlock() operations on the same mutex synchronize- with (as defined in std::memory_order)
this operation.

Note: lock() is usually not called directly: std::unique_lock, std::scoped_lock, and std::lock_guard
are used to manage exclusive locking.

Parameters
• description – Description of the mutex
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns void lock returns void.

inline void lock(error_code &ec = throws)
Locks the mutex. If another thread has already locked the mutex, a call to lock will block execution
until the lock is acquired. If lock is called by a thread that already owns the mutex, the behavior
is undefined: for example, the program may deadlock. hpx::mutex can detect the invalid usage and
throws a std::system_error with error condition resource_deadlock_would_occur instead of deadlock-
ing. Prior unlock() operations on the same mutex synchronize - with(as defined in std::memory_order)
this operation.

Note: lock() is usually not called directly: std::unique_lock, std::scoped_lock, and std::lock_guard
are used to manage exclusive locking. This overload essentially calls void lock(char const*
description, error_code& ec =throws); with description as mutex::lock .

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns void lock returns void.

bool try_lock(char const *description, error_code &ec = throws)
Tries to lock the mutex. Returns immediately. On successful lock acquisition returns true, otherwise

1234 Chapter 2. What’s so special about HPX?

HPX Documentation, master

returns false. This function is allowed to fail spuriously and return false even if the mutex is not
currently locked by any other thread. If try_lock is called by a thread that already owns the mutex, the
behavior is undefined. Prior unlock() operation on the same mutex synchronizes-with (as defined in
std::memory_order) this operation if it returns true. Note that prior lock() does not synchronize with
this operation if it returns false.

Parameters
• description – Description of the mutex
• ec – Used to hold error code value originated during the operation. Defaults to throws

— A special ‘throw on error’ error_code.
Returns bool try_lock returns true on successful lock acquisition, otherwise returns false.

inline bool try_lock(error_code &ec = throws)
Tries to lock the mutex. Returns immediately. On successful lock acquisition returns true, otherwise
returns false. This function is allowed to fail spuriously and return false even if the mutex is not
currently locked by any other thread. If try_lock is called by a thread that already owns the mutex, the
behavior is undefined. Prior unlock() operation on the same mutex synchronizes-with (as defined in
std::memory_order) this operation if it returns true. Note that prior lock() does not synchronize with
this operation if it returns false.

Note: This overload essentially calls

void try_lock(char const* description,
error_code& ec = throws);

with description as mutex::try_lock .

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns bool try_lock returns true on successful lock acquisition, otherwise returns false.

void unlock(error_code &ec = throws)
Unlocks the mutex. The mutex must be locked by the current thread of execution, otherwise, the behav-
ior is undefined. This operation synchronizes-with (as defined in std::memory_order) any subsequent
lock operation that obtains ownership of the same mutex.

Parameters ec – Used to hold error code value originated during the operation. Defaults to
throws — A special ‘throw on error’ error_code.

Returns unlock returns void.

namespace threads

Typedefs

using thread_id_ref_type = thread_id_ref

using thread_self = coroutines::detail::coroutine_self

2.8. API reference 1235

HPX Documentation, master

Functions

thread_id get_self_id() noexcept
The function get_self_id returns the HPX thread id of the current thread (or zero if the current thread
is not a HPX thread).

thread_self *get_self_ptr() noexcept
The function get_self_ptr returns a pointer to the (OS thread specific) self reference to the current HPX
thread.

hpx::no_mutex

Defined in header hpx/mutex.hpp783.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

struct no_mutex
#include <no_mutex.hpp> no_mutex class can be used in cases where the shared data between multiple
threads can be accessed simultaneously without causing inconsistencies.

Public Static Functions

static inline constexpr void lock() noexcept

static inline constexpr bool try_lock() noexcept

static inline constexpr void unlock() noexcept

hpx::once_flag, hpx::call_once

Defined in header hpx/mutex.hpp784.

See Public API for a list of names and headers that are part of the public HPX API.
779 https://en.cppreference.com/w/cpp/named_req/Mutex
780 https://en.cppreference.com/w/cpp/named_req/StandardLayoutType
781 https://en.cppreference.com/w/cpp/named_req/TimedMutex
782 https://en.cppreference.com/w/cpp/named_req/StandardLayoutType
783 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.

hpp
784 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.

hpp

1236 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.hpp

HPX Documentation, master

Defines

HPX_ONCE_INIT

namespace hpx

Functions

template<typename F, typename ...Args>
void call_once(once_flag &flag, F &&f, Args&&... args)

Executes the Callable object f exactly once, even if called concurrently, from several threads.

In detail:

• If, by the time call_once is called, flag indicates that f was already called, call_once returns right away
(such a call to call_once is known as passive).

• Otherwise, call_once invokes std::forward<Callable>(f) with the arguments
std::forward<Args>(args). . . (as if by hpx::invoke). Unlike the hpx::thread con-
structor or hpx::async, the arguments are not moved or copied because they don’t need to be
transferred to another thread of execution. (such a call to call_once is known as active).

– If that invocation throws an exception, it is propagated to the caller of call_once, and the flag is not
flipped so that another call will be attempted (such a call to call_once is known as exceptional).

– If that invocation returns normally (such a call to call_once is known as returning), the flag is
flipped, and all other calls to call_once with the same flag are guaranteed to be passive. All
active calls on the same flag form a single total order consisting of zero or more exceptional calls,
followed by one returning call. The end of each active call synchronizes-with the next active call
in that order. The return from the returning call synchronizes-with the returns from all passive
calls on the same flag: this means that all concurrent calls to call_once are guaranteed to observe
any side-effects made by the active call, with no additional synchronization.

Note: If concurrent calls to call_once pass different functions f, it is unspecified which f will be called.
The selected function runs in the same thread as the call_once invocation it was passed to. Initialization of
function-local statics is guaranteed to occur only once even when called from multiple threads, and may be
more efficient than the equivalent code using hpx::call_once. The POSIX equivalent of this function is
pthread_once.

Parameters

• flag – an object, for which exactly one function gets executed

• f – Callable object to invoke

• args – arguments to pass to the function

Throws std::system_error – if any condition prevents calls to call_once from executing as
specified or any exception thrown by f

struct once_flag
#include <once.hpp> The class hpx::once_flag is a helper structure for hpx::call_once. An object of
type hpx::once_flag that is passed to multiple calls to hpx::call_once allows those calls to coordinate

2.8. API reference 1237

HPX Documentation, master

with each other such that only one of the calls will actually run to completion. hpx::once_flag is neither
copyable nor movable.

Public Functions

HPX_NON_COPYABLE(once_flag)

inline once_flag() noexcept
Constructs an once_flag object. The internal state is set to indicate that no function has been called
yet.

Private Members

std::atomic<long> status_

lcos::local::event event_

Friends

template<typename F, typename ...Args>
friend void call_once(once_flag &flag, F &&f, Args&&... args)

Executes the Callable object f exactly once, even if called concurrently, from several threads.

In detail:
• If, by the time call_once is called, flag indicates that f was already called, call_once returns right

away (such a call to call_once is known as passive).
• Otherwise, call_once invokes std::forward<Callable>(f) with the arguments
std::forward<Args>(args). . . (as if by hpx::invoke). Unlike the hpx::thread
constructor or hpx::async, the arguments are not moved or copied because they don’t need to
be transferred to another thread of execution. (such a call to call_once is known as active).
– If that invocation throws an exception, it is propagated to the caller of call_once, and the flag is

not flipped so that another call will be attempted (such a call to call_once is known as excep-
tional).

– If that invocation returns normally (such a call to call_once is known as returning), the flag is
flipped, and all other calls to call_once with the same flag are guaranteed to be passive. All
active calls on the same flag form a single total order consisting of zero or more exceptional
calls, followed by one returning call. The end of each active call synchronizes-with the next
active call in that order. The return from the returning call synchronizes-with the returns from
all passive calls on the same flag: this means that all concurrent calls to call_once are guaranteed
to observe any side-effects made by the active call, with no additional synchronization.

Note: If concurrent calls to call_once pass different functions f, it is unspecified which f will be
called. The selected function runs in the same thread as the call_once invocation it was passed to.
Initialization of function-local statics is guaranteed to occur only once even when called from multiple
threads, and may be more efficient than the equivalent code using hpx::call_once. The POSIX
equivalent of this function is pthread_once.

Parameters
• flag – an object, for which exactly one function gets executed
• f – Callable object to invoke

1238 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• args – arguments to pass to the function
Throws std::system_error – if any condition prevents calls to call_once from executing

as specified or any exception thrown by f

hpx::recursive_mutex

Defined in header hpx/mutex.hpp785.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Typedefs

using recursive_mutex = detail::recursive_mutex_impl<>

hpx::shared_mutex

Defined in header hpx/shared_mutex.hpp786.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Typedefs

using shared_mutex = detail::shared_mutex<>
The shared_mutex class is a synchronization primitive that can be used to protect shared data from being
simultaneously accessed by multiple threads. In contrast to other mutex types which facilitate exclusive
access, a shared_mutex has two levels of access:

• shared - several threads can share ownership of the same mutex.

• exclusive - only one thread can own the mutex.

If one thread has acquired the exclusive lock (through lock, try_lock), no other threads can acquire the lock
(including the shared). If one thread has acquired the shared lock (through lock_shared, try_lock_shared),
no other thread can acquire the exclusive lock, but can acquire the shared lock. Only when the exclusive
lock has not been acquired by any thread, the shared lock can be acquired by multiple threads. Within one
thread, only one lock (shared or exclusive) can be acquired at the same time. Shared mutexes are especially
useful when shared data can be safely read by any number of threads simultaneously, but a thread may only
write the same data when no other thread is reading or writing at the same time. The shared_mutex class
satisfies all requirements of SharedMutex and StandardLayoutType.

785 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.
hpp

786 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/shared_
mutex.hpp

2.8. API reference 1239

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/shared_mutex.hpp

HPX Documentation, master

hpx/synchronization/sliding_semaphore.hpp

Defined in header hpx/synchronization/sliding_semaphore.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Typedefs

using sliding_semaphore = sliding_semaphore_var<>

template<typename Mutex = hpx::spinlock>

class sliding_semaphore_var
#include <sliding_semaphore.hpp> A semaphore is a protected variable (an entity storing a value) or ab-
stract data type (an entity grouping several variables that may or may not be numerical) which constitutes the
classic method for restricting access to shared resources, such as shared memory, in a multiprogramming
environment. Semaphores exist in many variants, though usually the term refers to a counting semaphore,
since a binary semaphore is better known as a mutex. A counting semaphore is a counter for a set of
available resources, rather than a locked/unlocked flag of a single resource. It was invented by Edsger Dijk-
stra. Semaphores are the classic solution to preventing race conditions in the dining philosophers problem,
although they do not prevent resource deadlocks.

Sliding semaphores can be used for synchronizing multiple threads as well: one thread waiting for several
other threads to touch (signal) the semaphore, or several threads waiting for one other thread to touch this
semaphore. The difference to a counting semaphore is that a sliding semaphore will not limit the number of
threads which are allowed to proceed, but will make sure that the difference between the (arbitrary) number
passed to set and wait does not exceed a given threshold.

Public Functions

sliding_semaphore_var(sliding_semaphore_var const&) = delete

sliding_semaphore_var &operator=(sliding_semaphore_var const&) = delete

sliding_semaphore_var(sliding_semaphore_var&&) = delete

sliding_semaphore_var &operator=(sliding_semaphore_var&&) = delete

inline explicit sliding_semaphore_var(std::int64_t max_difference, std::int64_t lower_limit = 0)
noexcept

Construct a new sliding semaphore.
Parameters

• max_difference – [in] The max difference between the upper limit (as set by wait())
and the lower limit (as set by signal()) which is allowed without suspending any thread
calling wait().

• lower_limit – [in] The initial lower limit.

inline void set_max_difference(std::int64_t max_difference, std::int64_t lower_limit = 0) noexcept
Set/Change the difference that will cause the semaphore to trigger

Parameters

1240 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• max_difference – [in] The max difference between the upper limit (as set by wait())
and the lower limit (as set by signal()) which is allowed without suspending any thread
calling wait().

• lower_limit – [in] The initial lower limit.

inline void wait(std::int64_t upper_limit)
Wait for the semaphore to be signaled.

Parameters upper_limit – [in] The new upper limit. The calling thread will be suspended
if the difference between this value and the largest lower_limit which was set by signal() is
larger than the max_difference.

inline bool try_wait(std::int64_t upper_limit = 1)
Try to wait for the semaphore to be signaled.

Parameters upper_limit – [in] The new upper limit. The calling thread will be suspended
if the difference between this value and the largest lower_limit which was set by signal() is
larger than the max_difference.

Returns The function returns true if the calling thread would not block if it was calling wait().

inline void signal(std::int64_t lower_limit)
Signal the semaphore.

Parameters lower_limit – [in] The new lower limit. This will update the current lower
limit of this semaphore. It will also re-schedule all suspended threads for which their asso-
ciated upper limit is not larger than the lower limit plus the max_difference.

inline std::int64_t signal_all()

Private Types

using mutex_type = Mutex

using data_type = lcos::local::detail::sliding_semaphore_data<mutex_type>

Private Members

hpx::intrusive_ptr<data_type> data_

hpx::spinlock

Defined in header hpx/mutex.hpp787.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

787 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.
hpp

2.8. API reference 1241

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.hpp

HPX Documentation, master

Typedefs

using spinlock = detail::spinlock<true>
spinlock is a type of lock that causes a thread attempting to obtain it to check for its availability while
waiting in a loop continuously.

using spinlock_no_backoff = detail::spinlock<false>

hpx::nostopstate, hpx::stop_callback, hpx::stop_source, hpx::stop_token, hpx::nostopstate_t

Defined in header hpx/stop_token.hpp788.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename Callback>
stop_callback(stop_token, Callback) -> stop_callback<Callback>

The stop_callback class template provides an RAII object type that registers a callback function for an asso-
ciated hpx::stop_token object, such that the callback function will be invoked when the hpx::stop_token’s
associated hpx::stop_source is requested to stop. Callback functions registered via stop_callback’s con-
structor are invoked either in the same thread that successfully invokes request_stop() for a hpx::stop_source
of the stop_callback’s associated hpx::stop_token; or if stop has already been requested prior to the con-
structor’s registration, then the callback is invoked in the thread constructing the stop_callback. More
than one stop_callback can be created for the same hpx::stop_token, from the same or different threads
concurrently. No guarantee is provided for the order in which they will be executed, but they will be
invoked synchronously; except for stop_callback(s) constructed after stop has already been requested
for the hpx::stop_token, as described previously. If an invocation of a callback exits via an exception
then hpx::terminate is called. hpx::stop_callback is not CopyConstructible, CopyAssignable, MoveCon-
structible, nor MoveAssignable. The template param Callback type must be both invocable and destructible.
Any return value is ignored.

inline void swap(stop_token &lhs, stop_token &rhs) noexcept

inline void swap(stop_source &lhs, stop_source &rhs) noexcept

Variables

constexpr nostopstate_t nostopstate = {}
This is a constant object instance of hpx::nostopstate_t for use in constructing an empty hpx::stop_source,
as a placeholder value in the non-default constructor.

struct nostopstate_t
#include <stop_token.hpp> Unit type intended for use as a placeholder in hpx::stop_source non-default
constructor, that makes the constructed hpx::stop_source empty with no associated stop-state.

788 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/stop_
token.hpp

1242 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/stop_token.hpp

HPX Documentation, master

Public Functions

explicit nostopstate_t() = default

template<typename Callback>

class stop_callback

class stop_source
#include <stop_token.hpp> The stop_source class provides the means to issue a stop request, such as for
hpx::jthread cancellation. A stop request made for one stop_source object is visible to all stop_sources
and hpx::stop_tokens of the same associated stop-state; any hpx::stop_callback(s) registered for associated
hpx::stop_token(s) will be invoked, and any hpx::condition_variable_any objects waiting on associated
hpx::stop_token(s) will be awoken. Once a stop is requested, it cannot be withdrawn. Additional stop
requests have no effect.

Note: For the purposes of hpx::jthread cancellation the stop_source object should be retrieved from the
hpx::jthread object using get_stop_source(); or stop should be requested directly from the hpx::jthread
object using request_stop(). This will then use the same associated stop-state as that passed into the
hpx::jthread’s invoked function argument (i.e., the function being executed on its thread). For other uses,
however, a stop_source can be constructed separately using the default constructor, which creates new stop-
state.

Public Functions

inline stop_source()

inline explicit stop_source(nostopstate_t) noexcept

inline stop_source(stop_source const &rhs) noexcept

stop_source(stop_source&&) noexcept = default

inline stop_source &operator=(stop_source const &rhs) noexcept

stop_source &operator=(stop_source&&) noexcept = default

inline ~stop_source()

inline void swap(stop_source &s) noexcept
swaps two stop_source objects

inline stop_token get_token() const noexcept
returns a stop_token for the associated stop-state

inline bool stop_possible() const noexcept
checks whether associated stop-state can be requested to stop

inline bool stop_requested() const noexcept
checks whether the associated stop-state has been requested to stop

inline bool request_stop() const noexcept
makes a stop request for the associated stop-state, if any

2.8. API reference 1243

HPX Documentation, master

Private Members

hpx::intrusive_ptr<detail::stop_state> state_

Friends

inline friend bool operator==(stop_source const &lhs, stop_source const &rhs) noexcept

inline friend bool operator!=(stop_source const &lhs, stop_source const &rhs) noexcept

class stop_token
#include <stop_token.hpp> The stop_token class provides the means to check if a stop request has been
made or can be made, for its associated hpx::stop_source object. It is essentially a thread-safe “view” of
the associated stop-state. The stop_token can also be passed to the constructor of hpx::stop_callback, such
that the callback will be invoked if the stop_token’s associated hpx::stop_source is requested to stop. And
stop_token can be passed to the interruptible waiting functions of hpx::condition_variable_any, to interrupt
the condition variable’s wait if stop is requested.

Note: A stop_token object is not generally constructed independently, but rather retrieved from a
hpx::jthread or hpx::stop_source. This makes it share the same associated stop-state as the hpx::jthread or
hpx::stop_source.

Public Types

template<typename Callback>

using callback_type = stop_callback<Callback>

Public Functions

constexpr stop_token() noexcept = default

stop_token(stop_token const &rhs) = default

stop_token(stop_token&&) noexcept = default

stop_token &operator=(stop_token const &rhs) = default

stop_token &operator=(stop_token&&) noexcept = default

~stop_token() = default

inline void swap(stop_token &s) noexcept
swaps two stop_token objects

inline bool stop_requested() const noexcept
checks whether the associated stop-state has been requested to stop

inline bool stop_possible() const noexcept
checks whether associated stop-state can be requested to stop

1244 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Functions

inline explicit stop_token(hpx::intrusive_ptr<detail::stop_state> state) noexcept

Private Members

hpx::intrusive_ptr<detail::stop_state> state_

Friends

friend class stop_callback

friend class stop_source

inline friend constexpr friend bool operator== (stop_token const &lhs,
stop_token const &rhs) noexcept

inline friend constexpr friend bool operator!= (stop_token const &lhs,
stop_token const &rhs) noexcept

namespace experimental

namespace p2300_stop_token

Functions

template<typename Callback>
in_place_stop_callback(in_place_stop_token, Callback) -> in_place_stop_callback<Callback>

template<typename Callback>

class in_place_stop_callback

class in_place_stop_source

Public Functions

inline in_place_stop_source() noexcept

inline ~in_place_stop_source()

in_place_stop_source(in_place_stop_source const&) = delete

in_place_stop_source(in_place_stop_source&&) noexcept = delete

in_place_stop_source &operator=(in_place_stop_source const&) = delete

in_place_stop_source &operator=(in_place_stop_source&&) noexcept = delete

2.8. API reference 1245

HPX Documentation, master

inline in_place_stop_token get_token() const noexcept

inline bool request_stop() noexcept

inline bool stop_requested() const noexcept

inline bool stop_possible() const noexcept

Private Functions

inline bool register_callback(hpx::detail::stop_callback_base *cb) noexcept

inline void remove_callback(hpx::detail::stop_callback_base *cb) noexcept

Private Members

hpx::detail::stop_state state_

Friends

friend class in_place_stop_token

friend class in_place_stop_callback

class in_place_stop_token

Public Types

template<typename Callback>

using callback_type = in_place_stop_callback<Callback>

Public Functions

inline constexpr in_place_stop_token() noexcept

~in_place_stop_token() = default

in_place_stop_token(in_place_stop_token const &rhs) noexcept = default

inline in_place_stop_token(in_place_stop_token &&rhs) noexcept

in_place_stop_token &operator=(in_place_stop_token const &rhs) noexcept = default

inline in_place_stop_token &operator=(in_place_stop_token &&rhs) noexcept

inline bool stop_requested() const noexcept

inline bool stop_possible() const noexcept

inline void swap(in_place_stop_token &rhs) noexcept

1246 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Functions

inline explicit in_place_stop_token(in_place_stop_source const *source) noexcept

Private Members

in_place_stop_source const *source_

Friends

friend class in_place_stop_source

friend class in_place_stop_callback

inline friend constexpr friend bool operator== (in_place_stop_token const &lhs,
in_place_stop_token const &rhs) noexcept

inline friend constexpr friend bool operator!
= (in_place_stop_token const &lhs, in_place_stop_token const &rhs) noexcept

inline friend void swap(in_place_stop_token &x, in_place_stop_token &y) noexcept

struct never_stop_token

Public Types

template<typename>

using callback_type = callback_impl

Public Static Functions

static inline constexpr bool stop_requested() noexcept

static inline constexpr bool stop_possible() noexcept

Friends

inline friend constexpr friend bool operator== (never_stop_token,
never_stop_token) noexcept

inline friend constexpr friend bool operator!= (never_stop_token,
never_stop_token) noexcept

struct callback_impl

2.8. API reference 1247

HPX Documentation, master

Public Functions

template<typename Callback>
inline explicit constexpr callback_impl(never_stop_token, Callback&&) noexcept

tag_invoke

See Public API for a list of names and headers that are part of the public HPX API.

hpx::is_invocable, hpx::is_invocable_r

Defined in header hpx/type_traits.hpp789.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Variables

template<typename F, typename ...Ts>

constexpr bool is_invocable_v = is_invocable<F, Ts...>::value

template<typename R, typename F, typename ...Ts>

constexpr bool is_invocable_r_v = is_invocable_r<R, F, Ts...>::value

template<typename F, typename ...Ts>

constexpr bool is_nothrow_invocable_v = is_nothrow_invocable<F, Ts...>::value

template<typename F, typename ...Ts>

struct is_invocable : public hpx::detail::is_invocable_impl<F&&(Ts&&...)>
#include <is_invocable.hpp> Determines whether F can be invoked with the arguments Ts. . . . Formally,
determines whether

INVOKE(std::declval<F>(), std::declval<Ts>()...)

is well formed when treated as an unevaluated operand, where INVOKE is the operation defined in Callable.

F, R and all types in the parameter pack Ts shall each be a complete type, (possibly cv-qualified) void, or
an array of unknown bound. Otherwise, the behavior is undefined. If an instantiation of a template above
depends, directly or indirectly, on an incomplete type, and that instantiation could yield a different result if
that type were hypothetically completed, the behavior is undefined.

template<typename R, typename F, typename ...Ts>

struct is_invocable_r : public hpx::detail::is_invocable_r_impl<F&&(Ts&&...), R>
#include <is_invocable.hpp> Determines whether F can be invoked with the arguments Ts. . . to yield a
result that is convertible to R and the implicit conversion does not bind a reference to a temporary object
(since C++23). If R is cv void, the result can be any type. Formally, determines whether

789 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/type_
traits.hpp

1248 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/type_traits.hpp

HPX Documentation, master

INVOKE<R>(std::declval<F>(), std::declval<Ts>()...)

is well formed when treated as an unevaluated operand, where INVOKE is the operation defined in Callable.
Determines whether F can be invoked with the arguments Ts. . . . Formally, determines whether

INVOKE(std::declval<F>(), std::declval<Ts>()...)

is well formed when treated as an unevaluated operand, where INVOKE is the operation defined in Callable.

F, R and all types in the parameter pack Ts shall each be a complete type, (possibly cv-qualified) void, or
an array of unknown bound. Otherwise, the behavior is undefined. If an instantiation of a template above
depends, directly or indirectly, on an incomplete type, and that instantiation could yield a different result if
that type were hypothetically completed, the behavior is undefined.

template<typename F, typename ...Ts>

struct is_nothrow_invocable : public hpx::detail::is_nothrow_invocable_impl<F(Ts...), is_invocable_v<F,
Ts...>>

thread_pool_util

See Public API for a list of names and headers that are part of the public HPX API.

hpx/thread_pool_util/thread_pool_suspension_helpers.hpp

Defined in header hpx/thread_pool_util/thread_pool_suspension_helpers.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

Functions

hpx::future<void> resume_processing_unit(thread_pool_base &pool, std::size_t virt_core)
Resumes the given processing unit. When the processing unit has been resumed the returned future
will be ready.

Note: Can only be called from an HPX thread. Use resume_processing_unit_cb or to resume the
processing unit from outside HPX. Requires that the pool has threads::policies::enable_elasticity set.

Parameters
• pool – [in] The thread pool to resume a processing unit on.
• virt_core – [in] The processing unit on the pool to be resumed. The processing units

are indexed starting from 0.
Returns A future<void> which is ready when the given processing unit has been resumed.

2.8. API reference 1249

HPX Documentation, master

void resume_processing_unit_cb(thread_pool_base &pool, hpx::function<void()> callback,
std::size_t virt_core, error_code &ec = throws)

Resumes the given processing unit. Takes a callback as a parameter which will be called when the
processing unit has been resumed.

Note: Requires that the pool has threads::policies::enable_elasticity set.

Parameters
• pool – [in] The thread pool to resume a processing unit on.
• callback – [in] Callback which is called when the processing unit has been suspended.
• virt_core – [in] The processing unit to resume.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

hpx::future<void> suspend_processing_unit(thread_pool_base &pool, std::size_t virt_core)
Suspends the given processing unit. When the processing unit has been suspended the returned future
will be ready.

Note: Can only be called from an HPX thread. Use suspend_processing_unit_cb or to suspend the
processing unit from outside HPX. Requires that the pool has threads::policies::enable_elasticity set.

Parameters
• pool – [in] The thread pool to suspend a processing unit from.
• virt_core – [in] The processing unit on the pool to be suspended. The processing units

are indexed starting from 0.
Throws hpx::exception – if called from outside the HPX runtime.
Returns A future<void> which is ready when the given processing unit has been sus-

pended.

void suspend_processing_unit_cb(hpx::function<void()> callback, thread_pool_base &pool,
std::size_t virt_core, error_code &ec = throws)

Suspends the given processing unit. Takes a callback as a parameter which will be called when the
processing unit has been suspended.

Note: Requires that the pool has threads::policies::enable_elasticity set.

Parameters
• pool – [in] The thread pool to suspend a processing unit from.
• callback – [in] Callback which is called when the processing unit has been suspended.
• virt_core – [in] The processing unit to suspend.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

hpx::future<void> resume_pool(thread_pool_base &pool)
Resumes the thread pool. When the all OS threads on the thread pool have been resumed the returned
future will be ready.

Note: Can only be called from an HPX thread. Use resume_cb or resume_direct to suspend the pool
from outside HPX.

1250 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters pool – [in] The thread pool to resume.
Throws hpx::exception – if called from outside the HPX runtime.
Returns A future<void> which is ready when the thread pool has been resumed.

void resume_pool_cb(thread_pool_base &pool, hpx::function<void()> callback, error_code &ec =
throws)

Resumes the thread pool. Takes a callback as a parameter which will be called when all OS threads
on the thread pool have been resumed.

Parameters
• pool – [in] The thread pool to resume.
• callback – [in] called when the thread pool has been resumed.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

hpx::future<void> suspend_pool(thread_pool_base &pool)
Suspends the thread pool. When the all OS threads on the thread pool have been suspended the returned
future will be ready.

Note: Can only be called from an HPX thread. Use suspend_cb or suspend_direct to suspend the
pool from outside HPX. A thread pool cannot be suspended from an HPX thread running on the pool
itself.

Parameters pool – [in] The thread pool to suspend.
Throws hpx::exception – if called from outside the HPX runtime.
Returns A future<void> which is ready when the thread pool has been suspended.

void suspend_pool_cb(thread_pool_base &pool, hpx::function<void()> callback, error_code &ec =
throws)

Suspends the thread pool. Takes a callback as a parameter which will be called when all OS threads
on the thread pool have been suspended.

Note: A thread pool cannot be suspended from an HPX thread running on the pool itself.

Parameters
• pool – [in] The thread pool to suspend.
• callback – [in] called when the thread pool has been suspended.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Throws hpx::exception – if called from an HPX thread which is running on the pool itself.

thread_support

See Public API for a list of names and headers that are part of the public HPX API.

2.8. API reference 1251

HPX Documentation, master

hpx::unlock_guard

Defined in header hpx/mutex.hpp790.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

template<typename Mutex>

class unlock_guard
#include <unlock_guard.hpp> The class unlock_guard is a mutex wrapper that provides a convenient
mechanism for releasing a mutex for the duration of a scoped block.

unlock_guard performs the opposite functionality of lock_guard. When a lock_guard object is cre-
ated, it attempts to take ownership of the mutex it is given. When control leaves the scope in which the
lock_guard object was created, the lock_guard is destructed and the mutex is released. Accordingly,
when an unlock_guard object is created, it attempts to release the ownership of the mutex it is given.
So, when control leaves the scope in which the unlock_guard object was created, the unlock_guard is
destructed and the mutex is owned again. In this way, the mutex is unlocked in the constructor and locked
in the destructor, so that one can have an unlocked section within a locked one.

Public Types

using mutex_type = Mutex

Public Functions

inline explicit constexpr unlock_guard(Mutex &m) noexcept

HPX_NON_COPYABLE(unlock_guard)

inline ~unlock_guard()

Private Members

Mutex &m_

namespace util

790 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.
hpp

1252 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/mutex.hpp

HPX Documentation, master

Typedefs

using instead = hpx::unlock_guard<Mutex>

threading

See Public API for a list of names and headers that are part of the public HPX API.

hpx::jthread

Defined in header hpx/thread.hpp791.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

inline void swap(jthread &lhs, jthread &rhs) noexcept

class jthread
#include <jthread.hpp> The class jthread represents a single thread of execution. It has the same gen-
eral behavior as hpx::thread, except that jthread automatically rejoins on destruction, and can be can-
celled/stopped in certain situations. Threads begin execution immediately upon construction of the as-
sociated thread object (pending any OS scheduling delays), starting at the top-level function provided as a
constructor argument. The return value of the top-level function is ignored and if it terminates by throw-
ing an exception, hpx::terminate is called. The top-level function may communicate its return value or an
exception to the caller via hpx::promise or by modifying shared variables (which may require synchroniza-
tion, see hpx::mutex and hpx::atomic) Unlike hpx::thread, the jthread logically holds an internal private
member of type hpx::stop_source, which maintains a shared stop-state. The jthread constructor accepts a
function that takes a hpx::stop_token as its first argument, which will be passed in by the jthread from its
internal stop_source. This allows the function to check if stop has been requested during its execution, and
return if it has. hpx::jthread objects may also be in the state that does not represent any thread (after default
construction, move from, detach, or join), and a thread of execution may be not associated with any jthread
objects (after detach). No two hpx::jthread objects may represent the same thread of execution; hpx::jthread
is not CopyConstructible or CopyAssignable, although it is MoveConstructible and MoveAssignable.

Public Types

using id = thread::id

using native_handle_type = thread::native_handle_type

791 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/thread.
hpp

2.8. API reference 1253

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/thread.hpp

HPX Documentation, master

Public Functions

inline jthread() noexcept

template<typename F, typename ...Ts, typename Enable =
std::enable_if_t<!std::is_same_v<std::decay_t<F>, jthread>>>
inline explicit jthread(F &&f, Ts&&... ts)

inline ~jthread()

jthread(jthread const&) = delete

jthread(jthread &&x) noexcept = default

jthread &operator=(jthread const&) = delete

jthread &operator=(jthread&&) noexcept = default
moves the jthread object

inline void swap(jthread &t) noexcept
swaps two jthread objects

inline bool joinable() const noexcept
checks whether the thread is joinable, i.e. potentially running in parallel context

inline void join()
waits for the thread to finish its execution

inline void detach()
permits the thread to execute independently from the thread handle

inline id get_id() const noexcept
returns the id of the thread

inline native_handle_type native_handle()
returns the underlying implementation-defined thread handle

inline stop_source get_stop_source() noexcept
returns a stop_source object associated with the shared stop state of the thread

inline stop_token get_stop_token() const noexcept
returns a stop_token associated with the shared stop state of the thread

inline bool request_stop() noexcept
requests execution stop via the shared stop state of the thread

Public Static Functions

static inline unsigned int hardware_concurrency()
returns the number of concurrent threads supported by the implementation

1254 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Members

stop_source ssource_

hpx::thread thread_ = {}

Private Static Functions

template<typename F, typename ...Ts>
static inline void invoke(std::false_type, F &&f, stop_token&&, Ts&&... ts)

template<typename F, typename ...Ts>
static inline void invoke(std::true_type, F &&f, stop_token &&st, Ts&&... ts)

hpx::thread, hpx::this_thread::yield, hpx::this_thread::get_id, hpx::this_thread::sleep_for,
hpx::this_thread::sleep_until

Defined in header hpx/thread.hpp792.

See Public API for a list of names and headers that are part of the public HPX API.

template<>

struct std::hash<::hpx::thread::id>

Public Functions

inline std::size_t operator()(::hpx::thread::id const &id) const

namespace hpx

Typedefs

using thread_termination_handler_type = hpx::function<void(std::exception_ptr const &e)>

Functions

void set_thread_termination_handler(thread_termination_handler_type f)

inline void swap(thread &x, thread &y) noexcept

inline bool operator==(thread::id const &x, thread::id const &y) noexcept

inline bool operator!=(thread::id const &x, thread::id const &y) noexcept

inline bool operator<(thread::id const &x, thread::id const &y) noexcept

792 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/thread.
hpp

2.8. API reference 1255

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/thread.hpp

HPX Documentation, master

inline bool operator>(thread::id const &x, thread::id const &y) noexcept

inline bool operator<=(thread::id const &x, thread::id const &y) noexcept

inline bool operator>=(thread::id const &x, thread::id const &y) noexcept

template<typename Char, typename Traits>
std::basic_ostream<Char, Traits> &operator<<(std::basic_ostream<Char, Traits> &out, thread::id const

&id)

class thread
#include <thread.hpp> The class thread represents a single thread of execution. Threads allow multiple
functions to execute concurrently. hreads begin execution immediately upon construction of the associated
thread object (pending any OS scheduling delays), starting at the top-level function provided as a construc-
tor argument. The return value of the top-level function is ignored and if it terminates by throwing an
exception, hpx::terminate is called. The top-level function may communicate its return value or an excep-
tion to the caller via hpx::promise or by modifying shared variables (which may require synchronization,
see hpx::mutex and hpx::atomic) hpx::thread objects may also be in the state that does not represent any
thread (after default construction, move from, detach, or join), and a thread of execution may not be asso-
ciated with any thread objects (after detach). No two hpx::thread objects may represent the same thread of
execution; hpx::thread is not CopyConstructible or CopyAssignable, although it is MoveConstructible and
MoveAssignable.

Public Types

using native_handle_type = threads::thread_id_type

Public Functions

thread() noexcept

template<typename F, typename Enable = std::enable_if_t<!std::is_same_v<std::decay_t<F>,
thread>>>
inline explicit thread(F &&f)

template<typename F, typename ...Ts>
inline explicit thread(F &&f, Ts&&... vs)

template<typename F>
inline thread(threads::thread_pool_base *pool, F &&f)

template<typename F, typename ...Ts>
inline thread(threads::thread_pool_base *pool, F &&f, Ts&&... vs)

~thread()

thread(thread&&) noexcept

thread &operator=(thread&&) noexcept

void swap(thread&) noexcept
swaps two thread objects

1256 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline bool joinable() const noexcept
Checks whether the thread is joinable, i.e. potentially running in parallel context

void join()
waits for the thread to finish its execution

inline void detach()
permits the thread to execute independently from the thread handle

id get_id() const noexcept
returns the id of the thread

inline native_handle_type native_handle() const
returns the underlying implementation-defined thread handle

void interrupt(bool flag = true)

bool interruption_requested() const

hpx::future<void> get_future(error_code &ec = throws)

std::size_t get_thread_data() const

std::size_t set_thread_data(std::size_t)

Public Static Functions

static unsigned int hardware_concurrency() noexcept
returns the number of concurrent threads supported by the implementation

static void interrupt(id, bool flag = true)

Private Types

using mutex_type = hpx::spinlock

Private Functions

void terminate(char const *function, char const *reason) const

inline bool joinable_locked() const noexcept

inline void detach_locked()

void start_thread(threads::thread_pool_base *pool, hpx::move_only_function<void()> &&func)

2.8. API reference 1257

HPX Documentation, master

Private Members

mutable mutex_type mtx_

threads::thread_id_ref_type id_

Private Static Functions

static threads::thread_result_type thread_function_nullary(hpx::move_only_function<void()> const
&func)

class id

Public Functions

id() noexcept = default

inline explicit id(threads::thread_id_type const &i) noexcept

inline explicit id(threads::thread_id_type &&i) noexcept

inline explicit id(threads::thread_id_ref_type const &i) noexcept

inline explicit id(threads::thread_id_ref_type &&i) noexcept

inline threads::thread_id_type const &native_handle() const noexcept

Private Members

threads::thread_id_type id_

Friends

friend class thread

friend bool operator==(thread::id const &x, thread::id const &y) noexcept

friend bool operator!=(thread::id const &x, thread::id const &y) noexcept

friend bool operator<(thread::id const &x, thread::id const &y) noexcept

friend bool operator>(thread::id const &x, thread::id const &y) noexcept

friend bool operator<=(thread::id const &x, thread::id const &y) noexcept

friend bool operator>=(thread::id const &x, thread::id const &y) noexcept

template<typename Char, typename Traits>
friend std::basic_ostream<Char, Traits> &operator<<(std::basic_ostream<Char, Traits>&,

thread::id const&)

1258 Chapter 2. What’s so special about HPX?

HPX Documentation, master

namespace this_thread

Functions

thread::id get_id() noexcept
Returns the id of the current thread.

void yield() noexcept
Provides a hint to the implementation to reschedule the execution of threads, allowing other threads to
run.

Note: The exact behavior of this function depends on the implementation, in particular on the me-
chanics of the OS scheduler in use and the state of the system. For example, a first-in-first-out realtime
scheduler (SCHED_FIFO in Linux) would suspend the current thread and put it on the back of the
queue of the same-priority threads that are ready to run (and if there are no other threads at the same
priority, yield has no effect).

void yield_to(thread::id) noexcept

threads::thread_priority get_priority() noexcept

std::ptrdiff_t get_stack_size() noexcept

void interruption_point()

bool interruption_enabled()

bool interruption_requested()

void interrupt()

void sleep_until(hpx::chrono::steady_time_point const &abs_time)
Blocks the execution of the current thread until specified abs_time has been reached.

It is recommended to use the clock tied to abs_time, in which case adjustments of the clock
may be taken into account. Thus, the duration of the block might be more or less than
abs_time-Clock::now() at the time of the call, depending on the direction of the adjustment and
whether it is honored by the implementation. The function also may block until after abs_time has
been reached due to process scheduling or resource contention delays.

Parameters abs_time – absolute time to block until

inline void sleep_for(hpx::chrono::steady_duration const &rel_time)
Blocks the execution of the current thread for at least the specified rel_time. This function may block
for longer than rel_time due to scheduling or resource contention delays.

It is recommended to use a steady clock to measure the duration. If an implementation uses a system
clock instead, the wait time may also be sensitive to clock adjustments.

Parameters rel_time – time duration to sleep

std::size_t get_thread_data()

std::size_t set_thread_data(std::size_t)

class disable_interruption

2.8. API reference 1259

HPX Documentation, master

Public Functions

disable_interruption()

~disable_interruption()

Private Functions

disable_interruption(disable_interruption const&)

disable_interruption &operator=(disable_interruption const&)

Private Members

bool interruption_was_enabled_

Friends

friend class restore_interruption

class restore_interruption

Public Functions

explicit restore_interruption(disable_interruption &d)

~restore_interruption()

Private Functions

restore_interruption(restore_interruption const&)

restore_interruption &operator=(restore_interruption const&)

Private Members

bool interruption_was_enabled_

namespace std

template<> id >

1260 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

inline std::size_t operator()(::hpx::thread::id const &id) const

threading_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx::annotated_function

Defined in header hpx/functional.hpp793.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename F>
constexpr F &&annotated_function(F &&f, char const* = nullptr) noexcept

Returns a function annotated with the given annotation.

Annotating includes setting the thread description per thread id.

Parameters function –

template<typename F>
constexpr F &&annotated_function(F &&f, std::string const&) noexcept

hpx/threading_base/print.hpp

Defined in header hpx/threading_base/print.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/threading_base/register_thread.hpp

Defined in header hpx/threading_base/register_thread.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

793 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

2.8. API reference 1261

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

Functions

template<typename F>
thread_function_type make_thread_function(F &&f)

template<typename F>
thread_function_type make_thread_function_nullary(F &&f)

void register_thread(threads::thread_init_data &data, threads::thread_pool_base *pool,
threads::thread_id_ref_type &id, error_code &ec = hpx::throws)

Create a new thread using the given data.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• data – [in] The data to use for creating the thread.
• pool – [in] The thread pool to use for launching the work.
• id – [out] The id of the newly created thread (if applicable)
• ec – [in,out] This represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Throws invalid_status – if the runtime system has not been started yet.
Returns This function will return the internal id of the newly created HPX-thread.

threads::thread_id_ref_type register_thread(threads::thread_init_data &data,
threads::thread_pool_base *pool, error_code &ec =
hpx::throws)

void register_thread(threads::thread_init_data &data, threads::thread_id_ref_type &id, error_code
&ec = throws)

Create a new thread using the given data on the same thread pool as the calling thread, or on the default
thread pool if not on an HPX thread.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• data – [in] The data to use for creating the thread.
• id – [out] The id of the newly created thread (if applicable)
• ec – [in,out] This represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Throws invalid_status – if the runtime system has not been started yet.
Returns This function will return the internal id of the newly created HPX-thread.

threads::thread_id_ref_type register_thread(threads::thread_init_data &data, error_code &ec =
throws)

thread_id_ref_type register_work(threads::thread_init_data &data, threads::thread_pool_base *pool,
error_code &ec = hpx::throws)

Create a new work item using the given data.

1262 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• data – [in] The data to use for creating the thread.
• pool – [in] The thread pool to use for launching the work.
• ec – [in,out] This represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Throws invalid_status – if the runtime system has not been started yet.

thread_id_ref_type register_work(threads::thread_init_data &data, error_code &ec = throws)
Create a new work item using the given data on the same thread pool as the calling thread, or on the
default thread pool if not on an HPX thread.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• data – [in] The data to use for creating the thread.
• ec – [in,out] This represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Throws invalid_status – if the runtime system has not been started yet.

hpx::scoped_annotation

Defined in header hpx/functional.hpp794.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

struct scoped_annotation
#include <scoped_annotation.hpp> scoped_annotation associates a name with a section of code (scope).
It can be used to visualize code execution in profiling tools like Intel VTune, Apex Profiler, etc. That allows
analyzing performance to figure out which part(s) of code is (are) responsible for performance degradation,
etc.

Public Functions

HPX_NON_COPYABLE(scoped_annotation)

inline explicit constexpr scoped_annotation(char const*) noexcept

template<typename F>
inline explicit constexpr scoped_annotation(F&&) noexcept

inline ~scoped_annotation()

794 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/
functional.hpp

2.8. API reference 1263

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/functional.hpp

HPX Documentation, master

hpx/threading_base/thread_data.hpp

Defined in header hpx/threading_base/thread_data.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

Functions

constexpr thread_data *get_thread_id_data(thread_id_ref_type const &tid) noexcept

constexpr thread_data *get_thread_id_data(thread_id_type const &tid) noexcept

class thread_data : public thread_data_reference_counting
#include <thread_data.hpp> A thread is the representation of a HPX thread. It’s a first class object in
HPX. In our implementation this is a user level thread running on top of one of the OS threads spawned
by the thread-manager.

A thread encapsulates:
• A thread status word (see the functions thread::get_state and thread::set_state)
• A function to execute (the thread function)
• A frame (in this implementation this is a block of memory used as the threads stack)
• A block of registers (not implemented yet)

Generally, threads are not created or executed directly. All functionality related to the management of
threads is implemented by the thread-manager.

Public Types

using spinlock_pool = util::spinlock_pool<thread_data>

Public Functions

thread_data(thread_data const&) = delete

thread_data(thread_data&&) = delete

thread_data &operator=(thread_data const&) = delete

thread_data &operator=(thread_data&&) = delete

inline thread_state get_state(std::memory_order const order = std::memory_order_acquire) const
noexcept

The get_state function queries the state of this thread instance.

Note: This function will be seldom used directly. Most of the time the state of a thread will be
retrieved by using the function threadmanager::get_state.

1264 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns This function returns the current state of this thread. It will return one of the values
as defined by the thread_state enumeration.

inline thread_state set_state(thread_schedule_state const state, thread_restart_state state_ex =
thread_restart_state::unknown, std::memory_order const load_order
= std::memory_order_acquire, std::memory_order const
exchange_order = std::memory_order_acq_rel) const noexcept

The set_state function changes the state of this thread instance.

Note: This function will be seldom used directly. Most of the time the state of a thread will have
to be changed using the thread-manager. Moreover, changing the thread state using this function
does not change its scheduling status. It only sets the thread’s status word. To change the thread’s
scheduling status threadmanager::set_state should be used.

Parameters
• state – [in] The new state to be set for the thread.
• state_ex – [in]
• load_order – [in]
• exchange_order – [in]

inline bool set_state_tagged(thread_schedule_state const newstate, thread_state const
&prev_state, thread_state &new_tagged_state, std::memory_order
exchange_order = std::memory_order_acq_rel) const noexcept

inline bool restore_state(thread_state const new_state, thread_state const old_state,
std::memory_order const load_order = std::memory_order_relaxed,
std::memory_order const load_exchange =
std::memory_order_acq_rel) const noexcept

The restore_state function changes the state of this thread instance depending on its current state.
It will change the state atomically only if the current state is still the same as passed as the second
parameter. Otherwise it won’t touch the thread state of this instance.

Note: This function will be seldom used directly. Most of the time the state of a thread will have
to be changed using the threadmanager. Moreover, changing the thread state using this function
does not change its scheduling status. It only sets the thread’s status word. To change the thread’s
scheduling status threadmanager::set_state should be used.

Parameters
• new_state – [in] The new state to be set for the thread.
• old_state – [in] The old state of the thread which still has to be the current state.
• load_order – [in]
• load_exchange – [in]

Returns This function returns true if the state has been changed successfully

inline bool restore_state(thread_schedule_state new_state, thread_restart_state const state_ex,
thread_state old_state, std::memory_order const load_exchange =
std::memory_order_acq_rel) const noexcept

inline constexpr thread_priority get_priority() const noexcept

inline void set_priority(thread_priority priority) noexcept

inline bool interruption_requested() const noexcept

2.8. API reference 1265

HPX Documentation, master

inline bool interruption_enabled() const noexcept

inline bool set_interruption_enabled(bool enable) noexcept

inline void interrupt(bool flag = true)

bool interruption_point(bool throw_on_interrupt = true)

bool add_thread_exit_callback(function<void()> const &f)

void run_thread_exit_callbacks()

void free_thread_exit_callbacks()

inline bool runs_as_child(std::memory_order mo = std::memory_order_acquire) const noexcept

inline constexpr bool is_stackless() const noexcept

void destroy_thread() override

inline constexpr policies::scheduler_base *get_scheduler_base() const noexcept

inline constexpr std::uint16_t get_last_worker_thread_num() const noexcept

inline void set_last_worker_thread_num(std::uint16_t last_worker_thread_num) noexcept

inline constexpr std::ptrdiff_t get_stack_size() const noexcept

inline thread_stacksize get_stack_size_enum() const noexcept

template<typename ThreadQueue>
inline constexpr ThreadQueue &get_queue() noexcept

inline coroutine_type::result_type operator()(hpx::execution_base::this_thread::detail::agent_storage
*agent_storage)

Execute the thread function.
Returns This function returns the thread state the thread should be scheduled from this point

on. The thread manager will use the returned value to set the thread’s scheduling status.

inline coroutine_type::result_type invoke_directly()
Directly execute the thread function (inline)

Returns This function returns the thread state the thread should be scheduled from this point
on. The thread manager will use the returned value to set the thread’s scheduling status.

inline virtual thread_id_type get_thread_id() const

inline virtual std::size_t get_thread_phase() const noexcept

virtual std::size_t get_thread_data() const = 0

virtual std::size_t set_thread_data(std::size_t data) = 0

virtual void init() = 0

virtual void rebind(thread_init_data &init_data) = 0

thread_data(thread_init_data &init_data, void *queue, std::ptrdiff_t stacksize, bool is_stackless =
false, thread_id_addref addref = thread_id_addref ::yes)

virtual ~thread_data() override

virtual void destroy() noexcept = 0

1266 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Static Functions

static inline constexpr std::uint64_t get_component_id() noexcept
Return the id of the component this thread is running in.

static inline constexpr threads::thread_description get_description() noexcept

static inline constexpr threads::thread_description set_description(threads::thread_description)
noexcept

static inline constexpr threads::thread_description get_lco_description() noexcept

static inline constexpr threads::thread_description set_lco_description(threads::thread_description)
noexcept

static inline constexpr std::uint32_t get_parent_locality_id() noexcept
Return the locality of the parent thread.

static inline constexpr thread_id_type get_parent_thread_id() noexcept
Return the thread id of the parent thread.

static inline constexpr std::size_t get_parent_thread_phase() noexcept
Return the phase of the parent thread.

static inline constexpr util::backtrace const *get_backtrace() noexcept

static inline constexpr util::backtrace const *set_backtrace(util::backtrace const*) noexcept

Protected Functions

inline thread_restart_state set_state_ex(thread_restart_state const new_state,
std::memory_order const load_order =
std::memory_order_acquire, std::memory_order const
load_exchange = std::memory_order_acq_rel) const
noexcept

The set_state function changes the extended state of this thread instance.

Note: This function will be seldom used directly. Most of the time the state of a thread will have
to be changed using the threadmanager.

Parameters
• new_state – [in] The new extended state to be set for the thread.
• load_order – [in]
• load_exchange – [in]

void rebind_base(thread_init_data &init_data)

2.8. API reference 1267

HPX Documentation, master

Private Members

thread_priority priority_

bool requested_interrupt_

bool enabled_interrupt_

bool ran_exit_funcs_

const bool is_stackless_

std::atomic<bool> runs_as_child_

std::uint16_t last_worker_thread_num_

thread_stacksize stacksize_enum_

std::int32_t stacksize_

mutable std::atomic<thread_state> current_state_

std::forward_list<hpx::function<void()>> exit_funcs_

policies::scheduler_base *scheduler_base_

void *queue_

hpx/threading_base/thread_description.hpp

Defined in header hpx/threading_base/thread_description.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

1268 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

std::ostream &operator<<(std::ostream&, thread_description const&)

std::string as_string(thread_description const &desc)

threads::thread_description get_thread_description(thread_id_type const &id, error_code &ec =
throws)

The function get_thread_description is part of the thread related API allows to query the description
of one of the threads known to the thread-manager.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread being queried.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns the description of the thread referenced by the id parameter.

If the thread is not known to the thread-manager the return value will be the string “<un-
known>”.

threads::thread_description set_thread_description(thread_id_type const &id,
threads::thread_description const &desc =
threads::thread_description(), error_code &ec
= throws)

threads::thread_description get_thread_lco_description(thread_id_type const &id, error_code
&ec = throws)

threads::thread_description set_thread_lco_description(thread_id_type const &id,
threads::thread_description const &desc
= threads::thread_description(),
error_code &ec = throws)

struct thread_description

Public Types

enum class data_type : std::uint8_t
Values:

enumerator description

enumerator address

2.8. API reference 1269

HPX Documentation, master

Public Functions

thread_description() noexcept = default

inline constexpr thread_description(char const*) noexcept

inline explicit constexpr thread_description(std::string const&) noexcept

template<typename F, typename = std::enable_if_t<!std::is_same_v<F, thread_description> &&
!traits::is_action_v<F>>>
inline explicit constexpr thread_description(F const&, char const* = nullptr) noexcept

template<typename Action, typename = std::enable_if_t<traits::is_action_v<Action>>>
inline explicit constexpr thread_description(Action, char const* = nullptr) noexcept

inline explicit constexpr operator bool() const noexcept

Public Static Functions

static inline constexpr data_type kind() noexcept

static inline constexpr char const *get_description() noexcept

static inline constexpr std::size_t get_address() noexcept

static inline constexpr bool valid() noexcept

Private Functions

void init_from_alternative_name(char const *altname)

namespace util

Typedefs

using instead = hpx::threads::thread_description

hpx/threading_base/thread_helpers.hpp

Defined in header hpx/threading_base/thread_helpers.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace this_thread

1270 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

threads::thread_restart_state suspend(threads::thread_schedule_state state, threads::thread_id_type
nextid, threads::thread_description const &description =
threads::thread_description("this_thread::suspend"), error_code
&ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to the thread state passed as the parameter.

Note: Must be called from within a HPX-thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

inline threads::thread_restart_state suspend(threads::thread_schedule_state state =
threads::thread_schedule_state::pending,
threads::thread_description const &description =
threads::thread_description("this_thread::suspend"),
error_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to the thread state passed as the parameter.

Note: Must be called from within a HPX-thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

threads::thread_restart_state suspend(hpx::chrono::steady_time_point const &abs_time,
threads::thread_id_type id, threads::thread_description const
&description =
threads::thread_description("this_thread::suspend"), error_code
&ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to suspended and schedules a wakeup for this threads at the given time.

Note: Must be called from within a HPX-thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

2.8. API reference 1271

HPX Documentation, master

inline threads::thread_restart_state suspend(hpx::chrono::steady_time_point const &abs_time,
threads::thread_description const &description =
threads::thread_description("this_thread::suspend"),
error_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to suspended and schedules a wakeup for this threads at the given time.

Note: Must be called from within a HPX-thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

inline threads::thread_restart_state suspend(hpx::chrono::steady_duration const &rel_time,
threads::thread_description const &description =
threads::thread_description("this_thread::suspend"),
error_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets the
new state of this thread to suspended and schedules a wakeup for this threads after the given duration.

Note: Must be called from within a HPX-thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

inline threads::thread_restart_state suspend(hpx::chrono::steady_duration const &rel_time,
threads::thread_id_type const &id,
threads::thread_description const &description =
threads::thread_description("this_thread::suspend"),
error_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets the
new state of this thread to suspended and schedules a wakeup for this threads after the given duration.

Note: Must be called from within a HPX-thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

1272 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline threads::thread_restart_state suspend(std::uint64_t ms, threads::thread_description const
&description =
threads::thread_description("this_thread::suspend"),
error_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to suspended and schedules a wakeup for this threads after the given time
(specified in milliseconds).

Note: Must be called from within a HPX-thread.

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

threads::thread_pool_base *get_pool(error_code &ec = throws)
Returns a pointer to the pool that was used to run the current thread

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

namespace threads

Functions

thread_state set_thread_state(thread_id_type const &id, thread_schedule_state state =
thread_schedule_state::pending, thread_restart_state stateex =
thread_restart_state::signaled, thread_priority priority =
thread_priority::normal, bool retry_on_active = true, hpx::error_code
&ec = throws)

Set the thread state of the thread referenced by the thread_id id.

Note: If the thread referenced by the parameter id is in thread_state::active state this function sched-
ules a new thread which will set the state of the thread as soon as its not active anymore. The function
returns thread_state::active in this case.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread the state should be modified for.
• state – [in] The new state to be set for the thread referenced by the id parameter.
• stateex – [in] The new extended state to be set for the thread referenced by the id

parameter.

2.8. API reference 1273

HPX Documentation, master

• priority – [in]
• retry_on_active – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns the previous state of the thread referenced by the id parameter.

It will return one of the values as defined by the thread_state enumeration. If the thread is
not known to the thread-manager the return value will be thread_state::unknown.

thread_id_ref_type set_thread_state(thread_id_type const &id, hpx::chrono::steady_time_point
const &abs_time, std::atomic<bool> *started,
thread_schedule_state state = thread_schedule_state::pending,
thread_restart_state stateex = thread_restart_state::timeout,
thread_priority priority = thread_priority::normal, bool
retry_on_active = true, error_code &ec = throws)

Set the thread state of the thread referenced by the thread_id id.

Set a timer to set the state of the given thread to the given new value after it expired (at the given time)

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread the state should be modified for.
• abs_time – [in] Absolute point in time for the new thread to be run
• started – [in,out] A helper variable allowing to track the state of the timer helper thread
• state – [in] The new state to be set for the thread referenced by the id parameter.
• stateex – [in] The new extended state to be set for the thread referenced by the id

parameter.
• priority – [in]
• retry_on_active – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns

inline thread_id_ref_type set_thread_state(thread_id_type const &id,
hpx::chrono::steady_time_point const &abs_time,
thread_schedule_state state =
thread_schedule_state::pending, thread_restart_state
stateex = thread_restart_state::timeout, thread_priority
priority = thread_priority::normal, bool retry_on_active
= true, error_code& = throws)

inline thread_id_ref_type set_thread_state(thread_id_type const &id, hpx::chrono::steady_duration
const &rel_time, thread_schedule_state state =
thread_schedule_state::pending, thread_restart_state
stateex = thread_restart_state::timeout, thread_priority
priority = thread_priority::normal, bool retry_on_active
= true, error_code &ec = throws)

Set the thread state of the thread referenced by the thread_id id.

Set a timer to set the state of the given thread to the given new value after it expired (after the given
duration)

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the

1274 Chapter 2. What’s so special about HPX?

HPX Documentation, master

result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread the state should be modified for.
• rel_time – [in] Time duration after which the new thread should be run
• state – [in] The new state to be set for the thread referenced by the id parameter.
• stateex – [in] The new extended state to be set for the thread referenced by the id

parameter.
• priority – [in]
• retry_on_active – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns

thread_state get_thread_state(thread_id_type const &id, error_code &ec = throws) noexcept
The function get_thread_backtrace is part of the thread related API allows to query the currently stored
thread back trace (which is captured during thread suspension).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception. The function
get_thread_state is part of the thread related API. It queries the state of one of the threads known to
the thread-manager.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread being queried.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
• id – [in] The thread id of the thread the state should be modified for.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns the currently captured stack back trace of the thread referenced

by the id parameter. If the thread is not known to the thread-manager the return value will
be the zero.

Returns This function returns the thread state of the thread referenced by the id parameter.
If the thread is not known to the thread-manager the return value will be terminated.

std::size_t get_thread_phase(thread_id_type const &id, error_code &ec = throws) noexcept
The function get_thread_phase is part of the thread related API. It queries the phase of one of the
threads known to the thread-manager.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread the phase should be modified for.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

2.8. API reference 1275

HPX Documentation, master

Returns This function returns the thread phase of the thread referenced by the id parameter.
If the thread is not known to the thread-manager the return value will be ~0.

bool get_thread_interruption_enabled(thread_id_type const &id, error_code &ec = throws)
Returns whether the given thread can be interrupted at this point.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread which should be queried.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns true if the given thread can be interrupted at this point in time.

It will return false otherwise.

bool set_thread_interruption_enabled(thread_id_type const &id, bool enable, error_code &ec =
throws)

Set whether the given thread can be interrupted at this point.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread which should receive the new value.
• enable – [in] This value will determine the new interruption enabled status for the given

thread.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns the previous value of whether the given thread could have been

interrupted.

bool get_thread_interruption_requested(thread_id_type const &id, error_code &ec = throws)
Returns whether the given thread has been flagged for interruption.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread which should be queried.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns true if the given thread was flagged for interruption. It will

return false otherwise.

void interrupt_thread(thread_id_type const &id, bool flag, error_code &ec = throws)
Flag the given thread for interruption.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

1276 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• id – [in] The thread id of the thread which should be interrupted.
• flag – [in] The flag encodes whether the thread should be interrupted (if it is true), or

‘uninterrupted’ (if it is false).
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

inline void interrupt_thread(thread_id_type const &id, error_code &ec = throws)

void interruption_point(thread_id_type const &id, error_code &ec = throws)
Interrupt the current thread at this point if it was canceled. This will throw a thread_interrupted ex-
ception, which will cancel the thread.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread which should be interrupted.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

threads::thread_priority get_thread_priority(thread_id_type const &id, error_code &ec = throws)
noexcept

Return priority of the given thread

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread whose priority is queried.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

std::ptrdiff_t get_stack_size(thread_id_type const &id, error_code &ec = throws) noexcept
Return stack size of the given thread

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The thread id of the thread whose priority is queried.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

threads::thread_pool_base *get_pool(thread_id_type const &id, error_code &ec = throws)
Returns a pointer to the pool that was used to run the current thread

Throws If – &ec != &throws, never throws, but will set ec to an appropriate value
when an error occurs. Otherwise, this function will throw an hpx::exception with an er-
ror code of hpx::error::yield_aborted if it is signaled with wait_aborted. If called out-
side of a HPX-thread, this function will throw an hpx::exception with an error code of
hpx::error::null_thread_id. If this function is called while the thread-manager is not run-
ning, it will throw an hpx::exception with an error code of hpx::error::invalid_status.

2.8. API reference 1277

HPX Documentation, master

hpx::get_worker_thread_num, hpx::get_local_worker_thread_num, hpx::get_local_worker_thread_num,
hpx::get_thread_pool_num, hpx::get_thread_pool_num

Defined in header hpx/runtime.hpp795.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

std::size_t get_worker_thread_num() noexcept
Return the number of the current OS-thread running in the runtime instance the current HPX-thread is
executed with.

This function returns the zero based index of the OS-thread which executes the current HPX-thread.

Note: The returned value is zero based and its maximum value is smaller than the overall number of
OS-threads executed (as returned by get_os_thread_count().

Note: This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

std::size_t get_worker_thread_num(error_code&) noexcept
Return the number of the current OS-thread running in the runtime instance the current HPX-thread is
executed with.

This function returns the zero based index of the OS-thread which executes the current HPX-thread.

Note: The returned value is zero based and its maximum value is smaller than the overall number of
OS-threads executed (as returned by get_os_thread_count(). It will return -1 if the current thread is not a
known thread or if the runtime is not in running state.

Note: This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

Parameters ec – [in,out] this represents the error status on exit (obsolete, ignored).

std::size_t get_local_worker_thread_num() noexcept
Return the number of the current OS-thread running in the current thread pool the current HPX-thread is
executed with.

This function returns the zero based index of the OS-thread on the current thread pool which executes the
current HPX-thread.

Note: The returned value is zero based and its maximum value is smaller than the number of OS-threads
executed on the current thread pool. It will return -1 if the current thread is not a known thread or if the
runtime is not in running state.

795 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

1278 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

Note: This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

std::size_t get_local_worker_thread_num(error_code&) noexcept
Return the number of the current OS-thread running in the current thread pool the current HPX-thread is
executed with.

This function returns the zero based index of the OS-thread on the current thread pool which executes the
current HPX-thread.

Note: The returned value is zero based and its maximum value is smaller than the number of OS-threads
executed on the current thread pool. It will return -1 if the current thread is not a known thread or if the
runtime is not in running state.

Note: This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

Parameters ec – [in,out] this represents the error status on exit (obsolete, ignored).

std::size_t get_thread_pool_num() noexcept
Return the number of the current thread pool the current HPX-thread is executed with.

This function returns the zero based index of the thread pool which executes the current HPX-thread.

Note: The returned value is zero based and its maximum value is smaller than the number of thread pools
started by the runtime. It will return -1 if the current thread pool is not a known thread pool or if the runtime
is not in running state.

Note: This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

std::size_t get_thread_pool_num(error_code&) noexcept
Return the number of the current thread pool the current HPX-thread is executed with.

This function returns the zero based index of the thread pool which executes the current HPX-thread.

Note: The returned value is zero based and its maximum value is smaller than the number of thread pools
started by the runtime. It will return -1 if the current thread pool is not a known thread pool or if the runtime
is not in running state.

Note: This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

Parameters ec – [in,out] this represents the error status on exit (obsolete, ignored).

namespace threads

2.8. API reference 1279

HPX Documentation, master

hpx/threading_base/thread_pool_base.hpp

Defined in header hpx/threading_base/thread_pool_base.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

Functions

std::ostream &operator<<(std::ostream &os, thread_pool_base const &thread_pool)

class thread_pool_base
#include <thread_pool_base.hpp> The base class used to manage a pool of OS threads.

Public Functions

virtual void suspend_processing_unit_direct(std::size_t virt_core, error_code &ec = throws)
= 0

Suspends the given processing unit. Blocks until the processing unit has been suspended.
Parameters

• virt_core – [in] The processing unit on the the pool to be suspended. The processing
units are indexed starting from 0.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

virtual void resume_processing_unit_direct(std::size_t virt_core, error_code &ec = throws)
= 0

Resumes the given processing unit. Blocks until the processing unit has been resumed.
Parameters

• virt_core – [in] The processing unit on the the pool to be resumed. The processing
units are indexed starting from 0.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

virtual void resume_direct(error_code &ec = throws) = 0
Resumes the thread pool. Blocks until all OS threads on the thread pool have been resumed.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

virtual void suspend_direct(error_code &ec = throws) = 0
Suspends the thread pool. Blocks until all OS threads on the thread pool have been suspended.

Note: A thread pool cannot be suspended from an HPX thread running on the pool itself.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

1280 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Throws hpx::exception – if called from an HPX thread which is running on the pool
itself.

struct thread_pool_init_parameters

Public Functions

inline thread_pool_init_parameters(std::string const &name, std::size_t index,
policies::scheduler_mode mode, std::size_t num_threads,
std::size_t thread_offset,
hpx::threads::policies::callback_notifier ¬ifier,
hpx::threads::policies::detail::affinity_data const
&affinity_data,
hpx::threads::detail::network_background_callback_type
const &network_background_callback =
hpx::threads::detail::network_background_callback_type(),
std::size_t max_background_threads =
static_cast<std::size_t>(-1), std::size_t
max_idle_loop_count =
HPX_IDLE_LOOP_COUNT_MAX, std::size_t
max_busy_loop_count =
HPX_BUSY_LOOP_COUNT_MAX, std::size_t
shutdown_check_count = 10)

Public Members

std::string const &name_

std::size_t index_

policies::scheduler_mode mode_

std::size_t num_threads_

std::size_t thread_offset_

hpx::threads::policies::callback_notifier ¬ifier_

hpx::threads::policies::detail::affinity_data const &affinity_data_

hpx::threads::detail::network_background_callback_type const
&network_background_callback_

std::size_t max_background_threads_

std::size_t max_idle_loop_count_

2.8. API reference 1281

HPX Documentation, master

std::size_t max_busy_loop_count_

std::size_t shutdown_check_count_

hpx/threading_base/threading_base_fwd.hpp

Defined in header hpx/threading_base/threading_base_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

Functions

thread_data *get_self_id_data() noexcept
The function get_self_id_data returns the data of the HPX thread id associated with the current thread
(or nullptr if the current thread is not a HPX thread).

thread_self &get_self()
The function get_self returns a reference to the (OS thread specific) self reference to the current HPX
thread.

thread_self *get_self_ptr() noexcept
The function get_self_ptr returns a pointer to the (OS thread specific) self reference to the current HPX
thread.

thread_self_impl_type *get_ctx_ptr()
The function get_ctx_ptr returns a pointer to the internal data associated with each coroutine.

thread_self *get_self_ptr_checked(error_code &ec = throws)
The function get_self_ptr_checked returns a pointer to the (OS thread specific) self reference to the
current HPX thread.

thread_id_type get_self_id() noexcept
The function get_self_id returns the HPX thread id of the current thread (or zero if the current thread
is not a HPX thread).

thread_id_type get_outer_self_id() noexcept
The function get_outer_self_id returns the HPX thread id of the current outer thread (or zero if the
current thread is not a HPX thread). This usually returns the same as get_self_id, except for directly
executed threads, in which case this returns the thread id of the outermost HPX thread.

thread_id_type get_parent_id() noexcept
The function get_parent_id returns the HPX thread id of the current thread’s parent (or zero if the
current thread is not a HPX thread).

Note: This function will return a meaningful value only if the code was compiled with
HPX_HAVE_THREAD_PARENT_REFERENCE being defined.

1282 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::size_t get_parent_phase() noexcept
The function get_parent_phase returns the HPX phase of the current thread’s parent (or zero if the
current thread is not a HPX thread).

Note: This function will return a meaningful value only if the code was compiled with
HPX_HAVE_THREAD_PARENT_REFERENCE being defined.

std::ptrdiff_t get_self_stacksize() noexcept
The function get_self_stacksize returns the stack size of the current thread (or zero if the current thread
is not a HPX thread).

thread_stacksize get_self_stacksize_enum() noexcept
The function get_self_stacksize_enum returns the stack size of the /.

std::uint32_t get_parent_locality_id() noexcept
The function get_parent_locality_id returns the id of the locality of the current thread’s parent (or zero
if the current thread is not a HPX thread).

Note: This function will return a meaningful value only if the code was compiled with
HPX_HAVE_THREAD_PARENT_REFERENCE being defined.

std::uint64_t get_self_component_id() noexcept
The function get_self_component_id returns the lva of the component the current thread is acting on

Note: This function will return a meaningful value only if the code was compiled with
HPX_HAVE_THREAD_TARGET_ADDRESS being defined.

namespace policies

threadmanager

See Public API for a list of names and headers that are part of the public HPX API.

hpx/modules/threadmanager.hpp

Defined in header hpx/modules/threadmanager.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

class threadmanager
#include <threadmanager.hpp> The thread-manager class is the central instance of management for
all (non-depleted) threads

2.8. API reference 1283

HPX Documentation, master

Public Types

using notification_policy_type = threads::policies::callback_notifier

using pool_type = std::unique_ptr<thread_pool_base>

using pool_vector = std::vector<pool_type>

Public Functions

threadmanager(hpx::util::runtime_configuration &rtcfg_, notification_policy_type ¬ifier,
detail::network_background_callback_type network_background_callback =
detail::network_background_callback_type())

threadmanager(threadmanager const&) = delete

threadmanager(threadmanager&&) = delete

threadmanager &operator=(threadmanager const&) = delete

threadmanager &operator=(threadmanager&&) = delete

~threadmanager()

void init() const

void create_pools()

void print_pools(std::ostream&) const
FIXME move to private and add —hpx:printpools cmd line option.

thread_pool_base &default_pool() const

thread_pool_base &get_pool(std::string const &pool_name) const

thread_pool_base &get_pool(pool_id_type const &pool_id) const

thread_pool_base &get_pool(std::size_t thread_index) const

bool pool_exists(std::string const &pool_name) const

bool pool_exists(std::size_t pool_index) const

thread_id_ref_type register_work(thread_init_data &data, error_code &ec = throws) const
The function register_work adds a new work item to the thread manager. It doesn’t immediately
create a new thread, it just adds the task parameters (function, initial state and description) to the
internal management data structures. The thread itself will be created when the number of existing
threads drops below the number of threads specified by the constructors max_count parameter.

Parameters
• data – [in] The value of this parameter allows to specify a description of the thread to

create. This information is used for logging purposes mainly, but might be useful for
debugging as well. This parameter is optional and defaults to an empty string.

• ec –

1284 Chapter 2. What’s so special about HPX?

HPX Documentation, master

void register_thread(thread_init_data &data, thread_id_ref_type &id, error_code &ec =
throws) const

The function register_thread adds a new work item to the thread manager. It creates a new thread,
adds it to the internal management data structures, and schedules the new thread, if appropriate.

Parameters
• data – [in] The value of this parameter allows to specify a description of the thread to

create. This information is used for logging purposes mainly, but might be useful for
debugging as well. This parameter is optional and defaults to an empty string.

• id – [out] This parameter will hold the id of the created thread. This id is guaranteed to
be validly initialized before the thread function is executed.

• ec –

bool run() const
Run the thread manager’s work queue. This function instantiates the specified number of OS
threads in each pool. All OS threads are started to execute the function tfunc.

Returns The function returns true if the thread manager has been started successfully, oth-
erwise it returns false.

void stop(bool blocking = true) const
Forcefully stop the thread-manager.

Parameters blocking –

bool is_busy() const

bool is_idle() const

void wait() const

bool wait_for(hpx::chrono::steady_duration const &rel_time) const

void suspend() const

void resume() const

hpx::state status() const
Return whether the thread manager is still running This returns the “minimal state”, i.e. the state
of the least advanced thread pool

std::int64_t get_thread_count(thread_schedule_state state = thread_schedule_state::unknown,
thread_priority priority = thread_priority::default_, std::size_t
num_thread = static_cast<std::size_t>(-1), bool reset = false)
const

return the number of HPX-threads with the given state

Note: This function locks the internal OS lock in the thread manager

std::int64_t get_idle_core_count() const

mask_type get_idle_core_mask() const

std::int64_t get_background_thread_count() const

bool enumerate_threads(hpx::function<bool(thread_id_type)> const &f, thread_schedule_state
state = thread_schedule_state::unknown) const

2.8. API reference 1285

HPX Documentation, master

void abort_all_suspended_threads() const

bool cleanup_terminated(bool delete_all) const

std::size_t get_os_thread_count() const
Return the number of OS threads running in this thread-manager.

This function will return correct results only if the thread-manager is running.

std::thread &get_os_thread_handle(std::size_t num_thread) const

void report_error(std::size_t num_thread, std::exception_ptr const &e) const
API functions forwarding to notification policy.

This notifies the thread manager that the passed exception has been raised. The exception will be
routed through the notifier and the scheduler (which will result in it being passed to the runtime
object, which in turn will report it to the console, etc.).

mask_type get_used_processing_units() const
Returns the mask identifying all processing units used by this thread manager.

hwloc_bitmap_ptr get_pool_numa_bitmap(std::string const &pool_name) const

void set_scheduler_mode(threads::policies::scheduler_mode mode) const noexcept

void add_scheduler_mode(threads::policies::scheduler_mode mode) const noexcept

void add_remove_scheduler_mode(threads::policies::scheduler_mode to_add_mode,
threads::policies::scheduler_mode to_remove_mode) const
noexcept

void remove_scheduler_mode(threads::policies::scheduler_mode mode) const noexcept

void reset_thread_distribution() const noexcept

std::int64_t get_queue_length(bool reset) const

std::int64_t get_cumulative_duration(bool reset) const

std::int64_t get_thread_count_unknown(bool reset) const

std::int64_t get_thread_count_active(bool reset) const

std::int64_t get_thread_count_pending(bool reset) const

std::int64_t get_thread_count_suspended(bool reset) const

std::int64_t get_thread_count_terminated(bool reset) const

std::int64_t get_thread_count_staged(bool reset) const

1286 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Static Functions

static void init_tss(std::size_t global_thread_num)

static void deinit_tss()

Private Types

using mutex_type = std::mutex

Private Functions

policies::thread_queue_init_parameters get_init_parameters() const

void create_scheduler_user_defined(hpx::resource::scheduler_function const&,
thread_pool_init_parameters const&,
policies::thread_queue_init_parameters const&)

void create_scheduler_local(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters const&, std::size_t)

void create_scheduler_local_priority_fifo(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters
const&, std::size_t)

void create_scheduler_local_priority_lifo(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters
const&, std::size_t)

void create_scheduler_static(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters const&, std::size_t)

void create_scheduler_static_priority(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters const&,
std::size_t)

void create_scheduler_abp_priority_fifo(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters const&,
std::size_t)

void create_scheduler_abp_priority_lifo(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters const&,
std::size_t)

void create_scheduler_shared_priority(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters const&,
std::size_t)

void create_scheduler_local_workrequesting_fifo(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters
const&, std::size_t)

2.8. API reference 1287

HPX Documentation, master

void create_scheduler_local_workrequesting_lifo(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters
const&, std::size_t)

void create_scheduler_local_workrequesting_mc(thread_pool_init_parameters const&,
policies::thread_queue_init_parameters
const&, std::size_t)

Private Members

mutable mutex_type mtx_

hpx::util::runtime_configuration &rtcfg_

std::vector<pool_id_type> threads_lookup_

pool_vector pools_

notification_policy_type ¬ifier_

detail::network_background_callback_type network_background_callback_

timed_execution

See Public API for a list of names and headers that are part of the public HPX API.

hpx/timed_execution/timed_execution.hpp

Defined in header hpx/timed_execution/timed_execution.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace execution

1288 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/timed_execution/timed_execution_fwd.hpp

Defined in header hpx/timed_execution/timed_execution_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace execution

Variables

hpx::parallel::execution::post_at_t post_at

hpx::parallel::execution::post_after_t post_after

hpx::parallel::execution::async_execute_at_t async_execute_at

hpx::parallel::execution::async_execute_after_t async_execute_after

hpx::parallel::execution::sync_execute_at_t sync_execute_at

hpx::parallel::execution::sync_execute_after_t sync_execute_after

struct async_execute_after_t : public
hpx::functional::detail::tag_fallback<async_execute_after_t>

#include <timed_execution_fwd.hpp> Customization point of asynchronous execution agent cre-
ation supporting timed execution.

This asynchronously creates a single function invocation f() using the associated executor at the
given point in time.

Note: This calls exec.async_execute_after(rel_time, f, ts. . .), if available, otherwise it emu-
lates timed scheduling by delaying calling execution::async_execute() on the underlying non-time-
scheduled execution agent.

Param exec [in] The executor object to use for scheduling of the function f.
Param rel_time [in] The duration of time after which the given function should be sched-

uled to run.
Param f [in] The function which will be scheduled using the given executor.
Param ts. . . [in] Additional arguments to use to invoke f.
Return f(ts. . .)’s result through a future

2.8. API reference 1289

HPX Documentation, master

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(async_execute_after_t, Executor &&exec,

hpx::chrono::steady_duration const
&rel_time, F &&f, Ts&&... ts)

struct async_execute_at_t : public hpx::functional::detail::tag_fallback<async_execute_at_t>
#include <timed_execution_fwd.hpp> Customization point of asynchronous execution agent cre-
ation supporting timed execution.

This asynchronously creates a single function invocation f() using the associated executor at the
given point in time.

Note: This calls exec.async_execute_at(abs_time, f, ts. . .), if available, otherwise it emulates
timed scheduling by delaying calling execution::async_execute() on the underlying non-time-
scheduled execution agent.

Param exec [in] The executor object to use for scheduling of the function f.
Param abs_time [in] The point in time the given function should be scheduled at to run.
Param f [in] The function which will be scheduled using the given executor.
Param ts. . . [in] Additional arguments to use to invoke f.
Return f(ts. . .)’s result through a future

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(async_execute_at_t, Executor &&exec,

hpx::chrono::steady_time_point const
&abs_time, F &&f, Ts&&... ts)

struct post_after_t : public hpx::functional::detail::tag_fallback<post_after_t>
#include <timed_execution_fwd.hpp> Customization point of asynchronous fire & forget execu-
tion agent creation supporting timed execution.

This asynchronously (fire & forget) creates a single function invocation f() using the associated
executor at the given point in time.

Note: This calls exec.post_after(rel_time, f, ts. . .), if available, otherwise it emulates timed
scheduling by delaying calling execution::post() on the underlying non-time-scheduled execution
agent.

Param exec [in] The executor object to use for scheduling of the function f.
Param rel_time [in] The duration of time after which the given function should be sched-

uled to run.
Param f [in] The function which will be scheduled using the given executor.
Param ts. . . [in] Additional arguments to use to invoke f.

1290 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(post_after_t, Executor &&exec,

hpx::chrono::steady_duration const
&rel_time, F &&f, Ts&&... ts)

struct post_at_t : public hpx::functional::detail::tag_fallback<post_at_t>
#include <timed_execution_fwd.hpp> Customization point of asynchronous fire & forget execu-
tion agent creation supporting timed execution.

This asynchronously (fire & forget) creates a single function invocation f() using the associated
executor at the given point in time.

Note: This calls exec.post_at(abs_time, f, ts. . .), if available, otherwise it emulates timed schedul-
ing by delaying calling execution::post() on the underlying non-time-scheduled execution agent.

Param exec [in] The executor object to use for scheduling of the function f.
Param abs_time [in] The point in time the given function should be scheduled at to run.
Param f [in] The function which will be scheduled using the given executor.
Param ts. . . [in] Additional arguments to use to invoke f.

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(post_at_t, Executor &&exec,

hpx::chrono::steady_time_point const
&abs_time, F &&f, Ts&&... ts)

struct sync_execute_after_t : public
hpx::functional::detail::tag_fallback<sync_execute_after_t>

#include <timed_execution_fwd.hpp> Customization point of synchronous execution agent cre-
ation supporting timed execution.

This synchronously creates a single function invocation f() using the associated executor at the
given point in time.

Note: This calls exec.sync_execute_after(rel_time, f, ts. . .), if available, otherwise it emu-
lates timed scheduling by delaying calling execution::sync_execute() on the underlying non-time-
scheduled execution agent.

Param exec [in] The executor object to use for scheduling of the function f.
Param rel_time [in] The duration of time after which the given function should be sched-

uled to run.
Param f [in] The function which will be scheduled using the given executor.
Param ts. . . [in] Additional arguments to use to invoke f.
Return f(ts. . .)’s result

2.8. API reference 1291

HPX Documentation, master

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(sync_execute_after_t, Executor &&exec,

hpx::chrono::steady_duration const
&rel_time, F &&f, Ts&&... ts)

struct sync_execute_at_t : public hpx::functional::detail::tag_fallback<sync_execute_at_t>
#include <timed_execution_fwd.hpp> Customization point of synchronous execution agent cre-
ation supporting timed execution.

This synchronously creates a single function invocation f() using the associated executor at the
given point in time.

Note: This calls exec.sync_execute_at(abs_time, f, ts. . .), if available, otherwise it emulates timed
scheduling by delaying calling execution::sync_execute() on the underlying non-time-scheduled
execution agent.

Param exec [in] The executor object to use for scheduling of the function f.
Param abs_time [in] The point in time the given function should be scheduled at to run.
Param f [in] The function which will be scheduled using the given executor.
Param ts. . . [in] Additional arguments to use to invoke f.
Return f(ts. . .)’s result

Private Functions

template<typename Executor, typename F, typename ...Ts>
inline decltype(auto) friend tag_fallback_invoke(sync_execute_at_t, Executor &&exec,

hpx::chrono::steady_time_point const
&abs_time, F &&f, Ts&&... ts)

template<typename BaseExecutor>

struct timed_executor

hpx/timed_execution/timed_executors.hpp

Defined in header hpx/timed_execution/timed_executors.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

namespace parallel

namespace execution

1292 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Typedefs

using sequenced_timed_executor = timed_executor<hpx::execution::sequenced_executor>

using parallel_timed_executor = timed_executor<hpx::execution::parallel_executor>

template<typename BaseExecutor>

struct timed_executor

hpx/timed_execution/traits/is_timed_executor.hpp

Defined in header hpx/timed_execution/traits/is_timed_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace execution

Typedefs

template<typename T>

using is_timed_executor_t = typename is_timed_executor<T>::type

Variables

template<typename T>

constexpr bool is_timed_executor_v = is_timed_executor<T>::value

template<typename T>

struct is_timed_executor : public detail::is_timed_executor<std::decay_t<T>>

namespace traits

template<typename Executor, typename Enable = void>

struct is_timed_executor : public hpx::parallel::execution::is_timed_executor<Executor>

2.8. API reference 1293

HPX Documentation, master

timing

See Public API for a list of names and headers that are part of the public HPX API.

hpx::chrono::high_resolution_clock

Defined in header hpx/chrono.hpp796.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace chrono

struct high_resolution_clock
#include <high_resolution_clock.hpp> Class hpx::chrono::high_resolution_clock represents
the clock with the smallest tick period provided by the implementation. It may be an alias of
std::chrono::system_clock or std::chrono::steady_clock, or a third, independent clock.
hpx::chrono::high_resolution_clock meets the requirements of TrivialClock.

Public Static Functions

static inline std::uint64_t now() noexcept
returns a std::chrono::time_point representing the current value of the clock

static inline constexpr std::uint64_t() min () noexcept

static inline constexpr std::uint64_t() max () noexcept

hpx::chrono::high_resolution_timer

Defined in header hpx/chrono.hpp797.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace chrono

class high_resolution_timer
#include <high_resolution_timer.hpp> high_resolution_timer is a timer object which measures the
elapsed time

796 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/chrono.
hpp

797 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/chrono.
hpp

1294 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/chrono.hpp
http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/core/include_local/include/hpx/chrono.hpp

HPX Documentation, master

Public Types

enum class init
Values:

enumerator no_init

Public Functions

inline high_resolution_timer() noexcept

inline explicit constexpr high_resolution_timer(init) noexcept

inline explicit constexpr high_resolution_timer(double t) noexcept

inline void restart() noexcept
restarts the timer

inline double elapsed() const noexcept
returns the elapsed time in seconds

inline std::int64_t elapsed_microseconds() const noexcept
returns the elapsed time in microseconds

inline std::int64_t elapsed_nanoseconds() const noexcept
returns the elapsed time in nanoseconds

Public Static Functions

static inline double now() noexcept
returns the current time

static inline constexpr double elapsed_max() noexcept
returns the estimated maximum value for elapsed()

static inline constexpr double elapsed_min() noexcept
returns the estimated minimum value for elapsed()

Protected Static Functions

static inline std::uint64_t take_time_stamp() noexcept

2.8. API reference 1295

HPX Documentation, master

Private Members

std::uint64_t start_time_

topology

See Public API for a list of names and headers that are part of the public HPX API.

hpx/topology/cpu_mask.hpp

Defined in header hpx/topology/cpu_mask.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

hpx/topology/topology.hpp

Defined in header hpx/topology/topology.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace threads

Typedefs

using hwloc_bitmap_ptr = std::shared_ptr<hpx_hwloc_bitmap_wrapper>

Enums

enum hpx_hwloc_membind_policy
Please see hwloc documentation for the corresponding enums HWLOC_MEMBIND_XXX.

Values:

enumerator membind_default

enumerator membind_firsttouch

enumerator membind_bind

1296 Chapter 2. What’s so special about HPX?

HPX Documentation, master

enumerator membind_interleave

enumerator membind_replicate

enumerator membind_nexttouch

enumerator membind_mixed

enumerator membind_user

Functions

topology &create_topology()

inline std::size_t get_memory_page_size()

struct hpx_hwloc_bitmap_wrapper

Public Functions

HPX_NON_COPYABLE(hpx_hwloc_bitmap_wrapper)

inline hpx_hwloc_bitmap_wrapper() noexcept

inline explicit hpx_hwloc_bitmap_wrapper(void *bmp) noexcept

inline ~hpx_hwloc_bitmap_wrapper()

inline void reset(hwloc_bitmap_t bmp) noexcept

inline explicit constexpr operator bool() const noexcept

inline hwloc_bitmap_t get_bmp() const noexcept

Private Members

hwloc_bitmap_t bmp_

Friends

friend std::ostream &operator<<(std::ostream &os, hpx_hwloc_bitmap_wrapper const *bmp)

struct topology

2.8. API reference 1297

HPX Documentation, master

Public Functions

topology()

topology(topology const&) = delete

topology(topology&&) = delete

topology &operator=(topology const&) = delete

topology &operator=(topology&&) = delete

~topology()

inline std::size_t get_socket_number(std::size_t num_thread, [[maybe_unused]] error_code &ec
= throws) const noexcept

Return the Socket number of the processing unit the given thread is running on.
Parameters

• num_thread – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

inline std::size_t get_numa_node_number(std::size_t num_thread, [[maybe_unused]] error_code
&ec = throws) const noexcept

Return the NUMA node number of the processing unit the given thread is running on.
Parameters

• num_thread – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

mask_cref_type get_machine_affinity_mask(error_code &ec = throws) const noexcept
Return a bit mask where each set bit corresponds to a processing unit available to the application.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

mask_type get_service_affinity_mask(mask_cref_type used_processing_units, error_code
&ec = throws) const

Return a bit mask where each set bit corresponds to a processing unit available to the service
threads in the application.

Parameters
• used_processing_units – [in] This is the mask of processing units which are not

available for service threads.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

mask_cref_type get_socket_affinity_mask(std::size_t num_thread, error_code &ec = throws)
const

Return a bit mask where each set bit corresponds to a processing unit available to the given thread
inside the socket it is running on.

Parameters
• num_thread – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

mask_cref_type get_numa_node_affinity_mask(std::size_t num_thread, error_code &ec =
throws) const

1298 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Return a bit mask where each set bit corresponds to a processing unit available to the given thread
inside the NUMA domain it is running on.

Parameters
• num_thread – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

mask_cref_type get_core_affinity_mask(std::size_t num_thread, error_code &ec = throws)
const

Return a bit mask where each set bit corresponds to a processing unit available to the given thread
inside the core it is running on.

Parameters
• num_thread – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

mask_cref_type get_thread_affinity_mask(std::size_t num_thread, error_code &ec = throws)
const

Return a bit mask where each set bit corresponds to a processing unit available to the given thread.
Parameters

• num_thread – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

void set_thread_affinity_mask(mask_cref_type mask, error_code &ec = throws) const
Use the given bit mask to set the affinity of the given thread. Each set bit corresponds to a pro-
cessing unit the thread will be allowed to run on.

Note: Use this function on systems where the affinity must be set from inside the thread itself.

Parameters
• mask – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

mask_type get_thread_affinity_mask_from_lva(void const *lva, error_code &ec = throws)
const

Return a bit mask where each set bit corresponds to a processing unit co-located with the memory
the given address is currently allocated on.

Parameters
• lva – [in]
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.

void print_affinity_mask(std::ostream &os, std::size_t num_thread, mask_cref_type m,
std::string const &pool_name) const

Prints the given mask m to os in a human readable form.

bool reduce_thread_priority(error_code &ec = throws) const
Reduce thread priority of the current thread.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

2.8. API reference 1299

HPX Documentation, master

std::size_t get_number_of_sockets() const
Return the number of available NUMA domains.

std::size_t get_number_of_numa_nodes() const
Return the number of available NUMA domains.

std::size_t get_number_of_cores() const
Return the number of available cores.

std::size_t get_number_of_pus() const noexcept
Return the number of available hardware processing units.

std::size_t get_number_of_numa_node_cores(std::size_t numa) const
Return number of cores in given numa domain.

std::size_t get_number_of_numa_node_pus(std::size_t numa) const
Return number of processing units in a given numa domain.

std::size_t get_number_of_socket_pus(std::size_t socket) const
Return number of processing units in a given socket.

std::size_t get_number_of_core_pus(std::size_t core) const
Return number of processing units in given core.

std::size_t get_number_of_socket_cores(std::size_t socket) const
Return number of cores units in given socket.

inline std::size_t get_core_number(std::size_t num_thread, error_code& = throws) const

std::size_t get_pu_number(std::size_t num_core, std::size_t num_pu, error_code &ec = throws)
const

std::size_t get_cache_size(mask_cref_type mask, int level) const
Return the size of the cache associated with the given mask.

mask_type get_cpubind_mask(error_code &ec = throws) const

mask_type get_cpubind_mask(std::thread &handle, error_code &ec = throws) const

hwloc_bitmap_ptr cpuset_to_nodeset(mask_cref_type mask) const
convert a cpu mask into a numa node mask in hwloc bitmap form

void write_to_log() const

void *allocate(std::size_t len) const
This is equivalent to malloc(), except that it tries to allocate page-aligned memory from the OS.

void *allocate_membind(std::size_t len, const hwloc_bitmap_ptr &bitmap,
hpx_hwloc_membind_policy policy, int flags) const

allocate memory with binding to a numa node set as specified by the policy and flags (see hwloc
docs)

threads::mask_type get_area_membind_nodeset(void const *addr, std::size_t len) const

bool set_area_membind_nodeset(void const *addr, std::size_t len, void *nodeset) const

int get_numa_domain(void const *addr) const

1300 Chapter 2. What’s so special about HPX?

HPX Documentation, master

void deallocate(void *addr, std::size_t len) const noexcept
Free memory that was previously allocated by allocate.

void print_hwloc(std::ostream&) const

mask_type init_socket_affinity_mask_from_socket(std::size_t num_socket) const

mask_type init_numa_node_affinity_mask_from_numa_node(std::size_t num_numa_node)
const

mask_type init_core_affinity_mask_from_core(std::size_t num_core, mask_cref_type
default_mask = empty_mask) const

mask_type init_thread_affinity_mask(std::size_t num_thread) const

mask_type init_thread_affinity_mask(std::size_t num_core, std::size_t num_pu) const

hwloc_bitmap_t mask_to_bitmap(mask_cref_type mask, hwloc_obj_type_t htype) const

mask_type bitmap_to_mask(hwloc_bitmap_t bitmap, hwloc_obj_type_t htype) const

Public Static Functions

static void print_vector(std::ostream &os, std::vector<std::size_t> const &v)

static void print_mask_vector(std::ostream &os, std::vector<mask_type> const &v)

Private Types

using mutex_type = hpx::util::spinlock

Private Functions

std::size_t init_node_number(std::size_t num_thread, hwloc_obj_type_t type) const

inline std::size_t init_socket_number(std::size_t num_thread) const

std::size_t init_numa_node_number(std::size_t num_thread) const

inline std::size_t init_core_number(std::size_t num_thread) const

void extract_node_mask(hwloc_obj_t parent, mask_type &mask) const

std::size_t get_number_of_core_pus_locked(std::size_t core) const

std::size_t extract_node_count(hwloc_obj_t parent, hwloc_obj_type_t type, std::size_t count)
const

std::size_t extract_node_count_locked(hwloc_obj_t parent, hwloc_obj_type_t type, std::size_t
count) const

mask_type init_machine_affinity_mask() const

inline mask_type init_socket_affinity_mask(std::size_t num_thread) const

2.8. API reference 1301

HPX Documentation, master

inline mask_type init_numa_node_affinity_mask(std::size_t num_thread) const

inline mask_type init_core_affinity_mask(std::size_t num_thread) const

void init_num_of_pus()

hwloc_obj_t get_pu_obj(std::size_t num_pu) const

Private Members

hwloc_topology_t topo = nullptr

std::size_t num_of_pus_ = 0

bool use_pus_as_cores_ = false

mutable mutex_type topo_mtx

std::vector<std::size_t> socket_numbers_

std::vector<std::size_t> numa_node_numbers_

std::vector<std::size_t> core_numbers_

mask_type machine_affinity_mask_ = mask_type()

std::vector<mask_type> socket_affinity_masks_

std::vector<mask_type> numa_node_affinity_masks_

std::vector<mask_type> core_affinity_masks_

std::vector<mask_type> thread_affinity_masks_

Private Static Attributes

static mask_type empty_mask

static std::size_t memory_page_size_

static constexpr std::size_t pu_offset = 0

static constexpr std::size_t core_offset = 0

1302 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Friends

friend std::size_t get_memory_page_size()

util

See Public API for a list of names and headers that are part of the public HPX API.

hpx/util/insert_checked.hpp

Defined in header hpx/util/insert_checked.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

Functions

template<typename Iterator>
constexpr bool insert_checked(std::pair<Iterator, bool> const &r) noexcept

Helper function for writing predicates that test whether an std::map insertion succeeded. This inline
template function negates the need to explicitly write the sometimes lengthy std::pair<Iterator, bool>
type.

Parameters r – [in] The return value of a std::map insert operation.
Returns This function returns r.second.

template<typename Iterator>
bool insert_checked(std::pair<Iterator, bool> const &r, Iterator &it)

Helper function for writing predicates that test whether an std::map insertion succeeded. This inline
template function negates the need to explicitly write the sometimes lengthy std::pair<Iterator, bool>
type.

Parameters
• r – [in] The return value of a std::map insert operation.
• r – [out] A reference to an Iterator, which is set to r.first.
• it – [out] on exit, will hold the iterator referring to the inserted element

Returns This function returns r.second.

hpx/util/sed_transform.hpp

Defined in header hpx/util/sed_transform.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

2.8. API reference 1303

HPX Documentation, master

Functions

bool parse_sed_expression(std::string const &input, std::string &search, std::string &replace)
Parse a sed command.

Note: Currently, only supports search and replace syntax (s/search/replace/)

Parameters
• input – [in] The content to parse.
• search – [out] If the parsing is successful, this string is set to the search expression.
• replace – [out] If the parsing is successful, this string is set to the replace expression.

Returns true if the parsing was successful, false otherwise.

struct sed_transform
#include <sed_transform.hpp> An unary function object which applies a sed command to its subject
and returns the resulting string.

Note: Currently, only supports search and replace syntax (s/search/replace/)

Public Functions

sed_transform(std::string const &search, std::string replace)

explicit sed_transform(std::string const &expression)

std::string operator()(std::string const &input) const

inline explicit operator bool() const noexcept

inline bool operator!() const noexcept

Private Members

std::shared_ptr<command> command_

actions

See Public API for a list of names and headers that are part of the public HPX API.

1304 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/actions/action_support.hpp

Defined in header hpx/actions/action_support.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/actions/actions_fwd.hpp

Defined in header hpx/actions/actions_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/actions/base_action.hpp

Defined in header hpx/actions/base_action.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/actions/transfer_action.hpp

Defined in header hpx/actions/transfer_action.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/actions/transfer_base_action.hpp

Defined in header hpx/actions/transfer_base_action.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

actions_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx/actions_base/actions_base_fwd.hpp

Defined in header hpx/actions_base/actions_base_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace actions

2.8. API reference 1305

HPX Documentation, master

hpx/actions_base/actions_base_support.hpp

Defined in header hpx/actions_base/actions_base_support.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace actions

HPX_REGISTER_ACTION_DECLARATION, HPX_REGISTER_ACTION

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_ACTION_DECLARATION(...)
Declare the necessary component action boilerplate code.

The macro HPX_REGISTER_ACTION_DECLARATION can be used to declare all the boilerplate code which
is required for proper functioning of component actions in the context of HPX.

The parameter action is the type of the action to declare the boilerplate for.

This macro can be invoked with an optional second parameter. This parameter specifies a unique name of the
action to be used for serialization purposes. The second parameter has to be specified if the first parameter is not
usable as a plain (non-qualified) C++ identifier, i.e. the first parameter contains special characters which cannot
be part of a C++ identifier, such as ‘<’, ‘>’, or ‘:’.

namespace app
{

// Define a simple component exposing one action 'print_greeting'
class HPX_COMPONENT_EXPORT server
: public hpx::components::component_base<server>

{
void print_greeting ()
{

hpx::cout << "Hey, how are you?\n" << std::flush;
}

// Component actions need to be declared, this also defines the
// type 'print_greeting_action' representing the action.
HPX_DEFINE_COMPONENT_ACTION(server,

print_greeting, print_greeting_action);
};

}

// Declare boilerplate code required for each of the component actions.
HPX_REGISTER_ACTION_DECLARATION(app::server::print_greeting_action)

1306 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Example:

Note: This macro has to be used once for each of the component actions defined using one of the
HPX_DEFINE_COMPONENT_ACTION macros. It has to be visible in all translation units using the action,
thus it is recommended to place it into the header file defining the component.

HPX_REGISTER_ACTION_DECLARATION_(...)

HPX_REGISTER_ACTION_DECLARATION_1(action)

HPX_REGISTER_ACTION(...)
Define the necessary component action boilerplate code.

The macro HPX_REGISTER_ACTION can be used to define all the boilerplate code which is required for proper
functioning of component actions in the context of HPX.

The parameter action is the type of the action to define the boilerplate for.

This macro can be invoked with an optional second parameter. This parameter specifies a unique name of the
action to be used for serialization purposes. The second parameter has to be specified if the first parameter is not
usable as a plain (non-qualified) C++ identifier, i.e. the first parameter contains special characters which cannot
be part of a C++ identifier, such as ‘<’, ‘>’, or ‘:’.

Note: This macro has to be used once for each of the component actions defined using one of the
HPX_DEFINE_COMPONENT_ACTION or HPX_DEFINE_PLAIN_ACTION macros. It has to occur exactly
once for each of the actions, thus it is recommended to place it into the source file defining the component.

Note: Only one of the forms of this macro HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID should
be used for a particular action, never both.

HPX_REGISTER_ACTION_ID(action, actionname, actionid)
Define the necessary component action boilerplate code and assign a predefined unique id to the action.

The macro HPX_REGISTER_ACTION can be used to define all the boilerplate code which is required for proper
functioning of component actions in the context of HPX.

The parameter action is the type of the action to define the boilerplate for.

The parameter actionname specifies an unique name of the action to be used for serialization purposes. The
second parameter has to be usable as a plain (non-qualified) C++ identifier, it should not contain special characters
which cannot be part of a C++ identifier, such as ‘<’, ‘>’, or ‘:’.

The parameter actionid specifies an unique integer value which will be used to represent the action during seri-
alization.

Note: This macro has to be used once for each of the component actions defined using one of the
HPX_DEFINE_COMPONENT_ACTION or global actions HPX_DEFINE_PLAIN_ACTION macros. It has to
occur exactly once for each of the actions, thus it is recommended to place it into the source file defining the
component.

2.8. API reference 1307

HPX Documentation, master

Note: Only one of the forms of this macro HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID should
be used for a particular action, never both.

namespace hpx

namespace actions

hpx/actions_base/basic_action_fwd.hpp

Defined in header hpx/actions_base/basic_action_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace actions

template<typename Component, typename Signature, typename Derived>

struct basic_action
#include <basic_action_fwd.hpp>

Template Parameters
• Component – component type
• Signature – return type and arguments
• Derived – derived action class

HPX_DEFINE_COMPONENT_ACTION

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_DEFINE_COMPONENT_ACTION(...)
Registers a member function of a component as an action type with HPX.

The macro HPX_DEFINE_COMPONENT_ACTION can be used to register a member function of a component
as an action type named action_type.

The parameter component is the type of the component exposing the member function func which should be
associated with the newly defined action type. The parameter action_type is the name of the action type to
register with HPX.

namespace app
{

// Define a simple component exposing one action 'print_greeting'
(continues on next page)

1308 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

class HPX_COMPONENT_EXPORT server
: public hpx::components::component_base<server>

{
void print_greeting() const
{

hpx::cout << "Hey, how are you?\n" << std::flush;
}

// Component actions need to be declared, this also defines the
// type 'print_greeting_action' representing the action.
HPX_DEFINE_COMPONENT_ACTION(server, print_greeting,

print_greeting_action);
};

}

Example:

The first argument must provide the type name of the component the action is defined for.

The second argument must provide the member function name the action should wrap.

The default value for the third argument (the typename of the defined action) is derived from the name of the
function (as passed as the second argument) by appending ‘_action’. The third argument can be omitted only if
the second argument with an appended suffix ‘_action’ resolves to a valid, unqualified C++ type name.

Note: The macro HPX_DEFINE_COMPONENT_ACTION can be used with 2 or 3 arguments. The third
argument is optional.

namespace hpx

namespace actions

hpx/actions_base/lambda_to_action.hpp

Defined in header hpx/actions_base/lambda_to_action.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/actions_base/plain_action.hpp

Defined in header hpx/actions_base/plain_action.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

2.8. API reference 1309

HPX Documentation, master

Defines

HPX_DEFINE_PLAIN_ACTION(...)
Defines a plain action type.

namespace app
{

void some_global_function(double d)
{

cout << d;
}

// This will define the action type 'app::some_global_action' which
// represents the function 'app::some_global_function'.
HPX_DEFINE_PLAIN_ACTION(some_global_function, some_global_action);

}

Example:

Note: Usually this macro will not be used in user code unless the intent is to avoid defining the action_type in
global namespace. Normally, the use of the macro HPX_PLAIN_ACTION is recommended.

Note: The macro HPX_DEFINE_PLAIN_ACTION can be used with 1 or 2 arguments. The second argument
is optional. The default value for the second argument (the typename of the defined action) is derived from the
name of the function (as passed as the first argument) by appending ‘_action’. The second argument can be
omitted only if the first argument with an appended suffix ‘_action’ resolves to a valid, unqualified C++ type
name.

HPX_DECLARE_PLAIN_ACTION(...)
Declares a plain action type.

HPX_PLAIN_ACTION(...)
Defines a plain action type based on the given function func and registers it with HPX.

The macro HPX_PLAIN_ACTION can be used to define a plain action (e.g. an action encapsulating a global or
free function) based on the given function func. It defines the action type name representing the given function.
This macro additionally registers the newly define action type with HPX.

The parameter func is a global or free (non-member) function which should be encapsulated into a plain action.
The parameter name is the name of the action type defined by this macro.

namespace app {
void some_global_function(double d) {

cout << d;
}

}

// This will define the action type 'some_global_action' which
(continues on next page)

1310 Chapter 2. What’s so special about HPX?

HPX Documentation, master

(continued from previous page)

// represents the function 'app::some_global_function'.
HPX_PLAIN_ACTION(app::some_global_function, some_global_action)

Example:

Note: The macro HPX_PLAIN_ACTION has to be used at global namespace even if the wrapped function is
located in some other namespace. The newly defined action type is placed into the global namespace as well.

Note: The macro HPX_PLAIN_ACTION_ID can be used with 1, 2, or 3 arguments. The second and third
arguments are optional. The default value for the second argument (the typename of the defined action) is derived
from the name of the function (as passed as the first argument) by appending ‘_action’. The second argument
can be omitted only if the first argument with an appended suffix ‘_action’ resolves to a valid, unqualified C++
type name. The default value for the third argument is hpx::components::factory_state::check.

Note: Only one of the forms of this macro HPX_PLAIN_ACTION or HPX_PLAIN_ACTION_ID should be
used for a particular action, never both.

HPX_PLAIN_ACTION_ID(func, name, id)
Defines a plain action type based on the given function func and registers it with HPX.

The macro HPX_PLAIN_ACTION_ID can be used to define a plain action (e.g. an action encapsulating a global
or free function) based on the given function func. It defines the action type actionname representing the given
function.

The parameter actionid specifies a unique integer value which will be used to represent the action during serial-
ization.

The parameter func is a global or free (non-member) function which should be encapsulated into a plain action.
The parameter name is the name of the action type defined by this macro.

The second parameter has to be usable as a plain (non-qualified) C++ identifier, it should not contain special
characters which cannot be part of a C++ identifier, such as ‘<’, ‘>’, or ‘:’.

namespace app {
void some_global_function(double d) {

cout << d;
}

}

// This will define the action type 'some_global_action' which
// represents the function 'app::some_global_function'.
HPX_PLAIN_ACTION_ID(app::some_global_function, some_global_action,

some_unique_id);

Example:

2.8. API reference 1311

HPX Documentation, master

Note: The macro HPX_PLAIN_ACTION_ID has to be used at global namespace even if the wrapped function
is located in some other namespace. The newly defined action type is placed into the global namespace as well.

Note: Only one of the forms of this macro HPX_PLAIN_ACTION or HPX_PLAIN_ACTION_ID should be
used for a particular action, never both.

namespace hpx

namespace actions

namespace traits

hpx/actions_base/preassigned_action_id.hpp

Defined in header hpx/actions_base/preassigned_action_id.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace actions

hpx/actions_base/traits/action_remote_result.hpp

Defined in header hpx/actions_base/traits/action_remote_result.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace traits

Typedefs

template<typename Result>

using action_remote_result_t = typename action_remote_result<Result>::type

template<typename Result>

struct action_remote_result : public detail::action_remote_result_customization_point<Result>

1312 Chapter 2. What’s so special about HPX?

HPX Documentation, master

agas

See Public API for a list of names and headers that are part of the public HPX API.

hpx/agas/addressing_service.hpp

Defined in header hpx/agas/addressing_service.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace agas

struct addressing_service

Public Types

using component_id_type = components::component_type

using iterate_names_return_type = std::map<std::string, hpx::id_type>

using iterate_types_function_type = hpx::function<void(std::string const&,
components::component_type), true>

using mutex_type = hpx::spinlock

using gva_cache_type = hpx::util::cache::lru_cache<gva_cache_key, gva,
hpx::util::cache::statistics::local_full_statistics>

using migrated_objects_table_type = std::set<naming::gid_type>

using refcnt_requests_type = std::map<naming::gid_type, std::int64_t>

using resolved_localities_type = std::map<naming::gid_type, parcelset::endpoints_type>

Public Functions

HPX_NON_COPYABLE(addressing_service)

explicit addressing_service(util::runtime_configuration const &ini_)

~addressing_service() = default

void bootstrap(parcelset::endpoints_type const &endpoints, util::runtime_configuration &rtcfg)

2.8. API reference 1313

HPX Documentation, master

void initialize(std::uint64_t rts_lva)

void adjust_local_cache_size(std::size_t) const
Adjust the size of the local AGAS Address resolution cache.

inline state get_status() const

inline void set_status(state new_state)

inline naming::gid_type const &get_local_locality(error_code& = throws) const

void set_local_locality(naming::gid_type const &g)

void register_console(parcelset::endpoints_type const &eps)

inline bool is_bootstrap() const

inline bool is_console() const
Returns whether this addressing_service represents the console locality.

inline bool is_connecting() const
Returns whether this addressing_service is connecting to a running application.

bool resolve_locally_known_addresses(naming::gid_type const &id, naming::address &addr)
const

void register_server_instances()

void garbage_collect_non_blocking(error_code &ec = throws)

void garbage_collect(error_code &ec = throws)

inline server::primary_namespace &get_local_primary_namespace_service()

inline naming::address::address_type get_primary_ns_lva() const

inline naming::address::address_type get_symbol_ns_lva() const

inline server::component_namespace *get_local_component_namespace_service() const

inline server::locality_namespace *get_local_locality_namespace_service() const

inline server::symbol_namespace &get_local_symbol_namespace_service() const

inline naming::address::address_type get_runtime_support_lva() const

std::uint64_t get_cache_entries(bool) const

std::uint64_t get_cache_hits(bool) const

std::uint64_t get_cache_misses(bool) const

std::uint64_t get_cache_evictions(bool) const

std::uint64_t get_cache_insertions(bool) const

std::uint64_t get_cache_get_entry_count(bool reset) const

std::uint64_t get_cache_insertion_entry_count(bool reset) const

1314 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::uint64_t get_cache_update_entry_count(bool reset) const

std::uint64_t get_cache_erase_entry_count(bool reset) const

std::uint64_t get_cache_get_entry_time(bool reset) const

std::uint64_t get_cache_insertion_entry_time(bool reset) const

std::uint64_t get_cache_update_entry_time(bool reset) const

std::uint64_t get_cache_erase_entry_time(bool reset) const

bool register_locality(parcelset::endpoints_type const &endpoints, naming::gid_type &prefix,
std::uint32_t num_threads, error_code &ec = throws)

Add a locality to the runtime.

parcelset::endpoints_type const &resolve_locality(naming::gid_type const &gid, error_code
&ec = throws)

Resolve a locality to its prefix.
Returns Returns an empty vector if the locality is not registered.

bool has_resolved_locality(naming::gid_type const &gid)

bool unregister_locality(naming::gid_type const &gid, error_code &ec = throws)
Remove a locality from the runtime.

void remove_resolved_locality(naming::gid_type const &gid)
remove given locality from locality cache

bool get_console_locality(naming::gid_type &locality, error_code &ec = throws)
Get locality locality_id of the console locality.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• locality – [out] The locality_id value uniquely identifying the console locality. This

is valid only, if the return value of this function is true.
• try_cache – [in] If this is set to true the console is first tried to be found in the local

cache. Otherwise this function will always query AGAS, even if the console locality_id
is already known locally.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns This function returns true if a console locality_id exists and returns false otherwise.

bool get_localities(std::vector<naming::gid_type> &locality_ids,
components::component_type type, error_code &ec = throws) const

Query for the locality_ids of all known localities.

This function returns the locality_ids of all localities known to the AGAS server or all localities
having a registered factory for a given component type.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise, it throws an instance of hpx::exception.

2.8. API reference 1315

HPX Documentation, master

Parameters
• locality_ids – [out] The vector will contain the prefixes of all localities registered

with the AGAS server. The returned vector holds the prefixes representing the run-
time_support components of these localities.

• type – [in] The component type will be used to determine the set of prefixes having a
registered factory for this component. The default value for this parameter is compo-
nents::component_enum_type::invalid, which will return prefixes of all localities.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

inline bool get_localities(std::vector<naming::gid_type> &locality_ids, error_code &ec =
throws) const

hpx::future<std::uint32_t> get_num_localities_async(components::component_type type =
to_int(hpx::components::component_enum_type::invalid))
const

Query for the number of all known localities.

This function returns the number of localities known to the AGAS server or the number of localities
having a registered factory for a given component type.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise, it throws an instance of hpx::exception.

Parameters
• type – [in] The component type will be used to determine the set of prefixes having a

registered factory for this component. The default value for this parameter is compo-
nents::component_type::invalid, which will return prefixes of all localities.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

std::uint32_t get_num_localities(components::component_type type, error_code &ec = throws)
const

inline std::uint32_t get_num_localities(error_code &ec = throws) const

hpx::future<std::uint32_t> get_num_overall_threads_async() const

std::uint32_t get_num_overall_threads(error_code &ec = throws) const

hpx::future<std::vector<std::uint32_t>> get_num_threads_async() const

std::vector<std::uint32_t> get_num_threads(error_code &ec = throws) const

components::component_type get_component_id(std::string const &name, error_code &ec =
throws) const

Return a unique id usable as a component type.

This function returns the component type id associated with the given component name. If this is
the first request for this component name a new unique id will be created.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

1316 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• name – [in] The component name (string) to get the component type for.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns The function returns the currently associated component type. Any error results in

an exception thrown from this function.

void iterate_types(iterate_types_function_type const &f, error_code &ec = throws) const

std::string get_component_type_name(components::component_type id, error_code &ec =
throws) const

inline components::component_type register_factory(naming::gid_type const &locality_id,
std::string const &name, error_code &ec
= throws) const

Register a factory for a specific component type.

This function allows to register a component factory for a given locality and component type.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• locality_id – [in] The locality value uniquely identifying the given locality the fac-

tory needs to be registered for.
• name – [in] The component name (string) to register a factory for the given component

type for.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns The function returns the currently associated component type. Any error results in

an exception thrown from this function. The returned component type is the same as if the
function get_component_id was called using the same component name.

components::component_type register_factory(std::uint32_t locality_id, std::string const
&name, error_code &ec = throws) const

bool get_id_range(std::uint64_t count, naming::gid_type &lower_bound, naming::gid_type
&upper_bound, error_code &ec = throws)

Get unique range of freely assignable global ids.

Every locality needs to be able to assign global ids to different components without having to
consult the AGAS server for every id to generate. This function can be called to preallocate a
range of ids usable for this purpose.

Note: This function assigns a range of global ids usable by the given locality for newly created
components. Any of the returned global ids still has to be bound to a local address, either by
calling bind or bind_range.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• l – [in] The locality the locality id needs to be generated for. Repeating calls using the

same locality results in identical locality_id values.

2.8. API reference 1317

HPX Documentation, master

• count – [in] The number of global ids to be generated.
• lower_bound – [out] The lower bound of the assigned id range. The returned value can

be used as the first id to assign. This is valid only, if the return value of this function is
true.

• upper_bound – [out] The upper bound of the assigned id range. The returned value can
be used as the last id to assign. This is valid only, if the return value of this function is
true.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns This function returns true if a new range has been generated (it has been called for
the first time for the given locality) and returns false if this locality already got a range
assigned in an earlier call. Any error results in an exception thrown from this function.

inline bool bind_local(naming::gid_type const &id, naming::address const &addr, error_code
&ec = throws)

Bind a global address to a local address.

Every element in the HPX namespace has a unique global address (global id). This global address
has to be associated with a concrete local address to be able to address an instance of a component
using its global address.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: Binding a gid to a local address sets its global reference count to one.

Parameters
• id – [in] The global address which has to be bound to the local address.
• addr – [in] The local address to be bound to the global address.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns true, if this global id got associated with an local address. It

returns false otherwise.

inline hpx::future<bool> bind_async(naming::gid_type const &id, naming::address const &addr,
std::uint32_t locality_id)

inline hpx::future<bool> bind_async(naming::gid_type const &id, naming::address const &addr,
naming::gid_type const &locality)

bool bind_range_local(naming::gid_type const &lower_id, std::uint64_t count, naming::address
const &baseaddr, std::uint64_t offset, error_code &ec = throws)

Bind unique range of global ids to given base address.

Every locality needs to be able to bind global ids to different components without having to consult
the AGAS server for every id to bind. This function can be called to bind a range of consecutive
global ids to a range of consecutive local addresses (separated by a given offset).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

1318 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: Binding a gid to a local address sets its global reference count to one.

Parameters
• lower_id – [in] The lower bound of the assigned id range. The value can be used as

the first id to assign.
• count – [in] The number of consecutive global ids to bind starting at lower_id.
• baseaddr – [in] The local address to bind to the global id given by lower_id. This is

the base address for all additional local addresses to bind to the remaining global ids.
• offset – [in] The offset to use to calculate the local addresses to be bound to the range

of global ids.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns true, if the given range was successfully bound. It returns

false otherwise.

hpx::future<bool> bind_range_async(naming::gid_type const &lower_id, std::uint64_t count,
naming::address const &baseaddr, std::uint64_t offset,
naming::gid_type const &locality)

inline hpx::future<bool> bind_range_async(naming::gid_type const &lower_id, std::uint64_t
count, naming::address const &baseaddr,
std::uint64_t offset, std::uint32_t locality_id)

inline bool unbind_local(naming::gid_type const &id, error_code &ec = throws)
Unbind a global address.

Remove the association of the given global address with any local address, which was bound to
this global address. Additionally it returns the local address which was bound at the time of this
call.

Note: You can unbind only global ids bound using the function bind. Do not use this function to
unbind any of the global ids bound using bind_range.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will raise an error if the global reference count of the given gid is not zero!

Parameters
• id – [in] The global address (id) for which the association has to be removed.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns The function returns true if the association has been removed, and it returns false

if no association existed. Any error results in an exception thrown from this function.

inline bool unbind_local(naming::gid_type const &id, naming::address &addr, error_code &ec =
throws)

Unbind a global address.

2.8. API reference 1319

HPX Documentation, master

Remove the association of the given global address with any local address, which was bound to
this global address. Additionally it returns the local address which was bound at the time of this
call.

Note: You can unbind only global ids bound using the function bind. Do not use this function to
unbind any of the global ids bound using bind_range.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will raise an error if the global reference count of the given gid is not zero!

Parameters
• id – [in] The global address (id) for which the association has to be removed.
• addr – [out] The local address which was associated with the given global address (id).

This is valid only if the return value of this function is true.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns The function returns true if the association has been removed, and it returns false

if no association existed. Any error results in an exception thrown from this function.

inline bool unbind_range_local(naming::gid_type const &lower_id, std::uint64_t count,
error_code &ec = throws)

Unbind the given range of global ids.

Note: You can unbind only global ids bound using the function bind_range. Do not use this
function to unbind any of the global ids bound using bind.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will raise an error if the global reference count of the given gid is not zero!

Parameters
• lower_id – [in] The lower bound of the assigned id range. The value must the first id

of the range as specified to the corresponding call to bind_range.
• count – [in] The number of consecutive global ids to unbind starting at lower_id. This

number must be identical to the number of global ids bound by the corresponding call
to bind_range

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns This function returns true if a new range has been generated (it has been called for
the first time for the given locality) and returns false if this locality already got a range
assigned in an earlier call. Any error results in an exception thrown from this function.

bool unbind_range_local(naming::gid_type const &lower_id, std::uint64_t count,
naming::address &addr, error_code &ec = throws)

1320 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Unbind the given range of global ids.

Note: You can unbind only global ids bound using the function bind_range. Do not use this
function to unbind any of the global ids bound using bind.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will raise an error if the global reference count of the given gid is not zero!

Parameters
• lower_id – [in] The lower bound of the assigned id range. The value must the first id

of the range as specified to the corresponding call to bind_range.
• count – [in] The number of consecutive global ids to unbind starting at lower_id. This

number must be identical to the number of global ids bound by the corresponding call
to bind_range

• addr – [out] The local address which was associated with the given global address (id).
This is valid only if the return value of this function is true.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns This function returns true if a new range has been generated (it has been called for
the first time for the given locality) and returns false if this locality already got a range
assigned in an earlier call.

hpx::future<naming::address> unbind_range_async(naming::gid_type const &lower_id,
std::uint64_t count = 1)

inline bool is_local_address_cached(naming::gid_type const &id, error_code &ec = throws)
Test whether the given address refers to a local object.

This function will test whether the given address refers to an object living on the locality of the
caller.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The address to test.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns true if the passed address refers to an object which lives on

the locality of the caller.

bool is_local_address_cached(naming::gid_type const &id, naming::address &addr,
error_code &ec = throws)

2.8. API reference 1321

HPX Documentation, master

bool is_local_address_cached(naming::gid_type const &id, naming::address &addr,
std::pair<bool, components::pinned_ptr> &r,
hpx::move_only_function<std::pair<bool,
components::pinned_ptr>(naming::address const&)> &&f,
error_code &ec = throws)

bool is_local_lva_encoded_address(std::uint64_t msb) const

inline bool resolve_local(naming::gid_type const &id, naming::address &addr, error_code &ec
= throws)

Resolve a given global address (id) to its associated local address.

This function returns the local address which is currently associated with the given global address
(id).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The global address (id) for which the associated local address should be re-

turned.
• addr – [out] The local address which currently is associated with the given global ad-

dress (id), this is valid only if the return value of this function is true.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns This function returns true if the global address has been resolved successfully (there

exists an association to a local address) and the associated local address has been returned.
The function returns false if no association exists for the given global address. Any error
results in an exception thrown from this function.

inline bool resolve_local(hpx::id_type const &id, naming::address &addr, error_code &ec =
throws)

inline naming::address resolve_local(naming::gid_type const &id, error_code &ec = throws)

inline naming::address resolve_local(hpx::id_type const &id, error_code &ec = throws)

hpx::future_or_value<naming::address> resolve_async(naming::gid_type const &id)

inline hpx::future_or_value<naming::address> resolve_async(hpx::id_type const &id)

hpx::future_or_value<id_type> get_colocation_id_async(hpx::id_type const &id)

bool resolve_full_local(naming::gid_type const &id, naming::address &addr, error_code &ec
= throws)

inline bool resolve_full_local(hpx::id_type const &id, naming::address &addr, error_code &ec
= throws)

inline naming::address resolve_full_local(naming::gid_type const &id, error_code &ec =
throws)

inline naming::address resolve_full_local(hpx::id_type const &id, error_code &ec = throws)

hpx::future_or_value<naming::address> resolve_full_async(naming::gid_type const &id)

1322 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline hpx::future_or_value<naming::address> resolve_full_async(hpx::id_type const &id)

bool resolve_cached(naming::gid_type const &id, naming::address &addr, error_code &ec =
throws)

inline bool resolve_cached(hpx::id_type const &id, naming::address &addr, error_code &ec =
throws)

inline bool resolve_local(naming::gid_type const *gids, naming::address *addrs, std::size_t size,
hpx::detail::dynamic_bitset<> &locals, error_code &ec = throws)

bool resolve_full_local(naming::gid_type const *gids, naming::address *addrs, std::size_t size,
hpx::detail::dynamic_bitset<> &locals, error_code &ec = throws)

bool resolve_cached(naming::gid_type const *gids, naming::address *addrs, std::size_t size,
hpx::detail::dynamic_bitset<> &locals, error_code &ec = throws)

hpx::future_or_value<std::int64_t> incref_async(naming::gid_type const &gid, std::int64_t
credits = 1, hpx::id_type const &keep_alive =
hpx::invalid_id)

Increment the global reference count for the given id.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• gid – [in] The global address (id) for which the global reference count has to be incre-

mented.
• credits – [in] The number of reference counts to add for the given id.
• keep_alive – [in] Id to keep alive (if valid)
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns Whether the operation was successful.

inline std::int64_t incref(naming::gid_type const &gid, std::int64_t credits = 1, error_code &ec =
throws)

void decref(naming::gid_type const &id, std::int64_t credits = 1, error_code &ec = throws)
Decrement the global reference count for the given id.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id – [in] The global address (id) for which the global reference count has to be decre-

mented.
• t – [out] If this was the last outstanding global reference for the given gid (the return

value of this function is zero), t will be set to the component type of the corresponding
element. Otherwise t will not be modified.

• credits – [in] The number of reference counts to add for the given id.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns The global reference count after the decrement.

2.8. API reference 1323

HPX Documentation, master

hpx::future<iterate_names_return_type> iterate_ids(std::string const &pattern) const
Invoke the supplied hpx::function for every registered global name.

This function iterates over all registered global ids and returns every found entry matching the
given name pattern. Any error results in an exception thrown (or reported) from this function.

Parameters pattern – [in] pattern (possibly using wildcards) to match all existing entries
against

bool register_name(std::string const &name, naming::gid_type const &id, error_code &ec =
throws) const

Register a global name with a global address (id)

This function registers an association between a global name (string) and a global address (id)
usable with one of the functions above (bind, unbind, and resolve).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• name – [in] The global name (string) to be associated with the global address.
• id – [in] The global address (id) to be associated with the global address.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns The function returns true if the global name was registered. It returns false if the

global name is not registered.

hpx::future<bool> register_name_async(std::string const &name, hpx::id_type const &id) const

bool register_name(std::string const &name, hpx::id_type const &id, error_code &ec = throws)
const

hpx::future<hpx::id_type> unregister_name_async(std::string const &name) const
Unregister a global name (release any existing association)

This function releases any existing association of the given global name with a global address (id).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• name – [in] The global name (string) for which any association with a global address

(id) has to be released.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns The function returns true if an association of this global name has been released,

and it returns false, if no association existed. Any error results in an exception thrown from
this function.

hpx::id_type unregister_name(std::string const &name, error_code &ec = throws) const

hpx::future<hpx::id_type> resolve_name_async(std::string const &name) const
Query for the global address associated with a given global name.

This function returns the global address associated with the given global name.

1324 Chapter 2. What’s so special about HPX?

HPX Documentation, master

This function returns true if it returned global address (id), which is currently associated with the
given global name, and it returns false, if currently there is no association for this global name.
Any error results in an exception thrown from this function.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns
the result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• name – [in] The global name (string) for which the currently associated global address

has to be retrieved.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns [out] The id currently associated with the given global name (valid only if the return

value is true).

hpx::id_type resolve_name(std::string const &name, error_code &ec = throws) const

future<hpx::id_type> on_symbol_namespace_event(std::string const &name, bool
call_for_past_events = false) const

Install a listener for a given symbol namespace event.

This function installs a listener for a given symbol namespace event. It returns a future which
becomes ready as a result of the listener being triggered.

Note: The only event type which is currently supported is symbol_ns_bind, i.e. the listener is
triggered whenever a global id is registered with the given name.

Parameters
• name – [in] The global name (string) for which the given event should be triggered.
• evt – [in] The event for which a listener should be installed.
• call_for_past_events – [in, optional] Trigger the listener even if the given event has

already happened in the past. The default for this parameter is false.
Returns A future instance encapsulating the global id which is causing the registered listener

to be triggered.

void update_cache_entry(naming::gid_type const &gid, gva const &gva, error_code &ec =
throws)

Warning: This function is for internal use only. It is dangerous and may break your code if
you use it.

inline void update_cache_entry(naming::gid_type const &gid, naming::address const &addr,
std::uint64_t count = 0, std::uint64_t offset = 0, error_code &ec
= throws)

Warning: This function is for internal use only. It is dangerous and may break your code if
you use it.

bool get_cache_entry(naming::gid_type const &gid, gva &gva, naming::gid_type &idbase,
error_code &ec = throws) const

2.8. API reference 1325

HPX Documentation, master

Warning: This function is for internal use only. It is dangerous and may break your code if
you use it.

void remove_cache_entry(naming::gid_type const &id, error_code &ec = throws) const

Warning: This function is for internal use only. It is dangerous and may break your code if
you use it.

void clear_cache(error_code &ec = throws) const

Warning: This function is for internal use only. It is dangerous and may break your code if
you use it.

void start_shutdown(error_code &ec = throws)

hpx::future<std::pair<hpx::id_type, naming::address>> begin_migration(hpx::id_type const &id)
start/stop migration of an object

Returns Current locality and address of the object to migrate

bool end_migration(hpx::id_type const &id)

std::pair<bool, components::pinned_ptr> was_object_migrated(naming::gid_type const &gid,
hpx::move_only_function<components::pinned_ptr()>
&&f)

Maintain list of migrated objects.

hpx::future<void> mark_as_migrated(naming::gid_type const &gid,
hpx::move_only_function<std::pair<bool,
hpx::future<void>>()> &&f, bool
expect_to_be_marked_as_migrating)

Mark the given object as being migrated (if the object is unpinned). Delay migration until the
object is unpinned otherwise.

void unmark_as_migrated(naming::gid_type const &gid_, hpx::move_only_function<void()>
&&f)

Remove the given object from the table of migrated objects.

void pre_cache_endpoints(std::vector<parcelset::endpoints_type> const&)

1326 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Members

mutable hpx::shared_mutex gva_cache_mtx_

std::shared_ptr<gva_cache_type> gva_cache_

mutable mutex_type migrated_objects_mtx_

migrated_objects_table_type migrated_objects_table_

mutable mutex_type console_cache_mtx_

std::uint32_t console_cache_

const std::size_t max_refcnt_requests_

mutex_type refcnt_requests_mtx_

std::size_t refcnt_requests_count_

bool enable_refcnt_caching_

std::shared_ptr<refcnt_requests_type> refcnt_requests_

const service_mode service_type

const runtime_mode runtime_type

const bool caching_

const bool range_caching_

const threads::thread_priority action_priority_

std::uint64_t rts_lva_

std::unique_ptr<component_namespace> component_ns_

std::unique_ptr<locality_namespace> locality_ns_

symbol_namespace symbol_ns_

2.8. API reference 1327

HPX Documentation, master

primary_namespace primary_ns_

std::atomic<hpx::state> state_

naming::gid_type locality_

mutable hpx::shared_mutex resolved_localities_mtx_

resolved_localities_type resolved_localities_

Public Static Functions

static std::int64_t synchronize_with_async_incref(std::int64_t old_credit, hpx::id_type const
&id, std::int64_t compensated_credit)

Protected Functions

void launch_bootstrap(parcelset::endpoints_type const &endpoints, util::runtime_configuration
&rtcfg)

naming::address resolve_full_postproc(naming::gid_type const &id,
primary_namespace::resolved_type const&)

bool bind_postproc(naming::gid_type const &id, gva const &g, future<bool> f)

bool was_object_migrated_locked(naming::gid_type const &id)
Maintain list of migrated objects.

Private Functions

void send_refcnt_requests(std::unique_lock<mutex_type> &l, error_code &ec = throws)
Assumes that refcnt_requests_mtx_ is locked.

void send_refcnt_requests_non_blocking(std::unique_lock<mutex_type> &l, error_code
&ec)

Assumes that refcnt_requests_mtx_ is locked.

std::vector<hpx::future<std::vector<std::int64_t>>> send_refcnt_requests_async(std::unique_lock<mutex_type>
&l)

Assumes that refcnt_requests_mtx_ is locked.

void send_refcnt_requests_sync(std::unique_lock<mutex_type> &l, error_code &ec)
Assumes that refcnt_requests_mtx_ is locked.

1328 Chapter 2. What’s so special about HPX?

HPX Documentation, master

agas_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx/agas_base/server/primary_namespace.hpp

Defined in header hpx/agas_base/server/primary_namespace.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Variables

HPX_ACTION_USES_MEDIUM_STACK(hpx::agas::server::primary_namespace::allocate_action) HPX_REGISTER_ACTION_DECLARATION(hpx typedef std::pair< hpx::id_type,
hpx::naming::address > std_pair_address_id_type

namespace hpx

namespace agas

Functions

naming::gid_type bootstrap_primary_namespace_gid()

hpx::id_type bootstrap_primary_namespace_id()

namespace server
AGAS’s primary namespace maps 128-bit global identifiers (GIDs) to resolved addresses.

The following is the canonical description of the partitioning of AGAS’s primary namespace.

|-----MSB------||------LSB-----|
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
|prefix||RC||----identifier----|

MSB - Most significant bits (bit 64 to bit 127)
LSB - Least significant bits (bit 0 to bit 63)
prefix - Highest 32 bits (bit 96 to bit 127) of the MSB. Each

locality is assigned a prefix. This creates a 96-bit
address space for each locality.

RC - Bit 88 to bit 92 of the MSB. This is the log2 of the number
of reference counting credits on the GID.
Bit 93 is used by the locking scheme for gid_types.
Bit 94 is a flag which is set if the credit value is valid.
Bit 95 is a flag that is set if a GID's credit count is
ever split (e.g. if the GID is ever passed to another
locality).

- Bit 87 marks the gid such that it will not be stored in
any of the AGAS caches. This is used mainly for ids

(continues on next page)

2.8. API reference 1329

HPX Documentation, master

(continued from previous page)

which represent 'one-shot' objects (like promises).
identifier - Bit 64 to bit 86 of the MSB, and the entire LSB. The

content of these bits depends on the component type of
the underlying object. For all user-defined components,
these bits contain a unique 88-bit number which is
assigned sequentially for each locality. For
\a hpx#components#component_enum_type#runtime_support
the high 24 bits are zeroed and the low 64 bits hold the
LVA of the component.

The following address ranges are reserved. Some are either explicitly or implicitly protected by AGAS.
The letter x represents a single-byte wild card.

00000000xxxxxxxxxxxxxxxxxxxxxxxx
Historically unused address space reserved for future use.

xxxxxxxxxxxx0000xxxxxxxxxxxxxxxx
Address space for LVA-encoded GIDs.

00000001xxxxxxxxxxxxxxxxxxxxxxxx
Prefix of the bootstrap AGAS locality.

00000001000000010000000000000001
Address of the primary_namespace component on the bootstrap AGAS
locality.

00000001000000010000000000000002
Address of the component_namespace component on the bootstrap AGAS
locality.

00000001000000010000000000000003
Address of the symbol_namespace component on the bootstrap AGAS
locality.

00000001000000010000000000000004
Address of the locality_namespace component on the bootstrap AGAS
locality.

Note: The layout of the address space is implementation defined, and subject to change. Never write
application code that relies on the internal layout of GIDs. AGAS only guarantees that all assigned
GIDs will be unique.

Variables

static constexpr char const *const primary_namespace_service_name = "primary/"

struct primary_namespace : public components::fixed_component_base<primary_namespace>

1330 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Types

using mutex_type = hpx::spinlock

using base_type = components::fixed_component_base<primary_namespace>

using component_type = std::int32_t

using gva_table_data_type = std::pair<gva, naming::gid_type>

using gva_table_type = std::map<naming::gid_type, gva_table_data_type>

using refcnt_table_type = std::map<naming::gid_type, std::int64_t>

using resolved_type = hpx::tuple<naming::gid_type, gva, naming::gid_type>

Public Functions

inline mutex_type &mutex()

void wait_for_migration_locked(std::unique_lock<mutex_type> &l, naming::gid_type
const &id, error_code &ec)

inline primary_namespace()

void finalize() const

inline void set_local_locality(naming::gid_type const &g)

void register_server_instance(char const *servicename, std::uint32_t locality_id =
naming::invalid_locality_id, error_code &ec = throws)

void unregister_server_instance(error_code &ec = throws) const

bool bind_gid(gva const &g, naming::gid_type id, naming::gid_type const &locality)

std::pair<hpx::id_type, naming::address> begin_migration(naming::gid_type id)

bool end_migration(naming::gid_type const &id)

resolved_type resolve_gid(naming::gid_type const &id)

hpx::id_type colocate(naming::gid_type const &id)

naming::address unbind_gid(std::uint64_t count, naming::gid_type id)

std::int64_t increment_credit(std::int64_t credits, naming::gid_type lower,
naming::gid_type upper)

std::vector<std::int64_t> decrement_credit(std::vector<hpx::tuple<std::int64_t,
naming::gid_type, naming::gid_type>> const
&requests)

2.8. API reference 1331

HPX Documentation, master

std::pair<naming::gid_type, naming::gid_type> allocate(std::uint64_t count)

resolved_type resolve_gid_locked(std::unique_lock<mutex_type> &l, naming::gid_type
const &gid, error_code &ec)

Public Members

counter_data counter_data_

Private Types

using migration_table_type = std::map<naming::gid_type, hpx::tuple<bool, std::size_t,
lcos::local::detail::condition_variable>>

using free_entry_allocator_type = util::internal_allocator<free_entry>

using free_entry_list_type = std::list<free_entry, free_entry_allocator_type>

Private Functions

resolved_type resolve_gid_locked_non_local(std::unique_lock<mutex_type> &l,
naming::gid_type const &gid, error_code
&ec)

void increment(naming::gid_type const &lower, naming::gid_type const &upper, std::int64_t
const &credits, error_code &ec)

void resolve_free_list(std::unique_lock<mutex_type> &l,
std::list<refcnt_table_type::iterator> const &free_list,
free_entry_list_type &free_entry_list, naming::gid_type const
&lower, naming::gid_type const &upper, error_code &ec)

void decrement_sweep(free_entry_list_type &free_list, naming::gid_type const &lower,
naming::gid_type const &upper, std::int64_t credits, error_code &ec)

void free_components_sync(free_entry_list_type const &free_list, naming::gid_type const
&lower, naming::gid_type const &upper, error_code &ec)
const

Private Members

mutex_type mutex_

gva_table_type gvas_

refcnt_table_type refcnts_

1332 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::string instance_name_

naming::gid_type next_id_

naming::gid_type locality_

migration_table_type migrating_objects_

struct counter_data

Public Functions

HPX_NON_COPYABLE(counter_data)

counter_data() = default

std::int64_t get_bind_gid_count(bool)

std::int64_t get_resolve_gid_count(bool)

std::int64_t get_unbind_gid_count(bool)

std::int64_t get_increment_credit_count(bool)

std::int64_t get_decrement_credit_count(bool)

std::int64_t get_allocate_count(bool)

std::int64_t get_begin_migration_count(bool)

std::int64_t get_end_migration_count(bool)

std::int64_t get_overall_count(bool)

std::int64_t get_bind_gid_time(bool)

std::int64_t get_resolve_gid_time(bool)

std::int64_t get_unbind_gid_time(bool)

std::int64_t get_increment_credit_time(bool)

std::int64_t get_decrement_credit_time(bool)

std::int64_t get_allocate_time(bool)

std::int64_t get_begin_migration_time(bool)

std::int64_t get_end_migration_time(bool)

std::int64_t get_overall_time(bool)

void increment_bind_gid_count()

void increment_resolve_gid_count()

2.8. API reference 1333

HPX Documentation, master

void increment_unbind_gid_count()

void increment_increment_credit_count()

void increment_decrement_credit_count()

void increment_allocate_count()

void increment_begin_migration_count()

void increment_end_migration_count()

void enable_all()

Public Members

api_counter_data bind_gid_

api_counter_data resolve_gid_

api_counter_data unbind_gid_

api_counter_data increment_credit_

api_counter_data decrement_credit_

api_counter_data allocate_

api_counter_data begin_migration_

api_counter_data end_migration_

struct api_counter_data

Public Functions

inline api_counter_data()

Public Members

std::atomic<std::int64_t> count_

std::atomic<std::int64_t> time_

bool enabled_

struct free_entry

1334 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

inline free_entry(agas::gva const &gva, naming::gid_type const &gid, naming::gid_type
const &loc)

Public Members

agas::gva gva_

naming::gid_type gid_

naming::gid_type locality_

async_colocated

See Public API for a list of names and headers that are part of the public HPX API.

hpx::get_colocation_id

Defined in header hpx/runtime.hpp798.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

hpx::id_type get_colocation_id(launch::sync_policy, hpx::id_type const &id, error_code &ec = throws)
Return the id of the locality where the object referenced by the given id is currently located on.

The function hpx::get_colocation_id() returns the id of the locality where the given object is currently
located.

See also:

hpx::get_colocation_id()

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• id – [in] The id of the object to locate.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

798 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

2.8. API reference 1335

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

hpx::future<hpx::id_type> get_colocation_id(hpx::id_type const &id)
Asynchronously return the id of the locality where the object referenced by the given id is currently located
on.

See also:

hpx::get_colocation_id(launch::sync_policy)

Parameters id – [in] The id of the object to locate.

async_distributed

See Public API for a list of names and headers that are part of the public HPX API.

hpx::async (distributed)

Defined in header hpx/async.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename Action, typename Target, typename ...Ts>
auto async(Action &&action, Target &&target, Ts&&... ts)

The distributed implementation of hpx::async can be used by giving an action instance as argument
instead of a function, and also by providing another argument with the locality ID or the target ID. The
action executes asynchronously.

Template Parameters

• Action – The type of action instance

• Target – The type of target where the action should be executed

• Ts – The type of any additional arguments

Parameters

• action – The action instance to be executed

• target – The target where the action should be executed

• ts – Additional arguments

Returns hpx::future referring to the shared state created by this call to hpx::async

1336 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/async_distributed/base_lco.hpp

Defined in header hpx/async_distributed/base_lco.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<>

struct hpx::get_lva<hpx::lcos::base_lco>

Public Static Functions

static inline constexpr hpx::lcos::base_lco *call(hpx::naming::address_type lva) noexcept

template<>

struct hpx::get_lva<hpx::lcos::base_lco const>

Public Static Functions

static inline constexpr hpx::lcos::base_lco const *call(hpx::naming::address_type lva) noexcept

namespace hpx

template<> base_lco >

Public Static Functions

static inline constexpr hpx::lcos::base_lco *call(hpx::naming::address_type lva) noexcept

template<> base_lco const >

Public Static Functions

static inline constexpr hpx::lcos::base_lco const *call(hpx::naming::address_type lva) noexcept

namespace lcos

class base_lco
#include <base_lco.hpp> The base_lco class is the common base class for all LCO’s implementing a
simple set_event action

Subclassed by hpx::lcos::base_lco_with_value< Result, RemoteResult, ComponentTag >,
hpx::lcos::base_lco_with_value< void, void, ComponentTag >

2.8. API reference 1337

HPX Documentation, master

Public Types

typedef components::managed_component<base_lco> wrapping_type

typedef base_lco base_type_holder

Public Functions

virtual void set_event() = 0

virtual void set_exception(std::exception_ptr const &e)

virtual void connect(hpx::id_type const&)

virtual void disconnect(hpx::id_type const&)

virtual ~base_lco()
Destructor, needs to be virtual to allow for clean destruction of derived objects

void set_event_nonvirt()
The function set_event_nonvirt is called whenever a set_event_action is applied on a instance of
a LCO. This function just forwards to the virtual function set_event, which is overloaded by the
derived concrete LCO.

void set_exception_nonvirt(std::exception_ptr const &e)
The function set_exception is called whenever a set_exception_action is applied on a instance of
a LCO. This function just forwards to the virtual function set_exception, which is overloaded by
the derived concrete LCO.

Parameters e – [in] The exception encapsulating the error to report to this LCO instance.

void connect_nonvirt(hpx::id_type const &id)
The function connect_nonvirt is called whenever a connect_action is applied on a instance of
a LCO. This function just forwards to the virtual function connect, which is overloaded by the
derived concrete LCO.

Parameters id – [in] target id

void disconnect_nonvirt(hpx::id_type const &id)
The function disconnect_nonvirt is called whenever a disconnect_action is applied on a instance
of a LCO. This function just forwards to the virtual function disconnect, which is overloaded by
the derived concrete LCO.

Parameters id – [in] target id

HPX_DEFINE_COMPONENT_DIRECT_ACTION (base_lco, set_event_nonvirt,
set_event_action) HPX_DEFINE_COMPONENT_DIRECT_ACTION(base_lco

Each of the exposed functions needs to be encapsulated into an action type, allowing to generate
all required boilerplate code for threads, serialization, etc.

The set_event_action may be used to unconditionally trigger any LCO instances, it carries no
additional parameters. The set_exception_action may be used to transfer arbitrary error informa-
tion from the remote site to the LCO instance specified as a continuation. This action carries 2
parameters:

Parameters std::exception_ptr – [in] The exception encapsulating the error to report
to this LCO instance.

1338 Chapter 2. What’s so special about HPX?

HPX Documentation, master

set_exception_action HPX_DEFINE_COMPONENT_DIRECT_ACTION (base_lco,
connect_nonvirt, connect_action) HPX_DEFINE_COMPONENT_DIRECT_ACTION(base_lco

The connect_action may be used to.

The set_exception_action may be used to

Public Members

set_exception_nonvirt

set_exception_action disconnect_nonvirt

Public Static Functions

static components::component_type get_component_type() noexcept

static void set_component_type(components::component_type type)

hpx/async_distributed/base_lco_with_value.hpp

Defined in header hpx/async_distributed/base_lco_with_value.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION(...)

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_(...)

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION2(Value, RemoteValue, Name)

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_1(Value)

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_2(Value, Name)

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_3(Value, RemoteValue, Name)

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_4(Value, RemoteValue, Name, Tag)

HPX_REGISTER_BASE_LCO_WITH_VALUE(...)

HPX_REGISTER_BASE_LCO_WITH_VALUE_(...)

HPX_REGISTER_BASE_LCO_WITH_VALUE_1(Value)

HPX_REGISTER_BASE_LCO_WITH_VALUE_2(Value, Name)

HPX_REGISTER_BASE_LCO_WITH_VALUE_3(Value, RemoteValue, Name)

HPX_REGISTER_BASE_LCO_WITH_VALUE_4(Value, RemoteValue, Name, Tag)

2.8. API reference 1339

HPX Documentation, master

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID(...)

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID_(...)

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID2(Value, RemoteValue, Name, ActionIdGet, ActionIdSet)

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID_4(Value, Name, ActionIdGet, ActionIdSet)

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID_5(Value, RemoteValue, Name, ActionIdGet, ActionIdSet)

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID_6(Value, RemoteValue, Name, ActionIdGet, ActionIdSet, Tag)

namespace hpx

namespace components

namespace lcos

template<typename Result, typename RemoteResult, typename ComponentTag>

class base_lco_with_value : public hpx::lcos::base_lco, public ComponentTag
#include <base_lco_with_value.hpp> The base_lco_with_value class is the common base class for all
LCO’s synchronizing on a value. The RemoteResult template argument should be set to the type of
the argument expected for the set_value action.

Template Parameters
• RemoteResult – The type of the result value to be carried back to the LCO instance.
• ComponentTag – The tag type representing the type of the component (either compo-

nent_tag or managed_component_tag).

Public Types

using wrapping_type = typename detail::base_lco_wrapping_type<ComponentTag,
base_lco_with_value>::type

using base_type_holder = base_lco_with_value

Public Functions

inline void set_value_nonvirt(RemoteResult &&result)
The function set_value_nonvirt is called whenever a set_value_action is applied on this LCO in-
stance. This function just forwards to the virtual function set_value, which is overloaded by the
derived concrete LCO.

Parameters result – [in] The result value to be transferred from the remote operation back
to this LCO instance.

inline Result get_value_nonvirt()
The function get_result_nonvirt is called whenever a get_result_action is applied on this LCO
instance. This function just forwards to the virtual function get_result, which is overloaded by the
derived concrete LCO.

1340 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX_DEFINE_COMPONENT_DIRECT_ACTION (base_lco_with_value, set_value_nonvirt,
set_value_action) HPX_DEFINE_COMPONENT_DIRECT_ACTION(base_lco_with_value

The set_value_action may be used to trigger any LCO instances while carrying an additional pa-
rameter of any type.

RemoteResult is taken by rvalue ref. This allows for perfect forwarding. When the action thread
function is created, the values are moved into the called function. If we took it by const lvalue
reference, we would disable the possibility to further move the result to the designated destination.

Parameters RemoteResult – [in] The type of the result to be transferred back to this LCO
instance. The get_value_action may be used to query the value this LCO instance exposes
as its ‘result’ value.

Public Members

get_value_nonvirt

Public Static Functions

static inline components::component_type get_component_type() noexcept

static inline void set_component_type(components::component_type type)

Protected Types

using result_type = std::conditional_t<std::is_void_v<Result>, util::unused_type, Result>

Protected Functions

~base_lco_with_value() override = default
Destructor, needs to be virtual to allow for clean destruction of derived objects

inline virtual void set_event() override

virtual void set_value(RemoteResult &&result) = 0

virtual result_type get_value() = 0

inline virtual result_type get_value(error_code&)

template<typename ComponentTag>

class base_lco_with_value<void, void, ComponentTag> : public hpx::lcos::base_lco, public
ComponentTag

#include <base_lco_with_value.hpp> The base_lco<void> specialization is used whenever the
set_event action for a particular LCO doesn’t carry any argument.

Template Parameters void – This specialization expects no result value and is almost com-
pletely equivalent to the plain base_lco.

2.8. API reference 1341

HPX Documentation, master

Public Types

using wrapping_type = typename detail::base_lco_wrapping_type<ComponentTag,
base_lco_with_value>::type

using base_type_holder = base_lco_with_value

using set_value_action = typename base_lco::set_event_action

Public Functions

inline void get_value()

Protected Functions

~base_lco_with_value() override = default
Destructor, needs to be virtual to allow for clean destruction of derived objects

namespace traits

hpx::dataflow (distributed)

Defined in header hpx/async.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename Action, typename Target, typename ...Ts>
decltype(auto) dataflow(Action &&action, Target &&target, Ts&&... ts)

The distributed implementation of hpx::dataflow can be used by giving an action instance as argument
instead of a function, and also by providing another argument with the locality ID or the target ID. The
action executes asynchronously.

Note: Its behavior is similar to hpx::async with the exception that if one of the arguments is a future,
then hpx::dataflow will wait for the future to be ready to launch the thread.

Template Parameters

• Action – The type of action instance

• Target – The type of target where the action should be executed

• Ts – The type of any additional arguments

Parameters

1342 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• action – The action instance to be executed

• target – The target where the action should be executed

• ts – Additional arguments

Returns hpx::future referring to the shared state created by this call to hpx::dataflow

hpx::distributed::promise

Defined in header hpx/future.hpp799.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace distributed

template<typename Result, typename RemoteResult>

class promise
#include <promise.hpp> A promise can be used by a single thread to invoke a (remote) action and
wait for the result. The result is expected to be sent back to the promise using the LCO’s set_event
action

A promise is one of the simplest synchronization primitives provided by HPX. It allows to synchronize
on a eager evaluated remote operation returning a result of the type Result. The promise allows to
synchronize exactly one thread (the one passed during construction time).

// Create the promise (the expected result is a id_type)
hpx::distributed::promise<hpx::id_type> p;

// Get the associated future
future<hpx::id_type> f = p.get_future();

// initiate the action supplying the promise as a
// continuation
apply<some_action>(new continuation(p.get_id()), ...);

// Wait for the result to be returned, yielding control
// in the meantime.
hpx::id_type result = f.get();
// ...

Note: The action executed by the promise must return a value of a type convertible to the type as
specified by the template parameter RemoteResult

Template Parameters
• Result – The template parameter Result defines the type this promise is expected to

return from promise::get.
799 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

2.8. API reference 1343

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/future.hpp

HPX Documentation, master

• RemoteResult – The template parameter RemoteResult defines the type this promise is
expected to receive from the remote action.

namespace lcos

template<typename Result, typename RemoteResult, typename ComponentTag>

class base_lco_with_value : public hpx::lcos::base_lco, public ComponentTag
#include <base_lco_with_value.hpp>

template<typename Action, typename Result = typename traits::promise_local_result<typename
Action::remote_result_type>::type, bool DirectExecute = Action::direct_execution::value>
class packaged_action

#include <packaged_action.hpp> A packaged_action can be used by a single thread to invoke a (re-
mote) action and wait for the result. The result is expected to be sent back to the packaged_action
using the LCO’s set_event action

A packaged_action is one of the simplest synchronization primitives provided by HPX. It allows to
synchronize on a eager evaluated remote operation returning a result of the type Result.

Note: The action executed using the packaged_action as a continuation must return a value of a type
convertible to the type as specified by the template parameter Result.

Template Parameters
• Action – The template parameter Action defines the action to be executed by this pack-

aged_action instance. The arguments arg0,. . . argN are used as parameters for this
action.

• Result – The template parameter Result defines the type this packaged_action is ex-
pected to return from its associated future packaged_action::get_future.

• DirectExecute – The template parameter DirectExecute is an optimization aid allow-
ing to execute the action directly if the target is local (without spawning a new thread
for this). This template does not have to be supplied explicitly as it is derived from the
template parameter Action.

namespace lcos

hpx/async_distributed/packaged_action.hpp

Defined in header hpx/async_distributed/packaged_action.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace lcos

template<typename Action, typename Result = typename traits::promise_local_result<typename
Action::remote_result_type>::type, bool DirectExecute = Action::direct_execution::value>
class packaged_action

#include <packaged_action.hpp>

template<typename Action, typename Result>

1344 Chapter 2. What’s so special about HPX?

HPX Documentation, master

class packaged_action<Action, Result, false> : public hpx::distributed::promise<Result,
hpx::traits::extract_action<Action>::remote_result_type>

Subclassed by hpx::lcos::packaged_action< Action, Result, true >

Public Functions

inline packaged_action()

template<typename Allocator>
inline packaged_action(std::allocator_arg_t, Allocator const &alloc)

template<typename ...Ts>
inline void post(hpx::id_type const &id, Ts&&... vs)

template<typename ...Ts>
inline void post(naming::address &&addr, hpx::id_type const &id, Ts&&... vs)

template<typename Callback, typename ...Ts>
inline void post_cb(hpx::id_type const &id, Callback &&cb, Ts&&... vs)

template<typename Callback, typename ...Ts>
inline void post_cb(naming::address &&addr, hpx::id_type const &id, Callback &&cb, Ts&&...

vs)

template<typename ...Ts>
inline void post_p(hpx::id_type const &id, hpx::launch policy, Ts&&... vs)

template<typename ...Ts>
inline void post_p(naming::address &&addr, hpx::id_type const &id, hpx::launch policy, Ts&&...

vs)

template<typename Callback, typename ...Ts>
inline void post_p_cb(hpx::id_type const &id, hpx::launch policy, Callback &&cb, Ts&&... vs)

template<typename Callback, typename ...Ts>
inline void post_p_cb(naming::address &&addr, hpx::id_type const &id, hpx::launch policy,

Callback &&cb, Ts&&... vs)

template<typename ...Ts>
inline void post_deferred(naming::address &&addr, hpx::id_type const &id, hpx::launch policy,

Ts&&... vs)

template<typename Callback, typename ...Ts>
inline void post_deferred_cb(naming::address &&addr, hpx::id_type const &id, hpx::launch

policy, Callback &&cb, Ts&&... vs)

2.8. API reference 1345

HPX Documentation, master

Protected Types

using action_type = typename hpx::traits::extract_action<Action>::type

using remote_result_type = typename action_type::remote_result_type

using base_type = hpx::distributed::promise<Result, remote_result_type>

Protected Functions

template<typename ...Ts>
inline void do_post(naming::address &&addr, hpx::id_type const &id, hpx::launch policy, Ts&&...

vs)

template<typename ...Ts>
inline void do_post(hpx::id_type const &id, hpx::launch policy, Ts&&... vs)

template<typename Callback, typename ...Ts>
inline void do_post_cb(naming::address &&addr, hpx::id_type const &id, hpx::launch policy,

Callback &&cb, Ts&&... vs)

template<typename Callback, typename ...Ts>
inline void do_post_cb(hpx::id_type const &id, hpx::launch policy, Callback &&cb, Ts&&... vs)

template<typename Action, typename Result>

class packaged_action<Action, Result, true> : public hpx::lcos::packaged_action<Action, Result,
false>

Public Functions

inline packaged_action()
Construct a (non-functional) instance of an packaged_action. To use this instance its member
function post needs to be directly called.

template<typename Allocator>
inline packaged_action(std::allocator_arg_t, Allocator const &alloc)

template<typename ...Ts>
inline void post(hpx::id_type const &id, Ts&&... vs)

template<typename ...Ts>
inline void post(naming::address &&addr, hpx::id_type const &id, Ts&&... vs)

template<typename Callback, typename ...Ts>
inline void post_cb(hpx::id_type const &id, Callback &&cb, Ts&&... vs)

template<typename Callback, typename ...Ts>
inline void post_cb(naming::address &&addr, hpx::id_type const &id, Callback &&cb, Ts&&...

vs)

1346 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Types

using action_type = typename packaged_action<Action, Result, false>::action_type

hpx::post (distributed)

Defined in header hpx/async.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename Action, typename Target, typename ...Ts>
bool post(Action &&action, Target &&target, Ts&&... ts)

The distributed implementation of hpx::post can be used by giving an action instance as argument instead
of a function, and also by providing another argument with the locality ID or the target ID.

Template Parameters

• Action – The type of action instance

• Target – The type of target where the action should be executed

• Ts – The type of any additional arguments

Parameters

• action – The action instance to be executed

• target – The target where the action should be executed

• ts – Additional arguments

Returns true if the action was successfully posted, false otherwise.

hpx/async_distributed/promise.hpp

Defined in header hpx/async_distributed/promise.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<>

class hpx::distributed::promise<void, hpx::util::unused_type> : public lcos::detail::promise_base<void,
hpx::util::unused_type, lcos::detail::promise_data<void>>

2.8. API reference 1347

HPX Documentation, master

Public Functions

promise() = default
constructs a promise object and a shared state.

template<typename Allocator>
inline promise(std::allocator_arg_t, Allocator const &a)

constructs a promise object and a shared state. The constructor uses the allocator a to allocate the memory
for the shared state.

promise(promise &&other) noexcept = default
constructs a new promise object and transfers ownership of the shared state of other (if any) to the newly-
constructed object.

Post other has no shared state.

~promise() = default
Abandons any shared state.

promise &operator=(promise &&other) noexcept = default
Abandons any shared state (30.6.4) and then as if promise(HPX_MOVE(other)).swap(*this).

Returns *this.

inline void swap(promise &other) noexcept
Exchanges the shared state of *this and other.

Post *this has the shared state (if any) that other had prior to the call to swap. other has the shared
state (if any) that *this had prior to the call to swap.

inline void set_value()
atomically stores the value r in the shared state and makes that state ready (30.6.4).

Throws future_error – if its shared state already has a stored value. if shared state has no
stored value exception is raised. promise_already_satisfied if its shared state already has a
stored value or exception. no_state if *this has no shared state.

Private Types

using base_type = lcos::detail::promise_base<void, hpx::util::unused_type,
lcos::detail::promise_data<void>>

template<typename R, typename Allocator>

struct uses_allocator<hpx::distributed::promise<R>, Allocator> : public true_type
#include <promise.hpp> Requires: Allocator shall be an allocator (17.6.3.5)

namespace hpx

namespace distributed

1348 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename Result, typename RemoteResult>
void swap(promise<Result, RemoteResult> &x, promise<Result, RemoteResult> &y) noexcept

template<typename Result, typename RemoteResult>

class promise
#include <promise.hpp>

template<> unused_type > : public lcos::detail::promise_base< void,
hpx::util::unused_type, lcos::detail::promise_data< void > >

Public Functions

promise() = default
constructs a promise object and a shared state.

template<typename Allocator>
inline promise(std::allocator_arg_t, Allocator const &a)

constructs a promise object and a shared state. The constructor uses the allocator a to allocate the
memory for the shared state.

promise(promise &&other) noexcept = default
constructs a new promise object and transfers ownership of the shared state of other (if any) to the
newly- constructed object.

Post other has no shared state.

~promise() = default
Abandons any shared state.

promise &operator=(promise &&other) noexcept = default
Abandons any shared state (30.6.4) and then as if promise(HPX_MOVE(other)).swap(*this).

Returns *this.

inline void swap(promise &other) noexcept
Exchanges the shared state of *this and other.

Post *this has the shared state (if any) that other had prior to the call to swap. other has the
shared state (if any) that *this had prior to the call to swap.

inline void set_value()
atomically stores the value r in the shared state and makes that state ready (30.6.4).

Throws future_error – if its shared state already has a stored value. if shared state has no
stored value exception is raised. promise_already_satisfied if its shared state already has a
stored value or exception. no_state if *this has no shared state.

2.8. API reference 1349

HPX Documentation, master

Private Types

using base_type = lcos::detail::promise_base<void, hpx::util::unused_type,
lcos::detail::promise_data<void>>

namespace std

template<typename R, typename Allocator> promise< R >,
Allocator > : public true_type

#include <promise.hpp> Requires: Allocator shall be an allocator (17.6.3.5)

hpx::sync (distributed)

Defined in header hpx/async.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename Action, typename Target, typename ...Ts>
decltype(auto) sync(Action &&action, Target &&target, Ts&&... ts)

The distributed implementation of hpx::sync can be used by giving an action instance as argument instead
of a function, and also by providing another argument with the locality ID or the target ID. The action
executes synchronously.

Template Parameters

• Action – The type of action instance

• Target – The type of target where the action should be executed

• Ts – The type of any additional arguments

Parameters

• action – The action instance to be executed

• target – The target where the action should be executed

• ts – Additional arguments

Returns hpx::future referring to the shared state created by this call to hpx::sync

1350 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/async_distributed/transfer_continuation_action.hpp

Defined in header hpx/async_distributed/transfer_continuation_action.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/async_distributed/trigger_lco.hpp

Defined in header hpx/async_distributed/trigger_lco.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

hpx/async_distributed/trigger_lco_fwd.hpp

Defined in header hpx/async_distributed/trigger_lco_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

void trigger_lco_event(hpx::id_type id, naming::address &&addr, bool move_credits = true)
Trigger the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should be triggered.

• addr – [in] This represents the addr of the LCO which should be triggered.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

inline void trigger_lco_event(hpx::id_type const &id, bool move_credits = true)
Trigger the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should be triggered.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

void trigger_lco_event(hpx::id_type id, naming::address &&addr, hpx::id_type const &cont, bool
move_credits = true)

Trigger the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should be triggered.

• addr – [in] This represents the addr of the LCO which should be triggered.

• cont – [in] This represents the LCO to trigger after completion.

2.8. API reference 1351

HPX Documentation, master

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

inline void trigger_lco_event(hpx::id_type const &id, hpx::id_type const &cont, bool move_credits =
true)

Trigger the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should be triggered.

• cont – [in] This represents the LCO to trigger after completion.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

template<typename Result>
void set_lco_value(hpx::id_type id, naming::address &&addr, Result &&t, bool move_credits = true)

Set the result value for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the given value.

• addr – [in] This represents the addr of the LCO which should be triggered.

• t – [in] This is the value which should be sent to the LCO.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

template<typename Result>
std::enable_if_t<!std::is_same_v<std::decay_t<Result>, naming::address>> set_lco_value(hpx::id_type

const &id,
Result &&t,
bool
move_credits =
true)

Set the result value for the (managed) LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the given value.

• t – [in] This is the value which should be sent to the LCO.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

template<typename Result>
std::enable_if_t<!std::is_same_v<std::decay_t<Result>, naming::address>> set_lco_value_unmanaged(hpx::id_type

const
&id,
Re-
sult
&&t,
bool
move_credits
=
true)

Set the result value for the (unmanaged) LCO referenced by the given id.

1352 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters

• id – [in] This represents the id of the LCO which should receive the given value.

• t – [in] This is the value which should be sent to the LCO.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

template<typename Result>
void set_lco_value(hpx::id_type id, naming::address &&addr, Result &&t, hpx::id_type const &cont, bool

move_credits = true)
Set the result value for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the given value.

• addr – [in] This represents the addr of the LCO which should be triggered.

• t – [in] This is the value which should be sent to the LCO.

• cont – [in] This represents the LCO to trigger after completion.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

template<typename Result>
std::enable_if_t<!std::is_same_v<std::decay_t<Result>, naming::address>> set_lco_value(hpx::id_type

const &id,
Result &&t,
hpx::id_type
const &cont,
bool
move_credits =
true)

Set the result value for the (managed) LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the given value.

• t – [in] This is the value which should be sent to the LCO.

• cont – [in] This represents the LCO to trigger after completion.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

template<typename Result>
std::enable_if_t<!std::is_same_v<std::decay_t<Result>, naming::address>> set_lco_value_unmanaged(hpx::id_type

const
&id,
Re-
sult
&&t,
hpx::id_type
const
&cont,
bool
move_credits
=
true)

2.8. API reference 1353

HPX Documentation, master

Set the result value for the (unmanaged) LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the given value.

• t – [in] This is the value which should be sent to the LCO.

• cont – [in] This represents the LCO to trigger after completion.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

void set_lco_error(hpx::id_type id, naming::address &&addr, std::exception_ptr const &e, bool
move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the error value.

• addr – [in] This represents the addr of the LCO which should be triggered.

• e – [in] This is the error value which should be sent to the LCO.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

void set_lco_error(hpx::id_type id, naming::address &&addr, std::exception_ptr &&e, bool move_credits
= true)

Set the error state for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the error value.

• addr – [in] This represents the addr of the LCO which should be triggered.

• e – [in] This is the error value which should be sent to the LCO.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

inline void set_lco_error(hpx::id_type const &id, std::exception_ptr const &e, bool move_credits = true)
Set the error state for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the error value.

• e – [in] This is the error value which should be sent to the LCO.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

inline void set_lco_error(hpx::id_type const &id, std::exception_ptr &&e, bool move_credits = true)
Set the error state for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the error value.

• e – [in] This is the error value which should be sent to the LCO.

1354 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

void set_lco_error(hpx::id_type id, naming::address &&addr, std::exception_ptr const &e, hpx::id_type
const &cont, bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the error value.

• addr – [in] This represents the addr of the LCO which should be triggered.

• e – [in] This is the error value which should be sent to the LCO.

• cont – [in] This represents the LCO to trigger after completion.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

void set_lco_error(hpx::id_type id, naming::address &&addr, std::exception_ptr &&e, hpx::id_type const
&cont, bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the error value.

• addr – [in] This represents the addr of the LCO which should be triggered.

• e – [in] This is the error value which should be sent to the LCO.

• cont – [in] This represents the LCO to trigger after completion.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

inline void set_lco_error(hpx::id_type const &id, std::exception_ptr const &e, hpx::id_type const &cont,
bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the error value.

• e – [in] This is the error value which should be sent to the LCO.

• cont – [in] This represents the LCO to trigger after completion.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

inline void set_lco_error(hpx::id_type const &id, std::exception_ptr &&e, hpx::id_type const &cont, bool
move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id – [in] This represents the id of the LCO which should receive the error value.

• e – [in] This is the error value which should be sent to the LCO.

• cont – [in] This represents the LCO to trigger after completion.

• move_credits – [in] If this is set to true then it is ok to send all credits in id along with
the generated message. The default value is true.

2.8. API reference 1355

HPX Documentation, master

checkpoint

See Public API for a list of names and headers that are part of the public HPX API.

hpx/checkpoint/checkpoint.hpp

Defined in header hpx/checkpoint/checkpoint.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

This header defines the save_checkpoint and restore_checkpoint functions. These functions are designed to help HPX
application developer’s checkpoint their applications. Save_checkpoint serializes one or more objects and saves them
as a byte stream. Restore_checkpoint converts the byte stream back into instances of the objects.

namespace hpx

namespace util

Functions

inline std::ostream &operator<<(std::ostream &ost, checkpoint const &ckp)
Operator<< Overload

This overload is the main way to write data from a checkpoint to an object such as a file. Inside the
function, the size of the checkpoint will be written to the stream before the checkpoint’s data. The
operator>> overload uses this to read the correct number of bytes. Be mindful of this additional write
and read when you use different facilities to write out or read in data to a checkpoint!

Parameters
• ost – Output stream to write to.
• ckp – Checkpoint to copy from.

Returns Operator<< returns the ostream object.

inline std::istream &operator>>(std::istream &ist, checkpoint &ckp)
Operator>> Overload

This overload is the main way to read in data from an object such as a file to a checkpoint. It is
important to note that inside the function, the first variable to be read is the size of the checkpoint.
This size variable is written to the stream before the checkpoint’s data in the operator<< overload. Be
mindful of this additional read and write when you use different facilities to read in or write out data
from a checkpoint!

Parameters
• ist – Input stream to write from.
• ckp – Checkpoint to write to.

Returns Operator>> returns the ostream object.

template<typename T, typename ...Ts, typename U = typename
std::enable_if<!hpx::traits::is_launch_policy<T>::value && !std::is_same<typename
std::decay<T>::type, checkpoint>::value>::type>

1356 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::future<checkpoint> save_checkpoint(T &&t, Ts&&... ts)
Save_checkpoint

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it. Most
notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.

Template Parameters
• T – Containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
• Ts – More containers passed to save_checkpoint to be serialized and placed into a check-

point object.
• U – This parameter is used to make sure that T is not a launch policy or a checkpoint.

This forces the compiler to choose the correct overload.
Parameters

• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns Save_checkpoint returns a future to a checkpoint with one exception: if you pass

hpx::launch::sync as the first argument. In this case save_checkpoint will simply return a
checkpoint.

template<typename T, typename ...Ts>
hpx::future<checkpoint> save_checkpoint(checkpoint &&c, T &&t, Ts&&... ts)

Save_checkpoint - Take a pre-initialized checkpoint

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it. Most
notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.

Template Parameters
• T – Containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
• Ts – More containers passed to save_checkpoint to be serialized and placed into a check-

point object.
Parameters

• c – Takes a pre-initialized checkpoint to copy data into.
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns Save_checkpoint returns a future to a checkpoint with one exception: if you pass

hpx::launch::sync as the first argument. In this case save_checkpoint will simply return a
checkpoint.

template<typename T, typename ...Ts, typename U = typename std::enable_if<!std::is_same<typename
std::decay<T>::type, checkpoint>::value>::type>
hpx::future<checkpoint> save_checkpoint(hpx::launch p, T &&t, Ts&&... ts)

Save_checkpoint - Policy overload

2.8. API reference 1357

HPX Documentation, master

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it. Most
notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.

Template Parameters
• T – Containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
• Ts – More containers passed to save_checkpoint to be serialized and placed into a check-

point object.
Parameters

• p – Takes an HPX launch policy. Allows the user to change the way the function is
launched i.e. async, sync, etc.

• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns Save_checkpoint returns a future to a checkpoint with one exception: if you pass

hpx::launch::sync as the first argument. In this case save_checkpoint will simply return a
checkpoint.

template<typename T, typename ...Ts>
hpx::future<checkpoint> save_checkpoint(hpx::launch p, checkpoint &&c, T &&t, Ts&&... ts)

Save_checkpoint - Policy overload & pre-initialized checkpoint

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it. Most
notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.

Template Parameters
• T – Containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
• Ts – More containers passed to save_checkpoint to be serialized and placed into a check-

point object.
Parameters

• p – Takes an HPX launch policy. Allows the user to change the way the function is
launched i.e. async, sync, etc.

• c – Takes a pre-initialized checkpoint to copy data into.
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns Save_checkpoint returns a future to a checkpoint with one exception: if you pass

hpx::launch::sync as the first argument. In this case save_checkpoint will simply return a
checkpoint.

template<typename T, typename ...Ts, typename U = typename std::enable_if<!std::is_same<typename
std::decay<T>::type, checkpoint>::value>::type>
checkpoint save_checkpoint(hpx::launch::sync_policy sync_p, T &&t, Ts&&... ts)

Save_checkpoint - Sync_policy overload

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the

1358 Chapter 2. What’s so special about HPX?

HPX Documentation, master

component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it. Most
notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.

Template Parameters
• T – Containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
• Ts – More containers passed to save_checkpoint to be serialized and placed into a check-

point object.
• U – This parameter is used to make sure that T is not a checkpoint. This forces the

compiler to choose the correct overload.
Parameters

• sync_p – hpx::launch::sync_policy
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns Save_checkpoint which is passed hpx::launch::sync_policy will return a checkpoint

which contains the serialized values checkpoint.

template<typename T, typename ...Ts>
checkpoint save_checkpoint(hpx::launch::sync_policy sync_p, checkpoint &&c, T &&t, Ts&&... ts)

Save_checkpoint - Sync_policy overload & pre-init. checkpoint

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it. Most
notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.

Template Parameters
• T – Containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
• Ts – More containers passed to save_checkpoint to be serialized and placed into a check-

point object.
Parameters

• sync_p – hpx::launch::sync_policy
• c – Takes a pre-initialized checkpoint to copy data into.
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns Save_checkpoint which is passed hpx::launch::sync_policy will return a checkpoint

which contains the serialized values checkpoint.

template<typename T, typename ...Ts, typename U = typename
std::enable_if<!hpx::traits::is_launch_policy<T>::value && !std::is_same<typename
std::decay<T>::type, checkpoint>::value>::type>
hpx::future<checkpoint> prepare_checkpoint(T const &t, Ts const&... ts)

prepare_checkpoint

prepare_checkpoint takes the containers which have to be filled from the byte stream by a subsequent
restore_checkpoint invocation. prepare_checkpoint will calculate the necessary buffer size and will
return an appropriately sized checkpoint object.

Template Parameters
• T – A container to restore.
• Ts – Other containers to restore. Containers must be in the same order that they were

inserted into the checkpoint.

2.8. API reference 1359

HPX Documentation, master

Parameters
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns prepare_checkpoint returns a properly resized checkpoint object that can be used for

a subsequent restore_checkpoint operation.

template<typename T, typename ...Ts>
hpx::future<checkpoint> prepare_checkpoint(checkpoint &&c, T const &t, Ts const&... ts)

prepare_checkpoint

prepare_checkpoint takes the containers which have to be filled from the byte stream by a subsequent
restore_checkpoint invocation. prepare_checkpoint will calculate the necessary buffer size and will
return an appropriately sized checkpoint object.

Template Parameters
• T – A container to restore.
• Ts – Other containers to restore. Containers must be in the same order that they were

inserted into the checkpoint.
Parameters

• c – Takes a pre-initialized checkpoint to prepare
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns prepare_checkpoint returns a properly resized checkpoint object that can be used for

a subsequent restore_checkpoint operation.

template<typename T, typename ...Ts, typename U = typename std::enable_if<!std::is_same<T ,
checkpoint>::value>::type>
hpx::future<checkpoint> prepare_checkpoint(hpx::launch p, T const &t, Ts const&... ts)

prepare_checkpoint

prepare_checkpoint takes the containers which have to be filled from the byte stream by a subsequent
restore_checkpoint invocation. prepare_checkpoint will calculate the necessary buffer size and will
return an appropriately sized checkpoint object.

Template Parameters
• T – A container to restore.
• Ts – Other containers to restore. Containers must be in the same order that they were

inserted into the checkpoint.
Parameters

• p – Takes an HPX launch policy. Allows the user to change the way the function is
launched i.e. async, sync, etc.

• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns prepare_checkpoint returns a properly resized checkpoint object that can be used for

a subsequent restore_checkpoint operation.

template<typename T, typename ...Ts>
hpx::future<checkpoint> prepare_checkpoint(hpx::launch p, checkpoint &&c, T const &t, Ts

const&... ts)
prepare_checkpoint

prepare_checkpoint takes the containers which have to be filled from the byte stream by a subsequent
restore_checkpoint invocation. prepare_checkpoint will calculate the necessary buffer size and will
return an appropriately sized checkpoint object.

Template Parameters

1360 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• T – A container to restore.
• Ts – Other containers to restore. Containers must be in the same order that they were

inserted into the checkpoint.
Parameters

• p – Takes an HPX launch policy. Allows the user to change the way the function is
launched i.e. async, sync, etc.

• c – Takes a pre-initialized checkpoint to prepare
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns prepare_checkpoint returns a properly resized checkpoint object that can be used for

a subsequent restore_checkpoint operation.

template<typename T, typename ...Ts>
void restore_checkpoint(checkpoint const &c, T &t, Ts&... ts)

Restore_checkpoint

Restore_checkpoint takes a checkpoint object as a first argument and the containers which will be filled
from the byte stream (in the same order as they were placed in save_checkpoint). Restore_checkpoint
can resurrect a stored component in two ways: by passing in a instance of a component’s shared_ptr
or by passing in an instance of the component’s client.

Template Parameters
• T – A container to restore.
• Ts – Other containers to restore. Containers must be in the same order that they were

inserted into the checkpoint.
Parameters

• c – The checkpoint to restore.
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns Restore_checkpoint returns void.

class checkpoint
#include <checkpoint.hpp> Checkpoint Object

Checkpoint is the container object which is produced by save_checkpoint and is consumed by a re-
store_checkpoint. A checkpoint may be moved into the save_checkpoint object to write the byte stream
to the pre-created checkpoint object.

Checkpoints are able to store all containers which are able to be serialized including components.

2.8. API reference 1361

HPX Documentation, master

Public Types

using const_iterator = std::vector<char>::const_iterator

Public Functions

checkpoint() = default

~checkpoint() = default

checkpoint(checkpoint const &c) = default

checkpoint(checkpoint &&c) noexcept = default

inline checkpoint(std::vector<char> const &vec)

inline checkpoint(std::vector<char> &&vec) noexcept

checkpoint &operator=(checkpoint const &c) = default

checkpoint &operator=(checkpoint &&c) noexcept = default

inline const_iterator begin() const noexcept

inline const_iterator end() const noexcept

inline std::size_t size() const noexcept

inline char *data() noexcept

inline char const *data() const noexcept

Private Functions

template<typename Archive>
inline void serialize(Archive &arch, const unsigned int)

Private Members

std::vector<char> data_

Friends

friend class hpx::serialization::access

friend std::ostream &operator<<(std::ostream &ost, checkpoint const &ckp)
Operator<< Overload

This overload is the main way to write data from a checkpoint to an object such as a file. Inside the
function, the size of the checkpoint will be written to the stream before the checkpoint’s data. The
operator>> overload uses this to read the correct number of bytes. Be mindful of this additional
write and read when you use different facilities to write out or read in data to a checkpoint!

1362 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• ost – Output stream to write to.
• ckp – Checkpoint to copy from.

Returns Operator<< returns the ostream object.

friend std::istream &operator>>(std::istream &ist, checkpoint &ckp)
Operator>> Overload

This overload is the main way to read in data from an object such as a file to a checkpoint. It is
important to note that inside the function, the first variable to be read is the size of the checkpoint.
This size variable is written to the stream before the checkpoint’s data in the operator<< overload.
Be mindful of this additional read and write when you use different facilities to read in or write
out data from a checkpoint!

Parameters
• ist – Input stream to write from.
• ckp – Checkpoint to write to.

Returns Operator>> returns the ostream object.

template<typename T, typename ...Ts>
friend void restore_checkpoint(checkpoint const &c, T &t, Ts&... ts)

Restore_checkpoint

Restore_checkpoint takes a checkpoint object as a first argument and the containers which will
be filled from the byte stream (in the same order as they were placed in save_checkpoint). Re-
store_checkpoint can resurrect a stored component in two ways: by passing in a instance of a
component’s shared_ptr or by passing in an instance of the component’s client.

Template Parameters
• T – A container to restore.
• Ts – Other containers to restore. Containers must be in the same order that they were

inserted into the checkpoint.
Parameters

• c – The checkpoint to restore.
• t – A container to restore.
• ts – Other containers to restore Containers must be in the same order that they were

inserted into the checkpoint.
Returns Restore_checkpoint returns void.

inline friend bool operator==(checkpoint const &lhs, checkpoint const &rhs)

inline friend bool operator!=(checkpoint const &lhs, checkpoint const &rhs)

2.8. API reference 1363

HPX Documentation, master

checkpoint_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx/checkpoint_base/checkpoint_data.hpp

Defined in header hpx/checkpoint_base/checkpoint_data.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace util

Functions

template<typename Container, typename ...Ts>
void save_checkpoint_data(Container &data, Ts&&... ts)

save_checkpoint_data

Save_checkpoint_data takes any number of objects which a user may wish to store in the given con-
tainer.

Template Parameters
• Container – Container used to store the check-pointed data.
• Ts – Types of variables to checkpoint

Parameters
• data – Container instance used to store the checkpoint data
• ts – Variable instances to be inserted into the checkpoint.

template<typename ...Ts>
std::size_t prepare_checkpoint_data(Ts const&... ts)

prepare_checkpoint_data

prepare_checkpoint_data takes any number of objects which a user may wish to store in a subsequent
save_checkpoint_data operation. The function will return the number of bytes necessary to store the
data that will be produced.

Template Parameters Ts – Types of variables to checkpoint
Parameters ts – Variable instances to be inserted into the checkpoint.

template<typename Container, typename ...Ts>
void restore_checkpoint_data(Container const &cont, Ts&... ts)

restore_checkpoint_data

restore_checkpoint_data takes any number of objects which a user may wish to restore from the given
container. The sequence of objects has to correspond to the sequence of objects for the corresponding
call to save_checkpoint_data that had used the given container instance.

Template Parameters
• Container – Container used to restore the check-pointed data.
• Ts – Types of variables to restore

1364 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• cont – Container instance used to restore the checkpoint data
• ts – Variable instances to be restored from the container

struct checkpointing_tag

template<>

struct extra_data_helper<checkpointing_tag>

Public Static Functions

static extra_data_id_type id() noexcept

static inline constexpr void reset(checkpointing_tag*) noexcept

collectives

See Public API for a list of names and headers that are part of the public HPX API.

hpx/collectives/all_gather.hpp

Defined in header hpx/collectives/all_gather.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Functions

template<typename T>
hpx::future<std::vector<std::decay_t<T>>> all_gather(char const *basename, T &&result,

num_sites_arg num_sites = num_sites_arg(),
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

AllGather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• basename – The base name identifying the all_gather operation
• result – The value to transmit to all participating sites from this call site.
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.

2.8. API reference 1365

HPX Documentation, master

• generation – The generational counter identifying the sequence number of the
all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The site that is responsible for creating the all_gather support object. This
value is optional and defaults to ‘0’ (zero).

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_gather operation has been completed.

template<typename T>
hpx::future<std::vector<std::decay_t<T>>> all_gather(communicator comm, T &&result,

this_site_arg this_site = this_site_arg(),
generation_arg generation =
generation_arg())

AllGather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

AllGather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_gather operation has been completed.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_gather operation has been completed.

template<typename T>
std::vector<std::decay_t<T>> all_gather(hpx::launch::sync_policy, char const *basename, T

&&result, num_sites_arg num_sites = num_sites_arg(),
this_site_arg this_site = this_site_arg(), generation_arg
generation = generation_arg(), root_site_arg root_site =
root_site_arg())

AllGather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

1366 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the all_gather operation
• result – The value to transmit to all participating sites from this call site.
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The site that is responsible for creating the all_gather support object. This
value is optional and defaults to ‘0’ (zero).

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T>
std::vector<std::decay_t<T>> all_gather(hpx::launch::sync_policy, communicator comm, T

&&result, this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg())

AllGather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

AllGather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

2.8. API reference 1367

HPX Documentation, master

hpx/collectives/all_reduce.hpp

Defined in header hpx/collectives/all_reduce.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Functions

template<typename T, typename F>
hpx::future<std::decay_t<T>> all_reduce(char const *basename, T &&result, F &&op,

num_sites_arg num_sites = num_sites_arg(), this_site_arg
this_site = this_site_arg(), generation_arg generation =
generation_arg(), root_site_arg root_site = root_site_arg())

AllReduce a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• basename – The base name identifying the all_reduce operation
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• num_sites – The number of participating sites (default: all localities).
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

• root_site – The site that is responsible for creating the all_reduce support object. This
value is optional and defaults to ‘0’ (zero).

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_reduce operation has been completed.

template<typename T, typename F>
hpx::future<std::decay_t<T>> all_reduce(communicator comm, T &&result, F &&op, this_site_arg

this_site = this_site_arg(), generation_arg generation =
generation_arg())

AllReduce a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

AllReduce a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.

1368 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• op – Reduction operation to apply to all values supplied from all participating sites
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_reduce operation has been completed.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_reduce operation has been completed.

template<typename T, typename F>
decltype(auto) all_reduce(hpx::launch::sync_policy, char const *basename, T &&result, F &&op,

num_sites_arg num_sites = num_sites_arg(), this_site_arg this_site =
this_site_arg(), generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

AllReduce a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the all_reduce operation
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The site that is responsible for creating the all_reduce support object. This
value is optional and defaults to ‘0’ (zero).

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T, typename F>
decltype(auto) all_reduce(hpx::launch::sync_policy, communicator comm, T &&result, F &&op,

this_site_arg this_site = this_site_arg(), generation_arg generation =
generation_arg())

AllReduce a set of values from different call sites

2.8. API reference 1369

HPX Documentation, master

This function receives a set of values from all call sites operating on the given base name.

AllReduce a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

hpx/collectives/all_to_all.hpp

Defined in header hpx/collectives/all_to_all.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

1370 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename T>
hpx::future<std::vector<T>> all_to_all(char const *basename, std::vector<T> &&local_result,

num_sites_arg num_sites = num_sites_arg(), this_site_arg
this_site = this_site_arg(), generation_arg generation =
generation_arg(), root_site_arg root_site = root_site_arg())

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• basename – The base name identifying the all_to_all operation
• local_result – A vector of values to transmit to all participating sites from this call

site.
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_to_all operation performed on the given base name. This is optional and needs to
be supplied only if the all_to_all operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The site that is responsible for creating the all_to_all support object. This
value is optional and defaults to ‘0’ (zero).

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_to_all operation has been completed.

template<typename T>
hpx::future<std::vector<T>> all_to_all(communicator fid, std::vector<T> &&local_result,

this_site_arg this_site = this_site_arg(), generation_arg
generation = generation_arg())

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• fid – A communicator object returned from create_communicator
• local_result – A vector of values to transmit to all participating sites from this call

site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_to_all operation performed on the given base name. This is optional and needs to
be supplied only if the all_to_all operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• fid – A communicator object returned from create_communicator
• local_result – A vector of values to transmit to all participating sites from this call

site.
• generation – The generational counter identifying the sequence number of the

all_to_all operation performed on the given base name. This is optional and needs to

2.8. API reference 1371

HPX Documentation, master

be supplied only if the all_to_all operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_to_all operation has been completed.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the all_to_all operation has been completed.

template<typename T>
std::vector<T> all_to_all(hpx::launch::sync_policy, char const *basename, std::vector<T>

&&local_result, num_sites_arg num_sites = num_sites_arg(), this_site_arg
this_site = this_site_arg(), generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the all_to_all operation
• local_result – A vector of values to transmit to all participating sites from this call

site.
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_to_all operation performed on the given base name. This is optional and needs to
be supplied only if the all_to_all operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The site that is responsible for creating the all_to_all support object. This
value is optional and defaults to ‘0’ (zero).

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T>
std::vector<T> all_to_all(hpx::launch::sync_policy, communicator fid, std::vector<T>

&&local_result, this_site_arg this_site = this_site_arg(), generation_arg
generation = generation_arg())

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• fid – A communicator object returned from create_communicator
• local_result – A vector of values to transmit to all participating sites from this call

site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.

1372 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• generation – The generational counter identifying the sequence number of the
all_to_all operation performed on the given base name. This is optional and needs to
be supplied only if the all_to_all operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• policy – The execution policy specifying synchronous execution.
• fid – A communicator object returned from create_communicator
• local_result – A vector of values to transmit to all participating sites from this call

site.
• generation – The generational counter identifying the sequence number of the

all_to_all operation performed on the given base name. This is optional and needs to
be supplied only if the all_to_all operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

hpx/collectives/argument_types.hpp

Defined in header hpx/collectives/argument_types.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Typedefs

using num_sites_arg = detail::argument_type<detail::num_sites_tag>
The number of participating sites (default: all localities)

using this_site_arg = detail::argument_type<detail::this_site_tag>
The local end of the communication channel.

using that_site_arg = detail::argument_type<detail::that_site_tag>
The opposite end of the communication channel.

using generation_arg = detail::argument_type<detail::generation_tag>
The generational counter identifying the sequence number of the operation performed on the given
base name. It needs to be supplied only if the operation on the given base name has to be performed
more than once. It must be a positive number greater than zero.

2.8. API reference 1373

HPX Documentation, master

using root_site_arg = detail::argument_type<detail::root_site_tag, 0>
The site that is responsible for creating the support object of the operation. It defaults to ‘0’ (zero).

using tag_arg = detail::argument_type<detail::tag_tag, 0>
The tag identifying the concrete operation.

using arity_arg = detail::argument_type<detail::arity_tag>
The number of children each of the communication nodes is connected to (default: picked based on
num_sites).

hpx::distributed::barrier

Defined in header hpx/barrier.hpp800.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace distributed

Functions

explicit barrier(std::string const &base_name)
Creates a barrier, rank is locality id, size is number of localities

A barrier base_name is created. It expects that hpx::get_num_localities() participate and the local rank
is hpx::get_locality_id().

Parameters base_name – The name of the barrier

barrier(std::string const &base_name, std::size_t num)

Creates a barrier with a given size, rank is locality id

A barrier base_name is created. It expects that num participate and the local rank is
hpx::get_locality_id().

Parameters
• base_name – The name of the barrier
• num – The number of participating threads

barrier(std::string const &base_name, std::size_t num, std::size_t rank)
Creates a barrier with a given size and rank

A barrier base_name is created. It expects that num participate and the local rank is rank.
Parameters

• base_name – The name of the barrier
800 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/barrier.hpp

1374 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/barrier.hpp

HPX Documentation, master

• num – The number of participating threads
• rank – The rank of the calling site for this invocation

barrier(std::string const &base_name, std::vector<std::size_t> const &ranks, std::size_t rank)
Creates a barrier with a vector of ranks

A barrier base_name is created. It expects that ranks.size() and the local rank is rank (must be con-
tained in ranks).

Parameters
• base_name – The name of the barrier
• ranks – Gives a list of participating ranks (this could be derived from a list of locality

ids
• rank – The rank of the calling site for this invocation

void wait() const
Wait until each participant entered the barrier. Must be called by all participants

Returns This function returns once all participants have entered the barrier (have called wait).

hpx::future<void> wait(hpx::launch::async_policy) const
Wait until each participant entered the barrier. Must be called by all participants

Returns a future that becomes ready once all participants have entered the barrier (have called
wait).

static void synchronize()
Perform a global synchronization using the default global barrier The barrier is created once at startup
and can be reused throughout the lifetime of an HPX application.

Note: This function currently does not support dynamic connection and disconnection of localities.

hpx/collectives/broadcast.hpp

Defined in header hpx/collectives/broadcast.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

2.8. API reference 1375

HPX Documentation, master

Functions

template<typename T>
hpx::future<T> broadcast_to(char const *basename, T &&local_result, num_sites_arg num_sites =

num_sites_arg(), this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg())

Broadcast a value to different call sites

This function sends a set of values to all call sites operating on the given base name.
Parameters

• basename – The base name identifying the broadcast operation
• local_result – A value to transmit to all participating sites from this call site.
• num_sites – The number of participating sites (default: all localities).
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding the value that was sent to all participating
sites. It will become ready once the broadcast operation has been completed.

template<typename T>
hpx::future<T> broadcast_to(communicator comm, T &&local_result, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg())
Broadcast a value to different call sites

This function sends a set of values to all call sites operating on the given base name.

Note: The generation values from corresponding broadcast_to and broadcast_from have to match.

Parameters
• comm – A communicator object returned from create_communicator
• local_result – A value to transmit to all participating sites from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

Returns This function returns a future holding the value that was sent to all participating
sites. It will become ready once the broadcast operation has been completed.

template<typename T>
hpx::future<T> broadcast_to(communicator comm, generation_arg generation, T &&local_result,

this_site_arg this_site = this_site_arg())
Broadcast a value to different call sites

This function sends a set of values to all call sites operating on the given base name.

Note: The generation values from corresponding broadcast_to and broadcast_from have to match.

Parameters

1376 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• comm – A communicator object returned from create_communicator
• local_result – A value to transmit to all participating sites from this call site.
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding the value that was sent to all participating
sites. It will become ready once the broadcast operation has been completed.

template<typename T>
hpx::future<T> broadcast_from(char const *basename, this_site_arg this_site = this_site_arg(),

generation_arg generation = generation_arg(), root_site_arg
root_site = root_site_arg())

Receive a value that was broadcast to different call sites

This function sends a set of values to all call sites operating on the given base name.
Parameters

• basename – The base name identifying the broadcast operation
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

• root_site – The site responsible for broadcasting the value. This is optional and de-
faults to site 0 (zero).

Returns This function returns a future holding the value that was sent to all participating
sites. It will become ready once the broadcast operation has been completed.

template<typename T>
hpx::future<T> broadcast_from(communicator comm, this_site_arg this_site = this_site_arg(),

generation_arg generation = generation_arg())
Receive a value that was broadcast to different call sites

This function sends a set of values to all call sites operating on the given base name.

Receive a value that was broadcast to different call sites

This function sends a set of values to all call sites operating on the given base name.

Note: The generation values from corresponding broadcast_to and broadcast_from have to match.

Note: The generation values from corresponding broadcast_to and broadcast_from have to match.

Parameters
• comm – A communicator object returned from create_communicator
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-

2.8. API reference 1377

HPX Documentation, master

plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• comm – A communicator object returned from create_communicator
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding the value that was sent to all participating
sites. It will become ready once the broadcast operation has been completed.

Returns This function returns a future holding the value that was sent to all participating
sites. It will become ready once the broadcast operation has been completed.

template<typename T>
decltype(auto) broadcast_to(hpx::launch::sync_policy, char const *basename, T &&local_result,

num_sites_arg num_sites = num_sites_arg(), this_site_arg this_site =
this_site_arg(), generation_arg generation = generation_arg())

Broadcast a value to different call sites

This function sends a set of values to all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the broadcast operation
• local_result – A value to transmit to all participating sites from this call site.
• num_sites – The number of participating sites (default: all localities).
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T>
decltype(auto) broadcast_to(hpx::launch::sync_policy, communicator comm, T &&local_result,

this_site_arg this_site = this_site_arg(), generation_arg generation =
generation_arg())

Broadcast a value to different call sites

This function sends a set of values to all call sites operating on the given base name.

Broadcast a value to different call sites

This function sends a set of values to all call sites operating on the given base name.

Note: The generation values from corresponding broadcast_to and broadcast_from have to match.

Note: The generation values from corresponding broadcast_to and broadcast_from have to match.

Parameters

1378 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• local_result – A value to transmit to all participating sites from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• local_result – A value to transmit to all participating sites from this call site.
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T>
T broadcast_from(hpx::launch::sync_policy, char const *basename, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg(), root_site_arg
root_site = root_site_arg())

Receive a value that was broadcast to different call sites

This function sends a set of values to all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the broadcast operation
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• root_site – The site responsible for broadcasting the value. This is optional and de-
faults to site 0 (zero).

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T>
T broadcast_from(hpx::launch::sync_policy, communicator comm, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg())
Receive a value that was broadcast to different call sites

This function sends a set of values to all call sites operating on the given base name.

Receive a value that was broadcast to different call sites

This function sends a set of values to all call sites operating on the given base name.

2.8. API reference 1379

HPX Documentation, master

Note: The generation values from corresponding broadcast_to and broadcast_from have to match.

Note: The generation values from corresponding broadcast_to and broadcast_from have to match.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• generation – The generational counter identifying the sequence number of the broad-

cast operation performed on the given base name. This is optional and needs to be sup-
plied only if the broadcast operation on the given base name has to be performed more
than once. The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

hpx/collectives/broadcast_direct.hpp

Defined in header hpx/collectives/broadcast_direct.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace lcos

Functions

template<typename Action, typename ArgN, ...
> hpx::future< std::vector< decltype(Action(hpx::id_type, ArgN,...
))> > broadcast (std::vector< hpx::id_type > const &ids, ArgN argN,...)

Perform a distributed broadcast operation.

The function hpx::lcos::broadcast performs a distributed broadcast operation resulting in action invo-
cations on a given set of global identifiers. The action can be either a plain action (in which case the
global identifiers have to refer to localities) or a component action (in which case the global identifiers
have to refer to instances of a component type which exposes the action.

1380 Chapter 2. What’s so special about HPX?

HPX Documentation, master

The given action is invoked asynchronously on all given identifiers, and the arguments ArgN are passed
along to those invocations.

Note: If decltype(Action(. . .)) is void, then the result of this function is future<void>.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• argN – [in] Any number of arbitrary arguments (passed by const reference) which will

be forwarded to the action invocation.
Returns This function returns a future representing the result of the overall reduction opera-

tion.

template<typename Action, typename ArgN, ...
> void broadcast_post (std::vector< hpx::id_type > const &ids, ArgN argN,...)

Perform an asynchronous (fire&forget) distributed broadcast operation.

The function hpx::lcos::broadcast_post performs an asynchronous (fire&forget) distributed broadcast
operation resulting in action invocations on a given set of global identifiers. The action can be either
a plain action (in which case the global identifiers have to refer to localities) or a component action
(in which case the global identifiers have to refer to instances of a component type which exposes the
action.

The given action is invoked asynchronously on all given identifiers, and the arguments ArgN are passed
along to those invocations.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• argN – [in] Any number of arbitrary arguments (passed by const reference) which will

be forwarded to the action invocation.

template<typename Action, typename ArgN, ...
> hpx::future< std::vector< decltype(Action(hpx::id_type, ArgN,...,
std::size_t))> > broadcast_with_index (std::vector< hpx::id_type > const &ids,
ArgN argN,...)

Perform a distributed broadcast operation.

The function hpx::lcos::broadcast_with_index performs a distributed broadcast operation resulting in
action invocations on a given set of global identifiers. The action can be either a plain action (in which
case the global identifiers have to refer to localities) or a component action (in which case the global
identifiers have to refer to instances of a component type which exposes the action.

The given action is invoked asynchronously on all given identifiers, and the arguments ArgN are passed
along to those invocations.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

Note: If decltype(Action(. . .)) is void, then the result of this function is future<void>.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.

2.8. API reference 1381

HPX Documentation, master

• argN – [in] Any number of arbitrary arguments (passed by const reference) which will
be forwarded to the action invocation.

Returns This function returns a future representing the result of the overall reduction opera-
tion.

template<typename Action, typename ArgN, ...
> void broadcast_post_with_index (std::vector< hpx::id_type > const &ids,
ArgN argN,...)

Perform an asynchronous (fire&forget) distributed broadcast operation.

The function hpx::lcos::broadcast_post_with_index performs an asynchronous (fire&forget) dis-
tributed broadcast operation resulting in action invocations on a given set of global identifiers. The
action can be either a plain action (in which case the global identifiers have to refer to localities) or a
component action (in which case the global identifiers have to refer to instances of a component type
which exposes the action.

The given action is invoked asynchronously on all given identifiers, and the arguments ArgN are passed
along to those invocations.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• argN – [in] Any number of arbitrary arguments (passed by const reference) which will

be forwarded to the action invocation.

hpx/collectives/channel_communicator.hpp

Defined in header hpx/collectives/channel_communicator.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Functions

hpx::future<channel_communicator> create_channel_communicator(char const *basename,
num_sites_arg num_sites =
num_sites_arg(), this_site_arg
this_site = this_site_arg())

Create a new communicator object usable with peer-to-peer channel-based operations

This functions creates a new communicator object that can be called in order to pre-allocate a com-
municator object usable with multiple invocations of channel-based peer-to-peer operations.

Parameters
• basename – The base name identifying the collective operation
• num_sites – The number of participating sites (default: all localities).

1382 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future to a new communicator object usable with the collec-
tive operation.

channel_communicator create_channel_communicator(hpx::launch::sync_policy, char const
*basename, num_sites_arg num_sites =
num_sites_arg(), this_site_arg this_site =
this_site_arg())

Create a new communicator object usable with peer-to-peer channel-based operations

This functions creates a new communicator object that can be called in order to pre-allocate a com-
municator object usable with multiple invocations of channel-based peer-to-peer operations.

Parameters
• basename – The base name identifying the collective operation
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
Returns This function returns a new communicator object usable with the collective opera-

tion.

template<typename T>
hpx::future<void> set(channel_communicator comm, that_site_arg site, T &&value, tag_arg tag =

tag_arg())
Send a value to the given site

This function sends a value to the given site based on the given communicator.
Parameters

• comm – The channel communicator object to use for the data transfer
• site – The destination site
• value – The value to send
• tag – The (optional) tag identifying the concrete operation

Returns This function returns a future<void> that becomes ready once the data transfer op-
eration has finished.

template<typename T>
hpx::future<T> get(channel_communicator comm, that_site_arg site, tag_arg tag = tag_arg())

Send a value to the given site

This function receives a value from the given site based on the given communicator.
Parameters

• comm – The channel communicator object to use for the data transfer
• site – The source site

Returns This function returns a future<T> that becomes ready once the data transfer opera-
tion has finished. The future will hold the received value.

class channel_communicator
#include <channel_communicator.hpp> A handle identifying the communication channel to use for
get/set operations

2.8. API reference 1383

HPX Documentation, master

hpx/collectives/communication_set.hpp

Defined in header hpx/collectives/communication_set.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Functions

communicator create_communication_set(char const *basename, num_sites_arg num_sites =
num_sites_arg(), this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg(), arity_arg
arity = arity_arg())

The function create_communication_set sets up a (distributed) tree-like communication structure that
can be used with any of the collective APIs (such like all_to_all and similar).

Parameters
• basename – The base name identifying the all_to_all operation
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the col-

lective operation performed on the given base name. This is optional and needs to be
supplied only if the collective operation on the given base name has to be performed
more than once.

• arity – The number of children each of the communication nodes is connected to (de-
fault: picked based on num_sites).

Returns This function returns a new communicator object usable with the collective opera-
tion.

hpx/collectives/create_communicator.hpp

Defined in header hpx/collectives/create_communicator.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

1384 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

communicator create_communicator(char const *basename, num_sites_arg num_sites =
num_sites_arg(), this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg(), root_site_arg
root_site = root_site_arg())

Create a new communicator object usable with any collective operation

This functions creates a new communicator object that can be called in order to pre-allocate a com-
municator object usable with multiple invocations of the collective operations (such as all_gather,
all_reduce, all_to_all, broadcast, etc.).

Parameters
• basename – The base name identifying the collective operation
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the col-

lective operation performed on the given base name. This is optional and needs to be
supplied only if the collective operation on the given base name has to be performed
more than once.

• root_site – The site that is responsible for creating the collective support object. This
value is optional and defaults to ‘0’ (zero).

Returns This function returns a new communicator object usable with the collective opera-
tion.

communicator create_local_communicator(char const *basename, num_sites_arg num_sites,
this_site_arg this_site, generation_arg generation =
generation_arg(), root_site_arg root_site =
root_site_arg())

Create a new communicator object usable with any local collective operation

This functions creates a new communicator object that can be called in order to pre-allocate a com-
municator object usable with multiple invocations of the collective operations (such as all_gather,
all_reduce, all_to_all, broadcast, etc.).

Parameters
• basename – The base name identifying the collective operation
• num_sites – The number of participating sites
• this_site – The sequence number of this invocation (usually the sequence number of

the object participating in the collective operation). This value must be in the range [0,
num_sites).

• generation – The generational counter identifying the sequence number of the col-
lective operation performed on the given base name. This is optional and needs to be
supplied only if the collective operation on the given base name has to be performed
more than once.

• root_site – The site that is responsible for creating the collective support object. This
value is optional and defaults to ‘0’ (zero).

Returns This function returns a new communicator object usable for all local collective op-
erations.

struct communicator
#include <create_communicator.hpp> A communicator instance represents the list of sites that par-
ticipate in a particular collective operation.

2.8. API reference 1385

HPX Documentation, master

Public Functions

void set_info(num_sites_arg num_sites, this_site_arg this_site) noexcept
Store the number of used sites and the index of the current site for this communicator instance.

Parameters
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this site (usually the locality id).

std::pair<num_sites_arg, this_site_arg> get_info() const noexcept
Retrieve the number of used sites and the index of the current site for this communicator instance.

bool is_root() const
Return whether this communicator instance represents the root site of the communication opera-
tion.

hpx/collectives/exclusive_scan.hpp

Defined in header hpx/collectives/exclusive_scan.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Functions

template<typename T, typename F>
hpx::future<std::decay_t<T>> exclusive_scan(char const *basename, T &&result, F &&op,

num_sites_arg num_sites = num_sites_arg(),
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

Exclusive scan a set of values from different call sites

This function performs an exclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Note: The result returned on the root_site is always the same as the result returned on thus_site == 1
and is the same as the value provided by the root_site.

Parameters
• basename – The base name identifying the exclusive_scan operation
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.

1386 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• generation – The generational counter identifying the sequence number of the exclu-
sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the exclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• root_site – The site that is responsible for creating the exclusive_scan support object.
This value is optional and defaults to ‘0’ (zero).

Returns For the participating site i this function returns a future the reduction (calculated
according to the function op) of the values passed in by the participating sites 0, . . . , i-1.
The value returned on participating site 0 is undefined. The value returned on participating
site on process 1 is always the value passed in by participating site 1. The returned future
will become ready once the exclusive_scan operation has been completed.

template<typename T, typename F>
hpx::future<std::decay_t<T>> exclusive_scan(communicator comm, T &&result, F &&op,

this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg())

Exclusive scan a set of values from different call sites

This function performs an exclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Exclusive scan a set of values from different call sites

This function performs an exclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Note: The result returned on the root_site is always the same as the result returned on thus_site == 1
and is the same as the value provided by the root_site.

Note: The result returned on the root_site is always the same as the result returned on thus_site == 1
and is the same as the value provided by the root_site.

Parameters
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the exclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the exclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• generation – The generational counter identifying the sequence number of the exclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the exclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

2.8. API reference 1387

HPX Documentation, master

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns For the participating site i this function returns a future the reduction (calculated
according to the function op) of the values passed in by the participating sites 0, . . . , i-1.
The value returned on participating site 0 is undefined. The value returned on participating
site on process 1 is always the value passed in by participating site 1. The returned future
will become ready once the exclusive_scan operation has been completed.

Returns For the participating site i this function returns a future the reduction (calculated
according to the function op) of the values passed in by the participating sites 0, . . . , i-1.
The value returned on participating site 0 is undefined. The value returned on participating
site on process 1 is always the value passed in by participating site 1. The returned future
will become ready once the exclusive_scan operation has been completed.

template<typename T, typename F>
decltype(auto) exclusive_scan(hpx::launch::sync_policy, char const *basename, T &&result, F

&&op, num_sites_arg num_sites = num_sites_arg(), this_site_arg
this_site = this_site_arg(), generation_arg generation =
generation_arg(), root_site_arg root_site = root_site_arg())

Exclusive scan a set of values from different call sites

This function performs an exclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Note: The result returned on the root_site is always the same as the result returned on thus_site == 1
and is the same as the value provided by the root_site.

Parameters
• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the exclusive_scan operation
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the exclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the exclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• root_site – The site that is responsible for creating the exclusive_scan support object.
This value is optional and defaults to ‘0’ (zero).

Returns For the participating site i this function returns a future the reduction (calculated
according to the function op) of the values passed in by the participating sites 0, . . . , i-1.
The value returned on participating site 0 is undefined. The value returned on participating
site on process 1 is always the value passed in by participating site 1. The returned future
will become ready once the exclusive_scan operation has been completed.

template<typename T, typename F>
decltype(auto) exclusive_scan(hpx::launch::sync_policy, communicator comm, T &&result, F

&&op, this_site_arg this_site = this_site_arg(), generation_arg
generation = generation_arg())

Exclusive scan a set of values from different call sites

This function performs an exclusive scan operation on a set of values received from all call sites oper-

1388 Chapter 2. What’s so special about HPX?

HPX Documentation, master

ating on the given base name.

Exclusive scan a set of values from different call sites

This function performs an exclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Note: The result returned on the root_site is always the same as the result returned on thus_site == 1
and is the same as the value provided by the root_site.

Note: The result returned on the root_site is always the same as the result returned on thus_site == 1
and is the same as the value provided by the root_site.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the exclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the exclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• generation – The generational counter identifying the sequence number of the exclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the exclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns For the participating site i this function returns a future the reduction (calculated
according to the function op) of the values passed in by the participating sites 0, . . . , i-1.
The value returned on participating site 0 is undefined. The value returned on participating
site on process 1 is always the value passed in by participating site 1. The returned future
will become ready once the exclusive_scan operation has been completed.

Returns For the participating site i this function returns the reduction (calculated according
to the function op) of the values passed in by the participating sites 0, . . . , i-1. The value
returned on participating site 0 is undefined. The value returned on participating site on
process 1 is always the value passed in by participating site 1. The returned future will
become ready once the exclusive_scan operation has been completed.

2.8. API reference 1389

HPX Documentation, master

hpx/collectives/fold.hpp

Defined in header hpx/collectives/fold.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace lcos

Functions

template<typename Action, typename FoldOp, typename Init, typename ArgN, ...
> hpx::future< decltype(Action(hpx::id_type, ArgN,...
))> fold (std::vector< hpx::id_type > const &ids, FoldOp &&fold_op, Init &&init,
ArgN argN,...)

Perform a distributed fold operation.

The function hpx::lcos::fold performs a distributed folding operation over results returned from action
invocations on a given set of global identifiers. The action can be either a plain action (in which case the
global identifiers have to refer to localities) or a component action (in which case the global identifiers
have to refer to instances of a component type which exposes the action.

Note: The type of the initial value must be convertible to the result type returned from the invoked
action.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• fold_op – [in] A binary function expecting two results as returned from the action invo-

cations. The function (or function object) is expected to return the result of the folding
operation performed on its arguments.

• init – [in] The initial value to be used for the folding operation
• argN – [in] Any number of arbitrary arguments (passed by value, by const reference or

by rvalue reference) which will be forwarded to the action invocation.
Returns This function returns a future representing the result of the overall folding operation.

template<typename Action, typename FoldOp, typename Init, typename ArgN, ...
> hpx::future< decltype(Action(hpx::id_type, ArgN,...,
std::size_t))> fold_with_index (std::vector< hpx::id_type > const &ids,
FoldOp &&fold_op, Init &&init, ArgN argN,...)

Perform a distributed folding operation.

The function hpx::lcos::fold_with_index performs a distributed folding operation over results returned
from action invocations on a given set of global identifiers. The action can be either plain action (in
which case the global identifiers have to refer to localities) or a component action (in which case the
global identifiers have to refer to instances of a component type which exposes the action.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

1390 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: The type of the initial value must be convertible to the result type returned from the invoked
action.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• fold_op – [in] A binary function expecting two results as returned from the action invo-

cations. The function (or function object) is expected to return the result of the folding
operation performed on its arguments.

• init – [in] The initial value to be used for the folding operation
• argN – [in] Any number of arbitrary arguments (passed by value, by const reference or

by rvalue reference) which will be forwarded to the action invocation.
Returns This function returns a future representing the result of the overall folding operation.

template<typename Action, typename FoldOp, typename Init, typename ArgN, ...
> hpx::future< decltype(Action(hpx::id_type, ArgN,...
))> inverse_fold (std::vector< hpx::id_type > const &ids, FoldOp &&fold_op,
Init &&init, ArgN argN,...)

Perform a distributed inverse folding operation.

The function hpx::lcos::inverse_fold performs an inverse distributed folding operation over results re-
turned from action invocations on a given set of global identifiers. The action can be either a plain
action (in which case the global identifiers have to refer to localities) or a component action (in which
case the global identifiers have to refer to instances of a component type which exposes the action.

Note: The type of the initial value must be convertible to the result type returned from the invoked
action.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• fold_op – [in] A binary function expecting two results as returned from the action invo-

cations. The function (or function object) is expected to return the result of the folding
operation performed on its arguments.

• init – [in] The initial value to be used for the folding operation
• argN – [in] Any number of arbitrary arguments (passed by value, by const reference or

by rvalue reference) which will be forwarded to the action invocation.
Returns This function returns a future representing the result of the overall folding operation.

template<typename Action, typename FoldOp, typename Init, typename ArgN, ...
> hpx::future< decltype(Action(hpx::id_type, ArgN,...,
std::size_t))> inverse_fold_with_index (std::vector< hpx::id_type > const &ids,
FoldOp &&fold_op, Init &&init, ArgN argN,...)

Perform a distributed inverse folding operation.

The function hpx::lcos::inverse_fold_with_index performs an inverse distributed folding operation
over results returned from action invocations on a given set of global identifiers. The action can be
either plain action (in which case the global identifiers have to refer to localities) or a component action
(in which case the global identifiers have to refer to instances of a component type which exposes the
action.

The function passes the index of the global identifier in the given list of identifiers as the last argument

2.8. API reference 1391

HPX Documentation, master

to the action.

Note: The type of the initial value must be convertible to the result type returned from the invoked
action.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• fold_op – [in] A binary function expecting two results as returned from the action invo-

cations. The function (or function object) is expected to return the result of the folding
operation performed on its arguments.

• init – [in] The initial value to be used for the folding operation
• argN – [in] Any number of arbitrary arguments (passed by value, by const reference or

by rvalue reference) which will be forwarded to the action invocation.
Returns This function returns a future representing the result of the overall folding operation.

hpx/collectives/gather.hpp

Defined in header hpx/collectives/gather.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Functions

template<typename T>
hpx::future<std::vector<decay_t<T>>> gather_here(char const *basename, T &&result,

num_sites_arg num_sites = num_sites_arg(),
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg())

Gather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• basename – The base name identifying the gather operation
• result – The value to transmit to the central gather point from this call site.
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

Returns This function returns a future holding a vector with all gathered values. It will be-
come ready once the gather operation has been completed.

1392 Chapter 2. What’s so special about HPX?

HPX Documentation, master

template<typename T>
hpx::future<std::vector<decay_t<T>>> gather_here(communicator comm, T &&result, this_site_arg

this_site = this_site_arg(), generation_arg
generation = generation_arg())

Gather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Gather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note: The generation values from corresponding gather_here and gather_there have to match.

Note: The generation values from corresponding gather_here and gather_there have to match.

Parameters
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central gather point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central gather point from this call site.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding a vector with all gathered values. It will be-
come ready once the gather operation has been completed.

Returns This function returns a future holding a vector with all gathered values. It will be-
come ready once the gather operation has been completed.

template<typename T>
hpx::future<void> gather_there(char const *basename, T &&result, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

Gather a given value at the given call site

This function transmits the value given by result to a central gather site (where the corresponding
gather_here is executed)

Parameters
• basename – The base name identifying the gather operation
• result – The value to transmit to the central gather point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.

2.8. API reference 1393

HPX Documentation, master

• generation – The generational counter identifying the sequence number of the gather
operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• root_site – The sequence number of the central gather point (usually the locality id).
This value is optional and defaults to 0.

Returns This function returns a future holding a vector with all gathered values. It will be-
come ready once the gather operation has been completed.

template<typename T>
hpx::future<void> gather_there(communicator comm, T &&result, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg())
Gather a given value at the given call site

This function transmits the value given by result to a central gather site (where the corresponding
gather_here is executed)

Gather a given value at the given call site

This function transmits the value given by result to a central gather site (where the corresponding
gather_here is executed)

Note: The generation values from corresponding gather_here and gather_there have to match.

Note: The generation values from corresponding gather_here and gather_there have to match.

Parameters
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central gather point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central gather point from this call site.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding a vector with all gathered values. It will be-
come ready once the gather operation has been completed.

Returns This function returns a future holding a vector with all gathered values. It will be-
come ready once the gather operation has been completed.

template<typename T>
decltype(auto) gather_here(hpx::launch::sync_policy, char const *basename, T &&result,

num_sites_arg num_sites = num_sites_arg(), this_site_arg this_site =
this_site_arg(), generation_arg generation = generation_arg())

1394 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Gather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the gather operation
• result – The value to transmit to the central gather point from this call site.
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T>
decltype(auto) gather_here(hpx::launch::sync_policy, communicator comm, T &&result, this_site_arg

this_site = this_site_arg(), generation_arg generation = generation_arg())
Gather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Gather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note: The generation values from corresponding gather_here and gather_there have to match.

Note: The generation values from corresponding gather_here and gather_there have to match.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central gather point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central gather point from this call site.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

2.8. API reference 1395

HPX Documentation, master

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T>
void gather_there(hpx::launch::sync_policy, char const *basename, T &&result, this_site_arg

this_site = this_site_arg(), generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

Gather a given value at the given call site

This function transmits the value given by result to a central gather site (where the corresponding
gather_here is executed)

Parameters
• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the gather operation
• result – The value to transmit to the central gather point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• root_site – The sequence number of the central gather point (usually the locality id).
This value is optional and defaults to 0.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T>
void gather_there(hpx::launch::sync_policy, communicator comm, T &&result, this_site_arg

this_site = this_site_arg(), generation_arg generation = generation_arg())
Gather a given value at the given call site

This function transmits the value given by result to a central gather site (where the corresponding
gather_here is executed)

Gather a given value at the given call site

This function transmits the value given by result to a central gather site (where the corresponding
gather_here is executed)

Note: The generation values from corresponding gather_here and gather_there have to match.

Note: The generation values from corresponding gather_here and gather_there have to match.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central gather point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.

1396 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• generation – The generational counter identifying the sequence number of the gather
operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central gather point from this call site.
• generation – The generational counter identifying the sequence number of the gather

operation performed on the given base name. This is optional and needs to be supplied
only if the gather operation on the given base name has to be performed more than once.
The generation number (if given) must be a positive number greater than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

hpx/collectives/inclusive_scan.hpp

Defined in header hpx/collectives/inclusive_scan.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Functions

template<typename T, typename F>
hpx::future<std::decay_t<T>> inclusive_scan(char const *basename, T &&result, F &&op,

num_sites_arg num_sites = num_sites_arg(),
this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

Inclusive inclusive_scan a set of values from different call sites

This function performs an inclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Parameters
• basename – The base name identifying the inclusive_scan operation
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the inclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the inclusive_scan operation on the given base name has to be performed

2.8. API reference 1397

HPX Documentation, master

more than once. The generation number (if given) must be a positive number greater than
zero.

• root_site – The site that is responsible for creating the inclusive_scan support object.
This value is optional and defaults to ‘0’ (zero).

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the inclusive_scan operation has been completed.

template<typename T, typename F>
hpx::future<std::decay_t<T>> inclusive_scan(communicator comm, T &&result, F &&op,

this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg())

Inclusive inclusive_scan a set of values from different call sites

This function performs an inclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Inclusive inclusive_scan a set of values from different call sites

This function performs an inclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Parameters
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the inclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the inclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• generation – The generational counter identifying the sequence number of the inclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the inclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the inclusive_scan operation has been completed.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the inclusive_scan operation has been completed.

template<typename T, typename F>
decltype(auto) inclusive_scan(hpx::launch::sync_policy, char const *basename, T &&result, F

&&op, num_sites_arg num_sites = num_sites_arg(), this_site_arg
this_site = this_site_arg(), generation_arg generation =
generation_arg(), root_site_arg root_site = root_site_arg())

Inclusive inclusive_scan a set of values from different call sites

This function performs an inclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

1398 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters
• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the inclusive_scan operation
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the inclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the inclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• root_site – The site that is responsible for creating the inclusive_scan support object.
This value is optional and defaults to ‘0’ (zero).

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

template<typename T, typename F>
decltype(auto) inclusive_scan(hpx::launch::sync_policy, communicator comm, T &&result, F

&&op, this_site_arg this_site = this_site_arg(), generation_arg
generation = generation_arg())

Inclusive inclusive_scan a set of values from different call sites

This function performs an inclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Inclusive inclusive_scan a set of values from different call sites

This function performs an inclusive scan operation on a set of values received from all call sites oper-
ating on the given base name.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the inclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the inclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to all participating sites from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• generation – The generational counter identifying the sequence number of the inclu-

sive_scan operation performed on the given base name. This is optional and needs to be
supplied only if the inclusive_scan operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater than
zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

2.8. API reference 1399

HPX Documentation, master

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

Returns This function returns a vector with all values send by all participating sites. This
function executes synchronously and directly returns the result.

hpx::distributed::latch

Defined in header hpx/latch.hpp801.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace distributed

class latch : public components::client_base<latch, hpx::lcos::server::latch>
#include <latch.hpp> Latch is an implementation of a synchronization primitive that allows multiple
threads to wait for a shared event to occur before proceeding. This latch can be invoked in a distributed
application.

For a local only latch

See also:

hpx::latch.

Public Functions

latch() = default

explicit latch(std::ptrdiff_t count)
Initialize the latch

Requires: count >= 0. Synchronization: None Postconditions: counter_ == count.

inline latch(hpx::id_type const &id)
Extension: Create a client side representation for the existing server::latch instance with the given
global id id.

inline latch(hpx::future<hpx::id_type> &&f)
Extension: Create a client side representation for the existing server::latch instance with the given
global id id.

inline latch(hpx::shared_future<hpx::id_type> const &id)
Extension: Create a client side representation for the existing server::latch instance with the given
global id id.

inline latch(hpx::shared_future<hpx::id_type> &&id)

801 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/latch.hpp

1400 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/latch.hpp

HPX Documentation, master

inline void count_down_and_wait()
Decrements counter_ by 1 . Blocks at the synchronization point until counter_ reaches 0.

Requires: counter_ > 0.

Synchronization: Synchronizes with all calls that block on this latch and with all is_ready calls on
this latch that return true.

Throws Nothing. –

inline void arrive_and_wait()
Decrements counter_ by update . Blocks at the synchronization point until counter_ reaches 0.

Requires: counter_ > 0.

Synchronization: Synchronizes with all calls that block on this latch and with all is_ready calls on
this latch that return true.

Throws Nothing. –

inline void count_down(std::ptrdiff_t n)
Decrements counter_ by n. Does not block.

Requires: counter_ >= n and n >= 0.

Synchronization: Synchronizes with all calls that block on this latch and with all is_ready calls on
this latch that return true .

Throws Nothing. –

inline bool is_ready() const noexcept
Returns: counter_ == 0. Does not block.

Throws Nothing. –

inline bool try_wait() const noexcept
Returns: counter_ == 0. Does not block.

Throws Nothing. –

inline void wait() const
If counter_ is 0, returns immediately. Otherwise, blocks the calling thread at the synchronization
point until counter_ reaches 0.

Throws Nothing. –

Private Types

typedef components::client_base<latch, hpx::lcos::server::latch> base_type

hpx/collectives/reduce.hpp

Defined in header hpx/collectives/reduce.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

2.8. API reference 1401

HPX Documentation, master

Functions

template<typename T, typename F>
hpx::future<std::decay_t<T>> reduce_here(char const *basename, T &&result, F &&op,

num_sites_arg num_sites = num_sites_arg(), this_site_arg
this_site = this_site_arg(), generation_arg generation =
generation_arg())

Reduce a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• basename – The base name identifying the all_reduce operation
• result – A value to reduce on the central reduction point from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

Returns This function returns a future holding a vector with all values send by all participat-
ing sites. It will become ready once the reduce operation has been completed.

template<typename T, typename F>
hpx::future<decay_t<T>> reduce_here(communicator comm, T &&result, F &&op, this_site_arg

this_site = this_site_arg(), generation_arg generation =
generation_arg())

Reduce a set of values from different call sites

This function receives a set of values that are the result of applying a given operator on values supplied
from all call sites operating on the given base name.

Reduce a set of values from different call sites

This function receives a set of values that are the result of applying a given operator on values supplied
from all call sites operating on the given base name.

Note: The generation values from corresponding reduce_here and reduce_there have to match.

Note: The generation values from corresponding reduce_here and reduce_there have to match.

Parameters
• comm – A communicator object returned from create_communicator
• result – A value to reduce on the root_site from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed

1402 Chapter 2. What’s so special about HPX?

HPX Documentation, master

more than once. The generation number (if given) must be a positive number greater
than zero.

• comm – A communicator object returned from create_communicator
• result – A value to reduce on the root_site from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding a value calculated based on the values send by
all participating sites. It will become ready once the reduce operation has been completed.

Returns This function returns a future holding a value calculated based on the values send by
all participating sites. It will become ready once the reduce operation has been completed.

template<typename T, typename F>
hpx::future<void> reduce_there(char const *basename, T &&result, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

Reduce a given value at the given call site

This function transmits the value given by result to a central reduce site (where the corresponding
reduce_here is executed)

Parameters
• basename – The base name identifying the reduction operation
• result – A future referring to the value to transmit to the central reduction point from

this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The sequence number of the central reduction point (usually the locality
id). This value is optional and defaults to 0.

Returns This function returns a future<void>. It will become ready once the reduction op-
eration has been completed.

template<typename T>
hpx::future<void> reduce_there(communicator comm, T &&result, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg())
Reduce a given value at the given call site

This function transmits the value given by result to a central reduce site (where the corresponding
reduce_here is executed)

Reduce a given value at the given call site

This function transmits the value given by result to a central reduce site (where the corresponding
reduce_here is executed)

2.8. API reference 1403

HPX Documentation, master

Note: The generation values from corresponding reduce_here and reduce_there have to match.

Note: The generation values from corresponding reduce_here and reduce_there have to match.

Parameters
• comm – A communicator object returned from create_communicator
• result – A value to reduce on the central reduction point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• comm – A communicator object returned from create_communicator
• result – A value to reduce on the central reduction point from this call site.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding a value calculated based on the values send by
all participating sites. It will become ready once the reduce operation has been completed.

Returns This function returns a future holding a value calculated based on the values send by
all participating sites. It will become ready once the reduce operation has been completed.

template<typename T, typename F>
decltype(auto) reduce_here(hpx::launch::sync_policy, char const *basename, T &&result, F &&op,

num_sites_arg num_sites = num_sites_arg(), this_site_arg this_site =
this_site_arg(), generation_arg generation = generation_arg())

Reduce a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the all_reduce operation
• result – A value to reduce on the central reduction point from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

Returns The final reduced value after applying op to all contributions.

template<typename T, typename F>

1404 Chapter 2. What’s so special about HPX?

HPX Documentation, master

decltype(auto) reduce_here(hpx::launch::sync_policy, communicator comm, T &&result, F &&op,
this_site_arg this_site = this_site_arg(), generation_arg generation =
generation_arg())

Reduce a set of values from different call sites

This function receives a set of values that are the result of applying a given operator on values supplied
from all call sites operating on the given base name.

Reduce a set of values from different call sites

This function receives a set of values that are the result of applying a given operator on values supplied
from all call sites operating on the given base name.

Note: The generation values from corresponding reduce_here and reduce_there have to match.

Note: The generation values from corresponding reduce_here and reduce_there have to match.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – A value to reduce on the root_site from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – A value to reduce on the root_site from this call site.
• op – Reduction operation to apply to all values supplied from all participating sites
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns The final reduced value after applying op to all contributions.
Returns The final reduced value after applying op to all contributions.

template<typename T>
void reduce_there(hpx::launch::sync_policy, char const *basename, T &&result, this_site_arg

this_site = this_site_arg(), generation_arg generation = generation_arg(),
root_site_arg root_site = root_site_arg())

Reduce a given value at the given call site

This function transmits the value given by result to a central reduce site (where the corresponding
reduce_here is executed)

Parameters

2.8. API reference 1405

HPX Documentation, master

• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the reduction operation
• result – A future referring to the value to transmit to the central reduction point from

this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The sequence number of the central reduction point (usually the locality
id). This value is optional and defaults to 0.

template<typename T>
void reduce_there(hpx::launch::sync_policy, communicator comm, T &&result, this_site_arg

this_site = this_site_arg(), generation_arg generation = generation_arg())
Reduce a given value at the given call site

This function transmits the value given by result to a central reduce site (where the corresponding
reduce_here is executed)

Reduce a given value at the given call site

This function transmits the value given by result to a central reduce site (where the corresponding
reduce_here is executed)

Note: The generation values from corresponding reduce_here and reduce_there have to match.

Note: The generation values from corresponding reduce_here and reduce_there have to match.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – A value to reduce on the central reduction point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – A value to reduce on the central reduction point from this call site.
• generation – The generational counter identifying the sequence number of the

all_reduce operation performed on the given base name. This is optional and needs to
be supplied only if the all_reduce operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

1406 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/collectives/reduce_direct.hpp

Defined in header hpx/collectives/reduce_direct.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace lcos

Functions

template<typename Action, typename ReduceOp, typename ArgN, ...
> hpx::future< decltype(Action(hpx::id_type, ArgN,...
))> reduce (std::vector< hpx::id_type > const &ids, ReduceOp &&reduce_op,
ArgN argN,...)

Perform a distributed reduction operation.

The function hpx::lcos::reduce performs a distributed reduction operation over results returned from
action invocations on a given set of global identifiers. The action can be either a plain action (in which
case the global identifiers have to refer to localities) or a component action (in which case the global
identifiers have to refer to instances of a component type which exposes the action.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• reduce_op – [in] A binary function expecting two results as returned from the action

invocations. The function (or function object) is expected to return the result of the
reduction operation performed on its arguments.

• argN – [in] Any number of arbitrary arguments (passed by by const reference) which
will be forwarded to the action invocation.

Returns This function returns a future representing the result of the overall reduction opera-
tion.

template<typename Action, typename ReduceOp, typename ArgN, ...
> hpx::future< decltype(Action(hpx::id_type, ArgN,...,
std::size_t))> reduce_with_index (std::vector< hpx::id_type > const &ids,
ReduceOp &&reduce_op, ArgN argN,...)

Perform a distributed reduction operation.

The function hpx::lcos::reduce_with_index performs a distributed reduction operation over results re-
turned from action invocations on a given set of global identifiers. The action can be either plain action
(in which case the global identifiers have to refer to localities) or a component action (in which case
the global identifiers have to refer to instances of a component type which exposes the action.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

Parameters
• ids – [in] A list of global identifiers identifying the target objects for which the given

action will be invoked.
• reduce_op – [in] A binary function expecting two results as returned from the action

invocations. The function (or function object) is expected to return the result of the
reduction operation performed on its arguments.

2.8. API reference 1407

HPX Documentation, master

• argN – [in] Any number of arbitrary arguments (passed by by const reference) which
will be forwarded to the action invocation.

Returns This function returns a future representing the result of the overall reduction opera-
tion.

hpx/collectives/scatter.hpp

Defined in header hpx/collectives/scatter.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx
Top level HPX namespace.

namespace collectives
Top level HPX namespace.

Functions

template<typename T>
hpx::future<T> scatter_from(char const *basename, this_site_arg this_site = this_site_arg(),

generation_arg generation = generation_arg(), root_site_arg root_site =
root_site_arg())

Scatter (receive) a set of values to different call sites

This function receives an element of a set of values operating on the given base name.
Parameters

• basename – The base name identifying the scatter operation
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The sequence number of the central scatter point (usually the locality id).
This value is optional and defaults to 0.

Returns This function returns a future holding the scattered value. It will become ready once
the scatter operation has been completed.

template<typename T>
hpx::future<T> scatter_from(communicator comm, this_site_arg this_site = this_site_arg(),

generation_arg generation = generation_arg())
Scatter (receive) a set of values to different call sites

This function receives an element of a set of values operating on the given base name.

Scatter (receive) a set of values to different call sites

This function receives an element of a set of values operating on the given base name.

1408 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: The generation values from corresponding scatter_to and scatter_from have to match.

Note: The generation values from corresponding scatter_to and scatter_from have to match.

Parameters
• comm – A communicator object returned from create_communicator
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• comm – A communicator object returned from create_communicator
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding the scattered value. It will become ready once
the scatter operation has been completed.

Returns This function returns a future holding the scattered value. It will become ready once
the scatter operation has been completed.

template<typename T>
hpx::future<T> scatter_to(char const *basename, std::vector<T> &&result, num_sites_arg num_sites

= num_sites_arg(), this_site_arg this_site = this_site_arg(), generation_arg
generation = generation_arg())

Scatter (send) a part of the value set at the given call site

This function transmits the value given by result to a central scatter site (where the corresponding
scatter_from is executed)

Parameters
• basename – The base name identifying the scatter operation
• result – The value to transmit to the central scatter point from this call site.
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

Returns This function returns a future holding the scattered value. It will become ready once
the scatter operation has been completed.

template<typename T>
hpx::future<T> scatter_to(communicator comm, std::vector<T> &&result, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg())
Scatter (send) a part of the value set at the given call site

2.8. API reference 1409

HPX Documentation, master

This function transmits the value given by result to a central scatter site (where the corresponding
scatter_from is executed)

Scatter (send) a part of the value set at the given call site

This function transmits the value given by result to a central scatter site (where the corresponding
scatter_from is executed)

Note: The generation values from corresponding scatter_to and scatter_from have to match.

Note: The generation values from corresponding scatter_to and scatter_from have to match.

Parameters
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central scatter point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central scatter point from this call site.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns a future holding the scattered value. It will become ready once
the scatter operation has been completed.

Returns This function returns a future holding the scattered value. It will become ready once
the scatter operation has been completed.

template<typename T>
T scatter_from(hpx::launch::sync_policy, char const *basename, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg(), root_site_arg root_site
= root_site_arg())

Scatter (receive) a set of values to different call sites

This function receives an element of a set of values operating on the given base name.
Parameters

• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the scatter operation
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed

1410 Chapter 2. What’s so special about HPX?

HPX Documentation, master

more than once. The generation number (if given) must be a positive number greater
than zero.

• root_site – The sequence number of the central scatter point (usually the locality id).
This value is optional and defaults to 0.

Returns This function returns the scattered value. It executes synchronously and directly
returns the result.

template<typename T>
T scatter_from(hpx::launch::sync_policy, communicator comm, this_site_arg this_site =

this_site_arg(), generation_arg generation = generation_arg())
Scatter (receive) a set of values to different call sites

This function receives an element of a set of values operating on the given base name.

Scatter (receive) a set of values to different call sites

This function receives an element of a set of values operating on the given base name.

Note: The generation values from corresponding scatter_to and scatter_from have to match.

Note: The generation values from corresponding scatter_to and scatter_from have to match.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns the scattered value. It executes synchronously and directly
returns the result.

Returns This function returns the scattered value. It executes synchronously and directly
returns the result.

template<typename T>
T scatter_to(hpx::launch::sync_policy, char const *basename, std::vector<T> &&result,

num_sites_arg num_sites = num_sites_arg(), this_site_arg this_site = this_site_arg(),
generation_arg generation = generation_arg())

Scatter (send) a part of the value set at the given call site

2.8. API reference 1411

HPX Documentation, master

This function transmits the value given by result to a central scatter site (where the corresponding
scatter_from is executed)

Parameters
• policy – The execution policy specifying synchronous execution.
• basename – The base name identifying the scatter operation
• result – The value to transmit to the central scatter point from this call site.
• num_sites – The number of participating sites (default: all localities).
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

Returns This function returns the scattered value. It executes synchronously and directly
returns the result.

template<typename T>
T scatter_to(hpx::launch::sync_policy, communicator comm, std::vector<T> &&result, this_site_arg

this_site = this_site_arg(), generation_arg generation = generation_arg())
Scatter (send) a part of the value set at the given call site

This function transmits the value given by result to a central scatter site (where the corresponding
scatter_from is executed)

Scatter (send) a part of the value set at the given call site

This function transmits the value given by result to a central scatter site (where the corresponding
scatter_from is executed)

Note: The generation values from corresponding scatter_to and scatter_from have to match.

Note: The generation values from corresponding scatter_to and scatter_from have to match.

Parameters
• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central scatter point from this call site.
• this_site – The sequence number of this invocation (usually the locality id). This

value is optional and defaults to whatever hpx::get_locality_id() returns.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed
more than once. The generation number (if given) must be a positive number greater
than zero.

• policy – The execution policy specifying synchronous execution.
• comm – A communicator object returned from create_communicator
• result – The value to transmit to the central scatter point from this call site.
• generation – The generational counter identifying the sequence number of the

all_gather operation performed on the given base name. This is optional and needs to
be supplied only if the all_gather operation on the given base name has to be performed

1412 Chapter 2. What’s so special about HPX?

HPX Documentation, master

more than once. The generation number (if given) must be a positive number greater
than zero.

• this_site – The sequence number of this invocation (usually the locality id). This
value is optional and defaults to whatever hpx::get_locality_id() returns.

Returns This function returns the scattered value. It executes synchronously and directly
returns the result.

Returns This function returns the scattered value. It executes synchronously and directly
returns the result.

components

See Public API for a list of names and headers that are part of the public HPX API.

hpx/components/basename_registration.hpp

Defined in header hpx/components/basename_registration.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename Client>
std::vector<Client> find_all_from_basename(std::string base_name, std::size_t num_ids)

Return all registered clients from all localities from the given base name.

This function locates all ids which were registered with the given base name. It returns a list of futures
representing those ids.

Return all registered ids from all localities from the given base name.

This function locates all ids which were registered with the given base name. It returns a list of futures
representing those ids.

Note: The futures embedded in the returned client objects will become ready even if the event (for instance,
binding the name to an id) has already happened in the past. This is important in order to reliably retrieve
ids from a name, even if the name was already registered.

Note: The futures will become ready even if the event (for instance, binding the name to an id) has already
happened in the past. This is important in order to reliably retrieve ids from a name, even if the name was
already registered.

Template Parameters Client – The client type to return

Parameters

• base_name – [in] The base name for which to retrieve the registered ids.

• num_ids – [in] The number of registered ids to expect.

2.8. API reference 1413

HPX Documentation, master

• base_name – [in] The base name for which to retrieve the registered ids.

• num_ids – [in] The number of registered ids to expect.

Returns A list of futures representing the ids which were registered using the given base name.

Returns A list of futures representing the ids which were registered using the given base name.

template<typename Client>
std::vector<Client> find_all_from_basename(hpx::launch::sync_policy policy, std::string base_name,

std::size_t num_ids)

template<typename Client>
std::vector<Client> find_from_basename(std::string base_name, std::vector<std::size_t> const &ids)

Return registered clients from the given base name and sequence numbers.

This function locates the ids which were registered with the given base name and the given sequence num-
bers. It returns a list of futures representing those ids.

Return registered ids from the given base name and sequence numbers.

This function locates the ids which were registered with the given base name and the given sequence num-
bers. It returns a list of futures representing those ids.

Note: The futures embedded in the returned client objects will become ready even if the event (for instance,
binding the name to an id) has already happened in the past. This is important in order to reliably retrieve
ids from a name, even if the name was already registered.

Note: The futures will become ready even if the event (for instance, binding the name to an id) has already
happened in the past. This is important in order to reliably retrieve ids from a name, even if the name was
already registered.

Template Parameters Client – The client type to return

Parameters

• base_name – [in] The base name for which to retrieve the registered ids.

• ids – [in] The sequence numbers of the registered ids.

• base_name – [in] The base name for which to retrieve the registered ids.

• ids – [in] The sequence numbers of the registered ids.

Returns A list of futures representing the ids which were registered using the given base name
and sequence numbers.

Returns A list of futures representing the ids which were registered using the given base name
and sequence numbers.

template<typename Client>
std::vector<Client> find_from_basename(hpx::launch::sync_policy policy, std::string base_name,

std::vector<std::size_t> const &ids)

template<typename Client>

1414 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Client find_from_basename(std::string base_name, std::size_t sequence_nr)
Return registered id from the given base name and sequence number.

This function locates the id which was registered with the given base name and the given sequence number.
It returns a future representing those id.

This function locates the id which was registered with the given base name and the given sequence number.
It returns a future representing those id.

Note: The future embedded in the returned client object will become ready even if the event (for instance,
binding the name to an id) has already happened in the past. This is important in order to reliably retrieve
ids from a name, even if the name was already registered.

Note: The future will become ready even if the event (for instance, binding the name to an id) has already
happened in the past. This is important in order to reliably retrieve ids from a name, even if the name was
already registered.

Template Parameters Client – The client type to return

Parameters

• base_name – [in] The base name for which to retrieve the registered ids.

• sequence_nr – [in] The sequence number of the registered id.

• base_name – [in] The base name for which to retrieve the registered ids.

• sequence_nr – [in] The sequence number of the registered id.

Returns A representing the id which was registered using the given base name and sequence
numbers.

Returns A representing the id which was registered using the given base name and sequence
numbers.

template<typename Client>
Client find_from_basename(hpx::launch::sync_policy policy, std::string base_name, std::size_t

sequence_nr)

template<typename Client, typename Stub, typename Data>
hpx::future<bool> register_with_basename(std::string base_name, components::client_base<Client, Stub,

Data> &client, std::size_t sequence_nr)
Register the id wrapped in the given client using the given base name.

The function registers the object the given client refers to using the provided base name.

Note: The operation will fail if the given sequence number is not unique.

Template Parameters Client – The client type to register

Parameters

• base_name – [in] The base name for which to retrieve the registered ids.

2.8. API reference 1415

HPX Documentation, master

• client – [in] The client which should be registered using the given base name.

• sequence_nr – [in, optional] The sequential number to use for the registration of the
id. This number has to be unique system-wide for each registration using the same base
name. The default is the current locality identifier. Also, the sequence numbers have to be
consecutive starting from zero.

Returns A future representing the result of the registration operation itself.

template<typename Client>
Client unregister_with_basename(std::string base_name, std::size_t sequence_nr =

~static_cast<std::size_t>(0))
Unregister the given id using the given base name.

Unregister the given base name.

The function unregisters the given ids using the provided base name.

The function unregisters the given ids using the provided base name.

Template Parameters Client – The client type to return

Parameters

• base_name – [in] The base name for which to retrieve the registered ids.

• sequence_nr – [in, optional] The sequential number to use for the un-registration. This
number has to be the same as has been used with register_with_basename before.

• base_name – [in] The base name for which to retrieve the registered ids.

• sequence_nr – [in, optional] The sequential number to use for the un-registration. This
number has to be the same as has been used with register_with_basename before.

Returns A future representing the result of the un-registration operation itself.

Returns A future representing the result of the un-registration operation itself.

hpx/components/basename_registration_fwd.hpp

Defined in header hpx/components/basename_registration_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

hpx::future<bool> register_with_basename(std::string base_name, hpx::id_type const &id, std::size_t
sequence_nr = ~static_cast<std::size_t>(0))

Register the given id using the given base name.

The function registers the given ids using the provided base name.

Note: The operation will fail if the given sequence number is not unique.

1416 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters

• base_name – [in] The base name for which to retrieve the registered ids.

• id – [in] The id to register using the given base name.

• sequence_nr – [in, optional] The sequential number to use for the registration of the
id. This number has to be unique system-wide for each registration using the same base
name. The default is the current locality identifier. Also, the sequence numbers have to be
consecutive starting from zero.

Returns A future representing the result of the registration operation itself.

bool register_with_basename(hpx::launch::sync_policy, std::string base_name, hpx::id_type const &id,
std::size_t sequence_nr = ~static_cast<std::size_t>(0), error_code &ec =
throws)

hpx::future<bool> register_with_basename(std::string base_name, hpx::future<hpx::id_type> f,
std::size_t sequence_nr = ~static_cast<std::size_t>(0))

Register the id wrapped in the given future using the given base name.

The function registers the object the given future refers to using the provided base name.

Note: The operation will fail if the given sequence number is not unique.

Parameters

• base_name – [in] The base name for which to retrieve the registered ids.

• f – [in] The future which should be registered using the given base name.

• sequence_nr – [in, optional] The sequential number to use for the registration of the
id. This number has to be unique system-wide for each registration using the same base
name. The default is the current locality identifier. Also, the sequence numbers have to be
consecutive starting from zero.

Returns A future representing the result of the registration operation itself.

hpx::components::client

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

template<typename Component, typename Data = void>

class client : public hpx::components::client_base<client<Component, void>, Component, void>
#include <client.hpp> The client class is a wrapper that manages a distributed component. It extends
client_base with specific Component and Data types.

Template Parameters
• Component – The type of the component.
• Data – The type of the data associated with the client (default is void).

2.8. API reference 1417

HPX Documentation, master

Public Functions

client() = default

inline explicit client(hpx::id_type const &id)

inline explicit client(hpx::id_type &&id)

inline explicit client(future_type const &f) noexcept

inline explicit client(future_type &&f) noexcept

inline client(future<hpx::id_type> &&f) noexcept

inline client(future<client> &&c)

client(client const &rhs) noexcept = default

client(client &&rhs) noexcept = default

~client() = default

inline client &operator=(hpx::id_type const &id)

inline client &operator=(hpx::id_type &&id)

inline client &operator=(future_type const &f) noexcept

inline client &operator=(future_type &&f) noexcept

inline client &operator=(future<hpx::id_type> &&f) noexcept

client &operator=(client const &rhs) noexcept = default

client &operator=(client &&rhs) noexcept = default

Private Types

using base_type = client_base<client, Component, Data>

using future_type = typename base_type::future_type

hpx::components::client_base

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<typename Derived>

struct is_client<Derived, std::void_t<typename Derived::is_client_tag>> : public true_type

namespace hpx

namespace components

1418 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename Derived, typename Stub, typename Data>
bool operator==(client_base<Derived, Stub, Data> const &lhs, client_base<Derived, Stub, Data>

const &rhs)

template<typename Derived, typename Stub, typename Data>
bool operator<(client_base<Derived, Stub, Data> const &lhs, client_base<Derived, Stub, Data> const

&rhs)

template<typename Derived, typename Stub, typename Data>

class client_base : public detail::make_stub::type<Stub>
#include <client_base.hpp> This class template serves as a base class for client components, providing
common functionality such as managing shared state, ID retrieval, and asynchronous operations.

Template Parameters
• Derived – The derived client component type.
• Stub – The stub type used for communication.
• Data – The extra data type used for additional information.

Public Types

using stub_argument_type = Stub

using server_component_type = typename detail::make_stub<Stub>::server_component_type

using is_client_tag = void

Public Functions

client_base() = default

inline explicit client_base(id_type const &id)

inline explicit client_base(id_type &&id)

inline client_base(id_type const &id, bool make_unmanaged)

inline client_base(id_type &&id, bool make_unmanaged)

inline explicit client_base(hpx::shared_future<hpx::id_type> const &f) noexcept

inline explicit client_base(hpx::shared_future<hpx::id_type> &&f) noexcept

inline explicit client_base(hpx::future<hpx::id_type> &&f) noexcept

client_base(client_base const &rhs) = default

client_base(client_base &&rhs) noexcept = default

inline client_base(hpx::future<Derived> &&d)

~client_base() = default

2.8. API reference 1419

HPX Documentation, master

inline client_base &operator=(hpx::id_type const &id)

inline client_base &operator=(hpx::id_type &&id)

inline client_base &operator=(hpx::shared_future<hpx::id_type> const &f) noexcept

inline client_base &operator=(hpx::shared_future<hpx::id_type> &&f) noexcept

inline client_base &operator=(hpx::future<hpx::id_type> &&f) noexcept

client_base &operator=(client_base const &rhs) = default

client_base &operator=(client_base &&rhs) noexcept = default

inline bool valid() const noexcept

inline explicit operator bool() const noexcept

inline void free()

inline hpx::id_type const &get_id(error_code &ec = hpx::throws) const

inline naming::gid_type const &get_raw_gid() const

inline hpx::shared_future<hpx::id_type> detach()

inline hpx::shared_future<hpx::id_type> share() const

inline void reset(hpx::id_type const &id)

inline void reset(hpx::id_type &&id)

inline void reset(shared_future<hpx::id_type> &&rhs)

inline id_type const &get(error_code &ec = hpx::throws) const

inline bool is_ready() const noexcept

inline bool has_value() const noexcept

inline bool has_exception() const noexcept

inline void wait() const

inline std::exception_ptr get_exception_ptr() const

template<typename F>
inline hpx::traits::future_then_result_t<Derived, F> then(launch l, F &&f) const

template<typename F>
inline hpx::traits::future_then_result_t<Derived, F> then(launch::sync_policy l, F &&f) const

template<typename F>
inline hpx::traits::future_then_result_t<Derived, F> then(F &&f) const

inline hpx::future<bool> register_as(std::string symbolic_name, bool manage_lifetime = true)

inline bool register_as(launch::sync_policy, std::string symbolic_name, bool manage_lifetime =
true)

1420 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline void connect_to(std::string const &symbolic_name)

inline std::string const ®istered_name() const

template<typename T>
inline T &get_extra_data()

template<typename T>
inline T *try_get_extra_data() const noexcept

Protected Types

using stub_type = typename detail::make_stub<Stub>::type

using base_shared_state_type = lcos::detail::future_data_base<hpx::id_type>

using shared_state_type = lcos::detail::future_data<hpx::id_type>

using future_type = shared_future<hpx::id_type>

using extra_data_type = Data

Protected Functions

inline client_base(hpx::intrusive_ptr<base_shared_state_type> const &state)

inline client_base(hpx::intrusive_ptr<base_shared_state_type> &&state)

Protected Attributes

hpx::intrusive_ptr<base_shared_state_type> shared_state_

Private Static Functions

template<typename F>
static inline hpx::traits::future_then_result<Derived, F>::cont_result on_ready(hpx::shared_future<id_type>

&&fut, F f)

static inline bool register_as_helper(client_base const &f, std::string symbolic_name, bool
manage_lifetime)

namespace lcos

namespace serialization

2.8. API reference 1421

HPX Documentation, master

Functions

template<typename Archive, typename Derived, typename Stub, typename Data>
void serialize(Archive &ar, ::hpx::components::client_base<Derived, Stub, Data> &f, unsigned

version)

namespace traits

template<typename Derived> is_client_tag > > : public true_type

hpx/components/get_ptr.hpp

Defined in header hpx/components/get_ptr.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename Component>
hpx::future<std::shared_ptr<Component>> get_ptr(hpx::id_type const &id)

Returns a future referring to the pointer to the underlying memory of a component.

The function hpx::get_ptr can be used to extract a future referring to the pointer to the underlying memory
of a given component.

Note: This function will successfully return the requested result only if the given component is currently
located on the calling locality. Otherwise, the function will raise an error.

Note: The component instance the returned pointer refers to can not be migrated as long as there is at least
one copy of the returned shared_ptr alive.

Parameters id – [in] The global id of the component for which the pointer to the underlying
memory should be retrieved.

Template Parameters Component – The type of the server side component.

Returns This function returns a future representing the pointer to the underlying memory for the
component instance with the given id.

template<typename Derived, typename Stub, typename Data>
hpx::future<std::shared_ptr<typename components::client_base<Derived, Stub, Data>::server_component_type>> get_ptr(components::client_base<Derived,

Stub,
Data>
const
&c)

1422 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns a future referring to the pointer to the underlying memory of a component.

The function hpx::get_ptr can be used to extract a future referring to the pointer to the underlying memory
of a given component.

Note: This function will successfully return the requested result only if the given component is currently
located on the calling locality. Otherwise, the function will raise an error.

Note: The component instance the returned pointer refers to can not be migrated as long as there is at least
one copy of the returned shared_ptr alive.

Parameters c – [in] A client side representation of the component for which the pointer to the
underlying memory should be retrieved.

Returns This function returns a future representing the pointer to the underlying memory for the
component instance with the given id.

template<typename Component>
std::shared_ptr<Component> get_ptr(launch::sync_policy p, hpx::id_type const &id, error_code &ec =

throws)
Returns the pointer to the underlying memory of a component.

The function hpx::get_ptr_sync can be used to extract the pointer to the underlying memory of a given
component.

Note: This function will successfully return the requested result only if the given component is currently
located on the requesting locality. Otherwise, the function will raise and error.

Note: The component instance the returned pointer refers to can not be migrated as long as there is at least
one copy of the returned shared_ptr alive.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise, it throws an instance of hpx::exception.

Parameters

• p – [in] The parameter p represents a placeholder type to turn make the call synchronous.

• id – [in] The global id of the component for which the pointer to the underlying memory
should be retrieved.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Template Parameters Component – The only template parameter has to be the type of the server
side component.

Returns This function returns the pointer to the underlying memory for the component instance
with the given id.

2.8. API reference 1423

HPX Documentation, master

template<typename Derived, typename Stub, typename Data>
std::shared_ptr<typename components::client_base<Derived, Stub, Data>::server_component_type> get_ptr(launch::sync_policy

p,
com-
po-
nents::client_base<Derived,
Stub,
Data>
const
&c,
er-
ror_code
&ec
=
throws)

Returns the pointer to the underlying memory of a component.

The function hpx::get_ptr_sync can be used to extract the pointer to the underlying memory of a given
component.

Note: This function will successfully return the requested result only if the given component is currently
located on the requesting locality. Otherwise, the function will raise and error.

Note: The component instance the returned pointer refers to can not be migrated as long as there is at least
one copy of the returned shared_ptr alive.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise, it throws an instance of hpx::exception.

Parameters

• p – [in] The parameter p represents a placeholder type to turn make the call synchronous.

• c – [in] A client side representation of the component for which the pointer to the underlying
memory should be retrieved.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns This function returns the pointer to the underlying memory for the component instance
with the given id.

1424 Chapter 2. What’s so special about HPX?

HPX Documentation, master

components_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx/components_base/agas_interface.hpp

Defined in header hpx/components_base/agas_interface.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace agas

Functions

bool is_console()

bool register_name(launch::sync_policy, std::string const &name, naming::gid_type const &gid,
error_code &ec = throws)

bool register_name(launch::sync_policy, std::string const &name, hpx::id_type const &id, error_code
&ec = throws)

hpx::future<bool> register_name(std::string const &name, hpx::id_type const &id)

hpx::id_type unregister_name(launch::sync_policy, std::string const &name, error_code &ec =
throws)

hpx::future<hpx::id_type> unregister_name(std::string const &name)

hpx::id_type resolve_name(launch::sync_policy, std::string const &name, error_code &ec = throws)

hpx::future<hpx::id_type> resolve_name(std::string const &name)

hpx::future<std::uint32_t> get_num_localities(naming::component_type type =
naming::component_invalid)

std::uint32_t get_num_localities(launch::sync_policy, naming::component_type type, error_code
&ec = throws)

inline std::uint32_t get_num_localities(launch::sync_policy, error_code &ec = throws)

std::string get_component_type_name(naming::component_type type, error_code &ec = throws)

hpx::future<std::vector<std::uint32_t>> get_num_threads()

std::vector<std::uint32_t> get_num_threads(launch::sync_policy, error_code &ec = throws)

hpx::future<std::uint32_t> get_num_overall_threads()

std::uint32_t get_num_overall_threads(launch::sync_policy, error_code &ec = throws)

std::uint32_t get_locality_id(error_code &ec = throws)

2.8. API reference 1425

HPX Documentation, master

inline hpx::naming::gid_type get_locality()

std::vector<std::uint32_t> get_all_locality_ids(naming::component_type type, error_code &ec =
throws)

inline std::vector<std::uint32_t> get_all_locality_ids(error_code &ec = throws)

bool is_local_address_cached(naming::gid_type const &gid, error_code &ec = throws)

bool is_local_address_cached(naming::gid_type const &gid, naming::address &addr, error_code
&ec = throws)

bool is_local_address_cached(naming::gid_type const &gid, naming::address &addr,
std::pair<bool, components::pinned_ptr> &r,
hpx::move_only_function<std::pair<bool,
components::pinned_ptr>(naming::address const&)> &&f,
error_code &ec = throws)

inline bool is_local_address_cached(hpx::id_type const &id, error_code &ec = throws)

inline bool is_local_address_cached(hpx::id_type const &id, naming::address &addr, error_code
&ec = throws)

inline bool is_local_address_cached(hpx::id_type const &id, naming::address &addr,
std::pair<bool, components::pinned_ptr> &r,
hpx::move_only_function<std::pair<bool,
components::pinned_ptr>(naming::address const&)> &&f,
error_code &ec = throws)

void update_cache_entry(naming::gid_type const &gid, naming::address const &addr, std::uint64_t
count = 0, std::uint64_t offset = 0, error_code &ec = throws)

bool is_local_lva_encoded_address(naming::gid_type const &gid)

inline bool is_local_lva_encoded_address(hpx::id_type const &id)

hpx::future_or_value<naming::address> resolve_async(hpx::id_type const &id)

hpx::future<naming::address> resolve(hpx::id_type const &id)

naming::address resolve(launch::sync_policy, hpx::id_type const &id, error_code &ec = throws)

bool resolve_local(naming::gid_type const &gid, naming::address &addr, error_code &ec = throws)

bool resolve_cached(naming::gid_type const &gid, naming::address &addr)

hpx::future<bool> bind(naming::gid_type const &gid, naming::address const &addr, std::uint32_t
locality_id)

bool bind(launch::sync_policy, naming::gid_type const &gid, naming::address const &addr,
std::uint32_t locality_id, error_code &ec = throws)

hpx::future<bool> bind(naming::gid_type const &gid, naming::address const &addr, naming::gid_type
const &locality_)

bool bind(launch::sync_policy, naming::gid_type const &gid, naming::address const &addr,
naming::gid_type const &locality_, error_code &ec = throws)

1426 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::future<naming::address> unbind(naming::gid_type const &gid, std::uint64_t count = 1)

naming::address unbind(launch::sync_policy, naming::gid_type const &gid, std::uint64_t count = 1,
error_code &ec = throws)

bool bind_gid_local(naming::gid_type const &gid, naming::address const &addr, error_code &ec =
throws)

void unbind_gid_local(naming::gid_type const &gid, error_code &ec = throws)

bool bind_range_local(naming::gid_type const &gid, std::size_t count, naming::address const &addr,
std::size_t offset, error_code &ec = throws)

void unbind_range_local(naming::gid_type const &gid, std::size_t count, error_code &ec = throws)

void garbage_collect_non_blocking(error_code &ec = throws)

void garbage_collect(error_code &ec = throws)

void garbage_collect_non_blocking(hpx::id_type const &id, error_code &ec = throws)
Invoke an asynchronous garbage collection step on the given target locality.

void garbage_collect(hpx::id_type const &id, error_code &ec = throws)
Invoke a synchronous garbage collection step on the given target locality.

hpx::id_type get_console_locality(error_code &ec = throws)
Return an id_type referring to the console locality.

naming::gid_type get_next_id(std::size_t count, error_code &ec = throws)

void decref(naming::gid_type const &id, std::int64_t credits, error_code &ec = throws)

hpx::future_or_value<std::int64_t> incref(naming::gid_type const &gid, std::int64_t credits,
hpx::id_type const &keep_alive = hpx::invalid_id)

std::int64_t incref(launch::sync_policy, naming::gid_type const &gid, std::int64_t credits = 1,
hpx::id_type const &keep_alive = hpx::invalid_id, error_code &ec = throws)

std::int64_t replenish_credits(naming::gid_type &gid)

hpx::future_or_value<id_type> get_colocation_id(hpx::id_type const &id)

hpx::id_type get_colocation_id(launch::sync_policy, hpx::id_type const &id, error_code &ec =
throws)

hpx::future<hpx::id_type> on_symbol_namespace_event(std::string const &name, bool
call_for_past_events)

hpx::future<std::pair<hpx::id_type, naming::address>> begin_migration(hpx::id_type const &id)

bool end_migration(hpx::id_type const &id)

hpx::future<void> mark_as_migrated(naming::gid_type const &gid,
hpx::move_only_function<std::pair<bool,
hpx::future<void>>()> &&f, bool
expect_to_be_marked_as_migrating)

2.8. API reference 1427

HPX Documentation, master

std::pair<bool, components::pinned_ptr> was_object_migrated(naming::gid_type const &gid,
hpx::move_only_function<components::pinned_ptr()>
&&f)

void unmark_as_migrated(naming::gid_type const &gid, hpx::move_only_function<void()> &&f)

hpx::future<std::map<std::string, hpx::id_type>> find_symbols(std::string const &pattern = "*")

std::map<std::string, hpx::id_type> find_symbols(hpx::launch::sync_policy, std::string const &pattern
= "*")

naming::component_type register_factory(std::uint32_t prefix, std::string const &name, error_code
&ec = throws)

naming::component_type get_component_id(std::string const &name, error_code &ec = throws)

void destroy_component(naming::gid_type const &gid, naming::address const &addr)

naming::address_type get_primary_ns_lva()

naming::address_type get_symbol_ns_lva()

naming::address_type get_runtime_support_lva()

struct agas_interface_functions &agas_init()

HPX_REGISTER_COMMANDLINE_MODULE

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_DEFINE_COMPONENT_COMMANDLINE_OPTIONS(add_options_function)

HPX_REGISTER_COMMANDLINE_MODULE(add_options_function)
Macro to register a command-line module with the HPX runtime.

This macro facilitates the registration of a command-line module with the HPX runtime system. A command-line
module typically provides additional command-line options that can be used to configure the HPX application.

Parameters

• add_options_function – The function that adds custom command-line options.

HPX_REGISTER_COMMANDLINE_MODULE_DYNAMIC(add_options_function)

namespace hpx

namespace components

struct component_commandline : public component_commandline_base
#include <component_commandline.hpp> The component_startup_shutdown provides a minimal im-
plementation of a component’s startup/shutdown function provider.

1428 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

inline hpx::program_options::options_description add_commandline_options() override
Return any additional command line options valid for this component.

Note: This function will be executed by the runtime system during system startup.

Returns The module is expected to fill a options_description object with any additional com-
mand line options this component will handle.

namespace commandline_options_provider

Functions

hpx::program_options::options_description add_commandline_options()

HPX_REGISTER_STARTUP_MODULE

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_DEFINE_COMPONENT_STARTUP_SHUTDOWN(startup_, shutdown_)

HPX_REGISTER_STARTUP_SHUTDOWN_MODULE_(startup, shutdown)

HPX_REGISTER_STARTUP_SHUTDOWN_MODULE(startup, shutdown)

HPX_REGISTER_STARTUP_SHUTDOWN_MODULE_DYNAMIC(startup, shutdown)

HPX_REGISTER_STARTUP_MODULE(startup)
Macro to register a startup module with the HPX runtime.

This macro facilitates the registration of a startup module with the HPX runtime system. A startup module
typically contains initialization code that should be executed when the HPX runtime starts.

Parameters

• startup – The name of the startup function to be registered.

HPX_REGISTER_STARTUP_MODULE_DYNAMIC(startup)

HPX_REGISTER_SHUTDOWN_MODULE(shutdown)

HPX_REGISTER_SHUTDOWN_MODULE_DYNAMIC(shutdown)

namespace hpx

2.8. API reference 1429

HPX Documentation, master

namespace components

template<bool (*Startup)(startup_function_type&, bool&), bool
(*Shutdown)(shutdown_function_type&, bool&)>
struct component_startup_shutdown : public component_startup_shutdown_base

#include <component_startup_shutdown.hpp> The component_startup_shutdown class provides a
minimal implementation of a component’s startup/shutdown function provider.

Public Functions

inline bool get_startup_function(startup_function_type &startup, bool &pre_startup) override
Return any startup function for this component.

Parameters
• startup – [in, out] The module is expected to fill this function object with a reference to

a startup function. This function will be executed by the runtime system during system
startup.

• pre_startup –
Returns Returns true if the parameter startup has been successfully initialized with the

startup function.

inline bool get_shutdown_function(shutdown_function_type &shutdown, bool &pre_shutdown)
override

Return any startup function for this component.
Parameters

• shutdown – [in, out] The module is expected to fill this function object with a reference
to a startup function. This function will be executed by the runtime system during system
startup.

• pre_shutdown –
Returns Returns true if the parameter shutdown has been successfully initialized with the

shutdown function.

hpx/components_base/component_type.hpp

Defined in header hpx/components_base/component_type.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_COMPONENT_ENUM_TYPE_ENUM_DEPRECATION_MSG

HPX_FACTORY_STATE_ENUM_DEPRECATION_MSG

HPX_DEFINE_GET_COMPONENT_TYPE(component)

HPX_DEFINE_GET_COMPONENT_TYPE_TEMPLATE(template_, component)

HPX_DEFINE_GET_COMPONENT_TYPE_STATIC(component, type)

HPX_DEFINE_COMPONENT_NAME(...)

1430 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX_DEFINE_COMPONENT_NAME_(...)

HPX_DEFINE_COMPONENT_NAME_2(Component, name)

HPX_DEFINE_COMPONENT_NAME_3(Component, name, base_name)

namespace hpx

namespace components

Typedefs

using component_deleter_type = void (*)(hpx::naming::gid_type const&, hpx::naming::address
const&)

Enums

enum class component_enum_type : naming::component_type
Values:

enumerator invalid

enumerator runtime_support

enumerator plain_function

enumerator base_lco

enumerator base_lco_with_value_unmanaged

enumerator base_lco_with_value

enumerator latch

enumerator barrier

enumerator promise

enumerator agas_locality_namespace

enumerator agas_primary_namespace

enumerator agas_component_namespace

2.8. API reference 1431

HPX Documentation, master

enumerator agas_symbol_namespace

enumerator last

enumerator first_dynamic

enum class factory_state : std::uint8_t
Values:

enumerator enabled

enumerator disabled

enumerator check

Functions

constexpr naming::component_type to_int(component_enum_type t) noexcept

constexpr int to_int(factory_state t) noexcept

bool &enabled(component_type type)

util::atomic_count &instance_count(component_type type)

component_deleter_type &deleter(component_type type)

bool enumerate_instance_counts(hpx::move_only_function<bool(component_type)> const &f)

std::string get_component_type_name(component_type type)
Return the string representation for a given component type id.

constexpr component_type get_base_type(component_type t) noexcept
The lower short word of the component type is the type of the component exposing the actions.

constexpr component_type get_derived_type(component_type t) noexcept
The upper short word of the component is the actual component type.

constexpr component_type derived_component_type(component_type derived, component_type
base) noexcept

A component derived from a base component exposing the actions needs to have a specially formatted
component type.

constexpr bool types_are_compatible(component_type lhs, component_type rhs) noexcept
Verify the two given component types are matching (compatible)

template<typename Component, typename Enable = void>
char const *get_component_name() noexcept

template<typename Component, typename Enable = void>
char const *get_component_base_name() noexcept

template<typename Component>

1432 Chapter 2. What’s so special about HPX?

HPX Documentation, master

component_type get_component_type() noexcept

template<typename Component>
void set_component_type(component_type type)

Variables

constexpr component_enum_type component_invalid = component_enum_type::invalid

constexpr component_enum_type component_runtime_support =
component_enum_type::runtime_support

constexpr component_enum_type component_plain_function =
component_enum_type::plain_function

constexpr component_enum_type component_base_lco = component_enum_type::base_lco

constexpr component_enum_type component_base_lco_with_value_unmanaged =
component_enum_type::base_lco_with_value_unmanaged

constexpr component_enum_type component_base_lco_with_value =
component_enum_type::base_lco_with_value

constexpr component_enum_type component_latch = component_enum_type::latch

constexpr component_enum_type component_barrier = component_enum_type::barrier

constexpr component_enum_type component_promise = component_enum_type::promise

constexpr component_enum_type component_agas_locality_namespace =
component_enum_type::agas_locality_namespace

constexpr component_enum_type component_agas_primary_namespace =
component_enum_type::agas_primary_namespace

constexpr component_enum_type component_agas_component_namespace =
component_enum_type::agas_component_namespace

constexpr component_enum_type component_agas_symbol_namespace =
component_enum_type::agas_symbol_namespace

constexpr component_enum_type component_last = component_enum_type::last

constexpr component_enum_type component_first_dynamic = component_enum_type::first_dynamic

2.8. API reference 1433

HPX Documentation, master

constexpr factory_state factory_enabled = factory_state::enabled

constexpr factory_state factory_disabled = factory_state::disabled

constexpr factory_state factory_check = factory_state::check

hpx::components::component, hpx::components::component_base

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

template<typename Component = void>

class abstract_component_base

template<typename Component, typename Derived = void>

class abstract_managed_component_base

template<typename Component>

class component
#include <components_base_fwd.hpp> The component class wraps around a given component type,
adding additional type aliases and constructors. It inherits from the specified component type.

template<typename Component = void>

class component_base
#include <components_base_fwd.hpp> component_base serves as a base class for components. It
provides common functionality needed by components, such as address and ID retrieval. The template
parameter Component specifies the derived component type.

template<typename Component>

class fixed_component

template<typename Component>

class fixed_component_base

template<typename Component, typename Derived>

class managed_component
#include <managed_component_base.hpp> The managed_component template is used as an indirec-
tion layer for components allowing to gracefully handle the access to non-existing components.

Additionally, it provides memory management capabilities for the wrapping instances, and it integrates
the memory management with the AGAS service. Every instance of a managed_component gets as-
signed a global id. The provided memory management allocates the managed_component instances

1434 Chapter 2. What’s so special about HPX?

HPX Documentation, master

from a special heap, ensuring fast allocation and avoids a full network round trip to the AGAS service
for each of the allocated instances.

Template Parameters
• Component – Component type
• Derived – Most derived component type

template<typename Component, typename Wrapper, typename CtorPolicy, typename DtorPolicy>

class managed_component_base

hpx/components_base/get_lva.hpp

Defined in header hpx/components_base/get_lva.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

template<typename Component, typename Enable = void>

struct get_lva
#include <get_lva.hpp> The get_lva template is a helper structure allowing to convert a local virtual ad-
dress as stored in a local address (returned from the function resolver_client::resolve) to the address of the
component implementing the action.

The default implementation uses the template argument Component to deduce the type wrapping the com-
ponent implementing the action. This is used to get the needed address.

Template Parameters Component – This is the type of the component implementing the action
to execute.

Public Static Functions

static inline constexpr Component *call(naming::address_type lva) noexcept

hpx/components_base/server/fixed_component_base.hpp

Defined in header hpx/components_base/server/fixed_component_base.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

template<typename Component>

class fixed_component

template<typename Component>

class fixed_component_base

2.8. API reference 1435

HPX Documentation, master

hpx/components_base/server/managed_component_base.hpp

Defined in header hpx/components_base/server/managed_component_base.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

template<>

struct hpx::components::detail_adl_barrier::init<traits::construct_with_back_ptr>

Public Static Functions

template<typename Component, typename Managed>
static inline constexpr void call(Component*, Managed*) noexcept

template<typename Component, typename Managed, typename ...Ts>
static inline void call_new(Component *&component, Managed *this_, Ts&&... vs)

template<>

struct hpx::components::detail_adl_barrier::init<traits::construct_without_back_ptr>

Public Static Functions

template<typename Component, typename Managed>
static inline void call(Component *component, Managed *this_)

template<typename Component, typename Managed, typename ...Ts>
static inline void call_new(Component *&component, Managed *this_, Ts&&... vs)

template<>

struct
hpx::components::detail_adl_barrier::destroy_backptr<traits::managed_object_is_lifetime_controlled>

Public Static Functions

template<typename BackPtr>
static inline void call(BackPtr *back_ptr)

template<>

struct
hpx::components::detail_adl_barrier::destroy_backptr<traits::managed_object_controls_lifetime>

1436 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Static Functions

template<typename BackPtr>
static inline constexpr void call(BackPtr*) noexcept

template<>

struct
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_is_lifetime_controlled>

Public Static Functions

template<typename Component>
static inline constexpr void call(Component*) noexcept

template<typename Component>
static inline void addref(Component *component) noexcept

template<typename Component>
static inline void release(Component *component) noexcept

template<>

struct
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_controls_lifetime>

Public Static Functions

template<typename Component>
static inline void call(Component *component) noexcept(noexcept(component->finalize()))

template<typename Component>
static inline constexpr void addref(Component*) noexcept

template<typename Component>
static inline constexpr void release(Component*) noexcept

namespace hpx

namespace components

Functions

template<typename Component, typename Derived>
void intrusive_ptr_add_ref(managed_component<Component, Derived> *p) noexcept

template<typename Component, typename Derived>
void intrusive_ptr_release(managed_component<Component, Derived> *p) noexcept

template<typename Component, typename Derived>

2.8. API reference 1437

HPX Documentation, master

class managed_component
#include <managed_component_base.hpp>

template<typename Component, typename Wrapper, typename CtorPolicy, typename DtorPolicy>

class managed_component_base

namespace detail_adl_barrier

template<typename DtorTag>

struct destroy_backptr

template<> managed_object_controls_lifetime >

Public Static Functions

template<typename BackPtr>
static inline constexpr void call(BackPtr*) noexcept

template<> managed_object_is_lifetime_controlled >

Public Static Functions

template<typename BackPtr>
static inline void call(BackPtr *back_ptr)

template<typename BackPtrTag>

struct init

template<> construct_with_back_ptr >

Public Static Functions

template<typename Component, typename Managed>
static inline constexpr void call(Component*, Managed*) noexcept

template<typename Component, typename Managed, typename ...Ts>
static inline void call_new(Component *&component, Managed *this_, Ts&&... vs)

template<> construct_without_back_ptr >

1438 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Static Functions

template<typename Component, typename Managed>
static inline void call(Component *component, Managed *this_)

template<typename Component, typename Managed, typename ...Ts>
static inline void call_new(Component *&component, Managed *this_, Ts&&... vs)

template<typename DtorTag>

struct manage_lifetime

template<> managed_object_controls_lifetime >

Public Static Functions

template<typename Component>
static inline void call(Component *component) noexcept(noexcept(component->finalize()))

template<typename Component>
static inline constexpr void addref(Component*) noexcept

template<typename Component>
static inline constexpr void release(Component*) noexcept

template<> managed_object_is_lifetime_controlled >

Public Static Functions

template<typename Component>
static inline constexpr void call(Component*) noexcept

template<typename Component>
static inline void addref(Component *component) noexcept

template<typename Component>
static inline void release(Component *component) noexcept

hpx/components_base/server/migration_support.hpp

Defined in header hpx/components_base/server/migration_support.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

template<typename BaseComponent, typename Mutex = hpx::spinlock>

struct migration_support : public BaseComponent
#include <migration_support.hpp> This hook has to be inserted into the derivation chain of any com-
ponent for it to support migration.

2.8. API reference 1439

HPX Documentation, master

Public Types

using decorates_action = void

Public Functions

inline migration_support()

template<typename T, typename ...Ts, typename =
std::enable_if_t<!std::is_same_v<std::decay_t<T>, migration_support>>>
inline explicit migration_support(T &&t, Ts&&... ts)

migration_support(migration_support const&) = default

migration_support(migration_support&&) = default

migration_support &operator=(migration_support const&) = default

migration_support &operator=(migration_support&&) = default

~migration_support() = default

inline naming::gid_type get_base_gid(naming::gid_type const &assign_gid =
naming::invalid_gid) const

inline void pin() noexcept

inline bool unpin()

inline std::uint32_t pin_count() const noexcept

inline void mark_as_migrated()

inline hpx::future<void> mark_as_migrated(hpx::id_type const &to_migrate)

inline void unmark_as_migrated(hpx::id_type const &to_migrate)

Public Static Functions

static inline constexpr bool supports_migration() noexcept

static inline constexpr void on_migrated() noexcept

template<typename F>
static inline threads::thread_function_type decorate_action(naming::address_type lva, F &&f)

static inline std::pair<bool, components::pinned_ptr> was_object_migrated(hpx::naming::gid_type
const &id, nam-
ing::address_type
lva)

1440 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Protected Functions

inline threads::thread_result_type thread_function(threads::thread_function_type &&f,
components::pinned_ptr,
threads::thread_restart_state state)

Private Types

using base_type = BaseComponent

using this_component_type = typename base_type::this_component_type

Private Members

hpx::intrusive_ptr<detail::migration_support_data<Mutex>> data_

hpx::promise<void> trigger_migration_

bool started_migration_ = false

bool was_marked_for_migration_ = false

compute

See Public API for a list of names and headers that are part of the public HPX API.

hpx/compute/host/target_distribution_policy.hpp

Defined in header hpx/compute/host/target_distribution_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

distribution_policies

See Public API for a list of names and headers that are part of the public HPX API.

hpx/distribution_policies/binpacking_distribution_policy.hpp

Defined in header hpx/distribution_policies/binpacking_distribution_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

2.8. API reference 1441

HPX Documentation, master

Variables

constexpr char const *const default_binpacking_counter_name =
"/runtime{locality/total}/count/component@"

static const binpacking_distribution_policy binpacked = {}
A predefined instance of the binpacking distribution_policy. It will represent the local locality and
will place all items to create here.

struct binpacking_distribution_policy
#include <binpacking_distribution_policy.hpp> This class specifies the parameters for a binpacking
distribution policy to use for creating a given number of items on a given set of localities. The bin-
packing policy will distribute the new objects in a way such that each of the localities will equalize the
number of overall objects of this type based on a given criteria (by default this criteria is the overall
number of objects of this type).

Public Functions

inline binpacking_distribution_policy()
Default-construct a new instance of a binpacking_distribution_policy. This policy will represent
one locality (the local locality).

inline binpacking_distribution_policy operator()(std::vector<id_type> const &locs, char const
*perf_counter_name =
default_binpacking_counter_name) const

Create a new default_distribution policy representing the given set of localities.
Parameters

• locs – [in] The list of localities the new instance should represent
• perf_counter_name – [in] The name of the performance counter which should be

used as the distribution criteria (by default the overall number of existing instances of
the given component type will be used).

inline binpacking_distribution_policy operator()(std::vector<id_type> &&locs, char const
*perf_counter_name =
default_binpacking_counter_name) const

Create a new default_distribution policy representing the given set of localities.
Parameters

• locs – [in] The list of localities the new instance should represent
• perf_counter_name – [in] The name of the performance counter which should be

used as the distribution criteria (by default the overall number of existing instances of
the given component type will be used).

inline binpacking_distribution_policy operator()(id_type const &loc, char const
*perf_counter_name =
default_binpacking_counter_name) const

Create a new default_distribution policy representing the given locality
Parameters

• loc – [in] The locality the new instance should represent
• perf_counter_name – [in] The name of the performance counter that should be used

as the distribution criteria (by default the overall number of existing instances of the
given component type will be used).

1442 Chapter 2. What’s so special about HPX?

HPX Documentation, master

template<typename Component, typename ...Ts>
inline hpx::future<hpx::id_type> create(Ts&&... vs) const

Create one object on one of the localities associated by this policy instance
Parameters vs – [in] The arguments which will be forwarded to the constructor of the new

object.
Returns A future holding the global address which represents the newly created object

template<bool WithCount, typename Component, typename ...Ts>
inline hpx::future<std::vector<bulk_locality_result>> bulk_create(std::size_t count, Ts&&... vs)

const
Create multiple objects on the localities associated by this policy instance

Parameters
• count – [in] The number of objects to create
• vs – [in] The arguments which will be forwarded to the constructors of the new objects.

Returns A future holding the list of global addresses which represent the newly created
objects

inline std::string const &get_counter_name() const
Returns the name of the performance counter associated with this policy instance.

inline std::size_t get_num_localities() const
Returns the number of associated localities for this distribution policy

Note: This function is part of the creation policy implemented by this class

hpx/distribution_policies/colocating_distribution_policy.hpp

Defined in header hpx/distribution_policies/colocating_distribution_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

Variables

static const colocating_distribution_policy colocated = {}
A predefined instance of the co-locating distribution_policy. It will represent the local locality and
will place all items to create here.

struct colocating_distribution_policy
#include <colocating_distribution_policy.hpp> This class specifies the parameters for a distribution
policy to use for creating a given number of items on the locality where a given object is currently
placed.

2.8. API reference 1443

HPX Documentation, master

Public Functions

constexpr colocating_distribution_policy() = default
Default-construct a new instance of a colocating_distribution_policy. This policy will represent
the local locality.

inline colocating_distribution_policy operator()(id_type const &id) const
Create a new colocating_distribution_policy representing the locality where the given object is
current located

Parameters id – [in] The global address of the object with which the new instances should
be colocated on

template<typename Client, typename Stub, typename Data>
inline colocating_distribution_policy operator()(client_base<Client, Stub, Data> const &client)

const
Create a new colocating_distribution_policy representing the locality where the given object is
current located

Parameters client – [in] The client side representation of the object with which the new
instances should be colocated on

template<typename Component, typename ...Ts>
inline hpx::future<hpx::id_type> create(Ts&&... vs) const

Create one object on the locality of the object this distribution policy instance is associated with

Note: This function is part of the placement policy implemented by this class

Parameters vs – [in] The arguments which will be forwarded to the constructor of the new
object.

Returns A future holding the global address which represents the newly created object

template<bool WithCount, typename Component, typename ...Ts>
inline hpx::future<std::vector<bulk_locality_result>> bulk_create(std::size_t count, Ts&&... vs)

const
Create multiple objects colocated with the object represented by this policy instance

Note: This function is part of the placement policy implemented by this class

Parameters
• count – [in] The number of objects to create
• vs – [in] The arguments which will be forwarded to the constructors of the new objects.

Returns A future holding the list of global addresses which represent the newly created
objects

template<typename Action, typename ...Ts>
inline async_result<Action>::type async(launch policy, Ts&&... vs) const

template<typename Action, typename Callback, typename ...Ts>
inline async_result<Action>::type async_cb(launch policy, Callback &&cb, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename Continuation, typename ...Ts>

1444 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline bool apply(Continuation &&c, launch policy, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename ...Ts>
inline bool apply(launch policy, Ts&&... vs) const

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
inline bool apply_cb(Continuation &&c, launch policy, Callback &&cb, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename Callback, typename ...Ts>
inline bool apply_cb(launch policy, Callback &&cb, Ts&&... vs) const

inline hpx::id_type get_next_target() const
Returns the locality which is anticipated to be used for the next async operation

Public Static Functions

static inline std::size_t get_num_localities()
Returns the number of associated localities for this distribution policy

Note: This function is part of the creation policy implemented by this class

template<typename Action>

struct async_result
#include <colocating_distribution_policy.hpp>

Note: This function is part of the invocation policy implemented by this class

Public Types

using type = hpx::future<typename traits::promise_local_result<typename
hpx::traits::extract_action<Action>::remote_result_type>::type>

2.8. API reference 1445

HPX Documentation, master

hpx/distribution_policies/default_distribution_policy.hpp

Defined in header hpx/distribution_policies/default_distribution_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

Variables

static const default_distribution_policy default_layout = {}
A predefined instance of the default distribution_policy. It will represent the local locality and will
place all items to create here.

struct default_distribution_policy
#include <default_distribution_policy.hpp> This class specifies the parameters for a simple distribu-
tion policy to use for creating (and evenly distributing) a given number of items on a given set of
localities.

Public Functions

constexpr default_distribution_policy() = default
Default-construct a new instance of a default_distribution_policy. This policy will represent one
locality (the local locality).

inline default_distribution_policy operator()(std::vector<id_type> locs) const
Create a new default_distribution policy representing the given set of localities.

Parameters locs – [in] The list of localities the new instance should represent

inline default_distribution_policy operator()(id_type loc) const
Create a new default_distribution policy representing the given locality

Parameters loc – [in] The locality the new instance should represent

template<typename Component, typename ...Ts>
inline hpx::future<hpx::id_type> create(Ts&&... vs) const

Create one object on one of the localities associated by this policy instance

Note: This function is part of the placement policy implemented by this class

Parameters vs – [in] The arguments which will be forwarded to the constructor of the new
object.

Returns A future holding the global address which represents the newly created object

template<bool WithCount, typename Component, typename ...Ts>
inline hpx::future<std::vector<bulk_locality_result>> bulk_create(std::size_t count, Ts&&... vs)

const

1446 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Create multiple objects on the localities associated by this policy instance

Note: This function is part of the placement policy implemented by this class

Parameters
• count – [in] The number of objects to create
• vs – [in] The arguments which will be forwarded to the constructors of the new objects.

Returns A future holding the list of global addresses that represent the newly created objects

template<typename Action, typename ...Ts>
inline async_result<Action>::type async(launch policy, Ts&&... vs) const

template<typename Action, typename Callback, typename ...Ts>
inline async_result<Action>::type async_cb(launch policy, Callback &&cb, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename Continuation, typename ...Ts>
inline bool apply(Continuation &&c, launch policy, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename ...Ts>
inline bool apply(threads::thread_priority priority, Ts&&... vs) const

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
inline bool apply_cb(Continuation &&c, launch policy, Callback &&cb, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename Callback, typename ...Ts>
inline bool apply_cb(launch policy, Callback &&cb, Ts&&... vs) const

inline std::size_t get_num_localities() const
Returns the number of associated localities for this distribution policy

Note: This function is part of the creation policy implemented by this class

inline hpx::id_type get_next_target() const
Returns the locality which is anticipated to be used for the next async operation

template<typename Action>

struct async_result
#include <default_distribution_policy.hpp>

Note: This function is part of the invocation policy implemented by this class

2.8. API reference 1447

HPX Documentation, master

Public Types

using type = hpx::future<typename traits::promise_local_result<typename
hpx::traits::extract_action<Action>::remote_result_type>::type>

hpx/distribution_policies/target_distribution_policy.hpp

Defined in header hpx/distribution_policies/target_distribution_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

Variables

static const target_distribution_policy target = {}
A predefined instance of the target_distribution_policy. It will represent the local locality and will
place all items to create here.

struct target_distribution_policy
#include <target_distribution_policy.hpp> This class specifies the parameters for a simple distribution
policy to use for creating (and evenly distributing) a given number of items on a given set of localities.

Public Functions

target_distribution_policy() = default
Default-construct a new instance of a target_distribution_policy. This policy will represent one
locality (the local locality).

inline target_distribution_policy operator()(id_type const &id) const
Create a new target_distribution_policy representing the given locality

Parameters loc – [in] The locality the new instance should represent

template<typename Component, typename ...Ts>
inline hpx::future<hpx::id_type> create(Ts&&... vs) const

Create one object on one of the localities associated by this policy instance

Note: This function is part of the placement policy implemented by this class

Parameters vs – [in] The arguments which will be forwarded to the constructor of the new
object.

Returns A future holding the global address which represents the newly created object

template<bool WithCount, typename Component, typename ...Ts>

1448 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline hpx::future<std::vector<bulk_locality_result>> bulk_create(std::size_t count, Ts&&... vs)
const

Create multiple objects on the localities associated by this policy instance

Note: This function is part of the placement policy implemented by this class

Parameters
• count – [in] The number of objects to create
• vs – [in] The arguments which will be forwarded to the constructors of the new objects.

Returns A future holding the list of global addresses which represent the newly created
objects

template<typename Action, typename ...Ts>
inline async_result<Action>::type async(launch policy, Ts&&... vs) const

template<typename Action, typename Callback, typename ...Ts>
inline async_result<Action>::type async_cb(launch policy, Callback &&cb, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename Continuation, typename ...Ts>
inline bool apply(Continuation &&c, launch policy, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename ...Ts>
inline bool apply(launch policy, Ts&&... vs) const

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
inline bool apply_cb(Continuation &&c, launch policy, Callback &&cb, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename Callback, typename ...Ts>
inline bool apply_cb(launch policy, Callback &&cb, Ts&&... vs) const

inline std::size_t get_num_localities() const
Returns the number of associated localities for this distribution policy

Note: This function is part of the creation policy implemented by this class

inline hpx::id_type get_next_target() const
Returns the locality which is anticipated to be used for the next async operation

template<typename Action>

struct async_result
#include <target_distribution_policy.hpp>

2.8. API reference 1449

HPX Documentation, master

Note: This function is part of the invocation policy implemented by this class

Public Types

using type = hpx::future<typename traits::promise_local_result<typename
hpx::traits::extract_action<Action>::remote_result_type>::type>

hpx/distribution_policies/unwrapping_result_policy.hpp

Defined in header hpx/distribution_policies/unwrapping_result_policy.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

struct unwrapping_result_policy
#include <unwrapping_result_policy.hpp> This class is a distribution policy that can be using with
actions that return futures. For those actions it is possible to apply certain optimizations if the action
is invoked synchronously.

Public Functions

inline explicit unwrapping_result_policy(id_type const &id)

template<typename Client, typename Stub, typename Data>
inline explicit unwrapping_result_policy(client_base<Client, Stub, Data> const &client)

template<typename Action, typename ...Ts>
inline async_result<Action>::type async(launch policy, Ts&&... vs) const

template<typename Action, typename ...Ts>
inline async_result<Action>::type async(launch::sync_policy, Ts&&... vs) const

template<typename Action, typename Callback, typename ...Ts>
inline async_result<Action>::type async_cb(launch policy, Callback &&cb, Ts&&... vs) const

template<typename Action, typename Continuation, typename ...Ts>
inline bool apply(Continuation &&c, launch policy, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename ...Ts>
inline bool apply(launch policy, Ts&&... vs) const

template<typename Action, typename Continuation, typename Callback, typename ...Ts>

1450 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline bool apply_cb(Continuation &&c, launch policy, Callback &&cb, Ts&&... vs) const

Note: This function is part of the invocation policy implemented by this class

template<typename Action, typename Callback, typename ...Ts>
inline bool apply_cb(launch policy, Callback &&cb, Ts&&... vs) const

inline hpx::id_type const &get_next_target() const

template<typename Action>

struct async_result

Public Types

using type = typename traits::promise_local_result<typename
hpx::traits::extract_action<Action>::remote_result_type>::type

executors_distributed

See Public API for a list of names and headers that are part of the public HPX API.

hpx/executors_distributed/distribution_policy_executor.hpp

Defined in header hpx/executors_distributed/distribution_policy_executor.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace execution

namespace experimental

Functions

template<typename DistPolicy>
distribution_policy_executor(DistPolicy&&) ->

distribution_policy_executor<std::decay_t<DistPolicy>>

template<typename DistPolicy> HPX_DEPRECATED_V (1, 9,
"hpx::parallel::execution::make_distribution_policy_executor is " "deprecated,
use " "hpx::parallel::execution::distribution_policy_executor instead") distribution_policy_executor< std

Create a new distribution_policy_executor from the given distribution_policy.
Parameters policy – The distribution_policy to create an executor from

template<typename DistPolicy>

2.8. API reference 1451

HPX Documentation, master

class distribution_policy_executor
#include <distribution_policy_executor.hpp> A distribution_policy_executor creates groups of
parallel execution agents that execute in threads implicitly created by the executor and placed on
any of the associated localities.

Template Parameters DistPolicy – The distribution policy type for which an executor
should be created. The expression hpx::traits::is_distribution_policy_v<DistPolicy> must
evaluate to true.

init_runtime

See Public API for a list of names and headers that are part of the public HPX API.

hpx::finalize, hpx::disconnect

Defined in header hpx/init.hpp802.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

int finalize(double shutdown_timeout, double localwait = -1.0, error_code &ec = throws)
Main function to gracefully terminate the HPX runtime system.

The function hpx::finalize is the main way to (gracefully) exit any HPX application. It must be called at
least once, but can be called multiple times as well. However, only the first invocation will have effect. It
will notify all connected localities to finish execution. Only after all other localities have exited this function
will return, allowing to exit the console locality as well.

During the execution of this function the runtime system will invoke all registered shutdown functions (see
hpx::init) on all localities.

The default value (-1.0) will try to find a globally set timeout value (can be set as the configuration pa-
rameter hpx.shutdown_timeout), and if that is not set or -1.0 as well, it will disable any timeout, each
connected locality will wait for all existing HPX-threads to terminate.

The default value (-1.0) will try to find a globally set wait time value (can be set as the configuration
parameter “hpx.finalize_wait_time”), and if this is not set or -1.0 as well, it will disable any addition local
wait time before proceeding.

This function will block and wait for all connected localities to exit before returning to the caller. It should
be the last HPX-function called by any application.

Using this function is an alternative to hpx::disconnect, these functions do not need to be called both.
802 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

1452 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

HPX Documentation, master

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• shutdown_timeout – This parameter allows to specify a timeout (in microseconds), spec-
ifying how long any of the connected localities should wait for pending tasks to be executed.
After this timeout, all suspended HPX-threads will be aborted. Note, that this function will
not abort any running HPX-threads. In any case the shutdown will not proceed as long as
there is at least one pending/running HPX-thread.

• localwait – This parameter allows to specify a local wait time (in microseconds) before
the connected localities will be notified and the overall shutdown process starts.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns This function will always return zero.

inline int finalize(error_code &ec = throws)
Main function to gracefully terminate the HPX runtime system.

The function hpx::finalize is the main way to (gracefully) exit any HPX application. It must be called at
least once, but can be called multiple times as well. However, only the first invocation will have effect. It
will notify all connected localities to finish execution. Only after all other localities have exited this function
will return, allowing to exit the console locality as well.

During the execution of this function the runtime system will invoke all registered shutdown functions (see
hpx::init) on all localities.

This function will block and wait for all connected localities to exit before returning to the caller. It should
be the last HPX-function called by any application.

Using this function is an alternative to hpx::disconnect, these functions do not need to be called both.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

Returns This function will always return zero.

void terminate()
Terminate any application non-gracefully.

The function hpx::terminate is the non-graceful way to exit any application immediately. It can be called
from any locality and will terminate all localities currently used by the application.

Note: This function will cause HPX to call std::terminate() on all localities associated with this
application. If the function is called not from an HPX thread it will fail and return an error using the
argument ec.

2.8. API reference 1453

HPX Documentation, master

int disconnect(double shutdown_timeout, double localwait = -1.0, error_code &ec = throws)
Disconnect this locality from the application.

The function hpx::disconnect can be used to disconnect a locality from a running HPX application.

During the execution of this function the runtime system will invoke all registered shutdown functions (see
hpx::init) on this locality.

The default value (-1.0) will try to find a globally set timeout value (can be set as the configuration
parameter “hpx.shutdown_timeout”), and if that is not set or -1.0 as well, it will disable any timeout, each
connected locality will wait for all existing HPX-threads to terminate.

The default value (-1.0) will try to find a globally set wait time value (can be set as the configuration
parameter hpx.finalize_wait_time), and if this is not set or -1.0 as well, it will disable any addition
local wait time before proceeding.

This function will block and wait for this locality to finish executing before returning to the caller. It should
be the last HPX-function called by any locality being disconnected.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• shutdown_timeout – This parameter allows to specify a timeout (in microseconds), spec-
ifying how long this locality should wait for pending tasks to be executed. After this time-
out, all suspended HPX-threads will be aborted. Note, that this function will not abort any
running HPX-threads. In any case the shutdown will not proceed as long as there is at least
one pending/running HPX-thread.

• localwait – This parameter allows to specify a local wait time (in microseconds) before
the connected localities will be notified and the overall shutdown process starts.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns This function will always return zero.

inline int disconnect(error_code &ec = throws)
Disconnect this locality from the application.

The function hpx::disconnect can be used to disconnect a locality from a running HPX application.

During the execution of this function the runtime system will invoke all registered shutdown functions (see
hpx::init) on this locality.

This function will block and wait for this locality to finish executing before returning to the caller. It should
be the last HPX-function called by any locality being disconnected.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

1454 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

Returns This function will always return zero.

int stop(error_code &ec = throws)
Stop the runtime system.

This function will block and wait for this locality to finish executing before returning to the caller. It should
be the last HPX-function called on every locality. This function should be used only if the runtime system
was started using hpx::start.

Returns The function returns the value, which has been returned from the user supplied main
HPX function (usually hpx_main).

hpx/hpx_init.hpp

Defined in header hpx/hpx_init.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

hpx::init

Defined in header hpx/init.hpp803.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx_startup

Variables

std::function<int(hpx::program_options::variables_map&)> const &get_main_func()

namespace hpx

Functions

inline int init(std::function<int(hpx::program_options::variables_map&)> f, int argc, char **argv,
init_params const ¶ms = init_params())

Main entry point for launching the HPX runtime system.

This is the main entry point for any HPX application. This function (or one of its overloads) should be called
from the users main() function. It will set up the HPX runtime environment and schedule the function
given by f as a HPX thread. This overload will not call hpx_main.

803 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

2.8. API reference 1455

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

HPX Documentation, master

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread.

Note: If the parameter mode is not given (defaulted), the created runtime system instance will be executed
in console or worker mode depending on the command line arguments passed in argc/argv. Otherwise,
it will be executed as specified by the parametermode.

Parameters

• f – [in] The function to be scheduled as an HPX thread. Usually this function represents the
main entry point of any HPX application. If f is nullptr the HPX runtime environment
will be started without invoking f.

• argc – [in] The number of command line arguments passed in argv. This is usually the
unchanged value as passed by the operating system (to main()).

• argv – [in] The command line arguments for this application, usually that is the value as
passed by the operating system (to main()).

• params – [in] The parameters to the hpx::init function (See documentation of
hpx::init_params)

Returns The function returns the value, which has been returned from the user supplied f.

inline int init(std::function<int(int, char**)> f, int argc, char **argv, init_params const ¶ms =
init_params())

Main entry point for launching the HPX runtime system.

This is the main entry point for any HPX application. This function (or one of its overloads) should be called
from the users main() function. It will set up the HPX runtime environment and schedule the function
given by f as a HPX thread. This overload will not call hpx_main.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread.

Note: If the parameter mode is not given (defaulted), the created runtime system instance will be executed
in console or worker mode depending on the command line arguments passed in argc/argv. Otherwise,
it will be executed as specified by the parametermode.

Parameters

• f – [in] The function to be scheduled as an HPX thread. Usually this function represents the
main entry point of any HPX application. If f is nullptr the HPX runtime environment
will be started without invoking f.

• argc – [in] The number of command line arguments passed in argv. This is usually the
unchanged value as passed by the operating system (to main()).

• argv – [in] The command line arguments for this application, usually that is the value as
passed by the operating system (to main()).

• params – [in] The parameters to the hpx::init function (See documentation of
hpx::init_params)

1456 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Returns The function returns the value, which has been returned from the user supplied f.

inline int init(int argc, char **argv, init_params const ¶ms = init_params())
Main entry point for launching the HPX runtime system.

This is the main entry point for any HPX application. This function (or one of its overloads) should be
called from the users main() function. This overload expects a user-defined function named hpx_main at
global scope, which will be used as the entry point for the HPX application.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread.

Note: If the parameter mode is not given (defaulted), the created runtime system instance will be executed
in console or worker mode depending on the command line arguments passed in argc/argv. Otherwise,
it will be executed as specified by the parametermode.

Parameters

• argc – [in] The number of command line arguments passed in argv. This is usually the
unchanged value as passed by the operating system (to main()).

• argv – [in] The command line arguments for this application, usually that is the value as
passed by the operating system (to main()).

• params – [in] The parameters to the hpx::init function (See documentation of
hpx::init_params)

Returns The function returns the value, which has been returned from hpx_main (or 0 when
executed in worker mode).

inline int init(std::nullptr_t f, int argc, char **argv, init_params const ¶ms = init_params())
Main entry point for launching the HPX runtime system.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread. This overload will not call hpx_main.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread.

Note: If the parameter mode is not given (defaulted), the created runtime system instance will be executed
in console or worker mode depending on the command line arguments passed in argc/argv. Otherwise,
it will be executed as specified by the parametermode.

Parameters

• f – [in] The function to be scheduled as an HPX thread. Usually this function represents the
main entry point of any HPX application. If f is nullptr the HPX runtime environment
will be started without invoking f.

2.8. API reference 1457

HPX Documentation, master

• argc – [in] The number of command line arguments passed in argv. This is usually the
unchanged value as passed by the operating system (to main()).

• argv – [in] The command line arguments for this application, usually that is the value as
passed by the operating system (to main()).

• params – [in] The parameters to the hpx::init function (See documentation of
hpx::init_params)

Returns The function returns the value, which has been returned from the user supplied f.

inline int init(init_params const ¶ms = init_params())
Main entry point for launching the HPX runtime system.

This is a simplified main entry point, which can be used to set up the runtime for an HPX application (the
runtime system will be set up in console mode or worker mode depending on the command line settings).
This overload expects a user-defined function named hpx_main at global scope, which will be used as the
entry point for the HPX application.

This is a simplified main entry point, which can be used to set up the runtime for an HPX application (the
runtime system will be set up in console mode or worker mode depending on the command line settings).

Note: The created runtime system instance will be executed in console or worker mode depending on the
command line arguments passed in argc/argv. If not command line arguments are passed, console mode
is assumed.

Note: If no command line arguments are passed the HPX runtime system will not support any of the
default command line options as described in the section ‘HPX Command Line Options’.

Parameters params – [in] The parameters to the hpx::init function (See documentation of
hpx::init_params)

Returns The function returns the value, which has been returned from hpx_main (or 0 when
executed in worker mode).

hpx::init_params

Defined in header hpx/init.hpp804.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

struct init_params
#include <hpx_init_params.hpp> Parameters used to initialize the HPX runtime through hpx::init and
hpx::start.

804 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

1458 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

HPX Documentation, master

Public Functions

inline init_params()

Public Members

std::reference_wrapper<hpx::program_options::options_description const> desc_cmdline =
hpx::local::detail::default_desc(HPX_APPLICATION_STRING)

std::vector<std::string> cfg

std::function<void()> startup

std::function<void()> shutdown

hpx::runtime_mode mode = ::hpx::runtime_mode::default_

hpx::resource::partitioner_mode rp_mode = ::hpx::resource::partitioner_mode::default_

hpx::resource::rp_callback_type rp_callback

hpx/hpx_start.hpp

Defined in header hpx/hpx_start.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

hpx::start

Defined in header hpx/init.hpp805.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx_startup

namespace hpx

805 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

2.8. API reference 1459

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

HPX Documentation, master

Functions

inline bool start(std::function<int(hpx::program_options::variables_map&)> f, int argc, char **argv,
init_params const ¶ms = init_params())

Main non-blocking entry point for launching the HPX runtime system.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as a HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution. This overload will not call hpx_main.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Note: If the parameter mode is not given (defaulted), the created runtime system instance will be executed
in console or worker mode depending on the command line arguments passed in argc/argv. Otherwise,
it will be executed as specified by the parametermode.

Parameters

• f – [in] The function to be scheduled as an HPX thread. Usually this function represents the
main entry point of any HPX application. If f is nullptr the HPX runtime environment
will be started without invoking f.

• argc – [in] The number of command line arguments passed in argv. This is usually the
unchanged value as passed by the operating system (to main()).

• argv – [in] The command line arguments for this application, usually that is the value as
passed by the operating system (to main()).

• params – [in] The parameters to the hpx::start function (See documentation of
hpx::init_params)

Returns The function returns true if command line processing succeeded and the runtime system
was started successfully. It will return false otherwise.

inline bool start(std::function<int(int, char**)> f, int argc, char **argv, init_params const ¶ms =
init_params())

Main non-blocking entry point for launching the HPX runtime system.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as a HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution. This overload will not call hpx_main.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

1460 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: If the parameter mode is not given (defaulted), the created runtime system instance will be executed
in console or worker mode depending on the command line arguments passed in argc/argv. Otherwise,
it will be executed as specified by the parametermode.

Parameters

• f – [in] The function to be scheduled as an HPX thread. Usually this function represents the
main entry point of any HPX application. If f is nullptr the HPX runtime environment
will be started without invoking f.

• argc – [in] The number of command line arguments passed in argv. This is usually the
unchanged value as passed by the operating system (to main()).

• argv – [in] The command line arguments for this application, usually that is the value as
passed by the operating system (to main()).

• params – [in] The parameters to the hpx::start function (See documentation of
hpx::init_params)

Returns The function returns true if command line processing succeeded and the runtime system
was started successfully. It will return false otherwise.

inline bool start(int argc, char **argv, init_params const ¶ms = init_params())
Main non-blocking entry point for launching the HPX runtime system.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as a HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution. This overload will not call hpx_main.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Note: If the parameter mode is not given (defaulted), the created runtime system instance will be executed
in console or worker mode depending on the command line arguments passed in argc/argv. Otherwise,
it will be executed as specified by the parametermode.

Parameters

• argc – [in] The number of command line arguments passed in argv. This is usually the
unchanged value as passed by the operating system (to main()).

• argv – [in] The command line arguments for this application, usually that is the value as
passed by the operating system (to main()).

• params – [in] The parameters to the hpx::start function (See documentation of
hpx::init_params)

Returns The function returns true if command line processing succeeded and the runtime system
was started successfully. It will return false otherwise.

2.8. API reference 1461

HPX Documentation, master

inline bool start(std::nullptr_t f, int argc, char **argv, init_params const ¶ms = init_params())
Main non-blocking entry point for launching the HPX runtime system.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as a HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution. This overload will not call hpx_main.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Note: If the parameter mode is not given (defaulted), the created runtime system instance will be executed
in console or worker mode depending on the command line arguments passed in argc/argv. Otherwise,
it will be executed as specified by the parametermode.

Parameters

• f – [in] The function to be scheduled as an HPX thread. Usually this function represents the
main entry point of any HPX application. If f is nullptr the HPX runtime environment
will be started without invoking f.

• argc – [in] The number of command line arguments passed in argv. This is usually the
unchanged value as passed by the operating system (to main()).

• argv – [in] The command line arguments for this application, usually that is the value as
passed by the operating system (to main()).

• params – [in] The parameters to the hpx::start function (See documentation of
hpx::init_params)

Returns The function returns true if command line processing succeeded and the runtime system
was started successfully. It will return false otherwise.

inline bool start(init_params const ¶ms = init_params())
Main non-blocking entry point for launching the HPX runtime system.

This is a simplified main, non-blocking entry point, which can be used to set up the runtime for an HPX
application (the runtime system will be set up in console mode or worker mode depending on the command
line settings). It will return immediately after that. Use hpx::wait and hpx::stop to synchronize with
the runtime system’s execution.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Note: The created runtime system instance will be executed in console or worker mode depending on the
command line arguments passed in argc/argv. If not command line arguments are passed, console mode
is assumed.

1462 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Note: If no command line arguments are passed the HPX runtime system will not support any of the
default command line options as described in the section ‘HPX Command Line Options’.

Parameters params – [in] The parameters to the hpx::start function (See documentation of
hpx::init_params)

Returns The function returns true if command line processing succeeded and the runtime system
was started successfully. It will return false otherwise.

hpx::suspend, hpx::resume

Defined in header hpx/init.hpp806.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

int suspend(error_code &ec = throws)
Suspend the runtime system.

The function hpx::suspend is used to suspend the HPX runtime system. It can only be used when running
HPX on a single locality. It will block waiting for all thread pools to be empty. This function only be called
when the runtime is running, or already suspended in which case this function will do nothing.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

Returns This function will always return zero.

int resume(error_code &ec = throws)
Resume the HPX runtime system.

The function hpx::resume is used to resume the HPX runtime system. It can only be used when running
HPX on a single locality. It will block waiting for all thread pools to be resumed. This function only be
called when the runtime suspended, or already running in which case this function will do nothing.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

Returns This function will always return zero.
806 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

2.8. API reference 1463

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/init_runtime/include/hpx/init.hpp

HPX Documentation, master

naming_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx/naming_base/unmanaged.hpp

Defined in header hpx/naming_base/unmanaged.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

hpx::id_type unmanaged(hpx::id_type const &id)
The helper function hpx::unmanaged can be used to generate a global identifier which does not participate
in the automatic garbage collection.

Note: This function allows to apply certain optimizations to the process of memory management in HPX.
It however requires the user to take full responsibility for keeping the referenced objects alive long enough.

Parameters id – [in] The id to generated the unmanaged global id from This parameter can be
itself a managed or a unmanaged global id.

Returns This function returns a new global id referencing the same object as the parameter id.
The only difference is that the returned global identifier does not participate in the automatic
garbage collection.

namespace naming

parcelset

See Public API for a list of names and headers that are part of the public HPX API.

hpx/parcelset/connection_cache.hpp

Defined in header hpx/parcelset/connection_cache.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

1464 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/parcelset/message_handler_fwd.hpp

Defined in header hpx/parcelset/message_handler_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/parcelset/parcelhandler.hpp

Defined in header hpx/parcelset/parcelhandler.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/parcelset/parcelset_fwd.hpp

Defined in header hpx/parcelset/parcelset_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

parcelset_base

See Public API for a list of names and headers that are part of the public HPX API.

hpx/parcelset_base/parcelport.hpp

Defined in header hpx/parcelset_base/parcelport.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/parcelset_base/parcelset_base_fwd.hpp

Defined in header hpx/parcelset_base/parcelset_base_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_PARCELPORT_BACKGROUND_MODE_ENUM_DEPRECATION_MSG

namespace hpx

namespace parcelset

2.8. API reference 1465

HPX Documentation, master

Typedefs

using parcel_write_handler_type = hpx::function<void(std::error_code const&, parcelset::parcel
const&)>

The type of the function that can be registered as a parcel write handler using the function
hpx::set_parcel_write_handler.

Note: A parcel write handler is a function which is called by the parcel layer whenever a parcel has
been sent by the underlying networking library and if no explicit parcel handler function was specified
for the parcel.

Enums

enum class parcelport_background_mode : std::uint8_t
Type of background work to perform.

Values:

enumerator flush_buffers
perform buffer flush operations

enumerator send
perform send operations (includes buffer flush)

enumerator receive
perform receive operations

enumerator all
perform all operations

Functions

inline bool operator&(parcelport_background_mode lhs, parcelport_background_mode rhs)

char const *get_parcelport_background_mode_name(parcelport_background_mode mode)

Variables

parcel empty_parcel

constexpr parcelport_background_mode parcelport_background_mode_flush_buffers =
parcelport_background_mode::flush_buffers

constexpr parcelport_background_mode parcelport_background_mode_send =
parcelport_background_mode::send

1466 Chapter 2. What’s so special about HPX?

HPX Documentation, master

constexpr parcelport_background_mode parcelport_background_mode_receive =
parcelport_background_mode::receive

constexpr parcelport_background_mode parcelport_background_mode_all =
parcelport_background_mode::all

hpx/parcelset_base/set_parcel_write_handler.hpp

Defined in header hpx/parcelset_base/set_parcel_write_handler.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

performance_counters

See Public API for a list of names and headers that are part of the public HPX API.

hpx/performance_counters/counter_creators.hpp

Defined in header hpx/performance_counters/counter_creators.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace performance_counters

Functions

bool default_counter_discoverer(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)

Default discovery function for performance counters; to be registered with the counter types. It will
pass the counter_info and the error_code to the supplied function.

bool locality_counter_discoverer(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>(locality#<locality_id>/total)/<instancename>

bool locality_pool_counter_discoverer(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>(locality#<locality_id>/pool#<pool_name>/total)/<instancename>

2.8. API reference 1467

HPX Documentation, master

bool locality0_counter_discoverer(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)

Default discoverer function for AGAS performance counters; to be registered with the counter types.
It is suitable to be used for all counters following the naming scheme:

/<objectname>{locality#0/total}/<instancename>

bool locality_thread_counter_discoverer(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>(locality#<locality_id>/worker-thread#<threadnum>)/<instancename>

bool locality_pool_thread_counter_discoverer(counter_info const &info,
discover_counter_func const &f,
discover_counters_mode mode, error_code
&ec)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>{locality#<locality_id>/pool#<poolname>/thread#<threadnum>}/<instancename>

bool locality_pool_thread_no_total_counter_discoverer(counter_info const &info,
discover_counter_func const &f,
discover_counters_mode mode,
error_code &ec)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>{locality#<locality_id>/pool#<poolname>/thread#<threadnum>}/<instancename>

This is essentially the same as above just that locality#*/total is not supported.

bool locality_numa_counter_discoverer(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>(locality#<locality_id>/numa-node#<threadnum>)/<instancename>

naming::gid_type locality_raw_counter_creator(counter_info const&,
hpx::function<std::int64_t(bool)> const&,
error_code&)

Creation function for raw counters. The passed function is encapsulating the actual value to monitor.
This function checks the validity of the supplied counter name, it has to follow the scheme:

/<objectname>(locality#<locality_id>/total)/<instancename>

naming::gid_type locality_raw_values_counter_creator(counter_info const&,
hpx::function<std::vector<std::int64_t>(bool)>
const&, error_code&)

naming::gid_type agas_raw_counter_creator(counter_info const&, error_code&, char const*const)
Creation function for raw counters. The passed function is encapsulating the actual value to monitor.
This function checks the validity of the supplied counter name, it has to follow the scheme:

/agas(<objectinstance>/total)/<instancename>

1468 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool agas_counter_discoverer(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/agas(<objectinstance>/total)/<instancename>

naming::gid_type local_action_invocation_counter_creator(counter_info const&,
error_code&)

bool local_action_invocation_counter_discoverer(counter_info const&,
discover_counter_func const&,
discover_counters_mode, error_code&)

hpx/performance_counters/counters.hpp

Defined in header hpx/performance_counters/counters.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace performance_counters

Typedefs

typedef hpx::function<naming::gid_type(counter_info const&, error_code&)> create_counter_func
This declares the type of a function, which will be called by HPX whenever a new performance counter
instance of a particular type needs to be created.

typedef hpx::function<bool(counter_info const&, error_code&)> discover_counter_func
This declares a type of a function, which will be passed to a discover_counters_func in order to be
called for each discovered performance counter instance.

typedef hpx::function<bool(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)> discover_counters_func

This declares the type of a function, which will be called by HPX whenever it needs to discover all
performance counter instances of a particular type.

Enums

enum class counter_type
Values:

enumerator text
text shows a variable-length text string. It does not deliver calculated values.

Formula: None Average: None Type: Text

2.8. API reference 1469

HPX Documentation, master

enumerator raw
raw shows the last observed value only. It does not deliver an average.

Formula: None. Shows raw data as collected. Average: None Type: Instantaneous

enumerator monotonically_increasing
monotonically_increasing shows the cumulatively accumulated observed value. It does not deliver
an average.

Formula: None. Shows cumulatively accumulated data as collected. Average: None Type: Instan-
taneous

enumerator average_base
average_base is used as the base data (denominator) in the computation of time or count aver-
ages for the counter_type::average_count and counter_type::average_timer counter types. This
counter type collects the last observed value only.

Formula: None. This counter uses raw data in factional calculations without delivering an output.
Average: SUM (N) / x Type: Instantaneous

enumerator average_count
average_count shows how many items are processed, on average, during an operation. Counters
of this type display a ratio of the items processed (such as bytes sent) to the number of operations
completed. The ratio is calculated by comparing the number of items processed during the last
interval to the number of operations completed during the last interval.

Formula: (N1 - N0) / (D1 - D0), where the numerator (N) represents the number of items processed
during the last sample interval, and the denominator (D) represents the number of operations
completed during the last two sample intervals. Average: (Nx - N0) / (Dx - D0) Type: Average

enumerator aggregating
aggregating applies a function to an embedded counter instance. The embedded counter is usually
evaluated repeatedly after a fixed (but configurable) time interval.

Formula: F(Nx)

enumerator average_timer
average_timer measures the average time it takes to complete a process or operation. Counters of
this type display a ratio of the total elapsed time of the sample interval to the number of processes
or operations completed during that time. This counter type measures time in ticks of the system
clock. The variable F represents the number of ticks per second. The value of F is factored into
the equation so that the result is displayed in seconds.

Formula: ((N1 - N0) / F) / (D1 - D0), where the numerator (N) represents the number of ticks
counted during the last sample interval, the variable F represents the frequency of the ticks, and
the denominator (D) represents the number of operations completed during the last sample interval.
Average: ((Nx - N0) / F) / (Dx - D0) Type: Average

enumerator elapsed_time
elapsed_time shows the total time between when the component or process started and the time
when this value is calculated. The variable F represents the number of time units that elapse in
one second. The value of F is factored into the equation so that the result is displayed in seconds.

1470 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Formula: (D0 - N0) / F, where the nominator (D) represents the current time, the numerator (N)
represents the time the object was started, and the variable F represents the number of time units
that elapse in one second. Average: (Dx - N0) / F Type: Difference

enumerator histogram
histogram exposes a histogram of the measured values instead of a single value as many of the other
counter types. Counters of this type expose a counter_value_array instead of a counter_value.
Those will also not implement the get_counter_value() functionality. The results are exposed
through a separate get_counter_values_array() function.

The first three values in the returned array represent the lower and upper boundaries, and the size
of the histogram buckets. All remaining values in the returned array represent the number of
measurements for each of the buckets in the histogram.

enumerator raw_values
raw_values exposes an array of measured values instead of a single value as many of the other
counter types. Counters of this type expose a counter_value_array instead of a counter_value.
Those will also not implement the get_counter_value() functionality. The results are exposed
through a separate get_counter_values_array() function.

enumerator text

enumerator raw

enumerator monotonically_increasing

enumerator average_base

enumerator average_count

enumerator aggregating

enumerator average_timer

enumerator elapsed_time

enumerator histogram

enumerator raw_values
raw_values counter exposes an array of measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

enum class counter_status
Status and error codes used by the functions related to performance counters.

Values:

2.8. API reference 1471

HPX Documentation, master

enumerator valid_data
No error occurred, data is valid.

enumerator new_data
Data is valid and different from last call.

enumerator invalid_data
Some error occurred, data is not value.

enumerator already_defined
The type or instance already has been defined.

enumerator counter_unknown
The counter instance is unknown.

enumerator counter_type_unknown
The counter type is unknown.

enumerator generic_error
A unknown error occurred.

enumerator valid_data

enumerator new_data

enumerator invalid_data

enumerator already_defined

enumerator counter_unknown

enumerator counter_type_unknown

enumerator generic_error

Functions

inline std::string &ensure_counter_prefix(std::string &name)

inline std::string ensure_counter_prefix(std::string const &counter)

inline std::string &remove_counter_prefix(std::string &name)

inline std::string remove_counter_prefix(std::string const &counter)

1472 Chapter 2. What’s so special about HPX?

HPX Documentation, master

char const *get_counter_type_name(counter_type state)
Return the readable name of a given counter type.

inline bool status_is_valid(counter_status s)

inline counter_status add_counter_type(counter_info const &info, error_code &ec)

inline hpx::id_type get_counter(std::string const &name, error_code &ec)

inline hpx::id_type get_counter(counter_info const &info, error_code &ec)

Variables

constexpr const char counter_prefix[] = "/counters"

constexpr std::size_t counter_prefix_len = std::size(counter_prefix) - 1

struct counter_info

Public Functions

inline explicit counter_info(counter_type type = counter_type::raw)

inline explicit counter_info(std::string const &name)

inline counter_info(counter_type type, std::string const &name, std::string const &helptext = "",
std::uint32_t version = HPX_PERFORMANCE_COUNTER_V1, std::string
const &uom = "")

Public Members

counter_type type_
The type of the described counter.

std::uint32_t version_
The version of the described counter using the 0xMMmmSSSS scheme

counter_status status_
The status of the counter object.

std::string fullname_
The full name of this counter.

std::string helptext_
The full descriptive text for this counter.

std::string unit_of_measure_
The unit of measure for this counter.

2.8. API reference 1473

HPX Documentation, master

Private Functions

void serialize(serialization::output_archive &ar, unsigned int) const

void serialize(serialization::input_archive &ar, unsigned int)

Friends

friend class hpx::serialization::access

struct counter_path_elements : public hpx::performance_counters::counter_type_path_elements
#include <counters.hpp> A counter_path_elements holds the elements of a full name for a counter
instance. Generally, a full name of a counter instance has the structure:

/objectname{parentinstancename::parentindex/instancename#instanceindex} /counter-
name#parameters

i.e. /queue{localityprefix/thread#2}/length

Public Types

using base_type = counter_type_path_elements

Public Functions

inline counter_path_elements()

inline counter_path_elements(std::string const &objectname, std::string const &countername,
std::string const ¶meters, std::string const &parentname,
std::string const &instancename, std::int64_t parentindex = -1,
std::int64_t instanceindex = -1, bool parentinstance_is_basename
= false)

inline counter_path_elements(std::string const &objectname, std::string const &countername,
std::string const ¶meters, std::string const &parentname,
std::string const &instancename, std::string const
&subinstancename, std::int64_t parentindex = -1, std::int64_t
instanceindex = -1, std::int64_t subinstanceindex = -1, bool
parentinstance_is_basename = false)

Public Members

std::string parentinstancename_
the name of the parent instance

std::string instancename_
the name of the object instance

1474 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::string subinstancename_
the name of the object sub-instance

std::int64_t parentinstanceindex_
the parent instance index

std::int64_t instanceindex_
the instance index

std::int64_t subinstanceindex_
the sub-instance index

bool parentinstance_is_basename_
the parentinstancename_

Private Functions

void serialize(serialization::output_archive &ar, unsigned int)

void serialize(serialization::input_archive &ar, unsigned int)

Friends

friend class hpx::serialization::access

struct counter_type_path_elements
#include <counters.hpp> A counter_type_path_elements holds the elements of a full name for a
counter type. Generally, a full name of a counter type has the structure:

/objectname/countername

i.e. /queue/length

Subclassed by hpx::performance_counters::counter_path_elements

Public Functions

counter_type_path_elements() = default

inline counter_type_path_elements(std::string const &objectname, std::string const
&countername, std::string const ¶meters)

2.8. API reference 1475

HPX Documentation, master

Public Members

std::string objectname_
the name of the performance object

std::string countername_
contains the counter name

std::string parameters_
optional parameters for the counter instance

Protected Functions

void serialize(serialization::output_archive &ar, unsigned int) const

void serialize(serialization::input_archive &ar, unsigned int)

Friends

friend class hpx::serialization::access

hpx/performance_counters/counters_fwd.hpp

Defined in header hpx/performance_counters/counters_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_COUNTER_TYPE_UNSCOPED_ENUM_DEPRECATION_MSG

HPX_COUNTER_STATUS_UNSCOPED_ENUM_DEPRECATION_MSG

HPX_PERFORMANCE_COUNTER_V1

HPX_DISCOVER_COUNTERS_MODE_UNSCOPED_ENUM_DEPRECATION_MSG

namespace hpx

namespace performance_counters

1476 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Enums

enum class counter_type
Values:

enumerator text
text shows a variable-length text string. It does not deliver calculated values.

Formula: None Average: None Type: Text

enumerator raw
raw shows the last observed value only. It does not deliver an average.

Formula: None. Shows raw data as collected. Average: None Type: Instantaneous

enumerator monotonically_increasing
monotonically_increasing shows the cumulatively accumulated observed value. It does not deliver
an average.

Formula: None. Shows cumulatively accumulated data as collected. Average: None Type: Instan-
taneous

enumerator average_base
average_base is used as the base data (denominator) in the computation of time or count aver-
ages for the counter_type::average_count and counter_type::average_timer counter types. This
counter type collects the last observed value only.

Formula: None. This counter uses raw data in factional calculations without delivering an output.
Average: SUM (N) / x Type: Instantaneous

enumerator average_count
average_count shows how many items are processed, on average, during an operation. Counters
of this type display a ratio of the items processed (such as bytes sent) to the number of operations
completed. The ratio is calculated by comparing the number of items processed during the last
interval to the number of operations completed during the last interval.

Formula: (N1 - N0) / (D1 - D0), where the numerator (N) represents the number of items processed
during the last sample interval, and the denominator (D) represents the number of operations
completed during the last two sample intervals. Average: (Nx - N0) / (Dx - D0) Type: Average

enumerator aggregating
aggregating applies a function to an embedded counter instance. The embedded counter is usually
evaluated repeatedly after a fixed (but configurable) time interval.

Formula: F(Nx)

enumerator average_timer
average_timer measures the average time it takes to complete a process or operation. Counters of
this type display a ratio of the total elapsed time of the sample interval to the number of processes
or operations completed during that time. This counter type measures time in ticks of the system
clock. The variable F represents the number of ticks per second. The value of F is factored into
the equation so that the result is displayed in seconds.

2.8. API reference 1477

HPX Documentation, master

Formula: ((N1 - N0) / F) / (D1 - D0), where the numerator (N) represents the number of ticks
counted during the last sample interval, the variable F represents the frequency of the ticks, and
the denominator (D) represents the number of operations completed during the last sample interval.
Average: ((Nx - N0) / F) / (Dx - D0) Type: Average

enumerator elapsed_time
elapsed_time shows the total time between when the component or process started and the time
when this value is calculated. The variable F represents the number of time units that elapse in
one second. The value of F is factored into the equation so that the result is displayed in seconds.

Formula: (D0 - N0) / F, where the nominator (D) represents the current time, the numerator (N)
represents the time the object was started, and the variable F represents the number of time units
that elapse in one second. Average: (Dx - N0) / F Type: Difference

enumerator histogram
histogram exposes a histogram of the measured values instead of a single value as many of the other
counter types. Counters of this type expose a counter_value_array instead of a counter_value.
Those will also not implement the get_counter_value() functionality. The results are exposed
through a separate get_counter_values_array() function.

The first three values in the returned array represent the lower and upper boundaries, and the size
of the histogram buckets. All remaining values in the returned array represent the number of
measurements for each of the buckets in the histogram.

enumerator raw_values
raw_values exposes an array of measured values instead of a single value as many of the other
counter types. Counters of this type expose a counter_value_array instead of a counter_value.
Those will also not implement the get_counter_value() functionality. The results are exposed
through a separate get_counter_values_array() function.

enumerator text

enumerator raw

enumerator monotonically_increasing

enumerator average_base

enumerator average_count

enumerator aggregating

enumerator average_timer

enumerator elapsed_time

enumerator histogram

1478 Chapter 2. What’s so special about HPX?

HPX Documentation, master

enumerator raw_values
raw_values counter exposes an array of measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

enum class counter_status
Values:

enumerator valid_data
No error occurred, data is valid.

enumerator new_data
Data is valid and different from last call.

enumerator invalid_data
Some error occurred, data is not value.

enumerator already_defined
The type or instance already has been defined.

enumerator counter_unknown
The counter instance is unknown.

enumerator counter_type_unknown
The counter type is unknown.

enumerator generic_error
A unknown error occurred.

enumerator valid_data

enumerator new_data

enumerator invalid_data

enumerator already_defined

enumerator counter_unknown

enumerator counter_type_unknown

enumerator generic_error

2.8. API reference 1479

HPX Documentation, master

enum class discover_counters_mode
Values:

enumerator minimal

enumerator full

Functions

inline constexpr bool operator<(counter_type lhs, counter_type rhs) noexcept

inline constexpr bool operator>(counter_type lhs, counter_type rhs) noexcept

std::ostream &operator<<(std::ostream &os, counter_status rhs)

counter_status get_counter_type_name(counter_type_path_elements const &path, std::string &result,
error_code &ec = throws)

Create a full name of a counter type from the contents of the given counter_type_path_elements in-
stance.The generated counter type name will not contain any parameters.

counter_status get_full_counter_type_name(counter_type_path_elements const &path, std::string
&result, error_code &ec = throws)

Create a full name of a counter type from the contents of the given counter_type_path_elements in-
stance. The generated counter type name will contain all parameters.

counter_status get_counter_name(counter_path_elements const &path, std::string &result, error_code
&ec = throws)

Create a full name of a counter from the contents of the given counter_path_elements instance.

counter_status get_counter_instance_name(counter_path_elements const &path, std::string &result,
error_code &ec = throws)

Create a name of a counter instance from the contents of the given counter_path_elements instance.

counter_status get_counter_type_path_elements(std::string const &name,
counter_type_path_elements &path, error_code
&ec = throws)

Fill the given counter_type_path_elements instance from the given full name of a counter type.

counter_status get_counter_path_elements(std::string const &name, counter_path_elements &path,
error_code &ec = throws)

Fill the given counter_path_elements instance from the given full name of a counter.

counter_status get_counter_name(std::string const &name, std::string &countername, error_code &ec
= throws)

Return the canonical counter instance name from a given full instance name.

counter_status get_counter_type_name(std::string const &name, std::string &type_name, error_code
&ec = throws)

Return the canonical counter type name from a given (full) instance name.

HPX_DEPRECATED_V (1, 9,
HPX_DISCOVER_COUNTERS_MODE_UNSCOPED_ENUM_DEPRECATION_MSG) inline const expr discover_counters_mode discover_counters_minimal

1480 Chapter 2. What’s so special about HPX?

HPX Documentation, master

counter_status complement_counter_info(counter_info &info, counter_info const &type_info,
error_code &ec = throws)

Complement the counter info if parent instance name is missing.

counter_status complement_counter_info(counter_info &info, error_code &ec = throws)

counter_status add_counter_type(counter_info const &info, create_counter_func const
&create_counter, discover_counters_func const
&discover_counters, error_code &ec = throws)

counter_status discover_counter_types(discover_counter_func const &discover_counter,
discover_counters_mode mode =
discover_counters_mode::minimal, error_code &ec =
throws)

Call the supplied function for each registered counter type.

counter_status discover_counter_types(std::vector<counter_info> &counters,
discover_counters_mode mode =
discover_counters_mode::minimal, error_code &ec =
throws)

Return a list of all available counter descriptions.

counter_status discover_counter_type(std::string const &name, discover_counter_func const
&discover_counter, discover_counters_mode mode =
discover_counters_mode::minimal, error_code &ec =
throws)

Call the supplied function for the given registered counter type.

counter_status discover_counter_type(counter_info const &info, discover_counter_func const
&discover_counter, discover_counters_mode mode =
discover_counters_mode::minimal, error_code &ec =
throws)

counter_status discover_counter_type(std::string const &name, std::vector<counter_info>
&counters, discover_counters_mode mode =
discover_counters_mode::minimal, error_code &ec =
throws)

Return a list of matching counter descriptions for the given registered counter type.

counter_status discover_counter_type(counter_info const &info, std::vector<counter_info>
&counters, discover_counters_mode mode =
discover_counters_mode::minimal, error_code &ec =
throws)

bool expand_counter_info(counter_info const&, discover_counter_func const&, error_code&)

call the supplied function will all expanded versions of the supplied counter info.

This function expands all locality#* and worker-thread#* wild cards only.

counter_status remove_counter_type(counter_info const &info, error_code &ec = throws)
Remove an existing counter type from the (local) registry.

Note: This doesn’t remove existing counters of this type, it just inhibits defining new counters using
this type.

2.8. API reference 1481

HPX Documentation, master

counter_status get_counter_type(std::string const &name, counter_info &info, error_code &ec =
throws)

Retrieve the counter type for the given counter name from the (local) registry.

hpx::future<hpx::id_type> get_counter_async(std::string name, error_code &ec = throws)
Get the global id of an existing performance counter, if the counter does not exist yet, the function
attempts to create the counter based on the given counter name.

hpx::future<hpx::id_type> get_counter_async(counter_info const &info, error_code &ec = throws)
Get the global id of an existing performance counter, if the counter does not exist yet, the function
attempts to create the counter based on the given counter info.

void get_counter_infos(counter_info const &info, counter_type &type, std::string &helptext,
std::uint32_t &version, error_code &ec = throws)

Retrieve the meta data specific for the given counter instance.

void get_counter_infos(std::string name, counter_type &type, std::string &helptext, std::uint32_t
&version, error_code &ec = throws)

Retrieve the meta data specific for the given counter instance.

Variables

constexpr counter_type counter_text = counter_type::text

constexpr counter_type counter_raw = counter_type::raw

constexpr counter_type counter_monotonically_increasing =
counter_type::monotonically_increasing

constexpr counter_type counter_average_base = counter_type::average_base

constexpr counter_type counter_average_count = counter_type::average_count

constexpr counter_type counter_aggregating = counter_type::aggregating

constexpr counter_type counter_average_timer = counter_type::average_timer

constexpr counter_type counter_elapsed_time = counter_type::elapsed_time

constexpr counter_type counter_raw_values = counter_type::raw_values

constexpr counter_type counter_histogram = counter_type::histogram

constexpr counter_status status_valid_data = counter_status::valid_data

constexpr counter_status status_new_data = counter_status::new_data

1482 Chapter 2. What’s so special about HPX?

HPX Documentation, master

constexpr counter_status status_invalid_data = counter_status::invalid_data

constexpr counter_status status_already_defined = counter_status::already_defined

constexpr counter_status status_counter_unknown = counter_status::counter_unknown

constexpr counter_status status_counter_type_unknown = counter_status::counter_type_unknown

constexpr counter_status status_generic_error = counter_status::generic_error

struct counter_value

Public Functions

inline counter_value(std::int64_t value = 0, std::int64_t scaling = 1, bool scale_inverse = false)

template<typename T>
inline T get_value(error_code &ec = throws) const

Retrieve the ‘real’ value of the counter_value, converted to the requested type T.

Public Members

std::uint64_t time_
The local time when data was collected.

std::uint64_t count_
The invocation counter for the data.

std::int64_t value_
The current counter value.

std::int64_t scaling_
The scaling of the current counter value.

counter_status status_
The status of the counter value.

bool scale_inverse_
If true, value_ needs to be divided by scaling_, otherwise it has to be multiplied.

2.8. API reference 1483

HPX Documentation, master

Private Functions

void serialize(serialization::output_archive &ar, const unsigned int) const

void serialize(serialization::input_archive &ar, const unsigned int)

Friends

friend class hpx::serialization::access

struct counter_values_array

Public Functions

inline counter_values_array(std::int64_t scaling = 1, bool scale_inverse = false)

inline counter_values_array(std::vector<std::int64_t> &&values, std::int64_t scaling = 1, bool
scale_inverse = false)

inline counter_values_array(std::vector<std::int64_t> const &values, std::int64_t scaling = 1,
bool scale_inverse = false)

template<typename T>
inline T get_value(std::size_t index, error_code &ec = throws) const

Retrieve the ‘real’ value of the counter_value, converted to the requested type T.

Public Members

std::uint64_t time_
The local time when data was collected.

std::uint64_t count_
The invocation counter for the data.

std::vector<std::int64_t> values_
The current counter values.

std::int64_t scaling_
The scaling of the current counter values.

counter_status status_
The status of the counter value.

bool scale_inverse_
If true, value_ needs to be divided by scaling_, otherwise it has to be multiplied.

1484 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Private Functions

void serialize(serialization::output_archive &ar, const unsigned int) const

void serialize(serialization::input_archive &ar, const unsigned int)

Friends

friend class hpx::serialization::access

hpx/performance_counters/manage_counter_type.hpp

Defined in header hpx/performance_counters/manage_counter_type.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace performance_counters

Functions

counter_status install_counter_type(std::string const &name, hpx::function<std::int64_t(bool)>
const &counter_value, std::string const &helptext = "",
std::string const &uom = "", counter_type type =
counter_type::raw, error_code &ec = throws)

Install a new generic performance counter type in a way, which will uninstall it automatically during
shutdown.

The function install_counter_type will register a new generic counter type based on the provided func-
tion. The counter type will be automatically unregistered during system shutdown. Any consumer
querying any instance of this this counter type will cause the provided function to be called and the
returned value to be exposed as the counter value.

The counter type is registered such that there can be one counter instance per locality. The
expected naming scheme for the counter instances is: '/objectname{locality#<*>/total}/
countername' where ‘<*>’ is a zero based integer identifying the locality the counter is created
on.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: The counter type registry is a locality based service. You will have to register each counter
type on every locality where a corresponding performance counter will be created.

Parameters
• name – [in] The global virtual name of the counter type. This name is expected to have

the format /objectname/countername.

2.8. API reference 1485

HPX Documentation, master

• counter_value – [in] The function to call whenever the counter value is requested by
a consumer.

• helptext – [in, optional] A longer descriptive text shown to the user to explain the
nature of the counters created from this type.

• uom – [in] The unit of measure for the new performance counter type.
• type – [in] Type for the new performance counter type.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns If successful, this function returns valid_data, otherwise it will either throw an ex-

ception or return an error_code from the enum counter_status (also, see note related to
parameter ec).

counter_status install_counter_type(std::string const &name,
hpx::function<std::vector<std::int64_t>(bool)> const
&counter_value, std::string const &helptext = "", std::string
const &uom = "", error_code &ec = throws)

Install a new generic performance counter type returning an array of values in a way, that will uninstall
it automatically during shutdown.

The function install_counter_type will register a new generic counter type that returns an array of
values based on the provided function. The counter type will be automatically unregistered during
system shutdown. Any consumer querying any instance of this this counter type will cause the provided
function to be called and the returned array value to be exposed as the counter value.

The counter type is registered such that there can be one counter instance per locality. The
expected naming scheme for the counter instances is: '/objectname{locality#<*>/total}/
countername' where ‘<*>’ is a zero based integer identifying the locality the counter is created
on.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: The counter type registry is a locality based service. You will have to register each counter
type on every locality where a corresponding performance counter will be created.

Parameters
• name – [in] The global virtual name of the counter type. This name is expected to have

the format /objectname/countername.
• counter_value – [in] The function to call whenever the counter value (array of values)

is requested by a consumer.
• helptext – [in, optional] A longer descriptive text shown to the user to explain the

nature of the counters created from this type.
• uom – [in] The unit of measure for the new performance counter type.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns If successful, this function returns valid_data, otherwise it will either throw an ex-

ception or return an error_code from the enum counter_status (also, see note related to
parameter ec).

void install_counter_type(std::string const &name, counter_type type, error_code &ec = throws)
Install a new performance counter type in a way, which will uninstall it automatically during shutdown.

The function install_counter_type will register a new counter type based on the provided

1486 Chapter 2. What’s so special about HPX?

HPX Documentation, master

counter_type_info. The counter type will be automatically unregistered during system shutdown.

Note: The counter type registry is a locality based service. You will have to register each counter
type on every locality where a corresponding performance counter will be created.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• name – [in] The global virtual name of the counter type. This name is expected to have

the format /objectname/countername.
• type – [in] The type of the counters of this counter_type.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns If successful, this function returns valid_data, otherwise it will either throw an ex-

ception or return an error_code from the enum counter_status (also, see note related to
parameter ec).

counter_status install_counter_type(std::string const &name, counter_type type, std::string const
&helptext, std::string const &uom = "", std::uint32_t version =
HPX_PERFORMANCE_COUNTER_V1, error_code &ec =
throws)

Install a new performance counter type in a way, which will uninstall it automatically during shutdown.

The function install_counter_type will register a new counter type based on the provided
counter_type_info. The counter type will be automatically unregistered during system shutdown.

Note: The counter type registry is a locality based service. You will have to register each counter
type on every locality where a corresponding performance counter will be created.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• name – [in] The global virtual name of the counter type. This name is expected to have

the format /objectname/countername.
• type – [in] The type of the counters of this counter_type.
• helptext – [in] A longer descriptive text shown to the user to explain the nature of the

counters created from this type.
• uom – [in] The unit of measure for the new performance counter type.
• version – [in] The version of the counter type. This is currently expected to be set to

HPX_PERFORMANCE_COUNTER_V1.
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns If successful, this function returns valid_data, otherwise it will either throw an ex-

ception or return an error_code from the enum counter_status (also, see note related to
parameter ec).

2.8. API reference 1487

HPX Documentation, master

counter_status install_counter_type(std::string const &name, counter_type type, std::string const
&helptext, create_counter_func const &create_counter,
discover_counters_func const &discover_counters,
std::uint32_t version =
HPX_PERFORMANCE_COUNTER_V1, std::string const
&uom = "", error_code &ec = throws)

Install a new generic performance counter type in a way, which will uninstall it automatically during
shutdown.

The function install_counter_type will register a new generic counter type based on the provided
counter_type_info. The counter type will be automatically unregistered during system shutdown.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: The counter type registry is a locality based service. You will have to register each counter
type on every locality where a corresponding performance counter will be created.

Parameters
• name – [in] The global virtual name of the counter type. This name is expected to have

the format /objectname/countername.
• type – [in] The type of the counters of this counter_type.
• helptext – [in] A longer descriptive text shown to the user to explain the nature of the

counters created from this type.
• version – [in] The version of the counter type. This is currently expected to be set to

HPX_PERFORMANCE_COUNTER_V1.
• create_counter – [in] The function which will be called to create a new instance of

this counter type.
• discover_counters – [in] The function will be called to discover counter instances

which can be created.
• uom – [in] The unit of measure of the counter type (default: “”)
• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws

the function will throw on error instead.
Returns If successful, this function returns valid_data, otherwise it will either throw an ex-

ception or return an error_code from the enum counter_status (also, see note related to
parameter ec).

hpx/performance_counters/registry.hpp

Defined in header hpx/performance_counters/registry.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace performance_counters

class registry

1488 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

registry() = default

void clear()
Reset registry by deleting all stored counter types.

counter_status add_counter_type(counter_info const &info, create_counter_func const
&create_counter, discover_counters_func const
&discover_counters, error_code &ec = throws)

Add a new performance counter type to the (local) registry.

counter_status discover_counter_types(discover_counter_func discover_counter,
discover_counters_mode mode, error_code &ec =
throws) const

Call the supplied function for all registered counter types.

counter_status discover_counter_type(std::string const &fullname, discover_counter_func
discover_counter, discover_counters_mode mode,
error_code &ec = throws)

Call the supplied function for the given registered counter type.

inline counter_status discover_counter_type(counter_info const &info, discover_counter_func
const &f, discover_counters_mode mode,
error_code &ec = throws)

counter_status get_counter_create_function(counter_info const &info, create_counter_func
&create_counter, error_code &ec = throws)
const

Retrieve the counter creation function which is associated with a given counter type.

counter_status get_counter_discovery_function(counter_info const &info,
discover_counters_func &func, error_code
&ec) const

Retrieve the counter discovery function which is associated with a given counter type.

counter_status remove_counter_type(counter_info const &info, error_code &ec = throws)
Remove an existing counter type from the (local) registry.

Note: This doesn’t remove existing counters of this type, it just inhibits defining new counters
using this type.

counter_status create_raw_counter_value(counter_info const &info, std::int64_t *countervalue,
naming::gid_type &id, error_code &ec = throws)

Create a new performance counter instance of type raw_counter based on given counter value.

counter_status create_raw_counter(counter_info const &info, hpx::function<std::int64_t()>
const &f, naming::gid_type &id, error_code &ec = throws)

Create a new performance counter instance of type raw_counter based on given function returning
the counter value.

counter_status create_raw_counter(counter_info const &info, hpx::function<std::int64_t(bool)>
const &f, naming::gid_type &id, error_code &ec = throws)

Create a new performance counter instance of type raw_counter based on given function returning
the counter value.

2.8. API reference 1489

HPX Documentation, master

counter_status create_raw_counter(counter_info const &info,
hpx::function<std::vector<std::int64_t>()> const &f,
naming::gid_type &id, error_code &ec = throws)

Create a new performance counter instance of type raw_counter based on given function returning
the counter value.

counter_status create_raw_counter(counter_info const &info,
hpx::function<std::vector<std::int64_t>(bool)> const &f,
naming::gid_type &id, error_code &ec = throws)

Create a new performance counter instance of type raw_counter based on given function returning
the counter value.

counter_status create_counter(counter_info const &info, naming::gid_type &id, error_code &ec
= throws)

Create a new performance counter instance based on given counter info.

counter_status create_statistics_counter(counter_info const &info, std::string const
&base_counter_name, std::vector<std::size_t>
const ¶meters, naming::gid_type &id,
error_code &ec = throws)

Create a new statistics performance counter instance based on given base counter name and given
base time interval (milliseconds).

counter_status create_arithmetics_counter(counter_info const &info, std::vector<std::string>
const &base_counter_names, naming::gid_type
&id, error_code &ec = throws)

Create a new arithmetics performance counter instance based on given base counter names.

counter_status create_arithmetics_counter_extended(counter_info const &info,
std::vector<std::string> const
&base_counter_names,
naming::gid_type &id, error_code
&ec = throws)

Create a new extended arithmetics performance counter instance based on given base counter
names.

counter_status add_counter(hpx::id_type const &id, counter_info const &info, error_code &ec =
throws)

Add an existing performance counter instance to the registry.

counter_status remove_counter(counter_info const &info, hpx::id_type const &id, error_code
&ec = throws)

remove the existing performance counter from the registry

counter_status get_counter_type(std::string const &name, counter_info &info, error_code &ec
= throws)

Retrieve counter type information for given counter name.

1490 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Static Functions

static registry &instance()

Protected Functions

counter_type_map_type::iterator locate_counter_type(std::string const &type_name)

counter_type_map_type::const_iterator locate_counter_type(std::string const &type_name)
const

Private Types

using counter_type_map_type = std::map<std::string, counter_data>

Private Members

counter_type_map_type countertypes_

struct counter_data

Public Functions

inline counter_data(counter_info const &info, create_counter_func const &create_counter,
discover_counters_func const &discover_counters)

Public Members

counter_info info_

create_counter_func create_counter_

discover_counters_func discover_counters_

plugin_factories

See Public API for a list of names and headers that are part of the public HPX API.

2.8. API reference 1491

HPX Documentation, master

hpx/plugin_factories/binary_filter_factory.hpp

Defined in header hpx/plugin_factories/binary_filter_factory.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_BINARY_FILTER_FACTORY(BinaryFilter, pluginname)
This macro is used create and to register a minimal component factory with Hpx.Plugin.

namespace hpx

namespace plugins

template<typename BinaryFilter>

struct binary_filter_factory : public binary_filter_factory_base
#include <binary_filter_factory.hpp> The message_handler_factory provides a minimal implemen-
tation of a message handler’s factory. If no additional functionality is required this type can be used to
implement the full set of minimally required functions to be exposed by a message handler’s factory
instance.

Template Parameters BinaryFilter – The message handler type this factory should be
responsible for.

Public Functions

inline binary_filter_factory(util::section const *global, util::section const *local, bool
isenabled)

Construct a new factory instance.

Note: The contents of both sections has to be cloned in order to save the configuration setting for
later use.

Parameters
• global – [in] The pointer to a hpx::util::section instance referencing the settings read

from the [settings] section of the global configuration file (hpx.ini) This pointer may be
nullptr if no such section has been found.

• local – [in] The pointer to a hpx::util::section instance referencing the settings read
from the section describing this component type: [hpx.components.<name>], where
<name> is the instance name of the component as given in the configuration files.

• isenabled –

~binary_filter_factory() override = default

inline serialization::binary_filter *create(bool compress, serialization::binary_filter *next_filter =
nullptr) override

Create a new instance of a message handler

return Returns the newly created instance of the message handler supported by this factory

1492 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Protected Attributes

util::section global_settings_

util::section local_settings_

bool isenabled_

hpx/plugin_factories/message_handler_factory.hpp

Defined in header hpx/plugin_factories/message_handler_factory.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/plugin_factories/parcelport_factory.hpp

Defined in header hpx/plugin_factories/parcelport_factory.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/plugin_factories/plugin_registry.hpp

Defined in header hpx/plugin_factories/plugin_registry.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_PLUGIN_REGISTRY(...)
This macro is used create and to register a minimal plugin registry with Hpx.Plugin.

HPX_REGISTER_PLUGIN_REGISTRY_(...)

HPX_REGISTER_PLUGIN_REGISTRY_2(PluginType, pluginname)

HPX_REGISTER_PLUGIN_REGISTRY_4(PluginType, pluginname, pluginsection, pluginsuffix)

HPX_REGISTER_PLUGIN_REGISTRY_5(PluginType, pluginname, pluginstring, pluginsection, pluginsuffix)

namespace hpx

namespace plugins

template<typename Plugin, char const *const Name, char const *const Section, char const *const
Suffix>
struct plugin_registry : public plugin_registry_base

#include <plugin_registry.hpp> The plugin_registry provides a minimal implementation of a plugin’s
registry. If no additional functionality is required this type can be used to implement the full set of
minimally required functions to be exposed by a plugin’s registry instance.

Template Parameters Plugin – The plugin type this registry should be responsible for.

2.8. API reference 1493

HPX Documentation, master

Public Functions

inline bool get_plugin_info(std::vector<std::string> &fillini) override
Return the ini-information for all contained components.

Parameters fillini – [in] The module is expected to fill this vector with the ini-
information (one line per vector element) for all components implemented in this module.

Returns Returns true if the parameter fillini has been successfully initialized with the reg-
istry data of all implemented in this module.

runtime_components

See Public API for a list of names and headers that are part of the public HPX API.

HPX_REGISTER_COMPONENT

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_COMPONENT(type, name, mode)
Define a component factory for a component type.

This macro is used create and to register a minimal component factory for a component type which allows it to
be remotely created using the hpx::new_<> function.

This macro can be invoked with one, two or three arguments

Parameters

• type – The type parameter is a (fully decorated) type of the component type for which a
factory should be defined.

• name – The name parameter specifies the name to use to register the factory. This should
uniquely (system-wide) identify the component type. The name parameter must conform to
the C++ identifier rules (without any namespace). If this parameter is not given, the first
parameter is used.

• mode – The mode parameter has to be one of the defined enumeration values of
the enumeration hpx::components::factory_state. The default for this parameter is
hpx::components::factory_state::enabled.

hpx/runtime_components/component_registry.hpp

Defined in header hpx/runtime_components/component_registry.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

1494 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Defines

HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY(...)
This macro is used create and to register a minimal component registry with Hpx.Plugin.

HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_(...)

HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_2(ComponentType, componentname)

HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_3(ComponentType, componentname, state)

HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_DYNAMIC(...)

HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_DYNAMIC_(...)

HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_DYNAMIC_2(ComponentType, componentname)

HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_DYNAMIC_3(ComponentType, componentname, state)

namespace hpx

namespace components

template<typename Component, factory_state state>

struct component_registry : public component_registry_base
#include <component_registry.hpp> The component_registry provides a minimal implementation of
a component’s registry. If no additional functionality is required this type can be used to implement
the full set of minimally required functions to be exposed by a component’s registry instance.

Template Parameters Component – The component type this registry should be responsible
for.

Public Functions

inline bool get_component_info(std::vector<std::string> &fillini, std::string const &filepath, bool
is_static = false) override

Return the ini-information for all contained components.
Parameters

• fillini – [in] The module is expected to fill this vector with the ini-information (one
line per vector element) for all components implemented in this module.

• filepath –
• is_static –

Returns Returns true if the parameter fillini has been successfully initialized with the reg-
istry data of all implemented in this module.

inline void register_component_type() override
Enables this type of registry and sets its destroy mechanism.

2.8. API reference 1495

HPX Documentation, master

hpx/runtime_components/components_fwd.hpp

Defined in header hpx/runtime_components/components_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

components::server::runtime_support *get_runtime_support_ptr()

namespace components

template<typename Component>

struct component_factory

namespace server

namespace stubs

namespace components

hpx/runtime_components/derived_component_factory.hpp

Defined in header hpx/runtime_components/derived_component_factory.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

Defines

HPX_REGISTER_DERIVED_COMPONENT_FACTORY(...)
This macro is used create and to register a minimal component factory with Hpx.Plugin. This macro
may be used if the registered component factory is the only factory to be exposed from a particular mod-
ule. If more than one factory needs to be exposed the HPX_REGISTER_COMPONENT_FACTORY and
HPX_REGISTER_COMPONENT_MODULE macros should be used instead.

HPX_REGISTER_DERIVED_COMPONENT_FACTORY_(...)

HPX_REGISTER_DERIVED_COMPONENT_FACTORY_3(ComponentType, componentname, basecomponentname)

HPX_REGISTER_DERIVED_COMPONENT_FACTORY_4(ComponentType, componentname, basecomponentname, state)

HPX_REGISTER_DERIVED_COMPONENT_FACTORY_DYNAMIC(...)

HPX_REGISTER_DERIVED_COMPONENT_FACTORY_DYNAMIC_(...)

HPX_REGISTER_DERIVED_COMPONENT_FACTORY_DYNAMIC_3(ComponentType, componentname,
basecomponentname)

1496 Chapter 2. What’s so special about HPX?

HPX Documentation, master

HPX_REGISTER_DERIVED_COMPONENT_FACTORY_DYNAMIC_4(ComponentType, componentname,
basecomponentname, state)

hpx::new_

Defined in header hpx/components.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

template<typename Component, typename ...Ts>
auto new_(id_type const &locality, Ts&&... vs)

Create one or more new instances of the given Component type on the specified locality.

This function creates one or more new instances of the given Component type on the specified locality and
returns a future object for the global address which can be used to reference the new component instance.

Note: This function requires to specify an explicit template argument which will define what type of
component(s) to create, for instance:

hpx::future<hpx::id_type> f =
hpx::new_<some_component>(hpx::find_here(), ...);

hpx::id_type id = f.get();

Parameters

• locality – [in] The global address of the locality where the new instance should be created
on.

• vs – [in] Any number of arbitrary arguments (passed by value, by const reference or by
rvalue reference) which will be forwarded to the constructor of the created component
instance.

Returns The function returns different types depending on its use:

• If the explicit template argument Component represents a component type
(traits::is_component<Component>::value evaluates to true), the function
will return an hpx::future object instance which can be used to retrieve the global address
of the newly created component.

• If the explicit template argument Component represents a client side object
(traits::is_client<Component>::value evaluates to true), the function will
return a new instance of that type which can be used to refer to the newly created
component instance.

template<typename Component, typename ...Ts>

2.8. API reference 1497

HPX Documentation, master

auto local_new(Ts&&... vs)
Create one new instance of the given Component type on the current locality.

This function creates one new instance of the given Component type on the current locality and returns a
future object for the global address which can be used to reference the new component instance.

Note: This function requires to specify an explicit template argument which will define what type of
component(s) to create, for instance:

hpx::future<hpx::id_type> f =
hpx::local_new<some_component>(...);

hpx::id_type id = f.get();

Note: The difference of this function to hpx::new_ is that it can be used in cases where the supplied
arguments are non-copyable and non-movable. All operations are guaranteed to be local only.

Parameters vs – [in] Any number of arbitrary arguments (passed by value, by const reference
or by rvalue reference) which will be forwarded to the constructor of the created component
instance.

Returns The function returns different types depending on its use:

• If the explicit template argument Component represents a component type
(traits::is_component<Component>::value evaluates to true), the function
will return an hpx::future object instance which can be used to retrieve the global address
of the newly created component. If the first argument is hpx::launch::sync the function
will directly return an hpx::id_type.

• If the explicit template argument Component represents a client side object
(traits::is_client<Component>::value evaluates to true), the function will
return a new instance of that type which can be used to refer to the newly created
component instance.

template<typename Component, typename ...Ts>
auto new_(id_type const &locality, std::size_t count, Ts&&... vs)

Create multiple new instances of the given Component type on the specified locality.

This function creates multiple new instances of the given Component type on the specified locality and
returns a future object for the global address which can be used to reference the new component instance.

Note: This function requires to specify an explicit template argument which will define what type of
component(s) to create, for instance:

hpx::future<std::vector<hpx::id_type> > f =
hpx::new_<some_component[]>(hpx::find_here(), 10, ...);

hpx::id_type id = f.get();

Parameters

• locality – [in] The global address of the locality where the new instance should be created
on.

1498 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• count – [in] The number of component instances to create

• vs – [in] Any number of arbitrary arguments (passed by value, by const reference or by
rvalue reference) which will be forwarded to the constructor of the created component
instance.

Returns The function returns different types depending on its use:

• If the explicit template argument Component represents an array of a component
type (i.e. Component[], where traits::is_component<Component>::value eval-
uates to true), the function will return an hpx::future object instance which holds a
std::vector<hpx::id_type>, where each of the items in this vector is a global address of
one of the newly created components.

• If the explicit template argument Component represents an array of a client side ob-
ject type (i.e. Component[], where traits::is_client<Component>::value eval-
uates to true), the function will return an hpx::future object instance which holds a
std::vector<hpx::id_type>, where each of the items in this vector is a client side instance
of the given type, each representing one of the newly created components.

template<typename Component, typename DistPolicy, typename ...Ts>
auto new_(DistPolicy const &policy, Ts&&... vs)

Create one or more new instances of the given Component type based on the given distribution policy.

This function creates one or more new instances of the given Component type on the localities defined by
the given distribution policy and returns a future object for global address which can be used to reference
the new component instance(s).

Note: This function requires to specify an explicit template argument which will define what type of
component(s) to create, for instance:

hpx::future<hpx::id_type> f =
hpx::new_<some_component>(hpx::default_layout, ...);

hpx::id_type id = f.get();

Parameters

• policy – [in] The distribution policy used to decide where to place the newly created.

• vs – [in] Any number of arbitrary arguments (passed by value, by const reference or by
rvalue reference) which will be forwarded to the constructor of the created component
instance.

Returns The function returns different types depending on its use:

• If the explicit template argument Component represents a component type
(traits::is_component<Component>::value evaluates to true), the function
will return an hpx::future object instance which can be used to retrieve the global address
of the newly created component.

• If the explicit template argument Component represents a client side object
(traits::is_client<Component>::value evaluates to true), the function will
return a new instance of that type which can be used to refer to the newly created
component instance.

template<typename Component, typename DistPolicy, typename ...Ts>

2.8. API reference 1499

HPX Documentation, master

auto new_(DistPolicy const &policy, std::size_t count, Ts&&... vs)
Create multiple new instances of the given Component type on the localities as defined by the given distri-
bution policy.

This function creates multiple new instances of the given Component type on the localities defined by the
given distribution policy and returns a future object for the global address which can be used to reference
the new component instance.

Note: This function requires to specify an explicit template argument which will define what type of
component(s) to create, for instance:

hpx::future<std::vector<hpx::id_type> > f =
hpx::new_<some_component[]>(hpx::default_layout, 10, ...);

hpx::id_type id = f.get();

Parameters

• policy – [in] The distribution policy used to decide where to place the newly created.

• count – [in] The number of component instances to create

• vs – [in] Any number of arbitrary arguments (passed by value, by const reference or by
rvalue reference) which will be forwarded to the constructor of the created component
instance.

Returns The function returns different types depending on its use:

• If the explicit template argument Component represents an array of a component
type (i.e. Component[], where traits::is_component<Component>::value eval-
uates to true), the function will return an hpx::future object instance which holds a
std::vector<hpx::id_type>, where each of the items in this vector is a global address of
one of the newly created components.

• If the explicit template argument Component represents an array of a client side ob-
ject type (i.e. Component[], where traits::is_client<Component>::value eval-
uates to true), the function will return an hpx::future object instance which holds a
std::vector<hpx::id_type>, where each of the items in this vector is a client side instance
of the given type, each representing one of the newly created components.

runtime_distributed

See Public API for a list of names and headers that are part of the public HPX API.

hpx/runtime_distributed.hpp

Defined in header hpx/runtime_distributed.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

class runtime_distributed : public runtime
#include <runtime_distributed.hpp> The runtime class encapsulates the HPX runtime system in a simple
to use way. It makes sure all required parts of the HPX runtime system are properly initialized.

1500 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Functions

explicit runtime_distributed(util::runtime_configuration &rtcfg, int (*pre_main)(runtime_mode) =
nullptr, void (*post_main)() = nullptr)

Construct a new HPX runtime instance
Parameters

• rtcfg – Runtime configuration for this instance
• pre_main – Function to be called before running the main action of this instance
• post_main – Function to be called after running the main action of this instance

~runtime_distributed()

The destructor makes sure all HPX runtime services are properly shut down before exiting.

int start(hpx::function<hpx_main_function_type> const &func, bool blocking = false) override
Start the runtime system.

Parameters
• func – [in] This is the main function of an HPX application. It will be scheduled for

execution by the thread manager as soon as the runtime has been initialized. This function
is expected to expose an interface as defined by the typedef hpx_main_function_type.

• blocking – [in] This allows to control whether this call blocks until the runtime system
has been stopped. If this parameter is true the function runtime::start will call run-
time::wait internally.

Returns If a blocking is a true, this function will return the value as returned as the result of
the invocation of the function object given by the parameter func. Otherwise it will return
zero.

int start(bool blocking = false) override
Start the runtime system.

Parameters blocking – [in] This allows to control whether this call blocks until the runtime
system has been stopped. If this parameter is true the function runtime::start will call
runtime::wait internally .

Returns If a blocking is a true, this function will return the value as returned as the result of
the invocation of the function object given by the parameter func. Otherwise it will return
zero.

int wait() override
Wait for the shutdown action to be executed.

Returns This function will return the value as returned as the result of the invocation of the
function object given by the parameter func.

void stop(bool blocking = true) override
Initiate termination of the runtime system.

Parameters blocking – [in] This allows to control whether this call blocks until the runtime
system has been fully stopped. If this parameter is false then this call will initiate the stop
action but will return immediately. Use a second call to stop with this parameter set to true
to wait for all internal work to be completed.

int finalize(double shutdown_timeout) override

void stop_helper(bool blocking, std::condition_variable &cond, std::mutex &mtx)
Stop the runtime system, wait for termination.

Parameters
• blocking – [in] This allows to control whether this call blocks until the runtime system

has been fully stopped. If this parameter is false then this call will initiate the stop action
but will return immediately. Use a second call to stop with this parameter set to true to
wait for all internal work to be completed.

2.8. API reference 1501

HPX Documentation, master

• cond – Condition used to update all thread when done
• mtx – Mutex used by this function to sync all threads

int suspend() override
Suspend the runtime system.

int resume() override
Resume the runtime system.

bool report_error(std::size_t num_thread, std::exception_ptr const &e, bool terminate_all = true)
override

Report a non-recoverable error to the runtime system.
Parameters

• num_thread – [in] The number of the operating system thread the error has been detected
in.

• e – [in] This is an instance encapsulating an exception which lead to this function call.
• terminate_all – [in] Kill all localities attached to the currently running application

(default: true)

bool report_error(std::exception_ptr const &e, bool terminate_all = true) override
Report a non-recoverable error to the runtime system.

Note: This function will retrieve the number of the current shepherd thread and forward to the re-
port_error function above.

Parameters
• e – [in] This is an instance encapsulating an exception which lead to this function call.
• terminate_all – [in] Kill all localities attached to the currently running application

(default: true)

int run(hpx::function<hpx_main_function_type> const &func) override
Run the HPX runtime system, use the given function for the main thread and block waiting for all
threads to finish.

Note: The parameter func is optional. If no function is supplied, the runtime system will simply wait
for the shutdown action without explicitly executing any main thread.

Parameters func – [in] This is the main function of an HPX application. It will be scheduled
for execution by the thread manager as soon as the runtime has been initialized. This func-
tion is expected to expose an interface as defined by the typedef hpx_main_function_type.
This parameter is optional and defaults to none main thread function, in which case all
threads have to be scheduled explicitly.

Returns This function will return the value as returned as the result of the invocation of the
function object given by the parameter func.

int run() override
Run the HPX runtime system, initially use the given number of (OS) threads in the thread-manager
and block waiting for all threads to finish.

Returns This function will always return 0 (zero).

bool is_networking_enabled() override

template<typename F>

1502 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline components::server::console_error_dispatcher::sink_type set_error_sink(F &&sink)

performance_counters::registry &get_counter_registry()
Allow access to the registry counter registry instance used by the HPX runtime.

performance_counters::registry const &get_counter_registry() const
Allow access to the registry counter registry instance used by the HPX runtime.

void register_query_counters(std::shared_ptr<util::query_counters> const &active_counters)

void start_active_counters(error_code &ec = throws) const

void stop_active_counters(error_code &ec = throws) const

void reset_active_counters(error_code &ec = throws) const

void reinit_active_counters(bool reset = true, error_code &ec = throws) const

void evaluate_active_counters(bool reset = false, char const *description = nullptr, error_code &ec
= throws) const

void stop_evaluating_counters(bool terminate = false) const

naming::resolver_client &get_agas_client()
Allow access to the AGAS client instance used by the HPX runtime.

hpx::threads::threadmanager &get_thread_manager() override
Allow access to the thread manager instance used by the HPX runtime.

applier::applier &get_applier()
Allow access to the applier instance used by the HPX runtime.

std::string here() const override
Returns a string of the locality endpoints (usable in debug output)

naming::address_type get_runtime_support_lva() const

naming::gid_type get_next_id(std::size_t count = 1)

void init_id_pool_range()

util::unique_id_ranges &get_id_pool()

void initialize_agas()
Initialize AGAS operation.

void add_pre_startup_function(startup_function_type f) override
Add a function to be executed inside a HPX thread before hpx_main but guaranteed to be executed
before any startup function registered with add_startup_function.

Note: The difference to a startup function is that all pre-startup functions will be (system-wide)
executed before any startup function.

Parameters f – The function ‘f’ will be called from inside a HPX thread before hpx_main
is executed. This is very useful to setup the runtime environment of the application (install
performance counters, etc.)

2.8. API reference 1503

HPX Documentation, master

void add_startup_function(startup_function_type f) override
Add a function to be executed inside a HPX thread before hpx_main

Parameters f – The function ‘f’ will be called from inside a HPX thread before hpx_main
is executed. This is very useful to setup the runtime environment of the application (install
performance counters, etc.)

void add_pre_shutdown_function(shutdown_function_type f) override
Add a function to be executed inside a HPX thread during hpx::finalize, but guaranteed before any of
the shutdown functions is executed.

Note: The difference to a shutdown function is that all pre-shutdown functions will be (system-wide)
executed before any shutdown function.

Parameters f – The function ‘f’ will be called from inside a HPX thread while hpx::finalize
is executed. This is very useful to tear down the runtime environment of the application
(uninstall performance counters, etc.)

void add_shutdown_function(shutdown_function_type f) override
Add a function to be executed inside a HPX thread during hpx::finalize

Parameters f – The function ‘f’ will be called from inside a HPX thread while hpx::finalize
is executed. This is very useful to tear down the runtime environment of the application
(uninstall performance counters, etc.)

hpx::util::io_service_pool *get_thread_pool(char const *name) override
Access one of the internal thread pools (io_service instances) HPX is using to perform specific tasks.
The three possible values for the argument name are “main_pool”, “io_pool”, “parcel_pool”, and
“timer_pool”. For any other argument value the function will return zero.

bool register_thread(char const *name, std::size_t num = 0, bool service_thread = true, error_code
&ec = throws) override

Register an external OS-thread with HPX.

notification_policy_type get_notification_policy(char const *prefix,
runtime_local::os_thread_type type) override

Generate a new notification policy instance for the given thread name prefix

std::uint32_t get_locality_id(error_code &ec) const override

std::size_t get_num_worker_threads() const override

std::uint32_t get_num_localities(hpx::launch::sync_policy, error_code &ec) const override

std::uint32_t get_initial_num_localities() const override

hpx::future<std::uint32_t> get_num_localities() const override

std::string get_locality_name() const override

std::uint32_t get_num_localities(hpx::launch::sync_policy, components::component_type type,
error_code &ec) const

hpx::future<std::uint32_t> get_num_localities(components::component_type type) const

std::uint32_t assign_cores(std::string const &locality_basename, std::uint32_t num_threads) override

std::uint32_t assign_cores() override

1504 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Static Functions

static void register_counter_types()
Install all performance counters related to this runtime instance.

Private Types

using used_cores_map_type = std::map<std::string, std::uint32_t>

Private Functions

threads::thread_result_type run_helper(hpx::function<runtime::hpx_main_function_type> const
&func, int &result)

void init_global_data()

void deinit_global_data()

void wait_helper(std::mutex &mtx, std::condition_variable &cond, bool &running)

void init_tss_helper(char const *context, runtime_local::os_thread_type type, std::size_t
local_thread_num, std::size_t global_thread_num, char const *pool_name, char
const *postfix, bool service_thread)

void deinit_tss_helper(char const *context, std::size_t num) const

void init_tss_ex(std::string const &locality, char const *context, runtime_local::os_thread_type type,
std::size_t local_thread_num, std::size_t global_thread_num, char const
*pool_name, char const *postfix, bool service_thread, error_code &ec) const

Private Members

runtime_mode mode_

util::unique_id_ranges id_pool_

naming::resolver_client agas_client_

applier::applier applier_

used_cores_map_type used_cores_map_

std::unique_ptr<components::server::runtime_support> runtime_support_

std::shared_ptr<util::query_counters> active_counters_

2.8. API reference 1505

HPX Documentation, master

int (*pre_main_)(runtime_mode)

void (*post_main_)()

Private Static Functions

static void default_errorsink(std::string const&)

hpx/runtime_distributed/applier.hpp

Defined in header hpx/runtime_distributed/applier.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace applier

class applier
#include <applier.hpp> The applier class is used to decide whether a particular action has to be issued
on a local or a remote resource. If the target component is local a new thread will be created, if the
target is remote a parcel will be sent.

Public Functions

HPX_NON_COPYABLE(applier)

applier()

void init(threads::threadmanager &tm)

~applier() = default

void initialize(std::uint64_t rts)

threads::threadmanager &get_thread_manager()
Access the thread-manager instance associated with this applier.

This function returns a reference to the thread manager this applier instance has been created with.

naming::gid_type const &get_raw_locality(error_code &ec = throws) const
Allow access to the locality of the locality this applier instance is associated with.

This function returns a reference to the locality this applier instance is associated with.

std::uint32_t get_locality_id(error_code &ec = throws) const
Allow access to the id of the locality this applier instance is associated with.

This function returns a reference to the id of the locality this applier instance is associated with.

1506 Chapter 2. What’s so special about HPX?

HPX Documentation, master

bool get_raw_remote_localities(std::vector<naming::gid_type> &locality_ids,
components::component_type type =
to_int(hpx::components::component_enum_type::invalid),
error_code &ec = throws) const

Return list of localities of all remote localities registered with the AGAS service for a specific
component type.

This function returns a list of all remote localities (all localities known to AGAS except the local
one) supporting the given component type.

Parameters
• locality_ids – [out] The reference to a vector of id_types filled by the function.
• type – [in] The type of the component which needs to exist on the returned localities.

Returns The function returns true if there is at least one remote locality known to the AGAS
service (!prefixes.empty()).

bool get_remote_localities(std::vector<hpx::id_type> &locality_ids,
components::component_type type =
to_int(hpx::components::component_enum_type::invalid),
error_code &ec = throws) const

bool get_raw_localities(std::vector<naming::gid_type> &locality_ids,
components::component_type type =
to_int(hpx::components::component_enum_type::invalid)) const

Return list of locality_ids of all localities registered with the AGAS service for a specific compo-
nent type.

This function returns a list of all localities (all localities known to AGAS except the local one)
supporting the given component type.

Parameters
• locality_ids – [out] The reference to a vector of id_types filled by the function.
• type – [in] The type of the component which needs to exist on the returned localities.

Returns The function returns true if there is at least one remote locality known to the AGAS
service (!prefixes.empty()).

bool get_localities(std::vector<hpx::id_type> &locality_ids, error_code &ec = throws) const

bool get_localities(std::vector<hpx::id_type> &locality_ids, components::component_type
type, error_code &ec = throws) const

inline naming::gid_type const &get_runtime_support_raw_gid() const
By convention the runtime_support has a gid identical to the prefix of the locality the run-
time_support is responsible for

inline hpx::id_type const &get_runtime_support_gid() const
By convention the runtime_support has a gid identical to the prefix of the locality the run-
time_support is responsible for

2.8. API reference 1507

HPX Documentation, master

Private Members

threads::threadmanager *thread_manager_

hpx::id_type runtime_support_id_

hpx/runtime_distributed/applier_fwd.hpp

Defined in header hpx/runtime_distributed/applier_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace applier

Functions

applier &get_applier()
The function get_applier returns a reference to the (thread specific) applier instance.

applier *get_applier_ptr()
The function get_applier returns a pointer to the (thread specific) applier instance. The returned pointer
is NULL if the current thread is not known to HPX or if the runtime system is not active.

namespace applier
The namespace applier contains all definitions needed for the class hpx::applier::applier and its related function-
ality. This namespace is part of the HPX core module.

hpx/runtime_distributed/copy_component.hpp

Defined in header hpx/runtime_distributed/copy_component.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

1508 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename Component>
future<hpx::id_type> copy(hpx::id_type const &to_copy)

Copy given component to the specified target locality.

The function copy<Component> will create a copy of the component referenced by to_copy on the
locality specified with target_locality. It returns a future referring to the newly created component
instance.

Note: The new component instance is created on the locality of the component instance which is to
be copied.

Parameters to_copy – [in] The global id of the component to copy
Template Parameters The – only template argument specifies the component type to create.
Returns A future representing the global id of the newly (copied) component instance.

template<typename Component>
future<hpx::id_type> copy(hpx::id_type const &to_copy, hpx::id_type const &target_locality)

Copy given component to the specified target locality.

The function copy<Component> will create a copy of the component referenced by to_copy on the
locality specified with target_locality. It returns a future referring to the newly created component
instance.

Parameters
• to_copy – [in] The global id of the component to copy
• target_locality – [in] The locality where the copy should be created.

Template Parameters The – only template argument specifies the component type to create.
Returns A future representing the global id of the newly (copied) component instance.

template<typename Derived, typename Stub, typename Data>
Derived copy(client_base<Derived, Stub, Data> const &to_copy, hpx::id_type const &target_locality =

hpx::invalid_id)
Copy given component to the specified target locality.

The function copy will create a copy of the component referenced by the client side object to_copy
on the locality specified with target_locality. It returns a new client side object future referring to the
newly created component instance.

Note: If the second argument is omitted (or is invalid_id) the new component instance is created on
the locality of the component instance which is to be copied.

Parameters
• to_copy – [in] The client side object representing the component to copy
• target_locality – [in, optional] The locality where the copy should be created (de-

fault is same locality as source).
Template Parameters The – only template argument specifies the component type to create.
Returns A future representing the global id of the newly (copied) component instance.

2.8. API reference 1509

HPX Documentation, master

hpx::find_root_locality, hpx::find_all_localities, hpx::find_remote_localities

Defined in header hpx/runtime.hpp807.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

hpx::id_type find_root_locality(error_code &ec = throws)
Return the global id representing the root locality.

The function find_root_locality() can be used to retrieve the global id usable to refer to the root locality.
The root locality is the locality where the main AGAS service is hosted.

See also:

hpx::find_all_localities(), hpx::find_locality()

Note: Generally, the id of a locality can be used for instance to create new instances of components and
to invoke plain actions (global functions).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will return meaningful results only if called from an HPX-thread. It will return
hpx::invalid_id otherwise.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

Returns The global id representing the root locality for this application.

std::vector<hpx::id_type> find_all_localities(error_code &ec = throws)
Return the list of global ids representing all localities available to this application.

The function find_all_localities() can be used to retrieve the global ids of all localities currently available
to this application.

See also:

hpx::find_here(), hpx::find_locality()

Note: Generally, the id of a locality can be used for instance to create new instances of components and
to invoke plain actions (global functions).

807 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

1510 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will return meaningful results only if called from an HPX-thread. It will return an
empty vector otherwise.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

Returns The global ids representing the localities currently available to this application.

std::vector<hpx::id_type> find_remote_localities(error_code &ec = throws)
Return the list of locality ids of remote localities supporting the given component type. By default this
function will return the list of all remote localities (all but the current locality).

The function find_remote_localities() can be used to retrieve the global ids of all remote localities currently
available to this application (i.e. all localities except the current one).

See also:

hpx::find_here(), hpx::find_locality()

Note: Generally, the id of a locality can be used for instance to create new instances of components and
to invoke plain actions (global functions).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will return meaningful results only if called from an HPX-thread. It will return an
empty vector otherwise.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

Returns The global ids representing the remote localities currently available to this application.

hpx/runtime_distributed/find_here.hpp

Defined in header hpx/runtime_distributed/find_here.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

2.8. API reference 1511

HPX Documentation, master

Functions

hpx::id_type find_here(error_code &ec = throws)
Return the global id representing this locality.

The function find_here() can be used to retrieve the global id usable to refer to the current locality.

See also:

hpx::find_all_localities(), hpx::find_locality()

Note: Generally, the id of a locality can be used for instance to create new instances of components and
to invoke plain actions (global functions).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will return meaningful results only if called from an HPX-thread. It will return
hpx::invalid_id otherwise.

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

Returns The global id representing the locality this function has been called on.

hpx::find_locality

Defined in header hpx/runtime.hpp808.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

std::vector<hpx::id_type> find_all_localities(components::component_type type, error_code &ec =
throws)

Return the list of global ids representing all localities available to this application which support the given
component type.

The function find_all_localities() can be used to retrieve the global ids of all localities currently available
to this application which support the creation of instances of the given component type.

See also:

hpx::find_here(), hpx::find_locality()
808 http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

1512 Chapter 2. What’s so special about HPX?

http://github.com/STEllAR-GROUP/hpx/blob/65a105690a5231b1ecb78bc128233ac85462e3fa/libs/full/include/include/hpx/runtime.hpp

HPX Documentation, master

Note: Generally, the id of a locality can be used for instance to create new instances of components and
to invoke plain actions (global functions).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will return meaningful results only if called from an HPX-thread. It will return an
empty vector otherwise.

Parameters

• type – [in] The type of the components for which the function should return the available
localities.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns The global ids representing the localities currently available to this application which
support the creation of instances of the given component type. If no localities supporting the
given component type are currently available, this function will return an empty vector.

std::vector<hpx::id_type> find_remote_localities(components::component_type type, error_code &ec =
throws)

Return the list of locality ids of remote localities supporting the given component type. By default this
function will return the list of all remote localities (all but the current locality).

The function find_remote_localities() can be used to retrieve the global ids of all remote localities currently
available to this application (i.e. all localities except the current one) which support the creation of instances
of the given component type.

See also:

hpx::find_here(), hpx::find_locality()

Note: Generally, the id of a locality can be used for instance to create new instances of components and
to invoke plain actions (global functions).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will return meaningful results only if called from an HPX-thread. It will return an
empty vector otherwise.

Parameters

2.8. API reference 1513

HPX Documentation, master

• type – [in] The type of the components for which the function should return the available
remote localities.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns The global ids representing the remote localities currently available to this application.

hpx::id_type find_locality(components::component_type type, error_code &ec = throws)
Return the global id representing an arbitrary locality which supports the given component type.

The function find_locality() can be used to retrieve the global id of an arbitrary locality currently available
to this application which supports the creation of instances of the given component type.

See also:

hpx::find_here(), hpx::find_all_localities()

Note: Generally, the id of a locality can be used for instance to create new instances of components and
to invoke plain actions (global functions).

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: This function will return meaningful results only if called from an HPX-thread. It will return
hpx::invalid_id otherwise.

Parameters

• type – [in] The type of the components for which the function should return any available
locality.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

Returns The global id representing an arbitrary locality currently available to this application
which supports the creation of instances of the given component type. If no locality support-
ing the given component type is currently available, this function will return hpx::invalid_id.

hpx/runtime_distributed/get_locality_name.hpp

Defined in header hpx/runtime_distributed/get_locality_name.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

1514 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

future<std::string> get_locality_name(hpx::id_type const &id)
Return the name of the referenced locality.

This function returns a future referring to the name for the locality of the given id.

See also:

std::string get_locality_name()

Parameters id – [in] The global id of the locality for which the name should be retrieved

Returns This function returns the name for the locality of the given id. The name is retrieved
from the underlying networking layer and may be different for different parcel ports.

hpx/runtime_distributed/get_num_localities.hpp

Defined in header hpx/runtime_distributed/get_num_localities.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

Functions

hpx::future<std::uint32_t> get_num_localities(components::component_type t)
Asynchronously return the number of localities which are currently registered for the running application.

The function get_num_localities asynchronously returns the number of localities currently connected to the
console which support the creation of the given component type. The returned future represents the actual
result.

See also:

hpx::find_all_localities, hpx::get_num_localities

Note: This function will return meaningful results only if called from an HPX-thread. It will return 0
otherwise.

Parameters t – The component type for which the number of connected localities should be
retrieved.

std::uint32_t get_num_localities(launch::sync_policy, components::component_type t, error_code &ec =
throws)

Synchronously return the number of localities which are currently registered for the running application.

The function get_num_localities returns the number of localities currently connected to the console which
support the creation of the given component type. The returned future represents the actual result.

2.8. API reference 1515

HPX Documentation, master

See also:

hpx::find_all_localities, hpx::get_num_localities

Note: This function will return meaningful results only if called from an HPX-thread. It will return 0
otherwise.

Parameters

• t – The component type for which the number of connected localities should be retrieved.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

hpx/runtime_distributed/migrate_component.hpp

Defined in header hpx/runtime_distributed/migrate_component.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

Functions

template<typename Component, typename DistPolicy>
future<hpx::id_type> migrate(hpx::id_type const &to_migrate, [[maybe_unused]] DistPolicy const

&policy)
Migrate the given component to the specified target locality

The function migrate<Component> will migrate the component referenced by to_migrate to the lo-
cality specified with target_locality. It returns a future referring to the migrated component instance.

Parameters
• to_migrate – [in] The client side representation of the component to migrate.
• policy – [in] A distribution policy which will be used to determine the locality to mi-

grate this object to.
Template Parameters

• Component – Specifies the component type of the component to migrate.
• DistPolicy – Specifies the distribution policy to use to determine the destination lo-

cality.
Returns A future representing the global id of the migrated component instance. This should

be the same as migrate_to.

template<typename Derived, typename Stub, typename Data, typename DistPolicy>
Derived migrate(client_base<Derived, Stub, Data> const &to_migrate, DistPolicy const &policy)

Migrate the given component to the specified target locality

The function migrate<Component> will migrate the component referenced by to_migrate to the lo-
cality specified with target_locality. It returns a future referring to the migrated component instance.

Parameters
• to_migrate – [in] The client side representation of the component to migrate.

1516 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• policy – [in] A distribution policy which will be used to determine the locality to mi-
grate this object to.

Template Parameters
• Derived – Specifies the component type of the component to migrate.
• DistPolicy – Specifies the distribution policy to use to determine the destination lo-

cality.
Returns A future representing the global id of the migrated component instance. This should

be the same as migrate_to.

template<typename Component>
future<hpx::id_type> migrate(hpx::id_type const &to_migrate, hpx::id_type const &target_locality)

Migrate the component with the given id to the specified target locality

The function migrate<Component> will migrate the component referenced by to_migrate to the lo-
cality specified with target_locality. It returns a future referring to the migrated component instance.

Parameters
• to_migrate – [in] The global id of the component to migrate.
• target_locality – [in] The locality where the component should be migrated to.

Template Parameters Component – Specifies the component type of the component to mi-
grate.

Returns A future representing the global id of the migrated component instance. This should
be the same as migrate_to.

template<typename Derived, typename Stub, typename Data>
Derived migrate(client_base<Derived, Stub, Data> const &to_migrate, hpx::id_type const

&target_locality)
Migrate the given component to the specified target locality

The function migrate<Component> will migrate the component referenced by to_migrate to the lo-
cality specified with target_locality. It returns a future referring to the migrated component instance.

Parameters
• to_migrate – [in] The client side representation of the component to migrate.
• target_locality – [in] The id of the locality to migrate this object to.

Template Parameters Derived – Specifies the component type of the component to mi-
grate.

Returns A client side representation of representing of the migrated component instance.
This should be the same as migrate_to.

hpx/runtime_distributed/runtime_fwd.hpp

Defined in header hpx/runtime_distributed/runtime_fwd.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

2.8. API reference 1517

HPX Documentation, master

Functions

runtime_distributed &get_runtime_distributed()

runtime_distributed *&get_runtime_distributed_ptr()

naming::gid_type const &get_locality()
The function get_locality returns a reference to the locality prefix.

void start_active_counters(error_code &ec = throws)
Start all active performance counters, optionally naming the section of code.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: The active counters are those which have been specified on the command line while executing the
application (see command line option –hpx:print-counter)

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

void reset_active_counters(error_code &ec = throws)
Resets all active performance counters.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: The active counters are those which have been specified on the command line while executing the
application (see command line option –hpx:print-counter)

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

void reinit_active_counters(bool reset = true, error_code &ec = throws)
Re-initialize all active performance counters.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: The active counters are those which have been specified on the command line while executing the
application (see command line option –hpx:print-counter)

Parameters

• reset – [in] Reset the current values before re-initializing counters (default: true)

1518 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

void stop_active_counters(error_code &ec = throws)
Stop all active performance counters.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: The active counters are those which have been specified on the command line while executing the
application (see command line option –hpx:print-counter)

Parameters ec – [in,out] this represents the error status on exit, if this is pre-initialized to
hpx::throws the function will throw on error instead.

void evaluate_active_counters(bool reset = false, char const *description = nullptr, error_code &ec =
throws)

Evaluate and output all active performance counters, optionally naming the point in code marked by this
function.

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note: The output generated by this function is redirected to the destination specified by the corresponding
command line options (see –hpx:print-counter-destination).

Note: The active counters are those which have been specified on the command line while executing the
application (see command line option –hpx:print-counter)

Parameters

• reset – [in] this is an optional flag allowing to reset the counter value after it has been
evaluated.

• description – [in] this is an optional value naming the point in the code marked by the
call to this function.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

serialization::binary_filter *create_binary_filter(char const *binary_filter_type, bool compress,
serialization::binary_filter *next_filter = nullptr,
error_code &ec = throws)

Create an instance of a binary filter plugin.

2.8. API reference 1519

HPX Documentation, master

Note: As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• binary_filter_type – [in] The type of the binary filter to create

• compress – [in] The created filter should support compression

• next_filter – [in] Use this as the filter to dispatch the invocation into.

• ec – [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws
the function will throw on error instead.

hpx/runtime_distributed/runtime_support.hpp

Defined in header hpx/runtime_distributed/runtime_support.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace agas

Functions

struct runtime_components_init_interface_functions &runtime_components_init()

namespace components

Functions

struct counter_interface_functions &counter_init()

class runtime_support : public hpx::components::stubs::runtime_support
#include <runtime_support.hpp> The runtime_support class is the client side representation of a
server::runtime_support component

Public Functions

inline runtime_support(hpx::id_type const &gid = hpx::invalid_id)
Create a client side representation for the existing server::runtime_support instance with the given
global id gid.

template<typename Component, typename ...Ts>
inline hpx::id_type create_component(Ts&&... vs)

Create a new component type using the runtime_support.

template<typename Component, typename ...Ts>

1520 Chapter 2. What’s so special about HPX?

HPX Documentation, master

inline hpx::future<hpx::id_type> create_component_async(Ts&&... vs)
Asynchronously create a new component using the runtime_support.

template<bool WithCount, typename Component, typename ...Ts>
inline std::vector<hpx::id_type> bulk_create_component(std::size_t count, Ts&&... vs)

Asynchronously create N new default constructed components using the runtime_support

template<bool WithCount, typename Component, typename ...Ts>
inline hpx::future<std::vector<hpx::id_type>> bulk_create_components_async(std::size_t

count, Ts&&...
vs)

Asynchronously create a new component using the runtime_support.

inline hpx::future<int> load_components_async() const

inline int load_components() const

inline hpx::future<void> call_startup_functions_async(bool pre_startup) const

inline void call_startup_functions(bool pre_startup) const

inline hpx::future<void> shutdown_async(double timeout = -1) const
Shutdown the given runtime system.

inline void shutdown(double timeout = -1) const

inline void shutdown_all(double timeout = -1) const
Shutdown the runtime systems of all localities.

inline hpx::future<void> terminate_async() const
Terminate the given runtime system.

inline void terminate() const

inline void terminate_all() const
Terminate the runtime systems of all localities.

inline void get_config(util::section &ini) const
Retrieve configuration information.

inline hpx::id_type const &get_id() const

inline naming::gid_type const &get_raw_gid() const

Private Types

typedef stubs::runtime_support base_type

2.8. API reference 1521

HPX Documentation, master

Private Members

hpx::id_type gid_

hpx/runtime_distributed/server/copy_component.hpp

Defined in header hpx/runtime_distributed/server/copy_component.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

namespace server

Functions

template<typename Component>
hpx::id_type copy_component_here(hpx::id_type const &to_copy)

template<typename Component>
future<hpx::id_type> copy_component(hpx::id_type const &to_copy, hpx::id_type const

&target_locality)

template<typename Component>

struct copy_component_action : public hpx::actions::action<future<hpx::id_type>
(*)(hpx::id_type const&, hpx::id_type const&), ©_component<Component>,
copy_component_action<Component>>

template<typename Component>

struct copy_component_action_here : public hpx::actions::action<hpx::id_type (*)(hpx::id_type
const&), ©_component_here<Component>, copy_component_action_here<Component>>

hpx/runtime_distributed/server/runtime_support.hpp

Defined in header hpx/runtime_distributed/server/runtime_support.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

namespace server

class runtime_support

1522 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Types

using type_holder = runtime_support

Public Functions

explicit runtime_support(hpx::util::runtime_configuration &cfg)

inline ~runtime_support()

void delete_function_lists()

void tidy()

template<typename Component>
naming::gid_type create_component()

Actions to create new objects.

template<typename Component, typename T, typename ...Ts>
naming::gid_type create_component(T v, Ts... vs)

template<typename Component, typename ...Ts>
std::vector<naming::gid_type> bulk_create_component(std::size_t count, Ts... vs)

template<typename Component, typename ...Ts>
std::vector<naming::gid_type> bulk_create_component_with_count(std::size_t count, Ts...

vs)

template<typename Component>
naming::gid_type copy_create_component(std::shared_ptr<Component> const &p, bool)

template<typename Component>
naming::gid_type migrate_component_to_here(std::shared_ptr<Component> const &p,

hpx::id_type)

void shutdown(double timeout, hpx::id_type const &respond_to)
Gracefully shutdown this runtime system instance.

void shutdown_all(double timeout)
Gracefully shutdown runtime system instances on all localities.

void terminate(hpx::id_type const &respond_to)
Shutdown this runtime system instance.

inline void terminate_act(hpx::id_type const &id)

void terminate_all()
Shutdown runtime system instances on all localities.

inline void terminate_all_act()

util::section get_config()
Retrieve configuration information.

int load_components()
Load all components on this locality.

2.8. API reference 1523

HPX Documentation, master

void call_startup_functions(bool pre_startup)

void call_shutdown_functions(bool pre_shutdown)

void garbage_collect()
Force a garbage collection operation in the AGAS layer.

naming::gid_type create_performance_counter(performance_counters::counter_info const
&info)

Create the given performance counter instance.

void remove_from_connection_cache(naming::gid_type const &gid,
parcelset::endpoints_type const &eps)

Remove the given locality from our connection cache.

HPX_DEFINE_COMPONENT_ACTION (runtime_support, terminate_act,
terminate_action) HPX_DEFINE_COMPONENT_ACTION(runtime_support

termination detection

terminate_all_action HPX_DEFINE_COMPONENT_ACTION (runtime_support,
remove_from_connection_cache) void run()

Start the runtime_support component.

void wait()
Wait for the runtime_support component to notify the calling thread.

This function will be called from the main thread, causing it to block while the HPX function-
ality is executed. The main thread will block until the shutdown_action is executed, which in
turn notifies all waiting threads.

void stop(double timeout, hpx::id_type const &respond_to, bool remove_from_remote_caches)
Notify all waiting (blocking) threads allowing the system to be properly stopped.

Note: This function can be called from any thread.

void stopped()
called locally only

void notify_waiting_main()

inline bool was_stopped() const

void add_pre_startup_function(startup_function_type f)

void add_startup_function(startup_function_type f)

void add_pre_shutdown_function(shutdown_function_type f)

void add_shutdown_function(shutdown_function_type f)

void remove_here_from_connection_cache()

void remove_here_from_console_connection_cache()

1524 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Public Members

terminate_all_act

Public Static Functions

static inline component_type get_component_type()

static inline void set_component_type(component_type t)

static inline constexpr void finalize()
finalize() will be called just before the instance gets destructed

static inline bool is_target_valid(hpx::id_type const &id)

Protected Functions

int load_components(util::section &ini, naming::gid_type const &prefix,
naming::resolver_client &agas_client,
hpx::program_options::options_description &options,
std::set<std::string> &startup_handled)

bool load_component(hpx::util::plugin::dll &d, util::section &ini, std::string const &instance,
std::string const &component, filesystem::path const &lib,
naming::gid_type const &prefix, naming::resolver_client &agas_client,
bool isdefault, bool isenabled,
hpx::program_options::options_description &options,
std::set<std::string> &startup_handled)

bool load_component_dynamic(util::section &ini, std::string const &instance, std::string
const &component, filesystem::path lib, naming::gid_type
const &prefix, naming::resolver_client &agas_client, bool
isdefault, bool isenabled,
hpx::program_options::options_description &options,
std::set<std::string> &startup_handled)

bool load_startup_shutdown_functions(hpx::util::plugin::dll &d, error_code &ec)

bool load_commandline_options(hpx::util::plugin::dll &d,
hpx::program_options::options_description &options,
error_code &ec)

bool load_component_static(util::section &ini, std::string const &instance, std::string const
&component, filesystem::path const &lib, naming::gid_type
const &prefix, naming::resolver_client &agas_client, bool
isdefault, bool isenabled,
hpx::program_options::options_description &options,
std::set<std::string> &startup_handled)

bool load_startup_shutdown_functions_static(std::string const &mod, error_code
&ec)

2.8. API reference 1525

HPX Documentation, master

bool load_commandline_options_static(std::string const &mod,
hpx::program_options::options_description
&options, error_code &ec)

bool load_plugins(util::section &ini, hpx::program_options::options_description &options,
std::set<std::string> &startup_handled)

bool load_plugin(hpx::util::plugin::dll &d, util::section &ini, std::string const &instance,
std::string const &component, filesystem::path const &lib, bool isenabled,
hpx::program_options::options_description &options, std::set<std::string>
&startup_handled)

bool load_plugin_dynamic(util::section &ini, std::string const &instance, std::string const
&component, filesystem::path lib, bool isenabled,
hpx::program_options::options_description &options,
std::set<std::string> &startup_handled)

std::size_t dijkstra_termination_detection(std::vector<hpx::id_type> const
&locality_ids)

Private Types

using plugin_map_mutex_type = hpx::spinlock

using plugin_factory_type = plugin_factory

using plugin_map_type = std::map<std::string, plugin_factory_type>

using modules_map_type = std::map<std::string, hpx::util::plugin::dll>

using static_modules_type = std::vector<static_factory_load_data_type>

Private Members

std::mutex mtx_

std::condition_variable wait_condition_

std::condition_variable stop_condition_

bool stop_called_

bool stop_done_

bool terminated_

1526 Chapter 2. What’s so special about HPX?

HPX Documentation, master

std::thread::id main_thread_id_

std::atomic<bool> shutdown_all_invoked_

plugin_map_mutex_type p_mtx_

plugin_map_type plugins_

modules_map_type &modules_

static_modules_type static_modules_

hpx::spinlock globals_mtx_

std::list<startup_function_type> pre_startup_functions_

std::list<startup_function_type> startup_functions_

std::list<shutdown_function_type> pre_shutdown_functions_

std::list<shutdown_function_type> shutdown_functions_

struct plugin_factory

Public Functions

inline plugin_factory(std::shared_ptr<plugins::plugin_factory_base> const &f,
hpx::util::plugin::dll const &d, bool enabled)

Public Members

std::shared_ptr<plugins::plugin_factory_base> first

hpx::util::plugin::dll const &second

bool isenabled

2.8. API reference 1527

HPX Documentation, master

hpx/runtime_distributed/stubs/runtime_support.hpp

Defined in header hpx/runtime_distributed/stubs/runtime_support.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace components

namespace stubs

struct runtime_support
Subclassed by hpx::components::runtime_support

Public Static Functions

template<typename Component, typename ...Ts>
static inline hpx::future<hpx::id_type> create_component_async(hpx::id_type const &gid,

Ts&&... vs)
Create a new component type using the runtime_support with the given targetgid. This is a
non-blocking call. The caller needs to call future::get on the result of this function to obtain the
global id of the newly created object.

template<typename Component, typename ...Ts>
static inline hpx::id_type create_component(hpx::id_type const &gid, Ts&&... vs)

Create a new component type using the runtime_support with the given targetgid. Block for the
creation to finish.

template<bool WithCount, typename Component, typename ...Ts>
static inline hpx::future<std::vector<hpx::id_type>> bulk_create_component_colocated_async(hpx::id_type

const
&gid,
std::size_t
count,
Ts&&...
vs)

Create multiple new components type using the runtime_support colocated with the given tar-
getgid. This is a non-blocking call.

template<bool WithCount, typename Component, typename ...Ts>
static inline std::vector<hpx::id_type> bulk_create_component_colocated(hpx::id_type

const &gid,
std::size_t
count, Ts&&...
vs)

Create multiple new components type using the runtime_support colocated with the given tar-
getgid. Block for the creation to finish.

template<bool WithCount, typename Component, typename ...Ts>

1528 Chapter 2. What’s so special about HPX?

HPX Documentation, master

static inline hpx::future<std::vector<hpx::id_type>> bulk_create_component_async(hpx::id_type
const
&gid,
std::size_t
count,
Ts&&...
vs)

Create multiple new components type using the runtime_support on the given locality. This is
a non-blocking call.

template<bool WithCount, typename Component, typename ...Ts>
static inline std::vector<hpx::id_type> bulk_create_component(hpx::id_type const &gid,

std::size_t count, Ts&&...
vs)

Create multiple new components type using the runtime_support on the given locality. Block
for the creation to finish.

template<typename Component, typename ...Ts>
static inline hpx::future<hpx::id_type> create_component_colocated_async(hpx::id_type

const &gid,
Ts&&... vs)

Create a new component type using the runtime_support with the given targetgid. This is a
non-blocking call. The caller needs to call future::get on the result of this function to obtain the
global id of the newly created object.

template<typename Component, typename ...Ts>
static inline hpx::id_type create_component_colocated(hpx::id_type const &gid, Ts&&...

vs)
Create a new component type using the runtime_support with the given targetgid. Block for the
creation to finish.

template<typename Component>
static inline hpx::future<hpx::id_type> copy_create_component_async(hpx::id_type const

&gid,
std::shared_ptr<Component>
const &p, bool
local_op)

template<typename Component>
static inline hpx::id_type copy_create_component(hpx::id_type const &gid,

std::shared_ptr<Component> const &p,
bool local_op)

template<typename Component>
static inline hpx::future<hpx::id_type> migrate_component_async(hpx::id_type const

&target_locality,
std::shared_ptr<Component>
const &p, hpx::id_type
const &to_migrate)

template<typename Component, typename DistPolicy>
static inline hpx::future<hpx::id_type> migrate_component_async(DistPolicy const &policy,

std::shared_ptr<Component>
const &p, hpx::id_type
const &to_migrate)

2.8. API reference 1529

HPX Documentation, master

template<typename Component, typename Target>
static inline hpx::id_type migrate_component(Target const &target, hpx::id_type const

&to_migrate, std::shared_ptr<Component>
const &p)

static hpx::future<int> load_components_async(hpx::id_type const &gid)

static int load_components(hpx::id_type const &gid)

static hpx::future<void> call_startup_functions_async(hpx::id_type const &gid, bool
pre_startup)

static void call_startup_functions(hpx::id_type const &gid, bool pre_startup)

static hpx::future<void> shutdown_async(hpx::id_type const &targetgid, double timeout = -1)
Shutdown the given runtime system.

static void shutdown(hpx::id_type const &targetgid, double timeout = -1)

static void shutdown_all(hpx::id_type const &targetgid, double timeout = -1)
Shutdown the runtime systems of all localities.

static void shutdown_all(double timeout = -1)

static hpx::future<void> terminate_async(hpx::id_type const &targetgid)
Retrieve configuration information.

Terminate the given runtime system

static void terminate(hpx::id_type const &targetgid)

static void terminate_all(hpx::id_type const &targetgid)
Terminate the runtime systems of all localities.

static void terminate_all()

static void garbage_collect_non_blocking(hpx::id_type const &targetgid)

static hpx::future<void> garbage_collect_async(hpx::id_type const &targetgid)

static void garbage_collect(hpx::id_type const &targetgid)

static hpx::future<hpx::id_type> create_performance_counter_async(hpx::id_type
targetgid, perfor-
mance_counters::counter_info
const &info)

static hpx::id_type create_performance_counter(hpx::id_type targetgid,
performance_counters::counter_info
const &info, error_code &ec = throws)

static hpx::future<util::section> get_config_async(hpx::id_type const &targetgid)
Retrieve configuration information.

static void get_config(hpx::id_type const &targetgid, util::section &ini)

static void remove_from_connection_cache_async(hpx::id_type const &target,
naming::gid_type const &gid,
parcelset::endpoints_type const
&endpoints)

1530 Chapter 2. What’s so special about HPX?

HPX Documentation, master

segmented_algorithms

See Public API for a list of names and headers that are part of the public HPX API.

hpx/parallel/segmented_algorithms/adjacent_difference.hpp

Defined in header hpx/parallel/segmented_algorithms/adjacent_difference.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, FwdIter2> tag_invoke(hpx::adjacent_difference_t,

ExPolicy &&policy,
FwdIter1 first,
FwdIter1 last, FwdIter2
dest, Op &&op)

template<typename InIter1, typename InIter2, typename Op>
InIter2 tag_invoke(hpx::adjacent_difference_t, InIter1 first, InIter1 last, InIter2 dest, Op &&op)

hpx/parallel/segmented_algorithms/adjacent_find.hpp

Defined in header hpx/parallel/segmented_algorithms/adjacent_find.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

2.8. API reference 1531

HPX Documentation, master

Functions

template<typename InIter, typename Pred>
InIter tag_invoke(hpx::adjacent_find_t, InIter first, InIter last, Pred &&pred = Pred())

template<typename ExPolicy, typename SegIter, typename Pred>
hpx::parallel::util::detail::algorithm_result<ExPolicy, SegIter>::type tag_invoke(hpx::adjacent_find_t,

ExPolicy &&policy,
SegIter first, SegIter
last, Pred &&pred)

hpx/parallel/segmented_algorithms/all_any_none.hpp

Defined in header hpx/parallel/segmented_algorithms/all_any_none.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

Functions

template<typename InIter, typename F>
bool tag_invoke(hpx::none_of_t, InIter first, InIter last, F &&f)

template<typename ExPolicy, typename SegIter, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> tag_invoke(hpx::none_of_t, ExPolicy

&&policy, SegIter first,
SegIter last, F &&f)

template<typename InIter, typename F>
bool tag_invoke(hpx::any_of_t, InIter first, InIter last, F &&f)

template<typename ExPolicy, typename SegIter, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> tag_invoke(hpx::any_of_t, ExPolicy

&&policy, SegIter first,
SegIter last, F &&f)

template<typename InIter, typename F>
bool tag_invoke(hpx::all_of_t, InIter first, InIter last, F &&f)

template<typename ExPolicy, typename SegIter, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, bool> tag_invoke(hpx::all_of_t, ExPolicy

&&policy, SegIter first,
SegIter last, F &&f)

1532 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/parallel/segmented_algorithms/count.hpp

Defined in header hpx/parallel/segmented_algorithms/count.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

Functions

template<typename InIter, typename T>
std::iterator_traits<InIter>::difference_type tag_invoke(hpx::count_t, InIter first, InIter last, T const

&value)

template<typename ExPolicy, typename SegIter, typename T>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<SegIter>::difference_type>::type tag_invoke(hpx::count_t,

Ex-
Pol-
icy
&&pol-
icy,
Se-
gIter
first,
Se-
gIter
last,
T
const
&value)

template<typename InIter, typename F>
std::iterator_traits<InIter>::difference_type tag_invoke(hpx::count_if_t, InIter first, InIter last, F

&&f)

template<typename ExPolicy, typename SegIter, typename F>
hpx::parallel::util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<SegIter>::difference_type>::type tag_invoke(hpx::count_if_t,

Ex-
Pol-
icy
&&pol-
icy,
Se-
gIter
first,
Se-
gIter
last,
F
&&f)

2.8. API reference 1533

HPX Documentation, master

hpx/parallel/segmented_algorithms/exclusive_scan.hpp

Defined in header hpx/parallel/segmented_algorithms/exclusive_scan.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

Functions

template<typename InIter, typename OutIter, typename T, typename Op = std::plus<T>>
OutIter tag_invoke(hpx::exclusive_scan_t, InIter first, InIter last, OutIter dest, T init, Op &&op =

Op())

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename Op =
std::plus<T>>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type tag_invoke(hpx::exclusive_scan_t,

ExPolicy &&policy,
FwdIter1 first, FwdIter1
last, FwdIter2 dest, T
init, Op &&op = Op())

hpx/parallel/segmented_algorithms/fill.hpp

Defined in header hpx/parallel/segmented_algorithms/fill.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

hpx/parallel/segmented_algorithms/for_each.hpp

Defined in header hpx/parallel/segmented_algorithms/for_each.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

1534 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Functions

template<typename InIter, typename F>
InIter tag_invoke(hpx::for_each_t, InIter first, InIter last, F &&f)

template<typename ExPolicy, typename SegIter, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, SegIter> tag_invoke(hpx::for_each_t, ExPolicy

&&policy, SegIter first,
SegIter last, F &&f)

template<typename InIter, typename Size, typename F>
InIter tag_invoke(hpx::for_each_n_t, InIter first, Size count, F &&f)

template<typename ExPolicy, typename SegIter, typename Size, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, SegIter> tag_invoke(hpx::for_each_n_t,

ExPolicy &&policy,
SegIter first, Size count,
F &&f)

hpx/parallel/segmented_algorithms/generate.hpp

Defined in header hpx/parallel/segmented_algorithms/generate.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

Functions

template<typename SegIter, typename F>
SegIter tag_invoke(hpx::generate_t, SegIter first, SegIter last, F &&f)

template<typename ExPolicy, typename SegIter, typename F>
parallel::util::detail::algorithm_result<ExPolicy, SegIter>::type tag_invoke(hpx::generate_t, ExPolicy

&&policy, SegIter first,
SegIter last, F &&f)

hpx/parallel/segmented_algorithms/inclusive_scan.hpp

Defined in header hpx/parallel/segmented_algorithms/inclusive_scan.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

2.8. API reference 1535

HPX Documentation, master

namespace parallel

namespace segmented

Functions

template<typename InIter, typename OutIter, typename Op = std::plus<typename
std::iterator_traits<InIter>::value_type>>
OutIter tag_invoke(hpx::inclusive_scan_t, InIter first, InIter last, OutIter dest, Op &&op = Op())

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op =
std::plus<typename std::iterator_traits<FwdIter1>::value_type>>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type tag_invoke(hpx::inclusive_scan_t,

ExPolicy &&policy,
FwdIter1 first, FwdIter1
last, FwdIter2 dest, Op
&&op = Op())

template<typename InIter, typename OutIter, typename Op, typename T>
OutIter tag_invoke(hpx::inclusive_scan_t, InIter first, InIter last, OutIter dest, Op &&op, T &&init)

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op, typename T>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type tag_invoke(hpx::inclusive_scan_t,

ExPolicy &&policy,
FwdIter1 first, FwdIter1
last, FwdIter2 dest, Op
&&op, T &&init)

hpx/parallel/segmented_algorithms/minmax.hpp

Defined in header hpx/parallel/segmented_algorithms/minmax.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

Typedefs

template<typename T>

using minmax_element_result = hpx::parallel::util::min_max_result<T>

namespace segmented

1536 Chapter 2. What’s so special about HPX?

HPX Documentation, master

Typedefs

template<typename T>

using minmax_element_result = hpx::parallel::util::min_max_result<T>

Functions

template<typename SegIter, typename F>
SegIter tag_invoke(hpx::min_element_t, SegIter first, SegIter last, F &&f)

template<typename ExPolicy, typename SegIter, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, SegIter> tag_invoke(hpx::min_element_t,

ExPolicy &&policy,
SegIter first, SegIter last,
F &&f)

template<typename SegIter, typename F>
SegIter tag_invoke(hpx::max_element_t, SegIter first, SegIter last, F &&f)

template<typename ExPolicy, typename SegIter, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, SegIter> tag_invoke(hpx::max_element_t,

ExPolicy &&policy,
SegIter first, SegIter last,
F &&f)

template<typename SegIter, typename F>
minmax_element_result<SegIter> tag_invoke(hpx::minmax_element_t, SegIter first, SegIter last, F

&&f)

template<typename ExPolicy, typename SegIter, typename F>
hpx::parallel::util::detail::algorithm_result_t<ExPolicy, minmax_element_result<SegIter>> tag_invoke(hpx::minmax_element_t,

Ex-
Pol-
icy
&&pol-
icy,
Se-
gIter
first,
Se-
gIter
last,
F
&&f)

2.8. API reference 1537

HPX Documentation, master

hpx/parallel/segmented_algorithms/reduce.hpp

Defined in header hpx/parallel/segmented_algorithms/reduce.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

Functions

template<typename InIterB, typename InIterE, typename T, typename F>
T tag_invoke(hpx::reduce_t, InIterB first, InIterE last, T init, F &&f)

template<typename ExPolicy, typename InIterB, typename InIterE, typename T, typename F>
parallel::util::detail::algorithm_result<ExPolicy, T>::type tag_invoke(hpx::reduce_t, ExPolicy

&&policy, InIterB first, InIterE
last, T init, F &&f)

hpx/parallel/segmented_algorithms/transform.hpp

Defined in header hpx/parallel/segmented_algorithms/transform.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

Functions

template<typename SegIter, typename OutIter, typename F>
hpx::parallel::util::in_out_result<SegIter, OutIter> tag_invoke(hpx::transform_t, SegIter first, SegIter

last, OutIter dest, F &&f)

template<typename ExPolicy, typename SegIter, typename OutIter, typename F>

1538 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::parallel::util::in_out_result<SegIter, OutIter>>::type tag_invoke(hpx::transform_t,
Ex-
Pol-
icy
&&pol-
icy,
Se-
gIter
first,
Se-
gIter
last,
Out-
Iter
dest,
F
&&f)

template<typename InIter1, typename InIter2, typename OutIter, typename F>
hpx::parallel::util::in_in_out_result<InIter1, InIter2, OutIter> tag_invoke(hpx::transform_t, InIter1

first1, InIter1 last1, InIter2
first2, OutIter dest, F &&f)

template<typename ExPolicy, typename InIter1, typename InIter2, typename OutIter, typename
F>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::parallel::util::in_in_out_result<InIter1, InIter2, OutIter>>::type tag_invoke(hpx::transform_t,

Ex-
Pol-
icy
&&pol-
icy,
InIter1
first1,
InIter1
last1,
InIter2
first2,
Out-
Iter
dest,
F
&&f)

template<typename InIter1, typename InIter2, typename OutIter, typename F>
hpx::parallel::util::in_in_out_result<InIter1, InIter2, OutIter> tag_invoke(hpx::transform_t, InIter1

first1, InIter1 last1, InIter2
first2, InIter2 last2, OutIter
dest, F &&f)

template<typename ExPolicy, typename InIter1, typename InIter2, typename OutIter, typename
F>

2.8. API reference 1539

HPX Documentation, master

hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::parallel::util::in_in_out_result<InIter1, InIter2, OutIter>>::type tag_invoke(hpx::transform_t,
Ex-
Pol-
icy
&&pol-
icy,
InIter1
first1,
InIter1
last1,
InIter2
first2,
InIter2
last2,
Out-
Iter
dest,
F
&&f)

hpx/parallel/segmented_algorithms/transform_exclusive_scan.hpp

Defined in header hpx/parallel/segmented_algorithms/transform_exclusive_scan.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace segmented

Functions

template<typename InIter, typename OutIter, typename T, typename Op, typename Conv>
OutIter tag_invoke(hpx::transform_exclusive_scan_t, InIter first, InIter last, OutIter dest, T init, Op

&&op, Conv &&conv)

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename Op,
typename Conv>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type tag_invoke(hpx::transform_exclusive_scan_t,

ExPolicy &&policy,
FwdIter1 first, FwdIter1
last, FwdIter2 dest, T
init, Op &&op, Conv
&&conv)

1540 Chapter 2. What’s so special about HPX?

HPX Documentation, master

hpx/parallel/segmented_algorithms/transform_inclusive_scan.hpp

Defined in header hpx/parallel/segmented_algorithms/transform_inclusive_scan.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace segmented

Functions

template<typename InIter, typename OutIter, typename Op, typename Conv>
OutIter tag_invoke(hpx::transform_inclusive_scan_t, InIter first, InIter last, OutIter dest, Op &&op,

Conv &&conv)

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op, typename
Conv>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type tag_invoke(hpx::transform_inclusive_scan_t,

ExPolicy &&policy,
FwdIter1 first, FwdIter1
last, FwdIter2 dest, Op
&&op, Conv &&conv)

template<typename InIter, typename OutIter, typename T, typename Op, typename Conv>
OutIter tag_invoke(hpx::transform_inclusive_scan_t, InIter first, InIter last, OutIter dest, Op &&op,

Conv &&conv, T init)

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename Op,
typename Conv>
parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type tag_invoke(hpx::transform_inclusive_scan_t,

ExPolicy &&policy,
FwdIter1 first, FwdIter1
last, FwdIter2 dest, Op
&&op, Conv &&conv, T
init)

hpx/parallel/segmented_algorithms/transform_reduce.hpp

Defined in header hpx/parallel/segmented_algorithms/transform_reduce.hpp.

See Public API for a list of names and headers that are part of the public HPX API.

namespace hpx

namespace parallel

namespace segmented

2.8. API reference 1541

HPX Documentation, master

Functions

template<typename SegIter, typename T, typename Reduce, typename Convert>
std::decay<T> tag_invoke(hpx::transform_reduce_t, SegIter first, SegIter last, T &&init, Reduce

&&red_op, Convert &&conv_op)

template<typename ExPolicy, typename SegIter, typename T, typename Reduce, typename
Convert>
parallel::util::detail::algorithm_result<ExPolicy, typename std::decay<T>::type>::type tag_invoke(hpx::transform_reduce_t,

Ex-
Pol-
icy
&&pol-
icy,
Se-
gIter
first,
Se-
gIter
last,
T
&&init,
Re-
duce
&&red_op,
Con-
vert
&&conv_op)

template<typename FwdIter1, typename FwdIter2, typename T, typename Reduce, typename
Convert>
T tag_invoke(hpx::transform_reduce_t, FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, T init, Reduce

&&red_op, Convert &&conv_op)

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename
Reduce, typename Convert>
parallel::util::detail::algorithm_result<ExPolicy, T>::type tag_invoke(hpx::transform_reduce_t,

ExPolicy &&policy, FwdIter1
first1, FwdIter1 last1, FwdIter2
first2, T init, Reduce &&red_op,
Convert &&conv_op)

2.9 Contributing to HPX

HPX development happens on Github. The following sections are a collection of useful information related to HPX
development.

1542 Chapter 2. What’s so special about HPX?

HPX Documentation, master

2.9.1 Contributing to HPX

The main source of information to understand the process of how to contribute to HPX can be found in this document809.
This is a living document that is constantly updated with relevant information.

2.9.2 HPX governance model

The HPX project is a meritocratic, consensus-based community project. Anyone with an interest in the project can
join the community, contribute to the project design and participate in the decision making process. This document810

describes how that participation takes place and how to set about earning merit within the project community.

2.9.3 Release procedure for HPX

Below is a step by step procedure for making an HPX release. We aim to produce two releases per year: one in
March-April, and one in September-October.

This is a living document and may not be totally current or accurate. It is an attempt to capture current practices in
making an HPX release. Please update it as appropriate.

One way to use this procedure is to print a copy and check off the lines as they are completed to avoid confusion.

1. Notify developers that a release is imminent.

2. For minor and major releases: create and check out a new branch at an appropriate point on master with the
name release-major.minor.X. major and minor should be the major and minor versions of the release. For
patch releases: check out the corresponding release-major.minor.X branch.

3. Write release notes in docs/sphinx/releases/whats_new_$VERSION.rst. Keep adding merged PRs and
closed issues to this until just before the release is made. Use tools/generate_pr_issue_list.sh to gener-
ate the lists. Add the new release notes to the table of contents in docs/sphinx/releases.rst.

4. Build the docs, and proof-read them. Update any documentation that may have changed, and correct any typos.
Pay special attention to:

• $HPX_SOURCE/README.rst

– Update grant information

• docs/sphinx/releases/whats_new_$VERSION.rst

• docs/sphinx/about_hpx/people.rst

– Update collaborators

– Update grant information

5. This step does not apply to patch releases. For APEX:

• Change the release branch to be the most current release tag available in the APEX git_external section
in the main CMakeLists.txt. Please contact the maintainers of the respective packages to generate a new
release to synchronize with the HPX release (APEX811).

6. Make sure HPX_VERSION_MAJOR/MINOR/SUBMINOR in CMakeLists.txt contain the correct values. Change
them if needed.

7. Change version references in CITATION.cff. There are two occurrences. Change year in the copyright file under
/libs/core/version/src/version.cpp.

809 https://github.com/STEllAR-GROUP/hpx/blob/master/.github/CONTRIBUTING.md
810 http://hpx.stellar-group.org/documents/governance/
811 http://github.com/UO-OACISS/xpress-apex

2.9. Contributing to HPX 1543

https://github.com/STEllAR-GROUP/hpx/blob/master/.github/CONTRIBUTING.md
http://hpx.stellar-group.org/documents/governance/
http://github.com/UO-OACISS/xpress-apex

HPX Documentation, master

8. This step does not apply to patch releases. Remove features which have been deprecated for at least 2 releases.
This involves removing build options which enable those features from the main CMakeLists.txt and also deleting
all related code and tests from the main source tree.

The general deprecation policy involves a three-step process we have to go through in order to introduce a break-
ing change:

a. First release cycle: add a build option that allows for explicitly disabling any old (now deprecated) code.

b. Second release cycle: turn this build option OFF by default.

c. Third release cycle: completely remove the old code.

The main CMakeLists.txt contains a comment indicating for which version the breaking change was introduced
first. In the case of deprecated features which don’t have a replacement yet, we keep them around in case (like
Vc for example).

9. Update the minimum required versions if necessary (compilers, dependencies, etc.) in prerequisites.rst.
Update latest tested versions.

10. Verify that the Jenkins setups for the release branch on Rostam are running and do not display any errors.

11. Repeat the following steps until satisfied with the release.

1. Change HPX_VERSION_TAG in CMakeLists.txt to -rcN, where N is the current iteration of this step. Start
with -rc1.

2. Create a pre-release on GitHub using the script tools/roll_release.sh. This script automatically tag
with the corresponding release number. The script requires that you have the STE||AR Group signing key.

3. This step is not necessary for patch releases. Notify hpx-users@stellar-group.org of the availability
of the release candidate. Ask users to test the candidate by checking out the release candidate tag.

4. Allow at least a week for testing of the release candidate.

• Use git merge when possible, and fall back to git cherry-pick when needed. For patch releases
git cherry-pick is most likely your only choice if there have been significant unrelated changes on
master since the previous release.

• Go back to the first step when enough patches have been added.

• If there are no more patches, continue to make the final release.

12. Update any occurrences of the latest stable release to refer to the version about to be released. For example,
quickstart.rst contains instructions to check out the latest stable tag. Make sure that refers to the new version.

13. Add a new entry to the RPM changelog (cmake/packaging/rpm/Changelog.txt) with the new version num-
ber and a link to the corresponding changelog.

14. Change HPX_VERSION_TAG in CMakeLists.txt to an empty string.

15. Add the release date to the caption of the current “What’s New” section in the docs, and change the value of
HPX_VERSION_DATE in CMakeLists.txt.

16. Create a release on GitHub using the script tools/roll_release.sh. This script automatically tag the with
the corresponding release number. The script requires that you have the STE||AR Group signing key.

17. Update the websites (hpx.stellar-group.org812 and stellar-group.org <https://stellar-group.org>). You can login
on wordpress through this page <https://hpx.stellar-group.org/wp-login.php>. You can update the pages with
the following:

• Update links on the downloads page. Link to the release on GitHub.
812 https://hpx.stellar-group.org

1544 Chapter 2. What’s so special about HPX?

https://hpx.stellar-group.org

HPX Documentation, master

• Documentation links on the docs page (link to generated documentation on GitHub Pages). Follow the style
of previous releases.

• A new blog post announcing the release, which links to downloads and the “What’s New” section in the
documentation (see previous releases for examples).

18. Merge release branch into master.

19. Post-release cleanup. Create a new pull request against master with the following changes:

1. Modify the release procedure if necessary.

2. Change HPX_VERSION_TAG in CMakeLists.txt back to -trunk.

3. Increment HPX_VERSION_MINOR in CMakeLists.txt.

20. Update Vcpkg (https://github.com/Microsoft/vcpkg) to pull from latest release.

• Update version number in CONTROL

• Update tag and SHA512 to that of the new release

21. Update spack (https://github.com/spack/spack) with the latest HPX package.

• Update version number in hpx/package.py and SHA256 to that of the new release

22. Announce the release on hpx-users@stellar-group.org, stellar@cct.lsu.edu, allcct@cct.lsu.edu, fac-
ulty@csc.lsu.edu, faculty@ece.lsu.edu, the HPX Slack channel, the STEllAR-GROUP Discord channel,
our list of external collaborators, isocpp.org, reddit.com, HPC Wire, Inside HPC, Heise Online, and a CCT
press release.

23. Beer and pizza.

2.9.4 Testing HPX

To ensure correctness of HPX, we ship a large variety of unit and regression tests. The tests are driven by the CTest813

tool and are executed automatically on each commit to the HPX Github814 repository. In addition, it is encouraged to
run the test suite manually to ensure proper operation on your target system. If a test fails for your platform, we highly
recommend submitting an issue on our HPX Issues815 tracker with detailed information about the target system.

Running tests manually

Running the tests manually is as easy as typing make tests && make test. This will build all tests and run them
once the tests are built successfully. After the tests have been built, you can invoke separate tests with the help of
the ctest command. You can list all available test targets using make help | grep tests. Please see the CTest
Documentation816 for further details.

813 https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
814 https://github.com/STEllAR-GROUP/hpx/
815 https://github.com/STEllAR-GROUP/hpx/issues
816 https://www.cmake.org/cmake/help/latest/manual/ctest.1.html

2.9. Contributing to HPX 1545

mailto:hpx-users@stellar-group.org
mailto:stellar@cct.lsu.edu
mailto:allcct@cct.lsu.edu
mailto:faculty@csc.lsu.edu
mailto:faculty@csc.lsu.edu
mailto:faculty@ece.lsu.edu
https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
https://github.com/STEllAR-GROUP/hpx/
https://github.com/STEllAR-GROUP/hpx/issues
https://www.cmake.org/cmake/help/latest/manual/ctest.1.html
https://www.cmake.org/cmake/help/latest/manual/ctest.1.html

HPX Documentation, master

Running performance tests

We run performance tests on Piz Daint for each pull request using Jenkins. To run those performance tests locally
or on Piz Daint, a script is provided under tools/perftests_ci/local_run.sh (to be run in the build directory
specifying the HPX source directory as the argument to the script, default is $HOME/projects/hpx_perftests_ci.

Adding new performance tests

To add a new performance test, you need to wrap the portion of code to benchmark with
hpx::util::perftests_report, passing the test name, the executor name and the function to time (can be
a lambda). This facility is used to output the time results in a json format (format needed to compare the results and
plot them). To effectively print them at the end of your test, call hpx::util::perftests_print_times. To see
an example of use, see future_overhead_report.cpp. Finally, you can add the test to the CI report editing the
hpx_targets variable for the executable name and the hpx_test_options variable for the corresponding options to
use for the run in the performance test script .jenkins/cscs-perftests/launch_perftests.sh. And then run
the tools/perftests_ci/local_run.sh script to get a reference json run (use the name of the test) to be added in
the tools/perftests_ci/perftest/references/daint_default directory.

Issue tracker

If you stumble over a bug or missing feature in HPX, please submit an issue to our HPX Issues817 page. For more
information on how to submit support requests or other means of getting in contact with the developers, please see the
Support Website818 page.

Continuous testing

In addition to manual testing, we run automated tests on various platforms. We also run tests on all pull requests using
both CircleCI819 and a combination of CDash820 and pycicle821. You can see the dashboards here: CircleCI HPX
dashboard822 and CDash HPX dashboard823 .

2.9.5 Using docker for development

Although it can often be useful to set up a local development environment with system-provided or self-built depen-
dencies, Docker824 provides a convenient alternative to quickly get all the dependencies needed to start development
of HPX. Our testing setup on CircleCI825 uses a docker image to run all tests.

To get started you need to install Docker826 using whatever means is most convenient on your system. Once you have
Docker827 installed, you can pull or directly run the docker image. The image is based on Debian and Clang, and can
be found on Docker Hub828. To start a container using the HPX build environment, run:

817 https://github.com/STEllAR-GROUP/hpx/issues
818 https://stellar.cct.lsu.edu/support/
819 https://circleci.com
820 https://www.kitware.com/cdash/project/about.html
821 https://github.com/biddisco/pycicle/
822 https://circleci.com/gh/STEllAR-GROUP/hpx
823 https://cdash.rostam.cct.lsu.edu/index.php?project=HPX
824 https://www.docker.com
825 https://circleci.com
826 https://www.docker.com
827 https://www.docker.com
828 https://hub.docker.com/r/stellargroup/build_env/

1546 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues
https://stellar.cct.lsu.edu/support/
https://circleci.com
https://www.kitware.com/cdash/project/about.html
https://github.com/biddisco/pycicle/
https://circleci.com/gh/STEllAR-GROUP/hpx
https://circleci.com/gh/STEllAR-GROUP/hpx
https://cdash.rostam.cct.lsu.edu/index.php?project=HPX
https://www.docker.com
https://circleci.com
https://www.docker.com
https://www.docker.com
https://hub.docker.com/r/stellargroup/build_env/

HPX Documentation, master

$ docker run --interactive --tty stellargroup/build_env:latest bash

You are now in an environment where all the HPX build and runtime dependencies are present. You can install addi-
tional packages according to your own needs. Please see the Docker Documentation829 for more information on using
Docker830.

Warning: All changes made within the container are lost when the container is closed. If you want files to
persist (e.g., the HPX source tree) after closing the container, you can bind directories from the host system into the
container (see Docker Documentation (Bind mounts)831).

2.9.6 Documentation

This documentation is built using Sphinx832, and an automatically generated API reference using Doxygen833 and
Breathe834.

We always welcome suggestions on how to improve our documentation, as well as pull requests with corrections and
additions.

Prerequisites

To build the HPX documentation, you need recent versions of the following packages:

• python3

• sphinx 4.5.0 (Python package)

• sphinx-book-theme (Python package)

• breathe 4.33.1 (Python package)

• doxygen

• sphinxcontrib-bibtex

• sphinx-copybutton

If the Python835 dependencies are not available through your system package manager, you can install them using the
Python package manager pip:

pip install --user "sphinx<5" sphinx-book-theme breathe sphinxcontrib-bibtex sphinx-
→˓copybutton

You may need to set the following CMake variables to make sure CMake can find the required dependencies.

Doxygen_ROOT:PATH

Specifies where to look for the installation of the Doxygen836 tool.

829 https://docs.docker.com/
830 https://www.docker.com
831 https://docs.docker.com/storage/bind-mounts/
832 http://www.sphinx-doc.org
833 https://www.doxygen.org
834 https://breathe.readthedocs.io/en/latest
835 https://www.python.org
836 https://www.doxygen.org

2.9. Contributing to HPX 1547

https://docs.docker.com/
https://www.docker.com
https://docs.docker.com/storage/bind-mounts/
http://www.sphinx-doc.org
https://www.doxygen.org
https://breathe.readthedocs.io/en/latest
https://www.python.org
https://www.doxygen.org

HPX Documentation, master

Sphinx_ROOT:PATH

Specifies where to look for the installation of the Sphinx837 tool.

Breathe_APIDOC_ROOT:PATH

Specifies where to look for the installation of the Breathe838 tool.

Building documentation

Enable building of the documentation by setting HPX_WITH_DOCUMENTATION=ON during CMake839 configura-
tion. To build the documentation, build the docs target using your build tool. The default output format is
HTML documentation. You can choose alternative output formats (single-page HTML, PDF, and man) with the
HPX_WITH_DOCUMENTATION_OUTPUT_FORMATS CMake option.

Note: If you add new source files to the Sphinx documentation, you have to run CMake again to have the files included
in the build.

Style guide

The documentation is written using reStructuredText. These are the conventions used for formatting the documentation:

• Use, at most, 80 characters per line.

• Top-level headings use over- and underlines with =.

• Sub-headings use only underlines with characters in decreasing level of importance: =, - and ..

• Use sentence case in headings.

• Refer to common terminology using :term:`Component`.

• Indent content of directives (.. directive::) by three spaces.

• For C++ code samples at the end of paragraphs, use :: and indent the code sample by 4 spaces.

– For other languages (or if you don’t want a colon at the end of the paragraph), use .. code-block::
language and indent by three spaces as with other directives.

• Use .. list-table:: to wrap tables with a lot of text in cells.

API documentation

The source code is documented using Doxygen. If you add new API documentation either to existing or new source files,
make sure that you add the documented source files to the doxygen_dependencies variable in docs/CMakeLists.
txt.

837 http://www.sphinx-doc.org
838 https://breathe.readthedocs.io/en/latest
839 https://www.cmake.org

1548 Chapter 2. What’s so special about HPX?

http://www.sphinx-doc.org
https://breathe.readthedocs.io/en/latest
https://www.cmake.org

HPX Documentation, master

2.9.7 Module structure

This section explains the structure of an HPX module.

The tool create_library_skeleton.py840 can be used to generate a basic skeleton. To create a library skeleton, run the
tool in the libs subdirectory with the module name as an argument:

$./create_library_skeleton <lib_name>

This creates a skeleton with the necessary files for an HPX module. It will not create any actual source files. The
structure of this skeleton is as follows:

• <lib_name>/

– README.rst

– CMakeLists.txt

– cmake

– docs/

∗ index.rst

– examples/

∗ CMakeLists.txt

– include/

∗ hpx/

· <lib_name>

– src/

∗ CMakeLists.txt

– tests/

∗ CMakeLists.txt

∗ unit/

· CMakeLists.txt

∗ regressions/

· CMakeLists.txt

∗ performance/

· CMakeLists.txt

A README.rst should be always included which explains the basic purpose of the library and a link to the generated
documentation.

A main CMakeLists.txt is created in the root directory of the module. By default it contains a call to
add_hpx_module which takes care of most of the boilerplate required for a module. You only need to fill in the
source and header files in most cases.

add_hpx_module requires a module name. Optional flags are:

Optional single-value arguments are:

• INSTALL_BINARIES: Install the resulting library.
840 https://github.com/STEllAR-GROUP/hpx/blob/master/libs/create_module_skeleton.py

2.9. Contributing to HPX 1549

https://github.com/STEllAR-GROUP/hpx/blob/master/libs/create_module_skeleton.py

HPX Documentation, master

Optional multi-value arguments-are:

• SOURCES: List of source files.

• HEADERS: List of header files.

• COMPAT_HEADERS: List of compatibility header files.

• DEPENDENCIES: Libraries that this module depends on, such as other modules.

• CMAKE_SUBDIRS: List of subdirectories to add to the module.

The include directory should contain only headers that other libraries need. For each of those headers, an automatic
header test to check for self containment will be generated. Private headers should be placed under the src directory.
This allows for clear separation. The cmake subdirectory may include additional CMake841 scripts needed to generate
the respective build configurations.

Compatibility headers (forwarding headers for headers whose location is changed when creating a module, if moving
them from the main library) should be placed in an include_compatibility directory. This directory is not created
by default.

Documentation is placed in the docs folder. A empty skeleton for the index is created, which is picked up by the
main build system and will be part of the generated documentation. Each header inside the include directory will
automatically be processed by Doxygen and included into the documentation.

Tests are placed in suitable subdirectories of tests.

When in doubt, consult existing modules for examples on how to structure the module.

Finding circular dependencies

Our CI will perform a check to see if there are circular dependencies between modules. In cases where it’s not
clear what is causing the circular dependency, running the cpp-dependencies842 tool manually can be helpful. It
can give you detailed information on exactly which files are causing the circular dependency. If you do not have
the cpp-dependencies tool already installed, one way of obtaining it is by using our docker image. This way you
will have exactly the same environment as on the CI. See Using docker for development for details on how to use the
docker image.

To produce the graph produced by CI run the following command (HPX_SOURCE is assumed to hold the path to the
HPX source directory):

$ cpp-dependencies --dir $HPX_SOURCE/libs --graph-cycles circular_dependencies.dot

This will produce a dot file in the current directory. You can inspect this manually with a text editor. You can also
convert this to an image if you have graphviz installed:

$ dot circular_dependencies.dot -Tsvg -o circular_dependencies.svg

This produces an svg file in the current directory which shows the circular dependencies. Note that if there are no
cycles the image will be empty.

You can use cpp-dependencies to print the include paths between two modules.

$ cpp-dependencies --dir $HPX_SOURCE/libs --shortest <from> <to>

prints all possible paths from the module <from> to the module <to>. For example, as most modules depend on
config, the following should give you a long list of paths from algorithms to config:

841 https://www.cmake.org
842 https://github.com/tomtom-international/cpp-dependencies

1550 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://github.com/tomtom-international/cpp-dependencies

HPX Documentation, master

$ cpp-dependencies --dir $HPX_SOURCE/libs --shortest algorithms config

The following should report that it can’t find a path between the two modules:

$ cpp-dependencies --dir $HPX_SOURCE/libs --shortest config algorithms

2.10 Releases

2.10.1 List of supported releases

HPX V2.0.0 (TBD)

General changes

Breaking changes

Closed issues

Closed pull requests

HPX V1.11.0 (Jun 30, 2025)

This release is the last version of HPX that supports C++17. Future versions of HPX will require compilation using
C++20 or above.

General changes

• Added synchronous versions of all collective operations. Added global predefined communicator objects that are
accessible through new APIs: hpx::collectives::get_world_communicator() refers to all localities and
hpx::collectives::get_local_communicator() refers to all threads on the calling locality. We unified
the interfaces of the different communicator objects.

• Added hpx::experimental::run_on_all allowing to run a given function (possibly concurrently) using a
given execution policy.

• Added a helper object hpx::runtime_manager that simplifies the initialization of HPX without needing to
modify the main function of the application.

• We improved the compatibility with various accelerator frameworks (SYCL, OneAPI).

• Applied build system changes that allow building HPX without any prerequisites. This requires to pass
-DHPX_WITH_FETCH_HWLOC=On and -DHPX_WITH_FETCH_BOOST=On to the CMake843 configuration.

• We have performed a lot of code cleanup and refactoring to improve the overall code quality and decrease compile
times.

• Added the hpx::contains and hpx::contains_subrange parallel algorithms.

• Adapted many of HPX’ parallel algorithms to be usable with senders/receivers.
843 https://www.cmake.org

2.10. Releases 1551

https://www.cmake.org

HPX Documentation, master

Breaking changes

• We have moved most of the APIs that were defined in the namespace hpx::parallel::execution to the
namespace hpx::execution::experimental. It was not possible to add compatibility facilities that will
allow to continue using the old APIs, applications will have to be changed in order to continue functioning
correctly.

• The CMake configuration parameter HPX_WITH_RUN_MAIN_EVERYWHERE is now deprecated and will be removed
in the future. Use the preprocessor macro HPX_HAVE_RUN_MAIN_EVERYWHERE on a target-by-target case instead.

• Removed the dysfunctional libfabric parcelport.

• Removed features that were long deprecated (starting V1.8): - hpx::flush, hpx::endl, hpx::async_flush,
hpx::async_endl - Various enumerator types are now only available as class enum requiring explicit scoped
use of the enumerator values - Various non-conforming overloads of parallel algorithms - hpx::for_loop and
friends (now only available as

hpx::experimental::for_loop)

– hpx::parallel::induction is now only available as hpx::experimental::induction

– hpx::parallel::reduction and friends are now only available as hpx::experimental::reduction

– hpx::assertion::source_location is now only available as hpx::source_location

– hpx::lcos::split_future is now only available as hpx::split_future

– hpx::lcos::wait and friends have been removed altogether

– hpx::lcos::wait_any and friends are now only available as hpx::wait_any

– hpx::lcos::wait_some and friends are now only available as hpx::wait_some

– hpx::lcos::wait_each and friends are now only available as hpx::wait_each

– hpx::lcos::wait_all and friends are now only available as hpx::wait_all

– hpx::lcos::when_all and friends are now only available as hpx::when_all

– hpx::lcos::when_any and friends are now only available as hpx::when_any

– hpx::lcos::when_each and friends are now only available as hpx::when_each

– hpx::lcos::when_some and friends are now only available as hpx::when_some

– hpx::util::optional and related facilities are now only available as hpx::optional

– hpx::util::bind and related facilities are now only available as hpx::bind

– hpx::util::function and friends are now only available as hpx::function

– hpx::traits::is_bound_action and related facilities are now only available as
hpx::is_bound_action

– hpx::traits::is_bind_expression and related facilities are now only available as
hpx::is_bind_expression

– hpx::traits::is_placeholder and related facilities are now only available as
hpx::is_placeholder

– hpx::lcos::future and related facilities are now only available as hpx::future

– hpx::memory::intrusive_ptr is now only available as hpx::intrusive_ptr

– hpx::lcos::local::barrier is now only available as hpx::barrier

– hpx::lcos::barrier is now only available as hpx::distributed::barrier

1552 Chapter 2. What’s so special about HPX?

HPX Documentation, master

– hpx::lcos::local::cpp20_binary_semaphore is now only available as
hpx::detail::binary_semaphore

– hpx::lcos::local::condition_variable and friends are now only available as
hpx::condition_variable

– hpx::lcos::local::counting_semaphore and friends are now only available as
hpx::counting_semaphore

– hpx::lcos::local::cpp20_latch and is now only available as hpx::latch

– hpx::lcos::latch and is now only available as hpx::distributed::latch

– hpx::lcos::local::upgrade_lock and friends are now only available as hpx::upgrade_lock

– hpx::lcos::local::mutex and friends are now only available as hpx::mutex

– hpx::lcos::local::spinlock and friends are now only available as hpx::spinlock

– hpx::lcos::local::call_once and friends are now only available as hpx::call_once

– hpx::util::annotated_function and is now only available as hpx::annotated_function

– hpx::components::abstract_simple_component_base and is now only available as
hpx::components::abstract_component_base

– hpx::naming::id_type and is now only available as hpx::id_type

Closed issues

• Issue #6699844 - Catch lower-level runtime error

• Issue #6696845 - HPX master breaks with Kokkos

• Issue #6691846 - minimum_category doesn’t work with custom iterator categories

• Issue #6681847 - build break - missing ‘;’

• Issue #6658848 - CMake error upon building HPX manually

• Issue #6648849 - Asio V1.34 deprecates io_context::work

• Issue #6640850 - iterator_facade doesn’t work with custom iterator categories

• Issue #6636851 - problem with hpx::collectives::exclusive_scan

• Issue #6623852 - HPX serialization error with std::vector<std::vector<std::vector<float>>>

• Issue #6616853 - Add flux support to HPX to run on El Cap

• Issue #6615854 - Too many fails test after installed hpx

• Issue #6605855 - Partitionend vector copy constructor is broken
844 https://github.com/STEllAR-GROUP/hpx/issues/6699
845 https://github.com/STEllAR-GROUP/hpx/issues/6696
846 https://github.com/STEllAR-GROUP/hpx/issues/6691
847 https://github.com/STEllAR-GROUP/hpx/issues/6681
848 https://github.com/STEllAR-GROUP/hpx/issues/6658
849 https://github.com/STEllAR-GROUP/hpx/issues/6648
850 https://github.com/STEllAR-GROUP/hpx/issues/6640
851 https://github.com/STEllAR-GROUP/hpx/issues/6636
852 https://github.com/STEllAR-GROUP/hpx/issues/6623
853 https://github.com/STEllAR-GROUP/hpx/issues/6616
854 https://github.com/STEllAR-GROUP/hpx/issues/6615
855 https://github.com/STEllAR-GROUP/hpx/issues/6605

2.10. Releases 1553

https://github.com/STEllAR-GROUP/hpx/issues/6699
https://github.com/STEllAR-GROUP/hpx/issues/6696
https://github.com/STEllAR-GROUP/hpx/issues/6691
https://github.com/STEllAR-GROUP/hpx/issues/6681
https://github.com/STEllAR-GROUP/hpx/issues/6658
https://github.com/STEllAR-GROUP/hpx/issues/6648
https://github.com/STEllAR-GROUP/hpx/issues/6640
https://github.com/STEllAR-GROUP/hpx/issues/6636
https://github.com/STEllAR-GROUP/hpx/issues/6623
https://github.com/STEllAR-GROUP/hpx/issues/6616
https://github.com/STEllAR-GROUP/hpx/issues/6615
https://github.com/STEllAR-GROUP/hpx/issues/6605

HPX Documentation, master

• Issue #6586856 - Bullet points in quick start/installing HPX section in documentation incorrectly rendered

• Issue #6563857 - Compilation issues on Grace Hopper

• Issue #6544858 - Errors in Public Distributed Api for all_to_all and gather_there

• Issue #6519859 - Option –hpx:queuing=local-priority-lifo is not configured

• Issue #6501860 - HPX 1.10 Failed Linking CXX executable for arm64-osx

• Issue #5728861 - Add optional fetch_content support for needed Boost libraries

Closed pull requests

• PR #6716862 - Fixing some of the reported linker warnings

• PR #6705863 - Adding gcc/15 to jenkins

• PR #6701864 - Attempting to fix shutdown hang on exception_info

• PR #6698865 - Making sure .hpp.in files are not being installed

• PR #6697866 - Minor docs fix

• PR #6695867 - Adding missing ‘;’

• PR #6693868 - Adding llvm/19 and 20 and cmake/4 Jenkins

• PR #6692869 - Better implementation of minimal_category

• PR #6690870 - Fixing bad #include in example

• PR #6689871 - Fix unreachable code warning in wait_all

• PR #6687872 - lci pp: change default ndevices=2 and progress_type=worker; improve document

• PR #6686873 - lci pp: upgrade LCI autofetch target to 1.7.9

• PR #6685874 - Improve run_on_all implementation and tests

• PR #6683875 - Fix bad element comparison for reduce_by_key

• PR #6682876 - Add C++23 std::generator equivalence test and fix missing semicolon

• PR #6680877 - Add oneapi device init workaround
856 https://github.com/STEllAR-GROUP/hpx/issues/6586
857 https://github.com/STEllAR-GROUP/hpx/issues/6563
858 https://github.com/STEllAR-GROUP/hpx/issues/6544
859 https://github.com/STEllAR-GROUP/hpx/issues/6519
860 https://github.com/STEllAR-GROUP/hpx/issues/6501
861 https://github.com/STEllAR-GROUP/hpx/issues/5728
862 https://github.com/STEllAR-GROUP/hpx/pull/6716
863 https://github.com/STEllAR-GROUP/hpx/pull/6705
864 https://github.com/STEllAR-GROUP/hpx/pull/6701
865 https://github.com/STEllAR-GROUP/hpx/pull/6698
866 https://github.com/STEllAR-GROUP/hpx/pull/6697
867 https://github.com/STEllAR-GROUP/hpx/pull/6695
868 https://github.com/STEllAR-GROUP/hpx/pull/6693
869 https://github.com/STEllAR-GROUP/hpx/pull/6692
870 https://github.com/STEllAR-GROUP/hpx/pull/6690
871 https://github.com/STEllAR-GROUP/hpx/pull/6689
872 https://github.com/STEllAR-GROUP/hpx/pull/6687
873 https://github.com/STEllAR-GROUP/hpx/pull/6686
874 https://github.com/STEllAR-GROUP/hpx/pull/6685
875 https://github.com/STEllAR-GROUP/hpx/pull/6683
876 https://github.com/STEllAR-GROUP/hpx/pull/6682
877 https://github.com/STEllAR-GROUP/hpx/pull/6680

1554 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/6586
https://github.com/STEllAR-GROUP/hpx/issues/6563
https://github.com/STEllAR-GROUP/hpx/issues/6544
https://github.com/STEllAR-GROUP/hpx/issues/6519
https://github.com/STEllAR-GROUP/hpx/issues/6501
https://github.com/STEllAR-GROUP/hpx/issues/5728
https://github.com/STEllAR-GROUP/hpx/pull/6716
https://github.com/STEllAR-GROUP/hpx/pull/6705
https://github.com/STEllAR-GROUP/hpx/pull/6701
https://github.com/STEllAR-GROUP/hpx/pull/6698
https://github.com/STEllAR-GROUP/hpx/pull/6697
https://github.com/STEllAR-GROUP/hpx/pull/6695
https://github.com/STEllAR-GROUP/hpx/pull/6693
https://github.com/STEllAR-GROUP/hpx/pull/6692
https://github.com/STEllAR-GROUP/hpx/pull/6690
https://github.com/STEllAR-GROUP/hpx/pull/6689
https://github.com/STEllAR-GROUP/hpx/pull/6687
https://github.com/STEllAR-GROUP/hpx/pull/6686
https://github.com/STEllAR-GROUP/hpx/pull/6685
https://github.com/STEllAR-GROUP/hpx/pull/6683
https://github.com/STEllAR-GROUP/hpx/pull/6682
https://github.com/STEllAR-GROUP/hpx/pull/6680

HPX Documentation, master

• PR #6679878 - Fix sycl deprecations

• PR #6678879 - Fix oneapi overloads

• PR #6677880 - Offer a runtime manager object

• PR #6676881 - Mention the HPX book

• PR #6675882 - Bump required version of JSON library

• PR #6674883 - Issue 6631

• PR #6673884 - Fix: FindTBB.cmake cannot find correct TBB library. #6504

• PR #6672885 - Update modules.rst

• PR #6670886 - Add base template template param to execution_policy

• PR #6669887 - Add execution policy support to run_on_all

• PR #6667888 - Making sure bound threads are rescheduled on their original core

• PR #6666889 - Improve documentation for reduction operations

• PR #6664890 - Fix CMake template when fetching Boost

• PR #6663891 - More run_on_all overloads

• PR #6662892 - Fix “unary minus operator applied to unsigned type” warning

• PR #6661893 - Adding simple experimental::run_on_all

• PR #6659894 - fix(reduce): Initialize accumulator with init instead of first element

• PR #6656895 - Add missing channel_communicator::get_info

• PR #6652896 - Adding channel-based ping-pong example

• PR #6650897 - Adding constructor overloads to partitioned_vector

• PR #6649898 - Remove the use of deprecated asio::io_context::work

• PR #6645899 - Fixing collectives::exclusive_scan

• PR #6644900 - Update result_type in set_union.hpp
878 https://github.com/STEllAR-GROUP/hpx/pull/6679
879 https://github.com/STEllAR-GROUP/hpx/pull/6678
880 https://github.com/STEllAR-GROUP/hpx/pull/6677
881 https://github.com/STEllAR-GROUP/hpx/pull/6676
882 https://github.com/STEllAR-GROUP/hpx/pull/6675
883 https://github.com/STEllAR-GROUP/hpx/pull/6674
884 https://github.com/STEllAR-GROUP/hpx/pull/6673
885 https://github.com/STEllAR-GROUP/hpx/pull/6672
886 https://github.com/STEllAR-GROUP/hpx/pull/6670
887 https://github.com/STEllAR-GROUP/hpx/pull/6669
888 https://github.com/STEllAR-GROUP/hpx/pull/6667
889 https://github.com/STEllAR-GROUP/hpx/pull/6666
890 https://github.com/STEllAR-GROUP/hpx/pull/6664
891 https://github.com/STEllAR-GROUP/hpx/pull/6663
892 https://github.com/STEllAR-GROUP/hpx/pull/6662
893 https://github.com/STEllAR-GROUP/hpx/pull/6661
894 https://github.com/STEllAR-GROUP/hpx/pull/6659
895 https://github.com/STEllAR-GROUP/hpx/pull/6656
896 https://github.com/STEllAR-GROUP/hpx/pull/6652
897 https://github.com/STEllAR-GROUP/hpx/pull/6650
898 https://github.com/STEllAR-GROUP/hpx/pull/6649
899 https://github.com/STEllAR-GROUP/hpx/pull/6645
900 https://github.com/STEllAR-GROUP/hpx/pull/6644

2.10. Releases 1555

https://github.com/STEllAR-GROUP/hpx/pull/6679
https://github.com/STEllAR-GROUP/hpx/pull/6678
https://github.com/STEllAR-GROUP/hpx/pull/6677
https://github.com/STEllAR-GROUP/hpx/pull/6676
https://github.com/STEllAR-GROUP/hpx/pull/6675
https://github.com/STEllAR-GROUP/hpx/pull/6674
https://github.com/STEllAR-GROUP/hpx/pull/6673
https://github.com/STEllAR-GROUP/hpx/pull/6672
https://github.com/STEllAR-GROUP/hpx/pull/6670
https://github.com/STEllAR-GROUP/hpx/pull/6669
https://github.com/STEllAR-GROUP/hpx/pull/6667
https://github.com/STEllAR-GROUP/hpx/pull/6666
https://github.com/STEllAR-GROUP/hpx/pull/6664
https://github.com/STEllAR-GROUP/hpx/pull/6663
https://github.com/STEllAR-GROUP/hpx/pull/6662
https://github.com/STEllAR-GROUP/hpx/pull/6661
https://github.com/STEllAR-GROUP/hpx/pull/6659
https://github.com/STEllAR-GROUP/hpx/pull/6656
https://github.com/STEllAR-GROUP/hpx/pull/6652
https://github.com/STEllAR-GROUP/hpx/pull/6650
https://github.com/STEllAR-GROUP/hpx/pull/6649
https://github.com/STEllAR-GROUP/hpx/pull/6645
https://github.com/STEllAR-GROUP/hpx/pull/6644

HPX Documentation, master

• PR #6643901 - Update result_type in set_union.hpp

• PR #6642902 - Allowing to use custom iterator tags with iterator_facade

• PR #6641903 - Allowing for zip-iterator to refer to sequences of different length

• PR #6639904 - docs: Fix spelling in example dictionary

• PR #6638905 - Update set_union.hpp

• PR #6637906 - lci/mpi pp: fix the case when non-zero-copy data is larger than INT_MAX

• PR #6635907 - Adding simplified reduction overload

• PR #6634908 - Fixed issue 6634: Unqualified calls to insertion_sort

• PR #6633909 - Increase timeouts for CircleCI tests

• PR #6630910 - Fix CPUId test

• PR #6628911 - Link aclocal with aclocal-1.16 as hwloc asks for it

• PR #6626912 - Fixing MPI parcel port issue exposed by #6623

• PR #6622913 - Newbranch:HPX-Based Task Scheduler with CUDA-Quantum Integration & Benchmarking

• PR #6621914 - HPX-Based Task Scheduler with CUDA-Quantum Integration & Benchmarking

• PR #6620915 - new test: very big tchunk

• PR #6619916 - mpi pp: fix transmission chunk send

• PR #6617917 - Adding support for the Flux job scheduling environment

• PR #6614918 - Fix fallback to module mode for CMake finding Boost

• PR #6613919 - Fix partitioned_vector_handle_values test

• PR #6612920 - Fixing naming convention for pp constant

• PR #6611921 - Fix Hwloc fetch content

• PR #6610922 - Add docs for synchronous collective operations

• PR #6609923 - Update perftest CI reference measurements
901 https://github.com/STEllAR-GROUP/hpx/pull/6643
902 https://github.com/STEllAR-GROUP/hpx/pull/6642
903 https://github.com/STEllAR-GROUP/hpx/pull/6641
904 https://github.com/STEllAR-GROUP/hpx/pull/6639
905 https://github.com/STEllAR-GROUP/hpx/pull/6638
906 https://github.com/STEllAR-GROUP/hpx/pull/6637
907 https://github.com/STEllAR-GROUP/hpx/pull/6635
908 https://github.com/STEllAR-GROUP/hpx/pull/6634
909 https://github.com/STEllAR-GROUP/hpx/pull/6633
910 https://github.com/STEllAR-GROUP/hpx/pull/6630
911 https://github.com/STEllAR-GROUP/hpx/pull/6628
912 https://github.com/STEllAR-GROUP/hpx/pull/6626
913 https://github.com/STEllAR-GROUP/hpx/pull/6622
914 https://github.com/STEllAR-GROUP/hpx/pull/6621
915 https://github.com/STEllAR-GROUP/hpx/pull/6620
916 https://github.com/STEllAR-GROUP/hpx/pull/6619
917 https://github.com/STEllAR-GROUP/hpx/pull/6617
918 https://github.com/STEllAR-GROUP/hpx/pull/6614
919 https://github.com/STEllAR-GROUP/hpx/pull/6613
920 https://github.com/STEllAR-GROUP/hpx/pull/6612
921 https://github.com/STEllAR-GROUP/hpx/pull/6611
922 https://github.com/STEllAR-GROUP/hpx/pull/6610
923 https://github.com/STEllAR-GROUP/hpx/pull/6609

1556 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6643
https://github.com/STEllAR-GROUP/hpx/pull/6642
https://github.com/STEllAR-GROUP/hpx/pull/6641
https://github.com/STEllAR-GROUP/hpx/pull/6639
https://github.com/STEllAR-GROUP/hpx/pull/6638
https://github.com/STEllAR-GROUP/hpx/pull/6637
https://github.com/STEllAR-GROUP/hpx/pull/6635
https://github.com/STEllAR-GROUP/hpx/pull/6634
https://github.com/STEllAR-GROUP/hpx/pull/6633
https://github.com/STEllAR-GROUP/hpx/pull/6630
https://github.com/STEllAR-GROUP/hpx/pull/6628
https://github.com/STEllAR-GROUP/hpx/pull/6626
https://github.com/STEllAR-GROUP/hpx/pull/6622
https://github.com/STEllAR-GROUP/hpx/pull/6621
https://github.com/STEllAR-GROUP/hpx/pull/6620
https://github.com/STEllAR-GROUP/hpx/pull/6619
https://github.com/STEllAR-GROUP/hpx/pull/6617
https://github.com/STEllAR-GROUP/hpx/pull/6614
https://github.com/STEllAR-GROUP/hpx/pull/6613
https://github.com/STEllAR-GROUP/hpx/pull/6612
https://github.com/STEllAR-GROUP/hpx/pull/6611
https://github.com/STEllAR-GROUP/hpx/pull/6610
https://github.com/STEllAR-GROUP/hpx/pull/6609

HPX Documentation, master

• PR #6608924 - Partially support data parallel for_loop

• PR #6607925 - Cleaning up copy_component facility

• PR #6606926 - Making sure copy_component creates a new gid

• PR #6600927 - Fixing sync collectives

• PR #6599928 - Make HPX_HAVE_RUN_MAIN_EVERYWHERE application specific

• PR #6598929 - Adding synchronous collective operations

• PR #6596930 - Minor fixes and optimizations

• PR #6595931 - Rfa parallel

• PR #6594932 - Move get_stack_ptr to source

• PR #6593933 - Fix outdated documentation and missing flags

• PR #6592934 - HPX_HAVE_THREADS_GET_STACK_POINTER to match builtin_frame_address feature test

• PR #6591935 - Feature test for __builtin_frame_address

• PR #6590936 - Add device guard for noexcept

• PR #6587937 - Fix bullet points in Quickstart

• PR #6585938 - Fixed escape characters format to handle warning due to misinterpretation of syntax

• PR #6583939 - Execute feature test for at_quick_exit

• PR #6582940 - Accommodate for CircleCI reduce available number of cores to two

• PR #6581941 - Attempting to work around a Boost.Spirit problem

• PR #6580942 - mpi pp: fix messages larger than INT_MAX

• PR #6578943 - Remove leftovers from libfabric parcelport

• PR #6577944 - Download Boost from their own archives, not from Sourceforge

• PR #6576945 - Fix CMake warning issued since CMake V3.30

• PR #6575946 - Replace previously downloaded CDash conv.xsl with local version
924 https://github.com/STEllAR-GROUP/hpx/pull/6608
925 https://github.com/STEllAR-GROUP/hpx/pull/6607
926 https://github.com/STEllAR-GROUP/hpx/pull/6606
927 https://github.com/STEllAR-GROUP/hpx/pull/6600
928 https://github.com/STEllAR-GROUP/hpx/pull/6599
929 https://github.com/STEllAR-GROUP/hpx/pull/6598
930 https://github.com/STEllAR-GROUP/hpx/pull/6596
931 https://github.com/STEllAR-GROUP/hpx/pull/6595
932 https://github.com/STEllAR-GROUP/hpx/pull/6594
933 https://github.com/STEllAR-GROUP/hpx/pull/6593
934 https://github.com/STEllAR-GROUP/hpx/pull/6592
935 https://github.com/STEllAR-GROUP/hpx/pull/6591
936 https://github.com/STEllAR-GROUP/hpx/pull/6590
937 https://github.com/STEllAR-GROUP/hpx/pull/6587
938 https://github.com/STEllAR-GROUP/hpx/pull/6585
939 https://github.com/STEllAR-GROUP/hpx/pull/6583
940 https://github.com/STEllAR-GROUP/hpx/pull/6582
941 https://github.com/STEllAR-GROUP/hpx/pull/6581
942 https://github.com/STEllAR-GROUP/hpx/pull/6580
943 https://github.com/STEllAR-GROUP/hpx/pull/6578
944 https://github.com/STEllAR-GROUP/hpx/pull/6577
945 https://github.com/STEllAR-GROUP/hpx/pull/6576
946 https://github.com/STEllAR-GROUP/hpx/pull/6575

2.10. Releases 1557

https://github.com/STEllAR-GROUP/hpx/pull/6608
https://github.com/STEllAR-GROUP/hpx/pull/6607
https://github.com/STEllAR-GROUP/hpx/pull/6606
https://github.com/STEllAR-GROUP/hpx/pull/6600
https://github.com/STEllAR-GROUP/hpx/pull/6599
https://github.com/STEllAR-GROUP/hpx/pull/6598
https://github.com/STEllAR-GROUP/hpx/pull/6596
https://github.com/STEllAR-GROUP/hpx/pull/6595
https://github.com/STEllAR-GROUP/hpx/pull/6594
https://github.com/STEllAR-GROUP/hpx/pull/6593
https://github.com/STEllAR-GROUP/hpx/pull/6592
https://github.com/STEllAR-GROUP/hpx/pull/6591
https://github.com/STEllAR-GROUP/hpx/pull/6590
https://github.com/STEllAR-GROUP/hpx/pull/6587
https://github.com/STEllAR-GROUP/hpx/pull/6585
https://github.com/STEllAR-GROUP/hpx/pull/6583
https://github.com/STEllAR-GROUP/hpx/pull/6582
https://github.com/STEllAR-GROUP/hpx/pull/6581
https://github.com/STEllAR-GROUP/hpx/pull/6580
https://github.com/STEllAR-GROUP/hpx/pull/6578
https://github.com/STEllAR-GROUP/hpx/pull/6577
https://github.com/STEllAR-GROUP/hpx/pull/6576
https://github.com/STEllAR-GROUP/hpx/pull/6575

HPX Documentation, master

• PR #6570947 - Update exception_list.hpp

• PR #6569948 - Update exception_list.hpp

• PR #6567949 - Fix vectorization error on copy algorithm

• PR #6566950 - lci pp: fix messages larger than INT_MAX

• PR #6565951 - Moving most of APIs from hpx::parallel::execution to hpx::execution::experimental

• PR #6564952 - Remove superfluous HPX_MOVE()

• PR #6562953 - Fix doc return type of broadcast_to

• PR #6560954 - Fixes for bit_cast on 32bit systems

• PR #6559955 - Making sure that all parcelport counters are unavailable if no networking is needed or configured

• PR #6558956 - Remove CSCS CI’s

• PR #6556957 - Set copyright year in generated files

• PR #6553958 - Fix omp vectorization pragma errors

• PR #6551959 - Update building_hpx.rst

• PR #6550960 - Partitioned vector updates

• PR #6549961 - Fix CMake conditionals checking ENV variables

• PR #6548962 - Update CONTRIBUTING.md

• PR #6546963 - Fix incorrect signature of distributed API functions

• PR #6543964 - Throwing an exception derived from std::bad_alloc on OOM conditions

• PR #6539965 - Use thread-safe cache in thread_local_caching_allocator

• PR #6537966 - Update README.rst

• PR #6531967 - More fixes for the Boost package

• PR #6527968 - Improve the LCI parcelport documentation

• PR #6525969 - Addressing cmake warnings issued starting V3.30
947 https://github.com/STEllAR-GROUP/hpx/pull/6570
948 https://github.com/STEllAR-GROUP/hpx/pull/6569
949 https://github.com/STEllAR-GROUP/hpx/pull/6567
950 https://github.com/STEllAR-GROUP/hpx/pull/6566
951 https://github.com/STEllAR-GROUP/hpx/pull/6565
952 https://github.com/STEllAR-GROUP/hpx/pull/6564
953 https://github.com/STEllAR-GROUP/hpx/pull/6562
954 https://github.com/STEllAR-GROUP/hpx/pull/6560
955 https://github.com/STEllAR-GROUP/hpx/pull/6559
956 https://github.com/STEllAR-GROUP/hpx/pull/6558
957 https://github.com/STEllAR-GROUP/hpx/pull/6556
958 https://github.com/STEllAR-GROUP/hpx/pull/6553
959 https://github.com/STEllAR-GROUP/hpx/pull/6551
960 https://github.com/STEllAR-GROUP/hpx/pull/6550
961 https://github.com/STEllAR-GROUP/hpx/pull/6549
962 https://github.com/STEllAR-GROUP/hpx/pull/6548
963 https://github.com/STEllAR-GROUP/hpx/pull/6546
964 https://github.com/STEllAR-GROUP/hpx/pull/6543
965 https://github.com/STEllAR-GROUP/hpx/pull/6539
966 https://github.com/STEllAR-GROUP/hpx/pull/6537
967 https://github.com/STEllAR-GROUP/hpx/pull/6531
968 https://github.com/STEllAR-GROUP/hpx/pull/6527
969 https://github.com/STEllAR-GROUP/hpx/pull/6525

1558 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6570
https://github.com/STEllAR-GROUP/hpx/pull/6569
https://github.com/STEllAR-GROUP/hpx/pull/6567
https://github.com/STEllAR-GROUP/hpx/pull/6566
https://github.com/STEllAR-GROUP/hpx/pull/6565
https://github.com/STEllAR-GROUP/hpx/pull/6564
https://github.com/STEllAR-GROUP/hpx/pull/6562
https://github.com/STEllAR-GROUP/hpx/pull/6560
https://github.com/STEllAR-GROUP/hpx/pull/6559
https://github.com/STEllAR-GROUP/hpx/pull/6558
https://github.com/STEllAR-GROUP/hpx/pull/6556
https://github.com/STEllAR-GROUP/hpx/pull/6553
https://github.com/STEllAR-GROUP/hpx/pull/6551
https://github.com/STEllAR-GROUP/hpx/pull/6550
https://github.com/STEllAR-GROUP/hpx/pull/6549
https://github.com/STEllAR-GROUP/hpx/pull/6548
https://github.com/STEllAR-GROUP/hpx/pull/6546
https://github.com/STEllAR-GROUP/hpx/pull/6543
https://github.com/STEllAR-GROUP/hpx/pull/6539
https://github.com/STEllAR-GROUP/hpx/pull/6537
https://github.com/STEllAR-GROUP/hpx/pull/6531
https://github.com/STEllAR-GROUP/hpx/pull/6527
https://github.com/STEllAR-GROUP/hpx/pull/6525

HPX Documentation, master

• PR #6522970 - Fixing distance test

• PR #6520971 - Adding optional handshakes to acknowledge the received data

• PR #6518972 - Make sure that –hpx:ini log settings take effect

• PR #6512973 - Minor cleanup of future_data

• PR #6510974 - Include Boost as CMake subproject

• PR #6509975 - Add components documentation

• PR #6508976 - Fix typo: s/unititiallized/uninitialized/

• PR #6507977 - Update LSU Jenkins libraries to match Rostam 3.0 with RHEL9

• PR #6503978 - Fix 2 tests on FreeBSD by initializing freebsd_environ

• PR #6499979 - Fix crash in get_executable_filename on FreeBSD

• PR #6498980 - Avoid rewriting defines.hpp

• PR #6497981 - Contains and contains_subrange parallel algorithm implementation GSOC 2024

• PR #6496982 - Prevent usage of CMake try_run on crosscompiling

• PR #6494983 - Add unit test cases and fixes for the S/R versions of the parallel algorithms

• PR #6487984 - Fixing security vulnerabilities reported by MSVC security checks

• PR #6486985 - Create codeql.yml

• PR #6474986 - Remove remnants of libfabric parcelport

• PR #6473987 - Add documentation for distributed implementations of post, async, sync and dataflow

• PR #6471988 - Add distance.cpp test in CMake

• PR #6468989 - Small vector relocation

• PR #6448990 - Standardising Benchmarks, with support for nanobench as an option for its backend

• PR #6365991 - Release V1.10.0

• PR #6089992 - Implementing p2079
970 https://github.com/STEllAR-GROUP/hpx/pull/6522
971 https://github.com/STEllAR-GROUP/hpx/pull/6520
972 https://github.com/STEllAR-GROUP/hpx/pull/6518
973 https://github.com/STEllAR-GROUP/hpx/pull/6512
974 https://github.com/STEllAR-GROUP/hpx/pull/6510
975 https://github.com/STEllAR-GROUP/hpx/pull/6509
976 https://github.com/STEllAR-GROUP/hpx/pull/6508
977 https://github.com/STEllAR-GROUP/hpx/pull/6507
978 https://github.com/STEllAR-GROUP/hpx/pull/6503
979 https://github.com/STEllAR-GROUP/hpx/pull/6499
980 https://github.com/STEllAR-GROUP/hpx/pull/6498
981 https://github.com/STEllAR-GROUP/hpx/pull/6497
982 https://github.com/STEllAR-GROUP/hpx/pull/6496
983 https://github.com/STEllAR-GROUP/hpx/pull/6494
984 https://github.com/STEllAR-GROUP/hpx/pull/6487
985 https://github.com/STEllAR-GROUP/hpx/pull/6486
986 https://github.com/STEllAR-GROUP/hpx/pull/6474
987 https://github.com/STEllAR-GROUP/hpx/pull/6473
988 https://github.com/STEllAR-GROUP/hpx/pull/6471
989 https://github.com/STEllAR-GROUP/hpx/pull/6468
990 https://github.com/STEllAR-GROUP/hpx/pull/6448
991 https://github.com/STEllAR-GROUP/hpx/pull/6365
992 https://github.com/STEllAR-GROUP/hpx/pull/6089

2.10. Releases 1559

https://github.com/STEllAR-GROUP/hpx/pull/6522
https://github.com/STEllAR-GROUP/hpx/pull/6520
https://github.com/STEllAR-GROUP/hpx/pull/6518
https://github.com/STEllAR-GROUP/hpx/pull/6512
https://github.com/STEllAR-GROUP/hpx/pull/6510
https://github.com/STEllAR-GROUP/hpx/pull/6509
https://github.com/STEllAR-GROUP/hpx/pull/6508
https://github.com/STEllAR-GROUP/hpx/pull/6507
https://github.com/STEllAR-GROUP/hpx/pull/6503
https://github.com/STEllAR-GROUP/hpx/pull/6499
https://github.com/STEllAR-GROUP/hpx/pull/6498
https://github.com/STEllAR-GROUP/hpx/pull/6497
https://github.com/STEllAR-GROUP/hpx/pull/6496
https://github.com/STEllAR-GROUP/hpx/pull/6494
https://github.com/STEllAR-GROUP/hpx/pull/6487
https://github.com/STEllAR-GROUP/hpx/pull/6486
https://github.com/STEllAR-GROUP/hpx/pull/6474
https://github.com/STEllAR-GROUP/hpx/pull/6473
https://github.com/STEllAR-GROUP/hpx/pull/6471
https://github.com/STEllAR-GROUP/hpx/pull/6468
https://github.com/STEllAR-GROUP/hpx/pull/6448
https://github.com/STEllAR-GROUP/hpx/pull/6365
https://github.com/STEllAR-GROUP/hpx/pull/6089

HPX Documentation, master

2.10.2 List of older releases

HPX V1.10.0 (May 29, 2024)

General changes

• The HPX documentation has seen a major overhaul for this release. We finished documenting the public local
HPX API, we have added migration guides from widely used parallelization platforms to HPX (OpenMP, TBB,
and MPI).

• We have added facilities enabling optimizations for trivially-relocatable types (see P1144993 for more details).

• We have added (and use) the scope_xxx helper facilities as specified by the C++ library fundamentals TS v3
(see: N4948994).

• We have added configuration options that allow to build HPX without pre-installing any prerequisites. Use
HPX_WITH_FETCH_HWLOC=On to have Portable Hardware Locality (HWLOC)995 installed for you. Similarly,
setting HPX_WITH_FETCH_BOOST=On during configuration time will install the necessary Boost996 libraries (cur-
rently V1.84.0).

• We have performed a lot of code cleanup and refactoring to improve the overall code quality and decrease compile
times.

• The collective operations APIs have seen an unification, we have fixed issues and performance problems for the
collectives.

• The HPX executors have seen a streamlining and some consistency changes. We have applied many performance
improvements to the executor implementations that directly positively impact the performance of our parallel
algorithms.

• We have added a new parcelport allowing to use Gasnet as a communication platform.

• We have added optimizations to various parcelports improving overall communication performance. This in-
cludes - amongst other things - send immediate optimizations and receiver-side zero-copy optimizations.

• Futures will now execute the associated task eagerly and inline on any wait opera-
tion if the task has not started running yet. This feature can be enabled using the
HPX_COROUTINES_WITH_THREAD_SCHEDULE_HINT_RUNS_AS_CHILD=On configuration setting (which is
Off by default).

• We have enabled using json files to supply configuration information through
the command line. This feature can be enabled with the configuration option
HPX_COMMAND_LINE_HANDLING_WITH_JSON_CONFIGURATION_FILES=On. This functionality depends on the
external JSon library997, which can be built at configuration time by supplying HPX_WITH_FETCH_JSON=On to
CMake998.

• We have applied many fixes to our CUDA, ROCm, and SYCL build environments.
993 https://wg21.link/p1144
994 http://wg21.link/n4948
995 https://www.open-mpi.org/projects/hwloc/
996 https://www.boost.org/
997 https://github.com/nlohmann/json
998 https://www.cmake.org

1560 Chapter 2. What’s so special about HPX?

https://wg21.link/p1144
http://wg21.link/n4948
https://www.open-mpi.org/projects/hwloc/
https://www.boost.org/
https://github.com/nlohmann/json
https://www.cmake.org

HPX Documentation, master

Breaking changes

• The CMake999 configuration keys SOMELIB_ROOT (e.g., BOOST_ROOT) have been renamed to Somelib_ROOT
(e.g., Boost_ROOT) to avoid warnings when using newer versions of CMake1000. Please update your scripts
accordingly. For now, the old variable names are re-assigned to the new names and unset in the CMake1001

cache.

Closed issues

• Issue #64661002 - No access limitations to Wiki

• Issue #64611003 - handle_received_parcels may never return

• Issue #64591004 - Building HPX

• Issue #64511005 - HPX hangs at the very end

• Issue #64461006 - Issue on page /manual/getting_hpx.html

• Issue #64431007 - PR #6435 (parcel_layer_tweaks) broke Octo-Tiger

• Issue #64401008 - HPX does not compile with MSVC of Visual Studio 2022 17.9+

• Issue #64371009 - HPX 1.9.1 does not compile on Fedora with ‘#pragma message: [Parallel STL message]:
“Vectorized algorithm unimplemented, redirected to serial

• Issue #64191010 - Enhancement of the macro functionalities within hpx

• Issue #64171011 - The current HPX master branch is still not compatible with Kokkos 4.0.1

• Issue #64141012 - Current HPX master causes segfaults within Octo-Tiger

• Issue #64121013 - Clangd (Language Server) throws error for __integer_pack at pack.hpp

• Issue #64071014 - Cannot build Kokkos 4.0.01 with current HPX master

• Issue #64051015 - Spack Build Error with ROCm 5.7.0

• Issue #63981016 - HPX sets affinity wrong with multiple processes per node and LCI parcelport enabled

• Issue #63921017 - [Feature] Install dependencies using CMake

• Issue #63881018 - HPX error: “Host not found” when running on Expanse with 128 nodes
999 https://www.cmake.org

1000 https://www.cmake.org
1001 https://www.cmake.org
1002 https://github.com/STEllAR-GROUP/hpx/issues/6466
1003 https://github.com/STEllAR-GROUP/hpx/issues/6461
1004 https://github.com/STEllAR-GROUP/hpx/issues/6459
1005 https://github.com/STEllAR-GROUP/hpx/issues/6451
1006 https://github.com/STEllAR-GROUP/hpx/issues/6446
1007 https://github.com/STEllAR-GROUP/hpx/issues/6443
1008 https://github.com/STEllAR-GROUP/hpx/issues/6440
1009 https://github.com/STEllAR-GROUP/hpx/issues/6437
1010 https://github.com/STEllAR-GROUP/hpx/issues/6419
1011 https://github.com/STEllAR-GROUP/hpx/issues/6417
1012 https://github.com/STEllAR-GROUP/hpx/issues/6414
1013 https://github.com/STEllAR-GROUP/hpx/issues/6412
1014 https://github.com/STEllAR-GROUP/hpx/issues/6407
1015 https://github.com/STEllAR-GROUP/hpx/issues/6405
1016 https://github.com/STEllAR-GROUP/hpx/issues/6398
1017 https://github.com/STEllAR-GROUP/hpx/issues/6392
1018 https://github.com/STEllAR-GROUP/hpx/issues/6388

2.10. Releases 1561

https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://github.com/STEllAR-GROUP/hpx/issues/6466
https://github.com/STEllAR-GROUP/hpx/issues/6461
https://github.com/STEllAR-GROUP/hpx/issues/6459
https://github.com/STEllAR-GROUP/hpx/issues/6451
https://github.com/STEllAR-GROUP/hpx/issues/6446
https://github.com/STEllAR-GROUP/hpx/issues/6443
https://github.com/STEllAR-GROUP/hpx/issues/6440
https://github.com/STEllAR-GROUP/hpx/issues/6437
https://github.com/STEllAR-GROUP/hpx/issues/6419
https://github.com/STEllAR-GROUP/hpx/issues/6417
https://github.com/STEllAR-GROUP/hpx/issues/6414
https://github.com/STEllAR-GROUP/hpx/issues/6412
https://github.com/STEllAR-GROUP/hpx/issues/6407
https://github.com/STEllAR-GROUP/hpx/issues/6405
https://github.com/STEllAR-GROUP/hpx/issues/6398
https://github.com/STEllAR-GROUP/hpx/issues/6392
https://github.com/STEllAR-GROUP/hpx/issues/6388

HPX Documentation, master

• Issue #63661019 - serialize_buffer allocator support needs adjustments

• Issue #63611020 - HPX 1.9.1 does not compile on Fedora 40

• Issue #63551021 - Single page documentation is broken

• Issue #63341022 - Segmentation fault after adding a padding in one_size_heap_list

• Issue #63291023 - Log hpx threads on forced shutdown

• Issue #63161024 - Build breaks on FreeBSD

• Issue #62991025 - HPX does not use distributed localities on Fugaku

• Issue #62981026 - Update config for coroutines on ARM

• Issue #62911027 - Zero-copy receive optimization disabled the invocation of direct actions

• Issue #62611028 - Add optional reading of json files for command line options

• Issue #60871029 - Support for vcpkg on Linux is broken

• Issue #59211030 - hpx::info claims that async_mpi was not built, while cmake assures its existence

• Issue #58931031 - Tests fail on FreeBSD: Executable copyn_test does not exist

• Issue #58331032 - barrier lockup

• Issue #57991033 - Investigate CUDA compilation problems

• Issue #53401034 - Examples do not run on Mac OSX using the M1 chip

Closed pull requests

• PR #64931035 - Fix distributed latch documentation

• PR #64921036 - Fix kokkos hpx nvcc compilation

• PR #64911037 - More fixes to handling bool arguments for collective operations

• PR #64901038 - Remove the default max cpu count

• PR #64891039 - Ensure TCP parcelport is deactivated if not needed

• PR #64881040 - Fixing handling of bool value type for collective operations
1019 https://github.com/STEllAR-GROUP/hpx/issues/6366
1020 https://github.com/STEllAR-GROUP/hpx/issues/6361
1021 https://github.com/STEllAR-GROUP/hpx/issues/6355
1022 https://github.com/STEllAR-GROUP/hpx/issues/6334
1023 https://github.com/STEllAR-GROUP/hpx/issues/6329
1024 https://github.com/STEllAR-GROUP/hpx/issues/6316
1025 https://github.com/STEllAR-GROUP/hpx/issues/6299
1026 https://github.com/STEllAR-GROUP/hpx/issues/6298
1027 https://github.com/STEllAR-GROUP/hpx/issues/6291
1028 https://github.com/STEllAR-GROUP/hpx/issues/6261
1029 https://github.com/STEllAR-GROUP/hpx/issues/6087
1030 https://github.com/STEllAR-GROUP/hpx/issues/5921
1031 https://github.com/STEllAR-GROUP/hpx/issues/5893
1032 https://github.com/STEllAR-GROUP/hpx/issues/5833
1033 https://github.com/STEllAR-GROUP/hpx/issues/5799
1034 https://github.com/STEllAR-GROUP/hpx/issues/5340
1035 https://github.com/STEllAR-GROUP/hpx/pull/6493
1036 https://github.com/STEllAR-GROUP/hpx/pull/6492
1037 https://github.com/STEllAR-GROUP/hpx/pull/6491
1038 https://github.com/STEllAR-GROUP/hpx/pull/6490
1039 https://github.com/STEllAR-GROUP/hpx/pull/6489
1040 https://github.com/STEllAR-GROUP/hpx/pull/6488

1562 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/6366
https://github.com/STEllAR-GROUP/hpx/issues/6361
https://github.com/STEllAR-GROUP/hpx/issues/6355
https://github.com/STEllAR-GROUP/hpx/issues/6334
https://github.com/STEllAR-GROUP/hpx/issues/6329
https://github.com/STEllAR-GROUP/hpx/issues/6316
https://github.com/STEllAR-GROUP/hpx/issues/6299
https://github.com/STEllAR-GROUP/hpx/issues/6298
https://github.com/STEllAR-GROUP/hpx/issues/6291
https://github.com/STEllAR-GROUP/hpx/issues/6261
https://github.com/STEllAR-GROUP/hpx/issues/6087
https://github.com/STEllAR-GROUP/hpx/issues/5921
https://github.com/STEllAR-GROUP/hpx/issues/5893
https://github.com/STEllAR-GROUP/hpx/issues/5833
https://github.com/STEllAR-GROUP/hpx/issues/5799
https://github.com/STEllAR-GROUP/hpx/issues/5340
https://github.com/STEllAR-GROUP/hpx/pull/6493
https://github.com/STEllAR-GROUP/hpx/pull/6492
https://github.com/STEllAR-GROUP/hpx/pull/6491
https://github.com/STEllAR-GROUP/hpx/pull/6490
https://github.com/STEllAR-GROUP/hpx/pull/6489
https://github.com/STEllAR-GROUP/hpx/pull/6488

HPX Documentation, master

• PR #64851041 - Destructive interference size

• PR #64841042 - Improve performance counter error handling

• PR #64821043 - Generalize the notion of bitwise serialization

• PR #64811044 - Fixing use of HPX_WITH_CXX_STANDARD

• PR #64801045 - Remove equal_to from hpx::any

• PR #64791046 - Remove optimizations for certain built-in compiler intrinsics

• PR #64781047 - Fixing issues on MacOS

• PR #64771048 - lci pp: lci’s github repo name changed from LC to lci

• PR #64761049 - Fixing binary filter test target names

• PR #64751050 - Fix mac os github actions

• PR #64721051 - Troubleshoot CI hangs

• PR #64691052 - improve(lci pp): more options to control the LCI parcelport

• PR #64671053 - Bump jwlawson/actions-setup-cmake from 1.14 to 2.0

• PR #64641054 - Update docs of “Writing distributed applications” page

• PR #64631055 - Revert “Always return outermost thread id”

• PR #64581056 - Reduce test workload to fix CI/CD time-out

• PR #64571057 - replace boost::array with std::array and update file name

• PR #64561058 - Move APEX CI to rostam

• PR #64551059 - Fixing compilation if HPX_HAVE_THREAD_QUEUE_WAITTIME is defined

• PR #64541060 - Update perftests reference measurements

• PR #64531061 - Update supported platforms of Manual/Prerequisites page

• PR #64521062 - Fix nvcc crashes in transform_stream.cu and synchronize.cu

• PR #64501063 - Fix git tag name in Getting HPX page
1041 https://github.com/STEllAR-GROUP/hpx/pull/6485
1042 https://github.com/STEllAR-GROUP/hpx/pull/6484
1043 https://github.com/STEllAR-GROUP/hpx/pull/6482
1044 https://github.com/STEllAR-GROUP/hpx/pull/6481
1045 https://github.com/STEllAR-GROUP/hpx/pull/6480
1046 https://github.com/STEllAR-GROUP/hpx/pull/6479
1047 https://github.com/STEllAR-GROUP/hpx/pull/6478
1048 https://github.com/STEllAR-GROUP/hpx/pull/6477
1049 https://github.com/STEllAR-GROUP/hpx/pull/6476
1050 https://github.com/STEllAR-GROUP/hpx/pull/6475
1051 https://github.com/STEllAR-GROUP/hpx/pull/6472
1052 https://github.com/STEllAR-GROUP/hpx/pull/6469
1053 https://github.com/STEllAR-GROUP/hpx/pull/6467
1054 https://github.com/STEllAR-GROUP/hpx/pull/6464
1055 https://github.com/STEllAR-GROUP/hpx/pull/6463
1056 https://github.com/STEllAR-GROUP/hpx/pull/6458
1057 https://github.com/STEllAR-GROUP/hpx/pull/6457
1058 https://github.com/STEllAR-GROUP/hpx/pull/6456
1059 https://github.com/STEllAR-GROUP/hpx/pull/6455
1060 https://github.com/STEllAR-GROUP/hpx/pull/6454
1061 https://github.com/STEllAR-GROUP/hpx/pull/6453
1062 https://github.com/STEllAR-GROUP/hpx/pull/6452
1063 https://github.com/STEllAR-GROUP/hpx/pull/6450

2.10. Releases 1563

https://github.com/STEllAR-GROUP/hpx/pull/6485
https://github.com/STEllAR-GROUP/hpx/pull/6484
https://github.com/STEllAR-GROUP/hpx/pull/6482
https://github.com/STEllAR-GROUP/hpx/pull/6481
https://github.com/STEllAR-GROUP/hpx/pull/6480
https://github.com/STEllAR-GROUP/hpx/pull/6479
https://github.com/STEllAR-GROUP/hpx/pull/6478
https://github.com/STEllAR-GROUP/hpx/pull/6477
https://github.com/STEllAR-GROUP/hpx/pull/6476
https://github.com/STEllAR-GROUP/hpx/pull/6475
https://github.com/STEllAR-GROUP/hpx/pull/6472
https://github.com/STEllAR-GROUP/hpx/pull/6469
https://github.com/STEllAR-GROUP/hpx/pull/6467
https://github.com/STEllAR-GROUP/hpx/pull/6464
https://github.com/STEllAR-GROUP/hpx/pull/6463
https://github.com/STEllAR-GROUP/hpx/pull/6458
https://github.com/STEllAR-GROUP/hpx/pull/6457
https://github.com/STEllAR-GROUP/hpx/pull/6456
https://github.com/STEllAR-GROUP/hpx/pull/6455
https://github.com/STEllAR-GROUP/hpx/pull/6454
https://github.com/STEllAR-GROUP/hpx/pull/6453
https://github.com/STEllAR-GROUP/hpx/pull/6452
https://github.com/STEllAR-GROUP/hpx/pull/6450

HPX Documentation, master

• PR #64491064 - LCI parcelport: add yield to potentially infinite retry loop

• PR #64471065 - Use compressed ptr in schedulers when 128 atomics are not lockfree

• PR #64451066 - Fix agas addressing cache

• PR #64441067 - Update CTestConfig.cmake

• PR #64421068 - Update CMakeLists.txt

• PR #64411069 - Minor documentation fixes

• PR #64391070 - Optimizing use of certain #includes

• PR #64381071 - Bump jwlawson/actions-setup-cmake from 1.14 to 2.0

• PR #64361072 - Update docs

• PR #64351073 - Parcel layer tweaks

• PR #64341074 - improve termination detection: removing lock from critical path

• PR #64331075 - Use shared mutex for resolve_locality procedure

• PR #64321076 - Module cleanup up to level 30

• PR #64291077 - Making sure HPX_WITH_ASYNC_MPI is reported properly

• PR #64271078 - Modifying CMakeLists to copy libhwloc-15.dll to the binary folder in Windows, independently

• PR #64251079 - Fix macOS failing test

• PR #64241080 - Adding option for downloading Boost using CMake FetchContent

• PR #64231081 - Move adjacent_difference to numeric header file

• PR #64221082 - Adding steal-half functionalities to work-requesting scheduler

• PR #64211083 - Bump actions/checkout from 2 to 4

• PR #64181084 - Working around nvcc problems to use CTAD

• PR #64161085 - Change run_as_os_thread deprecation forwarding due to hipcc compilation issue

• PR #64151086 - Attempting to avoid segfault in OctoTiger during initialization
1064 https://github.com/STEllAR-GROUP/hpx/pull/6449
1065 https://github.com/STEllAR-GROUP/hpx/pull/6447
1066 https://github.com/STEllAR-GROUP/hpx/pull/6445
1067 https://github.com/STEllAR-GROUP/hpx/pull/6444
1068 https://github.com/STEllAR-GROUP/hpx/pull/6442
1069 https://github.com/STEllAR-GROUP/hpx/pull/6441
1070 https://github.com/STEllAR-GROUP/hpx/pull/6439
1071 https://github.com/STEllAR-GROUP/hpx/pull/6438
1072 https://github.com/STEllAR-GROUP/hpx/pull/6436
1073 https://github.com/STEllAR-GROUP/hpx/pull/6435
1074 https://github.com/STEllAR-GROUP/hpx/pull/6434
1075 https://github.com/STEllAR-GROUP/hpx/pull/6433
1076 https://github.com/STEllAR-GROUP/hpx/pull/6432
1077 https://github.com/STEllAR-GROUP/hpx/pull/6429
1078 https://github.com/STEllAR-GROUP/hpx/pull/6427
1079 https://github.com/STEllAR-GROUP/hpx/pull/6425
1080 https://github.com/STEllAR-GROUP/hpx/pull/6424
1081 https://github.com/STEllAR-GROUP/hpx/pull/6423
1082 https://github.com/STEllAR-GROUP/hpx/pull/6422
1083 https://github.com/STEllAR-GROUP/hpx/pull/6421
1084 https://github.com/STEllAR-GROUP/hpx/pull/6418
1085 https://github.com/STEllAR-GROUP/hpx/pull/6416
1086 https://github.com/STEllAR-GROUP/hpx/pull/6415

1564 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6449
https://github.com/STEllAR-GROUP/hpx/pull/6447
https://github.com/STEllAR-GROUP/hpx/pull/6445
https://github.com/STEllAR-GROUP/hpx/pull/6444
https://github.com/STEllAR-GROUP/hpx/pull/6442
https://github.com/STEllAR-GROUP/hpx/pull/6441
https://github.com/STEllAR-GROUP/hpx/pull/6439
https://github.com/STEllAR-GROUP/hpx/pull/6438
https://github.com/STEllAR-GROUP/hpx/pull/6436
https://github.com/STEllAR-GROUP/hpx/pull/6435
https://github.com/STEllAR-GROUP/hpx/pull/6434
https://github.com/STEllAR-GROUP/hpx/pull/6433
https://github.com/STEllAR-GROUP/hpx/pull/6432
https://github.com/STEllAR-GROUP/hpx/pull/6429
https://github.com/STEllAR-GROUP/hpx/pull/6427
https://github.com/STEllAR-GROUP/hpx/pull/6425
https://github.com/STEllAR-GROUP/hpx/pull/6424
https://github.com/STEllAR-GROUP/hpx/pull/6423
https://github.com/STEllAR-GROUP/hpx/pull/6422
https://github.com/STEllAR-GROUP/hpx/pull/6421
https://github.com/STEllAR-GROUP/hpx/pull/6418
https://github.com/STEllAR-GROUP/hpx/pull/6416
https://github.com/STEllAR-GROUP/hpx/pull/6415

HPX Documentation, master

• PR #64131087 - Always return outermost thread id

• PR #64111088 - Minor refactoring and fixes to the LCI parcelport and pingpong_performance2 benchmark

• PR #64101089 - Adding scope_xxx from library fundamentals TS v3

• PR #64091090 - Working around CUDA issue

• PR #64081091 - Tightening up collective operation semantics

• PR #64061092 - Working around ROCm compiler issue

• PR #64041093 - Allow to disable use of [[no_unique_address]] attribute

• PR #64031094 - Fixing copyright year

• PR #64021095 - fix(lci pp): fix deadlocks with too many failed sends

• PR #64011096 - fix(lci pp): fix the null_thread_id bug in the LCI parcelport

• PR #64001097 - Fix the affinity setting bug when using LCI pp and multiple localities per node

• PR #63971098 - Change API header titles and info

• PR #63961099 - Making is_bitwise_serializable SFINAE-friendly

• PR #63951100 - Adapt amount of collective testing

• PR #63941101 - Adding option for installing Hwloc using CMake FetchContent

• PR #63931102 - Optionally disable caching allocator

• PR #63911103 - Cleaning up collective operations

• PR #63901104 - Making function local constexpr variables non-static

• PR #63891105 - Disable resolving hostnames if TCP is disabled

• PR #63871106 - Need to break out of the loop when searching the suffixes.

• PR #63841107 - Fixing allocation/deallocation mismatch in serialize_buffer

• PR #63831108 - Enable fork_join_executor to handle return values from scheduled functions

• PR #63811109 - Consistently treat conflicting parameters provided by executors and parameter objects
1087 https://github.com/STEllAR-GROUP/hpx/pull/6413
1088 https://github.com/STEllAR-GROUP/hpx/pull/6411
1089 https://github.com/STEllAR-GROUP/hpx/pull/6410
1090 https://github.com/STEllAR-GROUP/hpx/pull/6409
1091 https://github.com/STEllAR-GROUP/hpx/pull/6408
1092 https://github.com/STEllAR-GROUP/hpx/pull/6406
1093 https://github.com/STEllAR-GROUP/hpx/pull/6404
1094 https://github.com/STEllAR-GROUP/hpx/pull/6403
1095 https://github.com/STEllAR-GROUP/hpx/pull/6402
1096 https://github.com/STEllAR-GROUP/hpx/pull/6401
1097 https://github.com/STEllAR-GROUP/hpx/pull/6400
1098 https://github.com/STEllAR-GROUP/hpx/pull/6397
1099 https://github.com/STEllAR-GROUP/hpx/pull/6396
1100 https://github.com/STEllAR-GROUP/hpx/pull/6395
1101 https://github.com/STEllAR-GROUP/hpx/pull/6394
1102 https://github.com/STEllAR-GROUP/hpx/pull/6393
1103 https://github.com/STEllAR-GROUP/hpx/pull/6391
1104 https://github.com/STEllAR-GROUP/hpx/pull/6390
1105 https://github.com/STEllAR-GROUP/hpx/pull/6389
1106 https://github.com/STEllAR-GROUP/hpx/pull/6387
1107 https://github.com/STEllAR-GROUP/hpx/pull/6384
1108 https://github.com/STEllAR-GROUP/hpx/pull/6383
1109 https://github.com/STEllAR-GROUP/hpx/pull/6381

2.10. Releases 1565

https://github.com/STEllAR-GROUP/hpx/pull/6413
https://github.com/STEllAR-GROUP/hpx/pull/6411
https://github.com/STEllAR-GROUP/hpx/pull/6410
https://github.com/STEllAR-GROUP/hpx/pull/6409
https://github.com/STEllAR-GROUP/hpx/pull/6408
https://github.com/STEllAR-GROUP/hpx/pull/6406
https://github.com/STEllAR-GROUP/hpx/pull/6404
https://github.com/STEllAR-GROUP/hpx/pull/6403
https://github.com/STEllAR-GROUP/hpx/pull/6402
https://github.com/STEllAR-GROUP/hpx/pull/6401
https://github.com/STEllAR-GROUP/hpx/pull/6400
https://github.com/STEllAR-GROUP/hpx/pull/6397
https://github.com/STEllAR-GROUP/hpx/pull/6396
https://github.com/STEllAR-GROUP/hpx/pull/6395
https://github.com/STEllAR-GROUP/hpx/pull/6394
https://github.com/STEllAR-GROUP/hpx/pull/6393
https://github.com/STEllAR-GROUP/hpx/pull/6391
https://github.com/STEllAR-GROUP/hpx/pull/6390
https://github.com/STEllAR-GROUP/hpx/pull/6389
https://github.com/STEllAR-GROUP/hpx/pull/6387
https://github.com/STEllAR-GROUP/hpx/pull/6384
https://github.com/STEllAR-GROUP/hpx/pull/6383
https://github.com/STEllAR-GROUP/hpx/pull/6381

HPX Documentation, master

• PR #63801110 - Fixing setting an annotation for an execution policy

• PR #63781111 - Allowing to disable signal handlers

• PR #63771112 - Fix gasnet-related test failures

• PR #63751113 - Update LSU Jenkins with 2023-10 libraries

• PR #63741114 - Investigate builder gasnet failure

• PR #63731115 - Fixing communicator API, adding docs

• PR #63721116 - Fix resource partitioner tests for small thread count

• PR #63711117 - Fix jacobi omp examples.

• PR #63701118 - improve one_size_heap_list: use rwlock to speedup the allocation/free

• PR #63691119 - working issue with MPI_CC / CC conflict in automake

• PR #63681120 - Making sure serialize_buffer properly destroys buffer, if needed.

• PR #63671121 - Fix parallel relocation test

• PR #63641122 - Relocation variants

• PR #63631123 - Update the lci parcelport to use LCI v1.7.6

• PR #63621124 - Fixing compilation problems on 32 Linux systems

• PR #63601125 - Fix broken links in docs: PDF, Single HTML page, Dependency report

• PR #63591126 - Fix header file links in Public API page

• PR #63581127 - Fix CMake find_library for HWLOC

• PR #63571128 - Replace Custom Benchmarking Code with Nanobench

• PR #63561129 - Fixed matrix multiplication example output

• PR #63541130 - Fix broken links for header files in Public API page

• PR #63531131 - Enable using std::reference_wrapper with executor parameters

• PR #63521132 - Add Public distributed API documentation
1110 https://github.com/STEllAR-GROUP/hpx/pull/6380
1111 https://github.com/STEllAR-GROUP/hpx/pull/6378
1112 https://github.com/STEllAR-GROUP/hpx/pull/6377
1113 https://github.com/STEllAR-GROUP/hpx/pull/6375
1114 https://github.com/STEllAR-GROUP/hpx/pull/6374
1115 https://github.com/STEllAR-GROUP/hpx/pull/6373
1116 https://github.com/STEllAR-GROUP/hpx/pull/6372
1117 https://github.com/STEllAR-GROUP/hpx/pull/6371
1118 https://github.com/STEllAR-GROUP/hpx/pull/6370
1119 https://github.com/STEllAR-GROUP/hpx/pull/6369
1120 https://github.com/STEllAR-GROUP/hpx/pull/6368
1121 https://github.com/STEllAR-GROUP/hpx/pull/6367
1122 https://github.com/STEllAR-GROUP/hpx/pull/6364
1123 https://github.com/STEllAR-GROUP/hpx/pull/6363
1124 https://github.com/STEllAR-GROUP/hpx/pull/6362
1125 https://github.com/STEllAR-GROUP/hpx/pull/6360
1126 https://github.com/STEllAR-GROUP/hpx/pull/6359
1127 https://github.com/STEllAR-GROUP/hpx/pull/6358
1128 https://github.com/STEllAR-GROUP/hpx/pull/6357
1129 https://github.com/STEllAR-GROUP/hpx/pull/6356
1130 https://github.com/STEllAR-GROUP/hpx/pull/6354
1131 https://github.com/STEllAR-GROUP/hpx/pull/6353
1132 https://github.com/STEllAR-GROUP/hpx/pull/6352

1566 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6380
https://github.com/STEllAR-GROUP/hpx/pull/6378
https://github.com/STEllAR-GROUP/hpx/pull/6377
https://github.com/STEllAR-GROUP/hpx/pull/6375
https://github.com/STEllAR-GROUP/hpx/pull/6374
https://github.com/STEllAR-GROUP/hpx/pull/6373
https://github.com/STEllAR-GROUP/hpx/pull/6372
https://github.com/STEllAR-GROUP/hpx/pull/6371
https://github.com/STEllAR-GROUP/hpx/pull/6370
https://github.com/STEllAR-GROUP/hpx/pull/6369
https://github.com/STEllAR-GROUP/hpx/pull/6368
https://github.com/STEllAR-GROUP/hpx/pull/6367
https://github.com/STEllAR-GROUP/hpx/pull/6364
https://github.com/STEllAR-GROUP/hpx/pull/6363
https://github.com/STEllAR-GROUP/hpx/pull/6362
https://github.com/STEllAR-GROUP/hpx/pull/6360
https://github.com/STEllAR-GROUP/hpx/pull/6359
https://github.com/STEllAR-GROUP/hpx/pull/6358
https://github.com/STEllAR-GROUP/hpx/pull/6357
https://github.com/STEllAR-GROUP/hpx/pull/6356
https://github.com/STEllAR-GROUP/hpx/pull/6354
https://github.com/STEllAR-GROUP/hpx/pull/6353
https://github.com/STEllAR-GROUP/hpx/pull/6352

HPX Documentation, master

• PR #63501133 - Make coverage work with Jenkins Github Branch Source plugin

• PR #63491134 - Moving hpx::threads::run_as_xxx to namespace hpx

• PR #63481135 - Adding –exclusive to launching tests on rostam

• PR #63461136 - changed chat link to discord

• PR #63441137 - uninitialized_relocate w/ type_support primitive

• PR #63431138 - Bump actions/checkout from 3 to 4

• PR #63421139 - Fix HPX-APEX cmake integration

• PR #63411140 - Fix shared_future_continuation_order regression test

• PR #63401141 - Log alive hpx threads on exit

• PR #63391142 - Add coverage testing on Jenkins

• PR #63381143 - Fixing HPX_CURRENT_SOURCE_LOCATION when std::source_location exists

• PR #63371144 - Remove aurianer, biddisco, and msimberg from codeowners

• PR #63361145 - More cleaning up for module levels 19-20

• PR #63351146 - Finalize the MPI docs of the Migration Guide

• PR #63321147 - More fixes for CMake V3.27

• PR #63301148 - Adding basic logging to collective operations

• PR #63281149 - Cleanup previous patch adapting to CMake V3.27

• PR #63271150 - Modernize modules in level 17 and 18

• PR #63241151 - P1144 Relocation primitives

• PR #63211152 - Ensure hpx_main is a proper thread_function

• PR #63201153 - Fixing cyclic dependencies in naming and agas modules

• PR #63191154 - Generate git tag if needed but it is not available

• PR #63171155 - Fixing linker problem on FreeBSD
1133 https://github.com/STEllAR-GROUP/hpx/pull/6350
1134 https://github.com/STEllAR-GROUP/hpx/pull/6349
1135 https://github.com/STEllAR-GROUP/hpx/pull/6348
1136 https://github.com/STEllAR-GROUP/hpx/pull/6346
1137 https://github.com/STEllAR-GROUP/hpx/pull/6344
1138 https://github.com/STEllAR-GROUP/hpx/pull/6343
1139 https://github.com/STEllAR-GROUP/hpx/pull/6342
1140 https://github.com/STEllAR-GROUP/hpx/pull/6341
1141 https://github.com/STEllAR-GROUP/hpx/pull/6340
1142 https://github.com/STEllAR-GROUP/hpx/pull/6339
1143 https://github.com/STEllAR-GROUP/hpx/pull/6338
1144 https://github.com/STEllAR-GROUP/hpx/pull/6337
1145 https://github.com/STEllAR-GROUP/hpx/pull/6336
1146 https://github.com/STEllAR-GROUP/hpx/pull/6335
1147 https://github.com/STEllAR-GROUP/hpx/pull/6332
1148 https://github.com/STEllAR-GROUP/hpx/pull/6330
1149 https://github.com/STEllAR-GROUP/hpx/pull/6328
1150 https://github.com/STEllAR-GROUP/hpx/pull/6327
1151 https://github.com/STEllAR-GROUP/hpx/pull/6324
1152 https://github.com/STEllAR-GROUP/hpx/pull/6321
1153 https://github.com/STEllAR-GROUP/hpx/pull/6320
1154 https://github.com/STEllAR-GROUP/hpx/pull/6319
1155 https://github.com/STEllAR-GROUP/hpx/pull/6317

2.10. Releases 1567

https://github.com/STEllAR-GROUP/hpx/pull/6350
https://github.com/STEllAR-GROUP/hpx/pull/6349
https://github.com/STEllAR-GROUP/hpx/pull/6348
https://github.com/STEllAR-GROUP/hpx/pull/6346
https://github.com/STEllAR-GROUP/hpx/pull/6344
https://github.com/STEllAR-GROUP/hpx/pull/6343
https://github.com/STEllAR-GROUP/hpx/pull/6342
https://github.com/STEllAR-GROUP/hpx/pull/6341
https://github.com/STEllAR-GROUP/hpx/pull/6340
https://github.com/STEllAR-GROUP/hpx/pull/6339
https://github.com/STEllAR-GROUP/hpx/pull/6338
https://github.com/STEllAR-GROUP/hpx/pull/6337
https://github.com/STEllAR-GROUP/hpx/pull/6336
https://github.com/STEllAR-GROUP/hpx/pull/6335
https://github.com/STEllAR-GROUP/hpx/pull/6332
https://github.com/STEllAR-GROUP/hpx/pull/6330
https://github.com/STEllAR-GROUP/hpx/pull/6328
https://github.com/STEllAR-GROUP/hpx/pull/6327
https://github.com/STEllAR-GROUP/hpx/pull/6324
https://github.com/STEllAR-GROUP/hpx/pull/6321
https://github.com/STEllAR-GROUP/hpx/pull/6320
https://github.com/STEllAR-GROUP/hpx/pull/6319
https://github.com/STEllAR-GROUP/hpx/pull/6317

HPX Documentation, master

• PR #63151156 - acknowledge triv-rel and nothrow-rel types

• PR #63141157 - Relocation algorithms Clean

• PR #63131158 - Trivial relocation of c-v-ref-array types

• PR #63121159 - Fixing warning/error

• PR #63111160 - Adding executor parallel invoke CPOs

• PR #63101161 - Define HPX_COMPUTE_CODE in builds with SYCL

• PR #63091162 - Making sure changed number of cores is propagated to executor

• PR #63081163 - openshmem-parcelport initial import

• PR #63061164 - The hpxcxx script was broken such that it could only compile for _release

• PR #63051165 - Adapting build system for CMake V3.27

• PR #63041166 - Fixing an integral type mismatch warning

• PR #63031167 - omp for default vectorization

• PR #63011168 - Add MPI migration guide

• PR #62941169 - Add internal reference counting to semaphores

• PR #62861170 - Simd helpers

• PR #62801171 - Add TBB to HPX documentation in Migration Guide

• PR #62761172 - Add dependabot.yml

• PR #62751173 - Revert “Move dependabot.yml into correct directory”

• PR #62721174 - set thread name for linux

• PR #62711175 - Uninitialised algorithms, move using std::memcpy

• PR #62701176 - Bump jwlawson/actions-setup-cmake from 1.9 to 1.14

• PR #62691177 - Bump actions/checkout from 2 to 3

• PR #62681178 - Move dependabot.yml into correct directory
1156 https://github.com/STEllAR-GROUP/hpx/pull/6315
1157 https://github.com/STEllAR-GROUP/hpx/pull/6314
1158 https://github.com/STEllAR-GROUP/hpx/pull/6313
1159 https://github.com/STEllAR-GROUP/hpx/pull/6312
1160 https://github.com/STEllAR-GROUP/hpx/pull/6311
1161 https://github.com/STEllAR-GROUP/hpx/pull/6310
1162 https://github.com/STEllAR-GROUP/hpx/pull/6309
1163 https://github.com/STEllAR-GROUP/hpx/pull/6308
1164 https://github.com/STEllAR-GROUP/hpx/pull/6306
1165 https://github.com/STEllAR-GROUP/hpx/pull/6305
1166 https://github.com/STEllAR-GROUP/hpx/pull/6304
1167 https://github.com/STEllAR-GROUP/hpx/pull/6303
1168 https://github.com/STEllAR-GROUP/hpx/pull/6301
1169 https://github.com/STEllAR-GROUP/hpx/pull/6294
1170 https://github.com/STEllAR-GROUP/hpx/pull/6286
1171 https://github.com/STEllAR-GROUP/hpx/pull/6280
1172 https://github.com/STEllAR-GROUP/hpx/pull/6276
1173 https://github.com/STEllAR-GROUP/hpx/pull/6275
1174 https://github.com/STEllAR-GROUP/hpx/pull/6272
1175 https://github.com/STEllAR-GROUP/hpx/pull/6271
1176 https://github.com/STEllAR-GROUP/hpx/pull/6270
1177 https://github.com/STEllAR-GROUP/hpx/pull/6269
1178 https://github.com/STEllAR-GROUP/hpx/pull/6268

1568 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6315
https://github.com/STEllAR-GROUP/hpx/pull/6314
https://github.com/STEllAR-GROUP/hpx/pull/6313
https://github.com/STEllAR-GROUP/hpx/pull/6312
https://github.com/STEllAR-GROUP/hpx/pull/6311
https://github.com/STEllAR-GROUP/hpx/pull/6310
https://github.com/STEllAR-GROUP/hpx/pull/6309
https://github.com/STEllAR-GROUP/hpx/pull/6308
https://github.com/STEllAR-GROUP/hpx/pull/6306
https://github.com/STEllAR-GROUP/hpx/pull/6305
https://github.com/STEllAR-GROUP/hpx/pull/6304
https://github.com/STEllAR-GROUP/hpx/pull/6303
https://github.com/STEllAR-GROUP/hpx/pull/6301
https://github.com/STEllAR-GROUP/hpx/pull/6294
https://github.com/STEllAR-GROUP/hpx/pull/6286
https://github.com/STEllAR-GROUP/hpx/pull/6280
https://github.com/STEllAR-GROUP/hpx/pull/6276
https://github.com/STEllAR-GROUP/hpx/pull/6275
https://github.com/STEllAR-GROUP/hpx/pull/6272
https://github.com/STEllAR-GROUP/hpx/pull/6271
https://github.com/STEllAR-GROUP/hpx/pull/6270
https://github.com/STEllAR-GROUP/hpx/pull/6269
https://github.com/STEllAR-GROUP/hpx/pull/6268

HPX Documentation, master

• PR #62651179 - Create dependabot.yml

• PR #62641180 - hpx::is_trivially_relocatable trait implementation

• PR #62631181 - Adding support for reading json configuration files for command line options

• PR #62491182 - Implement the send immediate optimization for the MPI parcelport.

• PR #62371183 - Improve compilation performance

• PR #62341184 - Adding release notes page for next release

• PR #62331185 - Moving is_relocatable to namespace hpx

• PR #62301186 - gasnet based parcelport

• PR #62261187 - Re-enable dependency on segmented algorithms on CircleCI

• PR #62201188 - Add execution on

• PR #62121189 - Initial trait definition for relocatable

• PR #61991190 - added support for unseq, par_unseq for hpx::make_heap algorithm

• PR #61731191 - C++ modules

• PR #61221192 - Add Module support

• PR #60991193 - Futures attempt to execute threads directly if those have not started executing

• PR #60501194 - Investigating partitioned_vector problems

• PR #59881195 - Adding CI configuration for DGX-A100 at LSU

• PR #59101196 - Improve MPI initialization

• PR #58451197 - Adding local work requesting scheduler that is based on message passing internally
1179 https://github.com/STEllAR-GROUP/hpx/pull/6265
1180 https://github.com/STEllAR-GROUP/hpx/pull/6264
1181 https://github.com/STEllAR-GROUP/hpx/pull/6263
1182 https://github.com/STEllAR-GROUP/hpx/pull/6249
1183 https://github.com/STEllAR-GROUP/hpx/pull/6237
1184 https://github.com/STEllAR-GROUP/hpx/pull/6234
1185 https://github.com/STEllAR-GROUP/hpx/pull/6233
1186 https://github.com/STEllAR-GROUP/hpx/pull/6230
1187 https://github.com/STEllAR-GROUP/hpx/pull/6226
1188 https://github.com/STEllAR-GROUP/hpx/pull/6220
1189 https://github.com/STEllAR-GROUP/hpx/pull/6212
1190 https://github.com/STEllAR-GROUP/hpx/pull/6199
1191 https://github.com/STEllAR-GROUP/hpx/pull/6173
1192 https://github.com/STEllAR-GROUP/hpx/pull/6122
1193 https://github.com/STEllAR-GROUP/hpx/pull/6099
1194 https://github.com/STEllAR-GROUP/hpx/pull/6050
1195 https://github.com/STEllAR-GROUP/hpx/pull/5988
1196 https://github.com/STEllAR-GROUP/hpx/pull/5910
1197 https://github.com/STEllAR-GROUP/hpx/pull/5845

2.10. Releases 1569

https://github.com/STEllAR-GROUP/hpx/pull/6265
https://github.com/STEllAR-GROUP/hpx/pull/6264
https://github.com/STEllAR-GROUP/hpx/pull/6263
https://github.com/STEllAR-GROUP/hpx/pull/6249
https://github.com/STEllAR-GROUP/hpx/pull/6237
https://github.com/STEllAR-GROUP/hpx/pull/6234
https://github.com/STEllAR-GROUP/hpx/pull/6233
https://github.com/STEllAR-GROUP/hpx/pull/6230
https://github.com/STEllAR-GROUP/hpx/pull/6226
https://github.com/STEllAR-GROUP/hpx/pull/6220
https://github.com/STEllAR-GROUP/hpx/pull/6212
https://github.com/STEllAR-GROUP/hpx/pull/6199
https://github.com/STEllAR-GROUP/hpx/pull/6173
https://github.com/STEllAR-GROUP/hpx/pull/6122
https://github.com/STEllAR-GROUP/hpx/pull/6099
https://github.com/STEllAR-GROUP/hpx/pull/6050
https://github.com/STEllAR-GROUP/hpx/pull/5988
https://github.com/STEllAR-GROUP/hpx/pull/5910
https://github.com/STEllAR-GROUP/hpx/pull/5845

HPX Documentation, master

HPX V1.9.1 (August 4, 2023)

General changes

This point release fixes a couple of problems reported for the V1.9.0 release. Most importantly, we fixed various occa-
sional hanging during startup and shutdown in distributed scenarios. We also added support for zero-copy serialization
on the receiving side to the TCP, MPI, and LCI parcelports. Last but not least, we have added support for Visual Studio
2019 and gcc using MINGW on Windows, and also support for gcc V13 and clang V15.

HPX headers are now made consistently named the same as their standard library counterparts, e.g. #include <thread>
now corresponds to #include <hpx/thread.hpp>. This significantly simplifies porting existing standards conforming
codes to HPX.

A lot of work has been done to improve and optimize our network communication layers. Primary focus of this work
was on the LCI parcelport, but we have also cleaned up and improved the MPI parcelport.

Additionally, we have continued working on our documentation. The main focus here was on completing the API
documentation of the most important API functions. We have started adding migration guides for people interested in
moving their codes away from other, commonplace parallelization frameworks like OpenMP.

Breaking changes

None

Closed issues

• Issue #61551198 - hpxcxx and hpxrun.py do not work if HPX_WITH_TESTS=OFF

• Issue #61641199 - HPX_WITH_DATAPAR_BACKEND=EVE causes compile errors with C++17

• Issue #61751200 - Make sure all our parallel algorithms accept the predicates by value

• Issue #61941201 - tests.regressions.threads.threads_all_1422 failed at Perlmutter

• Issue #61981202 - set_intersection/set_difference fails when run with execution::par

• Issue #62141203 - Broken Links to the Documentation page in readme.rst

• Issue #62171204 - hpx::make_heap does not terminate when exPolicy is par (or par_unseq) and size of vector is 4

• Issue #62461205 - HPX fails to compile under cxx 20 (fresh system)

• Issue #62471206 - HPX 1.9.0 does not compile with GCC on Windows

• Issue #62821207 - The “attach-debugger” option is broken on the current master branch.
1198 https://github.com/STEllAR-GROUP/hpx/issues/6155
1199 https://github.com/STEllAR-GROUP/hpx/issues/6164
1200 https://github.com/STEllAR-GROUP/hpx/issues/6175
1201 https://github.com/STEllAR-GROUP/hpx/issues/6194
1202 https://github.com/STEllAR-GROUP/hpx/issues/6198
1203 https://github.com/STEllAR-GROUP/hpx/issues/6214
1204 https://github.com/STEllAR-GROUP/hpx/issues/6217
1205 https://github.com/STEllAR-GROUP/hpx/issues/6246
1206 https://github.com/STEllAR-GROUP/hpx/issues/6247
1207 https://github.com/STEllAR-GROUP/hpx/issues/6282

1570 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/6155
https://github.com/STEllAR-GROUP/hpx/issues/6164
https://github.com/STEllAR-GROUP/hpx/issues/6175
https://github.com/STEllAR-GROUP/hpx/issues/6194
https://github.com/STEllAR-GROUP/hpx/issues/6198
https://github.com/STEllAR-GROUP/hpx/issues/6214
https://github.com/STEllAR-GROUP/hpx/issues/6217
https://github.com/STEllAR-GROUP/hpx/issues/6246
https://github.com/STEllAR-GROUP/hpx/issues/6247
https://github.com/STEllAR-GROUP/hpx/issues/6282

HPX Documentation, master

Closed pull requests

• PR #62191208 - Cleaning up #includes in hpx/ folder

• PR #62231209 - Move documentation from README.rst to index.rst files under libs directory

• PR #62291210 - Adding zero-copy support on the receiving end of the TCP and MPI parcel ports

• PR #62311211 - Remove deprecated email from release procedure

• PR #62351212 - Modernize more modules (levels 12-16)

• PR #62361213 - Attempt to resolve occasional shutdown hangs in distributed operation

• PR #62391214 - Fix Optimizing HPX applications page of Manual

• PR #62411215 - LCI parcelport: Refactor, add more variants, zero copy receives.

• PR #62421216 - updated deprecated headers

• PR #62431217 - Adding github action builders using VS2019

• PR #62481218 - Fix CUDA/HIP Jenkins pipelines

• PR #62501219 - Resolve gcc problems on Windows

• PR #62511220 - Attempting to fix problems in barrier causing hangs

• PR #62531221 - Modernize set_thread_name on Windows

• PR #62561222 - Fix nvcc/gcc-10 (Octo-Tiger) compilation issue

• PR #62571223 - Cmake Tests: Delete operator check for size_t arg

• PR #62581224 - Rewriting wait_some to circumvent data races causing hangs

• PR #62601225 - Add migration guide to manual

• PR #62621226 - Fixing wrong command line options in local command line handling

• PR #62661227 - Attempt to resolve occasional hang in run_loop

• PR #62671228 - Attempting to fix migration tests

• PR #62781229 - Making sure the future’s shared state doesn’t go out of scope prematurely
1208 https://github.com/STEllAR-GROUP/hpx/pull/6219
1209 https://github.com/STEllAR-GROUP/hpx/pull/6223
1210 https://github.com/STEllAR-GROUP/hpx/pull/6229
1211 https://github.com/STEllAR-GROUP/hpx/pull/6231
1212 https://github.com/STEllAR-GROUP/hpx/pull/6235
1213 https://github.com/STEllAR-GROUP/hpx/pull/6236
1214 https://github.com/STEllAR-GROUP/hpx/pull/6239
1215 https://github.com/STEllAR-GROUP/hpx/pull/6241
1216 https://github.com/STEllAR-GROUP/hpx/pull/6242
1217 https://github.com/STEllAR-GROUP/hpx/pull/6243
1218 https://github.com/STEllAR-GROUP/hpx/pull/6248
1219 https://github.com/STEllAR-GROUP/hpx/pull/6250
1220 https://github.com/STEllAR-GROUP/hpx/pull/6251
1221 https://github.com/STEllAR-GROUP/hpx/pull/6253
1222 https://github.com/STEllAR-GROUP/hpx/pull/6256
1223 https://github.com/STEllAR-GROUP/hpx/pull/6257
1224 https://github.com/STEllAR-GROUP/hpx/pull/6258
1225 https://github.com/STEllAR-GROUP/hpx/pull/6260
1226 https://github.com/STEllAR-GROUP/hpx/pull/6262
1227 https://github.com/STEllAR-GROUP/hpx/pull/6266
1228 https://github.com/STEllAR-GROUP/hpx/pull/6267
1229 https://github.com/STEllAR-GROUP/hpx/pull/6278

2.10. Releases 1571

https://github.com/STEllAR-GROUP/hpx/pull/6219
https://github.com/STEllAR-GROUP/hpx/pull/6223
https://github.com/STEllAR-GROUP/hpx/pull/6229
https://github.com/STEllAR-GROUP/hpx/pull/6231
https://github.com/STEllAR-GROUP/hpx/pull/6235
https://github.com/STEllAR-GROUP/hpx/pull/6236
https://github.com/STEllAR-GROUP/hpx/pull/6239
https://github.com/STEllAR-GROUP/hpx/pull/6241
https://github.com/STEllAR-GROUP/hpx/pull/6242
https://github.com/STEllAR-GROUP/hpx/pull/6243
https://github.com/STEllAR-GROUP/hpx/pull/6248
https://github.com/STEllAR-GROUP/hpx/pull/6250
https://github.com/STEllAR-GROUP/hpx/pull/6251
https://github.com/STEllAR-GROUP/hpx/pull/6253
https://github.com/STEllAR-GROUP/hpx/pull/6256
https://github.com/STEllAR-GROUP/hpx/pull/6257
https://github.com/STEllAR-GROUP/hpx/pull/6258
https://github.com/STEllAR-GROUP/hpx/pull/6260
https://github.com/STEllAR-GROUP/hpx/pull/6262
https://github.com/STEllAR-GROUP/hpx/pull/6266
https://github.com/STEllAR-GROUP/hpx/pull/6267
https://github.com/STEllAR-GROUP/hpx/pull/6278

HPX Documentation, master

• PR #62791230 - Re-expose error names

• PR #62811231 - Creating directory for file copy

• PR #62831232 - Consistently #include unistd.h for _POSIX_VERSION

HPX V1.9.0 (May 2, 2023)

General changes

• Added RISC-V 64bit support. HPX is now compatible with RISC-V architectures which have revolutionized the
HPC world.

• LCI parcelport has been optimized to transfer parcels with fewer messages and use the HPX resource partitioner
for its progress thread allocation. It should generally provide better performance than before. It also removes its
dependency on the MPI library.

• HPX dependency on Boost was further relaxed by replacing headers from Boost.Range, Boost.Tokenizer and
Boost.Lockfree.

• Improvements took place on our parallel algorithms implementation.

• Our Senders/Receivers (P2300) integration was extended:

– Coroutines were integrated with senders/receivers.

get_completion_signatures now works with awaitable senders. - with_awaitable_senders allows
the passed senders to retrieve the value i.e. senders are transparently awaitable from within a coroutine. -
when_all_vector was added.

• sync_wait and sync_wait_with_variant sender consumers were added. The user can now initiate the exe-
cution of their asynchronous pipeline by blocking the current thread that executes the main() function until the
result is retrieved.

• The combinators for futures (a.k.a. async_combinators) when_*, wait_*, wait_*_nothrow were turned
into CPOs allowing for end-user customization. For more information on the async_combinators refer
to the documentation, https://hpx-docs.stellar-group.org/latest/html/libs/core/async_combinators/docs/index.
html?highlight=combinators.

• The new datapar backend SVE allows simd and par_simd execution policies to exploit dataparalleism in the
processors that have SVE vector registers like A64FX and Neoverse V1.

• The documentation for parallel algorithms, container algorithms was further improved. The Public API page
was vastly enriched.

• Copy button shortkey was added at the top-right of code-blocks.

• Pragma directive that reports warnings as errors on MSVC was fixed.

• Command line argument --hpx:loopback_network was added to facilitate debugging with networks.

• We added an HPX-SYCL integration, allowing users to obtain HPX futures for SYCL events. This effectively
enables the integration of arbitrary asynchronous SYCL operations into the HPX task graph. Bolted on top of
this integration, we further added an HPX-SYCL executor for ease of use.

1230 https://github.com/STEllAR-GROUP/hpx/pull/6279
1231 https://github.com/STEllAR-GROUP/hpx/pull/6281
1232 https://github.com/STEllAR-GROUP/hpx/pull/6283

1572 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6279
https://github.com/STEllAR-GROUP/hpx/pull/6281
https://github.com/STEllAR-GROUP/hpx/pull/6283
https://hpx-docs.stellar-group.org/latest/html/libs/core/async_combinators/docs/index.html?highlight=combinators
https://hpx-docs.stellar-group.org/latest/html/libs/core/async_combinators/docs/index.html?highlight=combinators

HPX Documentation, master

Breaking changes

• Stopped supporting Clang V8, the minimal version supported is now Clang V10.

• Stopped supporting gcc V8, the minimal version supported is now gcc V9.

• Stopped supporting Visual Studio 2015, the minimal version supported is now Visual Studio 2019.

• tag_policy_tag et.al. were re-added after HPX V1.8.1 depracation.

• get_chunk_size and processing_units_count API is now expecting the time for one iteration as an argu-
ment.

• The list of all the namespace changes can be found here: HPX V1.9.0 Namespace changes.

Closed issues

• Issue #62031233 - Compilation error with -mcpu=a64fx on Ookami

• Issue #61961234 - Incorrect log destination

• Issue #61911235 - installing HPX

• Issue #61841236 - Wrong processing_units_count of restricted_thread_pool_executor

• Issue #61711237 - Release Tag Name Request

• Issue #61621238 - Current master does not compile on ROSTAM

• Issue #61561239 - hpxcxx does not work if HPX_WITH_PKGCONFIG=OFF

• Issue #61081240 - cxx17_aligned_new.cpp on msvc fails due to wrong pragma directive

• Issue #60451241 - Can’t call nullary callables wrapped with hpx::unwrapping

• Issue #60131242 - Unable to build subprojects hpx_collectives/hpx_compute with MSVC

• Issue #60081243 - Missing constexpr default constructor for hpx::mutex

• Issue #59991244 - Add HPX Conda package to conda-forge

• Issue #59981245 - Serializing multiple arguments when applying distributed action results in segfault

• Issue #59581246 - HPX 1.8.0 and Blaze issues

• Issue #59081247 - Windows: duplicated symbols in static builds

• Issue #58021248 - Lost status is_ready from future
1233 https://github.com/STEllAR-GROUP/hpx/issues/6203
1234 https://github.com/STEllAR-GROUP/hpx/issues/6196
1235 https://github.com/STEllAR-GROUP/hpx/issues/6191
1236 https://github.com/STEllAR-GROUP/hpx/issues/6184
1237 https://github.com/STEllAR-GROUP/hpx/issues/6171
1238 https://github.com/STEllAR-GROUP/hpx/issues/6162
1239 https://github.com/STEllAR-GROUP/hpx/issues/6156
1240 https://github.com/STEllAR-GROUP/hpx/issues/6108
1241 https://github.com/STEllAR-GROUP/hpx/issues/6045
1242 https://github.com/STEllAR-GROUP/hpx/issues/6013
1243 https://github.com/STEllAR-GROUP/hpx/issues/6008
1244 https://github.com/STEllAR-GROUP/hpx/issues/5999
1245 https://github.com/STEllAR-GROUP/hpx/issues/5998
1246 https://github.com/STEllAR-GROUP/hpx/issues/5958
1247 https://github.com/STEllAR-GROUP/hpx/issues/5908
1248 https://github.com/STEllAR-GROUP/hpx/issues/5802

2.10. Releases 1573

https://github.com/STEllAR-GROUP/hpx/issues/6203
https://github.com/STEllAR-GROUP/hpx/issues/6196
https://github.com/STEllAR-GROUP/hpx/issues/6191
https://github.com/STEllAR-GROUP/hpx/issues/6184
https://github.com/STEllAR-GROUP/hpx/issues/6171
https://github.com/STEllAR-GROUP/hpx/issues/6162
https://github.com/STEllAR-GROUP/hpx/issues/6156
https://github.com/STEllAR-GROUP/hpx/issues/6108
https://github.com/STEllAR-GROUP/hpx/issues/6045
https://github.com/STEllAR-GROUP/hpx/issues/6013
https://github.com/STEllAR-GROUP/hpx/issues/6008
https://github.com/STEllAR-GROUP/hpx/issues/5999
https://github.com/STEllAR-GROUP/hpx/issues/5998
https://github.com/STEllAR-GROUP/hpx/issues/5958
https://github.com/STEllAR-GROUP/hpx/issues/5908
https://github.com/STEllAR-GROUP/hpx/issues/5802

HPX Documentation, master

• Issue #57671249 - Performance drop on Piz Daint

• Issue #57521250 - Implement stride_view from P1899 (experimental)

• Issue #57441251 - HPX_WITH_FETCH_ASIO not working on Ookami

• Issue #55611252 - Possible race condition in helper thread / hpx::cout

Closed pull requests

• PR #62281253 - Fixing algorithms for zero length sequences when run with s/r scheduler

• PR #62271254 - Reliably disable background work when no networking is enabled

• PR #62251255 - Make heap fails in par for small sized heaps #6217

• PR #62221256 - Add documentation for hpx::post

• PR #62211257 - Fix segmented algorithms tests

• PR #62181258 - Creating INSTALL component ‘runtime’ to enable installing binaries only

• PR #62161259 - added tests for set_difference, updated set_operation.hpp to fix #6198

• PR #62131260 - Modernize and streamline MPI parcelport

• PR #62111261 - Modernize modules of level 11, 12, and 13

• PR #62101262 - Fixing MPI parcelport initialization if MPI is initialized outside of HPX

• PR #62091263 - Prevent thread stealing during scheduler shutdown

• PR #62081264 - Fix the compilation warning in the MPI parcelport with gcc 11.2

• PR #62071265 - Automatically enable Boost.Context when compiling for arm64.

• PR #62061266 - Update CMakeLists.txt

• PR #62051267 - Do not generate hpxcxx if support for pkgconfig was disabled

• PR #62041268 - Use LRT_ instead of LAPP_ logging in barrier implementation

• PR #62021269 - Fixing Fedora build errors on Power systems

• PR #62011270 - Update the LCI parcelport documents
1249 https://github.com/STEllAR-GROUP/hpx/issues/5767
1250 https://github.com/STEllAR-GROUP/hpx/issues/5752
1251 https://github.com/STEllAR-GROUP/hpx/issues/5744
1252 https://github.com/STEllAR-GROUP/hpx/issues/5561
1253 https://github.com/STEllAR-GROUP/hpx/pull/6228
1254 https://github.com/STEllAR-GROUP/hpx/pull/6227
1255 https://github.com/STEllAR-GROUP/hpx/pull/6225
1256 https://github.com/STEllAR-GROUP/hpx/pull/6222
1257 https://github.com/STEllAR-GROUP/hpx/pull/6221
1258 https://github.com/STEllAR-GROUP/hpx/pull/6218
1259 https://github.com/STEllAR-GROUP/hpx/pull/6216
1260 https://github.com/STEllAR-GROUP/hpx/pull/6213
1261 https://github.com/STEllAR-GROUP/hpx/pull/6211
1262 https://github.com/STEllAR-GROUP/hpx/pull/6210
1263 https://github.com/STEllAR-GROUP/hpx/pull/6209
1264 https://github.com/STEllAR-GROUP/hpx/pull/6208
1265 https://github.com/STEllAR-GROUP/hpx/pull/6207
1266 https://github.com/STEllAR-GROUP/hpx/pull/6206
1267 https://github.com/STEllAR-GROUP/hpx/pull/6205
1268 https://github.com/STEllAR-GROUP/hpx/pull/6204
1269 https://github.com/STEllAR-GROUP/hpx/pull/6202
1270 https://github.com/STEllAR-GROUP/hpx/pull/6201

1574 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/5767
https://github.com/STEllAR-GROUP/hpx/issues/5752
https://github.com/STEllAR-GROUP/hpx/issues/5744
https://github.com/STEllAR-GROUP/hpx/issues/5561
https://github.com/STEllAR-GROUP/hpx/pull/6228
https://github.com/STEllAR-GROUP/hpx/pull/6227
https://github.com/STEllAR-GROUP/hpx/pull/6225
https://github.com/STEllAR-GROUP/hpx/pull/6222
https://github.com/STEllAR-GROUP/hpx/pull/6221
https://github.com/STEllAR-GROUP/hpx/pull/6218
https://github.com/STEllAR-GROUP/hpx/pull/6216
https://github.com/STEllAR-GROUP/hpx/pull/6213
https://github.com/STEllAR-GROUP/hpx/pull/6211
https://github.com/STEllAR-GROUP/hpx/pull/6210
https://github.com/STEllAR-GROUP/hpx/pull/6209
https://github.com/STEllAR-GROUP/hpx/pull/6208
https://github.com/STEllAR-GROUP/hpx/pull/6207
https://github.com/STEllAR-GROUP/hpx/pull/6206
https://github.com/STEllAR-GROUP/hpx/pull/6205
https://github.com/STEllAR-GROUP/hpx/pull/6204
https://github.com/STEllAR-GROUP/hpx/pull/6202
https://github.com/STEllAR-GROUP/hpx/pull/6201

HPX Documentation, master

• PR #62001271 - Par link jobs

• PR #61971272 - LCI parcelport: add doc, upgrade to v1.7.4, refactor cmake autofetch.

• PR #61951273 - Change the default tag of autofetch LCI to v1.7.3.

• PR #61921274 - Fix page Writing single-node applications

• PR #61891275 - Making sure restricted_thread_pool_executor properly reports used number of cores

• PR #61871276 - Enable using for_loop with range generators

• PR #61861277 - thread_support/CMakeLists: Fix build issue

• PR #61851278 - Fix EVE datapar with cxx_standard less than 20

• PR #61831279 - Update CI integration for EVE

• PR #61821280 - Fixing performance regressions

• PR #61811281 - LCI parcelport: backlog queue, aggregation, separate devices, and more

• PR #61801282 - Fixing use of for_loop with rebound execution policy (using .with())

• PR #61791283 - Taking predicates for algorithms by value

• PR #61781284 - Changes needed to make chapel_hpx examples work

• PR #61761285 - Fixing warnings that were generated by PVS Studio

• PR #61741286 - Replace boost::integer::gcd with std::gcd

• PR #61721287 - [Docs] Fix example of how to run single/specific test(s)

• PR #61701288 - Adding missing fallback for processing_units_count customization point

• PR #61691289 - LCI parcelport: bypass the parcel queue and connection cache.

• PR #61671290 - Add create_local_communicator API function

• PR #61661291 - Add missing header for std::intmax_t

• PR #61651292 - Attempt to work around MSVC problem

• PR #61611293 - Update EVE integration
1271 https://github.com/STEllAR-GROUP/hpx/pull/6200
1272 https://github.com/STEllAR-GROUP/hpx/pull/6197
1273 https://github.com/STEllAR-GROUP/hpx/pull/6195
1274 https://github.com/STEllAR-GROUP/hpx/pull/6192
1275 https://github.com/STEllAR-GROUP/hpx/pull/6189
1276 https://github.com/STEllAR-GROUP/hpx/pull/6187
1277 https://github.com/STEllAR-GROUP/hpx/pull/6186
1278 https://github.com/STEllAR-GROUP/hpx/pull/6185
1279 https://github.com/STEllAR-GROUP/hpx/pull/6183
1280 https://github.com/STEllAR-GROUP/hpx/pull/6182
1281 https://github.com/STEllAR-GROUP/hpx/pull/6181
1282 https://github.com/STEllAR-GROUP/hpx/pull/6180
1283 https://github.com/STEllAR-GROUP/hpx/pull/6179
1284 https://github.com/STEllAR-GROUP/hpx/pull/6178
1285 https://github.com/STEllAR-GROUP/hpx/pull/6176
1286 https://github.com/STEllAR-GROUP/hpx/pull/6174
1287 https://github.com/STEllAR-GROUP/hpx/pull/6172
1288 https://github.com/STEllAR-GROUP/hpx/pull/6170
1289 https://github.com/STEllAR-GROUP/hpx/pull/6169
1290 https://github.com/STEllAR-GROUP/hpx/pull/6167
1291 https://github.com/STEllAR-GROUP/hpx/pull/6166
1292 https://github.com/STEllAR-GROUP/hpx/pull/6165
1293 https://github.com/STEllAR-GROUP/hpx/pull/6161

2.10. Releases 1575

https://github.com/STEllAR-GROUP/hpx/pull/6200
https://github.com/STEllAR-GROUP/hpx/pull/6197
https://github.com/STEllAR-GROUP/hpx/pull/6195
https://github.com/STEllAR-GROUP/hpx/pull/6192
https://github.com/STEllAR-GROUP/hpx/pull/6189
https://github.com/STEllAR-GROUP/hpx/pull/6187
https://github.com/STEllAR-GROUP/hpx/pull/6186
https://github.com/STEllAR-GROUP/hpx/pull/6185
https://github.com/STEllAR-GROUP/hpx/pull/6183
https://github.com/STEllAR-GROUP/hpx/pull/6182
https://github.com/STEllAR-GROUP/hpx/pull/6181
https://github.com/STEllAR-GROUP/hpx/pull/6180
https://github.com/STEllAR-GROUP/hpx/pull/6179
https://github.com/STEllAR-GROUP/hpx/pull/6178
https://github.com/STEllAR-GROUP/hpx/pull/6176
https://github.com/STEllAR-GROUP/hpx/pull/6174
https://github.com/STEllAR-GROUP/hpx/pull/6172
https://github.com/STEllAR-GROUP/hpx/pull/6170
https://github.com/STEllAR-GROUP/hpx/pull/6169
https://github.com/STEllAR-GROUP/hpx/pull/6167
https://github.com/STEllAR-GROUP/hpx/pull/6166
https://github.com/STEllAR-GROUP/hpx/pull/6165
https://github.com/STEllAR-GROUP/hpx/pull/6161

HPX Documentation, master

• PR #61601294 - More cleanup for module levels 0 to 10

• PR #61591295 - Fix minor spelling mistake in generate_issue_pr_list.sh

• PR #61581296 - Update documentation in writing single-node applications page

• PR #61571297 - Improve index_queue_spawning

• PR #61541298 - Avoid performing late command line handling twice in distributed runtime

• PR #61521299 - The -rd and -mr options didn’t work, and they should have been –rd and –mr

• PR #61511300 - Refactoring the Manual page in documentation

• PR #61481301 - Investigate the failure of the LCI parcelport.

• PR #61471302 - Make posix co-routine stacks non-executable

• PR #61461303 - Avoid ambiguities wrt tag_invoke

• PR #61441304 - General improvements to scheduling and related fixes

• PR #61431305 - Add list of new namespaces for new release

• PR #61401306 - Fixing background scheduler to properly exit in the end

• PR #61391307 - [P2300] execution: Cleanup coroutines integration and improve ADL isolation

• PR #61371308 - Adding example of a simple master/slave distributed application

• PR #61361309 - Deprecate execution::experimental::task_group in favor of experimental::task_group

• PR #61351310 - Fixing warnings reported by MSVC analysis

• PR #61341311 - Adding notification function for parcelports to be called after early parcel handling

• PR #61321312 - Fixing to_non_par() for parallel simd policies

• PR #61311313 - modernize modules from level 25

• PR #61301314 - Remove the mutex lock in the critical path of get_partitioner.

• PR #61291315 - Modernize module from levels 22, 23

• PR #61271316 - Working around gccV9 problem that prevent us from storing enum classes in bit fields
1294 https://github.com/STEllAR-GROUP/hpx/pull/6160
1295 https://github.com/STEllAR-GROUP/hpx/pull/6159
1296 https://github.com/STEllAR-GROUP/hpx/pull/6158
1297 https://github.com/STEllAR-GROUP/hpx/pull/6157
1298 https://github.com/STEllAR-GROUP/hpx/pull/6154
1299 https://github.com/STEllAR-GROUP/hpx/pull/6152
1300 https://github.com/STEllAR-GROUP/hpx/pull/6151
1301 https://github.com/STEllAR-GROUP/hpx/pull/6148
1302 https://github.com/STEllAR-GROUP/hpx/pull/6147
1303 https://github.com/STEllAR-GROUP/hpx/pull/6146
1304 https://github.com/STEllAR-GROUP/hpx/pull/6144
1305 https://github.com/STEllAR-GROUP/hpx/pull/6143
1306 https://github.com/STEllAR-GROUP/hpx/pull/6140
1307 https://github.com/STEllAR-GROUP/hpx/pull/6139
1308 https://github.com/STEllAR-GROUP/hpx/pull/6137
1309 https://github.com/STEllAR-GROUP/hpx/pull/6136
1310 https://github.com/STEllAR-GROUP/hpx/pull/6135
1311 https://github.com/STEllAR-GROUP/hpx/pull/6134
1312 https://github.com/STEllAR-GROUP/hpx/pull/6132
1313 https://github.com/STEllAR-GROUP/hpx/pull/6131
1314 https://github.com/STEllAR-GROUP/hpx/pull/6130
1315 https://github.com/STEllAR-GROUP/hpx/pull/6129
1316 https://github.com/STEllAR-GROUP/hpx/pull/6127

1576 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6160
https://github.com/STEllAR-GROUP/hpx/pull/6159
https://github.com/STEllAR-GROUP/hpx/pull/6158
https://github.com/STEllAR-GROUP/hpx/pull/6157
https://github.com/STEllAR-GROUP/hpx/pull/6154
https://github.com/STEllAR-GROUP/hpx/pull/6152
https://github.com/STEllAR-GROUP/hpx/pull/6151
https://github.com/STEllAR-GROUP/hpx/pull/6148
https://github.com/STEllAR-GROUP/hpx/pull/6147
https://github.com/STEllAR-GROUP/hpx/pull/6146
https://github.com/STEllAR-GROUP/hpx/pull/6144
https://github.com/STEllAR-GROUP/hpx/pull/6143
https://github.com/STEllAR-GROUP/hpx/pull/6140
https://github.com/STEllAR-GROUP/hpx/pull/6139
https://github.com/STEllAR-GROUP/hpx/pull/6137
https://github.com/STEllAR-GROUP/hpx/pull/6136
https://github.com/STEllAR-GROUP/hpx/pull/6135
https://github.com/STEllAR-GROUP/hpx/pull/6134
https://github.com/STEllAR-GROUP/hpx/pull/6132
https://github.com/STEllAR-GROUP/hpx/pull/6131
https://github.com/STEllAR-GROUP/hpx/pull/6130
https://github.com/STEllAR-GROUP/hpx/pull/6129
https://github.com/STEllAR-GROUP/hpx/pull/6127

HPX Documentation, master

• PR #61261317 - Deprecate hpx::parallel::task_block in favor of hpx::experimental::ta?

• PR #61251318 - Making sure sync_wait compiles when used with an lvalue sender involving bulk

• PR #61241319 - Fixing use of any_sender in combination with when_all

• PR #61231320 - Fixed issues found by PVS-Studio

• PR #61211321 - Modernize modules of level 21, 22

• PR #61201322 - Use index_queue for parallel executors bulk_async_execute

• PR #61191323 - Update CMakeLists.txt

• PR #61181324 - Modernize modules from level 17, 18, 19, and 20

• PR #61171325 - Initialize buffer_allocate_time_ to 0

• PR #61161326 - Add new command line argument –hpx:loopback_network

• PR #61151327 - Modernize modules of levels 14, 15, and 16

• PR #61141328 - Enhance the formatting of the documentation

• PR #61131329 - Modernize modules in module level 11, 12, and 13

• PR #61121330 - Modernize modules from levels 9 and 10

• PR #61111331 - Modernize all modules from module level 8

• PR #61101332 - Use pragma error directive to report warnings as errors on msvc

• PR #61091333 - Modernize serialization module

• PR #61071334 - Modernize error module

• PR #61061335 - Modernizing modules of levels 0 to 5

• PR #61051336 - Optimizations on LCI parcelport: merge small messages; remove sender mutex lock.

• PR #61041337 - Adding parameters API: measure_iteration

• PR #61031338 - Document task_group and include in Public API

• PR #61021339 - Prevent warnings generated by clang-cl
1317 https://github.com/STEllAR-GROUP/hpx/pull/6126
1318 https://github.com/STEllAR-GROUP/hpx/pull/6125
1319 https://github.com/STEllAR-GROUP/hpx/pull/6124
1320 https://github.com/STEllAR-GROUP/hpx/pull/6123
1321 https://github.com/STEllAR-GROUP/hpx/pull/6121
1322 https://github.com/STEllAR-GROUP/hpx/pull/6120
1323 https://github.com/STEllAR-GROUP/hpx/pull/6119
1324 https://github.com/STEllAR-GROUP/hpx/pull/6118
1325 https://github.com/STEllAR-GROUP/hpx/pull/6117
1326 https://github.com/STEllAR-GROUP/hpx/pull/6116
1327 https://github.com/STEllAR-GROUP/hpx/pull/6115
1328 https://github.com/STEllAR-GROUP/hpx/pull/6114
1329 https://github.com/STEllAR-GROUP/hpx/pull/6113
1330 https://github.com/STEllAR-GROUP/hpx/pull/6112
1331 https://github.com/STEllAR-GROUP/hpx/pull/6111
1332 https://github.com/STEllAR-GROUP/hpx/pull/6110
1333 https://github.com/STEllAR-GROUP/hpx/pull/6109
1334 https://github.com/STEllAR-GROUP/hpx/pull/6107
1335 https://github.com/STEllAR-GROUP/hpx/pull/6106
1336 https://github.com/STEllAR-GROUP/hpx/pull/6105
1337 https://github.com/STEllAR-GROUP/hpx/pull/6104
1338 https://github.com/STEllAR-GROUP/hpx/pull/6103
1339 https://github.com/STEllAR-GROUP/hpx/pull/6102

2.10. Releases 1577

https://github.com/STEllAR-GROUP/hpx/pull/6126
https://github.com/STEllAR-GROUP/hpx/pull/6125
https://github.com/STEllAR-GROUP/hpx/pull/6124
https://github.com/STEllAR-GROUP/hpx/pull/6123
https://github.com/STEllAR-GROUP/hpx/pull/6121
https://github.com/STEllAR-GROUP/hpx/pull/6120
https://github.com/STEllAR-GROUP/hpx/pull/6119
https://github.com/STEllAR-GROUP/hpx/pull/6118
https://github.com/STEllAR-GROUP/hpx/pull/6117
https://github.com/STEllAR-GROUP/hpx/pull/6116
https://github.com/STEllAR-GROUP/hpx/pull/6115
https://github.com/STEllAR-GROUP/hpx/pull/6114
https://github.com/STEllAR-GROUP/hpx/pull/6113
https://github.com/STEllAR-GROUP/hpx/pull/6112
https://github.com/STEllAR-GROUP/hpx/pull/6111
https://github.com/STEllAR-GROUP/hpx/pull/6110
https://github.com/STEllAR-GROUP/hpx/pull/6109
https://github.com/STEllAR-GROUP/hpx/pull/6107
https://github.com/STEllAR-GROUP/hpx/pull/6106
https://github.com/STEllAR-GROUP/hpx/pull/6105
https://github.com/STEllAR-GROUP/hpx/pull/6104
https://github.com/STEllAR-GROUP/hpx/pull/6103
https://github.com/STEllAR-GROUP/hpx/pull/6102

HPX Documentation, master

• PR #61011340 - Using more fold expressions

• PR #61001341 - Deprecate hpx::parallel::reduce_by_key in favor of hpx::experimental::reduce_by_key

• PR #60981342 - Forking Boost.Lockfree

• PR #60961343 - Forking Boost.Tokenizer

• PR #60951344 - Replacing facilities from Boost.Range

• PR #60941345 - Removing object_semaphore

• PR #60931346 - Replace boost::string_ref with std::string_view

• PR #60921347 - Use C++17 static_assert where possible

• PR #60911348 - Replace artificial sequencing with fold expressions

• PR #60901349 - Fixing use of get_chunk_size customization point

• PR #60881350 - Add/fix Public API documentation

• PR #60861351 - Deprecate hpx::util::unlock_guard in favor of hpx::unlock_guard

• PR #60851352 - Add experimental sycl integration/executor

• PR #60841353 - Renaming hpx::apply and friends to hpx::post

• PR #60831354 - Using if constexpr instead of tag-dispatching, where possible

• PR #60821355 - Replace util::always_void_t with std::void_t

• PR #60811356 - Update github actions to avoid warnings

• PR #60801357 - Disable some tests that fail on LCI

• PR #60791358 - Adding more natvis files, correct existing

• PR #60781359 - Changing target name of memory_counters component

• PR #60771360 - Making default constructor of hpx::mutex constexpr

• PR #60761361 - Cleaning up functionality that was deprecated in V1.7

• PR #60751362 - Remove conditional code for gcc V7 and below
1340 https://github.com/STEllAR-GROUP/hpx/pull/6101
1341 https://github.com/STEllAR-GROUP/hpx/pull/6100
1342 https://github.com/STEllAR-GROUP/hpx/pull/6098
1343 https://github.com/STEllAR-GROUP/hpx/pull/6096
1344 https://github.com/STEllAR-GROUP/hpx/pull/6095
1345 https://github.com/STEllAR-GROUP/hpx/pull/6094
1346 https://github.com/STEllAR-GROUP/hpx/pull/6093
1347 https://github.com/STEllAR-GROUP/hpx/pull/6092
1348 https://github.com/STEllAR-GROUP/hpx/pull/6091
1349 https://github.com/STEllAR-GROUP/hpx/pull/6090
1350 https://github.com/STEllAR-GROUP/hpx/pull/6088
1351 https://github.com/STEllAR-GROUP/hpx/pull/6086
1352 https://github.com/STEllAR-GROUP/hpx/pull/6085
1353 https://github.com/STEllAR-GROUP/hpx/pull/6084
1354 https://github.com/STEllAR-GROUP/hpx/pull/6083
1355 https://github.com/STEllAR-GROUP/hpx/pull/6082
1356 https://github.com/STEllAR-GROUP/hpx/pull/6081
1357 https://github.com/STEllAR-GROUP/hpx/pull/6080
1358 https://github.com/STEllAR-GROUP/hpx/pull/6079
1359 https://github.com/STEllAR-GROUP/hpx/pull/6078
1360 https://github.com/STEllAR-GROUP/hpx/pull/6077
1361 https://github.com/STEllAR-GROUP/hpx/pull/6076
1362 https://github.com/STEllAR-GROUP/hpx/pull/6075

1578 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6101
https://github.com/STEllAR-GROUP/hpx/pull/6100
https://github.com/STEllAR-GROUP/hpx/pull/6098
https://github.com/STEllAR-GROUP/hpx/pull/6096
https://github.com/STEllAR-GROUP/hpx/pull/6095
https://github.com/STEllAR-GROUP/hpx/pull/6094
https://github.com/STEllAR-GROUP/hpx/pull/6093
https://github.com/STEllAR-GROUP/hpx/pull/6092
https://github.com/STEllAR-GROUP/hpx/pull/6091
https://github.com/STEllAR-GROUP/hpx/pull/6090
https://github.com/STEllAR-GROUP/hpx/pull/6088
https://github.com/STEllAR-GROUP/hpx/pull/6086
https://github.com/STEllAR-GROUP/hpx/pull/6085
https://github.com/STEllAR-GROUP/hpx/pull/6084
https://github.com/STEllAR-GROUP/hpx/pull/6083
https://github.com/STEllAR-GROUP/hpx/pull/6082
https://github.com/STEllAR-GROUP/hpx/pull/6081
https://github.com/STEllAR-GROUP/hpx/pull/6080
https://github.com/STEllAR-GROUP/hpx/pull/6079
https://github.com/STEllAR-GROUP/hpx/pull/6078
https://github.com/STEllAR-GROUP/hpx/pull/6077
https://github.com/STEllAR-GROUP/hpx/pull/6076
https://github.com/STEllAR-GROUP/hpx/pull/6075

HPX Documentation, master

• PR #60741363 - Fixing compilation issues on gcc V8

• PR #60731364 - Fixing PAPI counter component compilation

• PR #60721365 - Adding ex::when_all_vector

• PR #60711366 - Making get_forward_progress_guarantee_t specializations constexpr

• PR #60701367 - Implement P2690 for our algorithms

• PR #60691368 - Do not check for cancellation during each iteration but only once per partition

• PR #60681369 - Prevent using task and non_task as a CPO

• PR #60671370 - Deprecated hpx::util::mem_fn in favor of hpx::mem_fn

• PR #60661371 - Create codeql.yml

• PR #60641372 - Adapting adjacent_difference for S/R execution

• PR #60631373 - Modernize iterator_support module

• PR #60621374 - Make sure wrapping executor does not go out of scope prematurely

• PR #60611375 - Minor fix in small_vector (from upstream)

• PR #60601376 - Allow to disable registering signal handlers

• PR #60591377 - [P2300] Fix: declval cannot be ODR used

• PR #60581378 - Avoid ambiguity for hpx::get used with std::variant

• PR #60571379 - Create a dedicated thread pool to run LCI_progress.

• PR #60561380 - Fix coroutine test for clang

• PR #60551381 - Patches needed to be able to build HPX 1.8.1 on various platforms

• PR #60541382 - Use MSVC specific attribute [[msvc::no_unique_address]]

• PR #60521383 - Deprecated hpx::util::invoke_fused in favor of hpx::invoke_fused

• PR #60511384 - Add non-contiguous index queue and use it in thread_pool_bulk_scheduler

• PR #60491385 - Crosscompile arm sve
1363 https://github.com/STEllAR-GROUP/hpx/pull/6074
1364 https://github.com/STEllAR-GROUP/hpx/pull/6073
1365 https://github.com/STEllAR-GROUP/hpx/pull/6072
1366 https://github.com/STEllAR-GROUP/hpx/pull/6071
1367 https://github.com/STEllAR-GROUP/hpx/pull/6070
1368 https://github.com/STEllAR-GROUP/hpx/pull/6069
1369 https://github.com/STEllAR-GROUP/hpx/pull/6068
1370 https://github.com/STEllAR-GROUP/hpx/pull/6067
1371 https://github.com/STEllAR-GROUP/hpx/pull/6066
1372 https://github.com/STEllAR-GROUP/hpx/pull/6064
1373 https://github.com/STEllAR-GROUP/hpx/pull/6063
1374 https://github.com/STEllAR-GROUP/hpx/pull/6062
1375 https://github.com/STEllAR-GROUP/hpx/pull/6061
1376 https://github.com/STEllAR-GROUP/hpx/pull/6060
1377 https://github.com/STEllAR-GROUP/hpx/pull/6059
1378 https://github.com/STEllAR-GROUP/hpx/pull/6058
1379 https://github.com/STEllAR-GROUP/hpx/pull/6057
1380 https://github.com/STEllAR-GROUP/hpx/pull/6056
1381 https://github.com/STEllAR-GROUP/hpx/pull/6055
1382 https://github.com/STEllAR-GROUP/hpx/pull/6054
1383 https://github.com/STEllAR-GROUP/hpx/pull/6052
1384 https://github.com/STEllAR-GROUP/hpx/pull/6051
1385 https://github.com/STEllAR-GROUP/hpx/pull/6049

2.10. Releases 1579

https://github.com/STEllAR-GROUP/hpx/pull/6074
https://github.com/STEllAR-GROUP/hpx/pull/6073
https://github.com/STEllAR-GROUP/hpx/pull/6072
https://github.com/STEllAR-GROUP/hpx/pull/6071
https://github.com/STEllAR-GROUP/hpx/pull/6070
https://github.com/STEllAR-GROUP/hpx/pull/6069
https://github.com/STEllAR-GROUP/hpx/pull/6068
https://github.com/STEllAR-GROUP/hpx/pull/6067
https://github.com/STEllAR-GROUP/hpx/pull/6066
https://github.com/STEllAR-GROUP/hpx/pull/6064
https://github.com/STEllAR-GROUP/hpx/pull/6063
https://github.com/STEllAR-GROUP/hpx/pull/6062
https://github.com/STEllAR-GROUP/hpx/pull/6061
https://github.com/STEllAR-GROUP/hpx/pull/6060
https://github.com/STEllAR-GROUP/hpx/pull/6059
https://github.com/STEllAR-GROUP/hpx/pull/6058
https://github.com/STEllAR-GROUP/hpx/pull/6057
https://github.com/STEllAR-GROUP/hpx/pull/6056
https://github.com/STEllAR-GROUP/hpx/pull/6055
https://github.com/STEllAR-GROUP/hpx/pull/6054
https://github.com/STEllAR-GROUP/hpx/pull/6052
https://github.com/STEllAR-GROUP/hpx/pull/6051
https://github.com/STEllAR-GROUP/hpx/pull/6049

HPX Documentation, master

• PR #60481386 - Deprecated hpx::util::invoke in favor of hpx::invoke

• PR #60471387 - Separating binary_semaphore into its own file

• PR #60461388 - Support using unwrapping with nullary function objects

• PR #60441389 - Generalize the use of then() and dataflow

• PR #60431390 - Clean up scan_partitioner

• PR #60421391 - Modernize dataflow API

• PR #60411392 - docs: document semaphores

• PR #60401393 - Add/Fix documentation of Public API page

• PR #60391394 - remove MPI dependency when only using LCI parcelport

• PR #60381395 - Clean up command line handling

• PR #60371396 - Avoid performing parcel related background work if networking is disabled

• PR #60361397 - Support new datapar backend : SVE

• PR #60351398 - Simplify datapar replace copy if

• PR #60341399 - Add/Fix documentation of Public API

• PR #60331400 - Support for data-parallelism for replace, replace_if, replace_copy, replace_copy_if algorithms

• PR #60321401 - Add documentation in public API

• PR #60311402 - Expose available cache sizes from topology object

• PR #60301403 - Adding parcelport initialization hook for resource partitioner operation

• PR #60291404 - Simplify startup code

• PR #60271405 - Add/Fix documentation in Public API page

• PR #60261406 - add option hpx:force_ipv4 to force resolving hostnames to ipv4 addresses

• PR #60251407 - build(docs): remove leftover sections

• PR #60231408 - Minor fixes on “How to build on Windows”
1386 https://github.com/STEllAR-GROUP/hpx/pull/6048
1387 https://github.com/STEllAR-GROUP/hpx/pull/6047
1388 https://github.com/STEllAR-GROUP/hpx/pull/6046
1389 https://github.com/STEllAR-GROUP/hpx/pull/6044
1390 https://github.com/STEllAR-GROUP/hpx/pull/6043
1391 https://github.com/STEllAR-GROUP/hpx/pull/6042
1392 https://github.com/STEllAR-GROUP/hpx/pull/6041
1393 https://github.com/STEllAR-GROUP/hpx/pull/6040
1394 https://github.com/STEllAR-GROUP/hpx/pull/6039
1395 https://github.com/STEllAR-GROUP/hpx/pull/6038
1396 https://github.com/STEllAR-GROUP/hpx/pull/6037
1397 https://github.com/STEllAR-GROUP/hpx/pull/6036
1398 https://github.com/STEllAR-GROUP/hpx/pull/6035
1399 https://github.com/STEllAR-GROUP/hpx/pull/6034
1400 https://github.com/STEllAR-GROUP/hpx/pull/6033
1401 https://github.com/STEllAR-GROUP/hpx/pull/6032
1402 https://github.com/STEllAR-GROUP/hpx/pull/6031
1403 https://github.com/STEllAR-GROUP/hpx/pull/6030
1404 https://github.com/STEllAR-GROUP/hpx/pull/6029
1405 https://github.com/STEllAR-GROUP/hpx/pull/6027
1406 https://github.com/STEllAR-GROUP/hpx/pull/6026
1407 https://github.com/STEllAR-GROUP/hpx/pull/6025
1408 https://github.com/STEllAR-GROUP/hpx/pull/6023

1580 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/6048
https://github.com/STEllAR-GROUP/hpx/pull/6047
https://github.com/STEllAR-GROUP/hpx/pull/6046
https://github.com/STEllAR-GROUP/hpx/pull/6044
https://github.com/STEllAR-GROUP/hpx/pull/6043
https://github.com/STEllAR-GROUP/hpx/pull/6042
https://github.com/STEllAR-GROUP/hpx/pull/6041
https://github.com/STEllAR-GROUP/hpx/pull/6040
https://github.com/STEllAR-GROUP/hpx/pull/6039
https://github.com/STEllAR-GROUP/hpx/pull/6038
https://github.com/STEllAR-GROUP/hpx/pull/6037
https://github.com/STEllAR-GROUP/hpx/pull/6036
https://github.com/STEllAR-GROUP/hpx/pull/6035
https://github.com/STEllAR-GROUP/hpx/pull/6034
https://github.com/STEllAR-GROUP/hpx/pull/6033
https://github.com/STEllAR-GROUP/hpx/pull/6032
https://github.com/STEllAR-GROUP/hpx/pull/6031
https://github.com/STEllAR-GROUP/hpx/pull/6030
https://github.com/STEllAR-GROUP/hpx/pull/6029
https://github.com/STEllAR-GROUP/hpx/pull/6027
https://github.com/STEllAR-GROUP/hpx/pull/6026
https://github.com/STEllAR-GROUP/hpx/pull/6025
https://github.com/STEllAR-GROUP/hpx/pull/6023

HPX Documentation, master

• PR #60221409 - build(doxy): don’t extract private members

• PR #60211410 - Adding pu_mask to thread_pool_bulk_scheduler

• PR #60201411 - docs: add cppref NamedRequirements support

• PR #60181412 - Unseq adaptation for for_each, transform, reduce, transform_reduce, etc.

• PR #60171413 - loop and transform_loop unseq adaptation

• PR #60161414 - Config and structural updates to support unseq implementation

• PR #60151415 - Integrating sync_wait & sync_wait_with_variant

• PR #60121416 - docs: add missing links to public api

• PR #60091417 - Fixing sender&receiver integration with for_each and for_loop

• PR #60071418 - docs: add docs for mutex.hpp

• PR #60061419 - Relax future::is_ready where possible

• PR #60051420 - reshuffle header tests to different instances

• PR #60041421 - Add documentation Public API

• PR #60031422 - Always exporting get_component_name implementations

• PR #60021423 - Making sure that default constructble arguments are properly constructed during deserialization

• PR #59961424 - Add back explicit template parameters to lock_guards for nvcc

• PR #59941425 - Fix CTRL+C on windows

• PR #59931426 - Using EVE requires C++20

• PR #59921427 - This properly terminates an application on Ctrl-C on Windows

• PR #59911428 - Support IPV6 on command line for explicit network initialization

• PR #59901429 - P2300 enhancements

• PR #59891430 - Fix missing documentation in Public API page

• PR #59871431 - Attempting to fix timed executor API
1409 https://github.com/STEllAR-GROUP/hpx/pull/6022
1410 https://github.com/STEllAR-GROUP/hpx/pull/6021
1411 https://github.com/STEllAR-GROUP/hpx/pull/6020
1412 https://github.com/STEllAR-GROUP/hpx/pull/6018
1413 https://github.com/STEllAR-GROUP/hpx/pull/6017
1414 https://github.com/STEllAR-GROUP/hpx/pull/6016
1415 https://github.com/STEllAR-GROUP/hpx/pull/6015
1416 https://github.com/STEllAR-GROUP/hpx/pull/6012
1417 https://github.com/STEllAR-GROUP/hpx/pull/6009
1418 https://github.com/STEllAR-GROUP/hpx/pull/6007
1419 https://github.com/STEllAR-GROUP/hpx/pull/6006
1420 https://github.com/STEllAR-GROUP/hpx/pull/6005
1421 https://github.com/STEllAR-GROUP/hpx/pull/6004
1422 https://github.com/STEllAR-GROUP/hpx/pull/6003
1423 https://github.com/STEllAR-GROUP/hpx/pull/6002
1424 https://github.com/STEllAR-GROUP/hpx/pull/5996
1425 https://github.com/STEllAR-GROUP/hpx/pull/5994
1426 https://github.com/STEllAR-GROUP/hpx/pull/5993
1427 https://github.com/STEllAR-GROUP/hpx/pull/5992
1428 https://github.com/STEllAR-GROUP/hpx/pull/5991
1429 https://github.com/STEllAR-GROUP/hpx/pull/5990
1430 https://github.com/STEllAR-GROUP/hpx/pull/5989
1431 https://github.com/STEllAR-GROUP/hpx/pull/5987

2.10. Releases 1581

https://github.com/STEllAR-GROUP/hpx/pull/6022
https://github.com/STEllAR-GROUP/hpx/pull/6021
https://github.com/STEllAR-GROUP/hpx/pull/6020
https://github.com/STEllAR-GROUP/hpx/pull/6018
https://github.com/STEllAR-GROUP/hpx/pull/6017
https://github.com/STEllAR-GROUP/hpx/pull/6016
https://github.com/STEllAR-GROUP/hpx/pull/6015
https://github.com/STEllAR-GROUP/hpx/pull/6012
https://github.com/STEllAR-GROUP/hpx/pull/6009
https://github.com/STEllAR-GROUP/hpx/pull/6007
https://github.com/STEllAR-GROUP/hpx/pull/6006
https://github.com/STEllAR-GROUP/hpx/pull/6005
https://github.com/STEllAR-GROUP/hpx/pull/6004
https://github.com/STEllAR-GROUP/hpx/pull/6003
https://github.com/STEllAR-GROUP/hpx/pull/6002
https://github.com/STEllAR-GROUP/hpx/pull/5996
https://github.com/STEllAR-GROUP/hpx/pull/5994
https://github.com/STEllAR-GROUP/hpx/pull/5993
https://github.com/STEllAR-GROUP/hpx/pull/5992
https://github.com/STEllAR-GROUP/hpx/pull/5991
https://github.com/STEllAR-GROUP/hpx/pull/5990
https://github.com/STEllAR-GROUP/hpx/pull/5989
https://github.com/STEllAR-GROUP/hpx/pull/5987

HPX Documentation, master

• PR #59861432 - Fix warnings when building docs

• PR #59851433 - Re-add deprecated tag_policy_tag et.al. types that were removed in V1.8.1

• PR #59811434 - docs: add docs for condition_variable.hpp

• PR #59801435 - More work on execution::read

• PR #59791436 - Remove support for clang-v8 and clang-v9, switch LSU clang-v13 to C++17

• PR #59771437 - fix: Compilation errors for -std=c++17 builders

• PR #59751438 - docs: fix & improve parallel algorithms documentation 5

• PR #59741439 - [P2300] Adapt get completion signatures for awaitable senders

• PR #59731440 - defaults boost.context on riscv64

• PR #59721441 - Fix documentation for container algorithms

• PR #59711442 - added logic to detect riscv compiler configured for 64 bit target

• PR #59681443 - adds risc-v 64 bit support

• PR #59671444 - Adding missing pieces to sync_wait, adding run_loop

• PR #59661445 - docs: fix & improve parallel algorithms documentation 4

• PR #59651446 - Fixing inspect problems, adding missing header file

• PR #59621447 - Changes in html page of documentation

• PR #59611448 - Prevent stalling during shutdown when running hello_world_distributed

• PR #59551449 - Fix documentation for container algorithms

• PR #59521450 - docs: fix & improve parallel algorithms documentation 3

• PR #59501451 - Change executors to directly implement the executor CPOs

• PR #59491452 - Converting async combinators into CPOs

• PR #59481453 - Adding support for pure sender/receiver based executors to parallel algorithms

• PR #59451454 - [P2300] Added fundamental coroutine_traits for S/R
1432 https://github.com/STEllAR-GROUP/hpx/pull/5986
1433 https://github.com/STEllAR-GROUP/hpx/pull/5985
1434 https://github.com/STEllAR-GROUP/hpx/pull/5981
1435 https://github.com/STEllAR-GROUP/hpx/pull/5980
1436 https://github.com/STEllAR-GROUP/hpx/pull/5979
1437 https://github.com/STEllAR-GROUP/hpx/pull/5977
1438 https://github.com/STEllAR-GROUP/hpx/pull/5975
1439 https://github.com/STEllAR-GROUP/hpx/pull/5974
1440 https://github.com/STEllAR-GROUP/hpx/pull/5973
1441 https://github.com/STEllAR-GROUP/hpx/pull/5972
1442 https://github.com/STEllAR-GROUP/hpx/pull/5971
1443 https://github.com/STEllAR-GROUP/hpx/pull/5968
1444 https://github.com/STEllAR-GROUP/hpx/pull/5967
1445 https://github.com/STEllAR-GROUP/hpx/pull/5966
1446 https://github.com/STEllAR-GROUP/hpx/pull/5965
1447 https://github.com/STEllAR-GROUP/hpx/pull/5962
1448 https://github.com/STEllAR-GROUP/hpx/pull/5961
1449 https://github.com/STEllAR-GROUP/hpx/pull/5955
1450 https://github.com/STEllAR-GROUP/hpx/pull/5952
1451 https://github.com/STEllAR-GROUP/hpx/pull/5950
1452 https://github.com/STEllAR-GROUP/hpx/pull/5949
1453 https://github.com/STEllAR-GROUP/hpx/pull/5948
1454 https://github.com/STEllAR-GROUP/hpx/pull/5945

1582 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5986
https://github.com/STEllAR-GROUP/hpx/pull/5985
https://github.com/STEllAR-GROUP/hpx/pull/5981
https://github.com/STEllAR-GROUP/hpx/pull/5980
https://github.com/STEllAR-GROUP/hpx/pull/5979
https://github.com/STEllAR-GROUP/hpx/pull/5977
https://github.com/STEllAR-GROUP/hpx/pull/5975
https://github.com/STEllAR-GROUP/hpx/pull/5974
https://github.com/STEllAR-GROUP/hpx/pull/5973
https://github.com/STEllAR-GROUP/hpx/pull/5972
https://github.com/STEllAR-GROUP/hpx/pull/5971
https://github.com/STEllAR-GROUP/hpx/pull/5968
https://github.com/STEllAR-GROUP/hpx/pull/5967
https://github.com/STEllAR-GROUP/hpx/pull/5966
https://github.com/STEllAR-GROUP/hpx/pull/5965
https://github.com/STEllAR-GROUP/hpx/pull/5962
https://github.com/STEllAR-GROUP/hpx/pull/5961
https://github.com/STEllAR-GROUP/hpx/pull/5955
https://github.com/STEllAR-GROUP/hpx/pull/5952
https://github.com/STEllAR-GROUP/hpx/pull/5950
https://github.com/STEllAR-GROUP/hpx/pull/5949
https://github.com/STEllAR-GROUP/hpx/pull/5948
https://github.com/STEllAR-GROUP/hpx/pull/5945

HPX Documentation, master

• PR #58831455 - Optimization on LCI parcelport: uses LCI_putva

• PR #58721456 - Block fork join executor

• PR #58551457 - Adding performance test Jenkins builder at LSU

HPX V1.8.1 (Aug 5, 2022)

This is a bugfix release with a few minor additions and resolved problems.

General changes

This patch release adds a number of small new features and fixes a handful of problems discovered since the last release,
in particular:

• A lot of work has been done to improve vectorization support for our parallel algorithms. HPX now supports
using EVE - the Expressive Vector Engine as a vectorization backend.

• Added a simple average power consumption performance counter.

• Added performance counters related to the use of zero-copy chunks in the networking layer.

• More work was done towards full compatibility with the sender/receivers proposal P2300.

• Fixing sync_wait to decay the result types

• Fixed collective operations to properly avoid overalapping consecutive operations on the same communicator.

• Simplified the implementation of our execution policies and added mapping functions between those.

• Fixed performance issues with our implementation of small_vector.

• Serialization now works with buffers of unsigned characters.

• Fixing dangling reference in serialization of non-default constructible types

• Fixed static linking on Windows.

• Fixed support for M1/MacOS based architectures.

• Fixed support for gentoo/musl.

• Fixed hpx::counting_semaphore_var.

• Properly check start and end bounds for hpx::for_loop

• A lot of changes and fixes to the documentation (see https://hpx-docs.stellar-group.org).
1455 https://github.com/STEllAR-GROUP/hpx/pull/5883
1456 https://github.com/STEllAR-GROUP/hpx/pull/5872
1457 https://github.com/STEllAR-GROUP/hpx/pull/5855

2.10. Releases 1583

https://github.com/STEllAR-GROUP/hpx/pull/5883
https://github.com/STEllAR-GROUP/hpx/pull/5872
https://github.com/STEllAR-GROUP/hpx/pull/5855
https://hpx-docs.stellar-group.org

HPX Documentation, master

Breaking changes

• No breaking changes have been introduced.

Closed issues

• Issue #59641458 - component with multiple inheritance

• Issue #59461459 - dll_dlopen.hpp: error: RTLD_DI_ORIGIN was not declared in this scope with musl libc

• Issue #59251460 - Simplify implementation of execution policies

• Issue #59241461 - {what}: mmap() failed to allocate thread stack: HPX(unhandled_exception)

• Issue #59121462 - collectives all gather hangs if rank 0 is not involved

• Issue #59021463 - MPI parcelport issue on Fugaku

• Issue #59001464 - Unable to build hello_world_distributed.cpp.

• Issue #58921465 - Problems with HPX serialization as a standalone feature. Testcase provided.

• Issue #58861466 - Segfault when serializing non default constructible class with stl containers data members

• Issue #58321467 - Distributed execution crash

• Issue #57681468 - HPX hangs on Perlmutter

• Issue #57351469 - hpx::for_loop executes without checking start and end bounds

• Issue #57001470 - HPX(serialization_error)

Closed pull requests

• PR #59701471 - Fixing component multiple inheritance

• PR #59691472 - Fixing sync_wait to avoid dangling references

• PR #59631473 - Fixing sync_wait to decay the result types

• PR #59601474 - docs: added name to documentation contributors list

• PR #59591475 - Fixing sync_wait to decay the result types
1458 https://github.com/STEllAR-GROUP/hpx/issues/5964
1459 https://github.com/STEllAR-GROUP/hpx/issues/5946
1460 https://github.com/STEllAR-GROUP/hpx/issues/5925
1461 https://github.com/STEllAR-GROUP/hpx/issues/5924
1462 https://github.com/STEllAR-GROUP/hpx/issues/5912
1463 https://github.com/STEllAR-GROUP/hpx/issues/5902
1464 https://github.com/STEllAR-GROUP/hpx/issues/5900
1465 https://github.com/STEllAR-GROUP/hpx/issues/5892
1466 https://github.com/STEllAR-GROUP/hpx/issues/5886
1467 https://github.com/STEllAR-GROUP/hpx/issues/5832
1468 https://github.com/STEllAR-GROUP/hpx/issues/5768
1469 https://github.com/STEllAR-GROUP/hpx/issues/5735
1470 https://github.com/STEllAR-GROUP/hpx/issues/5700
1471 https://github.com/STEllAR-GROUP/hpx/pull/5970
1472 https://github.com/STEllAR-GROUP/hpx/pull/5969
1473 https://github.com/STEllAR-GROUP/hpx/pull/5963
1474 https://github.com/STEllAR-GROUP/hpx/pull/5960
1475 https://github.com/STEllAR-GROUP/hpx/pull/5959

1584 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/5964
https://github.com/STEllAR-GROUP/hpx/issues/5946
https://github.com/STEllAR-GROUP/hpx/issues/5925
https://github.com/STEllAR-GROUP/hpx/issues/5924
https://github.com/STEllAR-GROUP/hpx/issues/5912
https://github.com/STEllAR-GROUP/hpx/issues/5902
https://github.com/STEllAR-GROUP/hpx/issues/5900
https://github.com/STEllAR-GROUP/hpx/issues/5892
https://github.com/STEllAR-GROUP/hpx/issues/5886
https://github.com/STEllAR-GROUP/hpx/issues/5832
https://github.com/STEllAR-GROUP/hpx/issues/5768
https://github.com/STEllAR-GROUP/hpx/issues/5735
https://github.com/STEllAR-GROUP/hpx/issues/5700
https://github.com/STEllAR-GROUP/hpx/pull/5970
https://github.com/STEllAR-GROUP/hpx/pull/5969
https://github.com/STEllAR-GROUP/hpx/pull/5963
https://github.com/STEllAR-GROUP/hpx/pull/5960
https://github.com/STEllAR-GROUP/hpx/pull/5959

HPX Documentation, master

• PR #59541476 - refactor: rename itr to correct type (reduce)

• PR #59541477 - refactor: rename itr to correct type (reduce)

• PR #59531478 - Fixed property handling in hierarchical_spawning

• PR #59511479 - Fixing static linking (for Windows)

• PR #59471480 - Fix building on musl.

• PR #59441481 - added adaptive_static_chunk_size

• PR #59431482 - Fix sync_wait

• PR #59421483 - Fix doc warnings

• PR #59411484 - Fix sync_wait

• PR #59401485 - Protect collective operations against std::vector<bool> idiosyncrasies

• PR #59391486 - docs: fix & improve parallel algorithms documentation 2

• PR #59381487 - Properly implement generation support for collective operations

• PR #59371488 - Remove leftover files from PMR based small_vector

• PR #59361489 - Adding mapping functions between execution policies

• PR #59351490 - Fixing serialization to work with buffers of unsigned chars

• PR #59341491 - Attempting to fix datapar issues on CircleCI

• PR #59331492 - Fix documentation for ranges algorithms

• PR #59321493 - Remove mimalloc version constraint

• PR #59311494 - docs: fix & improve parallel algorithms documentation

• PR #59301495 - Add boost to hip builder

• PR #59291496 - Apply fixes to M1/MacOS related stack allocation to all relevant spots

• PR #59281497 - updated context_generic_context to accommodate arm64_arch_8/Apple architecture

• PR #59271498 - Public derivation for counting_semaphore_var
1476 https://github.com/STEllAR-GROUP/hpx/pull/5954
1477 https://github.com/STEllAR-GROUP/hpx/pull/5954
1478 https://github.com/STEllAR-GROUP/hpx/pull/5953
1479 https://github.com/STEllAR-GROUP/hpx/pull/5951
1480 https://github.com/STEllAR-GROUP/hpx/pull/5947
1481 https://github.com/STEllAR-GROUP/hpx/pull/5944
1482 https://github.com/STEllAR-GROUP/hpx/pull/5943
1483 https://github.com/STEllAR-GROUP/hpx/pull/5942
1484 https://github.com/STEllAR-GROUP/hpx/pull/5941
1485 https://github.com/STEllAR-GROUP/hpx/pull/5940
1486 https://github.com/STEllAR-GROUP/hpx/pull/5939
1487 https://github.com/STEllAR-GROUP/hpx/pull/5938
1488 https://github.com/STEllAR-GROUP/hpx/pull/5937
1489 https://github.com/STEllAR-GROUP/hpx/pull/5936
1490 https://github.com/STEllAR-GROUP/hpx/pull/5935
1491 https://github.com/STEllAR-GROUP/hpx/pull/5934
1492 https://github.com/STEllAR-GROUP/hpx/pull/5933
1493 https://github.com/STEllAR-GROUP/hpx/pull/5932
1494 https://github.com/STEllAR-GROUP/hpx/pull/5931
1495 https://github.com/STEllAR-GROUP/hpx/pull/5930
1496 https://github.com/STEllAR-GROUP/hpx/pull/5929
1497 https://github.com/STEllAR-GROUP/hpx/pull/5928
1498 https://github.com/STEllAR-GROUP/hpx/pull/5927

2.10. Releases 1585

https://github.com/STEllAR-GROUP/hpx/pull/5954
https://github.com/STEllAR-GROUP/hpx/pull/5954
https://github.com/STEllAR-GROUP/hpx/pull/5953
https://github.com/STEllAR-GROUP/hpx/pull/5951
https://github.com/STEllAR-GROUP/hpx/pull/5947
https://github.com/STEllAR-GROUP/hpx/pull/5944
https://github.com/STEllAR-GROUP/hpx/pull/5943
https://github.com/STEllAR-GROUP/hpx/pull/5942
https://github.com/STEllAR-GROUP/hpx/pull/5941
https://github.com/STEllAR-GROUP/hpx/pull/5940
https://github.com/STEllAR-GROUP/hpx/pull/5939
https://github.com/STEllAR-GROUP/hpx/pull/5938
https://github.com/STEllAR-GROUP/hpx/pull/5937
https://github.com/STEllAR-GROUP/hpx/pull/5936
https://github.com/STEllAR-GROUP/hpx/pull/5935
https://github.com/STEllAR-GROUP/hpx/pull/5934
https://github.com/STEllAR-GROUP/hpx/pull/5933
https://github.com/STEllAR-GROUP/hpx/pull/5932
https://github.com/STEllAR-GROUP/hpx/pull/5931
https://github.com/STEllAR-GROUP/hpx/pull/5930
https://github.com/STEllAR-GROUP/hpx/pull/5929
https://github.com/STEllAR-GROUP/hpx/pull/5928
https://github.com/STEllAR-GROUP/hpx/pull/5927

HPX Documentation, master

• PR #59261499 - Fix doxygen warnings when building documentation

• PR #59231500 - Fixing git checkout to reflect latest version tag

• PR #59221501 - A couple of unrelated changes in support of implementing P1673

• PR #59201502 - [P2300] enhancements: receiver_of, sender_of improvements

• PR #59171503 - Fixing various ‘held lock while suspending’ problems

• PR #59161504 - Fix minor doxygen parsing typo

• PR #59151505 - docs: fix broken api algo links

• PR #59141506 - Remove CSS rules - update sphinx version

• PR #59111507 - Removed references to hpx::vector in comments

• PR #59091508 - Remove stuff which is defined in the header

• PR #59061509 - Use BUILD_SHARED_LIBS correctly

• PR #59051510 - Fix incorrect usage of generator expressions

• PR #59041511 - Delete FindBZip2.cmake

• PR #59011512 - Fix #5900

• PR #58991513 - Replace PMR based version of small_vector

• PR #58971514 - Add missing “”

• PR #58961515 - Docs: Add serialization tutorial.

• PR #58951516 - Update to V1.9.0 on master

• PR #58941517 - Fix executor_with_thread_hooks example

• PR #58901518 - Adding simple average power consumption performance counter

• PR #58891519 - Par unseq/unseq adding

• PR #58881520 - Support for data-parallelism for reduce, transform reduce, transform_binary_reduce algorithms

• PR #58871521 - Fixing dangling reference in serialization of non-default constructible types
1499 https://github.com/STEllAR-GROUP/hpx/pull/5926
1500 https://github.com/STEllAR-GROUP/hpx/pull/5923
1501 https://github.com/STEllAR-GROUP/hpx/pull/5922
1502 https://github.com/STEllAR-GROUP/hpx/pull/5920
1503 https://github.com/STEllAR-GROUP/hpx/pull/5917
1504 https://github.com/STEllAR-GROUP/hpx/pull/5916
1505 https://github.com/STEllAR-GROUP/hpx/pull/5915
1506 https://github.com/STEllAR-GROUP/hpx/pull/5914
1507 https://github.com/STEllAR-GROUP/hpx/pull/5911
1508 https://github.com/STEllAR-GROUP/hpx/pull/5909
1509 https://github.com/STEllAR-GROUP/hpx/pull/5906
1510 https://github.com/STEllAR-GROUP/hpx/pull/5905
1511 https://github.com/STEllAR-GROUP/hpx/pull/5904
1512 https://github.com/STEllAR-GROUP/hpx/pull/5901
1513 https://github.com/STEllAR-GROUP/hpx/pull/5899
1514 https://github.com/STEllAR-GROUP/hpx/pull/5897
1515 https://github.com/STEllAR-GROUP/hpx/pull/5896
1516 https://github.com/STEllAR-GROUP/hpx/pull/5895
1517 https://github.com/STEllAR-GROUP/hpx/pull/5894
1518 https://github.com/STEllAR-GROUP/hpx/pull/5890
1519 https://github.com/STEllAR-GROUP/hpx/pull/5889
1520 https://github.com/STEllAR-GROUP/hpx/pull/5888
1521 https://github.com/STEllAR-GROUP/hpx/pull/5887

1586 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5926
https://github.com/STEllAR-GROUP/hpx/pull/5923
https://github.com/STEllAR-GROUP/hpx/pull/5922
https://github.com/STEllAR-GROUP/hpx/pull/5920
https://github.com/STEllAR-GROUP/hpx/pull/5917
https://github.com/STEllAR-GROUP/hpx/pull/5916
https://github.com/STEllAR-GROUP/hpx/pull/5915
https://github.com/STEllAR-GROUP/hpx/pull/5914
https://github.com/STEllAR-GROUP/hpx/pull/5911
https://github.com/STEllAR-GROUP/hpx/pull/5909
https://github.com/STEllAR-GROUP/hpx/pull/5906
https://github.com/STEllAR-GROUP/hpx/pull/5905
https://github.com/STEllAR-GROUP/hpx/pull/5904
https://github.com/STEllAR-GROUP/hpx/pull/5901
https://github.com/STEllAR-GROUP/hpx/pull/5899
https://github.com/STEllAR-GROUP/hpx/pull/5897
https://github.com/STEllAR-GROUP/hpx/pull/5896
https://github.com/STEllAR-GROUP/hpx/pull/5895
https://github.com/STEllAR-GROUP/hpx/pull/5894
https://github.com/STEllAR-GROUP/hpx/pull/5890
https://github.com/STEllAR-GROUP/hpx/pull/5889
https://github.com/STEllAR-GROUP/hpx/pull/5888
https://github.com/STEllAR-GROUP/hpx/pull/5887

HPX Documentation, master

• PR #58791522 - New performance counters related to zero-copy chunks.

HPX V1.8.0 (May 18, 2022)

With HPX parallel algorithms been fully adapted to C++20 the new release achieves full conformance with C++20
concurrency and parallelism facilities. HPX now supports all of the algorithms as specified by C++20. We have
added support for vectorization to more of our algorithms. Much work has been done towards implementing P2300
(“std::execution”) and implementing the underlying senders/receivers facilities. Finally, The new release comes with a
brand new documentation interface!

General changes

• The new documentation can now be found on our webpage: https://hpx-docs.stellar-group.org. This includes a
completely new and user-friendly interface environment along with restructuring of certain components. The
content in the “Quick start”, “Manual” and “Examples” was improved, while the “Build system” page was
adapted to include necessary information for newcommers.

• With the vectorization support available in modern hardware architectures HPX now provides new data-parallel
vector execution policies hpx::execution::simd and hpx::execution::par_simd that enable significant
speed-up of our parallel algorithm implementations. The following algorithms now support SIMD execution:

– copy, copy_n

– generate

– adjacent_difference, adjacent_find

– all_of, any_of, none_of

– equal, mismatch,

– inner_product

– count, count_if

– fill, fill_n

– find, find_end, find_first_of, find_if, find_if_not

– for_each, for_each_n

– generate, generate_n.

• Based on top of P2300 the HPX parallel algorithms now support the pipeline syntax towards an effort to unify
their usage along with senders/receivers. The HPX parallel algorithms can now bind with senders/receivers using
the pipeline operator.

• Several changes took place on the executors provided by HPX:

• The executors now support the num_cores options in order for the user to be able to specify the desired number
of cores to be used in the correspodning execution.

• The scheduler executor was implemented on top of senders/receivers and can be used with all HPX facilities
that schedule new work, such as parallel algorithms, hpx::async, hpx::dataflow, etc.

• The performance of fork_join_executor was improved.

• The following algorithms have been added/adapted to be C++20 conformant:

– min_element

1522 https://github.com/STEllAR-GROUP/hpx/pull/5879

2.10. Releases 1587

https://github.com/STEllAR-GROUP/hpx/pull/5879
https://hpx-docs.stellar-group.org

HPX Documentation, master

– max_element

– minmax_element

– starts_with

– ends_with

– swap_ranges

– unique

– unique_copy

– rotate

– rotate_copy

– sort

– shift_left

– shift_right

– stable_sort

– partition

– partition_copy

– stable_partition

– adjacent_difference

– nth_element

– partial_sort

– partial_sort_copy.

• HPX_FORWARD/HPX_MOVE macros were introduced that replaced the std::move and std::forward facilities
that in the library code.

• Hangs on distributed barrier were fixed.

• The performance of scan_partitioner was improved.

• Support was added for thread_priority to the parallel_execution_policy

• Regarding senders/receivers and the P2300 proposal various actions took place. stop_token was adapted to the
recent proposal version (in_place_stop_token was introduced). Also hint, annotation, priority and stacksize
properties were added to the scheduler executor. Stop support was added to when_all. Support for completion
signatures was added. The following schedulers and algorithms were added:

– get_completion_scheduler

– any_sender and unique_any_sender

– split sender

– transform_mpi sender

– transfer sender

– let_error, let_stopped

– get_env and related environment queries

– schedule, set_value, set_error, set_done, start and connect are now proper customization points
as defined in P2300.

1588 Chapter 2. What’s so special about HPX?

HPX Documentation, master

• Several namespaces were altered towards conformance with C++20. Compatibility layers have been added and
the old versions will be removed in next releases. The namespace changes are the following:

– hpx::parallel::induction/reduction were movied into namespace hpx::experimental

– for_loop and friends were moved into namespace hpx::experimental.

– hpx::util::optional and friends were moved into namespace hpx.

– hpx::lcos::barrier has been moved into the hpx::distributed namespace and
hpx::lcos::local::cpp20_barrier has been renamed to barrier and moved into the hpx
namespace.

– hpx::lcos::latch has been moved into the hpx::distributed namespace and lcos::local::latch
has been moved into the hpx namespace. The count_down_and_wait() functionality of latch has been
renamed to arrive_and_wait().

– hpx::util::unique_function_nonser has been renamed to hpx::move_only_function.

– hpx::util::unique_function has been renamed to hpx::distributed::move_only_function.

– hpx::util::function has been renamed to hpx::distributed::function.

– hpx::util::function_nonser has been renamed to hpx::function.

– hpx::util::function_ref have been moved to namespace hpx.

– hpx::lcos::split_future changed namespace and is now used as hpx::split_future.

– hpx::lcos::local::counting_semaphore has been deprecated and
hpx::lcos::local::cpp20_counting_semaphore has been renamed to
hpx::counting_semaphore.

– hpx::lcos::local::cpp20_binary_semaphore has been renamed to hpx::binary_semaphore.

– hpx::lcos::local::sliding_semaphore has been renamed to hpx::sliding_semaphore and

– hpx::lcos::local::sliding_semaphore_var has been renamed to
hpx::sliding_semaphore_var.

– hpx::lcos::local::spinlock has been renamed to hpx::spinlock.

– hpx::lcos::local::mutex has been renamed to hpx::mutex.

– hpx::lcos::local::timed_mutex has been renamed to hpx::timed_mutex.

– hpx::lcos::local::no_mutex has been renamed to hpx::no_mutex.

– hpx::lcos::local::recursive_mutex has been renamed to hpx::recursive_mutex.

– hpx::lcos::local::shared_mutex has been renamed to hpx::shared_mutex.

– hpx::lcos::local::upgrade_lock has been renamed to hpx::upgrade_lock.

– hpx::lcos::local::upgrade_to_unique_lock has been renamed to
hpx::upgrade_to_unique_lock.

– hpx::lcos::local::condition_variable has been renamed to hpx::condition_variable.
hpx::lcos::local::condition_variable_var has been renamed to
hpx::condition_variable_var.

– hpx::lcos::local::once_flag has been renamed to hpx::once_flag, and .
hpx::lcos::local::call_once has been renamed to hpx::call_once.

• The new LCI (Lightweight Communication Interface) parcelport was added that supports irregular and asyn-
chronous applications like graph analysis, sparce linear algebra, modern parallel architectures etc. Major features
include:

2.10. Releases 1589

HPX Documentation, master

– Support for advanced communication primitives like two sided send/recv and one sided remote put.

– Better multi-threaded performance.

– Explicit user control of communication resource.

– Flexible signaling mechanisms (synchronizer, completion queue, active message handler).

• The following CMake flags were added, mostly to support using HPX as a backend for SHAD (https://github.
com/pnnl/SHAD). Please note that these options enable questionable functionalities, partially they even enable
undefined behavior. Please only use any of them if you know what you’re doing:

– HPX_SERIALIZATION_WITH_ALLOW_RAW_POINTER_SERIALIZATION

– HPX_SERIALIZATION_WITH_ALL_TYPES_ARE_BITWISE_SERIALIZABLE

– HPX_SERIALIZATION_WITH_ALLOW_CONST_TUPLE_MEMBERS

Breaking changes

• Minimum required C++ standard library is C++17.

• Support for GCC 7 and Clang 8.0.0 and below has been removed.

• CUDA version required updated to 11.4.

• CMake version required updated to 3.18.

• The default version of Asio used was updated to 1.20.0.

• The default version of APEX used was updated to 2.5.1.

• APEX version was updated to 2.5.1.

• tagged_pair and tagged_tuple were removed.

• tag_dispatch was renamed to tag_invoke.

• hpx.max_backgroud_threads was renamed to hpx.parcel.max_background_threads.

• The following CMake flags were removed after being deprecated for at least two releases:

– HPX_SCHEDULER_MAX_TERMINATED_THREADS

– HPX_WITH_GOOGLE_PERFTOOLS

– HPX_WITH_INIT_START_OVERLOADS_COMPATIBILITY

– HPX_HAVE_{COROUTINE,PLUGIN}_GCC_HIDDEN_VISIBILITY

– HPX_TOP_LEVEL

– HPX_WITH_COMPUTE_CUDA

– HPX_WITH_ASYNC_CUDA

• annotate_function was renamed to scoped_annotation.

• execution::transform was renamed to execution::then.

• execution::detach was renamed to execution::start_detached.

• execution::on_sender was renamed to execution::schedule_on.

• execution::just_on was renamed to execution::just_transfer.

• execution::set_done was renamed to execution::set_stopped.

1590 Chapter 2. What’s so special about HPX?

https://github.com/pnnl/SHAD
https://github.com/pnnl/SHAD

HPX Documentation, master

Closed issues

• Issue #58711523 - distributed::channel.regsiter_as terminates the active task.

• Issue #58561524 - Performance counters do not compile

• Issue #58281525 - hpx::distributed:barrier errors

• Issue #58121526 - OctoTiger does not compile with HPX master and CUDA 11.5

• Issue #57841527 - HPX failing with co_await and hpx::when_all(futures)

• Issue #57741528 - CMake can’t find HPXCacheVariables.cmake

• Issue #57641529 - Fix HIP problem

• Issue #57241530 - Missing binary filter compression header

• Issue #57211531 - Cleanup after repository split

• Issue #57011532 - It seems that the tcp parcelport is running, and the MPI parcelport is ignored

• Issue #56921533 - Kokkos compilation fails when using both HPX and CUDA execution spaces with gcc 9.3.0

• Issue #56861534 - Rename annotate_function

• Issue #56681535 - HPX does not detect the C++ 20 standard using gcc 11.2

• Issue #56661536 - Compilation error using boost 1.76 and gcc 11.2.1

• Issue #56531537 - Implement P2248 for our algorithms

• Issue #56471538 - [User input needed] Remove (CUDA) compute functionality?

• Issue #55901539 - hello_world_distributed fails on startup with HPX stable, MPICH 3.3.2, on Deep Bayou

• Issue #55701540 - Rename tag_dispatch to tag_invoke

• Issue #55661541 - can’t build simple example: “Cannot use the dummy implementation of future_then_dispatch”

• Issue #55651542 - build failure: hpx::string_util::trim()

• Issue #55531543 - Github action to validate the cff file refs #5471

• Issue #55041544 - CMake does not work for HPX 1.7.0 on Piz Daint
1523 https://github.com/STEllAR-GROUP/hpx/issues/5871
1524 https://github.com/STEllAR-GROUP/hpx/issues/5856
1525 https://github.com/STEllAR-GROUP/hpx/issues/5828
1526 https://github.com/STEllAR-GROUP/hpx/issues/5812
1527 https://github.com/STEllAR-GROUP/hpx/issues/5784
1528 https://github.com/STEllAR-GROUP/hpx/issues/5774
1529 https://github.com/STEllAR-GROUP/hpx/issues/5764
1530 https://github.com/STEllAR-GROUP/hpx/issues/5724
1531 https://github.com/STEllAR-GROUP/hpx/issues/5721
1532 https://github.com/STEllAR-GROUP/hpx/issues/5701
1533 https://github.com/STEllAR-GROUP/hpx/issues/5692
1534 https://github.com/STEllAR-GROUP/hpx/issues/5686
1535 https://github.com/STEllAR-GROUP/hpx/issues/5668
1536 https://github.com/STEllAR-GROUP/hpx/issues/5666
1537 https://github.com/STEllAR-GROUP/hpx/issues/5653
1538 https://github.com/STEllAR-GROUP/hpx/issues/5647
1539 https://github.com/STEllAR-GROUP/hpx/issues/5590
1540 https://github.com/STEllAR-GROUP/hpx/issues/5570
1541 https://github.com/STEllAR-GROUP/hpx/issues/5566
1542 https://github.com/STEllAR-GROUP/hpx/issues/5565
1543 https://github.com/STEllAR-GROUP/hpx/issues/5553
1544 https://github.com/STEllAR-GROUP/hpx/issues/5504

2.10. Releases 1591

https://github.com/STEllAR-GROUP/hpx/issues/5871
https://github.com/STEllAR-GROUP/hpx/issues/5856
https://github.com/STEllAR-GROUP/hpx/issues/5828
https://github.com/STEllAR-GROUP/hpx/issues/5812
https://github.com/STEllAR-GROUP/hpx/issues/5784
https://github.com/STEllAR-GROUP/hpx/issues/5774
https://github.com/STEllAR-GROUP/hpx/issues/5764
https://github.com/STEllAR-GROUP/hpx/issues/5724
https://github.com/STEllAR-GROUP/hpx/issues/5721
https://github.com/STEllAR-GROUP/hpx/issues/5701
https://github.com/STEllAR-GROUP/hpx/issues/5692
https://github.com/STEllAR-GROUP/hpx/issues/5686
https://github.com/STEllAR-GROUP/hpx/issues/5668
https://github.com/STEllAR-GROUP/hpx/issues/5666
https://github.com/STEllAR-GROUP/hpx/issues/5653
https://github.com/STEllAR-GROUP/hpx/issues/5647
https://github.com/STEllAR-GROUP/hpx/issues/5590
https://github.com/STEllAR-GROUP/hpx/issues/5570
https://github.com/STEllAR-GROUP/hpx/issues/5566
https://github.com/STEllAR-GROUP/hpx/issues/5565
https://github.com/STEllAR-GROUP/hpx/issues/5553
https://github.com/STEllAR-GROUP/hpx/issues/5504

HPX Documentation, master

• Issue #55031545 - Use contiguous index queue in bulk execution to reduce number of spawned tasks

• Issue #55021546 - C++20 std::coroutine cmake detection

• Issue #54781547 - hpx.dll built with vcpkg got functions pointing to the same location

• Issue #54721548 - Compilation error with cuda/11.3

• Issue #54691549 - Compiler warning about HPX_NODISCARD when building with APEX

• Issue #54631550 - Address minor comments of the C++17 PR bump

• Issue #54561551 - Use std::ranges::iter_swap where available

• Issue #54041552 - Build fails with error “Cannot open include file asio/io_context.hpp”

• Issue #53811553 - Add starts_with and ends_with algorithms

• Issue #53441554 - Further simplify tag_invoke helpers

• Issue #52691555 - Allow setting a label on executors/policies

• Issue #52191556 - (Re-)Implement executor API on top of sender/receiver infrastructure

• Issue #52161557 - Performance counter module not loading

• Issue #51621558 - Require C++17 support

• Issue #51561559 - Disentangle segmented algorithms

• Issue #51181560 - Lock held while suspending

• Issue #51111561 - Tests fail to build with binary_filter plugins enabled

• Issue #51101562 - Tests don’t get built

• Issue #51051563 - PAPI performance counters not available

• Issue #50021564 - hpx::lcos::barrier() results in deadlock

• Issue #49921565 - Clang-format the rest of the files

• Issue #49871566 - Use std::function in public APIs

• Issue #48711567 - HEP: conformance to C++20
1545 https://github.com/STEllAR-GROUP/hpx/issues/5503
1546 https://github.com/STEllAR-GROUP/hpx/issues/5502
1547 https://github.com/STEllAR-GROUP/hpx/issues/5478
1548 https://github.com/STEllAR-GROUP/hpx/issues/5472
1549 https://github.com/STEllAR-GROUP/hpx/issues/5469
1550 https://github.com/STEllAR-GROUP/hpx/issues/5463
1551 https://github.com/STEllAR-GROUP/hpx/issues/5456
1552 https://github.com/STEllAR-GROUP/hpx/issues/5404
1553 https://github.com/STEllAR-GROUP/hpx/issues/5381
1554 https://github.com/STEllAR-GROUP/hpx/issues/5344
1555 https://github.com/STEllAR-GROUP/hpx/issues/5269
1556 https://github.com/STEllAR-GROUP/hpx/issues/5219
1557 https://github.com/STEllAR-GROUP/hpx/issues/5216
1558 https://github.com/STEllAR-GROUP/hpx/issues/5162
1559 https://github.com/STEllAR-GROUP/hpx/issues/5156
1560 https://github.com/STEllAR-GROUP/hpx/issues/5118
1561 https://github.com/STEllAR-GROUP/hpx/issues/5111
1562 https://github.com/STEllAR-GROUP/hpx/issues/5110
1563 https://github.com/STEllAR-GROUP/hpx/issues/5105
1564 https://github.com/STEllAR-GROUP/hpx/issues/5002
1565 https://github.com/STEllAR-GROUP/hpx/issues/4992
1566 https://github.com/STEllAR-GROUP/hpx/issues/4987
1567 https://github.com/STEllAR-GROUP/hpx/issues/4871

1592 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/5503
https://github.com/STEllAR-GROUP/hpx/issues/5502
https://github.com/STEllAR-GROUP/hpx/issues/5478
https://github.com/STEllAR-GROUP/hpx/issues/5472
https://github.com/STEllAR-GROUP/hpx/issues/5469
https://github.com/STEllAR-GROUP/hpx/issues/5463
https://github.com/STEllAR-GROUP/hpx/issues/5456
https://github.com/STEllAR-GROUP/hpx/issues/5404
https://github.com/STEllAR-GROUP/hpx/issues/5381
https://github.com/STEllAR-GROUP/hpx/issues/5344
https://github.com/STEllAR-GROUP/hpx/issues/5269
https://github.com/STEllAR-GROUP/hpx/issues/5219
https://github.com/STEllAR-GROUP/hpx/issues/5216
https://github.com/STEllAR-GROUP/hpx/issues/5162
https://github.com/STEllAR-GROUP/hpx/issues/5156
https://github.com/STEllAR-GROUP/hpx/issues/5118
https://github.com/STEllAR-GROUP/hpx/issues/5111
https://github.com/STEllAR-GROUP/hpx/issues/5110
https://github.com/STEllAR-GROUP/hpx/issues/5105
https://github.com/STEllAR-GROUP/hpx/issues/5002
https://github.com/STEllAR-GROUP/hpx/issues/4992
https://github.com/STEllAR-GROUP/hpx/issues/4987
https://github.com/STEllAR-GROUP/hpx/issues/4871

HPX Documentation, master

• Issue #48221568 - Adapt parallel algorithms to C++20

• Issue #47361569 - Deprecate hpx::flush and hpx::endl

• Issue #45581570 - Prevent work-stealing from stalling

• Issue #44951571 - Add anchor links to table rows in documentation

• Issue #44691572 - New thread state: pending_low

• Issue #43211573 - After the modularization the libfabric parcelport does not compile

• Issue #43081574 - Using APEX on multinode jobs when HPX_WITH_NETWORKING = OFF

• Issue #39951575 - Use C++20 std::source_location where available, adapt ours to conform

• Issue #38611576 - Selected processor does not support ‘yield’ in ARM mode

• Issue #37061577 - Add shift_left and shift_right algorithms

• Issue #36461578 - Parallel algorithms should accept iterator/sentinel pairs

• Issue #36361579 - HPX Modularization

• Issue #35461580 - Modularization of HPX

• Issue #34741581 - Modernize CMake used in HPX

• Issue #18361582 - hpx::parallel does not have a sort implementation

• Issue #16681583 - Adapt all parallel algorithms to Ranges TS

• Issue #11411584 - Implement N4409 on top of HPX

Closed pull requests

• PR #58851585 - Testing newer ASIO version

• PR #58841586 - Fix miscellaneous doc sections

• PR #58821587 - Fixing OctoTiger incompatibility introduced recently

• PR #58811588 - Fixing recent patch that disables ATOMIC_FLAG_INIT for C++20 and up

• PR #58801589 - refactor: convert counter_status enum to enum class
1568 https://github.com/STEllAR-GROUP/hpx/issues/4822
1569 https://github.com/STEllAR-GROUP/hpx/issues/4736
1570 https://github.com/STEllAR-GROUP/hpx/issues/4558
1571 https://github.com/STEllAR-GROUP/hpx/issues/4495
1572 https://github.com/STEllAR-GROUP/hpx/issues/4469
1573 https://github.com/STEllAR-GROUP/hpx/issues/4321
1574 https://github.com/STEllAR-GROUP/hpx/issues/4308
1575 https://github.com/STEllAR-GROUP/hpx/issues/3995
1576 https://github.com/STEllAR-GROUP/hpx/issues/3861
1577 https://github.com/STEllAR-GROUP/hpx/issues/3706
1578 https://github.com/STEllAR-GROUP/hpx/issues/3646
1579 https://github.com/STEllAR-GROUP/hpx/issues/3636
1580 https://github.com/STEllAR-GROUP/hpx/issues/3546
1581 https://github.com/STEllAR-GROUP/hpx/issues/3474
1582 https://github.com/STEllAR-GROUP/hpx/issues/1836
1583 https://github.com/STEllAR-GROUP/hpx/issues/1668
1584 https://github.com/STEllAR-GROUP/hpx/issues/1141
1585 https://github.com/STEllAR-GROUP/hpx/pull/5885
1586 https://github.com/STEllAR-GROUP/hpx/pull/5884
1587 https://github.com/STEllAR-GROUP/hpx/pull/5882
1588 https://github.com/STEllAR-GROUP/hpx/pull/5881
1589 https://github.com/STEllAR-GROUP/hpx/pull/5880

2.10. Releases 1593

https://github.com/STEllAR-GROUP/hpx/issues/4822
https://github.com/STEllAR-GROUP/hpx/issues/4736
https://github.com/STEllAR-GROUP/hpx/issues/4558
https://github.com/STEllAR-GROUP/hpx/issues/4495
https://github.com/STEllAR-GROUP/hpx/issues/4469
https://github.com/STEllAR-GROUP/hpx/issues/4321
https://github.com/STEllAR-GROUP/hpx/issues/4308
https://github.com/STEllAR-GROUP/hpx/issues/3995
https://github.com/STEllAR-GROUP/hpx/issues/3861
https://github.com/STEllAR-GROUP/hpx/issues/3706
https://github.com/STEllAR-GROUP/hpx/issues/3646
https://github.com/STEllAR-GROUP/hpx/issues/3636
https://github.com/STEllAR-GROUP/hpx/issues/3546
https://github.com/STEllAR-GROUP/hpx/issues/3474
https://github.com/STEllAR-GROUP/hpx/issues/1836
https://github.com/STEllAR-GROUP/hpx/issues/1668
https://github.com/STEllAR-GROUP/hpx/issues/1141
https://github.com/STEllAR-GROUP/hpx/pull/5885
https://github.com/STEllAR-GROUP/hpx/pull/5884
https://github.com/STEllAR-GROUP/hpx/pull/5882
https://github.com/STEllAR-GROUP/hpx/pull/5881
https://github.com/STEllAR-GROUP/hpx/pull/5880

HPX Documentation, master

• PR #58781590 - Docs: Replaced non-existent create_reducer function with create_communicator

• PR #58771591 - Doc updates hpx runtime and resources

• PR #58761592 - Updates to documentation; grammar edits.

• PR #58751593 - Doc updates starting the hpx runtime

• PR #58741594 - Doc updates launching configuring

• PR #58731595 - Prevent certain generated files from being deleted on reconfigure

• PR #58701596 - Adding support for the PJM batch environment

• PR #58671597 - Update CMakeLists.txt

• PR #58661598 - add cmake option HPX_WITH_PARCELPORT_COUNTERS

• PR #58641599 - ATOMIC_INIT_FLAG is deprecated starting C++20

• PR #58631600 - Adding llvm 14.0.0 with boost 1.79.0 to Jenkins

• PR #58611601 - Let install step proceed on CircleCI even if the segmented algorithms fail

• PR #58601602 - Updating APEX tag

• PR #58591603 - Splitting documentation generation steps on CircleCI

• PR #58541604 - Fixing left-overs from changing counter_type to enum class

• PR #58531605 - Adding HPX dependency tool (adapted from Boostdep tool)

• PR #58521606 - Optimize LCI parcelport

• PR #58511607 - Forking dynamic_bitset from Boost

• PR #58501608 - Convert perf_counters::counter_type enum to enum class.

• PR #58491609 - Update LCI parcelport to LCI v1.7.1

• PR #58481610 - Fedora related fixes

• PR #58471611 - Fix API, troubleshooting & people

• PR #58441612 - Attempting to fix timeouts of segmented iterator tests
1590 https://github.com/STEllAR-GROUP/hpx/pull/5878
1591 https://github.com/STEllAR-GROUP/hpx/pull/5877
1592 https://github.com/STEllAR-GROUP/hpx/pull/5876
1593 https://github.com/STEllAR-GROUP/hpx/pull/5875
1594 https://github.com/STEllAR-GROUP/hpx/pull/5874
1595 https://github.com/STEllAR-GROUP/hpx/pull/5873
1596 https://github.com/STEllAR-GROUP/hpx/pull/5870
1597 https://github.com/STEllAR-GROUP/hpx/pull/5867
1598 https://github.com/STEllAR-GROUP/hpx/pull/5866
1599 https://github.com/STEllAR-GROUP/hpx/pull/5864
1600 https://github.com/STEllAR-GROUP/hpx/pull/5863
1601 https://github.com/STEllAR-GROUP/hpx/pull/5861
1602 https://github.com/STEllAR-GROUP/hpx/pull/5860
1603 https://github.com/STEllAR-GROUP/hpx/pull/5859
1604 https://github.com/STEllAR-GROUP/hpx/pull/5854
1605 https://github.com/STEllAR-GROUP/hpx/pull/5853
1606 https://github.com/STEllAR-GROUP/hpx/pull/5852
1607 https://github.com/STEllAR-GROUP/hpx/pull/5851
1608 https://github.com/STEllAR-GROUP/hpx/pull/5850
1609 https://github.com/STEllAR-GROUP/hpx/pull/5849
1610 https://github.com/STEllAR-GROUP/hpx/pull/5848
1611 https://github.com/STEllAR-GROUP/hpx/pull/5847
1612 https://github.com/STEllAR-GROUP/hpx/pull/5844

1594 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5878
https://github.com/STEllAR-GROUP/hpx/pull/5877
https://github.com/STEllAR-GROUP/hpx/pull/5876
https://github.com/STEllAR-GROUP/hpx/pull/5875
https://github.com/STEllAR-GROUP/hpx/pull/5874
https://github.com/STEllAR-GROUP/hpx/pull/5873
https://github.com/STEllAR-GROUP/hpx/pull/5870
https://github.com/STEllAR-GROUP/hpx/pull/5867
https://github.com/STEllAR-GROUP/hpx/pull/5866
https://github.com/STEllAR-GROUP/hpx/pull/5864
https://github.com/STEllAR-GROUP/hpx/pull/5863
https://github.com/STEllAR-GROUP/hpx/pull/5861
https://github.com/STEllAR-GROUP/hpx/pull/5860
https://github.com/STEllAR-GROUP/hpx/pull/5859
https://github.com/STEllAR-GROUP/hpx/pull/5854
https://github.com/STEllAR-GROUP/hpx/pull/5853
https://github.com/STEllAR-GROUP/hpx/pull/5852
https://github.com/STEllAR-GROUP/hpx/pull/5851
https://github.com/STEllAR-GROUP/hpx/pull/5850
https://github.com/STEllAR-GROUP/hpx/pull/5849
https://github.com/STEllAR-GROUP/hpx/pull/5848
https://github.com/STEllAR-GROUP/hpx/pull/5847
https://github.com/STEllAR-GROUP/hpx/pull/5844

HPX Documentation, master

• PR #58421613 - change the default value of HPX_WITH_LCI_TAG to v1.7

• PR #58411614 - Move the split_future facilities into the namespace hpx

• PR #58401615 - wait_xxx_nothrow functions return whether one of the futures is exceptional

• PR #58391616 - Moving a list of synchronization primitives into namespace hpx

• PR #58371617 - Moving latch types to hpx and hpx::distributed namespaces

• PR #58351618 - Add missing compatibility layer for id_type::management_type values

• PR #58341619 - API docs changes

• PR #58311620 - Further improvement actions to rotate

• PR #58301621 - Exposing zero-copy serialization threshold through configuration option

• PR #58291622 - Attempting to fix failing barrier test

• PR #58271623 - Add back explicit template parameter to ignore_while_checking to compile with nvcc

• PR #58261624 - Reduce number of allocations while calling async_bulk_execute

• PR #58251625 - Steal from neighboring NUMA domain only

• PR #58231626 - Remove obsolete directories and adjust build system

• PR #58221627 - Clang-format remaining files

• PR #58211628 - Enable permissive- flag on Windows GitHub actions builders

• PR #58201629 - Convert throwmode enum to enum class

• PR #58191630 - Marking customization points for intrusive_ptr as noexcept

• PR #58181631 - Unconditionally use C++17 attributes

• PR #58171632 - Modernize naming modules

• PR #58161633 - Modernize cache module

• PR #58151634 - Reapply flyby changes from #5467

• PR #58141635 - Avoid test timeouts by reducing test sizes
1613 https://github.com/STEllAR-GROUP/hpx/pull/5842
1614 https://github.com/STEllAR-GROUP/hpx/pull/5841
1615 https://github.com/STEllAR-GROUP/hpx/pull/5840
1616 https://github.com/STEllAR-GROUP/hpx/pull/5839
1617 https://github.com/STEllAR-GROUP/hpx/pull/5837
1618 https://github.com/STEllAR-GROUP/hpx/pull/5835
1619 https://github.com/STEllAR-GROUP/hpx/pull/5834
1620 https://github.com/STEllAR-GROUP/hpx/pull/5831
1621 https://github.com/STEllAR-GROUP/hpx/pull/5830
1622 https://github.com/STEllAR-GROUP/hpx/pull/5829
1623 https://github.com/STEllAR-GROUP/hpx/pull/5827
1624 https://github.com/STEllAR-GROUP/hpx/pull/5826
1625 https://github.com/STEllAR-GROUP/hpx/pull/5825
1626 https://github.com/STEllAR-GROUP/hpx/pull/5823
1627 https://github.com/STEllAR-GROUP/hpx/pull/5822
1628 https://github.com/STEllAR-GROUP/hpx/pull/5821
1629 https://github.com/STEllAR-GROUP/hpx/pull/5820
1630 https://github.com/STEllAR-GROUP/hpx/pull/5819
1631 https://github.com/STEllAR-GROUP/hpx/pull/5818
1632 https://github.com/STEllAR-GROUP/hpx/pull/5817
1633 https://github.com/STEllAR-GROUP/hpx/pull/5816
1634 https://github.com/STEllAR-GROUP/hpx/pull/5815
1635 https://github.com/STEllAR-GROUP/hpx/pull/5814

2.10. Releases 1595

https://github.com/STEllAR-GROUP/hpx/pull/5842
https://github.com/STEllAR-GROUP/hpx/pull/5841
https://github.com/STEllAR-GROUP/hpx/pull/5840
https://github.com/STEllAR-GROUP/hpx/pull/5839
https://github.com/STEllAR-GROUP/hpx/pull/5837
https://github.com/STEllAR-GROUP/hpx/pull/5835
https://github.com/STEllAR-GROUP/hpx/pull/5834
https://github.com/STEllAR-GROUP/hpx/pull/5831
https://github.com/STEllAR-GROUP/hpx/pull/5830
https://github.com/STEllAR-GROUP/hpx/pull/5829
https://github.com/STEllAR-GROUP/hpx/pull/5827
https://github.com/STEllAR-GROUP/hpx/pull/5826
https://github.com/STEllAR-GROUP/hpx/pull/5825
https://github.com/STEllAR-GROUP/hpx/pull/5823
https://github.com/STEllAR-GROUP/hpx/pull/5822
https://github.com/STEllAR-GROUP/hpx/pull/5821
https://github.com/STEllAR-GROUP/hpx/pull/5820
https://github.com/STEllAR-GROUP/hpx/pull/5819
https://github.com/STEllAR-GROUP/hpx/pull/5818
https://github.com/STEllAR-GROUP/hpx/pull/5817
https://github.com/STEllAR-GROUP/hpx/pull/5816
https://github.com/STEllAR-GROUP/hpx/pull/5815
https://github.com/STEllAR-GROUP/hpx/pull/5814

HPX Documentation, master

• PR #58131636 - The CUDA problem is not fixed in V11.5 yet. . .

• PR #58111637 - Make sure reduction value is properly moved, when possible

• PR #58101638 - Improve error reporting during device initialization in HIP environments

• PR #58091639 - Converting scheduler enums into enum class

• PR #58081640 - Deprecate hpx::flush and friends

• PR #58071641 - Use C++20 std::source_location, if available

• PR #58061642 - Moving promise and packaged_task to new namespaces

• PR #58051643 - Attempting to fix a test failure when using the LCI parcelpor

• PR #58031644 - Attempt to fix CUDA related OctoTiger problems

• PR #58001645 - Add option to restrict MPI background work to subset of cores

• PR #57981646 - Adding MPI as a dependency to APEX

• PR #57971647 - Extend Sphinx role to support arbitrary text to display on a link

• PR #57961648 - Disable CUDA tests that cause NVCC to silently fail without error messages

• PR #57951649 - Avoid writing path and directories into HPXCacheVariables.cmake

• PR #57931650 - Remove features that are deprecated since V1.6

• PR #57921651 - Making sure num_cores is properly handled by parallel_executor

• PR #57911652 - Moving bind, bind_front, bind_back to namespace hpx

• PR #57901653 - Moving serializable function/move_only_function into namespace hpx::distributed

• PR #57871654 - Remove unneeded (and commented) tests

• PR #57861655 - Attempting to fix hangs in distributed barrier

• PR #57851656 - add cmake code to detect arm64 on macOS

• PR #57831657 - Moving function and function_ref into namespace hpx

• PR #57811658 - Updating used version of Visual Studio
1636 https://github.com/STEllAR-GROUP/hpx/pull/5813
1637 https://github.com/STEllAR-GROUP/hpx/pull/5811
1638 https://github.com/STEllAR-GROUP/hpx/pull/5810
1639 https://github.com/STEllAR-GROUP/hpx/pull/5809
1640 https://github.com/STEllAR-GROUP/hpx/pull/5808
1641 https://github.com/STEllAR-GROUP/hpx/pull/5807
1642 https://github.com/STEllAR-GROUP/hpx/pull/5806
1643 https://github.com/STEllAR-GROUP/hpx/pull/5805
1644 https://github.com/STEllAR-GROUP/hpx/pull/5803
1645 https://github.com/STEllAR-GROUP/hpx/pull/5800
1646 https://github.com/STEllAR-GROUP/hpx/pull/5798
1647 https://github.com/STEllAR-GROUP/hpx/pull/5797
1648 https://github.com/STEllAR-GROUP/hpx/pull/5796
1649 https://github.com/STEllAR-GROUP/hpx/pull/5795
1650 https://github.com/STEllAR-GROUP/hpx/pull/5793
1651 https://github.com/STEllAR-GROUP/hpx/pull/5792
1652 https://github.com/STEllAR-GROUP/hpx/pull/5791
1653 https://github.com/STEllAR-GROUP/hpx/pull/5790
1654 https://github.com/STEllAR-GROUP/hpx/pull/5787
1655 https://github.com/STEllAR-GROUP/hpx/pull/5786
1656 https://github.com/STEllAR-GROUP/hpx/pull/5785
1657 https://github.com/STEllAR-GROUP/hpx/pull/5783
1658 https://github.com/STEllAR-GROUP/hpx/pull/5781

1596 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5813
https://github.com/STEllAR-GROUP/hpx/pull/5811
https://github.com/STEllAR-GROUP/hpx/pull/5810
https://github.com/STEllAR-GROUP/hpx/pull/5809
https://github.com/STEllAR-GROUP/hpx/pull/5808
https://github.com/STEllAR-GROUP/hpx/pull/5807
https://github.com/STEllAR-GROUP/hpx/pull/5806
https://github.com/STEllAR-GROUP/hpx/pull/5805
https://github.com/STEllAR-GROUP/hpx/pull/5803
https://github.com/STEllAR-GROUP/hpx/pull/5800
https://github.com/STEllAR-GROUP/hpx/pull/5798
https://github.com/STEllAR-GROUP/hpx/pull/5797
https://github.com/STEllAR-GROUP/hpx/pull/5796
https://github.com/STEllAR-GROUP/hpx/pull/5795
https://github.com/STEllAR-GROUP/hpx/pull/5793
https://github.com/STEllAR-GROUP/hpx/pull/5792
https://github.com/STEllAR-GROUP/hpx/pull/5791
https://github.com/STEllAR-GROUP/hpx/pull/5790
https://github.com/STEllAR-GROUP/hpx/pull/5787
https://github.com/STEllAR-GROUP/hpx/pull/5786
https://github.com/STEllAR-GROUP/hpx/pull/5785
https://github.com/STEllAR-GROUP/hpx/pull/5783
https://github.com/STEllAR-GROUP/hpx/pull/5781

HPX Documentation, master

• PR #57801659 - Update Piz Daint Jenkins configurations from gcc/clang 7 to 8

• PR #57781660 - Updated for_loop.hpp

• PR #57771661 - Update reference for foreach benchmark

• PR #57751662 - Move optional into namespace hpx

• PR #57731663 - Moving barrier to consolidated namespaces

• PR #57721664 - Adding missing docs for ranges::find_if and find_if_not algorithms

• PR #57711665 - Moving for_loop into namespace hpx::experimental

• PR #57701666 - Fixing HIP issues

• PR #57691667 - Slight improvement of small_vector performance

• PR #57661668 - Fixing a integral conversion warning

• PR #57651669 - Adding a sphinx role allowing to link to a file directly in github

• PR #57631670 - add num_cores facility

• PR #57621671 - Fix Public API main page

• PR #57611672 - Add missing inline to mpi_exception.hpp error_message function

• PR #57601673 - Update cdash build url

• PR #57591674 - Switch to use generic rostam SLURM partitions

• PR #57581675 - Adding support for P2300 completion signatures

• PR #57571676 - Fix missing links in Public API

• PR #57561677 - Add stop support to when_all

• PR #57551678 - Support for data-parallelism for mismatch algorithm

• PR #57541679 - Support for data-parallelism for equal algorithm

• PR #57511680 - Propagate MPI dependencies to command line handling

• PR #57501681 - Make sure required MPI initialization flags are properly applied and supported
1659 https://github.com/STEllAR-GROUP/hpx/pull/5780
1660 https://github.com/STEllAR-GROUP/hpx/pull/5778
1661 https://github.com/STEllAR-GROUP/hpx/pull/5777
1662 https://github.com/STEllAR-GROUP/hpx/pull/5775
1663 https://github.com/STEllAR-GROUP/hpx/pull/5773
1664 https://github.com/STEllAR-GROUP/hpx/pull/5772
1665 https://github.com/STEllAR-GROUP/hpx/pull/5771
1666 https://github.com/STEllAR-GROUP/hpx/pull/5770
1667 https://github.com/STEllAR-GROUP/hpx/pull/5769
1668 https://github.com/STEllAR-GROUP/hpx/pull/5766
1669 https://github.com/STEllAR-GROUP/hpx/pull/5765
1670 https://github.com/STEllAR-GROUP/hpx/pull/5763
1671 https://github.com/STEllAR-GROUP/hpx/pull/5762
1672 https://github.com/STEllAR-GROUP/hpx/pull/5761
1673 https://github.com/STEllAR-GROUP/hpx/pull/5760
1674 https://github.com/STEllAR-GROUP/hpx/pull/5759
1675 https://github.com/STEllAR-GROUP/hpx/pull/5758
1676 https://github.com/STEllAR-GROUP/hpx/pull/5757
1677 https://github.com/STEllAR-GROUP/hpx/pull/5756
1678 https://github.com/STEllAR-GROUP/hpx/pull/5755
1679 https://github.com/STEllAR-GROUP/hpx/pull/5754
1680 https://github.com/STEllAR-GROUP/hpx/pull/5751
1681 https://github.com/STEllAR-GROUP/hpx/pull/5750

2.10. Releases 1597

https://github.com/STEllAR-GROUP/hpx/pull/5780
https://github.com/STEllAR-GROUP/hpx/pull/5778
https://github.com/STEllAR-GROUP/hpx/pull/5777
https://github.com/STEllAR-GROUP/hpx/pull/5775
https://github.com/STEllAR-GROUP/hpx/pull/5773
https://github.com/STEllAR-GROUP/hpx/pull/5772
https://github.com/STEllAR-GROUP/hpx/pull/5771
https://github.com/STEllAR-GROUP/hpx/pull/5770
https://github.com/STEllAR-GROUP/hpx/pull/5769
https://github.com/STEllAR-GROUP/hpx/pull/5766
https://github.com/STEllAR-GROUP/hpx/pull/5765
https://github.com/STEllAR-GROUP/hpx/pull/5763
https://github.com/STEllAR-GROUP/hpx/pull/5762
https://github.com/STEllAR-GROUP/hpx/pull/5761
https://github.com/STEllAR-GROUP/hpx/pull/5760
https://github.com/STEllAR-GROUP/hpx/pull/5759
https://github.com/STEllAR-GROUP/hpx/pull/5758
https://github.com/STEllAR-GROUP/hpx/pull/5757
https://github.com/STEllAR-GROUP/hpx/pull/5756
https://github.com/STEllAR-GROUP/hpx/pull/5755
https://github.com/STEllAR-GROUP/hpx/pull/5754
https://github.com/STEllAR-GROUP/hpx/pull/5751
https://github.com/STEllAR-GROUP/hpx/pull/5750

HPX Documentation, master

• PR #57491682 - P2300 stop token

• PR #57481683 - Adding environmental query CPOs

• PR #57471684 - Renaming set_done to set_stopped (as per P2300)

• PR #57451685 - Modernize serialization module

• PR #57431686 - Add check for MPICH and set the correct env to support multi-threaded

• PR #57421687 - Remove obsolete files related to cpuid, etc.

• PR #57411688 - Support for data-parallelism for adjacent find

• PR #57401689 - Support for data-parallelism for find algorithms

• PR #57391690 - Enable the option to attach a debugger on a segmentation fault (linux)

• PR #57381691 - Fixing spell-checking errors

• PR #57371692 - Attempt to fix migrate_component issue

• PR #57361693 - Set commit status from Jenkins also for special branches

• PR #57341694 - Revert #5586

• PR #57321695 - Attempt to improve build-id reporting to cdash

• PR #57311696 - Randomly delay execution of bash scripts launched by Jenkins

• PR #57291697 - Workaround for CMake/Ninja generator OOM problem

• PR #57271698 - Moving compression plugins to components directory

• PR #57261699 - Moving/consolidating parcel coalescing plugin sources

• PR #57251700 - Making sure headers for serialization filters are being installed

• PR #57231701 - Moving more tests to modules

• PR #57221702 - Removing superfluous semicolons

• PR #57201703 - Moving parcelports into modules

• PR #57191704 - Moving more files to parcelset module
1682 https://github.com/STEllAR-GROUP/hpx/pull/5749
1683 https://github.com/STEllAR-GROUP/hpx/pull/5748
1684 https://github.com/STEllAR-GROUP/hpx/pull/5747
1685 https://github.com/STEllAR-GROUP/hpx/pull/5745
1686 https://github.com/STEllAR-GROUP/hpx/pull/5743
1687 https://github.com/STEllAR-GROUP/hpx/pull/5742
1688 https://github.com/STEllAR-GROUP/hpx/pull/5741
1689 https://github.com/STEllAR-GROUP/hpx/pull/5740
1690 https://github.com/STEllAR-GROUP/hpx/pull/5739
1691 https://github.com/STEllAR-GROUP/hpx/pull/5738
1692 https://github.com/STEllAR-GROUP/hpx/pull/5737
1693 https://github.com/STEllAR-GROUP/hpx/pull/5736
1694 https://github.com/STEllAR-GROUP/hpx/pull/5734
1695 https://github.com/STEllAR-GROUP/hpx/pull/5732
1696 https://github.com/STEllAR-GROUP/hpx/pull/5731
1697 https://github.com/STEllAR-GROUP/hpx/pull/5729
1698 https://github.com/STEllAR-GROUP/hpx/pull/5727
1699 https://github.com/STEllAR-GROUP/hpx/pull/5726
1700 https://github.com/STEllAR-GROUP/hpx/pull/5725
1701 https://github.com/STEllAR-GROUP/hpx/pull/5723
1702 https://github.com/STEllAR-GROUP/hpx/pull/5722
1703 https://github.com/STEllAR-GROUP/hpx/pull/5720
1704 https://github.com/STEllAR-GROUP/hpx/pull/5719

1598 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5749
https://github.com/STEllAR-GROUP/hpx/pull/5748
https://github.com/STEllAR-GROUP/hpx/pull/5747
https://github.com/STEllAR-GROUP/hpx/pull/5745
https://github.com/STEllAR-GROUP/hpx/pull/5743
https://github.com/STEllAR-GROUP/hpx/pull/5742
https://github.com/STEllAR-GROUP/hpx/pull/5741
https://github.com/STEllAR-GROUP/hpx/pull/5740
https://github.com/STEllAR-GROUP/hpx/pull/5739
https://github.com/STEllAR-GROUP/hpx/pull/5738
https://github.com/STEllAR-GROUP/hpx/pull/5737
https://github.com/STEllAR-GROUP/hpx/pull/5736
https://github.com/STEllAR-GROUP/hpx/pull/5734
https://github.com/STEllAR-GROUP/hpx/pull/5732
https://github.com/STEllAR-GROUP/hpx/pull/5731
https://github.com/STEllAR-GROUP/hpx/pull/5729
https://github.com/STEllAR-GROUP/hpx/pull/5727
https://github.com/STEllAR-GROUP/hpx/pull/5726
https://github.com/STEllAR-GROUP/hpx/pull/5725
https://github.com/STEllAR-GROUP/hpx/pull/5723
https://github.com/STEllAR-GROUP/hpx/pull/5722
https://github.com/STEllAR-GROUP/hpx/pull/5720
https://github.com/STEllAR-GROUP/hpx/pull/5719

HPX Documentation, master

• PR #57181705 - build: refactor sphinx config file

• PR #57171706 - Creating parcelset modules

• PR #57161707 - Avoid duplicate definition error

• PR #57151708 - The new LCI parcelport for HPX

• PR #57141709 - Refine propagation of HPX_WITH_. . . options

• PR #57131710 - Significantly reduce CI jobs run on Piz Daint

• PR #57121711 - Updating jenkins configuration for Rostam2.2

• PR #57111712 - Refactor manual sections

• PR #57101713 - Making task_group serializable

• PR #57091714 - Update the MPI cmake setup

• PR #57071715 - Better diagnose parcel bootstrap problems

• PR #57041716 - Test with hwloc 2.7.0 with GCC 11

• PR #57031717 - Fix counting_iterator container tests

• PR #57021718 - Attempting to fix CircleCI timeouts

• PR #56991719 - Update CI to use Boost 1.78.0

• PR #56971720 - Adding fork_join_executor to foreach_benchmark

• PR #56961721 - Modernize when_all and friends (when_any, when_some, when_each)

• PR #56931722 - Fix test errors with _GLIBCXX_DEBUG defined

• PR #56911723 - Rename annotate_function to scoped_annotation

• PR #56901724 - Replace tag_dispatch with tag_invoke in minmax segmented

• PR #56881725 - Remove more deprecated macros

• PR #56871726 - Add most important CMake options

• PR #56851727 - Fix future API
1705 https://github.com/STEllAR-GROUP/hpx/pull/5718
1706 https://github.com/STEllAR-GROUP/hpx/pull/5717
1707 https://github.com/STEllAR-GROUP/hpx/pull/5716
1708 https://github.com/STEllAR-GROUP/hpx/pull/5715
1709 https://github.com/STEllAR-GROUP/hpx/pull/5714
1710 https://github.com/STEllAR-GROUP/hpx/pull/5713
1711 https://github.com/STEllAR-GROUP/hpx/pull/5712
1712 https://github.com/STEllAR-GROUP/hpx/pull/5711
1713 https://github.com/STEllAR-GROUP/hpx/pull/5710
1714 https://github.com/STEllAR-GROUP/hpx/pull/5709
1715 https://github.com/STEllAR-GROUP/hpx/pull/5707
1716 https://github.com/STEllAR-GROUP/hpx/pull/5704
1717 https://github.com/STEllAR-GROUP/hpx/pull/5703
1718 https://github.com/STEllAR-GROUP/hpx/pull/5702
1719 https://github.com/STEllAR-GROUP/hpx/pull/5699
1720 https://github.com/STEllAR-GROUP/hpx/pull/5697
1721 https://github.com/STEllAR-GROUP/hpx/pull/5696
1722 https://github.com/STEllAR-GROUP/hpx/pull/5693
1723 https://github.com/STEllAR-GROUP/hpx/pull/5691
1724 https://github.com/STEllAR-GROUP/hpx/pull/5690
1725 https://github.com/STEllAR-GROUP/hpx/pull/5688
1726 https://github.com/STEllAR-GROUP/hpx/pull/5687
1727 https://github.com/STEllAR-GROUP/hpx/pull/5685

2.10. Releases 1599

https://github.com/STEllAR-GROUP/hpx/pull/5718
https://github.com/STEllAR-GROUP/hpx/pull/5717
https://github.com/STEllAR-GROUP/hpx/pull/5716
https://github.com/STEllAR-GROUP/hpx/pull/5715
https://github.com/STEllAR-GROUP/hpx/pull/5714
https://github.com/STEllAR-GROUP/hpx/pull/5713
https://github.com/STEllAR-GROUP/hpx/pull/5712
https://github.com/STEllAR-GROUP/hpx/pull/5711
https://github.com/STEllAR-GROUP/hpx/pull/5710
https://github.com/STEllAR-GROUP/hpx/pull/5709
https://github.com/STEllAR-GROUP/hpx/pull/5707
https://github.com/STEllAR-GROUP/hpx/pull/5704
https://github.com/STEllAR-GROUP/hpx/pull/5703
https://github.com/STEllAR-GROUP/hpx/pull/5702
https://github.com/STEllAR-GROUP/hpx/pull/5699
https://github.com/STEllAR-GROUP/hpx/pull/5697
https://github.com/STEllAR-GROUP/hpx/pull/5696
https://github.com/STEllAR-GROUP/hpx/pull/5693
https://github.com/STEllAR-GROUP/hpx/pull/5691
https://github.com/STEllAR-GROUP/hpx/pull/5690
https://github.com/STEllAR-GROUP/hpx/pull/5688
https://github.com/STEllAR-GROUP/hpx/pull/5687
https://github.com/STEllAR-GROUP/hpx/pull/5685

HPX Documentation, master

• PR #56841728 - Move lock registration to separate module and remove global lock registration

• PR #56831729 - Make hpx::wait_all etc. throw exceptions when waited futures hold exceptions and deprecate
hpx::lcos::wait_all[_n] in favor of hpx::wait_all[_n]

• PR #56821730 - Fix macOS test exceptions

• PR #56811731 - docs: add links to hpx recepies

• PR #56801732 - Embed base execution policies to datapar execution policies

• PR #56791733 - Fix fork_join_executor with dynamic schedule

• PR #56781734 - Fix compilation of service executors with nvcc

• PR #56771735 - Remove compute_cuda module

• PR #56761736 - Don’t require up-to-date approvals for bors

• PR #56751737 - Add default template type parameters for algorithms

• PR #56741738 - Allow using any_sender in global variables

• PR #56711739 - Making sure task_group can be reused

• PR #56701740 - Relax constraints on execution::when_all

• PR #56691741 - Use HPX_WITH_CXX_STANDARD for controlling C++ version

• PR #56671742 - Attempt to fix compilation issues with Boost V1.76

• PR #56641743 - Change logging errors to warnings in schedulers

• PR #56631744 - Use dynamic bitsets by default for CPU masks

• PR #56621745 - Disambiguate namespace for MSVC

• PR #56601746 - Replacing remaining std::forward and std::move with HPX_FORWARD and HPX_MOVE

• PR #56591747 - Modernize hpx::future and related facilities

• PR #56581748 - Replace HPX_INLINE_CONSTEXPR_VARIABLE with inline constexpr

• PR #56571749 - Remove tagged, tagged_pair and tagged_tuple, remove tuple/pair specializations

• PR #56561750 - Rename on execution::schedule_from, rename just_on to just_transfer, and add transfer
1728 https://github.com/STEllAR-GROUP/hpx/pull/5684
1729 https://github.com/STEllAR-GROUP/hpx/pull/5683
1730 https://github.com/STEllAR-GROUP/hpx/pull/5682
1731 https://github.com/STEllAR-GROUP/hpx/pull/5681
1732 https://github.com/STEllAR-GROUP/hpx/pull/5680
1733 https://github.com/STEllAR-GROUP/hpx/pull/5679
1734 https://github.com/STEllAR-GROUP/hpx/pull/5678
1735 https://github.com/STEllAR-GROUP/hpx/pull/5677
1736 https://github.com/STEllAR-GROUP/hpx/pull/5676
1737 https://github.com/STEllAR-GROUP/hpx/pull/5675
1738 https://github.com/STEllAR-GROUP/hpx/pull/5674
1739 https://github.com/STEllAR-GROUP/hpx/pull/5671
1740 https://github.com/STEllAR-GROUP/hpx/pull/5670
1741 https://github.com/STEllAR-GROUP/hpx/pull/5669
1742 https://github.com/STEllAR-GROUP/hpx/pull/5667
1743 https://github.com/STEllAR-GROUP/hpx/pull/5664
1744 https://github.com/STEllAR-GROUP/hpx/pull/5663
1745 https://github.com/STEllAR-GROUP/hpx/pull/5662
1746 https://github.com/STEllAR-GROUP/hpx/pull/5660
1747 https://github.com/STEllAR-GROUP/hpx/pull/5659
1748 https://github.com/STEllAR-GROUP/hpx/pull/5658
1749 https://github.com/STEllAR-GROUP/hpx/pull/5657
1750 https://github.com/STEllAR-GROUP/hpx/pull/5656

1600 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5684
https://github.com/STEllAR-GROUP/hpx/pull/5683
https://github.com/STEllAR-GROUP/hpx/pull/5682
https://github.com/STEllAR-GROUP/hpx/pull/5681
https://github.com/STEllAR-GROUP/hpx/pull/5680
https://github.com/STEllAR-GROUP/hpx/pull/5679
https://github.com/STEllAR-GROUP/hpx/pull/5678
https://github.com/STEllAR-GROUP/hpx/pull/5677
https://github.com/STEllAR-GROUP/hpx/pull/5676
https://github.com/STEllAR-GROUP/hpx/pull/5675
https://github.com/STEllAR-GROUP/hpx/pull/5674
https://github.com/STEllAR-GROUP/hpx/pull/5671
https://github.com/STEllAR-GROUP/hpx/pull/5670
https://github.com/STEllAR-GROUP/hpx/pull/5669
https://github.com/STEllAR-GROUP/hpx/pull/5667
https://github.com/STEllAR-GROUP/hpx/pull/5664
https://github.com/STEllAR-GROUP/hpx/pull/5663
https://github.com/STEllAR-GROUP/hpx/pull/5662
https://github.com/STEllAR-GROUP/hpx/pull/5660
https://github.com/STEllAR-GROUP/hpx/pull/5659
https://github.com/STEllAR-GROUP/hpx/pull/5658
https://github.com/STEllAR-GROUP/hpx/pull/5657
https://github.com/STEllAR-GROUP/hpx/pull/5656

HPX Documentation, master

• PR #56551751 - Avoid for module lists to grow indefinitely in cmake cache

• PR #56491752 - build: replace usage of Python’s reserved words and functions as variable names

• PR #56481753 - Modernize action modules and related code

• PR #56461754 - Fix ends_with test

• PR #56451755 - Add matrix multiplication example

• PR #56441756 - Rename execution::transform to execution::then and execution::detach to execu-
tion::start_detached

• PR #56431757 - Update performance test references

• PR #56421758 - Adapting adjacent_difference to work with proxy iterators

• PR #56411759 - Factorize perftests scripts

• PR #56401760 - Fixed links to sources in Sphinx documentation

• PR #56391761 - Fix generate datapar tests for Vc

• PR #56381762 - Simd all any none

• PR #56371763 - Use bors for merging pull requests

• PR #56361764 - Fix leftover std::holds_alternative usage

• PR #56351765 - Update container image tag in GitHub actions HIP configuration

• PR #56331766 - Moving packaged_task to module futures

• PR #56321767 - Tell Asio to use std::aligned_new only if available

• PR #56311768 - Adding tag parameter to channel communicator get/set

• PR #56301769 - Add partial_sort_copy and adapt partial sort to c++ 20

• PR #56291770 - Set HPX_WITH_FETCH_ASIO to OFF as available in the docker image

• PR #56281771 - Add Clang 13 CI configuration

• PR #56271772 - Replace alternative keyword

• PR #56261773 - docs: add support for BibTeX references in Sphinx docs
1751 https://github.com/STEllAR-GROUP/hpx/pull/5655
1752 https://github.com/STEllAR-GROUP/hpx/pull/5649
1753 https://github.com/STEllAR-GROUP/hpx/pull/5648
1754 https://github.com/STEllAR-GROUP/hpx/pull/5646
1755 https://github.com/STEllAR-GROUP/hpx/pull/5645
1756 https://github.com/STEllAR-GROUP/hpx/pull/5644
1757 https://github.com/STEllAR-GROUP/hpx/pull/5643
1758 https://github.com/STEllAR-GROUP/hpx/pull/5642
1759 https://github.com/STEllAR-GROUP/hpx/pull/5641
1760 https://github.com/STEllAR-GROUP/hpx/pull/5640
1761 https://github.com/STEllAR-GROUP/hpx/pull/5639
1762 https://github.com/STEllAR-GROUP/hpx/pull/5638
1763 https://github.com/STEllAR-GROUP/hpx/pull/5637
1764 https://github.com/STEllAR-GROUP/hpx/pull/5636
1765 https://github.com/STEllAR-GROUP/hpx/pull/5635
1766 https://github.com/STEllAR-GROUP/hpx/pull/5633
1767 https://github.com/STEllAR-GROUP/hpx/pull/5632
1768 https://github.com/STEllAR-GROUP/hpx/pull/5631
1769 https://github.com/STEllAR-GROUP/hpx/pull/5630
1770 https://github.com/STEllAR-GROUP/hpx/pull/5629
1771 https://github.com/STEllAR-GROUP/hpx/pull/5628
1772 https://github.com/STEllAR-GROUP/hpx/pull/5627
1773 https://github.com/STEllAR-GROUP/hpx/pull/5626

2.10. Releases 1601

https://github.com/STEllAR-GROUP/hpx/pull/5655
https://github.com/STEllAR-GROUP/hpx/pull/5649
https://github.com/STEllAR-GROUP/hpx/pull/5648
https://github.com/STEllAR-GROUP/hpx/pull/5646
https://github.com/STEllAR-GROUP/hpx/pull/5645
https://github.com/STEllAR-GROUP/hpx/pull/5644
https://github.com/STEllAR-GROUP/hpx/pull/5643
https://github.com/STEllAR-GROUP/hpx/pull/5642
https://github.com/STEllAR-GROUP/hpx/pull/5641
https://github.com/STEllAR-GROUP/hpx/pull/5640
https://github.com/STEllAR-GROUP/hpx/pull/5639
https://github.com/STEllAR-GROUP/hpx/pull/5638
https://github.com/STEllAR-GROUP/hpx/pull/5637
https://github.com/STEllAR-GROUP/hpx/pull/5636
https://github.com/STEllAR-GROUP/hpx/pull/5635
https://github.com/STEllAR-GROUP/hpx/pull/5633
https://github.com/STEllAR-GROUP/hpx/pull/5632
https://github.com/STEllAR-GROUP/hpx/pull/5631
https://github.com/STEllAR-GROUP/hpx/pull/5630
https://github.com/STEllAR-GROUP/hpx/pull/5629
https://github.com/STEllAR-GROUP/hpx/pull/5628
https://github.com/STEllAR-GROUP/hpx/pull/5627
https://github.com/STEllAR-GROUP/hpx/pull/5626

HPX Documentation, master

• PR #56241774 - Fix pkgconfig replacements involving CMAKE_INSTALL_PREFIX

• PR #56231775 - build: remove unused import from conf.py.in

• PR #56221776 - Remove HPX_WITH_VCPKG CMake option

• PR #56211777 - Replacing boost::container::small_vector

• PR #56201778 - Update Asio tag from 1.18.2 to 1.20.0

• PR #56191779 - Fix block_os_threads_1036 test

• PR #56181780 - Make sure condition variables are notified under a lock in the thread_pool_scheduler test

• PR #56171781 - Use advance_and_get_distance where required

• PR #56161782 - Remove separately building segmented algorithms on CircleCI

• PR #56131783 - Fix Vc datapar adjacent_difference

• PR #56091784 - docs: add anchor links to performance counter tables

• PR #56081785 - Fix header test error by adding missing numeric

• PR #56071786 - Fix simd adj diff

• PR #56051787 - Fix usage of HPX_INVOKE macro

• PR #56041788 - Make use of shell-session to allow non-copyable $

• PR #56031789 - Suppress some MSVC warnings in C++20 mode

• PR #56021790 - Test HPX_DATASTRUCTURES_WITH_ADAPT_STD_TUPLE=OFF to one CI configuration

• PR #56011791 - Test case for any_sender should use hpx::tuple

• PR #56001792 - Rename tag_dispatch back to tag_invoke

• PR #55991793 - Change theme, fix Quickstart & Examples

• PR #55961794 - Use precompiled headers in tests

• PR #55951795 - Drop semicolons for macro calls

• PR #55941796 - Adapt datapar generate
1774 https://github.com/STEllAR-GROUP/hpx/pull/5624
1775 https://github.com/STEllAR-GROUP/hpx/pull/5623
1776 https://github.com/STEllAR-GROUP/hpx/pull/5622
1777 https://github.com/STEllAR-GROUP/hpx/pull/5621
1778 https://github.com/STEllAR-GROUP/hpx/pull/5620
1779 https://github.com/STEllAR-GROUP/hpx/pull/5619
1780 https://github.com/STEllAR-GROUP/hpx/pull/5618
1781 https://github.com/STEllAR-GROUP/hpx/pull/5617
1782 https://github.com/STEllAR-GROUP/hpx/pull/5616
1783 https://github.com/STEllAR-GROUP/hpx/pull/5613
1784 https://github.com/STEllAR-GROUP/hpx/pull/5609
1785 https://github.com/STEllAR-GROUP/hpx/pull/5608
1786 https://github.com/STEllAR-GROUP/hpx/pull/5607
1787 https://github.com/STEllAR-GROUP/hpx/pull/5605
1788 https://github.com/STEllAR-GROUP/hpx/pull/5604
1789 https://github.com/STEllAR-GROUP/hpx/pull/5603
1790 https://github.com/STEllAR-GROUP/hpx/pull/5602
1791 https://github.com/STEllAR-GROUP/hpx/pull/5601
1792 https://github.com/STEllAR-GROUP/hpx/pull/5600
1793 https://github.com/STEllAR-GROUP/hpx/pull/5599
1794 https://github.com/STEllAR-GROUP/hpx/pull/5596
1795 https://github.com/STEllAR-GROUP/hpx/pull/5595
1796 https://github.com/STEllAR-GROUP/hpx/pull/5594

1602 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5624
https://github.com/STEllAR-GROUP/hpx/pull/5623
https://github.com/STEllAR-GROUP/hpx/pull/5622
https://github.com/STEllAR-GROUP/hpx/pull/5621
https://github.com/STEllAR-GROUP/hpx/pull/5620
https://github.com/STEllAR-GROUP/hpx/pull/5619
https://github.com/STEllAR-GROUP/hpx/pull/5618
https://github.com/STEllAR-GROUP/hpx/pull/5617
https://github.com/STEllAR-GROUP/hpx/pull/5616
https://github.com/STEllAR-GROUP/hpx/pull/5613
https://github.com/STEllAR-GROUP/hpx/pull/5609
https://github.com/STEllAR-GROUP/hpx/pull/5608
https://github.com/STEllAR-GROUP/hpx/pull/5607
https://github.com/STEllAR-GROUP/hpx/pull/5605
https://github.com/STEllAR-GROUP/hpx/pull/5604
https://github.com/STEllAR-GROUP/hpx/pull/5603
https://github.com/STEllAR-GROUP/hpx/pull/5602
https://github.com/STEllAR-GROUP/hpx/pull/5601
https://github.com/STEllAR-GROUP/hpx/pull/5600
https://github.com/STEllAR-GROUP/hpx/pull/5599
https://github.com/STEllAR-GROUP/hpx/pull/5596
https://github.com/STEllAR-GROUP/hpx/pull/5595
https://github.com/STEllAR-GROUP/hpx/pull/5594

HPX Documentation, master

• PR #55931797 - Update any_sender to use tag_dispatch for execution customizations

• PR #55921798 - Add nth_element

• PR #55911799 - Remove unnecessary checks for C++17 for tests

• PR #55891800 - Add HPX_FORWARD/HPX_MOVE macros

• PR #55881801 - Fixing the output formatting for id_types

• PR #55861802 - Remove local functionality

• PR #55851803 - Delete GitExternal.cmake

• PR #55841804 - Serialization of hpx::tuple must use hpx::get

• PR #55831805 - fix coroutine_traits allocate calls, add unhandled_exception() implementation.

• PR #55821806 - Make more examples work with local runtime

• PR #55811807 - Add support for several performance tests in CI

• PR #55801808 - Adapt simd adj diff

• PR #55791809 - Split absolute paths for generated pkg-config files into -L/-l parts

• PR #55771810 - fix unit fill test for datapar with Vc

• PR #55761811 - Update forgotten “Full” names

• PR #55751812 - Change scan partitioner implementation

• PR #55741813 - Remove a few deprecated and unused CMake options

• PR #55721814 - Remove more guards for the distributed runtime

• PR #55711815 - Add workaround for libstc++ in string_util trim

• PR #55691816 - Use no_unique_address in sender adaptors

• PR #55681817 - Change try catch block to try_catch_exception_ptr

• PR #55671818 - Make default_agent::yield actually yield

• PR #55641819 - Adjacent
1797 https://github.com/STEllAR-GROUP/hpx/pull/5593
1798 https://github.com/STEllAR-GROUP/hpx/pull/5592
1799 https://github.com/STEllAR-GROUP/hpx/pull/5591
1800 https://github.com/STEllAR-GROUP/hpx/pull/5589
1801 https://github.com/STEllAR-GROUP/hpx/pull/5588
1802 https://github.com/STEllAR-GROUP/hpx/pull/5586
1803 https://github.com/STEllAR-GROUP/hpx/pull/5585
1804 https://github.com/STEllAR-GROUP/hpx/pull/5584
1805 https://github.com/STEllAR-GROUP/hpx/pull/5583
1806 https://github.com/STEllAR-GROUP/hpx/pull/5582
1807 https://github.com/STEllAR-GROUP/hpx/pull/5581
1808 https://github.com/STEllAR-GROUP/hpx/pull/5580
1809 https://github.com/STEllAR-GROUP/hpx/pull/5579
1810 https://github.com/STEllAR-GROUP/hpx/pull/5577
1811 https://github.com/STEllAR-GROUP/hpx/pull/5576
1812 https://github.com/STEllAR-GROUP/hpx/pull/5575
1813 https://github.com/STEllAR-GROUP/hpx/pull/5574
1814 https://github.com/STEllAR-GROUP/hpx/pull/5572
1815 https://github.com/STEllAR-GROUP/hpx/pull/5571
1816 https://github.com/STEllAR-GROUP/hpx/pull/5569
1817 https://github.com/STEllAR-GROUP/hpx/pull/5568
1818 https://github.com/STEllAR-GROUP/hpx/pull/5567
1819 https://github.com/STEllAR-GROUP/hpx/pull/5564

2.10. Releases 1603

https://github.com/STEllAR-GROUP/hpx/pull/5593
https://github.com/STEllAR-GROUP/hpx/pull/5592
https://github.com/STEllAR-GROUP/hpx/pull/5591
https://github.com/STEllAR-GROUP/hpx/pull/5589
https://github.com/STEllAR-GROUP/hpx/pull/5588
https://github.com/STEllAR-GROUP/hpx/pull/5586
https://github.com/STEllAR-GROUP/hpx/pull/5585
https://github.com/STEllAR-GROUP/hpx/pull/5584
https://github.com/STEllAR-GROUP/hpx/pull/5583
https://github.com/STEllAR-GROUP/hpx/pull/5582
https://github.com/STEllAR-GROUP/hpx/pull/5581
https://github.com/STEllAR-GROUP/hpx/pull/5580
https://github.com/STEllAR-GROUP/hpx/pull/5579
https://github.com/STEllAR-GROUP/hpx/pull/5577
https://github.com/STEllAR-GROUP/hpx/pull/5576
https://github.com/STEllAR-GROUP/hpx/pull/5575
https://github.com/STEllAR-GROUP/hpx/pull/5574
https://github.com/STEllAR-GROUP/hpx/pull/5572
https://github.com/STEllAR-GROUP/hpx/pull/5571
https://github.com/STEllAR-GROUP/hpx/pull/5569
https://github.com/STEllAR-GROUP/hpx/pull/5568
https://github.com/STEllAR-GROUP/hpx/pull/5567
https://github.com/STEllAR-GROUP/hpx/pull/5564

HPX Documentation, master

• PR #55621820 - More changes to overcome build problems on Windows after recent module rearrangements

• PR #55601821 - Update tests and examples

• PR #55591822 - Fixing cmake folder names after module restructuring

• PR #55581823 - Fixing wrong module dependencies

• PR #55571824 - Adding an example for the new channel_communicator API

• PR #55561825 - Remove leftover thread pool os executor tests

• PR #55551826 - Add option enabling serializing raw pointers

• PR #55541827 - Make sure command line aliasing is properly handled

• PR #55521828 - Modernizing some of the async facilities

• PR #55511829 - Fixing for local executions of actions to properly set task names

• PR #55501830 - Update CUDA module in clang-cuda configuration

• PR #55491831 - Fixing agent_ref::yield_k to actually call yield_k

• PR #55481832 - Making get_action_name() noexcept

• PR #55471833 - Fixing communication set

• PR #55461834 - Fixing shutdown problems caused by missing ref-counting

• PR #55451835 - Remove wrong move in thread_pool_scheduler_bulk.hpp

• PR #55431836 - Extend launch policy to carry stack size and scheduling hint in addition to priority

• PR #55421837 - Simplify execution CPOs

• PR #55401838 - Adapt partition, partition_copy and stable_partition to C++ 20

• PR #55391839 - Adapt mismatch to support sentinels

• PR #55381840 - Document specific sphinx version required for the documentation

• PR #55371841 - Test release and debug builds on Piz Daint

• PR #55361842 - This fixes referencing stale iterators during the execution of binary mismatch
1820 https://github.com/STEllAR-GROUP/hpx/pull/5562
1821 https://github.com/STEllAR-GROUP/hpx/pull/5560
1822 https://github.com/STEllAR-GROUP/hpx/pull/5559
1823 https://github.com/STEllAR-GROUP/hpx/pull/5558
1824 https://github.com/STEllAR-GROUP/hpx/pull/5557
1825 https://github.com/STEllAR-GROUP/hpx/pull/5556
1826 https://github.com/STEllAR-GROUP/hpx/pull/5555
1827 https://github.com/STEllAR-GROUP/hpx/pull/5554
1828 https://github.com/STEllAR-GROUP/hpx/pull/5552
1829 https://github.com/STEllAR-GROUP/hpx/pull/5551
1830 https://github.com/STEllAR-GROUP/hpx/pull/5550
1831 https://github.com/STEllAR-GROUP/hpx/pull/5549
1832 https://github.com/STEllAR-GROUP/hpx/pull/5548
1833 https://github.com/STEllAR-GROUP/hpx/pull/5547
1834 https://github.com/STEllAR-GROUP/hpx/pull/5546
1835 https://github.com/STEllAR-GROUP/hpx/pull/5545
1836 https://github.com/STEllAR-GROUP/hpx/pull/5543
1837 https://github.com/STEllAR-GROUP/hpx/pull/5542
1838 https://github.com/STEllAR-GROUP/hpx/pull/5540
1839 https://github.com/STEllAR-GROUP/hpx/pull/5539
1840 https://github.com/STEllAR-GROUP/hpx/pull/5538
1841 https://github.com/STEllAR-GROUP/hpx/pull/5537
1842 https://github.com/STEllAR-GROUP/hpx/pull/5536

1604 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5562
https://github.com/STEllAR-GROUP/hpx/pull/5560
https://github.com/STEllAR-GROUP/hpx/pull/5559
https://github.com/STEllAR-GROUP/hpx/pull/5558
https://github.com/STEllAR-GROUP/hpx/pull/5557
https://github.com/STEllAR-GROUP/hpx/pull/5556
https://github.com/STEllAR-GROUP/hpx/pull/5555
https://github.com/STEllAR-GROUP/hpx/pull/5554
https://github.com/STEllAR-GROUP/hpx/pull/5552
https://github.com/STEllAR-GROUP/hpx/pull/5551
https://github.com/STEllAR-GROUP/hpx/pull/5550
https://github.com/STEllAR-GROUP/hpx/pull/5549
https://github.com/STEllAR-GROUP/hpx/pull/5548
https://github.com/STEllAR-GROUP/hpx/pull/5547
https://github.com/STEllAR-GROUP/hpx/pull/5546
https://github.com/STEllAR-GROUP/hpx/pull/5545
https://github.com/STEllAR-GROUP/hpx/pull/5543
https://github.com/STEllAR-GROUP/hpx/pull/5542
https://github.com/STEllAR-GROUP/hpx/pull/5540
https://github.com/STEllAR-GROUP/hpx/pull/5539
https://github.com/STEllAR-GROUP/hpx/pull/5538
https://github.com/STEllAR-GROUP/hpx/pull/5537
https://github.com/STEllAR-GROUP/hpx/pull/5536

HPX Documentation, master

• PR #55351843 - Rename simdpar to par_simd

• PR #55341844 - Fix Quick start & Manual Docs

• PR #55331845 - Fix annotate_function for std::string

• PR #55321846 - Update two remaining apex links from khuck to UO-OACISS

• PR #55311847 - Use contiguous_index_queue in thread_pool_scheduler

• PR #55301848 - Eagerly initialize a configurable number of threads on scheduler/thread queue init

• PR #55291849 - Update benchmarks and add support for scheduler_executor

• PR #55281850 - Add missing properties to executors/schedulers

• PR #55271851 - Set local thread/pool number in local/static_queue_scheduler

• PR #55261852 - Update Rostam HIP configuration to use 4.3.0

• PR #55251853 - Fix Building HPX in Quick start

• PR #55241854 - Upload image on cdash

• PR #55231855 - Modernize facilities related to hpx::sync

• PR #55221856 - Add sender overloads for remaining algorithms

• PR #55211857 - Minor changes that improve performance

• PR #55201858 - Update reference as perftests failing regularly

• PR #55191859 - Add transform_mpi sender adapter

• PR #55181860 - Add sender overloads to rotate/rotate_copy

• PR #55171861 - Fix coroutine integration

• PR #55151862 - Avoid deadlock in ignore_while_locked_1485 test

• PR #55141863 - Add split sender adapter

• PR #55121864 - Update Rostam HIP configuration

• PR #55111865 - Fix Asio target name for precompiled headers
1843 https://github.com/STEllAR-GROUP/hpx/pull/5535
1844 https://github.com/STEllAR-GROUP/hpx/pull/5534
1845 https://github.com/STEllAR-GROUP/hpx/pull/5533
1846 https://github.com/STEllAR-GROUP/hpx/pull/5532
1847 https://github.com/STEllAR-GROUP/hpx/pull/5531
1848 https://github.com/STEllAR-GROUP/hpx/pull/5530
1849 https://github.com/STEllAR-GROUP/hpx/pull/5529
1850 https://github.com/STEllAR-GROUP/hpx/pull/5528
1851 https://github.com/STEllAR-GROUP/hpx/pull/5527
1852 https://github.com/STEllAR-GROUP/hpx/pull/5526
1853 https://github.com/STEllAR-GROUP/hpx/pull/5525
1854 https://github.com/STEllAR-GROUP/hpx/pull/5524
1855 https://github.com/STEllAR-GROUP/hpx/pull/5523
1856 https://github.com/STEllAR-GROUP/hpx/pull/5522
1857 https://github.com/STEllAR-GROUP/hpx/pull/5521
1858 https://github.com/STEllAR-GROUP/hpx/pull/5520
1859 https://github.com/STEllAR-GROUP/hpx/pull/5519
1860 https://github.com/STEllAR-GROUP/hpx/pull/5518
1861 https://github.com/STEllAR-GROUP/hpx/pull/5517
1862 https://github.com/STEllAR-GROUP/hpx/pull/5515
1863 https://github.com/STEllAR-GROUP/hpx/pull/5514
1864 https://github.com/STEllAR-GROUP/hpx/pull/5512
1865 https://github.com/STEllAR-GROUP/hpx/pull/5511

2.10. Releases 1605

https://github.com/STEllAR-GROUP/hpx/pull/5535
https://github.com/STEllAR-GROUP/hpx/pull/5534
https://github.com/STEllAR-GROUP/hpx/pull/5533
https://github.com/STEllAR-GROUP/hpx/pull/5532
https://github.com/STEllAR-GROUP/hpx/pull/5531
https://github.com/STEllAR-GROUP/hpx/pull/5530
https://github.com/STEllAR-GROUP/hpx/pull/5529
https://github.com/STEllAR-GROUP/hpx/pull/5528
https://github.com/STEllAR-GROUP/hpx/pull/5527
https://github.com/STEllAR-GROUP/hpx/pull/5526
https://github.com/STEllAR-GROUP/hpx/pull/5525
https://github.com/STEllAR-GROUP/hpx/pull/5524
https://github.com/STEllAR-GROUP/hpx/pull/5523
https://github.com/STEllAR-GROUP/hpx/pull/5522
https://github.com/STEllAR-GROUP/hpx/pull/5521
https://github.com/STEllAR-GROUP/hpx/pull/5520
https://github.com/STEllAR-GROUP/hpx/pull/5519
https://github.com/STEllAR-GROUP/hpx/pull/5518
https://github.com/STEllAR-GROUP/hpx/pull/5517
https://github.com/STEllAR-GROUP/hpx/pull/5515
https://github.com/STEllAR-GROUP/hpx/pull/5514
https://github.com/STEllAR-GROUP/hpx/pull/5512
https://github.com/STEllAR-GROUP/hpx/pull/5511

HPX Documentation, master

• PR #55101866 - Add any_sender and unique_any_sender

• PR #55091867 - Test with Boost 1.77 on gcc/clang-newest configurations

• PR #55081868 - Minor release changes from 1.7.1

• PR #55071869 - Add missing commits from scheduler_executor PR

• PR #55061870 - Fix condition for checking if we should use our own variant

• PR #55011871 - Attempt to fix thread_pool_scheduler test

• PR #54931872 - Update Jenkins GitHub token to use StellarBot GitHub account

• PR #54901873 - Fix clang-format error on master

• PR #54871874 - Add get_completion_scheduler CPO and customize bulk for thread_pool_scheduler

• PR #54841875 - Add missing header to jacobi_component/server/solver.hpp

• PR #54811876 - Changing the APEX repository to the new location

• PR #54791877 - Fix version check for CUDA noexcept/result_of bug

• PR #54771878 - Require cxx17 minor comments

• PR #54761879 - Fix cmake format error

• PR #54751880 - Require CMake 3.18 as it is already a requirement for CUDA

• PR #54741881 - Make the cuda parameters of try_compile optional

• PR #54731882 - Update cuda arch and change cuda version

• PR #54711883 - Add corrected citation.cff

• PR #54701884 - Adapt stable_sort to C++ 20

• PR #54681885 - Experimentation to make the perftest report public

• PR #54661886 - Add shift_left and shift_right algorithms

• PR #54651887 - Adapt datapar fill

• PR #54641888 - Moving tag_dispatch to separate module
1866 https://github.com/STEllAR-GROUP/hpx/pull/5510
1867 https://github.com/STEllAR-GROUP/hpx/pull/5509
1868 https://github.com/STEllAR-GROUP/hpx/pull/5508
1869 https://github.com/STEllAR-GROUP/hpx/pull/5507
1870 https://github.com/STEllAR-GROUP/hpx/pull/5506
1871 https://github.com/STEllAR-GROUP/hpx/pull/5501
1872 https://github.com/STEllAR-GROUP/hpx/pull/5493
1873 https://github.com/STEllAR-GROUP/hpx/pull/5490
1874 https://github.com/STEllAR-GROUP/hpx/pull/5487
1875 https://github.com/STEllAR-GROUP/hpx/pull/5484
1876 https://github.com/STEllAR-GROUP/hpx/pull/5481
1877 https://github.com/STEllAR-GROUP/hpx/pull/5479
1878 https://github.com/STEllAR-GROUP/hpx/pull/5477
1879 https://github.com/STEllAR-GROUP/hpx/pull/5476
1880 https://github.com/STEllAR-GROUP/hpx/pull/5475
1881 https://github.com/STEllAR-GROUP/hpx/pull/5474
1882 https://github.com/STEllAR-GROUP/hpx/pull/5473
1883 https://github.com/STEllAR-GROUP/hpx/pull/5471
1884 https://github.com/STEllAR-GROUP/hpx/pull/5470
1885 https://github.com/STEllAR-GROUP/hpx/pull/5468
1886 https://github.com/STEllAR-GROUP/hpx/pull/5466
1887 https://github.com/STEllAR-GROUP/hpx/pull/5465
1888 https://github.com/STEllAR-GROUP/hpx/pull/5464

1606 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5510
https://github.com/STEllAR-GROUP/hpx/pull/5509
https://github.com/STEllAR-GROUP/hpx/pull/5508
https://github.com/STEllAR-GROUP/hpx/pull/5507
https://github.com/STEllAR-GROUP/hpx/pull/5506
https://github.com/STEllAR-GROUP/hpx/pull/5501
https://github.com/STEllAR-GROUP/hpx/pull/5493
https://github.com/STEllAR-GROUP/hpx/pull/5490
https://github.com/STEllAR-GROUP/hpx/pull/5487
https://github.com/STEllAR-GROUP/hpx/pull/5484
https://github.com/STEllAR-GROUP/hpx/pull/5481
https://github.com/STEllAR-GROUP/hpx/pull/5479
https://github.com/STEllAR-GROUP/hpx/pull/5477
https://github.com/STEllAR-GROUP/hpx/pull/5476
https://github.com/STEllAR-GROUP/hpx/pull/5475
https://github.com/STEllAR-GROUP/hpx/pull/5474
https://github.com/STEllAR-GROUP/hpx/pull/5473
https://github.com/STEllAR-GROUP/hpx/pull/5471
https://github.com/STEllAR-GROUP/hpx/pull/5470
https://github.com/STEllAR-GROUP/hpx/pull/5468
https://github.com/STEllAR-GROUP/hpx/pull/5466
https://github.com/STEllAR-GROUP/hpx/pull/5465
https://github.com/STEllAR-GROUP/hpx/pull/5464

HPX Documentation, master

• PR #54611889 - Rename HPX_WITH_CUDA_COMPUTE with HPX_WITH_COMPUTE_CUDA

• PR #54601890 - Adapt sort to C++ 20

• PR #54591891 - Adapt rotate/rotate_copy to C++20

• PR #54581892 - Adapt unique and unique_copy to C++ 20

• PR #54551893 - Remove and clean up fallback sender implementations

• PR #54541894 - Make performance plot show even if similar performance

• PR #54531895 - Post 1.7.0 version bump

• PR #54521896 - Fix find_end parallel overload

• PR #54501897 - Change the print-bind output to be more precise

• PR #54491898 - Adapt swap_ranges to C++ 20

• PR #54461899 - Use more verbose names in sender algorithms

• PR #54431900 - Properly support ASAN with MSVC

• PR #54411901 - Adding reference counting to thread_data

• PR #54291902 - Scheduler executor

• PR #54281903 - Adapt datapar copy

• PR #54211904 - Update CI base image to use clang-format 11

• PR #54101905 - Add ranges starts_with and ends_with algorithms

• PR #53831906 - Tentatively remove runtime_registration_wrapper from cuda futures

• PR #53771907 - Fewer Asio includes and more precompiled headers

• PR #53291908 - Sender overloads for parallel algorithms

• PR #53131909 - Rearrange modules between libraries

• PR #52831910 - Require minimum C++17 and change CUDA handling

• PR #52411911 - Adapt min_element, max_element and minmax_element to C++20
1889 https://github.com/STEllAR-GROUP/hpx/pull/5461
1890 https://github.com/STEllAR-GROUP/hpx/pull/5460
1891 https://github.com/STEllAR-GROUP/hpx/pull/5459
1892 https://github.com/STEllAR-GROUP/hpx/pull/5458
1893 https://github.com/STEllAR-GROUP/hpx/pull/5455
1894 https://github.com/STEllAR-GROUP/hpx/pull/5454
1895 https://github.com/STEllAR-GROUP/hpx/pull/5453
1896 https://github.com/STEllAR-GROUP/hpx/pull/5452
1897 https://github.com/STEllAR-GROUP/hpx/pull/5450
1898 https://github.com/STEllAR-GROUP/hpx/pull/5449
1899 https://github.com/STEllAR-GROUP/hpx/pull/5446
1900 https://github.com/STEllAR-GROUP/hpx/pull/5443
1901 https://github.com/STEllAR-GROUP/hpx/pull/5441
1902 https://github.com/STEllAR-GROUP/hpx/pull/5429
1903 https://github.com/STEllAR-GROUP/hpx/pull/5428
1904 https://github.com/STEllAR-GROUP/hpx/pull/5421
1905 https://github.com/STEllAR-GROUP/hpx/pull/5410
1906 https://github.com/STEllAR-GROUP/hpx/pull/5383
1907 https://github.com/STEllAR-GROUP/hpx/pull/5377
1908 https://github.com/STEllAR-GROUP/hpx/pull/5329
1909 https://github.com/STEllAR-GROUP/hpx/pull/5313
1910 https://github.com/STEllAR-GROUP/hpx/pull/5283
1911 https://github.com/STEllAR-GROUP/hpx/pull/5241

2.10. Releases 1607

https://github.com/STEllAR-GROUP/hpx/pull/5461
https://github.com/STEllAR-GROUP/hpx/pull/5460
https://github.com/STEllAR-GROUP/hpx/pull/5459
https://github.com/STEllAR-GROUP/hpx/pull/5458
https://github.com/STEllAR-GROUP/hpx/pull/5455
https://github.com/STEllAR-GROUP/hpx/pull/5454
https://github.com/STEllAR-GROUP/hpx/pull/5453
https://github.com/STEllAR-GROUP/hpx/pull/5452
https://github.com/STEllAR-GROUP/hpx/pull/5450
https://github.com/STEllAR-GROUP/hpx/pull/5449
https://github.com/STEllAR-GROUP/hpx/pull/5446
https://github.com/STEllAR-GROUP/hpx/pull/5443
https://github.com/STEllAR-GROUP/hpx/pull/5441
https://github.com/STEllAR-GROUP/hpx/pull/5429
https://github.com/STEllAR-GROUP/hpx/pull/5428
https://github.com/STEllAR-GROUP/hpx/pull/5421
https://github.com/STEllAR-GROUP/hpx/pull/5410
https://github.com/STEllAR-GROUP/hpx/pull/5383
https://github.com/STEllAR-GROUP/hpx/pull/5377
https://github.com/STEllAR-GROUP/hpx/pull/5329
https://github.com/STEllAR-GROUP/hpx/pull/5313
https://github.com/STEllAR-GROUP/hpx/pull/5283
https://github.com/STEllAR-GROUP/hpx/pull/5241

HPX Documentation, master

HPX V1.7.1 (Aug 12, 2021)

This is a bugfix release with a few minor fixes.

General changes

• Added a CMake option to assume that all types are bitwise serializable by default:
HPX_SERIALIZATION_WITH_ALL_TYPES_ARE_BITWISE_SERIALIZABLE. The default value OFF corre-
sponds to the old behaviour.

• Added a version check for Asio. The minimum Asio version supported by HPX is 1.12.0.

• Fixed a bug affecting usage of actions, where the internals of HPX relied on function addresses being unique.
This was fixed by relying on variable addresses being unique instead.

• Made hpx::util::bind more strict in checking the validity of placeholders.

• Small performance improvement to spinlocks.

• Adapted the following parallel algorithms to C++20: inclusive_scan, exclusive_scan,
transform_inclusive_scan, transform_exclusive_scan.

Breaking changes

• The experimental hpx::execution::simdpar execution policy (introduced in 1.7.0) was renamed to
hpx::execution::par_simd for consistency with the other parallel policies.

Closed issues

• Issue #54941912 - Rename simdpar execution policy to par_simd

• Issue #54881913 - hpx::util::bind doesn’t bounds-check placeholders

• Issue #54861914 - Possible V1.7.1 release

Closed pull requests

• PR #55001915 - Minor bug fix in transform exclusive and inclusive scan tests

• PR #54991916 - Rename simdpar to par_simd

• PR #54891917 - Adding bound-checking for bind placeholders

• PR #54851918 - Add Asio version check

• PR #54821919 - Change extra archive data to rely on uniqueness of a variable address, not a function address

• PR #54481920 - More fixes to enable for all types to be assumed to be bitwise copyable
1912 https://github.com/STEllAR-GROUP/hpx/issues/5494
1913 https://github.com/STEllAR-GROUP/hpx/issues/5488
1914 https://github.com/STEllAR-GROUP/hpx/issues/5486
1915 https://github.com/STEllAR-GROUP/hpx/pull/5500
1916 https://github.com/STEllAR-GROUP/hpx/pull/5499
1917 https://github.com/STEllAR-GROUP/hpx/pull/5489
1918 https://github.com/STEllAR-GROUP/hpx/pull/5485
1919 https://github.com/STEllAR-GROUP/hpx/pull/5482
1920 https://github.com/STEllAR-GROUP/hpx/pull/5448

1608 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/5494
https://github.com/STEllAR-GROUP/hpx/issues/5488
https://github.com/STEllAR-GROUP/hpx/issues/5486
https://github.com/STEllAR-GROUP/hpx/pull/5500
https://github.com/STEllAR-GROUP/hpx/pull/5499
https://github.com/STEllAR-GROUP/hpx/pull/5489
https://github.com/STEllAR-GROUP/hpx/pull/5485
https://github.com/STEllAR-GROUP/hpx/pull/5482
https://github.com/STEllAR-GROUP/hpx/pull/5448

HPX Documentation, master

• PR #54451921 - Improve performance of Spinlocks

• PR #54441922 - Adapt transform_inclusive_scan to C++ 20

• PR #54401923 - Adapt transform_exclusive_scan to C++ 20

• PR #54391924 - Adapt inclusive_scan to C++ 20

• PR #54361925 - Adapt exclusive_scan to C++20

HPX V1.7.0 (Jul 14, 2021)

This release is again focused on C++20 conformance of algorithms. Additionally, many new experimental sender-based
algorithms have been added based on the latest proposals.

General changes

• The following algorithms have been adapted to be C++20 conformant:

– remove,

– remove_if,

– remove_copy,

– remove_copy_if,

– replace,

– replace_if,

– reverse, and

– lexicographical_compare.

• When the compiler and standard library support the standard execution policies std::execution::seq,
std::execution::par, and std::execution::par_unseq they can now be used in all HPX parallel al-
gorithms with equivalent behaviour to the non-task policies hpx::execution::seq, hpx::execution::par,
and hpx::execution::par_unseq.

• Vc support has been fixed, after being broken in 1.6.0. In addition, HPX now experimentally supports GCC’s
SIMD implementation, when available. The implementation can be used through the hpx::execution::simd
and hpx::execution::simdpar execution policies.

• The customization points sync_execute, async_execute, then_execute, post, bulk_sync_execute,
bulk_async_execute, and bulk_then_execute are now implemented using tag_dispatch (previously
tag_invoke). Executors can still be implemented by providing the aforementioned functions as member func-
tions of an executor.

• New functionality, enhancements, and fixes based on P0443r14 (executors proposal) and P1897 (sender-based
algorithms) have been added to the hpx::execution::experimental namespace. These can be accessed
through the hpx/execution.hpp and hpx/local/execution.hpp headers. In particular, the following
sender-based algorithms have been added:

– detach,
1921 https://github.com/STEllAR-GROUP/hpx/pull/5445
1922 https://github.com/STEllAR-GROUP/hpx/pull/5444
1923 https://github.com/STEllAR-GROUP/hpx/pull/5440
1924 https://github.com/STEllAR-GROUP/hpx/pull/5439
1925 https://github.com/STEllAR-GROUP/hpx/pull/5436

2.10. Releases 1609

https://github.com/STEllAR-GROUP/hpx/pull/5445
https://github.com/STEllAR-GROUP/hpx/pull/5444
https://github.com/STEllAR-GROUP/hpx/pull/5440
https://github.com/STEllAR-GROUP/hpx/pull/5439
https://github.com/STEllAR-GROUP/hpx/pull/5436

HPX Documentation, master

– ensure_started,

– just,

– just_on,

– let_error,

– let_value,

– on,

– transform, and

– when_all.

Additionally, futures now implement the sender concept. make_future can be used to turn a sender into a future.
All functionality is experimental and can change without notice.

• All hpx::init and hpx::start overloads now take std::functions instead of
hpx::util::function_nonser. No changes should be required in user code to accommodate this
change.

• hpx::util::unwrapping and other related unwrapping functionality has been moved up into the hpx names-
pace. Names in hpx::util are still usable with a deprecation warning. This functionality can now be accessed
through the hpx/unwrap.hpp and hpx/local/unwrap.hpp headers.

• The default tag for APEX has been update from 2.3.1 to 2.4.0. In particular, this fixes a bug which could lead to
hangs in distributed runs.

• The dependency on Boost.Asio has been replaced with the standalone Asio available at https://github.com/
chriskohlhoff/asio. By default, a system-installed Asio will be used. ASIO_ROOT can be given as a hint to
tell CMake where to find Asio. Alternatively, Asio can be fetched automatically using CMake’s fetchcontent by
setting HPX_WITH_FETCH_ASIO=ON. In general, dependencies on Boost have again been reduced.

• Modularization of the library has continued. In this release almost all functionality has been moved into modules.
These changes do not generally affect user code. Warnings are still issued for headers that have moved.

• hipBLAS is now optional when compiling with hipcc. A warning instead of an error will be printed if hipBLAS
is not found during configuration.

• Previously HPX_COMPUTE_HOST_CODE was defined in host code only if HPX was configured with CUDA or HIP.
In this release HPX_COMPUTE_HOST_CODE is always defined in host code.

• An experimental HPX_WITH_PRECOMPILED_HEADERSCMake option has been added to use precompiled headers
when building HPX. This option should not be used on Windows.

• Numerous bug fixes.

Breaking changes

• The minimum required CMake version is now 3.17.

• The minimum required Boost version is now 1.71.0.

• The customization mechanism used to implement and extend sender functionality and algorithms has been re-
named from tag_invoke to tag_dispatch. All customization of sender functionality should be done by over-
loading tag_dispatch.

• The following compatibility options have been removed, along with their compatibility im-
plementations: - HPX_PROGRAM_OPTIONS_WITH_BOOST_PROGRAM_OPTIONS_COMPATIBILITY -
HPX_WITH_ACTION_BASE_COMPATIBILITY - HPX_WITH_EMBEDDED_THREAD_POOLS_COMPATIBILITY
- HPX_WITH_POOL_EXECUTOR_COMPATIBILITY. - HPX_WITH_PROMISE_ALIAS_COMPATIBILITY -

1610 Chapter 2. What’s so special about HPX?

https://github.com/chriskohlhoff/asio
https://github.com/chriskohlhoff/asio

HPX Documentation, master

HPX_WITH_REGISTER_THREAD_COMPATIBILITY - HPX_WITH_REGISTER_THREAD_OVERLOADS_COMPATIBILITY
- HPX_WITH_THREAD_AWARE_TIMER_COMPATIBILITY - HPX_WITH_THREAD_EXECUTORS_COMPATIBILITY -
HPX_WITH_THREAD_POOL_OS_EXECUTOR_COMPATIBILITY

• The HPX_WITH_THREAD_SCHEDULERS CMake option has been removed. All schedulers are now enabled when
possible.

• HPX_WITH_INIT_START_OVERLOADS_COMPATIBILITY has been turned off by default.

Closed issues

• Issue #54231926 - Fix lvalue-ref qualified connect for when_all-sender

• Issue #54121927 - Link error

• Issue #53971928 - Performance regression in thread annotations

• Issue #53951929 - HPX 1.7.0-rc1 fails to build icw APEX + OTF2

• Issue #53851930 - HPX 1.7 crashes on Piz Daint > 64 nodes

• Issue #53801931 - CMake should search for asio package installed on the system

• Issue #53781932 - HPX 1.7.0 stopped building on Fedora

• Issue #53691933 - HPX 1.6 and master hangs on Summit for > 64 nodes

• Issue #53581934 - HPX init fails for single-core environments

• Issue #53451935 - Rename P2220 property CPOs?

• Issue #53331936 - HPX does not compile on the new Mac OSX using the M1 chip

• Issue #53171937 - Consider making hipblas optional

• Issue #53061938 - asio fails to build with CUDA 10.0

• Issue #52941939 - execution::on should be based on execution::schedule

• Issue #52751940 - HPX V1.6.0 fails on Fedora release

• Issue #52701941 - HPX-1.6.0 fails to build on Windows 10

• Issue #52571942 - Allow triggering the output of OS thread affinity from configuration settings

• Issue #52461943 - HPX fails to build on ppc64le
1926 https://github.com/STEllAR-GROUP/hpx/issues/5423
1927 https://github.com/STEllAR-GROUP/hpx/issues/5412
1928 https://github.com/STEllAR-GROUP/hpx/issues/5397
1929 https://github.com/STEllAR-GROUP/hpx/issues/5395
1930 https://github.com/STEllAR-GROUP/hpx/issues/5385
1931 https://github.com/STEllAR-GROUP/hpx/issues/5380
1932 https://github.com/STEllAR-GROUP/hpx/issues/5378
1933 https://github.com/STEllAR-GROUP/hpx/issues/5369
1934 https://github.com/STEllAR-GROUP/hpx/issues/5358
1935 https://github.com/STEllAR-GROUP/hpx/issues/5345
1936 https://github.com/STEllAR-GROUP/hpx/issues/5333
1937 https://github.com/STEllAR-GROUP/hpx/issues/5317
1938 https://github.com/STEllAR-GROUP/hpx/issues/5306
1939 https://github.com/STEllAR-GROUP/hpx/issues/5294
1940 https://github.com/STEllAR-GROUP/hpx/issues/5275
1941 https://github.com/STEllAR-GROUP/hpx/issues/5270
1942 https://github.com/STEllAR-GROUP/hpx/issues/5257
1943 https://github.com/STEllAR-GROUP/hpx/issues/5246

2.10. Releases 1611

https://github.com/STEllAR-GROUP/hpx/issues/5423
https://github.com/STEllAR-GROUP/hpx/issues/5412
https://github.com/STEllAR-GROUP/hpx/issues/5397
https://github.com/STEllAR-GROUP/hpx/issues/5395
https://github.com/STEllAR-GROUP/hpx/issues/5385
https://github.com/STEllAR-GROUP/hpx/issues/5380
https://github.com/STEllAR-GROUP/hpx/issues/5378
https://github.com/STEllAR-GROUP/hpx/issues/5369
https://github.com/STEllAR-GROUP/hpx/issues/5358
https://github.com/STEllAR-GROUP/hpx/issues/5345
https://github.com/STEllAR-GROUP/hpx/issues/5333
https://github.com/STEllAR-GROUP/hpx/issues/5317
https://github.com/STEllAR-GROUP/hpx/issues/5306
https://github.com/STEllAR-GROUP/hpx/issues/5294
https://github.com/STEllAR-GROUP/hpx/issues/5275
https://github.com/STEllAR-GROUP/hpx/issues/5270
https://github.com/STEllAR-GROUP/hpx/issues/5257
https://github.com/STEllAR-GROUP/hpx/issues/5246

HPX Documentation, master

• Issue #52321944 - Annotation using hpx::util::annotated_function not working

• Issue #52221945 - Build and link errors with ittnotify enabled

• Issue #52041946 - Move algorithms to tag_fallback_dispatch

• Issue #51631947 - Remove module-specific compatibility and deprecation options

• Issue #51611948 - Bump required CMake version to 3.17

• Issue #51431949 - Searching for HPX-Application to generate work on multiple Nodes

Closed pull requests

• PR #54381950 - Delete datapar/foreach_tests.hpp

• PR #54371951 - Add back explicit -pthread flags when available

• PR #54351952 - This adds support for systems that assume all types are bitwise serializable by default

• PR #54341953 - Update CUDA polling logging to be more verbose

• PR #54331954 - Fix when_all_sender connect for references

• PR #54321955 - Add deprecation warnings for v1.8

• PR #54311956 - Rename the new P0443/P2300 executor to thread_pool_scheduler

• PR #54301957 - Revert “Adding the missing defined for HPX_HAVE_DEPRECATION_WARNINGS”

• PR #54271958 - Removing unneeded typedef

• PR #54261959 - Adding more concept checks for sender/receiver algorithms

• PR #54251960 - Adding the missing defined for HPX_HAVE_DEPRECATION_WARNINGS

• PR #54241961 - Disable Vc in final docker image created in CI

• PR #54221962 - Adding execution::experimental::bulk algorithm

• PR #54201963 - Update logic to find threading library

• PR #54181964 - Reduce max size and number of files in ccache cache
1944 https://github.com/STEllAR-GROUP/hpx/issues/5232
1945 https://github.com/STEllAR-GROUP/hpx/issues/5222
1946 https://github.com/STEllAR-GROUP/hpx/issues/5204
1947 https://github.com/STEllAR-GROUP/hpx/issues/5163
1948 https://github.com/STEllAR-GROUP/hpx/issues/5161
1949 https://github.com/STEllAR-GROUP/hpx/issues/5143
1950 https://github.com/STEllAR-GROUP/hpx/pull/5438
1951 https://github.com/STEllAR-GROUP/hpx/pull/5437
1952 https://github.com/STEllAR-GROUP/hpx/pull/5435
1953 https://github.com/STEllAR-GROUP/hpx/pull/5434
1954 https://github.com/STEllAR-GROUP/hpx/pull/5433
1955 https://github.com/STEllAR-GROUP/hpx/pull/5432
1956 https://github.com/STEllAR-GROUP/hpx/pull/5431
1957 https://github.com/STEllAR-GROUP/hpx/pull/5430
1958 https://github.com/STEllAR-GROUP/hpx/pull/5427
1959 https://github.com/STEllAR-GROUP/hpx/pull/5426
1960 https://github.com/STEllAR-GROUP/hpx/pull/5425
1961 https://github.com/STEllAR-GROUP/hpx/pull/5424
1962 https://github.com/STEllAR-GROUP/hpx/pull/5422
1963 https://github.com/STEllAR-GROUP/hpx/pull/5420
1964 https://github.com/STEllAR-GROUP/hpx/pull/5418

1612 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/5232
https://github.com/STEllAR-GROUP/hpx/issues/5222
https://github.com/STEllAR-GROUP/hpx/issues/5204
https://github.com/STEllAR-GROUP/hpx/issues/5163
https://github.com/STEllAR-GROUP/hpx/issues/5161
https://github.com/STEllAR-GROUP/hpx/issues/5143
https://github.com/STEllAR-GROUP/hpx/pull/5438
https://github.com/STEllAR-GROUP/hpx/pull/5437
https://github.com/STEllAR-GROUP/hpx/pull/5435
https://github.com/STEllAR-GROUP/hpx/pull/5434
https://github.com/STEllAR-GROUP/hpx/pull/5433
https://github.com/STEllAR-GROUP/hpx/pull/5432
https://github.com/STEllAR-GROUP/hpx/pull/5431
https://github.com/STEllAR-GROUP/hpx/pull/5430
https://github.com/STEllAR-GROUP/hpx/pull/5427
https://github.com/STEllAR-GROUP/hpx/pull/5426
https://github.com/STEllAR-GROUP/hpx/pull/5425
https://github.com/STEllAR-GROUP/hpx/pull/5424
https://github.com/STEllAR-GROUP/hpx/pull/5422
https://github.com/STEllAR-GROUP/hpx/pull/5420
https://github.com/STEllAR-GROUP/hpx/pull/5418

HPX Documentation, master

• PR #54171965 - Final release notes for 1.7.0

• PR #54161966 - Adapt uninitialized_value_construct and uninitialized_value_construct_n to
C++ 20

• PR #54151967 - Adapt uninitialized_default_construct and uninitialized_default_construct_n
to C++ 20

• PR #54141968 - Improve integration of futures and senders

• PR #54131969 - Fixing sender/receiver code base to compile with MSVC

• PR #54071970 - Handle exceptions thrown during initialization of parcel handler

• PR #54061971 - Simplify dispatching to annotation handlers

• PR #54051972 - Fetch Asio automatically in perftests CI

• PR #54031973 - Create generic executor that adds annotations to any other executor

• PR #54021974 - Adapt uninitialized_fill and uninitialized_fill_n to C++ 20

• PR #54011975 - Modernize a variety of facilities related to parallel algorithms

• PR #54001976 - Fix sliding semaphore test

• PR #53991977 - Rename leftover tag_fallback_invoke to tag_fallback_dispatch

• PR #53981978 - Improve logging in AGAS symbol namespace

• PR #53961979 - Introduce compatibility layer for collective operations

• PR #53941980 - Enable OTF2 in APEX CI configuration

• PR #53931981 - Update APEX tag

• PR #53921982 - Fixing wrong usage of std::forward

• PR #53911983 - Fix forwarding in transform_receiver constructor

• PR #53901984 - Make sure shared priority scheduler steals tasks on the current NUMA domain when (core)
stealing is enabled

• PR #53891985 - Adapt uninitialized_move and uninitialized_move_n to C++ 20

• PR #53881986 - Fixing gather_there for used with lvalue reference argument
1965 https://github.com/STEllAR-GROUP/hpx/pull/5417
1966 https://github.com/STEllAR-GROUP/hpx/pull/5416
1967 https://github.com/STEllAR-GROUP/hpx/pull/5415
1968 https://github.com/STEllAR-GROUP/hpx/pull/5414
1969 https://github.com/STEllAR-GROUP/hpx/pull/5413
1970 https://github.com/STEllAR-GROUP/hpx/pull/5407
1971 https://github.com/STEllAR-GROUP/hpx/pull/5406
1972 https://github.com/STEllAR-GROUP/hpx/pull/5405
1973 https://github.com/STEllAR-GROUP/hpx/pull/5403
1974 https://github.com/STEllAR-GROUP/hpx/pull/5402
1975 https://github.com/STEllAR-GROUP/hpx/pull/5401
1976 https://github.com/STEllAR-GROUP/hpx/pull/5400
1977 https://github.com/STEllAR-GROUP/hpx/pull/5399
1978 https://github.com/STEllAR-GROUP/hpx/pull/5398
1979 https://github.com/STEllAR-GROUP/hpx/pull/5396
1980 https://github.com/STEllAR-GROUP/hpx/pull/5394
1981 https://github.com/STEllAR-GROUP/hpx/pull/5393
1982 https://github.com/STEllAR-GROUP/hpx/pull/5392
1983 https://github.com/STEllAR-GROUP/hpx/pull/5391
1984 https://github.com/STEllAR-GROUP/hpx/pull/5390
1985 https://github.com/STEllAR-GROUP/hpx/pull/5389
1986 https://github.com/STEllAR-GROUP/hpx/pull/5388

2.10. Releases 1613

https://github.com/STEllAR-GROUP/hpx/pull/5417
https://github.com/STEllAR-GROUP/hpx/pull/5416
https://github.com/STEllAR-GROUP/hpx/pull/5415
https://github.com/STEllAR-GROUP/hpx/pull/5414
https://github.com/STEllAR-GROUP/hpx/pull/5413
https://github.com/STEllAR-GROUP/hpx/pull/5407
https://github.com/STEllAR-GROUP/hpx/pull/5406
https://github.com/STEllAR-GROUP/hpx/pull/5405
https://github.com/STEllAR-GROUP/hpx/pull/5403
https://github.com/STEllAR-GROUP/hpx/pull/5402
https://github.com/STEllAR-GROUP/hpx/pull/5401
https://github.com/STEllAR-GROUP/hpx/pull/5400
https://github.com/STEllAR-GROUP/hpx/pull/5399
https://github.com/STEllAR-GROUP/hpx/pull/5398
https://github.com/STEllAR-GROUP/hpx/pull/5396
https://github.com/STEllAR-GROUP/hpx/pull/5394
https://github.com/STEllAR-GROUP/hpx/pull/5393
https://github.com/STEllAR-GROUP/hpx/pull/5392
https://github.com/STEllAR-GROUP/hpx/pull/5391
https://github.com/STEllAR-GROUP/hpx/pull/5390
https://github.com/STEllAR-GROUP/hpx/pull/5389
https://github.com/STEllAR-GROUP/hpx/pull/5388

HPX Documentation, master

• PR #53871987 - Extend thread state logging and change default stealing parameters

• PR #53861988 - Attempt to fix the startup hang with nodes > 32

• PR #53841989 - Remove HPX 1.5.0 deprecations

• PR #53821990 - Prefer installed Asio before considering FetchContent

• PR #53791991 - Allow using pre-downloaded (not installed) versions of Asio and/or Apex

• PR #53761992 - Remove unnecessary explicit listing of library modules.rst files in CMakeLists.txt

• PR #53751993 - Slight performance improvement for hpx::copy and hpx::move et.al.

• PR #53741994 - Remove unnecessary moves from future sender implementations

• PR #53731995 - More changes to clang-cuda Jenkins configuration

• PR #53721996 - Slight improvements to min/max/minmax_element algorithms

• PR #53711997 - Adapt uninitialized_copy and uninitialized_copy_n to C++ 20

• PR #53701998 - Decay types in just_sender value_types to match stored types

• PR #53671999 - Disable pkgconfig by default again on macOS

• PR #53652000 - Use ccache for Jenkins builds on Piz Daint

• PR #53632001 - Update cudatoolkit module name in clang-cuda Jenkins configuration

• PR #53622002 - Adding channel_communicator

• PR #53612003 - Fix compilation with MPI enabled

• PR #53602004 - Update APEX and asio tags

• PR #53592005 - Fix check for pu-step in single-core case

• PR #53572006 - Making sure collective operations can be reused by preallocating communicator

• PR #53562007 - Update API documentation

• PR #53552008 - Make the sequenced_executor processing_units_count member function const

• PR #53542009 - Making sure default_stack_size is defined whenever declared
1987 https://github.com/STEllAR-GROUP/hpx/pull/5387
1988 https://github.com/STEllAR-GROUP/hpx/pull/5386
1989 https://github.com/STEllAR-GROUP/hpx/pull/5384
1990 https://github.com/STEllAR-GROUP/hpx/pull/5382
1991 https://github.com/STEllAR-GROUP/hpx/pull/5379
1992 https://github.com/STEllAR-GROUP/hpx/pull/5376
1993 https://github.com/STEllAR-GROUP/hpx/pull/5375
1994 https://github.com/STEllAR-GROUP/hpx/pull/5374
1995 https://github.com/STEllAR-GROUP/hpx/pull/5373
1996 https://github.com/STEllAR-GROUP/hpx/pull/5372
1997 https://github.com/STEllAR-GROUP/hpx/pull/5371
1998 https://github.com/STEllAR-GROUP/hpx/pull/5370
1999 https://github.com/STEllAR-GROUP/hpx/pull/5367
2000 https://github.com/STEllAR-GROUP/hpx/pull/5365
2001 https://github.com/STEllAR-GROUP/hpx/pull/5363
2002 https://github.com/STEllAR-GROUP/hpx/pull/5362
2003 https://github.com/STEllAR-GROUP/hpx/pull/5361
2004 https://github.com/STEllAR-GROUP/hpx/pull/5360
2005 https://github.com/STEllAR-GROUP/hpx/pull/5359
2006 https://github.com/STEllAR-GROUP/hpx/pull/5357
2007 https://github.com/STEllAR-GROUP/hpx/pull/5356
2008 https://github.com/STEllAR-GROUP/hpx/pull/5355
2009 https://github.com/STEllAR-GROUP/hpx/pull/5354

1614 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5387
https://github.com/STEllAR-GROUP/hpx/pull/5386
https://github.com/STEllAR-GROUP/hpx/pull/5384
https://github.com/STEllAR-GROUP/hpx/pull/5382
https://github.com/STEllAR-GROUP/hpx/pull/5379
https://github.com/STEllAR-GROUP/hpx/pull/5376
https://github.com/STEllAR-GROUP/hpx/pull/5375
https://github.com/STEllAR-GROUP/hpx/pull/5374
https://github.com/STEllAR-GROUP/hpx/pull/5373
https://github.com/STEllAR-GROUP/hpx/pull/5372
https://github.com/STEllAR-GROUP/hpx/pull/5371
https://github.com/STEllAR-GROUP/hpx/pull/5370
https://github.com/STEllAR-GROUP/hpx/pull/5367
https://github.com/STEllAR-GROUP/hpx/pull/5365
https://github.com/STEllAR-GROUP/hpx/pull/5363
https://github.com/STEllAR-GROUP/hpx/pull/5362
https://github.com/STEllAR-GROUP/hpx/pull/5361
https://github.com/STEllAR-GROUP/hpx/pull/5360
https://github.com/STEllAR-GROUP/hpx/pull/5359
https://github.com/STEllAR-GROUP/hpx/pull/5357
https://github.com/STEllAR-GROUP/hpx/pull/5356
https://github.com/STEllAR-GROUP/hpx/pull/5355
https://github.com/STEllAR-GROUP/hpx/pull/5354

HPX Documentation, master

• PR #53532010 - Add CUDA timestamp support to HPX Hardware Clock

• PR #53522011 - Adding missing includes

• PR #53512012 - Adding enable_logging/disable_logging API functions

• PR #53502013 - Adapt lexicographical_compare to C++20

• PR #53492014 - Update minimum boost version needed on the docs

• PR #53482015 - Rename tag_invoke and related facilities to tag_dispatch

• PR #53472016 - Remove make_ prefix for executor properties

• PR #53462017 - Remove and disable compatibility options for 1.7.0

• PR #53432018 - Fix timed_executor static cast conversion

• PR #53422019 - Refactor CUDA event polling

• PR #53412020 - Adding make_with_annotation and get_annotation properties

• PR #53392021 - Making sure hpx::util::hardware::timestamp() is always defined

• PR #53382022 - Fixing timed_executor specializations of customization points

• PR #53352023 - Make partial_algorithm work with any number of arguments

• PR #53342024 - Follow up iter_sent include on #5225

• PR #53322025 - Simplify tag_invoke and friends

• PR #53312026 - More work on cleaning up executor CPOs

• PR #53302027 - Add option to disable pkgconfig generation

• PR #53282028 - Adapt data parallel support using std-simd

• PR #53272029 - Fix missing ifdef HPX_SMT_PAUSE

• PR #53262030 - Adding resize() to serialize_buffer allowing to shrink its size

• PR #53242031 - Add get member functions to async_rw_mutex proxy objects for explicitly getting the wrapped
value

• PR #53232032 - Add keep_future algorithm
2010 https://github.com/STEllAR-GROUP/hpx/pull/5353
2011 https://github.com/STEllAR-GROUP/hpx/pull/5352
2012 https://github.com/STEllAR-GROUP/hpx/pull/5351
2013 https://github.com/STEllAR-GROUP/hpx/pull/5350
2014 https://github.com/STEllAR-GROUP/hpx/pull/5349
2015 https://github.com/STEllAR-GROUP/hpx/pull/5348
2016 https://github.com/STEllAR-GROUP/hpx/pull/5347
2017 https://github.com/STEllAR-GROUP/hpx/pull/5346
2018 https://github.com/STEllAR-GROUP/hpx/pull/5343
2019 https://github.com/STEllAR-GROUP/hpx/pull/5342
2020 https://github.com/STEllAR-GROUP/hpx/pull/5341
2021 https://github.com/STEllAR-GROUP/hpx/pull/5339
2022 https://github.com/STEllAR-GROUP/hpx/pull/5338
2023 https://github.com/STEllAR-GROUP/hpx/pull/5335
2024 https://github.com/STEllAR-GROUP/hpx/pull/5334
2025 https://github.com/STEllAR-GROUP/hpx/pull/5332
2026 https://github.com/STEllAR-GROUP/hpx/pull/5331
2027 https://github.com/STEllAR-GROUP/hpx/pull/5330
2028 https://github.com/STEllAR-GROUP/hpx/pull/5328
2029 https://github.com/STEllAR-GROUP/hpx/pull/5327
2030 https://github.com/STEllAR-GROUP/hpx/pull/5326
2031 https://github.com/STEllAR-GROUP/hpx/pull/5324
2032 https://github.com/STEllAR-GROUP/hpx/pull/5323

2.10. Releases 1615

https://github.com/STEllAR-GROUP/hpx/pull/5353
https://github.com/STEllAR-GROUP/hpx/pull/5352
https://github.com/STEllAR-GROUP/hpx/pull/5351
https://github.com/STEllAR-GROUP/hpx/pull/5350
https://github.com/STEllAR-GROUP/hpx/pull/5349
https://github.com/STEllAR-GROUP/hpx/pull/5348
https://github.com/STEllAR-GROUP/hpx/pull/5347
https://github.com/STEllAR-GROUP/hpx/pull/5346
https://github.com/STEllAR-GROUP/hpx/pull/5343
https://github.com/STEllAR-GROUP/hpx/pull/5342
https://github.com/STEllAR-GROUP/hpx/pull/5341
https://github.com/STEllAR-GROUP/hpx/pull/5339
https://github.com/STEllAR-GROUP/hpx/pull/5338
https://github.com/STEllAR-GROUP/hpx/pull/5335
https://github.com/STEllAR-GROUP/hpx/pull/5334
https://github.com/STEllAR-GROUP/hpx/pull/5332
https://github.com/STEllAR-GROUP/hpx/pull/5331
https://github.com/STEllAR-GROUP/hpx/pull/5330
https://github.com/STEllAR-GROUP/hpx/pull/5328
https://github.com/STEllAR-GROUP/hpx/pull/5327
https://github.com/STEllAR-GROUP/hpx/pull/5326
https://github.com/STEllAR-GROUP/hpx/pull/5324
https://github.com/STEllAR-GROUP/hpx/pull/5323

HPX Documentation, master

• PR #53222033 - Replace executor customization point implementations with tag_invoke

• PR #53212034 - Seperate segmented algorithms for reduce

• PR #53202035 - Fix is_sender trait and other small fixes to p0443 traits

• PR #53192036 - gcc 11.1 c++20 build fixes

• PR #53182037 - Make hipblas dependency optional as not always available

• PR #53162038 - Attempt to fix checking for libatomic

• PR #53152039 - Add explicit keyword to fixture constructor

• PR #53142040 - Fix a race condition in async mpi affecting limiting executor

• PR #53122041 - Use local runtime and local headers in local-only modules and tests

• PR #53112042 - Add GCC 11 builder to jenkins

• PR #53102043 - Adding hpx::execution::experimental::task_group

• PR #53092044 - Seperate datapar

• PR #53082045 - Seperate segmented algorithms for find, find_if, find_if_not

• PR #53072046 - Seperate segmented algorithms for fill and generate

• PR #53042047 - Fix compilation of sender CPOs with nvcc

• PR #53002048 - Remove PRIVATE flag that was propagated into the LANGUAGES

• PR #52982049 - Seperate datapar

• PR #52972050 - Specify exact cmake and ninja versions when loading them in jenkins jobs

• PR #52952051 - Update clang-newest configuration to use clang 12 and Boost 1.76.0

• PR #52932052 - Fix Clang 11 cuda_future test bug

• PR #52922053 - Add async_rw_mutex based on senders

• PR #52912054 - “Fix” termination detection

• PR #52902055 - Fixed source file line statements in examples documentation
2033 https://github.com/STEllAR-GROUP/hpx/pull/5322
2034 https://github.com/STEllAR-GROUP/hpx/pull/5321
2035 https://github.com/STEllAR-GROUP/hpx/pull/5320
2036 https://github.com/STEllAR-GROUP/hpx/pull/5319
2037 https://github.com/STEllAR-GROUP/hpx/pull/5318
2038 https://github.com/STEllAR-GROUP/hpx/pull/5316
2039 https://github.com/STEllAR-GROUP/hpx/pull/5315
2040 https://github.com/STEllAR-GROUP/hpx/pull/5314
2041 https://github.com/STEllAR-GROUP/hpx/pull/5312
2042 https://github.com/STEllAR-GROUP/hpx/pull/5311
2043 https://github.com/STEllAR-GROUP/hpx/pull/5310
2044 https://github.com/STEllAR-GROUP/hpx/pull/5309
2045 https://github.com/STEllAR-GROUP/hpx/pull/5308
2046 https://github.com/STEllAR-GROUP/hpx/pull/5307
2047 https://github.com/STEllAR-GROUP/hpx/pull/5304
2048 https://github.com/STEllAR-GROUP/hpx/pull/5300
2049 https://github.com/STEllAR-GROUP/hpx/pull/5298
2050 https://github.com/STEllAR-GROUP/hpx/pull/5297
2051 https://github.com/STEllAR-GROUP/hpx/pull/5295
2052 https://github.com/STEllAR-GROUP/hpx/pull/5293
2053 https://github.com/STEllAR-GROUP/hpx/pull/5292
2054 https://github.com/STEllAR-GROUP/hpx/pull/5291
2055 https://github.com/STEllAR-GROUP/hpx/pull/5290

1616 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5322
https://github.com/STEllAR-GROUP/hpx/pull/5321
https://github.com/STEllAR-GROUP/hpx/pull/5320
https://github.com/STEllAR-GROUP/hpx/pull/5319
https://github.com/STEllAR-GROUP/hpx/pull/5318
https://github.com/STEllAR-GROUP/hpx/pull/5316
https://github.com/STEllAR-GROUP/hpx/pull/5315
https://github.com/STEllAR-GROUP/hpx/pull/5314
https://github.com/STEllAR-GROUP/hpx/pull/5312
https://github.com/STEllAR-GROUP/hpx/pull/5311
https://github.com/STEllAR-GROUP/hpx/pull/5310
https://github.com/STEllAR-GROUP/hpx/pull/5309
https://github.com/STEllAR-GROUP/hpx/pull/5308
https://github.com/STEllAR-GROUP/hpx/pull/5307
https://github.com/STEllAR-GROUP/hpx/pull/5304
https://github.com/STEllAR-GROUP/hpx/pull/5300
https://github.com/STEllAR-GROUP/hpx/pull/5298
https://github.com/STEllAR-GROUP/hpx/pull/5297
https://github.com/STEllAR-GROUP/hpx/pull/5295
https://github.com/STEllAR-GROUP/hpx/pull/5293
https://github.com/STEllAR-GROUP/hpx/pull/5292
https://github.com/STEllAR-GROUP/hpx/pull/5291
https://github.com/STEllAR-GROUP/hpx/pull/5290

HPX Documentation, master

• PR #52892056 - Allow splitting of futures holding std::tuple

• PR #52882057 - Move algorithms to tag_fallback_invoke

• PR #52872058 - Move algorithms to tag_fallback_invoke

• PR #52852059 - Fix clang-format failure on master

• PR #52842060 - Replacing util::function_nonser on std::function in hpx_init

• PR #52822061 - Update Boost for daint 20.11 after update

• PR #52812062 - Fix Segmentation fault on foreach_datapar_zipiter

• PR #52802063 - Avoid modulo by zero in counting_iterator test

• PR #52792064 - Fix more GCC 10 deprecation warnings

• PR #52772065 - Small fixes and improvements to CUDA/MPI polling

• PR #52762066 - Fix typo in docs

• PR #52742067 - More P1897 algorithms

• PR #52732068 - Retry CDash submissions on failure

• PR #52722069 - Fix bogus deprecation warnings with GCC 10

• PR #52712070 - Correcting target ids for symbol_namespace::iterate

• PR #52682071 - Adding generic require, require_concept, and query properties

• PR #52672072 - Support annotations in hpx::transform_reduce

• PR #52662073 - Making late command line options available for local runtime

• PR #52652074 - Leverage no_unique_address for member_pack

• PR #52642075 - Adopt format in more places

• PR #52622076 - Install HPX in Rostam Jenkins jobs

• PR #52612077 - Limit Rostam Jenkins jobs to marvin partition temporarily

• PR #52602078 - Separate segmented algorithms for transform_reduce
2056 https://github.com/STEllAR-GROUP/hpx/pull/5289
2057 https://github.com/STEllAR-GROUP/hpx/pull/5288
2058 https://github.com/STEllAR-GROUP/hpx/pull/5287
2059 https://github.com/STEllAR-GROUP/hpx/pull/5285
2060 https://github.com/STEllAR-GROUP/hpx/pull/5284
2061 https://github.com/STEllAR-GROUP/hpx/pull/5282
2062 https://github.com/STEllAR-GROUP/hpx/pull/5281
2063 https://github.com/STEllAR-GROUP/hpx/pull/5280
2064 https://github.com/STEllAR-GROUP/hpx/pull/5279
2065 https://github.com/STEllAR-GROUP/hpx/pull/5277
2066 https://github.com/STEllAR-GROUP/hpx/pull/5276
2067 https://github.com/STEllAR-GROUP/hpx/pull/5274
2068 https://github.com/STEllAR-GROUP/hpx/pull/5273
2069 https://github.com/STEllAR-GROUP/hpx/pull/5272
2070 https://github.com/STEllAR-GROUP/hpx/pull/5271
2071 https://github.com/STEllAR-GROUP/hpx/pull/5268
2072 https://github.com/STEllAR-GROUP/hpx/pull/5267
2073 https://github.com/STEllAR-GROUP/hpx/pull/5266
2074 https://github.com/STEllAR-GROUP/hpx/pull/5265
2075 https://github.com/STEllAR-GROUP/hpx/pull/5264
2076 https://github.com/STEllAR-GROUP/hpx/pull/5262
2077 https://github.com/STEllAR-GROUP/hpx/pull/5261
2078 https://github.com/STEllAR-GROUP/hpx/pull/5260

2.10. Releases 1617

https://github.com/STEllAR-GROUP/hpx/pull/5289
https://github.com/STEllAR-GROUP/hpx/pull/5288
https://github.com/STEllAR-GROUP/hpx/pull/5287
https://github.com/STEllAR-GROUP/hpx/pull/5285
https://github.com/STEllAR-GROUP/hpx/pull/5284
https://github.com/STEllAR-GROUP/hpx/pull/5282
https://github.com/STEllAR-GROUP/hpx/pull/5281
https://github.com/STEllAR-GROUP/hpx/pull/5280
https://github.com/STEllAR-GROUP/hpx/pull/5279
https://github.com/STEllAR-GROUP/hpx/pull/5277
https://github.com/STEllAR-GROUP/hpx/pull/5276
https://github.com/STEllAR-GROUP/hpx/pull/5274
https://github.com/STEllAR-GROUP/hpx/pull/5273
https://github.com/STEllAR-GROUP/hpx/pull/5272
https://github.com/STEllAR-GROUP/hpx/pull/5271
https://github.com/STEllAR-GROUP/hpx/pull/5268
https://github.com/STEllAR-GROUP/hpx/pull/5267
https://github.com/STEllAR-GROUP/hpx/pull/5266
https://github.com/STEllAR-GROUP/hpx/pull/5265
https://github.com/STEllAR-GROUP/hpx/pull/5264
https://github.com/STEllAR-GROUP/hpx/pull/5262
https://github.com/STEllAR-GROUP/hpx/pull/5261
https://github.com/STEllAR-GROUP/hpx/pull/5260

HPX Documentation, master

• PR #52592079 - Making sure late command line options are recognized as configuration options

• PR #52582080 - Allow for HPX algorithms being invoked with std execution policies

• PR #52562081 - Separate segmented algorithms for transform

• PR #52552082 - Future/sender adapters

• PR #52542083 - Fixing datapar

• PR #52532084 - Add utility to format ranges

• PR #52522085 - Remove uses of Boost.Bimap

• PR #52512086 - Banish <iostream> from library headers

• PR #52502087 - Try fixing vc circle ci

• PR #52492088 - Adding missing header

• PR #52482089 - Use old Piz Daint modules after upgrade

• PR #52472090 - Significantly speedup simple for_each, for_loop, and transform

• PR #52452091 - P1897 operator| overloads

• PR #52442092 - P1897 when_all

• PR #52432093 - Make sure HPX_DEBUG is set based on HPX’s build type, not consuming project’s build type

• PR #52422094 - Moving last files unrelated to parcel layer to modules

• PR #52402095 - change namespace for transform_loop.hpp

• PR #52382096 - Make sure annotations are used in the binary transform

• PR #52372097 - Add P1897 just, just_on, and on algorithms

• PR #52362098 - Add an example demonstrating the use of the invoke_function_action facility

• PR #52352099 - Attempting to fix datapar compilation issues

• PR #52342100 - Fix small typo in --hpx:local option description

• PR #52332101 - Only find Boost.Iostreams if required for plugins
2079 https://github.com/STEllAR-GROUP/hpx/pull/5259
2080 https://github.com/STEllAR-GROUP/hpx/pull/5258
2081 https://github.com/STEllAR-GROUP/hpx/pull/5256
2082 https://github.com/STEllAR-GROUP/hpx/pull/5255
2083 https://github.com/STEllAR-GROUP/hpx/pull/5254
2084 https://github.com/STEllAR-GROUP/hpx/pull/5253
2085 https://github.com/STEllAR-GROUP/hpx/pull/5252
2086 https://github.com/STEllAR-GROUP/hpx/pull/5251
2087 https://github.com/STEllAR-GROUP/hpx/pull/5250
2088 https://github.com/STEllAR-GROUP/hpx/pull/5249
2089 https://github.com/STEllAR-GROUP/hpx/pull/5248
2090 https://github.com/STEllAR-GROUP/hpx/pull/5247
2091 https://github.com/STEllAR-GROUP/hpx/pull/5245
2092 https://github.com/STEllAR-GROUP/hpx/pull/5244
2093 https://github.com/STEllAR-GROUP/hpx/pull/5243
2094 https://github.com/STEllAR-GROUP/hpx/pull/5242
2095 https://github.com/STEllAR-GROUP/hpx/pull/5240
2096 https://github.com/STEllAR-GROUP/hpx/pull/5238
2097 https://github.com/STEllAR-GROUP/hpx/pull/5237
2098 https://github.com/STEllAR-GROUP/hpx/pull/5236
2099 https://github.com/STEllAR-GROUP/hpx/pull/5235
2100 https://github.com/STEllAR-GROUP/hpx/pull/5234
2101 https://github.com/STEllAR-GROUP/hpx/pull/5233

1618 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5259
https://github.com/STEllAR-GROUP/hpx/pull/5258
https://github.com/STEllAR-GROUP/hpx/pull/5256
https://github.com/STEllAR-GROUP/hpx/pull/5255
https://github.com/STEllAR-GROUP/hpx/pull/5254
https://github.com/STEllAR-GROUP/hpx/pull/5253
https://github.com/STEllAR-GROUP/hpx/pull/5252
https://github.com/STEllAR-GROUP/hpx/pull/5251
https://github.com/STEllAR-GROUP/hpx/pull/5250
https://github.com/STEllAR-GROUP/hpx/pull/5249
https://github.com/STEllAR-GROUP/hpx/pull/5248
https://github.com/STEllAR-GROUP/hpx/pull/5247
https://github.com/STEllAR-GROUP/hpx/pull/5245
https://github.com/STEllAR-GROUP/hpx/pull/5244
https://github.com/STEllAR-GROUP/hpx/pull/5243
https://github.com/STEllAR-GROUP/hpx/pull/5242
https://github.com/STEllAR-GROUP/hpx/pull/5240
https://github.com/STEllAR-GROUP/hpx/pull/5238
https://github.com/STEllAR-GROUP/hpx/pull/5237
https://github.com/STEllAR-GROUP/hpx/pull/5236
https://github.com/STEllAR-GROUP/hpx/pull/5235
https://github.com/STEllAR-GROUP/hpx/pull/5234
https://github.com/STEllAR-GROUP/hpx/pull/5233

HPX Documentation, master

• PR #52312102 - Sort printed config options

• PR #52302103 - Fix C++20 replace algo adaptation misses

• PR #52292104 - Remove leftover Boost include from sync_wait.hpp

• PR #52282105 - Print module name only if it has custom configuration settings

• PR #52272106 - Update .codespell_whitelist

• PR #52262107 - Use new docker image in all CircleCI steps

• PR #52252108 - Adapt reverse to C++20

• PR #52242109 - Separate segmented algorithms for none_of, any_of and all_of

• PR #52232110 - Fixing build system for ittnotify

• PR #52212111 - Moving LCO related files to modules

• PR #52202112 - Seperate segmented algorithms for count and count_if

• PR #52182113 - Seperate segmented algorithms for adjacent_find

• PR #52172114 - Add a HIP github action

• PR #52152115 - Update ROCm to 4.0.1 on Rostam

• PR #52142116 - Fix clang-format error in sender.hpp

• PR #52132117 - Removing ESSENTIAL option to the doc example

• PR #52122118 - Seperate segmented algorithms for for_each_n

• PR #52112119 - Minor adapted algos fixes

• PR #52102120 - Fixing is_invocable deprecation warnings

• PR #52092121 - Moving more files into modules (actions, components, init_runtime, etc.)

• PR #52082122 - Add examples and explanation on when tag_fallback/priority are useful

• PR #52072123 - Always define HPX_COMPUTE_HOST_CODE for host code

• PR #52062124 - Add formatting exceptions for libhpx to create_module_skeleton.py
2102 https://github.com/STEllAR-GROUP/hpx/pull/5231
2103 https://github.com/STEllAR-GROUP/hpx/pull/5230
2104 https://github.com/STEllAR-GROUP/hpx/pull/5229
2105 https://github.com/STEllAR-GROUP/hpx/pull/5228
2106 https://github.com/STEllAR-GROUP/hpx/pull/5227
2107 https://github.com/STEllAR-GROUP/hpx/pull/5226
2108 https://github.com/STEllAR-GROUP/hpx/pull/5225
2109 https://github.com/STEllAR-GROUP/hpx/pull/5224
2110 https://github.com/STEllAR-GROUP/hpx/pull/5223
2111 https://github.com/STEllAR-GROUP/hpx/pull/5221
2112 https://github.com/STEllAR-GROUP/hpx/pull/5220
2113 https://github.com/STEllAR-GROUP/hpx/pull/5218
2114 https://github.com/STEllAR-GROUP/hpx/pull/5217
2115 https://github.com/STEllAR-GROUP/hpx/pull/5215
2116 https://github.com/STEllAR-GROUP/hpx/pull/5214
2117 https://github.com/STEllAR-GROUP/hpx/pull/5213
2118 https://github.com/STEllAR-GROUP/hpx/pull/5212
2119 https://github.com/STEllAR-GROUP/hpx/pull/5211
2120 https://github.com/STEllAR-GROUP/hpx/pull/5210
2121 https://github.com/STEllAR-GROUP/hpx/pull/5209
2122 https://github.com/STEllAR-GROUP/hpx/pull/5208
2123 https://github.com/STEllAR-GROUP/hpx/pull/5207
2124 https://github.com/STEllAR-GROUP/hpx/pull/5206

2.10. Releases 1619

https://github.com/STEllAR-GROUP/hpx/pull/5231
https://github.com/STEllAR-GROUP/hpx/pull/5230
https://github.com/STEllAR-GROUP/hpx/pull/5229
https://github.com/STEllAR-GROUP/hpx/pull/5228
https://github.com/STEllAR-GROUP/hpx/pull/5227
https://github.com/STEllAR-GROUP/hpx/pull/5226
https://github.com/STEllAR-GROUP/hpx/pull/5225
https://github.com/STEllAR-GROUP/hpx/pull/5224
https://github.com/STEllAR-GROUP/hpx/pull/5223
https://github.com/STEllAR-GROUP/hpx/pull/5221
https://github.com/STEllAR-GROUP/hpx/pull/5220
https://github.com/STEllAR-GROUP/hpx/pull/5218
https://github.com/STEllAR-GROUP/hpx/pull/5217
https://github.com/STEllAR-GROUP/hpx/pull/5215
https://github.com/STEllAR-GROUP/hpx/pull/5214
https://github.com/STEllAR-GROUP/hpx/pull/5213
https://github.com/STEllAR-GROUP/hpx/pull/5212
https://github.com/STEllAR-GROUP/hpx/pull/5211
https://github.com/STEllAR-GROUP/hpx/pull/5210
https://github.com/STEllAR-GROUP/hpx/pull/5209
https://github.com/STEllAR-GROUP/hpx/pull/5208
https://github.com/STEllAR-GROUP/hpx/pull/5207
https://github.com/STEllAR-GROUP/hpx/pull/5206

HPX Documentation, master

• PR #52052125 - Moving all distribution policies into modules

• PR #52032126 - Move copy algorithms to tag_fallback_invoke

• PR #52022127 - Make HPX_WITH_PSEUDO_DEPENDENCIES a cache variable

• PR #52012128 - Replaced tag_invoke with tag_fallback_invoke for adjacent_find algorithm

• PR #52002129 - Moving files to (distributed) runtime module

• PR #51992130 - Update ICC module name on Piz Daint Jenkins configuration

• PR #51982131 - Add doxygen documentation for thread_schedule_hint

• PR #51972132 - Attempt to fix compilation of context implementations with unity build enabled

• PR #51962133 - Re-enable component tests

• PR #51952134 - Moving files related to colocation logic

• PR #51942135 - Another attempt at fixing the Fedora 35 problem

• PR #51932136 - Components module

• PR #51922137 - Adapt replace(_if) to C++20

• PR #51902138 - Set compatibility headers by default to on

• PR #51882139 - Bump Boost minimum version to 1.71.0

• PR #51872140 - Force CMake to set the -std=c++XX flag

• PR #51862141 - Remove message to print .cu extension whenever .cu files are encountered

• PR #51852142 - Remove some minor unnecessary CMake options

• PR #51842143 - Remove some leftover HPX_WITH_*_SCHEDULER uses

• PR #51832144 - Remove dependency on boost/iterators/iterator_categories.hpp

• PR #51822145 - Fixing Fedora 35 for Power architectures

• PR #51812146 - Bump version number and tag post 1.6.0 release

• PR #51802147 - Fix htts_v2 tests linking
2125 https://github.com/STEllAR-GROUP/hpx/pull/5205
2126 https://github.com/STEllAR-GROUP/hpx/pull/5203
2127 https://github.com/STEllAR-GROUP/hpx/pull/5202
2128 https://github.com/STEllAR-GROUP/hpx/pull/5201
2129 https://github.com/STEllAR-GROUP/hpx/pull/5200
2130 https://github.com/STEllAR-GROUP/hpx/pull/5199
2131 https://github.com/STEllAR-GROUP/hpx/pull/5198
2132 https://github.com/STEllAR-GROUP/hpx/pull/5197
2133 https://github.com/STEllAR-GROUP/hpx/pull/5196
2134 https://github.com/STEllAR-GROUP/hpx/pull/5195
2135 https://github.com/STEllAR-GROUP/hpx/pull/5194
2136 https://github.com/STEllAR-GROUP/hpx/pull/5193
2137 https://github.com/STEllAR-GROUP/hpx/pull/5192
2138 https://github.com/STEllAR-GROUP/hpx/pull/5190
2139 https://github.com/STEllAR-GROUP/hpx/pull/5188
2140 https://github.com/STEllAR-GROUP/hpx/pull/5187
2141 https://github.com/STEllAR-GROUP/hpx/pull/5186
2142 https://github.com/STEllAR-GROUP/hpx/pull/5185
2143 https://github.com/STEllAR-GROUP/hpx/pull/5184
2144 https://github.com/STEllAR-GROUP/hpx/pull/5183
2145 https://github.com/STEllAR-GROUP/hpx/pull/5182
2146 https://github.com/STEllAR-GROUP/hpx/pull/5181
2147 https://github.com/STEllAR-GROUP/hpx/pull/5180

1620 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5205
https://github.com/STEllAR-GROUP/hpx/pull/5203
https://github.com/STEllAR-GROUP/hpx/pull/5202
https://github.com/STEllAR-GROUP/hpx/pull/5201
https://github.com/STEllAR-GROUP/hpx/pull/5200
https://github.com/STEllAR-GROUP/hpx/pull/5199
https://github.com/STEllAR-GROUP/hpx/pull/5198
https://github.com/STEllAR-GROUP/hpx/pull/5197
https://github.com/STEllAR-GROUP/hpx/pull/5196
https://github.com/STEllAR-GROUP/hpx/pull/5195
https://github.com/STEllAR-GROUP/hpx/pull/5194
https://github.com/STEllAR-GROUP/hpx/pull/5193
https://github.com/STEllAR-GROUP/hpx/pull/5192
https://github.com/STEllAR-GROUP/hpx/pull/5190
https://github.com/STEllAR-GROUP/hpx/pull/5188
https://github.com/STEllAR-GROUP/hpx/pull/5187
https://github.com/STEllAR-GROUP/hpx/pull/5186
https://github.com/STEllAR-GROUP/hpx/pull/5185
https://github.com/STEllAR-GROUP/hpx/pull/5184
https://github.com/STEllAR-GROUP/hpx/pull/5183
https://github.com/STEllAR-GROUP/hpx/pull/5182
https://github.com/STEllAR-GROUP/hpx/pull/5181
https://github.com/STEllAR-GROUP/hpx/pull/5180

HPX Documentation, master

• PR #51792148 - Make sure --hpx:local command line option is respected with networking is off but distributed
runtime is on

• PR #51772149 - Remove module cmake options

• PR #51762150 - Starting to separate segmented algorithms: for_each

• PR #51742151 - Don’t run segmented algorithms twice on CircleCI

• PR #51732152 - Fetching APEX using cmake FetchContent

• PR #51722153 - Add separate local-only entry point

• PR #51712154 - Remove HPX_WITH_THREAD_SCHEDULERS CMake option

• PR #51702155 - Add HPX_WITH_PRECOMPILED_HEADERS option

• PR #51662156 - Moving some action tests to modules

• PR #51652157 - Require cmake 3.17

• PR #51642158 - Move thread_pool_suspension_helper files to small utility module

• PR #51602159 - Adding checks ensuring modules are not cross-referenced from other module categories

• PR #51582160 - Replace boost::asio with standalone asio

• PR #51552161 - Allow logging when distributed runtime is off

• PR #51532162 - Components module

• PR #51522163 - Move more files to performance counter module

• PR #51502164 - Adapt remove_copy(_if) to C++20

• PR #51442165 - AGAS module

• PR #51252166 - Adapt remove and remove_if to C++20

• PR #51172167 - Attempt to fix segfaults assumed to be caused by future_data instances going out of scope.

• PR #50992168 - Allow mixing debug and release builds

• PR #50922169 - Replace spirit.qi with x3

• PR #50532170 - Add P0443r14 executor and a a few P1897 algorithms
2148 https://github.com/STEllAR-GROUP/hpx/pull/5179
2149 https://github.com/STEllAR-GROUP/hpx/pull/5177
2150 https://github.com/STEllAR-GROUP/hpx/pull/5176
2151 https://github.com/STEllAR-GROUP/hpx/pull/5174
2152 https://github.com/STEllAR-GROUP/hpx/pull/5173
2153 https://github.com/STEllAR-GROUP/hpx/pull/5172
2154 https://github.com/STEllAR-GROUP/hpx/pull/5171
2155 https://github.com/STEllAR-GROUP/hpx/pull/5170
2156 https://github.com/STEllAR-GROUP/hpx/pull/5166
2157 https://github.com/STEllAR-GROUP/hpx/pull/5165
2158 https://github.com/STEllAR-GROUP/hpx/pull/5164
2159 https://github.com/STEllAR-GROUP/hpx/pull/5160
2160 https://github.com/STEllAR-GROUP/hpx/pull/5158
2161 https://github.com/STEllAR-GROUP/hpx/pull/5155
2162 https://github.com/STEllAR-GROUP/hpx/pull/5153
2163 https://github.com/STEllAR-GROUP/hpx/pull/5152
2164 https://github.com/STEllAR-GROUP/hpx/pull/5150
2165 https://github.com/STEllAR-GROUP/hpx/pull/5144
2166 https://github.com/STEllAR-GROUP/hpx/pull/5125
2167 https://github.com/STEllAR-GROUP/hpx/pull/5117
2168 https://github.com/STEllAR-GROUP/hpx/pull/5099
2169 https://github.com/STEllAR-GROUP/hpx/pull/5092
2170 https://github.com/STEllAR-GROUP/hpx/pull/5053

2.10. Releases 1621

https://github.com/STEllAR-GROUP/hpx/pull/5179
https://github.com/STEllAR-GROUP/hpx/pull/5177
https://github.com/STEllAR-GROUP/hpx/pull/5176
https://github.com/STEllAR-GROUP/hpx/pull/5174
https://github.com/STEllAR-GROUP/hpx/pull/5173
https://github.com/STEllAR-GROUP/hpx/pull/5172
https://github.com/STEllAR-GROUP/hpx/pull/5171
https://github.com/STEllAR-GROUP/hpx/pull/5170
https://github.com/STEllAR-GROUP/hpx/pull/5166
https://github.com/STEllAR-GROUP/hpx/pull/5165
https://github.com/STEllAR-GROUP/hpx/pull/5164
https://github.com/STEllAR-GROUP/hpx/pull/5160
https://github.com/STEllAR-GROUP/hpx/pull/5158
https://github.com/STEllAR-GROUP/hpx/pull/5155
https://github.com/STEllAR-GROUP/hpx/pull/5153
https://github.com/STEllAR-GROUP/hpx/pull/5152
https://github.com/STEllAR-GROUP/hpx/pull/5150
https://github.com/STEllAR-GROUP/hpx/pull/5144
https://github.com/STEllAR-GROUP/hpx/pull/5125
https://github.com/STEllAR-GROUP/hpx/pull/5117
https://github.com/STEllAR-GROUP/hpx/pull/5099
https://github.com/STEllAR-GROUP/hpx/pull/5092
https://github.com/STEllAR-GROUP/hpx/pull/5053

HPX Documentation, master

• PR #50442171 - Add performance test in jenkins and reports

HPX V1.6.0 (Feb 17, 2021)

General changes

This release continues the focus on C++20 conformance with multiple new algorithms adapted to be C++20 conformant
and becoming customization point objects (CPOs). We have also added experimental support for HIP, allowing previous
CUDA features to now be compiled with hipcc and run on AMD GPUs.

• The following algorithms have been adapted to be C++20 conformant: adjacent_find, includes,
inplace_merge, is_heap, is_heap_until, is_partitioned, is_sorted, is_sorted_until, merge,
set_difference, set_intersection, set_symmetric_difference, set_union.

• Experimental HIP support can be enabled by compiling HPX with hipcc. All CUDA functionality in HPX
can now be used with HIP. The HIP functionality is for the time being exposed through the same API as the
CUDA functionality, i.e. no changes are required in user code. The CUDA, and now HIP, functionality is in the
hpx::cuda namespace.

• We have added partial_sort based on Francisco Tapia’s implementation.

• hpx::init and hpx::start gained new overloads taking an hpx::init_params struct in 1.5.0. All overloads
not taking an hpx::init_params are now deprecated.

• We have added an experimental fork_join_executor. This executor can be used for OpenMP-style fork-join
parallelism, where the latency of a parallel region is important for performance.

• The parallel_executor now uses a hierarchical spawning scheme for bulk execution, which improves data
locality and performance.

• hpx::dataflow can now be used with executors that inject additional parameters into the call of the user-
provided function.

• We have added experimental support for properties as proposed in P22202172. Currently the only supported
property is the scheduling hint on parallel_executor.

• hpx::util::annotated_function can now be passed a dynamically generated std::string.

• In moving functionality to new namespaces, old names have been deprecated. A deprecation warning will be
issued if you are using deprecated functionality, with instructions on how to correct or ignore the warning.

• We have removed all support for C and Fortran from our build system.

• We have further reduced the use of Boost types within HPX (boost::system::error_code and
boost::detail::spinlock).

• We have enabled more warnings in our CI builds (unused variables and unused typedefs).
2171 https://github.com/STEllAR-GROUP/hpx/pull/5044
2172 https://wg21.link/p2220

1622 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5044
https://wg21.link/p2220

HPX Documentation, master

Breaking changes

• hpxMP support has been completely removed.

• The verbs parcelport has been removed.

• The following compatibility options have been disabled by default: HPX_WITH_ACTION_BASE_COMPATIBILITY,
HPX_WITH_REGISTER_THREAD_COMPATIBILITY, HPX_WITH_PROMISE_ALIAS_COMPATIBILITY,
HPX_WITH_UNSCOPED_ENUM_COMPATIBILITY, HPX_PROGRAM_OPTIONS_WITH_BOOST_PROGRAM_OPTIONS_COMPATIBILITY,
HPX_WITH_EMBEDDED_THREAD_POOLS_COMPATIBILITY, HPX_WITH_THREAD_POOL_OS_EXECUTOR_COMPATIBILITY,
HPX_WITH_THREAD_EXECUTORS_COMPATIBILITY, HPX_THREAD_AWARE_TIMER_COMPATIBILITY,
HPX_WITH_POOL_EXECUTOR_COMPATIBILITY. Unless noted here, the above functionalities do not come
with replacements. Unscoped enumerations have been replaced by scoped enumerations. Previously
deprecated unscoped enumerations are disabled by HPX_WITH_UNSCOPED_ENUM_COMPATIBILITY. Newly
deprecated unscoped enumerations have been given deprecation warnings and replaced by scoped enumerations.
hpx::promise has been replaced with hpx::distributed::promise. hpx::program_options is a drop-in
replacement for boost::program_options. hpx::execution::parallel_executor now has constructors
which take a thread pool, covering the use case of hpx::threads::executors::pool_executor. A pool
can be supplied with hpx::resource::get_thread_pool.

Closed issues

• Issue #51482173 - runtime_support.hpp does not work with newer cling

• Issue #51472174 - Wrong results with parallel reduce

• Issue #51292175 - Missing specialization for std::hash<hpx::thread::id>

• Issue #51262176 - Use std::string for task annotations

• Issue #51152177 - Don’t expect hwloc to always report Cores

• Issue #51132178 - Handle threadmanager exceptions during startup

• Issue #51122179 - libatomic problems causing unexpected fails

• Issue #50892180 - Remove non-BSL files

• Issue #50882181 - Unwrapping problem

• Issue #50872182 - Remove hpxMP support

• Issue #50772183 - PAPI counters are not accessible when HPX is installed

• Issue #50752184 - Make the structs in all iter_sent.hpp lower case

• Issue #50672185 - Bug string_util/split.hpp

2173 https://github.com/STEllAR-GROUP/hpx/issues/5148
2174 https://github.com/STEllAR-GROUP/hpx/issues/5147
2175 https://github.com/STEllAR-GROUP/hpx/issues/5129
2176 https://github.com/STEllAR-GROUP/hpx/issues/5126
2177 https://github.com/STEllAR-GROUP/hpx/issues/5115
2178 https://github.com/STEllAR-GROUP/hpx/issues/5113
2179 https://github.com/STEllAR-GROUP/hpx/issues/5112
2180 https://github.com/STEllAR-GROUP/hpx/issues/5089
2181 https://github.com/STEllAR-GROUP/hpx/issues/5088
2182 https://github.com/STEllAR-GROUP/hpx/issues/5087
2183 https://github.com/STEllAR-GROUP/hpx/issues/5077
2184 https://github.com/STEllAR-GROUP/hpx/issues/5075
2185 https://github.com/STEllAR-GROUP/hpx/issues/5067

2.10. Releases 1623

https://github.com/STEllAR-GROUP/hpx/issues/5148
https://github.com/STEllAR-GROUP/hpx/issues/5147
https://github.com/STEllAR-GROUP/hpx/issues/5129
https://github.com/STEllAR-GROUP/hpx/issues/5126
https://github.com/STEllAR-GROUP/hpx/issues/5115
https://github.com/STEllAR-GROUP/hpx/issues/5113
https://github.com/STEllAR-GROUP/hpx/issues/5112
https://github.com/STEllAR-GROUP/hpx/issues/5089
https://github.com/STEllAR-GROUP/hpx/issues/5088
https://github.com/STEllAR-GROUP/hpx/issues/5087
https://github.com/STEllAR-GROUP/hpx/issues/5077
https://github.com/STEllAR-GROUP/hpx/issues/5075
https://github.com/STEllAR-GROUP/hpx/issues/5067

HPX Documentation, master

• Issue #50492186 - Change back the hipcc jenkins config to the fury partition on rostam

• Issue #50382187 - Not all examples link in the latest HPX master

• Issue #50352188 - Build with HPX_WITH_EXAMPLES fails

• Issue #50192189 - Broken help string for hpx

• Issue #50162190 - hpx::parallel::fill fails compiling

• Issue #50142191 - Rename all .cc to .cpp and .hh to .hpp

• Issue #49882192 - MPI is not finalized if running with only one locality

• Issue #49782193 - Change feature test macros to expand to zero/one

• Issue #49492194 - Crash when not enabling TCP parcelport

• Issue #49332195 - Improve test coverage for unused variable warnings etc.

• Issue #48782196 - HPX mpi async might call MPI_FINALIZE before app calls it

• Issue #41272197 - Local runtime entry-points

Closed pull requests

• PR #51782198 - Fix parallel remove/remove_copy/transform namespace references in docs

• PR #51692199 - Attempt to get Piz Daint jenkins setup running after maintenance

• PR #51682200 - Remove include of itself

• PR #51672201 - Fixing deprecation warnings that slipped through the net

• PR #51592202 - Update APEX tag to 2.3.1

• PR #51542203 - Splitting unit tests on circleci to avoid timeouts

• PR #51512204 - Use C++20 on clang-newest Jenkins CI configuration

• PR #51492205 - Rename 'module' symbols to avoid keyword conflict

• PR #51452206 - Adjust handling of CUDA/HIP options in CMake

• PR #51422207 - Store annotated_function annotations as std::strings
2186 https://github.com/STEllAR-GROUP/hpx/issues/5049
2187 https://github.com/STEllAR-GROUP/hpx/issues/5038
2188 https://github.com/STEllAR-GROUP/hpx/issues/5035
2189 https://github.com/STEllAR-GROUP/hpx/issues/5019
2190 https://github.com/STEllAR-GROUP/hpx/issues/5016
2191 https://github.com/STEllAR-GROUP/hpx/issues/5014
2192 https://github.com/STEllAR-GROUP/hpx/issues/4988
2193 https://github.com/STEllAR-GROUP/hpx/issues/4978
2194 https://github.com/STEllAR-GROUP/hpx/issues/4949
2195 https://github.com/STEllAR-GROUP/hpx/issues/4933
2196 https://github.com/STEllAR-GROUP/hpx/issues/4878
2197 https://github.com/STEllAR-GROUP/hpx/issues/4127
2198 https://github.com/STEllAR-GROUP/hpx/pull/5178
2199 https://github.com/STEllAR-GROUP/hpx/pull/5169
2200 https://github.com/STEllAR-GROUP/hpx/pull/5168
2201 https://github.com/STEllAR-GROUP/hpx/pull/5167
2202 https://github.com/STEllAR-GROUP/hpx/pull/5159
2203 https://github.com/STEllAR-GROUP/hpx/pull/5154
2204 https://github.com/STEllAR-GROUP/hpx/pull/5151
2205 https://github.com/STEllAR-GROUP/hpx/pull/5149
2206 https://github.com/STEllAR-GROUP/hpx/pull/5145
2207 https://github.com/STEllAR-GROUP/hpx/pull/5142

1624 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/5049
https://github.com/STEllAR-GROUP/hpx/issues/5038
https://github.com/STEllAR-GROUP/hpx/issues/5035
https://github.com/STEllAR-GROUP/hpx/issues/5019
https://github.com/STEllAR-GROUP/hpx/issues/5016
https://github.com/STEllAR-GROUP/hpx/issues/5014
https://github.com/STEllAR-GROUP/hpx/issues/4988
https://github.com/STEllAR-GROUP/hpx/issues/4978
https://github.com/STEllAR-GROUP/hpx/issues/4949
https://github.com/STEllAR-GROUP/hpx/issues/4933
https://github.com/STEllAR-GROUP/hpx/issues/4878
https://github.com/STEllAR-GROUP/hpx/issues/4127
https://github.com/STEllAR-GROUP/hpx/pull/5178
https://github.com/STEllAR-GROUP/hpx/pull/5169
https://github.com/STEllAR-GROUP/hpx/pull/5168
https://github.com/STEllAR-GROUP/hpx/pull/5167
https://github.com/STEllAR-GROUP/hpx/pull/5159
https://github.com/STEllAR-GROUP/hpx/pull/5154
https://github.com/STEllAR-GROUP/hpx/pull/5151
https://github.com/STEllAR-GROUP/hpx/pull/5149
https://github.com/STEllAR-GROUP/hpx/pull/5145
https://github.com/STEllAR-GROUP/hpx/pull/5142

HPX Documentation, master

• PR #51402208 - Scheduler mode

• PR #51392209 - Fix path problem in pre-commit hook, add summary commit line

• PR #51382210 - Add program options variable map to resource partitioner init

• PR #51372211 - Remove the use of boost::throw_exception

• PR #51362212 - Make sure codespell checks run on CircleCI

• PR #51322213 - Fixing spelling errors

• PR #51312214 - Mark counting_iterator member functions as HPX_HOST_DEVICE

• PR #51302215 - Adding specialization for std::hash<hpx::thread::id>

• PR #51282216 - Fixing environment handling for FreeBSD

• PR #51272217 - Fix typo in fibonacci documentation

• PR #51232218 - Reduce vector sizes in partial sort benchmarks when running in debug mode

• PR #51222219 - Making sure exceptions during runtime initialization are correctly reported

• PR #51212220 - Working around hwloc limitation on certain platforms

• PR #51202221 - Fixing compatibility warnings in hpx::transform implementation

• PR #51192222 - Use sequential_find and friends from separate detail header

• PR #51162223 - Fix compilation with timer pool off

• PR #51142224 - Fix 5112 - make sure libatomic is used when needed

• PR #51092225 - Remove default runtime mode argument from init overload, again

• PR #51082226 - Refactor iter_sent.hpp to make structs lowercase

• PR #51072227 - Relax dataflow internals

• PR #51062228 - Change initialization of property CPOs to satisfy older nvcc versions

• PR #51042229 - Fix regeneration of two files that trigger unnecessary rebuilds

• PR #51032230 - Remove default runtime mode argument from start/init overloads
2208 https://github.com/STEllAR-GROUP/hpx/pull/5140
2209 https://github.com/STEllAR-GROUP/hpx/pull/5139
2210 https://github.com/STEllAR-GROUP/hpx/pull/5138
2211 https://github.com/STEllAR-GROUP/hpx/pull/5137
2212 https://github.com/STEllAR-GROUP/hpx/pull/5136
2213 https://github.com/STEllAR-GROUP/hpx/pull/5132
2214 https://github.com/STEllAR-GROUP/hpx/pull/5131
2215 https://github.com/STEllAR-GROUP/hpx/pull/5130
2216 https://github.com/STEllAR-GROUP/hpx/pull/5128
2217 https://github.com/STEllAR-GROUP/hpx/pull/5127
2218 https://github.com/STEllAR-GROUP/hpx/pull/5123
2219 https://github.com/STEllAR-GROUP/hpx/pull/5122
2220 https://github.com/STEllAR-GROUP/hpx/pull/5121
2221 https://github.com/STEllAR-GROUP/hpx/pull/5120
2222 https://github.com/STEllAR-GROUP/hpx/pull/5119
2223 https://github.com/STEllAR-GROUP/hpx/pull/5116
2224 https://github.com/STEllAR-GROUP/hpx/pull/5114
2225 https://github.com/STEllAR-GROUP/hpx/pull/5109
2226 https://github.com/STEllAR-GROUP/hpx/pull/5108
2227 https://github.com/STEllAR-GROUP/hpx/pull/5107
2228 https://github.com/STEllAR-GROUP/hpx/pull/5106
2229 https://github.com/STEllAR-GROUP/hpx/pull/5104
2230 https://github.com/STEllAR-GROUP/hpx/pull/5103

2.10. Releases 1625

https://github.com/STEllAR-GROUP/hpx/pull/5140
https://github.com/STEllAR-GROUP/hpx/pull/5139
https://github.com/STEllAR-GROUP/hpx/pull/5138
https://github.com/STEllAR-GROUP/hpx/pull/5137
https://github.com/STEllAR-GROUP/hpx/pull/5136
https://github.com/STEllAR-GROUP/hpx/pull/5132
https://github.com/STEllAR-GROUP/hpx/pull/5131
https://github.com/STEllAR-GROUP/hpx/pull/5130
https://github.com/STEllAR-GROUP/hpx/pull/5128
https://github.com/STEllAR-GROUP/hpx/pull/5127
https://github.com/STEllAR-GROUP/hpx/pull/5123
https://github.com/STEllAR-GROUP/hpx/pull/5122
https://github.com/STEllAR-GROUP/hpx/pull/5121
https://github.com/STEllAR-GROUP/hpx/pull/5120
https://github.com/STEllAR-GROUP/hpx/pull/5119
https://github.com/STEllAR-GROUP/hpx/pull/5116
https://github.com/STEllAR-GROUP/hpx/pull/5114
https://github.com/STEllAR-GROUP/hpx/pull/5109
https://github.com/STEllAR-GROUP/hpx/pull/5108
https://github.com/STEllAR-GROUP/hpx/pull/5107
https://github.com/STEllAR-GROUP/hpx/pull/5106
https://github.com/STEllAR-GROUP/hpx/pull/5104
https://github.com/STEllAR-GROUP/hpx/pull/5103

HPX Documentation, master

• PR #51022231 - Untie deprecated thread enums from the CMake option

• PR #51012232 - Update APEX tag for 1.6.0

• PR #51002233 - Bump minimum required Boost version to 1.66 and update CI configurations

• PR #50982234 - Minor fixes to public API listing

• PR #50972235 - Remove hpxMP support

• PR #50962236 - Remove fractals examples

• PR #50952237 - Use all AMD nodes again on rostam

• PR #50942238 - Attempt to remove macOS workaround for GH actions environment

• PR #50932239 - Remove verbs parcelport

• PR #50912240 - Avoid moving from lvalues

• PR #50902241 - Adopt C++20 std::endian

• PR #50852242 - Update daint CI to use Boost 1.75.0

• PR #50842243 - Disable compatibility options for 1.6.0 release

• PR #50832244 - Remove duplicated call to the limiting_executor in future_overhead test

• PR #50792245 - Add checks to make sure that MPI/CUDA polling is enabled/not disabled too early

• PR #50782246 - Add install lib directory to list of component search paths

• PR #50762247 - Fix a typo in the jenkins clang-newest cmake config

• PR #50742248 - Fixing warnings generated by MSVC

• PR #50732249 - Allow using noncopyable types with unwrapping

• PR #50722250 - Fix is_convertible args in result_types

• PR #50712251 - Fix unused parameters

• PR #50702252 - Fix unused variables warnings in hipcc

• PR #50692253 - Add support for sentinels to adjacent_find

2231 https://github.com/STEllAR-GROUP/hpx/pull/5102
2232 https://github.com/STEllAR-GROUP/hpx/pull/5101
2233 https://github.com/STEllAR-GROUP/hpx/pull/5100
2234 https://github.com/STEllAR-GROUP/hpx/pull/5098
2235 https://github.com/STEllAR-GROUP/hpx/pull/5097
2236 https://github.com/STEllAR-GROUP/hpx/pull/5096
2237 https://github.com/STEllAR-GROUP/hpx/pull/5095
2238 https://github.com/STEllAR-GROUP/hpx/pull/5094
2239 https://github.com/STEllAR-GROUP/hpx/pull/5093
2240 https://github.com/STEllAR-GROUP/hpx/pull/5091
2241 https://github.com/STEllAR-GROUP/hpx/pull/5090
2242 https://github.com/STEllAR-GROUP/hpx/pull/5085
2243 https://github.com/STEllAR-GROUP/hpx/pull/5084
2244 https://github.com/STEllAR-GROUP/hpx/pull/5083
2245 https://github.com/STEllAR-GROUP/hpx/pull/5079
2246 https://github.com/STEllAR-GROUP/hpx/pull/5078
2247 https://github.com/STEllAR-GROUP/hpx/pull/5076
2248 https://github.com/STEllAR-GROUP/hpx/pull/5074
2249 https://github.com/STEllAR-GROUP/hpx/pull/5073
2250 https://github.com/STEllAR-GROUP/hpx/pull/5072
2251 https://github.com/STEllAR-GROUP/hpx/pull/5071
2252 https://github.com/STEllAR-GROUP/hpx/pull/5070
2253 https://github.com/STEllAR-GROUP/hpx/pull/5069

1626 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5102
https://github.com/STEllAR-GROUP/hpx/pull/5101
https://github.com/STEllAR-GROUP/hpx/pull/5100
https://github.com/STEllAR-GROUP/hpx/pull/5098
https://github.com/STEllAR-GROUP/hpx/pull/5097
https://github.com/STEllAR-GROUP/hpx/pull/5096
https://github.com/STEllAR-GROUP/hpx/pull/5095
https://github.com/STEllAR-GROUP/hpx/pull/5094
https://github.com/STEllAR-GROUP/hpx/pull/5093
https://github.com/STEllAR-GROUP/hpx/pull/5091
https://github.com/STEllAR-GROUP/hpx/pull/5090
https://github.com/STEllAR-GROUP/hpx/pull/5085
https://github.com/STEllAR-GROUP/hpx/pull/5084
https://github.com/STEllAR-GROUP/hpx/pull/5083
https://github.com/STEllAR-GROUP/hpx/pull/5079
https://github.com/STEllAR-GROUP/hpx/pull/5078
https://github.com/STEllAR-GROUP/hpx/pull/5076
https://github.com/STEllAR-GROUP/hpx/pull/5074
https://github.com/STEllAR-GROUP/hpx/pull/5073
https://github.com/STEllAR-GROUP/hpx/pull/5072
https://github.com/STEllAR-GROUP/hpx/pull/5071
https://github.com/STEllAR-GROUP/hpx/pull/5070
https://github.com/STEllAR-GROUP/hpx/pull/5069

HPX Documentation, master

• PR #50682254 - Fix string split function

• PR #50662255 - Adapt search to C++20 and Range TS

• PR #50652256 - Fix hpx::range::adjacent_find doxygen function signatures

• PR #50642257 - Refactor runtime configuration, command line handling, and resource partitioner

• PR #50632258 - Limit the device code guards to the distributed parts of the future_overhead bench

• PR #50612259 - Remove hipcc guards in examples and tests

• PR #50602260 - Fix deprecation warnings generated by msvc

• PR #50592261 - Add warning about suspending/resuming the runtime in multi-locality scenarios

• PR #50572262 - Fix unused variable warnings

• PR #50562263 - Fix hpx::util::get

• PR #50552264 - Remove hipcc guards

• PR #50542265 - Fix typo

• PR #50512266 - Adapt transform to C++20

• PR #50502267 - Replace old init overloads in tests and examples

• PR #50482268 - Limit jenkins hipcc to the reno node

• PR #50472269 - Limit cuda jenkins run to nodes with exclusively Nvidia GPUs

• PR #50462270 - Convert thread and future enums to class enums

• PR #50432271 - Improve hpxrun.py for Phylanx

• PR #50422272 - Add missing header to partial sort test

• PR #50412273 - Adding Francisco Tapia’s implementation of partial_sort

• PR #50402274 - Remove generated headers left behind from a previous configuration

• PR #50392275 - Fix GCC 10 release builds

• PR #50372276 - Add is_invocable typedefs to top-level hpx namespace and public API list
2254 https://github.com/STEllAR-GROUP/hpx/pull/5068
2255 https://github.com/STEllAR-GROUP/hpx/pull/5066
2256 https://github.com/STEllAR-GROUP/hpx/pull/5065
2257 https://github.com/STEllAR-GROUP/hpx/pull/5064
2258 https://github.com/STEllAR-GROUP/hpx/pull/5063
2259 https://github.com/STEllAR-GROUP/hpx/pull/5061
2260 https://github.com/STEllAR-GROUP/hpx/pull/5060
2261 https://github.com/STEllAR-GROUP/hpx/pull/5059
2262 https://github.com/STEllAR-GROUP/hpx/pull/5057
2263 https://github.com/STEllAR-GROUP/hpx/pull/5056
2264 https://github.com/STEllAR-GROUP/hpx/pull/5055
2265 https://github.com/STEllAR-GROUP/hpx/pull/5054
2266 https://github.com/STEllAR-GROUP/hpx/pull/5051
2267 https://github.com/STEllAR-GROUP/hpx/pull/5050
2268 https://github.com/STEllAR-GROUP/hpx/pull/5048
2269 https://github.com/STEllAR-GROUP/hpx/pull/5047
2270 https://github.com/STEllAR-GROUP/hpx/pull/5046
2271 https://github.com/STEllAR-GROUP/hpx/pull/5043
2272 https://github.com/STEllAR-GROUP/hpx/pull/5042
2273 https://github.com/STEllAR-GROUP/hpx/pull/5041
2274 https://github.com/STEllAR-GROUP/hpx/pull/5040
2275 https://github.com/STEllAR-GROUP/hpx/pull/5039
2276 https://github.com/STEllAR-GROUP/hpx/pull/5037

2.10. Releases 1627

https://github.com/STEllAR-GROUP/hpx/pull/5068
https://github.com/STEllAR-GROUP/hpx/pull/5066
https://github.com/STEllAR-GROUP/hpx/pull/5065
https://github.com/STEllAR-GROUP/hpx/pull/5064
https://github.com/STEllAR-GROUP/hpx/pull/5063
https://github.com/STEllAR-GROUP/hpx/pull/5061
https://github.com/STEllAR-GROUP/hpx/pull/5060
https://github.com/STEllAR-GROUP/hpx/pull/5059
https://github.com/STEllAR-GROUP/hpx/pull/5057
https://github.com/STEllAR-GROUP/hpx/pull/5056
https://github.com/STEllAR-GROUP/hpx/pull/5055
https://github.com/STEllAR-GROUP/hpx/pull/5054
https://github.com/STEllAR-GROUP/hpx/pull/5051
https://github.com/STEllAR-GROUP/hpx/pull/5050
https://github.com/STEllAR-GROUP/hpx/pull/5048
https://github.com/STEllAR-GROUP/hpx/pull/5047
https://github.com/STEllAR-GROUP/hpx/pull/5046
https://github.com/STEllAR-GROUP/hpx/pull/5043
https://github.com/STEllAR-GROUP/hpx/pull/5042
https://github.com/STEllAR-GROUP/hpx/pull/5041
https://github.com/STEllAR-GROUP/hpx/pull/5040
https://github.com/STEllAR-GROUP/hpx/pull/5039
https://github.com/STEllAR-GROUP/hpx/pull/5037

HPX Documentation, master

• PR #50362277 - Deprecate hpx::util::decay in favor of std::decay

• PR #50342278 - Use versioned container image on CircleCI

• PR #50332279 - Implement P2220 properties module

• PR #50322280 - Do codespell comparison only on files changed from common ancestor

• PR #50312281 - Moving traits files to actions_base

• PR #50302282 - Add codespell version print in circleci

• PR #50292283 - Work around problems in GitHub actions macOS builder

• PR #50282284 - Moving move files to naming and naming_base

• PR #50272285 - Lessen constraints on certain algorithm arguments

• PR #50252286 - Adapt is_sorted and is_sorted_until to C++20

• PR #50242287 - Moving naming_base to full modules

• PR #50222288 - Remove C language from CMakeLists.txt

• PR #50212289 - Warn about unused arguments given to add_hpx_module

• PR #50202290 - Fixing help string

• PR #50182291 - Update CSCS jenkins configuration to clang 11

• PR #50172292 - Fixing broken backwards compatibility for hpx::parallel::fill

• PR #50152293 - Detect if generated global header conflicts with explicitly listed module headers

• PR #50122294 - Properly reset pointer tracking data in output_archive

• PR #50112295 - Inspect command line tweaks

• PR #50102296 - Creating AGAS module

• PR #50092297 - Replace boost::system::error_code with std::error_code

• PR #50082298 - Replace uses of boost::detail::spinlock

• PR #50072299 - Bump minimal Boost version to 1.65.0
2277 https://github.com/STEllAR-GROUP/hpx/pull/5036
2278 https://github.com/STEllAR-GROUP/hpx/pull/5034
2279 https://github.com/STEllAR-GROUP/hpx/pull/5033
2280 https://github.com/STEllAR-GROUP/hpx/pull/5032
2281 https://github.com/STEllAR-GROUP/hpx/pull/5031
2282 https://github.com/STEllAR-GROUP/hpx/pull/5030
2283 https://github.com/STEllAR-GROUP/hpx/pull/5029
2284 https://github.com/STEllAR-GROUP/hpx/pull/5028
2285 https://github.com/STEllAR-GROUP/hpx/pull/5027
2286 https://github.com/STEllAR-GROUP/hpx/pull/5025
2287 https://github.com/STEllAR-GROUP/hpx/pull/5024
2288 https://github.com/STEllAR-GROUP/hpx/pull/5022
2289 https://github.com/STEllAR-GROUP/hpx/pull/5021
2290 https://github.com/STEllAR-GROUP/hpx/pull/5020
2291 https://github.com/STEllAR-GROUP/hpx/pull/5018
2292 https://github.com/STEllAR-GROUP/hpx/pull/5017
2293 https://github.com/STEllAR-GROUP/hpx/pull/5015
2294 https://github.com/STEllAR-GROUP/hpx/pull/5012
2295 https://github.com/STEllAR-GROUP/hpx/pull/5011
2296 https://github.com/STEllAR-GROUP/hpx/pull/5010
2297 https://github.com/STEllAR-GROUP/hpx/pull/5009
2298 https://github.com/STEllAR-GROUP/hpx/pull/5008
2299 https://github.com/STEllAR-GROUP/hpx/pull/5007

1628 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/5036
https://github.com/STEllAR-GROUP/hpx/pull/5034
https://github.com/STEllAR-GROUP/hpx/pull/5033
https://github.com/STEllAR-GROUP/hpx/pull/5032
https://github.com/STEllAR-GROUP/hpx/pull/5031
https://github.com/STEllAR-GROUP/hpx/pull/5030
https://github.com/STEllAR-GROUP/hpx/pull/5029
https://github.com/STEllAR-GROUP/hpx/pull/5028
https://github.com/STEllAR-GROUP/hpx/pull/5027
https://github.com/STEllAR-GROUP/hpx/pull/5025
https://github.com/STEllAR-GROUP/hpx/pull/5024
https://github.com/STEllAR-GROUP/hpx/pull/5022
https://github.com/STEllAR-GROUP/hpx/pull/5021
https://github.com/STEllAR-GROUP/hpx/pull/5020
https://github.com/STEllAR-GROUP/hpx/pull/5018
https://github.com/STEllAR-GROUP/hpx/pull/5017
https://github.com/STEllAR-GROUP/hpx/pull/5015
https://github.com/STEllAR-GROUP/hpx/pull/5012
https://github.com/STEllAR-GROUP/hpx/pull/5011
https://github.com/STEllAR-GROUP/hpx/pull/5010
https://github.com/STEllAR-GROUP/hpx/pull/5009
https://github.com/STEllAR-GROUP/hpx/pull/5008
https://github.com/STEllAR-GROUP/hpx/pull/5007

HPX Documentation, master

• PR #50062300 - Adapt is_partitioned to C++20

• PR #50052301 - Making sure reduce_by_key compiles again

• PR #50042302 - Fixing template specializations that make extra archive data types unique across module bound-
aries

• PR #50032303 - Relax dataflow argument constraints

• PR #50012304 - Add <random> inspect check

• PR #49992305 - Attempt to fix MacOS Github action error

• PR #49972306 - Fix unused variable and typedef warnings

• PR #49962307 - Adapt adjacent_find to C++20

• PR #49952308 - Test all schedulers in cross_pool_injection test except
shared_priority_queue_scheduler

• PR #49932309 - Fix deprecation warnings

• PR #49912310 - Avoid unnecessarily including entire modules

• PR #49902311 - Fixing some warnings from HPX complaining about use of obsolete types

• PR #49892312 - add a *destroy* trait for ParcelPort plugins

• PR #49862313 - Remove serialization to functional module dependency

• PR #49852314 - Compatibility header generation

• PR #49802315 - Add ranges overloads to for_loop (and variants)

• PR #49792316 - Actually enable unity builds on Jenkins

• PR #49772317 - Cleaning up debug::print functionalities

• PR #49762318 - Remove indirection layer in at_index_impl

• PR #49752319 - Remove indirection layer in at_index_impl

• PR #49732320 - Avoid warnings/errors for older gcc complaining about multi-line comments

• PR #49702321 - Making set algorithms conform to C++20
2300 https://github.com/STEllAR-GROUP/hpx/pull/5006
2301 https://github.com/STEllAR-GROUP/hpx/pull/5005
2302 https://github.com/STEllAR-GROUP/hpx/pull/5004
2303 https://github.com/STEllAR-GROUP/hpx/pull/5003
2304 https://github.com/STEllAR-GROUP/hpx/pull/5001
2305 https://github.com/STEllAR-GROUP/hpx/pull/4999
2306 https://github.com/STEllAR-GROUP/hpx/pull/4997
2307 https://github.com/STEllAR-GROUP/hpx/pull/4996
2308 https://github.com/STEllAR-GROUP/hpx/pull/4995
2309 https://github.com/STEllAR-GROUP/hpx/pull/4993
2310 https://github.com/STEllAR-GROUP/hpx/pull/4991
2311 https://github.com/STEllAR-GROUP/hpx/pull/4990
2312 https://github.com/STEllAR-GROUP/hpx/pull/4989
2313 https://github.com/STEllAR-GROUP/hpx/pull/4986
2314 https://github.com/STEllAR-GROUP/hpx/pull/4985
2315 https://github.com/STEllAR-GROUP/hpx/pull/4980
2316 https://github.com/STEllAR-GROUP/hpx/pull/4979
2317 https://github.com/STEllAR-GROUP/hpx/pull/4977
2318 https://github.com/STEllAR-GROUP/hpx/pull/4976
2319 https://github.com/STEllAR-GROUP/hpx/pull/4975
2320 https://github.com/STEllAR-GROUP/hpx/pull/4973
2321 https://github.com/STEllAR-GROUP/hpx/pull/4970

2.10. Releases 1629

https://github.com/STEllAR-GROUP/hpx/pull/5006
https://github.com/STEllAR-GROUP/hpx/pull/5005
https://github.com/STEllAR-GROUP/hpx/pull/5004
https://github.com/STEllAR-GROUP/hpx/pull/5003
https://github.com/STEllAR-GROUP/hpx/pull/5001
https://github.com/STEllAR-GROUP/hpx/pull/4999
https://github.com/STEllAR-GROUP/hpx/pull/4997
https://github.com/STEllAR-GROUP/hpx/pull/4996
https://github.com/STEllAR-GROUP/hpx/pull/4995
https://github.com/STEllAR-GROUP/hpx/pull/4993
https://github.com/STEllAR-GROUP/hpx/pull/4991
https://github.com/STEllAR-GROUP/hpx/pull/4990
https://github.com/STEllAR-GROUP/hpx/pull/4989
https://github.com/STEllAR-GROUP/hpx/pull/4986
https://github.com/STEllAR-GROUP/hpx/pull/4985
https://github.com/STEllAR-GROUP/hpx/pull/4980
https://github.com/STEllAR-GROUP/hpx/pull/4979
https://github.com/STEllAR-GROUP/hpx/pull/4977
https://github.com/STEllAR-GROUP/hpx/pull/4976
https://github.com/STEllAR-GROUP/hpx/pull/4975
https://github.com/STEllAR-GROUP/hpx/pull/4973
https://github.com/STEllAR-GROUP/hpx/pull/4970

HPX Documentation, master

• PR #49692322 - Moving is_execution_policy and friends into namespace hpx

• PR #49682323 - Enable deprecation warnings for 1.6.0 and move any functionality to hpx namespace

• PR #49672324 - Define deprecation macros conditionally

• PR #49662325 - Add clang-format and cmake-format version prints

• PR #49652326 - Making is_heap and is_heap_until conforming to C++20

• PR #49642327 - Adding parallel make_heap

• PR #49622328 - Fix external timer function pointer exports

• PR #49602329 - Fixing folder names for module tests and examples

• PR #49592330 - Adding communications set

• PR #49582331 - Deprecate tuple and timing functionality in hpx::util

• PR #49572332 - Fixing unity build option for parcelports

• PR #49532333 - Fixing MSVC problems after recent restructurings

• PR #49522334 - Make parallel_executor use thread_pool_executor spawning mechanism

• PR #49482335 - Clean up old artifacts better and more aggressively on Jenkins

• PR #49472336 - Add HIP support for AMD GPUs

• PR #49452337 - Enable HPX_WITH_UNITY_BUILD option on one of the Jenkins configurations

• PR #49432338 - Move public hpx::parallel::execution functionality to hpx::execution

• PR #49382339 - Post release cleanup

• PR #48582340 - Extending resilience APIs to support distributed invocations

• PR #47442341 - Fork-join executor

• PR #46652342 - Implementing sender, receiver, and operation_state concepts in terms of P0443r13

• PR #46492343 - Split libhpx into multiple libraries

• PR #46422344 - Implementing operation_state concept in terms of P0443r13
2322 https://github.com/STEllAR-GROUP/hpx/pull/4969
2323 https://github.com/STEllAR-GROUP/hpx/pull/4968
2324 https://github.com/STEllAR-GROUP/hpx/pull/4967
2325 https://github.com/STEllAR-GROUP/hpx/pull/4966
2326 https://github.com/STEllAR-GROUP/hpx/pull/4965
2327 https://github.com/STEllAR-GROUP/hpx/pull/4964
2328 https://github.com/STEllAR-GROUP/hpx/pull/4962
2329 https://github.com/STEllAR-GROUP/hpx/pull/4960
2330 https://github.com/STEllAR-GROUP/hpx/pull/4959
2331 https://github.com/STEllAR-GROUP/hpx/pull/4958
2332 https://github.com/STEllAR-GROUP/hpx/pull/4957
2333 https://github.com/STEllAR-GROUP/hpx/pull/4953
2334 https://github.com/STEllAR-GROUP/hpx/pull/4952
2335 https://github.com/STEllAR-GROUP/hpx/pull/4948
2336 https://github.com/STEllAR-GROUP/hpx/pull/4947
2337 https://github.com/STEllAR-GROUP/hpx/pull/4945
2338 https://github.com/STEllAR-GROUP/hpx/pull/4943
2339 https://github.com/STEllAR-GROUP/hpx/pull/4938
2340 https://github.com/STEllAR-GROUP/hpx/pull/4858
2341 https://github.com/STEllAR-GROUP/hpx/pull/4744
2342 https://github.com/STEllAR-GROUP/hpx/pull/4665
2343 https://github.com/STEllAR-GROUP/hpx/pull/4649
2344 https://github.com/STEllAR-GROUP/hpx/pull/4642

1630 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4969
https://github.com/STEllAR-GROUP/hpx/pull/4968
https://github.com/STEllAR-GROUP/hpx/pull/4967
https://github.com/STEllAR-GROUP/hpx/pull/4966
https://github.com/STEllAR-GROUP/hpx/pull/4965
https://github.com/STEllAR-GROUP/hpx/pull/4964
https://github.com/STEllAR-GROUP/hpx/pull/4962
https://github.com/STEllAR-GROUP/hpx/pull/4960
https://github.com/STEllAR-GROUP/hpx/pull/4959
https://github.com/STEllAR-GROUP/hpx/pull/4958
https://github.com/STEllAR-GROUP/hpx/pull/4957
https://github.com/STEllAR-GROUP/hpx/pull/4953
https://github.com/STEllAR-GROUP/hpx/pull/4952
https://github.com/STEllAR-GROUP/hpx/pull/4948
https://github.com/STEllAR-GROUP/hpx/pull/4947
https://github.com/STEllAR-GROUP/hpx/pull/4945
https://github.com/STEllAR-GROUP/hpx/pull/4943
https://github.com/STEllAR-GROUP/hpx/pull/4938
https://github.com/STEllAR-GROUP/hpx/pull/4858
https://github.com/STEllAR-GROUP/hpx/pull/4744
https://github.com/STEllAR-GROUP/hpx/pull/4665
https://github.com/STEllAR-GROUP/hpx/pull/4649
https://github.com/STEllAR-GROUP/hpx/pull/4642

HPX Documentation, master

• PR #46402345 - Implementing receiver concept in terms of P0443r13

• PR #46222346 - Sanitizer fixes

HPX V1.5.1 (Sep 30, 2020)

General changes

This is a patch release. It contains the following changes:

• Remove restriction on suspending runtime with multiple localities, users are now responsible for synchronizing
work between localities before suspending.

• Fixes several compilation problems and warnings.

• Adds notes in the documentation explaining how to cite HPX.

Closed issues

• Issue #49712347 - Parallel sort fails to compile with C++20

• Issue #49502348 - Build with HPX_WITH_PARCELPORT_ACTION_COUNTERS ON fails

• Issue #49402349 - Codespell report for “HPX” (on fossies.org)

• Issue #49372350 - Allow suspension of runtime for multiple localities

Closed pull requests

• PR #49822351 - Add page about citing HPX to documentation

• PR #49812352 - Adding the missing include

• PR #49742353 - Remove leftover format export hack

• PR #49722354 - Removing use of get_temporary_buffer and return_temporary_buffer

• PR #49632355 - Renaming files to avoid warnings from the vs build system

• PR #49512356 - Fixing build if HPX_WITH_PARCELPORT_ACTION_COUNTERS=On

• PR #49462357 - Allow suspension on multiple localities

• PR #49442358 - Fix typos reported by fossies codespell report

• PR #49412359 - Adding some explanation to README about how to cite HPX
2345 https://github.com/STEllAR-GROUP/hpx/pull/4640
2346 https://github.com/STEllAR-GROUP/hpx/pull/4622
2347 https://github.com/STEllAR-GROUP/hpx/issues/4971
2348 https://github.com/STEllAR-GROUP/hpx/issues/4950
2349 https://github.com/STEllAR-GROUP/hpx/issues/4940
2350 https://github.com/STEllAR-GROUP/hpx/issues/4937
2351 https://github.com/STEllAR-GROUP/hpx/pull/4982
2352 https://github.com/STEllAR-GROUP/hpx/pull/4981
2353 https://github.com/STEllAR-GROUP/hpx/pull/4974
2354 https://github.com/STEllAR-GROUP/hpx/pull/4972
2355 https://github.com/STEllAR-GROUP/hpx/pull/4963
2356 https://github.com/STEllAR-GROUP/hpx/pull/4951
2357 https://github.com/STEllAR-GROUP/hpx/pull/4946
2358 https://github.com/STEllAR-GROUP/hpx/pull/4944
2359 https://github.com/STEllAR-GROUP/hpx/pull/4941

2.10. Releases 1631

https://github.com/STEllAR-GROUP/hpx/pull/4640
https://github.com/STEllAR-GROUP/hpx/pull/4622
https://github.com/STEllAR-GROUP/hpx/issues/4971
https://github.com/STEllAR-GROUP/hpx/issues/4950
https://github.com/STEllAR-GROUP/hpx/issues/4940
https://github.com/STEllAR-GROUP/hpx/issues/4937
https://github.com/STEllAR-GROUP/hpx/pull/4982
https://github.com/STEllAR-GROUP/hpx/pull/4981
https://github.com/STEllAR-GROUP/hpx/pull/4974
https://github.com/STEllAR-GROUP/hpx/pull/4972
https://github.com/STEllAR-GROUP/hpx/pull/4963
https://github.com/STEllAR-GROUP/hpx/pull/4951
https://github.com/STEllAR-GROUP/hpx/pull/4946
https://github.com/STEllAR-GROUP/hpx/pull/4944
https://github.com/STEllAR-GROUP/hpx/pull/4941

HPX Documentation, master

• PR #49392360 - Small changes

HPX V1.5.0 (Sep 02, 2020)

General changes

The main focus of this release is on APIs and C++20 conformance. We have added many new C++20 features and
adapted multiple algorithms to be fully C++20 conformant. As part of the modularization we have begun specifying
the public API of HPX in terms of headers and functionality, and aligning it more closely to the C++ standard. All
non-distributed modules are now in place, along with an experimental option to completely disable distributed features
in HPX. We have also added experimental asynchronous MPI and CUDA executors. Lastly this release introduces
CMake targets for depending projects, performance improvements, and many bug fixes.

• We have added the C++20 features hpx::jthread and hpx::stop_token. hpx::condition_variable_any
now exposes new functions supporting hpx::stop_token.

• We have added hpx::stable_sort based on Francisco Tapia’s implementation.

• We have adapted existing synchronization primitives to be fully conformant C++20: hpx::barrier,
hpx::latch, hpx::counting_semaphore, and hpx::binary_semaphore.

• We have started using customization point objects (CPOs) to make the corresponding algorithms fully conformant
to C++20 as well as to make algorithm extension easier for the user. all_of/any_of/none_of, copy, count,
destroy, equal, fill, find, for_each, generate, mismatch, move, reduce, transform_reduce are using
those CPOs (all in namespace hpx). We also have adapted their corresponding hpx::ranges versions to be
conforming to C++20 in this release.

• We have adapted support for co_await to C++20, in addition to hpx::future it now also supports
hpx::shared_future. We have also added allocator support for futures returned by co_return. It is no
longer in the experimental namespace.

• We added serialization support for std::variant and std::tuple.

• result_of and is_callable are now deprecated and replaced by invoke_result and is_invocable to
conform to C++20.

• We continued with the modularization, making it easier for us to add the new experimental
HPX_WITH_DISTRIBUTED_RUNTIME CMake option (see below) . An significant amount of headers have
been deprecated. We adapted the namespaces and headers we could to be closer to the standard ones (Public
API). Depending code should still compile, however warnings are now generated instructing to change the
include statements accordingly.

• It is now possible to have a basic CUDA support including a helper function to get a future from a CUDA stream
and target handling. They are available under the hpx::cuda::experimental namespace and they can be
enabled with the -DHPX_WITH_ASYNC_CUDA=ON CMake option.

• We added a new hpx::mpi::experimental namespace for getting futures from an asynchronous MPI call
and a new minimal MPI executor hpx::mpi::experimental::executor. These can be enabled with the
-DHPX_WITH_ASYNC_MPI=On CMake option.

• A polymorphic executor has been implemented to reduce compile times as a function accepting executors can
potentially be instantiated only once instead of multiple times with different executors. It accepts the function
signature as a template argument. It needs to be constructed from any other executor. Please note, that the
function signatures that can be scheduled using then_execute, bulk_sync_execute, bulk_async_execute
and bulk_then_execute are slightly different (See the comment in PR #45142361 for more details).

• The underlying executor of block_executor has been updated to a newer one.
2360 https://github.com/STEllAR-GROUP/hpx/pull/4939
2361 https://github.com/STEllAR-GROUP/hpx/pull/4514

1632 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4939
https://github.com/STEllAR-GROUP/hpx/pull/4514

HPX Documentation, master

• We have added a parameter to auto_chunk_size to control the amount of iterations to measure.

• All executor parameter hooks can now be exposed through the executor itself. This will allow to deprecate the .
with() functionality on execution policies in the future. This is also a first step towards simplifying our executor
APIs in preparation for the upcoming C++23 executors (senders/receivers).

• We have moved all of the existing APIs related to resiliency into the namespace
hpx::resiliency::experimental. Please note this is a breaking change without backwards-compatibility
option. We have converted all of those APIs to be based on customization point objects. Two new executors have
been added to enable easy integration of the existing resiliency features with other facilities (like the parallel
algorithms): replay_executor and replicate_executor.

• We have added performance counters type information (aggregating, monotonically increasing,
average count, average timer, etc.).

• HPX threads are now re-scheduled on the same worker thread they were suspended on to avoid cache misses
from moving from one thread to the other. This behavior doesn’t prevent the thread from being stolen, however.

• We have added a new configuration option hpx.exception_verbosity to allow to control the level of verbosity
of the exceptions (3 levels available).

• broadcast_to, broadcast_from, scatter_to and scatter_from have been added to the collectives, mod-
ernization of gather_here and gather_therewith futures taken by rvalue references. See the breaking change
on all_to_all in the next section. None of the collectives need supporting macros anymore (e.g. specifying the
data types used for a collective operation using HPX_REGISTER_ALLGATHER and similar is not needed anymore).

• New API functions have been added: a) to get the number of cores which are idle
(hpx::get_idle_core_count) and b) returning a bitmask representing the currently idle cores
(hpx::get_idle_core_mask).

• We have added an experimental option to only enable the local runtime, you can disable the distributed
runtime with HPX_WITH_DISTRIBUTED_RUNTIME=OFF. You can also enable the local runtime by using the
--hpx:local runtime option.

• We fixed task annotations for actions.

• The alias hpx::promise to hpx::lcos::promise is now deprecated. You can use hpx::lcos::promise
directly instead. hpx::promise will refer to the local-only promise in the future.

• We have added a prepare_checkpoint API function that calculates the amount of necessary buffer space for
a particular set of arguments checkpointed.

• We have added hpx::upgrade_lock and hpx::upgrade_to_unique_lock, which make
hpx::shared_mutex (and similar) usable in more flexible ways.

• We have changed the CMake targets exposed to the user, it now includes HPX::hpx, HPX::wrap_main
(int main as the first HPX thread of the application, see Starting the HPX runtime), HPX::plugin,
HPX::component. The CMake variables HPX_INCLUDE_DIRS and HPX_LIBRARIES are deprecated and will
be removed in a future release, you should now link directly to the HPX::hpx CMake target.

• A new example is demonstrating how to create and use a wrapping executor (quickstart/
executor_with_thread_hooks.cpp)

• A new example is demonstrating how to disable thread stealing during the execution of parallel algorithms
(quickstart/disable_thread_stealing_executor.cpp)

• We now require for our CMake build system configuration files to be formatted using cmake-format.

• We have removed more dependencies on various Boost libraries.

• We have added an experimental option enabling unity builds of HPX using the -DHPX_WITH_UNITY_BUILD=On
CMake option.

2.10. Releases 1633

HPX Documentation, master

• Many bug fixes.

Breaking changes

• HPX now requires a C++14 capable compiler. We have set the HPX C++ standard automatically to C++14 and
if it needs to be set explicitly, it should be specified through the CMAKE_CXX_STANDARD setting as mandated by
CMake. The HPX_WITH_CXX* variables are now deprecated and will be removed in the future.

• Building and using HPX is now supported only when using CMake V3.13 or later, Boost V1.64 or newer, and
when compiling with clang V5, gcc V7, or VS2019, or later. Other compilers might still work but have not been
tested thoroughly.

• We have added a hpx::init_params struct to pass parameters for HPX initialization e.g. the resource parti-
tioner callback to initialize thread pools (Using the resource partitioner).

• The all_to_all algorithm is renamed to all_gather, and the new all_to_all algorithm is not compatible
with the old one.

• We have moved all of the existing APIs related to resiliency into the namespace
hpx::resiliency::experimental.

Closed issues

• Issue #49182362 - Rename distributed_executors module

• Issue #49002363 - Adding JOSS status badge to README

• Issue #48972364 - Compiler warning, deprecated header used by HPX itself

• Issue #48862365 - A future bound to an action executing on a different locality doesn’t capture exception state

• Issue #48802366 - Undefined reference to main build error when HPX_WITH_DYNAMIC_HPX_MAIN=OFF

• Issue #48772367 - hpx_main might not able to start hpx runtime properly

• Issue #48502368 - Issues creating templated component

• Issue #48292369 - Spack package & HPX_WITH_GENERIC_CONTEXT_COROUTINES

• Issue #48202370 - PAPI counters don’t work

• Issue #48182371 - HPX can’t be used with IO pool turned off

• Issue #48162372 - Build of HPX fails when find_package(Boost) is called before FetchCon-
tent_MakeAvailable(hpx)

• Issue #48132373 - HPX MPI Future failed

• Issue #48112374 - Remove HPX::hpx_no_wrap_main target before 1.5.0 release
2362 https://github.com/STEllAR-GROUP/hpx/issues/4918
2363 https://github.com/STEllAR-GROUP/hpx/issues/4900
2364 https://github.com/STEllAR-GROUP/hpx/issues/4897
2365 https://github.com/STEllAR-GROUP/hpx/issues/4886
2366 https://github.com/STEllAR-GROUP/hpx/issues/4880
2367 https://github.com/STEllAR-GROUP/hpx/issues/4877
2368 https://github.com/STEllAR-GROUP/hpx/issues/4850
2369 https://github.com/STEllAR-GROUP/hpx/issues/4829
2370 https://github.com/STEllAR-GROUP/hpx/issues/4820
2371 https://github.com/STEllAR-GROUP/hpx/issues/4818
2372 https://github.com/STEllAR-GROUP/hpx/issues/4816
2373 https://github.com/STEllAR-GROUP/hpx/issues/4813
2374 https://github.com/STEllAR-GROUP/hpx/issues/4811

1634 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/4918
https://github.com/STEllAR-GROUP/hpx/issues/4900
https://github.com/STEllAR-GROUP/hpx/issues/4897
https://github.com/STEllAR-GROUP/hpx/issues/4886
https://github.com/STEllAR-GROUP/hpx/issues/4880
https://github.com/STEllAR-GROUP/hpx/issues/4877
https://github.com/STEllAR-GROUP/hpx/issues/4850
https://github.com/STEllAR-GROUP/hpx/issues/4829
https://github.com/STEllAR-GROUP/hpx/issues/4820
https://github.com/STEllAR-GROUP/hpx/issues/4818
https://github.com/STEllAR-GROUP/hpx/issues/4816
https://github.com/STEllAR-GROUP/hpx/issues/4813
https://github.com/STEllAR-GROUP/hpx/issues/4811

HPX Documentation, master

• Issue #48102375 - In hpx::for_each::invoke_projected the hpx::util::decay is misguided

• Issue #47872376 - transform_inclusive_scan gives incorrect results for non-commutative operator

• Issue #47862377 - transform_inclusive_scan tries to implicitly convert between types, instead of using the pro-
vided conv function

• Issue #47792378 - HPX build error with GCC 10.1

• Issue #47662379 - Move HPX.Compute functionality to experimental namespace

• Issue #47632380 - License file name

• Issue #47582381 - CMake profiling results

• Issue #47552382 - Building HPX with support for PAPI fails

• Issue #47542383 - CMake cache creation breaks when using HPX with mimalloc

• Issue #47522384 - HPX MPI Future build failed

• Issue #47462385 - Memory leak when using dataflow icw components

• Issue #47312386 - Bug in stencil example, calculation of locality IDs

• Issue #47232387 - Build fail with NETWORKING OFF

• Issue #47202388 - Add compatibility headers for modules that had their module headers implicitly generated in
1.4.1

• Issue #47192389 - Undeprecate some module headers

• Issue #47122390 - Rename HPX_MPI_WITH_FUTURES option

• Issue #47092391 - Make deprecation warnings overridable in dependent projects

• Issue #46912392 - Suggestion to fix and enhance the thread_mapper API

• Issue #46862393 - Fix tutorials examples

• Issue #46852394 - HPX distributed map fails to compile

• Issue #46802395 - Build error with HPX_WITH_DYNAMIC_HPX_MAIN=OFF

• Issue #46792396 - Build error for hpx w/ Apex on Summit
2375 https://github.com/STEllAR-GROUP/hpx/issues/4810
2376 https://github.com/STEllAR-GROUP/hpx/issues/4787
2377 https://github.com/STEllAR-GROUP/hpx/issues/4786
2378 https://github.com/STEllAR-GROUP/hpx/issues/4779
2379 https://github.com/STEllAR-GROUP/hpx/issues/4766
2380 https://github.com/STEllAR-GROUP/hpx/issues/4763
2381 https://github.com/STEllAR-GROUP/hpx/issues/4758
2382 https://github.com/STEllAR-GROUP/hpx/issues/4755
2383 https://github.com/STEllAR-GROUP/hpx/issues/4754
2384 https://github.com/STEllAR-GROUP/hpx/issues/4752
2385 https://github.com/STEllAR-GROUP/hpx/issues/4746
2386 https://github.com/STEllAR-GROUP/hpx/issues/4731
2387 https://github.com/STEllAR-GROUP/hpx/issues/4723
2388 https://github.com/STEllAR-GROUP/hpx/issues/4720
2389 https://github.com/STEllAR-GROUP/hpx/issues/4719
2390 https://github.com/STEllAR-GROUP/hpx/issues/4712
2391 https://github.com/STEllAR-GROUP/hpx/issues/4709
2392 https://github.com/STEllAR-GROUP/hpx/issues/4691
2393 https://github.com/STEllAR-GROUP/hpx/issues/4686
2394 https://github.com/STEllAR-GROUP/hpx/issues/4685
2395 https://github.com/STEllAR-GROUP/hpx/issues/4680
2396 https://github.com/STEllAR-GROUP/hpx/issues/4679

2.10. Releases 1635

https://github.com/STEllAR-GROUP/hpx/issues/4810
https://github.com/STEllAR-GROUP/hpx/issues/4787
https://github.com/STEllAR-GROUP/hpx/issues/4786
https://github.com/STEllAR-GROUP/hpx/issues/4779
https://github.com/STEllAR-GROUP/hpx/issues/4766
https://github.com/STEllAR-GROUP/hpx/issues/4763
https://github.com/STEllAR-GROUP/hpx/issues/4758
https://github.com/STEllAR-GROUP/hpx/issues/4755
https://github.com/STEllAR-GROUP/hpx/issues/4754
https://github.com/STEllAR-GROUP/hpx/issues/4752
https://github.com/STEllAR-GROUP/hpx/issues/4746
https://github.com/STEllAR-GROUP/hpx/issues/4731
https://github.com/STEllAR-GROUP/hpx/issues/4723
https://github.com/STEllAR-GROUP/hpx/issues/4720
https://github.com/STEllAR-GROUP/hpx/issues/4719
https://github.com/STEllAR-GROUP/hpx/issues/4712
https://github.com/STEllAR-GROUP/hpx/issues/4709
https://github.com/STEllAR-GROUP/hpx/issues/4691
https://github.com/STEllAR-GROUP/hpx/issues/4686
https://github.com/STEllAR-GROUP/hpx/issues/4685
https://github.com/STEllAR-GROUP/hpx/issues/4680
https://github.com/STEllAR-GROUP/hpx/issues/4679

HPX Documentation, master

• Issue #46752397 - build error with HPX_WITH_NETWORKING=OFF

• Issue #46742398 - Error running Quickstart tests on OS X

• Issue #46622399 - MPI initialization broken when networking off

• Issue #46522400 - How to fix distributed action annotation

• Issue #46502401 - thread descriptions are broken. . . again

• Issue #46482402 - Thread stacksize not properly set

• Issue #46472403 - Rename generated collective headers in modules

• Issue #46392404 - Update deprecation warnings in compatibility headers to point to collective headers

• Issue #46282405 - mpi parcelport totally broken

• Issue #46192406 - Fully document hpx_wrap behaviour and targets

• Issue #46122407 - Compilation issue with HPX 1.4.1 and 1.4.0

• Issue #45942408 - Rename modules

• Issue #45782409 - Default value for HPX_WITH_THREAD_BACKTRACE_DEPTH

• Issue #45722410 - Thread manager should be given a runtime_configuration

• Issue #45712411 - Add high-level documentation to new modules

• Issue #45692412 - Annoying warning when compiling - pls suppress or fix it.

• Issue #45552413 - HPX_HAVE_THREAD_BACKTRACE_ON_SUSPENSION compilation error

• Issue #45432414 - Segfaults in Release builds using sleep_for

• Issue #45392415 - Compilation Error when HPX_MPI_WITH_FUTURES=ON

• Issue #45372416 - Linking issue with libhpx_initd.a

• Issue #45352417 - API for checking if pool with a given name exists

• Issue #45232418 - Build of PR #4311 (git tag 9955e8e) fails

• Issue #45192419 - Documentation problem
2397 https://github.com/STEllAR-GROUP/hpx/issues/4675
2398 https://github.com/STEllAR-GROUP/hpx/issues/4674
2399 https://github.com/STEllAR-GROUP/hpx/issues/4662
2400 https://github.com/STEllAR-GROUP/hpx/issues/4652
2401 https://github.com/STEllAR-GROUP/hpx/issues/4650
2402 https://github.com/STEllAR-GROUP/hpx/issues/4648
2403 https://github.com/STEllAR-GROUP/hpx/issues/4647
2404 https://github.com/STEllAR-GROUP/hpx/issues/4639
2405 https://github.com/STEllAR-GROUP/hpx/issues/4628
2406 https://github.com/STEllAR-GROUP/hpx/issues/4619
2407 https://github.com/STEllAR-GROUP/hpx/issues/4612
2408 https://github.com/STEllAR-GROUP/hpx/issues/4594
2409 https://github.com/STEllAR-GROUP/hpx/issues/4578
2410 https://github.com/STEllAR-GROUP/hpx/issues/4572
2411 https://github.com/STEllAR-GROUP/hpx/issues/4571
2412 https://github.com/STEllAR-GROUP/hpx/issues/4569
2413 https://github.com/STEllAR-GROUP/hpx/issues/4555
2414 https://github.com/STEllAR-GROUP/hpx/issues/4543
2415 https://github.com/STEllAR-GROUP/hpx/issues/4539
2416 https://github.com/STEllAR-GROUP/hpx/issues/4537
2417 https://github.com/STEllAR-GROUP/hpx/issues/4535
2418 https://github.com/STEllAR-GROUP/hpx/issues/4523
2419 https://github.com/STEllAR-GROUP/hpx/issues/4519

1636 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/4675
https://github.com/STEllAR-GROUP/hpx/issues/4674
https://github.com/STEllAR-GROUP/hpx/issues/4662
https://github.com/STEllAR-GROUP/hpx/issues/4652
https://github.com/STEllAR-GROUP/hpx/issues/4650
https://github.com/STEllAR-GROUP/hpx/issues/4648
https://github.com/STEllAR-GROUP/hpx/issues/4647
https://github.com/STEllAR-GROUP/hpx/issues/4639
https://github.com/STEllAR-GROUP/hpx/issues/4628
https://github.com/STEllAR-GROUP/hpx/issues/4619
https://github.com/STEllAR-GROUP/hpx/issues/4612
https://github.com/STEllAR-GROUP/hpx/issues/4594
https://github.com/STEllAR-GROUP/hpx/issues/4578
https://github.com/STEllAR-GROUP/hpx/issues/4572
https://github.com/STEllAR-GROUP/hpx/issues/4571
https://github.com/STEllAR-GROUP/hpx/issues/4569
https://github.com/STEllAR-GROUP/hpx/issues/4555
https://github.com/STEllAR-GROUP/hpx/issues/4543
https://github.com/STEllAR-GROUP/hpx/issues/4539
https://github.com/STEllAR-GROUP/hpx/issues/4537
https://github.com/STEllAR-GROUP/hpx/issues/4535
https://github.com/STEllAR-GROUP/hpx/issues/4523
https://github.com/STEllAR-GROUP/hpx/issues/4519

HPX Documentation, master

• Issue #45132420 - HPXConfig.cmake contains ill-formed paths when library paths use backslashes

• Issue #45072421 - User-polling introduced by MPI futures module should be more generally usable

• Issue #45062422 - Make sure force_linking.hpp is not included in main module header

• Issue #45012423 - Fix compilation of PAPI tests

• Issue #44972424 - Add modules CI checks

• Issue #44892425 - Polymorphic executor

• Issue #44762426 - Use CMake targets defined by FindBoost

• Issue #44732427 - Add vcpkg installation instructions

• Issue #44702428 - Adapt hpx::future to C++20 co_await

• Issue #44682429 - Compile error on Raspberry Pi 4

• Issue #44662430 - Compile error on Windows, current stable:

• Issue #44532431 - Installing HPX on fedora with dnf is not adding cmake files

• Issue #44482432 - New std::variant serialization broken

• Issue #44382433 - Add performance counter flag is monotically increasing

• Issue #44362434 - Build problem: same code build and works with 1.4.0 but it doesn’t with 1.4.1

• Issue #44292435 - Function descriptions not supported in distributed

• Issue #44232436 - –hpx:ini=hpx.lock_detection=0 has no effect

• Issue #44222437 - Add performance counter metadata

• Issue #44192438 - Weird behavior for –hpx:print-counter-interval with large numbers

• Issue #44012439 - Create module repository

• Issue #44002440 - Command line options conflict related to performance counters

• Issue #43492441 - –hpx:use-process-mask option throw an exception on OS X

• Issue #43452442 - Move gh-pages branch out of hpx repo
2420 https://github.com/STEllAR-GROUP/hpx/issues/4513
2421 https://github.com/STEllAR-GROUP/hpx/issues/4507
2422 https://github.com/STEllAR-GROUP/hpx/issues/4506
2423 https://github.com/STEllAR-GROUP/hpx/issues/4501
2424 https://github.com/STEllAR-GROUP/hpx/issues/4497
2425 https://github.com/STEllAR-GROUP/hpx/issues/4489
2426 https://github.com/STEllAR-GROUP/hpx/issues/4476
2427 https://github.com/STEllAR-GROUP/hpx/issues/4473
2428 https://github.com/STEllAR-GROUP/hpx/issues/4470
2429 https://github.com/STEllAR-GROUP/hpx/issues/4468
2430 https://github.com/STEllAR-GROUP/hpx/issues/4466
2431 https://github.com/STEllAR-GROUP/hpx/issues/4453
2432 https://github.com/STEllAR-GROUP/hpx/issues/4448
2433 https://github.com/STEllAR-GROUP/hpx/issues/4438
2434 https://github.com/STEllAR-GROUP/hpx/issues/4436
2435 https://github.com/STEllAR-GROUP/hpx/issues/4429
2436 https://github.com/STEllAR-GROUP/hpx/issues/4423
2437 https://github.com/STEllAR-GROUP/hpx/issues/4422
2438 https://github.com/STEllAR-GROUP/hpx/issues/4419
2439 https://github.com/STEllAR-GROUP/hpx/issues/4401
2440 https://github.com/STEllAR-GROUP/hpx/issues/4400
2441 https://github.com/STEllAR-GROUP/hpx/issues/4349
2442 https://github.com/STEllAR-GROUP/hpx/issues/4345

2.10. Releases 1637

https://github.com/STEllAR-GROUP/hpx/issues/4513
https://github.com/STEllAR-GROUP/hpx/issues/4507
https://github.com/STEllAR-GROUP/hpx/issues/4506
https://github.com/STEllAR-GROUP/hpx/issues/4501
https://github.com/STEllAR-GROUP/hpx/issues/4497
https://github.com/STEllAR-GROUP/hpx/issues/4489
https://github.com/STEllAR-GROUP/hpx/issues/4476
https://github.com/STEllAR-GROUP/hpx/issues/4473
https://github.com/STEllAR-GROUP/hpx/issues/4470
https://github.com/STEllAR-GROUP/hpx/issues/4468
https://github.com/STEllAR-GROUP/hpx/issues/4466
https://github.com/STEllAR-GROUP/hpx/issues/4453
https://github.com/STEllAR-GROUP/hpx/issues/4448
https://github.com/STEllAR-GROUP/hpx/issues/4438
https://github.com/STEllAR-GROUP/hpx/issues/4436
https://github.com/STEllAR-GROUP/hpx/issues/4429
https://github.com/STEllAR-GROUP/hpx/issues/4423
https://github.com/STEllAR-GROUP/hpx/issues/4422
https://github.com/STEllAR-GROUP/hpx/issues/4419
https://github.com/STEllAR-GROUP/hpx/issues/4401
https://github.com/STEllAR-GROUP/hpx/issues/4400
https://github.com/STEllAR-GROUP/hpx/issues/4349
https://github.com/STEllAR-GROUP/hpx/issues/4345

HPX Documentation, master

• Issue #43232443 - Const-correctness error in assignment operator of compute::vector

• Issue #43182444 - ASIO breaks with C++2a concepts

• Issue #43172445 - Application runs even if –hpx:help is specified

• Issue #40632446 - Document hpxcxx compiler wrapper

• Issue #39832447 - Implement the C++20 Synchronization Library

• Issue #36962448 - C++11 constexpr support is now required

• Issue #36232449 - Modular HPX branch and an alternative project layout

• Issue #28362450 - The worst-case time complexity of parallel::sort seems to be O(N^2).

Closed pull requests

• PR #49362451 - Minor documentation fixes part 2

• PR #49352452 - Add copyright and license to joss paper file

• PR #49342453 - Adding Semicolon in Documentation

• PR #49322454 - Fixing compiler warnings

• PR #49312455 - Small documentation formatting fixes

• PR #49302456 - Documentation Distributed HPX applications localvv with local_vv

• PR #49292457 - Add final version of the JOSS paper

• PR #49282458 - Add HPX_NODISCARD to enable_user_polling structs

• PR #49262459 - Rename distributed_executors module to executors_distributed

• PR #49252460 - Making transform_reduce conforming to C++20

• PR #49232461 - Don’t acquire lock if not needed

• PR #49212462 - Update the release notes for the release candidate 3

• PR #49202463 - Disable libcds release

• PR #49192464 - Make cuda event pool dynamic instead of fixed size
2443 https://github.com/STEllAR-GROUP/hpx/issues/4323
2444 https://github.com/STEllAR-GROUP/hpx/issues/4318
2445 https://github.com/STEllAR-GROUP/hpx/issues/4317
2446 https://github.com/STEllAR-GROUP/hpx/issues/4063
2447 https://github.com/STEllAR-GROUP/hpx/issues/3983
2448 https://github.com/STEllAR-GROUP/hpx/issues/3696
2449 https://github.com/STEllAR-GROUP/hpx/issues/3623
2450 https://github.com/STEllAR-GROUP/hpx/issues/2836
2451 https://github.com/STEllAR-GROUP/hpx/pull/4936
2452 https://github.com/STEllAR-GROUP/hpx/pull/4935
2453 https://github.com/STEllAR-GROUP/hpx/pull/4934
2454 https://github.com/STEllAR-GROUP/hpx/pull/4932
2455 https://github.com/STEllAR-GROUP/hpx/pull/4931
2456 https://github.com/STEllAR-GROUP/hpx/pull/4930
2457 https://github.com/STEllAR-GROUP/hpx/pull/4929
2458 https://github.com/STEllAR-GROUP/hpx/pull/4928
2459 https://github.com/STEllAR-GROUP/hpx/pull/4926
2460 https://github.com/STEllAR-GROUP/hpx/pull/4925
2461 https://github.com/STEllAR-GROUP/hpx/pull/4923
2462 https://github.com/STEllAR-GROUP/hpx/pull/4921
2463 https://github.com/STEllAR-GROUP/hpx/pull/4920
2464 https://github.com/STEllAR-GROUP/hpx/pull/4919

1638 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/4323
https://github.com/STEllAR-GROUP/hpx/issues/4318
https://github.com/STEllAR-GROUP/hpx/issues/4317
https://github.com/STEllAR-GROUP/hpx/issues/4063
https://github.com/STEllAR-GROUP/hpx/issues/3983
https://github.com/STEllAR-GROUP/hpx/issues/3696
https://github.com/STEllAR-GROUP/hpx/issues/3623
https://github.com/STEllAR-GROUP/hpx/issues/2836
https://github.com/STEllAR-GROUP/hpx/pull/4936
https://github.com/STEllAR-GROUP/hpx/pull/4935
https://github.com/STEllAR-GROUP/hpx/pull/4934
https://github.com/STEllAR-GROUP/hpx/pull/4932
https://github.com/STEllAR-GROUP/hpx/pull/4931
https://github.com/STEllAR-GROUP/hpx/pull/4930
https://github.com/STEllAR-GROUP/hpx/pull/4929
https://github.com/STEllAR-GROUP/hpx/pull/4928
https://github.com/STEllAR-GROUP/hpx/pull/4926
https://github.com/STEllAR-GROUP/hpx/pull/4925
https://github.com/STEllAR-GROUP/hpx/pull/4923
https://github.com/STEllAR-GROUP/hpx/pull/4921
https://github.com/STEllAR-GROUP/hpx/pull/4920
https://github.com/STEllAR-GROUP/hpx/pull/4919

HPX Documentation, master

• PR #49172465 - Move chrono functionality to hpx::chrono namespace

• PR #49162466 - HPX_HAVE_DEPRECATION_WARNINGS needs to be set even when disabled

• PR #49152467 - Moving more action related files to actions modules

• PR #49142468 - Add alias targets with namespaces used for exporting

• PR #49122469 - Aggregate initialize CPOs

• PR #49102470 - Explicitly specify hwloc root on Jenkins CSCS builds

• PR #49082471 - Fix algorithms documentation

• PR #49072472 - Remove HPX::hpx_no_wrap_main target

• PR #49062473 - Fixing unused variable warning

• PR #49052474 - Adding specializations for simple for_loops

• PR #49042475 - Update boost to 1.74.0 for the newest jenkins configs

• PR #49032476 - Hide GITHUB_TOKEN environment variables from environment variable output

• PR #49022477 - Cancel previous pull requests builds before starting a new one with Jenkins

• PR #49012478 - Update public API list with updated algorithms

• PR #48992479 - Suggested changes for HPX V1.5 release notes

• PR #48982480 - Minor tweak to hpx::equal implementation

• PR #48962481 - Making generate() and generate_n conforming to C++20

• PR #48952482 - Update apex tag

• PR #48942483 - Fix exception handling for tasks

• PR #48932484 - Remove last use of std::result_of, removed in C++20

• PR #48922485 - Adding replay_executor and replicate_executor

• PR #48892486 - Restore old behaviour of not requiring linking to hpx_wrap when
HPX_WITH_DYNAMIC_HPX_MAIN=OFF

• PR #48872487 - Making sure remotely thrown (non-hpx) exceptions are properly marshaled back to invocation
2465 https://github.com/STEllAR-GROUP/hpx/pull/4917
2466 https://github.com/STEllAR-GROUP/hpx/pull/4916
2467 https://github.com/STEllAR-GROUP/hpx/pull/4915
2468 https://github.com/STEllAR-GROUP/hpx/pull/4914
2469 https://github.com/STEllAR-GROUP/hpx/pull/4912
2470 https://github.com/STEllAR-GROUP/hpx/pull/4910
2471 https://github.com/STEllAR-GROUP/hpx/pull/4908
2472 https://github.com/STEllAR-GROUP/hpx/pull/4907
2473 https://github.com/STEllAR-GROUP/hpx/pull/4906
2474 https://github.com/STEllAR-GROUP/hpx/pull/4905
2475 https://github.com/STEllAR-GROUP/hpx/pull/4904
2476 https://github.com/STEllAR-GROUP/hpx/pull/4903
2477 https://github.com/STEllAR-GROUP/hpx/pull/4902
2478 https://github.com/STEllAR-GROUP/hpx/pull/4901
2479 https://github.com/STEllAR-GROUP/hpx/pull/4899
2480 https://github.com/STEllAR-GROUP/hpx/pull/4898
2481 https://github.com/STEllAR-GROUP/hpx/pull/4896
2482 https://github.com/STEllAR-GROUP/hpx/pull/4895
2483 https://github.com/STEllAR-GROUP/hpx/pull/4894
2484 https://github.com/STEllAR-GROUP/hpx/pull/4893
2485 https://github.com/STEllAR-GROUP/hpx/pull/4892
2486 https://github.com/STEllAR-GROUP/hpx/pull/4889
2487 https://github.com/STEllAR-GROUP/hpx/pull/4887

2.10. Releases 1639

https://github.com/STEllAR-GROUP/hpx/pull/4917
https://github.com/STEllAR-GROUP/hpx/pull/4916
https://github.com/STEllAR-GROUP/hpx/pull/4915
https://github.com/STEllAR-GROUP/hpx/pull/4914
https://github.com/STEllAR-GROUP/hpx/pull/4912
https://github.com/STEllAR-GROUP/hpx/pull/4910
https://github.com/STEllAR-GROUP/hpx/pull/4908
https://github.com/STEllAR-GROUP/hpx/pull/4907
https://github.com/STEllAR-GROUP/hpx/pull/4906
https://github.com/STEllAR-GROUP/hpx/pull/4905
https://github.com/STEllAR-GROUP/hpx/pull/4904
https://github.com/STEllAR-GROUP/hpx/pull/4903
https://github.com/STEllAR-GROUP/hpx/pull/4902
https://github.com/STEllAR-GROUP/hpx/pull/4901
https://github.com/STEllAR-GROUP/hpx/pull/4899
https://github.com/STEllAR-GROUP/hpx/pull/4898
https://github.com/STEllAR-GROUP/hpx/pull/4896
https://github.com/STEllAR-GROUP/hpx/pull/4895
https://github.com/STEllAR-GROUP/hpx/pull/4894
https://github.com/STEllAR-GROUP/hpx/pull/4893
https://github.com/STEllAR-GROUP/hpx/pull/4892
https://github.com/STEllAR-GROUP/hpx/pull/4889
https://github.com/STEllAR-GROUP/hpx/pull/4887

HPX Documentation, master

site

• PR #48852488 - Adapting hpx::find and friends to C++20

• PR #48842489 - Adapting mismatch to C++20

• PR #48832490 - Adapting hpx::equal to be conforming to C++20

• PR #48822491 - Fixing exception handling for hpx::copy and adding missing tests

• PR #48812492 - Adds different runtime exception when registering thread with the HPX runtime

• PR #48762493 - Adding example demonstrating how to disable thread stealing during the execution of parallel
algorithms

• PR #48742494 - Adding non-policy tests to all_of, any_of, and none_of

• PR #48732495 - Set CUDA compute capability on rostam Jenkins builds

• PR #48722496 - Force partitioned vector scan tests to run serially

• PR #48702497 - Making move conforming with C++20

• PR #48692498 - Making destroy and destroy_n conforming to C++20

• PR #48682499 - Fix miscellaneous header problems

• PR #48672500 - Add CPOs for for_each

• PR #48652501 - Adapting count and count_if to be conforming to C++20

• PR #48642502 - Release notes 1.5.0

• PR #48632503 - adding libcds-hpx tag to prepare for hpx1.5 release

• PR #48622504 - Adding version specific deprecation options

• PR #48612505 - Limiting executor improvements

• PR #48602506 - Making fill and fill_n compatible with C++20

• PR #48592507 - Adapting all_of, any_of, and none_of to C++20

• PR #48572508 - Improve libCDS integration

• PR #48562509 - Correct typos in the documentation of the hpx performance counters
2488 https://github.com/STEllAR-GROUP/hpx/pull/4885
2489 https://github.com/STEllAR-GROUP/hpx/pull/4884
2490 https://github.com/STEllAR-GROUP/hpx/pull/4883
2491 https://github.com/STEllAR-GROUP/hpx/pull/4882
2492 https://github.com/STEllAR-GROUP/hpx/pull/4881
2493 https://github.com/STEllAR-GROUP/hpx/pull/4876
2494 https://github.com/STEllAR-GROUP/hpx/pull/4874
2495 https://github.com/STEllAR-GROUP/hpx/pull/4873
2496 https://github.com/STEllAR-GROUP/hpx/pull/4872
2497 https://github.com/STEllAR-GROUP/hpx/pull/4870
2498 https://github.com/STEllAR-GROUP/hpx/pull/4869
2499 https://github.com/STEllAR-GROUP/hpx/pull/4868
2500 https://github.com/STEllAR-GROUP/hpx/pull/4867
2501 https://github.com/STEllAR-GROUP/hpx/pull/4865
2502 https://github.com/STEllAR-GROUP/hpx/pull/4864
2503 https://github.com/STEllAR-GROUP/hpx/pull/4863
2504 https://github.com/STEllAR-GROUP/hpx/pull/4862
2505 https://github.com/STEllAR-GROUP/hpx/pull/4861
2506 https://github.com/STEllAR-GROUP/hpx/pull/4860
2507 https://github.com/STEllAR-GROUP/hpx/pull/4859
2508 https://github.com/STEllAR-GROUP/hpx/pull/4857
2509 https://github.com/STEllAR-GROUP/hpx/pull/4856

1640 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4885
https://github.com/STEllAR-GROUP/hpx/pull/4884
https://github.com/STEllAR-GROUP/hpx/pull/4883
https://github.com/STEllAR-GROUP/hpx/pull/4882
https://github.com/STEllAR-GROUP/hpx/pull/4881
https://github.com/STEllAR-GROUP/hpx/pull/4876
https://github.com/STEllAR-GROUP/hpx/pull/4874
https://github.com/STEllAR-GROUP/hpx/pull/4873
https://github.com/STEllAR-GROUP/hpx/pull/4872
https://github.com/STEllAR-GROUP/hpx/pull/4870
https://github.com/STEllAR-GROUP/hpx/pull/4869
https://github.com/STEllAR-GROUP/hpx/pull/4868
https://github.com/STEllAR-GROUP/hpx/pull/4867
https://github.com/STEllAR-GROUP/hpx/pull/4865
https://github.com/STEllAR-GROUP/hpx/pull/4864
https://github.com/STEllAR-GROUP/hpx/pull/4863
https://github.com/STEllAR-GROUP/hpx/pull/4862
https://github.com/STEllAR-GROUP/hpx/pull/4861
https://github.com/STEllAR-GROUP/hpx/pull/4860
https://github.com/STEllAR-GROUP/hpx/pull/4859
https://github.com/STEllAR-GROUP/hpx/pull/4857
https://github.com/STEllAR-GROUP/hpx/pull/4856

HPX Documentation, master

• PR #48542510 - Removing obsolete code

• PR #48532511 - Adding test that derives component from two other components

• PR #48522512 - Fix mpi_ring test in distributed mode by ensuring all ranks run hpx_main

• PR #48512513 - Converting resiliency APIs to tag_invoke based CPOs

• PR #48492514 - Enable use of future_overhead test when DISTRIBUTED_RUNTIME is OFF

• PR #48472515 - Fixing ‘error prone’ constructs as reported by Codacy

• PR #48462516 - Disable Boost.Asio concepts support

• PR #48452517 - Fix PAPI counters

• PR #48432518 - Remove dependency on various Boost headers

• PR #48412519 - Rearrange public API headers

• PR #48402520 - Fixing TSS problems during thread termination

• PR #48392521 - Fix async_cuda build problems when distributed runtime is disabled

• PR #48372522 - Restore compatibility for old (now deprecated) copy algorithms

• PR #48362523 - Adding CPOs for hpx::reduce

• PR #48352524 - Remove using util::result_of from namespace hpx

• PR #48342525 - Fixing the calculation of the number of idle cores and the corresponding idle masks

• PR #48332526 - Allow thread function destructors to yield

• PR #48322527 - Fixing assertion in split_gids and memory leaks in 1d_stencil_7

• PR #48312528 - Making sure MPI_CXX_COMPILE_FLAGS is interpreted as a sequence of options

• PR #48302529 - Update documentation on using HPX::wrap_main

• PR #48272530 - Update clang-newest configuration to use clang 10

• PR #48262531 - Add Jenkins configuration for rostam

• PR #48252532 - Move all CUDA functionality to hpx::cuda::experimental namespace
2510 https://github.com/STEllAR-GROUP/hpx/pull/4854
2511 https://github.com/STEllAR-GROUP/hpx/pull/4853
2512 https://github.com/STEllAR-GROUP/hpx/pull/4852
2513 https://github.com/STEllAR-GROUP/hpx/pull/4851
2514 https://github.com/STEllAR-GROUP/hpx/pull/4849
2515 https://github.com/STEllAR-GROUP/hpx/pull/4847
2516 https://github.com/STEllAR-GROUP/hpx/pull/4846
2517 https://github.com/STEllAR-GROUP/hpx/pull/4845
2518 https://github.com/STEllAR-GROUP/hpx/pull/4843
2519 https://github.com/STEllAR-GROUP/hpx/pull/4841
2520 https://github.com/STEllAR-GROUP/hpx/pull/4840
2521 https://github.com/STEllAR-GROUP/hpx/pull/4839
2522 https://github.com/STEllAR-GROUP/hpx/pull/4837
2523 https://github.com/STEllAR-GROUP/hpx/pull/4836
2524 https://github.com/STEllAR-GROUP/hpx/pull/4835
2525 https://github.com/STEllAR-GROUP/hpx/pull/4834
2526 https://github.com/STEllAR-GROUP/hpx/pull/4833
2527 https://github.com/STEllAR-GROUP/hpx/pull/4832
2528 https://github.com/STEllAR-GROUP/hpx/pull/4831
2529 https://github.com/STEllAR-GROUP/hpx/pull/4830
2530 https://github.com/STEllAR-GROUP/hpx/pull/4827
2531 https://github.com/STEllAR-GROUP/hpx/pull/4826
2532 https://github.com/STEllAR-GROUP/hpx/pull/4825

2.10. Releases 1641

https://github.com/STEllAR-GROUP/hpx/pull/4854
https://github.com/STEllAR-GROUP/hpx/pull/4853
https://github.com/STEllAR-GROUP/hpx/pull/4852
https://github.com/STEllAR-GROUP/hpx/pull/4851
https://github.com/STEllAR-GROUP/hpx/pull/4849
https://github.com/STEllAR-GROUP/hpx/pull/4847
https://github.com/STEllAR-GROUP/hpx/pull/4846
https://github.com/STEllAR-GROUP/hpx/pull/4845
https://github.com/STEllAR-GROUP/hpx/pull/4843
https://github.com/STEllAR-GROUP/hpx/pull/4841
https://github.com/STEllAR-GROUP/hpx/pull/4840
https://github.com/STEllAR-GROUP/hpx/pull/4839
https://github.com/STEllAR-GROUP/hpx/pull/4837
https://github.com/STEllAR-GROUP/hpx/pull/4836
https://github.com/STEllAR-GROUP/hpx/pull/4835
https://github.com/STEllAR-GROUP/hpx/pull/4834
https://github.com/STEllAR-GROUP/hpx/pull/4833
https://github.com/STEllAR-GROUP/hpx/pull/4832
https://github.com/STEllAR-GROUP/hpx/pull/4831
https://github.com/STEllAR-GROUP/hpx/pull/4830
https://github.com/STEllAR-GROUP/hpx/pull/4827
https://github.com/STEllAR-GROUP/hpx/pull/4826
https://github.com/STEllAR-GROUP/hpx/pull/4825

HPX Documentation, master

• PR #48242533 - Add support for building master/release branches to Jenkins configuration

• PR #48212534 - Implement customization point for hpx::copy and hpx::ranges::copy

• PR #48192535 - Allow finding Boost components before finding HPX

• PR #48172536 - Adding range version of stable sort

• PR #48152537 - Fix a wrong #ifdef for IO/TIMER pools causing build errors

• PR #48142538 - Replace hpx::function_nonser with std::function in error module

• PR #48092539 - Foreach adapt

• PR #48082540 - Make internal algorithms functions const

• PR #48072541 - Add Jenkins configuration for running on Piz Daint

• PR #48062542 - Update documentation links to new domain name

• PR #48052543 - Applying changes that resolve time complexity issues in sort

• PR #48032544 - Adding implementation of stable_sort

• PR #48022545 - Fix datapar header paths

• PR #48012546 - Replace boost::shared_array<T> with std::shared_ptr<T[]> if supported

• PR #47992547 - Fixing #include paths in compatibility headers

• PR #47982548 - Include the main module header (fixes partially #4488)

• PR #47972549 - Change cmake targets

• PR #47942550 - Removing 128bit integer emulation

• PR #47932551 - Make sure global variable is handled properly

• PR #47922552 - Replace enable_if with HPX_CONCEPT_REQUIRES_ and add is_sentinel_for constraint

• PR #47902553 - Move deprecation warnings from base template to template specializations for result_of etc.
structs

• PR #47892554 - Fix hangs during assertion handling and distributed runtime construction

• PR #47882555 - Fixing inclusive transform scan algorithm to properly handle initial value
2533 https://github.com/STEllAR-GROUP/hpx/pull/4824
2534 https://github.com/STEllAR-GROUP/hpx/pull/4821
2535 https://github.com/STEllAR-GROUP/hpx/pull/4819
2536 https://github.com/STEllAR-GROUP/hpx/pull/4817
2537 https://github.com/STEllAR-GROUP/hpx/pull/4815
2538 https://github.com/STEllAR-GROUP/hpx/pull/4814
2539 https://github.com/STEllAR-GROUP/hpx/pull/4809
2540 https://github.com/STEllAR-GROUP/hpx/pull/4808
2541 https://github.com/STEllAR-GROUP/hpx/pull/4807
2542 https://github.com/STEllAR-GROUP/hpx/pull/4806
2543 https://github.com/STEllAR-GROUP/hpx/pull/4805
2544 https://github.com/STEllAR-GROUP/hpx/pull/4803
2545 https://github.com/STEllAR-GROUP/hpx/pull/4802
2546 https://github.com/STEllAR-GROUP/hpx/pull/4801
2547 https://github.com/STEllAR-GROUP/hpx/pull/4799
2548 https://github.com/STEllAR-GROUP/hpx/pull/4798
2549 https://github.com/STEllAR-GROUP/hpx/pull/4797
2550 https://github.com/STEllAR-GROUP/hpx/pull/4794
2551 https://github.com/STEllAR-GROUP/hpx/pull/4793
2552 https://github.com/STEllAR-GROUP/hpx/pull/4792
2553 https://github.com/STEllAR-GROUP/hpx/pull/4790
2554 https://github.com/STEllAR-GROUP/hpx/pull/4789
2555 https://github.com/STEllAR-GROUP/hpx/pull/4788

1642 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4824
https://github.com/STEllAR-GROUP/hpx/pull/4821
https://github.com/STEllAR-GROUP/hpx/pull/4819
https://github.com/STEllAR-GROUP/hpx/pull/4817
https://github.com/STEllAR-GROUP/hpx/pull/4815
https://github.com/STEllAR-GROUP/hpx/pull/4814
https://github.com/STEllAR-GROUP/hpx/pull/4809
https://github.com/STEllAR-GROUP/hpx/pull/4808
https://github.com/STEllAR-GROUP/hpx/pull/4807
https://github.com/STEllAR-GROUP/hpx/pull/4806
https://github.com/STEllAR-GROUP/hpx/pull/4805
https://github.com/STEllAR-GROUP/hpx/pull/4803
https://github.com/STEllAR-GROUP/hpx/pull/4802
https://github.com/STEllAR-GROUP/hpx/pull/4801
https://github.com/STEllAR-GROUP/hpx/pull/4799
https://github.com/STEllAR-GROUP/hpx/pull/4798
https://github.com/STEllAR-GROUP/hpx/pull/4797
https://github.com/STEllAR-GROUP/hpx/pull/4794
https://github.com/STEllAR-GROUP/hpx/pull/4793
https://github.com/STEllAR-GROUP/hpx/pull/4792
https://github.com/STEllAR-GROUP/hpx/pull/4790
https://github.com/STEllAR-GROUP/hpx/pull/4789
https://github.com/STEllAR-GROUP/hpx/pull/4788

HPX Documentation, master

• PR #47852556 - Fixing barrier test

• PR #47842557 - Fixing deleter argument bindings in serialize_buffer

• PR #47832558 - Add coveralls badge

• PR #47822559 - Make header tests parallel again

• PR #47802560 - Remove outdated comment about hpx::stop in documentation

• PR #47762561 - debug print improvements

• PR #47752562 - Checkpoint cleanup

• PR #47712563 - Fix compilation with HPX_WITH_NETWORKING=OFF

• PR #47672564 - Remove all force linking leftovers

• PR #47652565 - Fix 1d stencil index calculation

• PR #47642566 - Force some tests to run serially

• PR #47622567 - Update pointees in compatibility headers

• PR #47612568 - Fix running and building of execution module tests on CircleCI

• PR #47602569 - Storing hpx_options in global property to speed up summary report

• PR #47592570 - Reduce memory requirements for our main shared state

• PR #47572571 - Fix mimalloc linking on Windows

• PR #47562572 - Fix compilation issues

• PR #47532573 - Re-adding API functions that were lost during merges

• PR #47512574 - Revert “Create coverage reports and upload them to codecov.io”

• PR #47502575 - Fixing possible race condition during termination detection

• PR #47492576 - Deprecate result_of and friends

• PR #47482577 - Create coverage reports and upload them to codecov.io

• PR #47472578 - Changing #include for MPI parcelport
2556 https://github.com/STEllAR-GROUP/hpx/pull/4785
2557 https://github.com/STEllAR-GROUP/hpx/pull/4784
2558 https://github.com/STEllAR-GROUP/hpx/pull/4783
2559 https://github.com/STEllAR-GROUP/hpx/pull/4782
2560 https://github.com/STEllAR-GROUP/hpx/pull/4780
2561 https://github.com/STEllAR-GROUP/hpx/pull/4776
2562 https://github.com/STEllAR-GROUP/hpx/pull/4775
2563 https://github.com/STEllAR-GROUP/hpx/pull/4771
2564 https://github.com/STEllAR-GROUP/hpx/pull/4767
2565 https://github.com/STEllAR-GROUP/hpx/pull/4765
2566 https://github.com/STEllAR-GROUP/hpx/pull/4764
2567 https://github.com/STEllAR-GROUP/hpx/pull/4762
2568 https://github.com/STEllAR-GROUP/hpx/pull/4761
2569 https://github.com/STEllAR-GROUP/hpx/pull/4760
2570 https://github.com/STEllAR-GROUP/hpx/pull/4759
2571 https://github.com/STEllAR-GROUP/hpx/pull/4757
2572 https://github.com/STEllAR-GROUP/hpx/pull/4756
2573 https://github.com/STEllAR-GROUP/hpx/pull/4753
2574 https://github.com/STEllAR-GROUP/hpx/pull/4751
2575 https://github.com/STEllAR-GROUP/hpx/pull/4750
2576 https://github.com/STEllAR-GROUP/hpx/pull/4749
2577 https://github.com/STEllAR-GROUP/hpx/pull/4748
2578 https://github.com/STEllAR-GROUP/hpx/pull/4747

2.10. Releases 1643

https://github.com/STEllAR-GROUP/hpx/pull/4785
https://github.com/STEllAR-GROUP/hpx/pull/4784
https://github.com/STEllAR-GROUP/hpx/pull/4783
https://github.com/STEllAR-GROUP/hpx/pull/4782
https://github.com/STEllAR-GROUP/hpx/pull/4780
https://github.com/STEllAR-GROUP/hpx/pull/4776
https://github.com/STEllAR-GROUP/hpx/pull/4775
https://github.com/STEllAR-GROUP/hpx/pull/4771
https://github.com/STEllAR-GROUP/hpx/pull/4767
https://github.com/STEllAR-GROUP/hpx/pull/4765
https://github.com/STEllAR-GROUP/hpx/pull/4764
https://github.com/STEllAR-GROUP/hpx/pull/4762
https://github.com/STEllAR-GROUP/hpx/pull/4761
https://github.com/STEllAR-GROUP/hpx/pull/4760
https://github.com/STEllAR-GROUP/hpx/pull/4759
https://github.com/STEllAR-GROUP/hpx/pull/4757
https://github.com/STEllAR-GROUP/hpx/pull/4756
https://github.com/STEllAR-GROUP/hpx/pull/4753
https://github.com/STEllAR-GROUP/hpx/pull/4751
https://github.com/STEllAR-GROUP/hpx/pull/4750
https://github.com/STEllAR-GROUP/hpx/pull/4749
https://github.com/STEllAR-GROUP/hpx/pull/4748
https://github.com/STEllAR-GROUP/hpx/pull/4747

HPX Documentation, master

• PR #47452579 - Add is_sentinel_for trait implementation and test

• PR #47432580 - Fix init_globally example after runtime mode changes

• PR #47422581 - Update SUPPORT.md

• PR #47412582 - Fixing a warning generated for unity builds with msvc

• PR #47402583 - Rename local_lcos and basic_execution modules

• PR #47392584 - Undeprecate a couple of hpx/modulename.hpp headers

• PR #47382585 - Conditionally test schedulers in thread_stacksize_current test

• PR #47342586 - Fixing a bunch of codacy warnings

• PR #47332587 - Add experimental unity build option to CMake configuration

• PR #47302588 - Fixing compilation problems with unordered map

• PR #47292589 - Fix APEX build

• PR #47272590 - Fix missing runtime includes for distributed runtime

• PR #47262591 - Add more API headers

• PR #47252592 - Add more compatibility headers for deprecated module headers

• PR #47242593 - Fix 4723

• PR #47212594 - Attempt to fixing migration tests

• PR #47172595 - Make the compatilibility headers macro conditional

• PR #47162596 - Add hpx/runtime.hpp and hpx/distributed/runtime.hpp API headers

• PR #47142597 - Add hpx/future.hpp header

• PR #47132598 - Remove hpx/runtime/threads_fwd.hpp and hpx/util_fwd.hpp

• PR #47112599 - Make module deprecation warnings overridable

• PR #47102600 - Add compatibility headers and other fixes after module header renaming

• PR #47082601 - Add termination handler for parallel algorithms
2579 https://github.com/STEllAR-GROUP/hpx/pull/4745
2580 https://github.com/STEllAR-GROUP/hpx/pull/4743
2581 https://github.com/STEllAR-GROUP/hpx/pull/4742
2582 https://github.com/STEllAR-GROUP/hpx/pull/4741
2583 https://github.com/STEllAR-GROUP/hpx/pull/4740
2584 https://github.com/STEllAR-GROUP/hpx/pull/4739
2585 https://github.com/STEllAR-GROUP/hpx/pull/4738
2586 https://github.com/STEllAR-GROUP/hpx/pull/4734
2587 https://github.com/STEllAR-GROUP/hpx/pull/4733
2588 https://github.com/STEllAR-GROUP/hpx/pull/4730
2589 https://github.com/STEllAR-GROUP/hpx/pull/4729
2590 https://github.com/STEllAR-GROUP/hpx/pull/4727
2591 https://github.com/STEllAR-GROUP/hpx/pull/4726
2592 https://github.com/STEllAR-GROUP/hpx/pull/4725
2593 https://github.com/STEllAR-GROUP/hpx/pull/4724
2594 https://github.com/STEllAR-GROUP/hpx/pull/4721
2595 https://github.com/STEllAR-GROUP/hpx/pull/4717
2596 https://github.com/STEllAR-GROUP/hpx/pull/4716
2597 https://github.com/STEllAR-GROUP/hpx/pull/4714
2598 https://github.com/STEllAR-GROUP/hpx/pull/4713
2599 https://github.com/STEllAR-GROUP/hpx/pull/4711
2600 https://github.com/STEllAR-GROUP/hpx/pull/4710
2601 https://github.com/STEllAR-GROUP/hpx/pull/4708

1644 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4745
https://github.com/STEllAR-GROUP/hpx/pull/4743
https://github.com/STEllAR-GROUP/hpx/pull/4742
https://github.com/STEllAR-GROUP/hpx/pull/4741
https://github.com/STEllAR-GROUP/hpx/pull/4740
https://github.com/STEllAR-GROUP/hpx/pull/4739
https://github.com/STEllAR-GROUP/hpx/pull/4738
https://github.com/STEllAR-GROUP/hpx/pull/4734
https://github.com/STEllAR-GROUP/hpx/pull/4733
https://github.com/STEllAR-GROUP/hpx/pull/4730
https://github.com/STEllAR-GROUP/hpx/pull/4729
https://github.com/STEllAR-GROUP/hpx/pull/4727
https://github.com/STEllAR-GROUP/hpx/pull/4726
https://github.com/STEllAR-GROUP/hpx/pull/4725
https://github.com/STEllAR-GROUP/hpx/pull/4724
https://github.com/STEllAR-GROUP/hpx/pull/4721
https://github.com/STEllAR-GROUP/hpx/pull/4717
https://github.com/STEllAR-GROUP/hpx/pull/4716
https://github.com/STEllAR-GROUP/hpx/pull/4714
https://github.com/STEllAR-GROUP/hpx/pull/4713
https://github.com/STEllAR-GROUP/hpx/pull/4711
https://github.com/STEllAR-GROUP/hpx/pull/4710
https://github.com/STEllAR-GROUP/hpx/pull/4708

HPX Documentation, master

• PR #47072602 - Use hpx::function_nonser instead of std::function internally

• PR #47062603 - Move header file to module

• PR #47052604 - Fix incorrect behaviour of cmake-format check

• PR #47042605 - Fix resource tests

• PR #47012606 - Fix missing includes for future::then specializations

• PR #47002607 - Removing obsolete memory component

• PR #46992608 - Add short descriptions to modules missing documentation

• PR #46962609 - Rename generated modules headers

• PR #46932610 - Overhauling thread_mapper for public consumption

• PR #46882611 - Fix thread stack size handling

• PR #46872612 - Adding all_gather and fixing all_to_all

• PR #46842613 - Miscellaneous compilation fixes

• PR #46832614 - Fix HPX_WITH_DYNAMIC_HPX_MAIN=OFF

• PR #46822615 - Fix compilation of pack_traversal_rebind_container.hpp

• PR #46812616 - Add missing hpx/execution.hpp includes for future::then

• PR #46782617 - Typeless communicator

• PR #46772618 - Forcing registry option to be accepted without checks.

• PR #46762619 - Adding scatter_to/scatter_from collective operations

• PR #46732620 - Fix PAPI counters compilation

• PR #46712621 - Deprecate hpx::promise alias to hpx::lcos::promise

• PR #46702622 - Explicitly instantiate get_exception

• PR #46672623 - Add stopValue in Sentinel struct instead of Iterator

• PR #46662624 - Add release build on Windows to GitHub actions
2602 https://github.com/STEllAR-GROUP/hpx/pull/4707
2603 https://github.com/STEllAR-GROUP/hpx/pull/4706
2604 https://github.com/STEllAR-GROUP/hpx/pull/4705
2605 https://github.com/STEllAR-GROUP/hpx/pull/4704
2606 https://github.com/STEllAR-GROUP/hpx/pull/4701
2607 https://github.com/STEllAR-GROUP/hpx/pull/4700
2608 https://github.com/STEllAR-GROUP/hpx/pull/4699
2609 https://github.com/STEllAR-GROUP/hpx/pull/4696
2610 https://github.com/STEllAR-GROUP/hpx/pull/4693
2611 https://github.com/STEllAR-GROUP/hpx/pull/4688
2612 https://github.com/STEllAR-GROUP/hpx/pull/4687
2613 https://github.com/STEllAR-GROUP/hpx/pull/4684
2614 https://github.com/STEllAR-GROUP/hpx/pull/4683
2615 https://github.com/STEllAR-GROUP/hpx/pull/4682
2616 https://github.com/STEllAR-GROUP/hpx/pull/4681
2617 https://github.com/STEllAR-GROUP/hpx/pull/4678
2618 https://github.com/STEllAR-GROUP/hpx/pull/4677
2619 https://github.com/STEllAR-GROUP/hpx/pull/4676
2620 https://github.com/STEllAR-GROUP/hpx/pull/4673
2621 https://github.com/STEllAR-GROUP/hpx/pull/4671
2622 https://github.com/STEllAR-GROUP/hpx/pull/4670
2623 https://github.com/STEllAR-GROUP/hpx/pull/4667
2624 https://github.com/STEllAR-GROUP/hpx/pull/4666

2.10. Releases 1645

https://github.com/STEllAR-GROUP/hpx/pull/4707
https://github.com/STEllAR-GROUP/hpx/pull/4706
https://github.com/STEllAR-GROUP/hpx/pull/4705
https://github.com/STEllAR-GROUP/hpx/pull/4704
https://github.com/STEllAR-GROUP/hpx/pull/4701
https://github.com/STEllAR-GROUP/hpx/pull/4700
https://github.com/STEllAR-GROUP/hpx/pull/4699
https://github.com/STEllAR-GROUP/hpx/pull/4696
https://github.com/STEllAR-GROUP/hpx/pull/4693
https://github.com/STEllAR-GROUP/hpx/pull/4688
https://github.com/STEllAR-GROUP/hpx/pull/4687
https://github.com/STEllAR-GROUP/hpx/pull/4684
https://github.com/STEllAR-GROUP/hpx/pull/4683
https://github.com/STEllAR-GROUP/hpx/pull/4682
https://github.com/STEllAR-GROUP/hpx/pull/4681
https://github.com/STEllAR-GROUP/hpx/pull/4678
https://github.com/STEllAR-GROUP/hpx/pull/4677
https://github.com/STEllAR-GROUP/hpx/pull/4676
https://github.com/STEllAR-GROUP/hpx/pull/4673
https://github.com/STEllAR-GROUP/hpx/pull/4671
https://github.com/STEllAR-GROUP/hpx/pull/4670
https://github.com/STEllAR-GROUP/hpx/pull/4667
https://github.com/STEllAR-GROUP/hpx/pull/4666

HPX Documentation, master

• PR #46642625 - Creating itt_notify module.

• PR #46632626 - Mpi fixes

• PR #46592627 - Making sure declarations match definitions in register_locks implementation

• PR #46552628 - Fixing task annotations for actions

• PR #46532629 - Making sure APEX is linked into every application, if needed

• PR #46512630 - Update get_function_annotation.hpp

• PR #46462631 - Runtime type

• PR #46452632 - Add a few more API headers

• PR #46442633 - Fixing support for mpirun (and similar)

• PR #46432634 - Fixing the fix for get_idle_core_count() API

• PR #46382635 - Remove HPX_API_EXPORT missed in previous cleanup

• PR #46362636 - Adding C++20 barrier

• PR #46352637 - Adding C++20 latch API

• PR #46342638 - Adding C++20 counting semaphore API

• PR #46332639 - Unify execution parameters customization points

• PR #46322640 - Adding missing bulk_sync_execute wrapper to example executor

• PR #46312641 - Updates to documentation; grammar edits.

• PR #46302642 - Updates to documentation; moved hyperlink

• PR #46242643 - Export set_self_ptr in thread_data.hpp instead of with forward declarations where used

• PR #46232644 - Clean up export macros

• PR #46212645 - Trigger an error for older boost versions on power architectures

• PR #46172646 - Ignore user-set compatibility header options if the module does not have compatibility headers

• PR #46162647 - Fix cmake-format warning
2625 https://github.com/STEllAR-GROUP/hpx/pull/4664
2626 https://github.com/STEllAR-GROUP/hpx/pull/4663
2627 https://github.com/STEllAR-GROUP/hpx/pull/4659
2628 https://github.com/STEllAR-GROUP/hpx/pull/4655
2629 https://github.com/STEllAR-GROUP/hpx/pull/4653
2630 https://github.com/STEllAR-GROUP/hpx/pull/4651
2631 https://github.com/STEllAR-GROUP/hpx/pull/4646
2632 https://github.com/STEllAR-GROUP/hpx/pull/4645
2633 https://github.com/STEllAR-GROUP/hpx/pull/4644
2634 https://github.com/STEllAR-GROUP/hpx/pull/4643
2635 https://github.com/STEllAR-GROUP/hpx/pull/4638
2636 https://github.com/STEllAR-GROUP/hpx/pull/4636
2637 https://github.com/STEllAR-GROUP/hpx/pull/4635
2638 https://github.com/STEllAR-GROUP/hpx/pull/4634
2639 https://github.com/STEllAR-GROUP/hpx/pull/4633
2640 https://github.com/STEllAR-GROUP/hpx/pull/4632
2641 https://github.com/STEllAR-GROUP/hpx/pull/4631
2642 https://github.com/STEllAR-GROUP/hpx/pull/4630
2643 https://github.com/STEllAR-GROUP/hpx/pull/4624
2644 https://github.com/STEllAR-GROUP/hpx/pull/4623
2645 https://github.com/STEllAR-GROUP/hpx/pull/4621
2646 https://github.com/STEllAR-GROUP/hpx/pull/4617
2647 https://github.com/STEllAR-GROUP/hpx/pull/4616

1646 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4664
https://github.com/STEllAR-GROUP/hpx/pull/4663
https://github.com/STEllAR-GROUP/hpx/pull/4659
https://github.com/STEllAR-GROUP/hpx/pull/4655
https://github.com/STEllAR-GROUP/hpx/pull/4653
https://github.com/STEllAR-GROUP/hpx/pull/4651
https://github.com/STEllAR-GROUP/hpx/pull/4646
https://github.com/STEllAR-GROUP/hpx/pull/4645
https://github.com/STEllAR-GROUP/hpx/pull/4644
https://github.com/STEllAR-GROUP/hpx/pull/4643
https://github.com/STEllAR-GROUP/hpx/pull/4638
https://github.com/STEllAR-GROUP/hpx/pull/4636
https://github.com/STEllAR-GROUP/hpx/pull/4635
https://github.com/STEllAR-GROUP/hpx/pull/4634
https://github.com/STEllAR-GROUP/hpx/pull/4633
https://github.com/STEllAR-GROUP/hpx/pull/4632
https://github.com/STEllAR-GROUP/hpx/pull/4631
https://github.com/STEllAR-GROUP/hpx/pull/4630
https://github.com/STEllAR-GROUP/hpx/pull/4624
https://github.com/STEllAR-GROUP/hpx/pull/4623
https://github.com/STEllAR-GROUP/hpx/pull/4621
https://github.com/STEllAR-GROUP/hpx/pull/4617
https://github.com/STEllAR-GROUP/hpx/pull/4616

HPX Documentation, master

• PR #46152648 - Add handler for serializing custom exceptions

• PR #46142649 - Fix error message when HPX_IGNORE_CMAKE_BUILD_TYPE_COMPATIBILITY=OFF

• PR #46132650 - Make partitioner constructor private

• PR #46112651 - Making auto_chunk_size execute the given function using the given executor

• PR #46102652 - Making sure the thread-local lock registration data is moving to the core the suspended HPX
thread is resumed on

• PR #46092653 - Adding an API function that exposes the number of idle cores

• PR #46082654 - Fixing moodycamel namespace

• PR #46072655 - Moving winsocket initialization to core library

• PR #46062656 - Local runtime module etc.

• PR #46042657 - Add config_registry module

• PR #46032658 - Deal with distributed modules in their respective CMakeLists.txt

• PR #46022659 - Small module fixes

• PR #45982660 - Making sure current_executor and service_executor functions are linked into the core library

• PR #45972661 - Adding broadcast_to/broadcast_from to collectives module

• PR #45962662 - Fix performance regression in block_executor

• PR #45952663 - Making sure main.cpp is built as a library if HPX_WITH_DYNAMIC_MAIN=OFF

• PR #45922664 - Futures module

• PR #45912665 - Adapting co_await support for C++20

• PR #45902666 - Adding missing exception test for for_loop()

• PR #45872667 - Move traits headers to hpx/modulename/traits directory

• PR #45862668 - Remove Travis CI config

• PR #45852669 - Update macOS test blacklist

• PR #45842670 - Attempting to fix missing symbols in stack trace
2648 https://github.com/STEllAR-GROUP/hpx/pull/4615
2649 https://github.com/STEllAR-GROUP/hpx/pull/4614
2650 https://github.com/STEllAR-GROUP/hpx/pull/4613
2651 https://github.com/STEllAR-GROUP/hpx/pull/4611
2652 https://github.com/STEllAR-GROUP/hpx/pull/4610
2653 https://github.com/STEllAR-GROUP/hpx/pull/4609
2654 https://github.com/STEllAR-GROUP/hpx/pull/4608
2655 https://github.com/STEllAR-GROUP/hpx/pull/4607
2656 https://github.com/STEllAR-GROUP/hpx/pull/4606
2657 https://github.com/STEllAR-GROUP/hpx/pull/4604
2658 https://github.com/STEllAR-GROUP/hpx/pull/4603
2659 https://github.com/STEllAR-GROUP/hpx/pull/4602
2660 https://github.com/STEllAR-GROUP/hpx/pull/4598
2661 https://github.com/STEllAR-GROUP/hpx/pull/4597
2662 https://github.com/STEllAR-GROUP/hpx/pull/4596
2663 https://github.com/STEllAR-GROUP/hpx/pull/4595
2664 https://github.com/STEllAR-GROUP/hpx/pull/4592
2665 https://github.com/STEllAR-GROUP/hpx/pull/4591
2666 https://github.com/STEllAR-GROUP/hpx/pull/4590
2667 https://github.com/STEllAR-GROUP/hpx/pull/4587
2668 https://github.com/STEllAR-GROUP/hpx/pull/4586
2669 https://github.com/STEllAR-GROUP/hpx/pull/4585
2670 https://github.com/STEllAR-GROUP/hpx/pull/4584

2.10. Releases 1647

https://github.com/STEllAR-GROUP/hpx/pull/4615
https://github.com/STEllAR-GROUP/hpx/pull/4614
https://github.com/STEllAR-GROUP/hpx/pull/4613
https://github.com/STEllAR-GROUP/hpx/pull/4611
https://github.com/STEllAR-GROUP/hpx/pull/4610
https://github.com/STEllAR-GROUP/hpx/pull/4609
https://github.com/STEllAR-GROUP/hpx/pull/4608
https://github.com/STEllAR-GROUP/hpx/pull/4607
https://github.com/STEllAR-GROUP/hpx/pull/4606
https://github.com/STEllAR-GROUP/hpx/pull/4604
https://github.com/STEllAR-GROUP/hpx/pull/4603
https://github.com/STEllAR-GROUP/hpx/pull/4602
https://github.com/STEllAR-GROUP/hpx/pull/4598
https://github.com/STEllAR-GROUP/hpx/pull/4597
https://github.com/STEllAR-GROUP/hpx/pull/4596
https://github.com/STEllAR-GROUP/hpx/pull/4595
https://github.com/STEllAR-GROUP/hpx/pull/4592
https://github.com/STEllAR-GROUP/hpx/pull/4591
https://github.com/STEllAR-GROUP/hpx/pull/4590
https://github.com/STEllAR-GROUP/hpx/pull/4587
https://github.com/STEllAR-GROUP/hpx/pull/4586
https://github.com/STEllAR-GROUP/hpx/pull/4585
https://github.com/STEllAR-GROUP/hpx/pull/4584

HPX Documentation, master

• PR #45832671 - Fixing bad static_cast

• PR #45822672 - Changing download url for Windows prerequisites to circumvent bandwidth limitations

• PR #45812673 - Adding missing using placeholder::_X

• PR #45792674 - Move get_stack_size_name and related functions

• PR #45752675 - Excluding unconditional definition of class backtrace from global header

• PR #45742676 - Changing return type of hardware_concurrency() to unsigned int

• PR #45702677 - Move tests to modules

• PR #45642678 - Reshuffle internal targets and add HPX::hpx_no_wrap_main target

• PR #45632679 - fix CMake option typo

• PR #45622680 - Unregister lock earlier to avoid holding it while suspending

• PR #45612681 - Adding test macros supporting custom output stream

• PR #45602682 - Making sure hash_any::operator()() is linked into core library

• PR #45592683 - Fixing compilation if HPX_WITH_THREAD_BACKTRACE_ON_SUSPENSION=On

• PR #45572684 - Improve spinlock implementation to perform better in high-contention situations

• PR #45532685 - Fix a runtime_ptr problem at shutdown when apex is enabled

• PR #45522686 - Add configuration option for making exceptions less noisy

• PR #45512687 - Clean up thread creation parameters

• PR #45492688 - Test FetchContent build on GitHub actions

• PR #45482689 - Fix stack size

• PR #45452690 - Fix header tests

• PR #45442691 - Fix a typo in sanitizer build

• PR #45412692 - Add API to check if a thread pool exists

• PR #45402693 - Making sure MPI support is enabled if MPI futures are used but networking is disabled
2671 https://github.com/STEllAR-GROUP/hpx/pull/4583
2672 https://github.com/STEllAR-GROUP/hpx/pull/4582
2673 https://github.com/STEllAR-GROUP/hpx/pull/4581
2674 https://github.com/STEllAR-GROUP/hpx/pull/4579
2675 https://github.com/STEllAR-GROUP/hpx/pull/4575
2676 https://github.com/STEllAR-GROUP/hpx/pull/4574
2677 https://github.com/STEllAR-GROUP/hpx/pull/4570
2678 https://github.com/STEllAR-GROUP/hpx/pull/4564
2679 https://github.com/STEllAR-GROUP/hpx/pull/4563
2680 https://github.com/STEllAR-GROUP/hpx/pull/4562
2681 https://github.com/STEllAR-GROUP/hpx/pull/4561
2682 https://github.com/STEllAR-GROUP/hpx/pull/4560
2683 https://github.com/STEllAR-GROUP/hpx/pull/4559
2684 https://github.com/STEllAR-GROUP/hpx/pull/4557
2685 https://github.com/STEllAR-GROUP/hpx/pull/4553
2686 https://github.com/STEllAR-GROUP/hpx/pull/4552
2687 https://github.com/STEllAR-GROUP/hpx/pull/4551
2688 https://github.com/STEllAR-GROUP/hpx/pull/4549
2689 https://github.com/STEllAR-GROUP/hpx/pull/4548
2690 https://github.com/STEllAR-GROUP/hpx/pull/4545
2691 https://github.com/STEllAR-GROUP/hpx/pull/4544
2692 https://github.com/STEllAR-GROUP/hpx/pull/4541
2693 https://github.com/STEllAR-GROUP/hpx/pull/4540

1648 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4583
https://github.com/STEllAR-GROUP/hpx/pull/4582
https://github.com/STEllAR-GROUP/hpx/pull/4581
https://github.com/STEllAR-GROUP/hpx/pull/4579
https://github.com/STEllAR-GROUP/hpx/pull/4575
https://github.com/STEllAR-GROUP/hpx/pull/4574
https://github.com/STEllAR-GROUP/hpx/pull/4570
https://github.com/STEllAR-GROUP/hpx/pull/4564
https://github.com/STEllAR-GROUP/hpx/pull/4563
https://github.com/STEllAR-GROUP/hpx/pull/4562
https://github.com/STEllAR-GROUP/hpx/pull/4561
https://github.com/STEllAR-GROUP/hpx/pull/4560
https://github.com/STEllAR-GROUP/hpx/pull/4559
https://github.com/STEllAR-GROUP/hpx/pull/4557
https://github.com/STEllAR-GROUP/hpx/pull/4553
https://github.com/STEllAR-GROUP/hpx/pull/4552
https://github.com/STEllAR-GROUP/hpx/pull/4551
https://github.com/STEllAR-GROUP/hpx/pull/4549
https://github.com/STEllAR-GROUP/hpx/pull/4548
https://github.com/STEllAR-GROUP/hpx/pull/4545
https://github.com/STEllAR-GROUP/hpx/pull/4544
https://github.com/STEllAR-GROUP/hpx/pull/4541
https://github.com/STEllAR-GROUP/hpx/pull/4540

HPX Documentation, master

• PR #45382694 - Move channel documentation examples to examples directory

• PR #45362695 - Add generic allocator for execution policies

• PR #45342696 - Enable compatibility headers for thread_executors module

• PR #45322697 - Fixing broken url in README.rst

• PR #45312698 - Update scripts

• PR #45302699 - Make sure module API docs show up in correct order

• PR #45292700 - Adding missing template code to module creation script

• PR #45282701 - Make sure version module uses HPX’s binary dir, not the parent’s

• PR #45272702 - Creating actions_base and actions module

• PR #45262703 - Shared state for cv

• PR #45252704 - Changing sub-name sequencing for experimental namespace

• PR #45242705 - Add API guarantee notes to API reference documentation

• PR #45222706 - Enable and fix deprecation warnings in execution module

• PR #45212707 - Moves more miscellaneous files to modules

• PR #45202708 - Skip execution customization points when executor is known

• PR #45182709 - Module distributed lcos

• PR #45162710 - Fix various builds

• PR #45152711 - Replace backslashes by slashes in windows paths

• PR #45142712 - Adding polymorphic_executor

• PR #45122713 - Adding C++20 jthread and stop_token

• PR #45102714 - Attempt to fix APEX linking in external packages again

• PR #45082715 - Only test pull requests (not all branches) with GitHub actions

• PR #45052716 - Fix duplicate linking in tests (ODR violations)
2694 https://github.com/STEllAR-GROUP/hpx/pull/4538
2695 https://github.com/STEllAR-GROUP/hpx/pull/4536
2696 https://github.com/STEllAR-GROUP/hpx/pull/4534
2697 https://github.com/STEllAR-GROUP/hpx/pull/4532
2698 https://github.com/STEllAR-GROUP/hpx/pull/4531
2699 https://github.com/STEllAR-GROUP/hpx/pull/4530
2700 https://github.com/STEllAR-GROUP/hpx/pull/4529
2701 https://github.com/STEllAR-GROUP/hpx/pull/4528
2702 https://github.com/STEllAR-GROUP/hpx/pull/4527
2703 https://github.com/STEllAR-GROUP/hpx/pull/4526
2704 https://github.com/STEllAR-GROUP/hpx/pull/4525
2705 https://github.com/STEllAR-GROUP/hpx/pull/4524
2706 https://github.com/STEllAR-GROUP/hpx/pull/4522
2707 https://github.com/STEllAR-GROUP/hpx/pull/4521
2708 https://github.com/STEllAR-GROUP/hpx/pull/4520
2709 https://github.com/STEllAR-GROUP/hpx/pull/4518
2710 https://github.com/STEllAR-GROUP/hpx/pull/4516
2711 https://github.com/STEllAR-GROUP/hpx/pull/4515
2712 https://github.com/STEllAR-GROUP/hpx/pull/4514
2713 https://github.com/STEllAR-GROUP/hpx/pull/4512
2714 https://github.com/STEllAR-GROUP/hpx/pull/4510
2715 https://github.com/STEllAR-GROUP/hpx/pull/4508
2716 https://github.com/STEllAR-GROUP/hpx/pull/4505

2.10. Releases 1649

https://github.com/STEllAR-GROUP/hpx/pull/4538
https://github.com/STEllAR-GROUP/hpx/pull/4536
https://github.com/STEllAR-GROUP/hpx/pull/4534
https://github.com/STEllAR-GROUP/hpx/pull/4532
https://github.com/STEllAR-GROUP/hpx/pull/4531
https://github.com/STEllAR-GROUP/hpx/pull/4530
https://github.com/STEllAR-GROUP/hpx/pull/4529
https://github.com/STEllAR-GROUP/hpx/pull/4528
https://github.com/STEllAR-GROUP/hpx/pull/4527
https://github.com/STEllAR-GROUP/hpx/pull/4526
https://github.com/STEllAR-GROUP/hpx/pull/4525
https://github.com/STEllAR-GROUP/hpx/pull/4524
https://github.com/STEllAR-GROUP/hpx/pull/4522
https://github.com/STEllAR-GROUP/hpx/pull/4521
https://github.com/STEllAR-GROUP/hpx/pull/4520
https://github.com/STEllAR-GROUP/hpx/pull/4518
https://github.com/STEllAR-GROUP/hpx/pull/4516
https://github.com/STEllAR-GROUP/hpx/pull/4515
https://github.com/STEllAR-GROUP/hpx/pull/4514
https://github.com/STEllAR-GROUP/hpx/pull/4512
https://github.com/STEllAR-GROUP/hpx/pull/4510
https://github.com/STEllAR-GROUP/hpx/pull/4508
https://github.com/STEllAR-GROUP/hpx/pull/4505

HPX Documentation, master

• PR #45042717 - Fix C++ standard handling

• PR #45032718 - Add CMakelists file check

• PR #45002719 - Fix .clang-format version requirement comment

• PR #44992720 - Attempting to fix hpx_init linking on macOS

• PR #44982721 - Fix compatibility of pool_executor

• PR #44962722 - Removing superfluous SPDX tags

• PR #44942723 - Module executors

• PR #44932724 - Pack traversal module

• PR #44922725 - Update copyright year in documentation

• PR #44912726 - Add missing current_executor header

• PR #44902727 - Update GitHub actions configs

• PR #44872728 - Properly dispatch exceptions thrown from hpx_main to be rethrown from hpx::init/hpx::stop

• PR #44862729 - Fixing an initialization order problem

• PR #44852730 - Move miscellaneous files to their rightful modules

• PR #44832731 - Clean up imported CMake target naming

• PR #44812732 - Add vcpkg installation instructions

• PR #44792733 - Add hints to allow to specify MIMALLOC_ROOT

• PR #44782734 - Async modules

• PR #44752735 - Fix rp init changes

• PR #44742736 - Use #pragma once in headers

• PR #44722737 - Add more descriptive error message when using x86 coroutines on non-x86 platforms

• PR #44672738 - Add mimalloc find cmake script

• PR #44652739 - Add thread_executors module
2717 https://github.com/STEllAR-GROUP/hpx/pull/4504
2718 https://github.com/STEllAR-GROUP/hpx/pull/4503
2719 https://github.com/STEllAR-GROUP/hpx/pull/4500
2720 https://github.com/STEllAR-GROUP/hpx/pull/4499
2721 https://github.com/STEllAR-GROUP/hpx/pull/4498
2722 https://github.com/STEllAR-GROUP/hpx/pull/4496
2723 https://github.com/STEllAR-GROUP/hpx/pull/4494
2724 https://github.com/STEllAR-GROUP/hpx/pull/4493
2725 https://github.com/STEllAR-GROUP/hpx/pull/4492
2726 https://github.com/STEllAR-GROUP/hpx/pull/4491
2727 https://github.com/STEllAR-GROUP/hpx/pull/4490
2728 https://github.com/STEllAR-GROUP/hpx/pull/4487
2729 https://github.com/STEllAR-GROUP/hpx/pull/4486
2730 https://github.com/STEllAR-GROUP/hpx/pull/4485
2731 https://github.com/STEllAR-GROUP/hpx/pull/4483
2732 https://github.com/STEllAR-GROUP/hpx/pull/4481
2733 https://github.com/STEllAR-GROUP/hpx/pull/4479
2734 https://github.com/STEllAR-GROUP/hpx/pull/4478
2735 https://github.com/STEllAR-GROUP/hpx/pull/4475
2736 https://github.com/STEllAR-GROUP/hpx/pull/4474
2737 https://github.com/STEllAR-GROUP/hpx/pull/4472
2738 https://github.com/STEllAR-GROUP/hpx/pull/4467
2739 https://github.com/STEllAR-GROUP/hpx/pull/4465

1650 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4504
https://github.com/STEllAR-GROUP/hpx/pull/4503
https://github.com/STEllAR-GROUP/hpx/pull/4500
https://github.com/STEllAR-GROUP/hpx/pull/4499
https://github.com/STEllAR-GROUP/hpx/pull/4498
https://github.com/STEllAR-GROUP/hpx/pull/4496
https://github.com/STEllAR-GROUP/hpx/pull/4494
https://github.com/STEllAR-GROUP/hpx/pull/4493
https://github.com/STEllAR-GROUP/hpx/pull/4492
https://github.com/STEllAR-GROUP/hpx/pull/4491
https://github.com/STEllAR-GROUP/hpx/pull/4490
https://github.com/STEllAR-GROUP/hpx/pull/4487
https://github.com/STEllAR-GROUP/hpx/pull/4486
https://github.com/STEllAR-GROUP/hpx/pull/4485
https://github.com/STEllAR-GROUP/hpx/pull/4483
https://github.com/STEllAR-GROUP/hpx/pull/4481
https://github.com/STEllAR-GROUP/hpx/pull/4479
https://github.com/STEllAR-GROUP/hpx/pull/4478
https://github.com/STEllAR-GROUP/hpx/pull/4475
https://github.com/STEllAR-GROUP/hpx/pull/4474
https://github.com/STEllAR-GROUP/hpx/pull/4472
https://github.com/STEllAR-GROUP/hpx/pull/4467
https://github.com/STEllAR-GROUP/hpx/pull/4465

HPX Documentation, master

• PR #44642740 - Include module

• PR #44622741 - Merge hpx_init and hpx_wrap into one static library

• PR #44612742 - Making thread_data test more realistic

• PR #44602743 - Suppress MPI warnings in version.cpp

• PR #44592744 - Make sure pkgconfig applications link with hpx_init

• PR #44582745 - Added example demonstrating how to create and use a wrapping executor

• PR #44572746 - Fixing execution of thread exit functions

• PR #44562747 - Move backtrace files to debugging module

• PR #44552748 - Move deadlock_detection and maintain_queue_wait_times source files into schedulers module

• PR #44502749 - Fixing compilation with std::filesystem enabled

• PR #44492750 - Fixing build system to actually build variant test

• PR #44472751 - This fixes an obsolete #include

• PR #44462752 - Resume tasks where they were suspended

• PR #44442753 - Minor CUDA fixes

• PR #44432754 - Add missing tests to CircleCI config

• PR #44422755 - Adding a tag to all auto-generated files allowing for tools to visually distinguish those

• PR #44412756 - Adding performance counter type information

• PR #44402757 - Fixing MSVC build

• PR #44392758 - Link HPX::plugin and component privately in hpx_setup_target

• PR #44372759 - Adding a test that verifies the problem can be solved using a trait specialization

• PR #44342760 - Clean up Boost dependencies and copy string algorithms to new module

• PR #44332761 - Fixing compilation issues (!) if MPI parcelport is enabled

• PR #44312762 - Ignore warnings about name mangling changing
2740 https://github.com/STEllAR-GROUP/hpx/pull/4464
2741 https://github.com/STEllAR-GROUP/hpx/pull/4462
2742 https://github.com/STEllAR-GROUP/hpx/pull/4461
2743 https://github.com/STEllAR-GROUP/hpx/pull/4460
2744 https://github.com/STEllAR-GROUP/hpx/pull/4459
2745 https://github.com/STEllAR-GROUP/hpx/pull/4458
2746 https://github.com/STEllAR-GROUP/hpx/pull/4457
2747 https://github.com/STEllAR-GROUP/hpx/pull/4456
2748 https://github.com/STEllAR-GROUP/hpx/pull/4455
2749 https://github.com/STEllAR-GROUP/hpx/pull/4450
2750 https://github.com/STEllAR-GROUP/hpx/pull/4449
2751 https://github.com/STEllAR-GROUP/hpx/pull/4447
2752 https://github.com/STEllAR-GROUP/hpx/pull/4446
2753 https://github.com/STEllAR-GROUP/hpx/pull/4444
2754 https://github.com/STEllAR-GROUP/hpx/pull/4443
2755 https://github.com/STEllAR-GROUP/hpx/pull/4442
2756 https://github.com/STEllAR-GROUP/hpx/pull/4441
2757 https://github.com/STEllAR-GROUP/hpx/pull/4440
2758 https://github.com/STEllAR-GROUP/hpx/pull/4439
2759 https://github.com/STEllAR-GROUP/hpx/pull/4437
2760 https://github.com/STEllAR-GROUP/hpx/pull/4434
2761 https://github.com/STEllAR-GROUP/hpx/pull/4433
2762 https://github.com/STEllAR-GROUP/hpx/pull/4431

2.10. Releases 1651

https://github.com/STEllAR-GROUP/hpx/pull/4464
https://github.com/STEllAR-GROUP/hpx/pull/4462
https://github.com/STEllAR-GROUP/hpx/pull/4461
https://github.com/STEllAR-GROUP/hpx/pull/4460
https://github.com/STEllAR-GROUP/hpx/pull/4459
https://github.com/STEllAR-GROUP/hpx/pull/4458
https://github.com/STEllAR-GROUP/hpx/pull/4457
https://github.com/STEllAR-GROUP/hpx/pull/4456
https://github.com/STEllAR-GROUP/hpx/pull/4455
https://github.com/STEllAR-GROUP/hpx/pull/4450
https://github.com/STEllAR-GROUP/hpx/pull/4449
https://github.com/STEllAR-GROUP/hpx/pull/4447
https://github.com/STEllAR-GROUP/hpx/pull/4446
https://github.com/STEllAR-GROUP/hpx/pull/4444
https://github.com/STEllAR-GROUP/hpx/pull/4443
https://github.com/STEllAR-GROUP/hpx/pull/4442
https://github.com/STEllAR-GROUP/hpx/pull/4441
https://github.com/STEllAR-GROUP/hpx/pull/4440
https://github.com/STEllAR-GROUP/hpx/pull/4439
https://github.com/STEllAR-GROUP/hpx/pull/4437
https://github.com/STEllAR-GROUP/hpx/pull/4434
https://github.com/STEllAR-GROUP/hpx/pull/4433
https://github.com/STEllAR-GROUP/hpx/pull/4431

HPX Documentation, master

• PR #44302763 - Add performance_counters module

• PR #44282764 - Don’t add compatibility headers to module API reference

• PR #44262765 - Add currently failing tests on GitHub actions to blacklist

• PR #44252766 - Clean up and correct minimum required versions

• PR #44242767 - Making sure hpx.lock_detection=0 works as advertized

• PR #44212768 - Making sure interval time stops underlying timer thread on termination

• PR #44172769 - Adding serialization support for std::variant (if available) and std::tuple

• PR #44152770 - Partially reverting changes applied by PR 4373

• PR #44142771 - Added documentation for the compiler-wrapper script hpxcxx.in in creating_hpx_projects.rst

• PR #44132772 - Merging from V1.4.1 release

• PR #44122773 - Making sure to issue a warning if a file specified using –hpx:options-file is not found

• PR #44112774 - Make test specific to HPX_WITH_SHARED_PRIORITY_SCHEDULER

• PR #44072775 - Adding minimal MPI executor

• PR #44052776 - Fix cross pool injection test, use default scheduler as falback

• PR #44042777 - Fix a race condition and clean-up usage of scheduler mode

• PR #43992778 - Add more threading modules

• PR #43982779 - Add CODEOWNERS file

• PR #43952780 - Adding a parameter to auto_chunk_size allowing to control the amount of iterations to measure

• PR #43932781 - Use appropriate cache-line size defaults for different platforms

• PR #43912782 - Fixing use of allocator for C++20

• PR #43902783 - Making –hpx:help behavior consistent

• PR #43882784 - Change the resource partitioner initialization

• PR #43872785 - Fix roll_release.sh
2763 https://github.com/STEllAR-GROUP/hpx/pull/4430
2764 https://github.com/STEllAR-GROUP/hpx/pull/4428
2765 https://github.com/STEllAR-GROUP/hpx/pull/4426
2766 https://github.com/STEllAR-GROUP/hpx/pull/4425
2767 https://github.com/STEllAR-GROUP/hpx/pull/4424
2768 https://github.com/STEllAR-GROUP/hpx/pull/4421
2769 https://github.com/STEllAR-GROUP/hpx/pull/4417
2770 https://github.com/STEllAR-GROUP/hpx/pull/4415
2771 https://github.com/STEllAR-GROUP/hpx/pull/4414
2772 https://github.com/STEllAR-GROUP/hpx/pull/4413
2773 https://github.com/STEllAR-GROUP/hpx/pull/4412
2774 https://github.com/STEllAR-GROUP/hpx/pull/4411
2775 https://github.com/STEllAR-GROUP/hpx/pull/4407
2776 https://github.com/STEllAR-GROUP/hpx/pull/4405
2777 https://github.com/STEllAR-GROUP/hpx/pull/4404
2778 https://github.com/STEllAR-GROUP/hpx/pull/4399
2779 https://github.com/STEllAR-GROUP/hpx/pull/4398
2780 https://github.com/STEllAR-GROUP/hpx/pull/4395
2781 https://github.com/STEllAR-GROUP/hpx/pull/4393
2782 https://github.com/STEllAR-GROUP/hpx/pull/4391
2783 https://github.com/STEllAR-GROUP/hpx/pull/4390
2784 https://github.com/STEllAR-GROUP/hpx/pull/4388
2785 https://github.com/STEllAR-GROUP/hpx/pull/4387

1652 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4430
https://github.com/STEllAR-GROUP/hpx/pull/4428
https://github.com/STEllAR-GROUP/hpx/pull/4426
https://github.com/STEllAR-GROUP/hpx/pull/4425
https://github.com/STEllAR-GROUP/hpx/pull/4424
https://github.com/STEllAR-GROUP/hpx/pull/4421
https://github.com/STEllAR-GROUP/hpx/pull/4417
https://github.com/STEllAR-GROUP/hpx/pull/4415
https://github.com/STEllAR-GROUP/hpx/pull/4414
https://github.com/STEllAR-GROUP/hpx/pull/4413
https://github.com/STEllAR-GROUP/hpx/pull/4412
https://github.com/STEllAR-GROUP/hpx/pull/4411
https://github.com/STEllAR-GROUP/hpx/pull/4407
https://github.com/STEllAR-GROUP/hpx/pull/4405
https://github.com/STEllAR-GROUP/hpx/pull/4404
https://github.com/STEllAR-GROUP/hpx/pull/4399
https://github.com/STEllAR-GROUP/hpx/pull/4398
https://github.com/STEllAR-GROUP/hpx/pull/4395
https://github.com/STEllAR-GROUP/hpx/pull/4393
https://github.com/STEllAR-GROUP/hpx/pull/4391
https://github.com/STEllAR-GROUP/hpx/pull/4390
https://github.com/STEllAR-GROUP/hpx/pull/4388
https://github.com/STEllAR-GROUP/hpx/pull/4387

HPX Documentation, master

• PR #43862786 - Add warning messages for using thread binding options on macOS

• PR #43852787 - Cuda futures

• PR #43842788 - Make enabling dynamic hpx_main on non-Linux systems a configuration error

• PR #43832789 - Use configure_file for HPXCacheVariables.cmake

• PR #43822790 - Update spellchecking whitelist and fix more typos

• PR #43802791 - Add a helper function to get a future from a cuda stream

• PR #43792792 - Add Windows and macOS CI with GitHub actions

• PR #43782793 - Change C++ standard handling

• PR #43772794 - Remove Python scripts

• PR #43742795 - Adding overload for hpx::init/hpx::start for use with resource partitioner

• PR #43732796 - Adding test that verifies for 4369 to be fixed

• PR #43722797 - Another attempt at fixing the integral mismatch and conversion warnings

• PR #43702798 - Doc updates quick start

• PR #43682799 - Add a whitelist of words for weird spelling suggestions

• PR #43662800 - Suppress or fix clang-tidy-9 warnings

• PR #43652801 - Removing more Boost dependencies

• PR #43632802 - Update clang-format config file for version 9

• PR #43622803 - Fix indices typo

• PR #43612804 - Boost cleanup

• PR #43602805 - Move plugins

• PR #43582806 - Doc updates; generating documentation. Will likely need heavy editing.

• PR #43562807 - Remove some minor unused and unnecessary Boost includes

• PR #43552808 - Fix spellcheck step in CircleCI config
2786 https://github.com/STEllAR-GROUP/hpx/pull/4386
2787 https://github.com/STEllAR-GROUP/hpx/pull/4385
2788 https://github.com/STEllAR-GROUP/hpx/pull/4384
2789 https://github.com/STEllAR-GROUP/hpx/pull/4383
2790 https://github.com/STEllAR-GROUP/hpx/pull/4382
2791 https://github.com/STEllAR-GROUP/hpx/pull/4380
2792 https://github.com/STEllAR-GROUP/hpx/pull/4379
2793 https://github.com/STEllAR-GROUP/hpx/pull/4378
2794 https://github.com/STEllAR-GROUP/hpx/pull/4377
2795 https://github.com/STEllAR-GROUP/hpx/pull/4374
2796 https://github.com/STEllAR-GROUP/hpx/pull/4373
2797 https://github.com/STEllAR-GROUP/hpx/pull/4372
2798 https://github.com/STEllAR-GROUP/hpx/pull/4370
2799 https://github.com/STEllAR-GROUP/hpx/pull/4368
2800 https://github.com/STEllAR-GROUP/hpx/pull/4366
2801 https://github.com/STEllAR-GROUP/hpx/pull/4365
2802 https://github.com/STEllAR-GROUP/hpx/pull/4363
2803 https://github.com/STEllAR-GROUP/hpx/pull/4362
2804 https://github.com/STEllAR-GROUP/hpx/pull/4361
2805 https://github.com/STEllAR-GROUP/hpx/pull/4360
2806 https://github.com/STEllAR-GROUP/hpx/pull/4358
2807 https://github.com/STEllAR-GROUP/hpx/pull/4356
2808 https://github.com/STEllAR-GROUP/hpx/pull/4355

2.10. Releases 1653

https://github.com/STEllAR-GROUP/hpx/pull/4386
https://github.com/STEllAR-GROUP/hpx/pull/4385
https://github.com/STEllAR-GROUP/hpx/pull/4384
https://github.com/STEllAR-GROUP/hpx/pull/4383
https://github.com/STEllAR-GROUP/hpx/pull/4382
https://github.com/STEllAR-GROUP/hpx/pull/4380
https://github.com/STEllAR-GROUP/hpx/pull/4379
https://github.com/STEllAR-GROUP/hpx/pull/4378
https://github.com/STEllAR-GROUP/hpx/pull/4377
https://github.com/STEllAR-GROUP/hpx/pull/4374
https://github.com/STEllAR-GROUP/hpx/pull/4373
https://github.com/STEllAR-GROUP/hpx/pull/4372
https://github.com/STEllAR-GROUP/hpx/pull/4370
https://github.com/STEllAR-GROUP/hpx/pull/4368
https://github.com/STEllAR-GROUP/hpx/pull/4366
https://github.com/STEllAR-GROUP/hpx/pull/4365
https://github.com/STEllAR-GROUP/hpx/pull/4363
https://github.com/STEllAR-GROUP/hpx/pull/4362
https://github.com/STEllAR-GROUP/hpx/pull/4361
https://github.com/STEllAR-GROUP/hpx/pull/4360
https://github.com/STEllAR-GROUP/hpx/pull/4358
https://github.com/STEllAR-GROUP/hpx/pull/4356
https://github.com/STEllAR-GROUP/hpx/pull/4355

HPX Documentation, master

• PR #43542809 - Lightweight utility to hold a pack as members

• PR #43522810 - Minor fixes to the C++ standard detection for MSVC

• PR #43512811 - Move generated documentation to hpx-docs repo

• PR #43472812 - Add cmake policy - CMP0074

• PR #43462813 - Remove file committed by mistake

• PR #43422814 - Remove HCC and SYCL options from CMakeLists.txt

• PR #43412815 - Fix launch process test with APEX enabled

• PR #43402816 - Testing Cirrus CI

• PR #43392817 - Post 1.4.0 updates

• PR #43382818 - Spelling corrections and CircleCI spell check

• PR #43332819 - Flatten bound callables

• PR #43322820 - This is a collection of mostly minor (cleanup) fixes

• PR #43312821 - This adds the missing tests for async_colocated and async_continue_colocated

• PR #43302822 - Remove HPX.Compute host default_executor

• PR #43282823 - Generate global header for basic_execution module

• PR #43272824 - Use INTERNAL_FLAGS option for all examples and components

• PR #43262825 - Usage of temporary allocator in assignment operator of compute::vector

• PR #43252826 - Use hpx::threads::get_cache_line_size in prefetching.hpp

• PR #43242827 - Enable compatibility headers option for execution module

• PR #43162828 - Add clang format indentppdirectives

• PR #43132829 - Introduce index_pack alias to pack of size_t

• PR #43122830 - Fixing compatibility header for pack.hpp

• PR #43112831 - Dataflow annotations for APEX
2809 https://github.com/STEllAR-GROUP/hpx/pull/4354
2810 https://github.com/STEllAR-GROUP/hpx/pull/4352
2811 https://github.com/STEllAR-GROUP/hpx/pull/4351
2812 https://github.com/STEllAR-GROUP/hpx/pull/4347
2813 https://github.com/STEllAR-GROUP/hpx/pull/4346
2814 https://github.com/STEllAR-GROUP/hpx/pull/4342
2815 https://github.com/STEllAR-GROUP/hpx/pull/4341
2816 https://github.com/STEllAR-GROUP/hpx/pull/4340
2817 https://github.com/STEllAR-GROUP/hpx/pull/4339
2818 https://github.com/STEllAR-GROUP/hpx/pull/4338
2819 https://github.com/STEllAR-GROUP/hpx/pull/4333
2820 https://github.com/STEllAR-GROUP/hpx/pull/4332
2821 https://github.com/STEllAR-GROUP/hpx/pull/4331
2822 https://github.com/STEllAR-GROUP/hpx/pull/4330
2823 https://github.com/STEllAR-GROUP/hpx/pull/4328
2824 https://github.com/STEllAR-GROUP/hpx/pull/4327
2825 https://github.com/STEllAR-GROUP/hpx/pull/4326
2826 https://github.com/STEllAR-GROUP/hpx/pull/4325
2827 https://github.com/STEllAR-GROUP/hpx/pull/4324
2828 https://github.com/STEllAR-GROUP/hpx/pull/4316
2829 https://github.com/STEllAR-GROUP/hpx/pull/4313
2830 https://github.com/STEllAR-GROUP/hpx/pull/4312
2831 https://github.com/STEllAR-GROUP/hpx/pull/4311

1654 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4354
https://github.com/STEllAR-GROUP/hpx/pull/4352
https://github.com/STEllAR-GROUP/hpx/pull/4351
https://github.com/STEllAR-GROUP/hpx/pull/4347
https://github.com/STEllAR-GROUP/hpx/pull/4346
https://github.com/STEllAR-GROUP/hpx/pull/4342
https://github.com/STEllAR-GROUP/hpx/pull/4341
https://github.com/STEllAR-GROUP/hpx/pull/4340
https://github.com/STEllAR-GROUP/hpx/pull/4339
https://github.com/STEllAR-GROUP/hpx/pull/4338
https://github.com/STEllAR-GROUP/hpx/pull/4333
https://github.com/STEllAR-GROUP/hpx/pull/4332
https://github.com/STEllAR-GROUP/hpx/pull/4331
https://github.com/STEllAR-GROUP/hpx/pull/4330
https://github.com/STEllAR-GROUP/hpx/pull/4328
https://github.com/STEllAR-GROUP/hpx/pull/4327
https://github.com/STEllAR-GROUP/hpx/pull/4326
https://github.com/STEllAR-GROUP/hpx/pull/4325
https://github.com/STEllAR-GROUP/hpx/pull/4324
https://github.com/STEllAR-GROUP/hpx/pull/4316
https://github.com/STEllAR-GROUP/hpx/pull/4313
https://github.com/STEllAR-GROUP/hpx/pull/4312
https://github.com/STEllAR-GROUP/hpx/pull/4311

HPX Documentation, master

• PR #43092832 - Update launching_and_configuring_hpx_applications.rst

• PR #43062833 - Fix schedule hint not being taken from executor

• PR #43052834 - Implementing hpx::functional::tag_invoke

• PR #43042835 - Improve pack support utilities

• PR #43032836 - Remove errors module dependency on datastructures

• PR #43012837 - Clean up thread executors

• PR #42942838 - Logging revamp

• PR #42922839 - Remove SPDX tag from Boost License file to allow for github to recognize it

• PR #42912840 - Add format support for std::tm

• PR #42902841 - Simplify compatible tuples check

• PR #42882842 - A lightweight take on boost::lexical_cast

• PR #42872843 - Forking boost::lexical_cast as a new module

• PR #42772844 - MPI_futures

• PR #42702845 - Refactor future implementation

• PR #42652846 - Threading module

• PR #42592847 - Module naming base

• PR #42512848 - Local workrequesting scheduler

• PR #42502849 - Inline execution of scoped tasks, if possible

• PR #42472850 - Add execution in module headers

• PR #42462851 - Expose CMake targets officially

• PR #42392852 - Doc updates miscellaneous (partially completed during Google Season of Docs)

• PR #42332853 - Remove project() from modules + fix CMAKE_SOURCE_DIR issue

• PR #42312854 - Module local lcos
2832 https://github.com/STEllAR-GROUP/hpx/pull/4309
2833 https://github.com/STEllAR-GROUP/hpx/pull/4306
2834 https://github.com/STEllAR-GROUP/hpx/pull/4305
2835 https://github.com/STEllAR-GROUP/hpx/pull/4304
2836 https://github.com/STEllAR-GROUP/hpx/pull/4303
2837 https://github.com/STEllAR-GROUP/hpx/pull/4301
2838 https://github.com/STEllAR-GROUP/hpx/pull/4294
2839 https://github.com/STEllAR-GROUP/hpx/pull/4292
2840 https://github.com/STEllAR-GROUP/hpx/pull/4291
2841 https://github.com/STEllAR-GROUP/hpx/pull/4290
2842 https://github.com/STEllAR-GROUP/hpx/pull/4288
2843 https://github.com/STEllAR-GROUP/hpx/pull/4287
2844 https://github.com/STEllAR-GROUP/hpx/pull/4277
2845 https://github.com/STEllAR-GROUP/hpx/pull/4270
2846 https://github.com/STEllAR-GROUP/hpx/pull/4265
2847 https://github.com/STEllAR-GROUP/hpx/pull/4259
2848 https://github.com/STEllAR-GROUP/hpx/pull/4251
2849 https://github.com/STEllAR-GROUP/hpx/pull/4250
2850 https://github.com/STEllAR-GROUP/hpx/pull/4247
2851 https://github.com/STEllAR-GROUP/hpx/pull/4246
2852 https://github.com/STEllAR-GROUP/hpx/pull/4239
2853 https://github.com/STEllAR-GROUP/hpx/pull/4233
2854 https://github.com/STEllAR-GROUP/hpx/pull/4231

2.10. Releases 1655

https://github.com/STEllAR-GROUP/hpx/pull/4309
https://github.com/STEllAR-GROUP/hpx/pull/4306
https://github.com/STEllAR-GROUP/hpx/pull/4305
https://github.com/STEllAR-GROUP/hpx/pull/4304
https://github.com/STEllAR-GROUP/hpx/pull/4303
https://github.com/STEllAR-GROUP/hpx/pull/4301
https://github.com/STEllAR-GROUP/hpx/pull/4294
https://github.com/STEllAR-GROUP/hpx/pull/4292
https://github.com/STEllAR-GROUP/hpx/pull/4291
https://github.com/STEllAR-GROUP/hpx/pull/4290
https://github.com/STEllAR-GROUP/hpx/pull/4288
https://github.com/STEllAR-GROUP/hpx/pull/4287
https://github.com/STEllAR-GROUP/hpx/pull/4277
https://github.com/STEllAR-GROUP/hpx/pull/4270
https://github.com/STEllAR-GROUP/hpx/pull/4265
https://github.com/STEllAR-GROUP/hpx/pull/4259
https://github.com/STEllAR-GROUP/hpx/pull/4251
https://github.com/STEllAR-GROUP/hpx/pull/4250
https://github.com/STEllAR-GROUP/hpx/pull/4247
https://github.com/STEllAR-GROUP/hpx/pull/4246
https://github.com/STEllAR-GROUP/hpx/pull/4239
https://github.com/STEllAR-GROUP/hpx/pull/4233
https://github.com/STEllAR-GROUP/hpx/pull/4231

HPX Documentation, master

• PR #42072855 - Command line handling module

• PR #42062856 - Runtime configuration module

• PR #41412857 - Doc updates examples local to remote (partially completed during Google Season of Docs)

• PR #40912858 - Split runtime into local and distributed parts

• PR #40172859 - Require C++14

HPX V1.4.1 (Feb 12, 2020)

General changes

This is a bugfix release. It contains the following changes:

• Fix compilation issues on Windows, macOS, FreeBSD, and with gcc 10

• Install missing pdb files on Windows

• Allow running tests using an installed version of HPX

• Skip MPI finalization if HPX has not initialized MPI

• Give a hard error when attempting to use IO counters on Windows

Closed issues

• Issue #43202860 - HPX 1.4.0 does not compile with gcc 10

• Issue #43362861 - Building HPX 1.4.0 with IO Counters breaks (Windows)

• Issue #43342862 - HPX Debug and RelWithDebinfo builds on Windows not installing .pdb files

• Issue #43222863 - Undefine VT1 and VT2 after boost includes

• Issue #43142864 - Compile error on 1.4.0

• Issue #43072865 - ld: error: duplicate symbol: freebsd_environ

2855 https://github.com/STEllAR-GROUP/hpx/pull/4207
2856 https://github.com/STEllAR-GROUP/hpx/pull/4206
2857 https://github.com/STEllAR-GROUP/hpx/pull/4141
2858 https://github.com/STEllAR-GROUP/hpx/pull/4091
2859 https://github.com/STEllAR-GROUP/hpx/pull/4017
2860 https://github.com/STEllAR-GROUP/hpx/issues/4320
2861 https://github.com/STEllAR-GROUP/hpx/issues/4336
2862 https://github.com/STEllAR-GROUP/hpx/issues/4334
2863 https://github.com/STEllAR-GROUP/hpx/issues/4322
2864 https://github.com/STEllAR-GROUP/hpx/issues/4314
2865 https://github.com/STEllAR-GROUP/hpx/issues/4307

1656 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4207
https://github.com/STEllAR-GROUP/hpx/pull/4206
https://github.com/STEllAR-GROUP/hpx/pull/4141
https://github.com/STEllAR-GROUP/hpx/pull/4091
https://github.com/STEllAR-GROUP/hpx/pull/4017
https://github.com/STEllAR-GROUP/hpx/issues/4320
https://github.com/STEllAR-GROUP/hpx/issues/4336
https://github.com/STEllAR-GROUP/hpx/issues/4334
https://github.com/STEllAR-GROUP/hpx/issues/4322
https://github.com/STEllAR-GROUP/hpx/issues/4314
https://github.com/STEllAR-GROUP/hpx/issues/4307

HPX Documentation, master

Closed pull requests

• PR #43762866 - Attempt to fix some test build errors on Windows

• PR #43572867 - Adding missing #includes to fix gcc V10 linker problems

• PR #43532868 - Skip MPI_Finalize if MPI_Init is not called from HPX

• PR #43432869 - Give a hard error if IO counters are enabled on non-Linux systems

• PR #43372870 - Installing pdb files on Windows

• PR #43352871 - Adding capability to buildsystem to use an installed version of HPX

• PR #43152872 - Forcing exported symbols from composable_guard to be linked into core library

• PR #43102873 - Remove environment handling from exception.cpp

HPX V1.4.0 (January 15, 2020)

General changes

• We have added the collectives all_to_all and all_reduce.

• We have added APIs for resiliency, which allows replication and replay for failed tasks. See the documentation
for more details.

• Components can now be checkpointed.

• Performance improvements to schedulers and coroutines. A significant change is the addition of stackless
coroutines. These are to be used for tasks that do not need to be suspended and can reduce overheads
noticeably in applications with short tasks. A stackless coroutine can be created with the new stack size
thread_stacksize_nostack.

• We have added an implementation of unique_any, which is a non-copyable version of any.

• The shared_priority_queue_scheduler has been improved. It now has lower overheads than the default
scheduler in many situations. Unlike the default scheduler it fully supports NUMA scheduling hints. Enable it
with the command line option --hpx:queuing=shared-priority. This scheduler should still be considered
experimental, but its use is encouraged in real applications to help us make it production ready.

• We have added the performance counters background-receive-duration and
background-receive-overhead for inspecting the time and overhead spent on receiving parcels in the
background.

• Compilation time has been further improved when HPX_WITH_NETWORKING=OFF.

• We no longer require compiled Boost dependencies in certain configurations. This re-
quires at least Boost 1.70, compiling on x86 with GCC 9, clang (libc++) 9, or VS2019
in C++17 mode. The dependency on Boost.Filesystem can explicitly be turned on with
HPX_FILESYSTEM_WITH_BOOST_FILESYSTEM_COMPATIBILITY=ON (it is off by default if the
standard library supports std::filesystem). Boost.ProgramOptions has been copied into
the HPX repository. We have a compatibility layer for users who must explicitly use

2866 https://github.com/STEllAR-GROUP/hpx/pull/4376
2867 https://github.com/STEllAR-GROUP/hpx/pull/4357
2868 https://github.com/STEllAR-GROUP/hpx/pull/4353
2869 https://github.com/STEllAR-GROUP/hpx/pull/4343
2870 https://github.com/STEllAR-GROUP/hpx/pull/4337
2871 https://github.com/STEllAR-GROUP/hpx/pull/4335
2872 https://github.com/STEllAR-GROUP/hpx/pull/4315
2873 https://github.com/STEllAR-GROUP/hpx/pull/4310

2.10. Releases 1657

https://github.com/STEllAR-GROUP/hpx/pull/4376
https://github.com/STEllAR-GROUP/hpx/pull/4357
https://github.com/STEllAR-GROUP/hpx/pull/4353
https://github.com/STEllAR-GROUP/hpx/pull/4343
https://github.com/STEllAR-GROUP/hpx/pull/4337
https://github.com/STEllAR-GROUP/hpx/pull/4335
https://github.com/STEllAR-GROUP/hpx/pull/4315
https://github.com/STEllAR-GROUP/hpx/pull/4310

HPX Documentation, master

Boost.ProgramOptions instead of the ProgramOptions provided by HPX. To remove the dependency
HPX_PROGRAM_OPTIONS_WITH_BOOST_PROGRAM_OPTIONS_COMPATIBILITY must be explicitly set to OFF.
This option will be removed in a future release. We have also removed several other header-only dependencies
on Boost.

• It is now possible to use the process affinity mask set by tools like numactl and various batch en-
vironments with the command line option --hpx:use-process-mask . Enabling this option implies
--hpx:ignore-batch-env.

• It is now possible to create standalone thread pools without starting the runtime. See the
standalone_thread_pool_executor.cpp test in the execution module for an example.

• Tasks annotated with hpx::util::annotated_function now have their correct name when using APEX to
generate OTF2 files.

• Cloning of APEX was defective in previous releases (it required manual intervention to check out the correct tag
or branch). This has been fixed.

• The option HPX_WITH_MORE_THAN_64_THREADS is now ignored and will be removed in a future release. The
value is instead derived directly from HPX_WITH_MAX_CPU_COUNT option.

• We have deprecated compiling in C++11 mode. The next release will require a C++14 capable compiler.

• We have deprecated support for the Vc library. This option will be replaced with SIMD support from the standard
library in a future release.

• We have significantly refactored our CMake setup. This is intended to be a non-breaking change and will allow
for using HPX through CMake targets in the future.

• We have continued modularizing the HPX library. In the process we have rearranged many header files into
module-specific directories. All moved headers have compatibility headers which forward from the old location
to the new location, together with a deprecation warning. The compatibility headers will eventually be removed.

• We now enforce formatting with clang-format on the majority of our source files.

• We have added SPDX license tags to all files.

• Many bugfixes.

Breaking changes

• The HPX_WITH_THREAD_COMPATIBILITY option and the associated compatibility layer has been removed.

• The HPX_WITH_INCLUSIVE_SCAN_COMPATIBILITY option and the associated compatibility layer has been re-
moved.

• The HPX_WITH_UNWRAPPED_COMPATIBLITY option and the associated compatibility layer has been removed.

Closed issues

• Issue #42822874 - Build Issues with Release on Windows

• Issue #42782875 - Build Issues with CMake 3.14.4

• Issue #42732876 - Clients of HPX 1.4.0-rc2 with APEX ar not linked to libhpx-apex

• Issue #42692877 - Building HPX 1.4.0-rc2 with support for APEX fails
2874 https://github.com/STEllAR-GROUP/hpx/issues/4282
2875 https://github.com/STEllAR-GROUP/hpx/issues/4278
2876 https://github.com/STEllAR-GROUP/hpx/issues/4273
2877 https://github.com/STEllAR-GROUP/hpx/issues/4269

1658 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/4282
https://github.com/STEllAR-GROUP/hpx/issues/4278
https://github.com/STEllAR-GROUP/hpx/issues/4273
https://github.com/STEllAR-GROUP/hpx/issues/4269

HPX Documentation, master

• Issue #42632878 - Compilation fail on latest master

• Issue #42322879 - Configure of HPX project using CMake FetchContent fails

• Issue #42232880 - “Re-using the main() function as the main HPX entry point” doesn’t work

• Issue #42202881 - HPX won’t compile - error building resource_partitioner

• Issue #42152882 - HPX 1.4.0rc1 does not link on s390x

• Issue #42042883 - Trouble compiling HPX with Intel compiler

• Issue #41992884 - Refactor APEX to eliminate circular dependency

• Issue #41872885 - HPX can’t build on OSX

• Issue #41852886 - Simple debug output for development

• Issue #41822887 - @HPX_CONF_PREFIX@ is the empty string

• Issue #41692888 - HPX won’t build with APEX

• Issue #41632889 - Add back HPX_LIBRARIES and HPX_INCLUDE_DIRS

• Issue #41612890 - It should be possible to call find_package(HPX) multiple times

• Issue #41552891 - get_self_id() for stackless threads returns invalid_thread_id

• Issue #41512892 - build error with MPI code

• Issue #41502893 - hpx won’t build on POWER9 with clang 8

• Issue #41482894 - cacheline_data delivers poor performance with C++17 compared to C++14

• Issue #41442895 - target general in HPX_LIBRARIES does not exist

• Issue #41342896 - CMake Error when -DHPX_WITH_HPXMP=ON

• Issue #41322897 - parallel fill leaves elements unfilled

• Issue #41232898 - PAPI performance counters are inaccessible

• Issue #41182899 - static_chunk_size is not obeyed in scan algorithms

• Issue #41152900 - dependency chaining error with APEX
2878 https://github.com/STEllAR-GROUP/hpx/issues/4263
2879 https://github.com/STEllAR-GROUP/hpx/issues/4232
2880 https://github.com/STEllAR-GROUP/hpx/issues/4223
2881 https://github.com/STEllAR-GROUP/hpx/issues/4220
2882 https://github.com/STEllAR-GROUP/hpx/issues/4215
2883 https://github.com/STEllAR-GROUP/hpx/issues/4204
2884 https://github.com/STEllAR-GROUP/hpx/issues/4199
2885 https://github.com/STEllAR-GROUP/hpx/issues/4187
2886 https://github.com/STEllAR-GROUP/hpx/issues/4185
2887 https://github.com/STEllAR-GROUP/hpx/issues/4182
2888 https://github.com/STEllAR-GROUP/hpx/issues/4169
2889 https://github.com/STEllAR-GROUP/hpx/issues/4163
2890 https://github.com/STEllAR-GROUP/hpx/issues/4161
2891 https://github.com/STEllAR-GROUP/hpx/issues/4155
2892 https://github.com/STEllAR-GROUP/hpx/issues/4151
2893 https://github.com/STEllAR-GROUP/hpx/issues/4150
2894 https://github.com/STEllAR-GROUP/hpx/issues/4148
2895 https://github.com/STEllAR-GROUP/hpx/issues/4144
2896 https://github.com/STEllAR-GROUP/hpx/issues/4134
2897 https://github.com/STEllAR-GROUP/hpx/issues/4132
2898 https://github.com/STEllAR-GROUP/hpx/issues/4123
2899 https://github.com/STEllAR-GROUP/hpx/issues/4118
2900 https://github.com/STEllAR-GROUP/hpx/issues/4115

2.10. Releases 1659

https://github.com/STEllAR-GROUP/hpx/issues/4263
https://github.com/STEllAR-GROUP/hpx/issues/4232
https://github.com/STEllAR-GROUP/hpx/issues/4223
https://github.com/STEllAR-GROUP/hpx/issues/4220
https://github.com/STEllAR-GROUP/hpx/issues/4215
https://github.com/STEllAR-GROUP/hpx/issues/4204
https://github.com/STEllAR-GROUP/hpx/issues/4199
https://github.com/STEllAR-GROUP/hpx/issues/4187
https://github.com/STEllAR-GROUP/hpx/issues/4185
https://github.com/STEllAR-GROUP/hpx/issues/4182
https://github.com/STEllAR-GROUP/hpx/issues/4169
https://github.com/STEllAR-GROUP/hpx/issues/4163
https://github.com/STEllAR-GROUP/hpx/issues/4161
https://github.com/STEllAR-GROUP/hpx/issues/4155
https://github.com/STEllAR-GROUP/hpx/issues/4151
https://github.com/STEllAR-GROUP/hpx/issues/4150
https://github.com/STEllAR-GROUP/hpx/issues/4148
https://github.com/STEllAR-GROUP/hpx/issues/4144
https://github.com/STEllAR-GROUP/hpx/issues/4134
https://github.com/STEllAR-GROUP/hpx/issues/4132
https://github.com/STEllAR-GROUP/hpx/issues/4123
https://github.com/STEllAR-GROUP/hpx/issues/4118
https://github.com/STEllAR-GROUP/hpx/issues/4115

HPX Documentation, master

• Issue #41072901 - Initializing runtime without entry point function and command line arguments

• Issue #41052902 - Bug in hpx:bind=numa-balanced

• Issue #41012903 - Bound tasks

• Issue #41002904 - Add SPDX identifier to all files

• Issue #40852905 - hpx_topology library should depend on hwloc

• Issue #40672906 - HPX fails to build on macOS

• Issue #40562907 - Building without thread manager idle backoff fails

• Issue #40522908 - Enforce clang-format style for modules

• Issue #40322909 - Simple hello world fails to launch correctly

• Issue #40302910 - Allow threads to skip context switching

• Issue #40292911 - Add support for mimalloc

• Issue #40052912 - Can’t link HPX when APEX enabled

• Issue #40022913 - Missing header for algorithm module

• Issue #39892914 - conversion from long to unsigned int requires a narrowing conversion on MSVC

• Issue #39582915 - /statistics/average@ perf counter can’t be created

• Issue #39532916 - CMake errors from HPX_AddPseudoDependencies

• Issue #39412917 - CMake error for APEX install target

• Issue #39402918 - Convert pseudo-doxygen function documentation into actual doxygen documentation

• Issue #39352919 - HPX compiler match too strict?

• Issue #39292920 - Buildbot failures on latest HPX stable

• Issue #39122921 - I recommend publishing a version that does not depend on the boost library

• Issue #38902922 - hpx.ini not working

• Issue #38832923 - cuda compilation fails because of -faligned-new
2901 https://github.com/STEllAR-GROUP/hpx/issues/4107
2902 https://github.com/STEllAR-GROUP/hpx/issues/4105
2903 https://github.com/STEllAR-GROUP/hpx/issues/4101
2904 https://github.com/STEllAR-GROUP/hpx/issues/4100
2905 https://github.com/STEllAR-GROUP/hpx/issues/4085
2906 https://github.com/STEllAR-GROUP/hpx/issues/4067
2907 https://github.com/STEllAR-GROUP/hpx/issues/4056
2908 https://github.com/STEllAR-GROUP/hpx/issues/4052
2909 https://github.com/STEllAR-GROUP/hpx/issues/4032
2910 https://github.com/STEllAR-GROUP/hpx/issues/4030
2911 https://github.com/STEllAR-GROUP/hpx/issues/4029
2912 https://github.com/STEllAR-GROUP/hpx/issues/4005
2913 https://github.com/STEllAR-GROUP/hpx/issues/4002
2914 https://github.com/STEllAR-GROUP/hpx/issues/3989
2915 https://github.com/STEllAR-GROUP/hpx/issues/3958
2916 https://github.com/STEllAR-GROUP/hpx/issues/3953
2917 https://github.com/STEllAR-GROUP/hpx/issues/3941
2918 https://github.com/STEllAR-GROUP/hpx/issues/3940
2919 https://github.com/STEllAR-GROUP/hpx/issues/3935
2920 https://github.com/STEllAR-GROUP/hpx/issues/3929
2921 https://github.com/STEllAR-GROUP/hpx/issues/3912
2922 https://github.com/STEllAR-GROUP/hpx/issues/3890
2923 https://github.com/STEllAR-GROUP/hpx/issues/3883

1660 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/4107
https://github.com/STEllAR-GROUP/hpx/issues/4105
https://github.com/STEllAR-GROUP/hpx/issues/4101
https://github.com/STEllAR-GROUP/hpx/issues/4100
https://github.com/STEllAR-GROUP/hpx/issues/4085
https://github.com/STEllAR-GROUP/hpx/issues/4067
https://github.com/STEllAR-GROUP/hpx/issues/4056
https://github.com/STEllAR-GROUP/hpx/issues/4052
https://github.com/STEllAR-GROUP/hpx/issues/4032
https://github.com/STEllAR-GROUP/hpx/issues/4030
https://github.com/STEllAR-GROUP/hpx/issues/4029
https://github.com/STEllAR-GROUP/hpx/issues/4005
https://github.com/STEllAR-GROUP/hpx/issues/4002
https://github.com/STEllAR-GROUP/hpx/issues/3989
https://github.com/STEllAR-GROUP/hpx/issues/3958
https://github.com/STEllAR-GROUP/hpx/issues/3953
https://github.com/STEllAR-GROUP/hpx/issues/3941
https://github.com/STEllAR-GROUP/hpx/issues/3940
https://github.com/STEllAR-GROUP/hpx/issues/3935
https://github.com/STEllAR-GROUP/hpx/issues/3929
https://github.com/STEllAR-GROUP/hpx/issues/3912
https://github.com/STEllAR-GROUP/hpx/issues/3890
https://github.com/STEllAR-GROUP/hpx/issues/3883

HPX Documentation, master

• Issue #38792924 - HPX fails to configure with -DHPX_WITH_TESTS=OFF

• Issue #38712925 - dataflow does not support void allocators

• Issue #38672926 - Latest HTML docs placed in wrong directory on GitHub pages

• Issue #38662927 - Make sure all tests use HPX_TEST* macros and not HPX_ASSERT

• Issue #38572928 - CMake all-keyword or all-plain for target_link_libraries

• Issue #38562929 - hpx_setup_target adds rogue flags

• Issue #38502930 - HPX fails to build on POWER8 with Clang7

• Issue #38482931 - Remove lva member from thread_init_data

• Issue #38382932 - hpx::parallel::count/count_if failing tests

• Issue #36512933 - hpx::parallel::transform_reduce with non const reference as lambda parameter

• Issue #35602934 - Apex integration with HPX not working properly

• Issue #33222935 - No warning when mixing debug/release builds

Closed pull requests

• PR #43002936 - Checks for MPI_Init being called twice

• PR #42992937 - Small CMake fixes

• PR #42982938 - Remove extra call to annotate function that messes up traces

• PR #42962939 - Fixing collectives locking problem

• PR #42952940 - Do not check LICENSE_1_0.txt for inspect violations

• PR #42932941 - Applying two small changes fixing carious MSVC/Windows problems

• PR #42852942 - Delete apex.hpp

• PR #42762943 - Disable doxygen generation for hpx/debugging/print.hpp file

• PR #42752944 - Make sure APEX is linked to even when not explicitly referenced

• PR #42722945 - Fix pushing of documentation
2924 https://github.com/STEllAR-GROUP/hpx/issues/3879
2925 https://github.com/STEllAR-GROUP/hpx/issues/3871
2926 https://github.com/STEllAR-GROUP/hpx/issues/3867
2927 https://github.com/STEllAR-GROUP/hpx/issues/3866
2928 https://github.com/STEllAR-GROUP/hpx/issues/3857
2929 https://github.com/STEllAR-GROUP/hpx/issues/3856
2930 https://github.com/STEllAR-GROUP/hpx/issues/3850
2931 https://github.com/STEllAR-GROUP/hpx/issues/3848
2932 https://github.com/STEllAR-GROUP/hpx/issues/3838
2933 https://github.com/STEllAR-GROUP/hpx/issues/3651
2934 https://github.com/STEllAR-GROUP/hpx/issues/3560
2935 https://github.com/STEllAR-GROUP/hpx/issues/3322
2936 https://github.com/STEllAR-GROUP/hpx/pull/4300
2937 https://github.com/STEllAR-GROUP/hpx/pull/4299
2938 https://github.com/STEllAR-GROUP/hpx/pull/4298
2939 https://github.com/STEllAR-GROUP/hpx/pull/4296
2940 https://github.com/STEllAR-GROUP/hpx/pull/4295
2941 https://github.com/STEllAR-GROUP/hpx/pull/4293
2942 https://github.com/STEllAR-GROUP/hpx/pull/4285
2943 https://github.com/STEllAR-GROUP/hpx/pull/4276
2944 https://github.com/STEllAR-GROUP/hpx/pull/4275
2945 https://github.com/STEllAR-GROUP/hpx/pull/4272

2.10. Releases 1661

https://github.com/STEllAR-GROUP/hpx/issues/3879
https://github.com/STEllAR-GROUP/hpx/issues/3871
https://github.com/STEllAR-GROUP/hpx/issues/3867
https://github.com/STEllAR-GROUP/hpx/issues/3866
https://github.com/STEllAR-GROUP/hpx/issues/3857
https://github.com/STEllAR-GROUP/hpx/issues/3856
https://github.com/STEllAR-GROUP/hpx/issues/3850
https://github.com/STEllAR-GROUP/hpx/issues/3848
https://github.com/STEllAR-GROUP/hpx/issues/3838
https://github.com/STEllAR-GROUP/hpx/issues/3651
https://github.com/STEllAR-GROUP/hpx/issues/3560
https://github.com/STEllAR-GROUP/hpx/issues/3322
https://github.com/STEllAR-GROUP/hpx/pull/4300
https://github.com/STEllAR-GROUP/hpx/pull/4299
https://github.com/STEllAR-GROUP/hpx/pull/4298
https://github.com/STEllAR-GROUP/hpx/pull/4296
https://github.com/STEllAR-GROUP/hpx/pull/4295
https://github.com/STEllAR-GROUP/hpx/pull/4293
https://github.com/STEllAR-GROUP/hpx/pull/4285
https://github.com/STEllAR-GROUP/hpx/pull/4276
https://github.com/STEllAR-GROUP/hpx/pull/4275
https://github.com/STEllAR-GROUP/hpx/pull/4272

HPX Documentation, master

• PR #42712946 - Updating APEX tag, don’t create new task_wrapper on operator= of hpx_thread object

• PR #42682947 - Testing for noexcept function specializations in C++11/14 mode

• PR #42672948 - Fixing MSVC warning

• PR #42662949 - Make sure macOS Travis CI fails if build step fails

• PR #42642950 - Clean up compatibility header options

• PR #42622951 - Cleanup modules CMakeLists.txt

• PR #42612952 - Fixing HPX/APEX linking and dependencies for external projects like Phylanx

• PR #42602953 - Fix docs compilation problems

• PR #42582954 - Couple of minor changes

• PR #42572955 - Fix apex annotation for async dispatch

• PR #42562956 - Remove lambdas from assert expressions

• PR #42552957 - Ignoring lock in all_to_all and all_reduce

• PR #42542958 - Adding action specializations for noexcept functions

• PR #42532959 - Move partlit.hpp to affinity module

• PR #42522960 - Make mismatching build types a hard error in CMake

• PR #42492961 - Scheduler improvement

• PR #42482962 - update hpxmp tag to v0.3.0

• PR #42452963 - Adding high performance channels

• PR #42442964 - Ignore lock in ignore_while_locked_1485 test

• PR #42432965 - Fix PAPI command line option documentation

• PR #42422966 - Ignore lock in target_distribution_policy

• PR #42412967 - Fix start_stop_callbacks test

• PR #42402968 - Mostly fix clang CUDA compilation
2946 https://github.com/STEllAR-GROUP/hpx/pull/4271
2947 https://github.com/STEllAR-GROUP/hpx/pull/4268
2948 https://github.com/STEllAR-GROUP/hpx/pull/4267
2949 https://github.com/STEllAR-GROUP/hpx/pull/4266
2950 https://github.com/STEllAR-GROUP/hpx/pull/4264
2951 https://github.com/STEllAR-GROUP/hpx/pull/4262
2952 https://github.com/STEllAR-GROUP/hpx/pull/4261
2953 https://github.com/STEllAR-GROUP/hpx/pull/4260
2954 https://github.com/STEllAR-GROUP/hpx/pull/4258
2955 https://github.com/STEllAR-GROUP/hpx/pull/4257
2956 https://github.com/STEllAR-GROUP/hpx/pull/4256
2957 https://github.com/STEllAR-GROUP/hpx/pull/4255
2958 https://github.com/STEllAR-GROUP/hpx/pull/4254
2959 https://github.com/STEllAR-GROUP/hpx/pull/4253
2960 https://github.com/STEllAR-GROUP/hpx/pull/4252
2961 https://github.com/STEllAR-GROUP/hpx/pull/4249
2962 https://github.com/STEllAR-GROUP/hpx/pull/4248
2963 https://github.com/STEllAR-GROUP/hpx/pull/4245
2964 https://github.com/STEllAR-GROUP/hpx/pull/4244
2965 https://github.com/STEllAR-GROUP/hpx/pull/4243
2966 https://github.com/STEllAR-GROUP/hpx/pull/4242
2967 https://github.com/STEllAR-GROUP/hpx/pull/4241
2968 https://github.com/STEllAR-GROUP/hpx/pull/4240

1662 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4271
https://github.com/STEllAR-GROUP/hpx/pull/4268
https://github.com/STEllAR-GROUP/hpx/pull/4267
https://github.com/STEllAR-GROUP/hpx/pull/4266
https://github.com/STEllAR-GROUP/hpx/pull/4264
https://github.com/STEllAR-GROUP/hpx/pull/4262
https://github.com/STEllAR-GROUP/hpx/pull/4261
https://github.com/STEllAR-GROUP/hpx/pull/4260
https://github.com/STEllAR-GROUP/hpx/pull/4258
https://github.com/STEllAR-GROUP/hpx/pull/4257
https://github.com/STEllAR-GROUP/hpx/pull/4256
https://github.com/STEllAR-GROUP/hpx/pull/4255
https://github.com/STEllAR-GROUP/hpx/pull/4254
https://github.com/STEllAR-GROUP/hpx/pull/4253
https://github.com/STEllAR-GROUP/hpx/pull/4252
https://github.com/STEllAR-GROUP/hpx/pull/4249
https://github.com/STEllAR-GROUP/hpx/pull/4248
https://github.com/STEllAR-GROUP/hpx/pull/4245
https://github.com/STEllAR-GROUP/hpx/pull/4244
https://github.com/STEllAR-GROUP/hpx/pull/4243
https://github.com/STEllAR-GROUP/hpx/pull/4242
https://github.com/STEllAR-GROUP/hpx/pull/4241
https://github.com/STEllAR-GROUP/hpx/pull/4240

HPX Documentation, master

• PR #42382969 - Google Season of Docs updates to documentation; grammar edits.

• PR #42372970 - fixing annotated task to use the name, not the desc

• PR #42362971 - Move module print summary to modules

• PR #42352972 - Don’t use alignas in cache_{aligned,line}_data

• PR #42342973 - Add basic overview sentence to all modules

• PR #42302974 - Add OS X builds to Travis CI

• PR #42292975 - Remove leftover queue compatibility checks

• PR #42262976 - Fixing APEX shutdown by explicitly shutting down throttling

• PR #42252977 - Allow CMAKE_INSTALL_PREFIX to be a relative path

• PR #42242978 - Deprecate verbs parcelport

• PR #42222979 - Update register_{thread,work} namespaces

• PR #42212980 - Changing HPX_GCC_VERSION check from 70000 to 70300

• PR #42182981 - Google Season of Docs updates to documentation; grammar edits.

• PR #42172982 - Google Season of Docs updates to documentation; grammar edits.

• PR #42162983 - Fixing gcc warning on 32bit platforms (integer truncation)

• PR #42142984 - Apex callback refactoring

• PR #42132985 - Clean up allocator checks for dependent projects

• PR #42122986 - Google Season of Docs updates to documentation; grammar edits.

• PR #42112987 - Google Season of Docs updates to documentation; contributing to hpx

• PR #42102988 - Attempting to fix Intel compilation

• PR #42092989 - Fix CUDA 10 build

• PR #42052990 - Making sure that differences in CMAKE_BUILD_TYPE are not reported on multi-configuration
cmake generators

• PR #42032991 - Deprecate Vc
2969 https://github.com/STEllAR-GROUP/hpx/pull/4238
2970 https://github.com/STEllAR-GROUP/hpx/pull/4237
2971 https://github.com/STEllAR-GROUP/hpx/pull/4236
2972 https://github.com/STEllAR-GROUP/hpx/pull/4235
2973 https://github.com/STEllAR-GROUP/hpx/pull/4234
2974 https://github.com/STEllAR-GROUP/hpx/pull/4230
2975 https://github.com/STEllAR-GROUP/hpx/pull/4229
2976 https://github.com/STEllAR-GROUP/hpx/pull/4226
2977 https://github.com/STEllAR-GROUP/hpx/pull/4225
2978 https://github.com/STEllAR-GROUP/hpx/pull/4224
2979 https://github.com/STEllAR-GROUP/hpx/pull/4222
2980 https://github.com/STEllAR-GROUP/hpx/pull/4221
2981 https://github.com/STEllAR-GROUP/hpx/pull/4218
2982 https://github.com/STEllAR-GROUP/hpx/pull/4217
2983 https://github.com/STEllAR-GROUP/hpx/pull/4216
2984 https://github.com/STEllAR-GROUP/hpx/pull/4214
2985 https://github.com/STEllAR-GROUP/hpx/pull/4213
2986 https://github.com/STEllAR-GROUP/hpx/pull/4212
2987 https://github.com/STEllAR-GROUP/hpx/pull/4211
2988 https://github.com/STEllAR-GROUP/hpx/pull/4210
2989 https://github.com/STEllAR-GROUP/hpx/pull/4209
2990 https://github.com/STEllAR-GROUP/hpx/pull/4205
2991 https://github.com/STEllAR-GROUP/hpx/pull/4203

2.10. Releases 1663

https://github.com/STEllAR-GROUP/hpx/pull/4238
https://github.com/STEllAR-GROUP/hpx/pull/4237
https://github.com/STEllAR-GROUP/hpx/pull/4236
https://github.com/STEllAR-GROUP/hpx/pull/4235
https://github.com/STEllAR-GROUP/hpx/pull/4234
https://github.com/STEllAR-GROUP/hpx/pull/4230
https://github.com/STEllAR-GROUP/hpx/pull/4229
https://github.com/STEllAR-GROUP/hpx/pull/4226
https://github.com/STEllAR-GROUP/hpx/pull/4225
https://github.com/STEllAR-GROUP/hpx/pull/4224
https://github.com/STEllAR-GROUP/hpx/pull/4222
https://github.com/STEllAR-GROUP/hpx/pull/4221
https://github.com/STEllAR-GROUP/hpx/pull/4218
https://github.com/STEllAR-GROUP/hpx/pull/4217
https://github.com/STEllAR-GROUP/hpx/pull/4216
https://github.com/STEllAR-GROUP/hpx/pull/4214
https://github.com/STEllAR-GROUP/hpx/pull/4213
https://github.com/STEllAR-GROUP/hpx/pull/4212
https://github.com/STEllAR-GROUP/hpx/pull/4211
https://github.com/STEllAR-GROUP/hpx/pull/4210
https://github.com/STEllAR-GROUP/hpx/pull/4209
https://github.com/STEllAR-GROUP/hpx/pull/4205
https://github.com/STEllAR-GROUP/hpx/pull/4203

HPX Documentation, master

• PR #42022992 - Fix CUDA configuration

• PR #42002993 - Making sure hpx_wrap is not passed on to linker on non-Linux systems

• PR #41982994 - Fix execution_agent.cpp compilation with GCC 5

• PR #41972995 - Remove deprecated options for 1.4.0 release

• PR #41962996 - minor fixes for building on OSX Darwin

• PR #41952997 - Use full clone on CircleCI for pushing stable tag

• PR #41932998 - Add scheduling hints to hello_world_distributed

• PR #41922999 - Set up CUDA in HPXConfig.cmake

• PR #41913000 - Export allocators root variables

• PR #41903001 - Don’t use constexpr in thread_data with GCC <= 6

• PR #41893002 - Only use quick_exit if available

• PR #41883003 - Google Season of Docs updates to documentation; writing single node hpx applications

• PR #41863004 - correct vc to cuda in cuda cmake

• PR #41843005 - Resetting some cached variables to make sure those are re-filled

• PR #41833006 - Fix hpxcxx configuration

• PR #41813007 - Rename base libraries var

• PR #41803008 - Move header left behind earlier to plugin module

• PR #41793009 - Moving zip_iterator and transform_iterator to iterator_support module

• PR #41783010 - Move checkpointing support to its own module

• PR #41773011 - Small const fix to basic_execution module

• PR #41763012 - Add back HPX_LIBRARIES and friends to HPXConfig.cmake

• PR #41753013 - Make Vc public and add it to HPXConfig.cmake

• PR #41733014 - Wait for runtime to be running before returning from hpx::start
2992 https://github.com/STEllAR-GROUP/hpx/pull/4202
2993 https://github.com/STEllAR-GROUP/hpx/pull/4200
2994 https://github.com/STEllAR-GROUP/hpx/pull/4198
2995 https://github.com/STEllAR-GROUP/hpx/pull/4197
2996 https://github.com/STEllAR-GROUP/hpx/pull/4196
2997 https://github.com/STEllAR-GROUP/hpx/pull/4195
2998 https://github.com/STEllAR-GROUP/hpx/pull/4193
2999 https://github.com/STEllAR-GROUP/hpx/pull/4192
3000 https://github.com/STEllAR-GROUP/hpx/pull/4191
3001 https://github.com/STEllAR-GROUP/hpx/pull/4190
3002 https://github.com/STEllAR-GROUP/hpx/pull/4189
3003 https://github.com/STEllAR-GROUP/hpx/pull/4188
3004 https://github.com/STEllAR-GROUP/hpx/pull/4186
3005 https://github.com/STEllAR-GROUP/hpx/pull/4184
3006 https://github.com/STEllAR-GROUP/hpx/pull/4183
3007 https://github.com/STEllAR-GROUP/hpx/pull/4181
3008 https://github.com/STEllAR-GROUP/hpx/pull/4180
3009 https://github.com/STEllAR-GROUP/hpx/pull/4179
3010 https://github.com/STEllAR-GROUP/hpx/pull/4178
3011 https://github.com/STEllAR-GROUP/hpx/pull/4177
3012 https://github.com/STEllAR-GROUP/hpx/pull/4176
3013 https://github.com/STEllAR-GROUP/hpx/pull/4175
3014 https://github.com/STEllAR-GROUP/hpx/pull/4173

1664 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4202
https://github.com/STEllAR-GROUP/hpx/pull/4200
https://github.com/STEllAR-GROUP/hpx/pull/4198
https://github.com/STEllAR-GROUP/hpx/pull/4197
https://github.com/STEllAR-GROUP/hpx/pull/4196
https://github.com/STEllAR-GROUP/hpx/pull/4195
https://github.com/STEllAR-GROUP/hpx/pull/4193
https://github.com/STEllAR-GROUP/hpx/pull/4192
https://github.com/STEllAR-GROUP/hpx/pull/4191
https://github.com/STEllAR-GROUP/hpx/pull/4190
https://github.com/STEllAR-GROUP/hpx/pull/4189
https://github.com/STEllAR-GROUP/hpx/pull/4188
https://github.com/STEllAR-GROUP/hpx/pull/4186
https://github.com/STEllAR-GROUP/hpx/pull/4184
https://github.com/STEllAR-GROUP/hpx/pull/4183
https://github.com/STEllAR-GROUP/hpx/pull/4181
https://github.com/STEllAR-GROUP/hpx/pull/4180
https://github.com/STEllAR-GROUP/hpx/pull/4179
https://github.com/STEllAR-GROUP/hpx/pull/4178
https://github.com/STEllAR-GROUP/hpx/pull/4177
https://github.com/STEllAR-GROUP/hpx/pull/4176
https://github.com/STEllAR-GROUP/hpx/pull/4175
https://github.com/STEllAR-GROUP/hpx/pull/4173

HPX Documentation, master

• PR #41723015 - More protection against shutdown problems in error handling scenarios.

• PR #41713016 - Ignore lock in condition_variable::wait

• PR #41703017 - Adding APEX dependency to MPI parcelport

• PR #41683018 - Adding utility include

• PR #41673019 - Add a condition to setup the external libraries

• PR #41663020 - Add an INTERNAL_FLAGS option to link to hpx_internal_flags

• PR #41653021 - Forward HPX_* cmake cache variables to external projects

• PR #41643022 - Affinity and batch environment modules

• PR #41623023 - Handle quick exit

• PR #41603024 - Using target_link_libraries for cmake versions >= 3.12

• PR #41593025 - Make sure HPX_WITH_NATIVE_TLS is forwarded to dependent projects

• PR #41583026 - Adding allocator imported target as a dependency of allocator module

• PR #41573027 - Add hpx_memory as a dependency of parcelport plugins

• PR #41563028 - Stackless coroutines now can refer to themselves (through get_self() and friends)

• PR #41543029 - Added CMake policy CMP0060 for HPX applications.

• PR #41533030 - add header iomanip to tests and tool

• PR #41523031 - Casting MPI tag value

• PR #41493032 - Add back private m_desc member variable in program_options module

• PR #41473033 - Resource partitioner and threadmanager modules

• PR #41463034 - Google Season of Docs updates to documentation; creating hpx projects

• PR #41453035 - Adding basic support for stackless threads

• PR #41433036 - Exclude test_client_1950 from all target

• PR #41423037 - Add a new thread_pool_executor

3015 https://github.com/STEllAR-GROUP/hpx/pull/4172
3016 https://github.com/STEllAR-GROUP/hpx/pull/4171
3017 https://github.com/STEllAR-GROUP/hpx/pull/4170
3018 https://github.com/STEllAR-GROUP/hpx/pull/4168
3019 https://github.com/STEllAR-GROUP/hpx/pull/4167
3020 https://github.com/STEllAR-GROUP/hpx/pull/4166
3021 https://github.com/STEllAR-GROUP/hpx/pull/4165
3022 https://github.com/STEllAR-GROUP/hpx/pull/4164
3023 https://github.com/STEllAR-GROUP/hpx/pull/4162
3024 https://github.com/STEllAR-GROUP/hpx/pull/4160
3025 https://github.com/STEllAR-GROUP/hpx/pull/4159
3026 https://github.com/STEllAR-GROUP/hpx/pull/4158
3027 https://github.com/STEllAR-GROUP/hpx/pull/4157
3028 https://github.com/STEllAR-GROUP/hpx/pull/4156
3029 https://github.com/STEllAR-GROUP/hpx/pull/4154
3030 https://github.com/STEllAR-GROUP/hpx/pull/4153
3031 https://github.com/STEllAR-GROUP/hpx/pull/4152
3032 https://github.com/STEllAR-GROUP/hpx/pull/4149
3033 https://github.com/STEllAR-GROUP/hpx/pull/4147
3034 https://github.com/STEllAR-GROUP/hpx/pull/4146
3035 https://github.com/STEllAR-GROUP/hpx/pull/4145
3036 https://github.com/STEllAR-GROUP/hpx/pull/4143
3037 https://github.com/STEllAR-GROUP/hpx/pull/4142

2.10. Releases 1665

https://github.com/STEllAR-GROUP/hpx/pull/4172
https://github.com/STEllAR-GROUP/hpx/pull/4171
https://github.com/STEllAR-GROUP/hpx/pull/4170
https://github.com/STEllAR-GROUP/hpx/pull/4168
https://github.com/STEllAR-GROUP/hpx/pull/4167
https://github.com/STEllAR-GROUP/hpx/pull/4166
https://github.com/STEllAR-GROUP/hpx/pull/4165
https://github.com/STEllAR-GROUP/hpx/pull/4164
https://github.com/STEllAR-GROUP/hpx/pull/4162
https://github.com/STEllAR-GROUP/hpx/pull/4160
https://github.com/STEllAR-GROUP/hpx/pull/4159
https://github.com/STEllAR-GROUP/hpx/pull/4158
https://github.com/STEllAR-GROUP/hpx/pull/4157
https://github.com/STEllAR-GROUP/hpx/pull/4156
https://github.com/STEllAR-GROUP/hpx/pull/4154
https://github.com/STEllAR-GROUP/hpx/pull/4153
https://github.com/STEllAR-GROUP/hpx/pull/4152
https://github.com/STEllAR-GROUP/hpx/pull/4149
https://github.com/STEllAR-GROUP/hpx/pull/4147
https://github.com/STEllAR-GROUP/hpx/pull/4146
https://github.com/STEllAR-GROUP/hpx/pull/4145
https://github.com/STEllAR-GROUP/hpx/pull/4143
https://github.com/STEllAR-GROUP/hpx/pull/4142

HPX Documentation, master

• PR #41403038 - Google Season of Docs updates to documentation; why hpx

• PR #41393039 - Remove runtime includes from coroutines module

• PR #41383040 - Forking boost::intrusive_ptr and adding it as hpx::intrusive_ptr

• PR #41373041 - Fixing TSS destruction

• PR #41363042 - HPX.Compute modules

• PR #41333043 - Fix block_executor

• PR #41313044 - Applying fixes based on reports from PVS Studio

• PR #41303045 - Adding missing header to build system

• PR #41293046 - Fixing compilation if HPX_WITH_DATAPAR_VC is enabled

• PR #41283047 - Renaming moveonly_any to unique_any

• PR #41263048 - Attempt to fix basic_any constructor for gcc 7

• PR #41253049 - Changing extra_archive_data implementation

• PR #41243050 - Don’t link to Boost.System unless required

• PR #41223051 - Add kernel launch helper utility (+saxpy demo) and merge in octotiger changes

• PR #41213052 - Fixing migration test if networking is disabled.

• PR #41203053 - Google Season of Docs updates to documentation; hpx build system v1

• PR #41193054 - Making sure chunk_size and max_chunk are actually applied to parallel algorithms if specified

• PR #41173055 - Make CircleCI formatting check store diff

• PR #41163056 - Fix automatically setting C++ standard

• PR #41143057 - Module serialization

• PR #41133058 - Module datastructures

• PR #41113059 - Fixing performance regression introduced earlier

• PR #41103060 - Adding missing SPDX tags
3038 https://github.com/STEllAR-GROUP/hpx/pull/4140
3039 https://github.com/STEllAR-GROUP/hpx/pull/4139
3040 https://github.com/STEllAR-GROUP/hpx/pull/4138
3041 https://github.com/STEllAR-GROUP/hpx/pull/4137
3042 https://github.com/STEllAR-GROUP/hpx/pull/4136
3043 https://github.com/STEllAR-GROUP/hpx/pull/4133
3044 https://github.com/STEllAR-GROUP/hpx/pull/4131
3045 https://github.com/STEllAR-GROUP/hpx/pull/4130
3046 https://github.com/STEllAR-GROUP/hpx/pull/4129
3047 https://github.com/STEllAR-GROUP/hpx/pull/4128
3048 https://github.com/STEllAR-GROUP/hpx/pull/4126
3049 https://github.com/STEllAR-GROUP/hpx/pull/4125
3050 https://github.com/STEllAR-GROUP/hpx/pull/4124
3051 https://github.com/STEllAR-GROUP/hpx/pull/4122
3052 https://github.com/STEllAR-GROUP/hpx/pull/4121
3053 https://github.com/STEllAR-GROUP/hpx/pull/4120
3054 https://github.com/STEllAR-GROUP/hpx/pull/4119
3055 https://github.com/STEllAR-GROUP/hpx/pull/4117
3056 https://github.com/STEllAR-GROUP/hpx/pull/4116
3057 https://github.com/STEllAR-GROUP/hpx/pull/4114
3058 https://github.com/STEllAR-GROUP/hpx/pull/4113
3059 https://github.com/STEllAR-GROUP/hpx/pull/4111
3060 https://github.com/STEllAR-GROUP/hpx/pull/4110

1666 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4140
https://github.com/STEllAR-GROUP/hpx/pull/4139
https://github.com/STEllAR-GROUP/hpx/pull/4138
https://github.com/STEllAR-GROUP/hpx/pull/4137
https://github.com/STEllAR-GROUP/hpx/pull/4136
https://github.com/STEllAR-GROUP/hpx/pull/4133
https://github.com/STEllAR-GROUP/hpx/pull/4131
https://github.com/STEllAR-GROUP/hpx/pull/4130
https://github.com/STEllAR-GROUP/hpx/pull/4129
https://github.com/STEllAR-GROUP/hpx/pull/4128
https://github.com/STEllAR-GROUP/hpx/pull/4126
https://github.com/STEllAR-GROUP/hpx/pull/4125
https://github.com/STEllAR-GROUP/hpx/pull/4124
https://github.com/STEllAR-GROUP/hpx/pull/4122
https://github.com/STEllAR-GROUP/hpx/pull/4121
https://github.com/STEllAR-GROUP/hpx/pull/4120
https://github.com/STEllAR-GROUP/hpx/pull/4119
https://github.com/STEllAR-GROUP/hpx/pull/4117
https://github.com/STEllAR-GROUP/hpx/pull/4116
https://github.com/STEllAR-GROUP/hpx/pull/4114
https://github.com/STEllAR-GROUP/hpx/pull/4113
https://github.com/STEllAR-GROUP/hpx/pull/4111
https://github.com/STEllAR-GROUP/hpx/pull/4110

HPX Documentation, master

• PR #41093061 - Overload for start without entry point/argv.

• PR #41083062 - Making sure C++ standard is properly detected and propagated

• PR #41063063 - use std::round for guaranteed rounding without errors

• PR #41043064 - Extend scheduler_mode with new work_stealing and task assignment modes

• PR #41033065 - Add this to lambda capture list

• PR #41023066 - Add spdx license and check

• PR #40993067 - Module coroutines

• PR #40983068 - Fix append module path in module CMakeLists template

• PR #40973069 - Function tests

• PR #40963070 - Removing return of thread_result_type from functions not needing them

• PR #40953071 - Stop-gap measure until cmake overhaul is in place

• PR #40943072 - Deprecate HPX_WITH_MORE_THAN_64_THREADS

• PR #40933073 - Fix initialization of global_num_tasks in parallel_executor

• PR #40923074 - Add support for mi-malloc

• PR #40903075 - Execution context

• PR #40893076 - Make counters in coroutines optional

• PR #40873077 - Making hpx::util::any compatible with C++17

• PR #40843078 - Making sure destination array for std::transform is properly resized

• PR #40833079 - Adapting thread_queue_mc to behave even if no 128bit atomics are available

• PR #40823080 - Fix compilation on GCC 5

• PR #40813081 - Adding option allowing to force using Boost.FileSystem

• PR #40803082 - Updating module dependencies

• PR #40793083 - Add missing tests for iterator_support module
3061 https://github.com/STEllAR-GROUP/hpx/pull/4109
3062 https://github.com/STEllAR-GROUP/hpx/pull/4108
3063 https://github.com/STEllAR-GROUP/hpx/pull/4106
3064 https://github.com/STEllAR-GROUP/hpx/pull/4104
3065 https://github.com/STEllAR-GROUP/hpx/pull/4103
3066 https://github.com/STEllAR-GROUP/hpx/pull/4102
3067 https://github.com/STEllAR-GROUP/hpx/pull/4099
3068 https://github.com/STEllAR-GROUP/hpx/pull/4098
3069 https://github.com/STEllAR-GROUP/hpx/pull/4097
3070 https://github.com/STEllAR-GROUP/hpx/pull/4096
3071 https://github.com/STEllAR-GROUP/hpx/pull/4095
3072 https://github.com/STEllAR-GROUP/hpx/pull/4094
3073 https://github.com/STEllAR-GROUP/hpx/pull/4093
3074 https://github.com/STEllAR-GROUP/hpx/pull/4092
3075 https://github.com/STEllAR-GROUP/hpx/pull/4090
3076 https://github.com/STEllAR-GROUP/hpx/pull/4089
3077 https://github.com/STEllAR-GROUP/hpx/pull/4087
3078 https://github.com/STEllAR-GROUP/hpx/pull/4084
3079 https://github.com/STEllAR-GROUP/hpx/pull/4083
3080 https://github.com/STEllAR-GROUP/hpx/pull/4082
3081 https://github.com/STEllAR-GROUP/hpx/pull/4081
3082 https://github.com/STEllAR-GROUP/hpx/pull/4080
3083 https://github.com/STEllAR-GROUP/hpx/pull/4079

2.10. Releases 1667

https://github.com/STEllAR-GROUP/hpx/pull/4109
https://github.com/STEllAR-GROUP/hpx/pull/4108
https://github.com/STEllAR-GROUP/hpx/pull/4106
https://github.com/STEllAR-GROUP/hpx/pull/4104
https://github.com/STEllAR-GROUP/hpx/pull/4103
https://github.com/STEllAR-GROUP/hpx/pull/4102
https://github.com/STEllAR-GROUP/hpx/pull/4099
https://github.com/STEllAR-GROUP/hpx/pull/4098
https://github.com/STEllAR-GROUP/hpx/pull/4097
https://github.com/STEllAR-GROUP/hpx/pull/4096
https://github.com/STEllAR-GROUP/hpx/pull/4095
https://github.com/STEllAR-GROUP/hpx/pull/4094
https://github.com/STEllAR-GROUP/hpx/pull/4093
https://github.com/STEllAR-GROUP/hpx/pull/4092
https://github.com/STEllAR-GROUP/hpx/pull/4090
https://github.com/STEllAR-GROUP/hpx/pull/4089
https://github.com/STEllAR-GROUP/hpx/pull/4087
https://github.com/STEllAR-GROUP/hpx/pull/4084
https://github.com/STEllAR-GROUP/hpx/pull/4083
https://github.com/STEllAR-GROUP/hpx/pull/4082
https://github.com/STEllAR-GROUP/hpx/pull/4081
https://github.com/STEllAR-GROUP/hpx/pull/4080
https://github.com/STEllAR-GROUP/hpx/pull/4079

HPX Documentation, master

• PR #40783084 - Disable parcel-layer if networking is disabled

• PR #40773085 - Add missing include that causes build fails

• PR #40763086 - Enable compatibility headers for functional module

• PR #40753087 - Coroutines module

• PR #40733088 - Use configure_file for generated files in modules

• PR #40713089 - Fixing MPI detection for PMIx

• PR #40703090 - Fix macOS builds

• PR #40693091 - Moving more facilities to the collectives module

• PR #40683092 - Adding main HPX #include directory to modules

• PR #40663093 - Switching the use of message(STATUS "...") to hpx_info

• PR #40653094 - Move Boost.Filesystem handling to filesystem module

• PR #40643095 - Fix program_options test with older boost versions

• PR #40623096 - The cpu_features tool fails to compile on anything but x86 architectures

• PR #40613097 - Add clang-format checking step for modules

• PR #40603098 - Making sure HPX_IDLE_BACKOFF_TIME_MAX is always defined (even if its unused)

• PR #40593099 - Renaming module hpx_parallel_executors into hpx_execution

• PR #40583100 - Do not build networking tests when networking disabled

• PR #40573101 - Printing configuration summary for modules as well

• PR #40553102 - Google Season of Docs updates to documentation; hpx build systems

• PR #40543103 - Add troubleshooting section to manual

• PR #40513104 - Add more variations to future_overhead test

• PR #40503105 - Creating plugin module

• PR #40493106 - Move missing modules tests
3084 https://github.com/STEllAR-GROUP/hpx/pull/4078
3085 https://github.com/STEllAR-GROUP/hpx/pull/4077
3086 https://github.com/STEllAR-GROUP/hpx/pull/4076
3087 https://github.com/STEllAR-GROUP/hpx/pull/4075
3088 https://github.com/STEllAR-GROUP/hpx/pull/4073
3089 https://github.com/STEllAR-GROUP/hpx/pull/4071
3090 https://github.com/STEllAR-GROUP/hpx/pull/4070
3091 https://github.com/STEllAR-GROUP/hpx/pull/4069
3092 https://github.com/STEllAR-GROUP/hpx/pull/4068
3093 https://github.com/STEllAR-GROUP/hpx/pull/4066
3094 https://github.com/STEllAR-GROUP/hpx/pull/4065
3095 https://github.com/STEllAR-GROUP/hpx/pull/4064
3096 https://github.com/STEllAR-GROUP/hpx/pull/4062
3097 https://github.com/STEllAR-GROUP/hpx/pull/4061
3098 https://github.com/STEllAR-GROUP/hpx/pull/4060
3099 https://github.com/STEllAR-GROUP/hpx/pull/4059
3100 https://github.com/STEllAR-GROUP/hpx/pull/4058
3101 https://github.com/STEllAR-GROUP/hpx/pull/4057
3102 https://github.com/STEllAR-GROUP/hpx/pull/4055
3103 https://github.com/STEllAR-GROUP/hpx/pull/4054
3104 https://github.com/STEllAR-GROUP/hpx/pull/4051
3105 https://github.com/STEllAR-GROUP/hpx/pull/4050
3106 https://github.com/STEllAR-GROUP/hpx/pull/4049

1668 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4078
https://github.com/STEllAR-GROUP/hpx/pull/4077
https://github.com/STEllAR-GROUP/hpx/pull/4076
https://github.com/STEllAR-GROUP/hpx/pull/4075
https://github.com/STEllAR-GROUP/hpx/pull/4073
https://github.com/STEllAR-GROUP/hpx/pull/4071
https://github.com/STEllAR-GROUP/hpx/pull/4070
https://github.com/STEllAR-GROUP/hpx/pull/4069
https://github.com/STEllAR-GROUP/hpx/pull/4068
https://github.com/STEllAR-GROUP/hpx/pull/4066
https://github.com/STEllAR-GROUP/hpx/pull/4065
https://github.com/STEllAR-GROUP/hpx/pull/4064
https://github.com/STEllAR-GROUP/hpx/pull/4062
https://github.com/STEllAR-GROUP/hpx/pull/4061
https://github.com/STEllAR-GROUP/hpx/pull/4060
https://github.com/STEllAR-GROUP/hpx/pull/4059
https://github.com/STEllAR-GROUP/hpx/pull/4058
https://github.com/STEllAR-GROUP/hpx/pull/4057
https://github.com/STEllAR-GROUP/hpx/pull/4055
https://github.com/STEllAR-GROUP/hpx/pull/4054
https://github.com/STEllAR-GROUP/hpx/pull/4051
https://github.com/STEllAR-GROUP/hpx/pull/4050
https://github.com/STEllAR-GROUP/hpx/pull/4049

HPX Documentation, master

• PR #40473107 - Add boost/filesystem headers to inspect deprecated headers

• PR #40453108 - Module functional

• PR #40433109 - Fix preconditions and error messages for suspension functions

• PR #40413110 - Pass HPX_STANDARD on to dependent projects via HPXConfig.cmake

• PR #40403111 - Program options module

• PR #40393112 - Moving non-serializable any (any_nonser) to datastructures module

• PR #40383113 - Adding MPark’s variant (V1.4.0) to HPX

• PR #40373114 - Adding resiliency module

• PR #40363115 - Add C++17 filesystem compatibility header

• PR #40353116 - Fixing support for mpirun

• PR #40283117 - CMake to target based directives

• PR #40273118 - Remove GitLab CI configuration

• PR #40263119 - Threading refactoring

• PR #40253120 - Refactoring thread queue configuration options

• PR #40243121 - Fix padding calculation in cache_aligned_data.hpp

• PR #40233122 - Fixing Codacy issues

• PR #40223123 - Make sure process mask option is passed to affinity_data

• PR #40213124 - Warn about compiling in C++11 mode

• PR #40203125 - Module concurrency

• PR #40193126 - Module topology

• PR #40183127 - Update deprecated header in thread_queue_mc.hpp

• PR #40153128 - Avoid overwriting artifacts

• PR #40143129 - Future overheads
3107 https://github.com/STEllAR-GROUP/hpx/pull/4047
3108 https://github.com/STEllAR-GROUP/hpx/pull/4045
3109 https://github.com/STEllAR-GROUP/hpx/pull/4043
3110 https://github.com/STEllAR-GROUP/hpx/pull/4041
3111 https://github.com/STEllAR-GROUP/hpx/pull/4040
3112 https://github.com/STEllAR-GROUP/hpx/pull/4039
3113 https://github.com/STEllAR-GROUP/hpx/pull/4038
3114 https://github.com/STEllAR-GROUP/hpx/pull/4037
3115 https://github.com/STEllAR-GROUP/hpx/pull/4036
3116 https://github.com/STEllAR-GROUP/hpx/pull/4035
3117 https://github.com/STEllAR-GROUP/hpx/pull/4028
3118 https://github.com/STEllAR-GROUP/hpx/pull/4027
3119 https://github.com/STEllAR-GROUP/hpx/pull/4026
3120 https://github.com/STEllAR-GROUP/hpx/pull/4025
3121 https://github.com/STEllAR-GROUP/hpx/pull/4024
3122 https://github.com/STEllAR-GROUP/hpx/pull/4023
3123 https://github.com/STEllAR-GROUP/hpx/pull/4022
3124 https://github.com/STEllAR-GROUP/hpx/pull/4021
3125 https://github.com/STEllAR-GROUP/hpx/pull/4020
3126 https://github.com/STEllAR-GROUP/hpx/pull/4019
3127 https://github.com/STEllAR-GROUP/hpx/pull/4018
3128 https://github.com/STEllAR-GROUP/hpx/pull/4015
3129 https://github.com/STEllAR-GROUP/hpx/pull/4014

2.10. Releases 1669

https://github.com/STEllAR-GROUP/hpx/pull/4047
https://github.com/STEllAR-GROUP/hpx/pull/4045
https://github.com/STEllAR-GROUP/hpx/pull/4043
https://github.com/STEllAR-GROUP/hpx/pull/4041
https://github.com/STEllAR-GROUP/hpx/pull/4040
https://github.com/STEllAR-GROUP/hpx/pull/4039
https://github.com/STEllAR-GROUP/hpx/pull/4038
https://github.com/STEllAR-GROUP/hpx/pull/4037
https://github.com/STEllAR-GROUP/hpx/pull/4036
https://github.com/STEllAR-GROUP/hpx/pull/4035
https://github.com/STEllAR-GROUP/hpx/pull/4028
https://github.com/STEllAR-GROUP/hpx/pull/4027
https://github.com/STEllAR-GROUP/hpx/pull/4026
https://github.com/STEllAR-GROUP/hpx/pull/4025
https://github.com/STEllAR-GROUP/hpx/pull/4024
https://github.com/STEllAR-GROUP/hpx/pull/4023
https://github.com/STEllAR-GROUP/hpx/pull/4022
https://github.com/STEllAR-GROUP/hpx/pull/4021
https://github.com/STEllAR-GROUP/hpx/pull/4020
https://github.com/STEllAR-GROUP/hpx/pull/4019
https://github.com/STEllAR-GROUP/hpx/pull/4018
https://github.com/STEllAR-GROUP/hpx/pull/4015
https://github.com/STEllAR-GROUP/hpx/pull/4014

HPX Documentation, master

• PR #40133130 - Update URL to test output conversion script

• PR #40123131 - Fix CUDA compilation

• PR #40113132 - Fixing cyclic dependencies between modules

• PR #40103133 - Ignore stable tag on CircleCI

• PR #40093134 - Check circular dependencies in a circle ci step

• PR #40083135 - Extend cache aligned data to handle tuple-like data

• PR #40073136 - Fixing migration for components that have actions returning a client

• PR #40063137 - Move is_value_proxy.hpp to algorithms module

• PR #40043138 - Shorten CTest timeout on CircleCI

• PR #40033139 - Refactoring to remove (internal) dependencies

• PR #40013140 - Exclude tests from all target

• PR #40003141 - Module errors

• PR #39993142 - Enable support for compatibility headers for logging module

• PR #39983143 - Add process thread binding option

• PR #39973144 - Export handle_assert function

• PR #39963145 - Attempt to solve issue where -latomic does not support 128bit atomics

• PR #39933146 - Make sure __LINE__ is an unsigned

• PR #39913147 - Fix dependencies and flags for header tests

• PR #39903148 - Documentation tags fixes

• PR #39883149 - Adding missing solution folder for format module test

• PR #39873150 - Move runtime-dependent functions out of command line handling

• PR #39863151 - Fix CMake configuration with PAPI on

• PR #39853152 - Module timing
3130 https://github.com/STEllAR-GROUP/hpx/pull/4013
3131 https://github.com/STEllAR-GROUP/hpx/pull/4012
3132 https://github.com/STEllAR-GROUP/hpx/pull/4011
3133 https://github.com/STEllAR-GROUP/hpx/pull/4010
3134 https://github.com/STEllAR-GROUP/hpx/pull/4009
3135 https://github.com/STEllAR-GROUP/hpx/pull/4008
3136 https://github.com/STEllAR-GROUP/hpx/pull/4007
3137 https://github.com/STEllAR-GROUP/hpx/pull/4006
3138 https://github.com/STEllAR-GROUP/hpx/pull/4004
3139 https://github.com/STEllAR-GROUP/hpx/pull/4003
3140 https://github.com/STEllAR-GROUP/hpx/pull/4001
3141 https://github.com/STEllAR-GROUP/hpx/pull/4000
3142 https://github.com/STEllAR-GROUP/hpx/pull/3999
3143 https://github.com/STEllAR-GROUP/hpx/pull/3998
3144 https://github.com/STEllAR-GROUP/hpx/pull/3997
3145 https://github.com/STEllAR-GROUP/hpx/pull/3996
3146 https://github.com/STEllAR-GROUP/hpx/pull/3993
3147 https://github.com/STEllAR-GROUP/hpx/pull/3991
3148 https://github.com/STEllAR-GROUP/hpx/pull/3990
3149 https://github.com/STEllAR-GROUP/hpx/pull/3988
3150 https://github.com/STEllAR-GROUP/hpx/pull/3987
3151 https://github.com/STEllAR-GROUP/hpx/pull/3986
3152 https://github.com/STEllAR-GROUP/hpx/pull/3985

1670 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4013
https://github.com/STEllAR-GROUP/hpx/pull/4012
https://github.com/STEllAR-GROUP/hpx/pull/4011
https://github.com/STEllAR-GROUP/hpx/pull/4010
https://github.com/STEllAR-GROUP/hpx/pull/4009
https://github.com/STEllAR-GROUP/hpx/pull/4008
https://github.com/STEllAR-GROUP/hpx/pull/4007
https://github.com/STEllAR-GROUP/hpx/pull/4006
https://github.com/STEllAR-GROUP/hpx/pull/4004
https://github.com/STEllAR-GROUP/hpx/pull/4003
https://github.com/STEllAR-GROUP/hpx/pull/4001
https://github.com/STEllAR-GROUP/hpx/pull/4000
https://github.com/STEllAR-GROUP/hpx/pull/3999
https://github.com/STEllAR-GROUP/hpx/pull/3998
https://github.com/STEllAR-GROUP/hpx/pull/3997
https://github.com/STEllAR-GROUP/hpx/pull/3996
https://github.com/STEllAR-GROUP/hpx/pull/3993
https://github.com/STEllAR-GROUP/hpx/pull/3991
https://github.com/STEllAR-GROUP/hpx/pull/3990
https://github.com/STEllAR-GROUP/hpx/pull/3988
https://github.com/STEllAR-GROUP/hpx/pull/3987
https://github.com/STEllAR-GROUP/hpx/pull/3986
https://github.com/STEllAR-GROUP/hpx/pull/3985

HPX Documentation, master

• PR #39843153 - Fix default behaviour of paths in add_hpx_component

• PR #39823154 - Parallel executors module

• PR #39813155 - Segmented algorithms module

• PR #39803156 - Module logging

• PR #39793157 - Module util

• PR #39783158 - Fix clang-tidy step on CircleCI

• PR #39773159 - Fixing solution folders for moved components

• PR #39763160 - Module format

• PR #39753161 - Enable deprecation warnings on CircleCI

• PR #39743162 - Fix typos in documentation

• PR #39733163 - Fix compilation with GCC 9

• PR #39723164 - Add condition to clone apex + use of new cmake var APEX_ROOT

• PR #39713165 - Add testing module

• PR #39683166 - Remove unneeded file in hardware module

• PR #39673167 - Remove leftover PIC settings from main CMakeLists.txt

• PR #39663168 - Add missing export option in add_hpx_module

• PR #39653169 - Change current_function_helper back to non-constexpr

• PR #39643170 - Fixing merge problems

• PR #39623171 - Add a trait for std::array for unwrapping

• PR #39613172 - Making hpx::util::tuple<Ts...> and std::tuple<Ts...> convertible

• PR #39603173 - fix compilation with CUDA 10 and GCC 6

• PR #39593174 - Fix C++11 incompatibility

• PR #39573175 - Algorithms module
3153 https://github.com/STEllAR-GROUP/hpx/pull/3984
3154 https://github.com/STEllAR-GROUP/hpx/pull/3982
3155 https://github.com/STEllAR-GROUP/hpx/pull/3981
3156 https://github.com/STEllAR-GROUP/hpx/pull/3980
3157 https://github.com/STEllAR-GROUP/hpx/pull/3979
3158 https://github.com/STEllAR-GROUP/hpx/pull/3978
3159 https://github.com/STEllAR-GROUP/hpx/pull/3977
3160 https://github.com/STEllAR-GROUP/hpx/pull/3976
3161 https://github.com/STEllAR-GROUP/hpx/pull/3975
3162 https://github.com/STEllAR-GROUP/hpx/pull/3974
3163 https://github.com/STEllAR-GROUP/hpx/pull/3973
3164 https://github.com/STEllAR-GROUP/hpx/pull/3972
3165 https://github.com/STEllAR-GROUP/hpx/pull/3971
3166 https://github.com/STEllAR-GROUP/hpx/pull/3968
3167 https://github.com/STEllAR-GROUP/hpx/pull/3967
3168 https://github.com/STEllAR-GROUP/hpx/pull/3966
3169 https://github.com/STEllAR-GROUP/hpx/pull/3965
3170 https://github.com/STEllAR-GROUP/hpx/pull/3964
3171 https://github.com/STEllAR-GROUP/hpx/pull/3962
3172 https://github.com/STEllAR-GROUP/hpx/pull/3961
3173 https://github.com/STEllAR-GROUP/hpx/pull/3960
3174 https://github.com/STEllAR-GROUP/hpx/pull/3959
3175 https://github.com/STEllAR-GROUP/hpx/pull/3957

2.10. Releases 1671

https://github.com/STEllAR-GROUP/hpx/pull/3984
https://github.com/STEllAR-GROUP/hpx/pull/3982
https://github.com/STEllAR-GROUP/hpx/pull/3981
https://github.com/STEllAR-GROUP/hpx/pull/3980
https://github.com/STEllAR-GROUP/hpx/pull/3979
https://github.com/STEllAR-GROUP/hpx/pull/3978
https://github.com/STEllAR-GROUP/hpx/pull/3977
https://github.com/STEllAR-GROUP/hpx/pull/3976
https://github.com/STEllAR-GROUP/hpx/pull/3975
https://github.com/STEllAR-GROUP/hpx/pull/3974
https://github.com/STEllAR-GROUP/hpx/pull/3973
https://github.com/STEllAR-GROUP/hpx/pull/3972
https://github.com/STEllAR-GROUP/hpx/pull/3971
https://github.com/STEllAR-GROUP/hpx/pull/3968
https://github.com/STEllAR-GROUP/hpx/pull/3967
https://github.com/STEllAR-GROUP/hpx/pull/3966
https://github.com/STEllAR-GROUP/hpx/pull/3965
https://github.com/STEllAR-GROUP/hpx/pull/3964
https://github.com/STEllAR-GROUP/hpx/pull/3962
https://github.com/STEllAR-GROUP/hpx/pull/3961
https://github.com/STEllAR-GROUP/hpx/pull/3960
https://github.com/STEllAR-GROUP/hpx/pull/3959
https://github.com/STEllAR-GROUP/hpx/pull/3957

HPX Documentation, master

• PR #39563176 - [HPX_AddModule] Fix lower name var to upper

• PR #39553177 - Fix CMake configuration with examples off and tests on

• PR #39543178 - Move components to separate subdirectory in root of repository

• PR #39523179 - Update papi.cpp

• PR #39513180 - Exclude modules header tests from all target

• PR #39503181 - Adding all_reduce facility to collectives module

• PR #39493182 - This adds a configuration file that will cause for stale issues to be automatically closed

• PR #39483183 - Fixing ALPS environment

• PR #39473184 - Add major compiler version check for building hpx as a binary package

• PR #39463185 - [Modules] Move the location of the generated headers

• PR #39453186 - Simplify tests and examples cmake

• PR #39433187 - Remove example module

• PR #39423188 - Add NOEXPORT option to add_hpx_{component,library}

• PR #39383189 - Use https for CDash submissions

• PR #39373190 - Add HPX_WITH_BUILD_BINARY_PACKAGE to the compiler check (refs #3935)

• PR #39363191 - Fixing installation of binaries on windows

• PR #39343192 - Add set function for sliding_semaphore max_difference

• PR #39333193 - Remove cudadevrt from compile/link flags as it breaks downstream projects

• PR #39323194 - Fixing 3929

• PR #39313195 - Adding all_to_all

• PR #39303196 - Add test demonstrating the use of broadcast with component actions

• PR #39283197 - fixed number of tasks and number of threads for heterogeneous slurm environments

• PR #39273198 - Moving Cache module’s tests into separate solution folder
3176 https://github.com/STEllAR-GROUP/hpx/pull/3956
3177 https://github.com/STEllAR-GROUP/hpx/pull/3955
3178 https://github.com/STEllAR-GROUP/hpx/pull/3954
3179 https://github.com/STEllAR-GROUP/hpx/pull/3952
3180 https://github.com/STEllAR-GROUP/hpx/pull/3951
3181 https://github.com/STEllAR-GROUP/hpx/pull/3950
3182 https://github.com/STEllAR-GROUP/hpx/pull/3949
3183 https://github.com/STEllAR-GROUP/hpx/pull/3948
3184 https://github.com/STEllAR-GROUP/hpx/pull/3947
3185 https://github.com/STEllAR-GROUP/hpx/pull/3946
3186 https://github.com/STEllAR-GROUP/hpx/pull/3945
3187 https://github.com/STEllAR-GROUP/hpx/pull/3943
3188 https://github.com/STEllAR-GROUP/hpx/pull/3942
3189 https://github.com/STEllAR-GROUP/hpx/pull/3938
3190 https://github.com/STEllAR-GROUP/hpx/pull/3937
3191 https://github.com/STEllAR-GROUP/hpx/pull/3936
3192 https://github.com/STEllAR-GROUP/hpx/pull/3934
3193 https://github.com/STEllAR-GROUP/hpx/pull/3933
3194 https://github.com/STEllAR-GROUP/hpx/pull/3932
3195 https://github.com/STEllAR-GROUP/hpx/pull/3931
3196 https://github.com/STEllAR-GROUP/hpx/pull/3930
3197 https://github.com/STEllAR-GROUP/hpx/pull/3928
3198 https://github.com/STEllAR-GROUP/hpx/pull/3927

1672 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3956
https://github.com/STEllAR-GROUP/hpx/pull/3955
https://github.com/STEllAR-GROUP/hpx/pull/3954
https://github.com/STEllAR-GROUP/hpx/pull/3952
https://github.com/STEllAR-GROUP/hpx/pull/3951
https://github.com/STEllAR-GROUP/hpx/pull/3950
https://github.com/STEllAR-GROUP/hpx/pull/3949
https://github.com/STEllAR-GROUP/hpx/pull/3948
https://github.com/STEllAR-GROUP/hpx/pull/3947
https://github.com/STEllAR-GROUP/hpx/pull/3946
https://github.com/STEllAR-GROUP/hpx/pull/3945
https://github.com/STEllAR-GROUP/hpx/pull/3943
https://github.com/STEllAR-GROUP/hpx/pull/3942
https://github.com/STEllAR-GROUP/hpx/pull/3938
https://github.com/STEllAR-GROUP/hpx/pull/3937
https://github.com/STEllAR-GROUP/hpx/pull/3936
https://github.com/STEllAR-GROUP/hpx/pull/3934
https://github.com/STEllAR-GROUP/hpx/pull/3933
https://github.com/STEllAR-GROUP/hpx/pull/3932
https://github.com/STEllAR-GROUP/hpx/pull/3931
https://github.com/STEllAR-GROUP/hpx/pull/3930
https://github.com/STEllAR-GROUP/hpx/pull/3928
https://github.com/STEllAR-GROUP/hpx/pull/3927

HPX Documentation, master

• PR #39263199 - Move unit tests to cache module

• PR #39253200 - Move version check to config module

• PR #39243201 - Add schedule hint executor parameters

• PR #39233202 - Allow aligning objects bigger than the cache line size

• PR #39223203 - Add Windows builds with Travis CI

• PR #39213204 - Add ccls cache directory to gitignore

• PR #39203205 - Fix git_external fetching of tags

• PR #39053206 - Correct rostambod url. Fix typo in doc

• PR #39043207 - Fix bug in context_base.hpp

• PR #39033208 - Adding new performance counters

• PR #39023209 - Add add_hpx_module function

• PR #39013210 - Factoring out container remapping into a separate trait

• PR #39003211 - Making sure errors during command line processing are properly reported and will not cause
assertions

• PR #38993212 - Remove old compatibility bases from make_action

• PR #38983213 - Make parameter size be of type size_t

• PR #38973214 - Making sure all tests are disabled if HPX_WITH_TESTS=OFF

• PR #38953215 - Add documentation for annotated_function

• PR #38943216 - Working around VS2019 problem with make_action

• PR #38923217 - Avoid MSVC compatibility warning in internal allocator

• PR #38913218 - Removal of the default intel config include

• PR #38883219 - Fix async_customization dataflow example and Clarify what’s being tested

• PR #38873220 - Add Doxygen documentation

• PR #38823221 - Minor docs fixes
3199 https://github.com/STEllAR-GROUP/hpx/pull/3926
3200 https://github.com/STEllAR-GROUP/hpx/pull/3925
3201 https://github.com/STEllAR-GROUP/hpx/pull/3924
3202 https://github.com/STEllAR-GROUP/hpx/pull/3923
3203 https://github.com/STEllAR-GROUP/hpx/pull/3922
3204 https://github.com/STEllAR-GROUP/hpx/pull/3921
3205 https://github.com/STEllAR-GROUP/hpx/pull/3920
3206 https://github.com/STEllAR-GROUP/hpx/pull/3905
3207 https://github.com/STEllAR-GROUP/hpx/pull/3904
3208 https://github.com/STEllAR-GROUP/hpx/pull/3903
3209 https://github.com/STEllAR-GROUP/hpx/pull/3902
3210 https://github.com/STEllAR-GROUP/hpx/pull/3901
3211 https://github.com/STEllAR-GROUP/hpx/pull/3900
3212 https://github.com/STEllAR-GROUP/hpx/pull/3899
3213 https://github.com/STEllAR-GROUP/hpx/pull/3898
3214 https://github.com/STEllAR-GROUP/hpx/pull/3897
3215 https://github.com/STEllAR-GROUP/hpx/pull/3895
3216 https://github.com/STEllAR-GROUP/hpx/pull/3894
3217 https://github.com/STEllAR-GROUP/hpx/pull/3892
3218 https://github.com/STEllAR-GROUP/hpx/pull/3891
3219 https://github.com/STEllAR-GROUP/hpx/pull/3888
3220 https://github.com/STEllAR-GROUP/hpx/pull/3887
3221 https://github.com/STEllAR-GROUP/hpx/pull/3882

2.10. Releases 1673

https://github.com/STEllAR-GROUP/hpx/pull/3926
https://github.com/STEllAR-GROUP/hpx/pull/3925
https://github.com/STEllAR-GROUP/hpx/pull/3924
https://github.com/STEllAR-GROUP/hpx/pull/3923
https://github.com/STEllAR-GROUP/hpx/pull/3922
https://github.com/STEllAR-GROUP/hpx/pull/3921
https://github.com/STEllAR-GROUP/hpx/pull/3920
https://github.com/STEllAR-GROUP/hpx/pull/3905
https://github.com/STEllAR-GROUP/hpx/pull/3904
https://github.com/STEllAR-GROUP/hpx/pull/3903
https://github.com/STEllAR-GROUP/hpx/pull/3902
https://github.com/STEllAR-GROUP/hpx/pull/3901
https://github.com/STEllAR-GROUP/hpx/pull/3900
https://github.com/STEllAR-GROUP/hpx/pull/3899
https://github.com/STEllAR-GROUP/hpx/pull/3898
https://github.com/STEllAR-GROUP/hpx/pull/3897
https://github.com/STEllAR-GROUP/hpx/pull/3895
https://github.com/STEllAR-GROUP/hpx/pull/3894
https://github.com/STEllAR-GROUP/hpx/pull/3892
https://github.com/STEllAR-GROUP/hpx/pull/3891
https://github.com/STEllAR-GROUP/hpx/pull/3888
https://github.com/STEllAR-GROUP/hpx/pull/3887
https://github.com/STEllAR-GROUP/hpx/pull/3882

HPX Documentation, master

• PR #38803222 - Updating APEX version tag

• PR #38783223 - Making sure symbols are properly exported from modules (needed for Windows/MacOS)

• PR #38773224 - Documentation

• PR #38763225 - Module hardware

• PR #38753226 - Converted typedefs in actions submodule to using directives

• PR #38743227 - Allow one to suppress target keywords in hpx_setup_target for backwards compatibility

• PR #38733228 - Add scripts to create releases and generate lists of PRs and issues

• PR #38723229 - Fix latest HTML docs location

• PR #38703230 - Module cache

• PR #38693231 - Post 1.3.0 version bumps

• PR #38683232 - Replace the macro HPX_ASSERT by HPX_TEST in tests

• PR #38453233 - Assertion module

• PR #38393234 - Make tuple serialization non-intrusive

• PR #38323235 - Config module

• PR #37993236 - Remove compat namespace and its contents

• PR #37013237 - MoodyCamel lockfree

• PR #34963238 - Disabling MPI’s (deprecated) C++ interface

• PR #31923239 - Move type info into hpx::debug namespace and add print helper functions

• PR #31593240 - Support Checkpointing Components
3222 https://github.com/STEllAR-GROUP/hpx/pull/3880
3223 https://github.com/STEllAR-GROUP/hpx/pull/3878
3224 https://github.com/STEllAR-GROUP/hpx/pull/3877
3225 https://github.com/STEllAR-GROUP/hpx/pull/3876
3226 https://github.com/STEllAR-GROUP/hpx/pull/3875
3227 https://github.com/STEllAR-GROUP/hpx/pull/3874
3228 https://github.com/STEllAR-GROUP/hpx/pull/3873
3229 https://github.com/STEllAR-GROUP/hpx/pull/3872
3230 https://github.com/STEllAR-GROUP/hpx/pull/3870
3231 https://github.com/STEllAR-GROUP/hpx/pull/3869
3232 https://github.com/STEllAR-GROUP/hpx/pull/3868
3233 https://github.com/STEllAR-GROUP/hpx/pull/3845
3234 https://github.com/STEllAR-GROUP/hpx/pull/3839
3235 https://github.com/STEllAR-GROUP/hpx/pull/3832
3236 https://github.com/STEllAR-GROUP/hpx/pull/3799
3237 https://github.com/STEllAR-GROUP/hpx/pull/3701
3238 https://github.com/STEllAR-GROUP/hpx/pull/3496
3239 https://github.com/STEllAR-GROUP/hpx/pull/3192
3240 https://github.com/STEllAR-GROUP/hpx/pull/3159

1674 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3880
https://github.com/STEllAR-GROUP/hpx/pull/3878
https://github.com/STEllAR-GROUP/hpx/pull/3877
https://github.com/STEllAR-GROUP/hpx/pull/3876
https://github.com/STEllAR-GROUP/hpx/pull/3875
https://github.com/STEllAR-GROUP/hpx/pull/3874
https://github.com/STEllAR-GROUP/hpx/pull/3873
https://github.com/STEllAR-GROUP/hpx/pull/3872
https://github.com/STEllAR-GROUP/hpx/pull/3870
https://github.com/STEllAR-GROUP/hpx/pull/3869
https://github.com/STEllAR-GROUP/hpx/pull/3868
https://github.com/STEllAR-GROUP/hpx/pull/3845
https://github.com/STEllAR-GROUP/hpx/pull/3839
https://github.com/STEllAR-GROUP/hpx/pull/3832
https://github.com/STEllAR-GROUP/hpx/pull/3799
https://github.com/STEllAR-GROUP/hpx/pull/3701
https://github.com/STEllAR-GROUP/hpx/pull/3496
https://github.com/STEllAR-GROUP/hpx/pull/3192
https://github.com/STEllAR-GROUP/hpx/pull/3159

HPX Documentation, master

HPX V1.3.0 (May 23, 2019)

General changes

• Performance improvements: the schedulers have significantly reduced overheads from removing false sharing
and the parallel executor has been updated to create fewer futures.

• HPX now defaults to not turning on networking when running on one locality. This means that you can run
multiple instances on the same system without adding command line options.

• Multiple issues reported by Clang sanitizers have been fixed.

• We have added (back) single-page HTML documentation and PDF documentation.

• We have started modularizing the HPX library. This is useful both for developers and users. In the long term
users will be able to consume only parts of the HPX libraries if they do not require all the functionality that HPX
currently provides.

• We have added an implementation of function_ref.

• The barrier and latch classes have gained a few additional member functions.

Breaking changes

• Executable and library targets are now created without the _exe and _lib suffix respectively. For example, the
target 1d_stencil_1_exe is now simply called 1d_stencil_1.

• We have removed the following deprecated functionality: queue, scoped_unlock, and support for input itera-
tors in algorithms.

• We have turned off the compatibility layer for unwrapped by default. The functionality will be removed in the
next release. The option can still be turned on using the CMake3241 option HPX_WITH_UNWRAPPED_SUPPORT.
Likewise, inclusive_scan compatibility overloads have been turned off by default. They can still be turned
on with HPX_WITH_INCLUSIVE_SCAN_COMPATIBILITY.

• The minimum compiler and dependency versions have been updated. We now support GCC from version 5
onwards, Clang from version 4 onwards, and Boost from version 1.61.0 onwards.

• The headers for preprocessor macros have moved as a result of the functionality being moved to a separate
module. The old headers are deprecated and will be removed in a future version of HPX. You can turn off the
warnings by setting HPX_PREPROCESSOR_WITH_DEPRECATION_WARNINGS=OFF or turn off the compatibility
headers completely with HPX_PREPROCESSOR_WITH_COMPATIBILITY_HEADERS=OFF.

Closed issues

• Issue #38633242 - shouldn’t “-faligned-new” be a usage requirement?

• Issue #38413243 - Build error with msvc 19 caused by SFINAE and C++17

• Issue #38363244 - master branch does not build with idle rate counters enabled

• Issue #38193245 - Add debug suffix to modules built in debug mode
3241 https://www.cmake.org
3242 https://github.com/STEllAR-GROUP/hpx/issues/3863
3243 https://github.com/STEllAR-GROUP/hpx/issues/3841
3244 https://github.com/STEllAR-GROUP/hpx/issues/3836
3245 https://github.com/STEllAR-GROUP/hpx/issues/3819

2.10. Releases 1675

https://www.cmake.org
https://github.com/STEllAR-GROUP/hpx/issues/3863
https://github.com/STEllAR-GROUP/hpx/issues/3841
https://github.com/STEllAR-GROUP/hpx/issues/3836
https://github.com/STEllAR-GROUP/hpx/issues/3819

HPX Documentation, master

• Issue #38173246 - HPX_INCLUDE_DIRS contains non-existent directory

• Issue #38103247 - Source groups are not created for files in modules

• Issue #38053248 - HPX won’t compile with -DHPX_WITH_APEX=TRUE

• Issue #37923249 - Barrier Hangs When Locality Zero not included

• Issue #37783250 - Replace throw() with noexcept

• Issue #37633251 - configurable sort limit per task

• Issue #37583252 - dataflow doesn’t convert future<future<T>> to future<T>

• Issue #37573253 - When compiling undefined reference to hpx::hpx_check_version_1_2 HPX V1.2.1,
Ubuntu 18.04.01 Server Edition

• Issue #37533254 - --hpx:list-counters=full crashes

• Issue #37463255 - Detection of MPI with pmix

• Issue #37443256 - Separate spinlock from same cacheline as internal data for all LCOs

• Issue #37433257 - hpxcxx’s shebang doesn’t specify the python version

• Issue #37383258 - Unable to debug parcelport on a single node

• Issue #37353259 - Latest master: Can’t compile in MSVC

• Issue #37313260 - util::bound seems broken on Clang with older libstdc++

• Issue #37243261 - Allow to pre-set command line options through environment

• Issue #37233262 - examples/resource_partitioner build issue on master branch / ubuntu 18

• Issue #37213263 - faced a building error

• Issue #37203264 - Hello World example fails to link

• Issue #37193265 - pkg-config produces invalid output: -l-pthread

• Issue #37183266 - Please make the python executable configurable through cmake

• Issue #37173267 - interested to contribute to the organisation

• Issue #36993268 - Remove ‘HPX runtime’ executable
3246 https://github.com/STEllAR-GROUP/hpx/issues/3817
3247 https://github.com/STEllAR-GROUP/hpx/issues/3810
3248 https://github.com/STEllAR-GROUP/hpx/issues/3805
3249 https://github.com/STEllAR-GROUP/hpx/issues/3792
3250 https://github.com/STEllAR-GROUP/hpx/issues/3778
3251 https://github.com/STEllAR-GROUP/hpx/issues/3763
3252 https://github.com/STEllAR-GROUP/hpx/issues/3758
3253 https://github.com/STEllAR-GROUP/hpx/issues/3757
3254 https://github.com/STEllAR-GROUP/hpx/issues/3753
3255 https://github.com/STEllAR-GROUP/hpx/issues/3746
3256 https://github.com/STEllAR-GROUP/hpx/issues/3744
3257 https://github.com/STEllAR-GROUP/hpx/issues/3743
3258 https://github.com/STEllAR-GROUP/hpx/issues/3738
3259 https://github.com/STEllAR-GROUP/hpx/issues/3735
3260 https://github.com/STEllAR-GROUP/hpx/issues/3731
3261 https://github.com/STEllAR-GROUP/hpx/issues/3724
3262 https://github.com/STEllAR-GROUP/hpx/issues/3723
3263 https://github.com/STEllAR-GROUP/hpx/issues/3721
3264 https://github.com/STEllAR-GROUP/hpx/issues/3720
3265 https://github.com/STEllAR-GROUP/hpx/issues/3719
3266 https://github.com/STEllAR-GROUP/hpx/issues/3718
3267 https://github.com/STEllAR-GROUP/hpx/issues/3717
3268 https://github.com/STEllAR-GROUP/hpx/issues/3699

1676 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3817
https://github.com/STEllAR-GROUP/hpx/issues/3810
https://github.com/STEllAR-GROUP/hpx/issues/3805
https://github.com/STEllAR-GROUP/hpx/issues/3792
https://github.com/STEllAR-GROUP/hpx/issues/3778
https://github.com/STEllAR-GROUP/hpx/issues/3763
https://github.com/STEllAR-GROUP/hpx/issues/3758
https://github.com/STEllAR-GROUP/hpx/issues/3757
https://github.com/STEllAR-GROUP/hpx/issues/3753
https://github.com/STEllAR-GROUP/hpx/issues/3746
https://github.com/STEllAR-GROUP/hpx/issues/3744
https://github.com/STEllAR-GROUP/hpx/issues/3743
https://github.com/STEllAR-GROUP/hpx/issues/3738
https://github.com/STEllAR-GROUP/hpx/issues/3735
https://github.com/STEllAR-GROUP/hpx/issues/3731
https://github.com/STEllAR-GROUP/hpx/issues/3724
https://github.com/STEllAR-GROUP/hpx/issues/3723
https://github.com/STEllAR-GROUP/hpx/issues/3721
https://github.com/STEllAR-GROUP/hpx/issues/3720
https://github.com/STEllAR-GROUP/hpx/issues/3719
https://github.com/STEllAR-GROUP/hpx/issues/3718
https://github.com/STEllAR-GROUP/hpx/issues/3717
https://github.com/STEllAR-GROUP/hpx/issues/3699

HPX Documentation, master

• Issue #36983269 - Ignore all locks while handling asserts

• Issue #36893270 - Incorrect and inconsistent website structure http://stellar.cct.lsu.edu/downloads/.

• Issue #36813271 - Broken links on http://stellar.cct.lsu.edu/2015/05/hpx-archives-now-on-gmane/

• Issue #36763272 - HPX master built from source, cmake fails to link main.cpp example in docs

• Issue #36733273 - HPX build fails with std::atomic missing error

• Issue #36703274 - Generate PDF again from documentation (with Sphinx)

• Issue #36433275 - Warnings when compiling HPX 1.2.1 with gcc 9

• Issue #36413276 - Trouble with using ranges-v3 and hpx::parallel::reduce

• Issue #36393277 - util::unwrapping does not work well with member functions

• Issue #36343278 - The build fails if shared_future<>::then is called with a thread executor

• Issue #36223279 - VTune Amplifier 2019 not working with use_itt_notify=1

• Issue #36163280 - HPX Fails to Build with CUDA 10

• Issue #36123281 - False sharing of scheduling counters

• Issue #36093282 - executor_parameters timeout with gcc <= 7 and Debug mode

• Issue #36013283 - Misleading error message on power pc for rdtsc and rdtscp

• Issue #35983284 - Build of some examples fails when using Vc

• Issue #35943285 - Error: The number of OS threads requested (20) does not match the number of threads to bind
(12): HPX(bad_parameter)

• Issue #35923286 - Undefined Reference Error

• Issue #35893287 - include could not find load file: HPX_Utils.cmake

• Issue #35873288 - HPX won’t compile on POWER8 with Clang 7

• Issue #35833289 - Fedora and openSUSE instructions missing on “Distribution Packages” page

• Issue #35783290 - Build error when configuring with HPX_HAVE_ALGORITHM_INPUT_ITERATOR_SUPPORT=ON

• Issue #35753291 - Merge openSUSE reproducible patch
3269 https://github.com/STEllAR-GROUP/hpx/issues/3698
3270 https://github.com/STEllAR-GROUP/hpx/issues/3689
3271 https://github.com/STEllAR-GROUP/hpx/issues/3681
3272 https://github.com/STEllAR-GROUP/hpx/issues/3676
3273 https://github.com/STEllAR-GROUP/hpx/issues/3673
3274 https://github.com/STEllAR-GROUP/hpx/issues/3670
3275 https://github.com/STEllAR-GROUP/hpx/issues/3643
3276 https://github.com/STEllAR-GROUP/hpx/issues/3641
3277 https://github.com/STEllAR-GROUP/hpx/issues/3639
3278 https://github.com/STEllAR-GROUP/hpx/issues/3634
3279 https://github.com/STEllAR-GROUP/hpx/issues/3622
3280 https://github.com/STEllAR-GROUP/hpx/issues/3616
3281 https://github.com/STEllAR-GROUP/hpx/issues/3612
3282 https://github.com/STEllAR-GROUP/hpx/issues/3609
3283 https://github.com/STEllAR-GROUP/hpx/issues/3601
3284 https://github.com/STEllAR-GROUP/hpx/issues/3598
3285 https://github.com/STEllAR-GROUP/hpx/issues/3594
3286 https://github.com/STEllAR-GROUP/hpx/issues/3592
3287 https://github.com/STEllAR-GROUP/hpx/issues/3589
3288 https://github.com/STEllAR-GROUP/hpx/issues/3587
3289 https://github.com/STEllAR-GROUP/hpx/issues/3583
3290 https://github.com/STEllAR-GROUP/hpx/issues/3578
3291 https://github.com/STEllAR-GROUP/hpx/issues/3575

2.10. Releases 1677

https://github.com/STEllAR-GROUP/hpx/issues/3698
https://github.com/STEllAR-GROUP/hpx/issues/3689
http://stellar.cct.lsu.edu/downloads/
https://github.com/STEllAR-GROUP/hpx/issues/3681
http://stellar.cct.lsu.edu/2015/05/hpx-archives-now-on-gmane/
https://github.com/STEllAR-GROUP/hpx/issues/3676
https://github.com/STEllAR-GROUP/hpx/issues/3673
https://github.com/STEllAR-GROUP/hpx/issues/3670
https://github.com/STEllAR-GROUP/hpx/issues/3643
https://github.com/STEllAR-GROUP/hpx/issues/3641
https://github.com/STEllAR-GROUP/hpx/issues/3639
https://github.com/STEllAR-GROUP/hpx/issues/3634
https://github.com/STEllAR-GROUP/hpx/issues/3622
https://github.com/STEllAR-GROUP/hpx/issues/3616
https://github.com/STEllAR-GROUP/hpx/issues/3612
https://github.com/STEllAR-GROUP/hpx/issues/3609
https://github.com/STEllAR-GROUP/hpx/issues/3601
https://github.com/STEllAR-GROUP/hpx/issues/3598
https://github.com/STEllAR-GROUP/hpx/issues/3594
https://github.com/STEllAR-GROUP/hpx/issues/3592
https://github.com/STEllAR-GROUP/hpx/issues/3589
https://github.com/STEllAR-GROUP/hpx/issues/3587
https://github.com/STEllAR-GROUP/hpx/issues/3583
https://github.com/STEllAR-GROUP/hpx/issues/3578
https://github.com/STEllAR-GROUP/hpx/issues/3575

HPX Documentation, master

• Issue #35703292 - Update HPX to work with the latest VC version

• Issue #35673293 - Build succeed and make failed for hpx:cout

• Issue #35653294 - Polymorphic simple component destructor not getting called

• Issue #35593295 - 1.2.0 is missing from download page

• Issue #35543296 - Clang 6.0 warning of hiding overloaded virtual function

• Issue #35103297 - Build on ppc64 fails

• Issue #34823298 - Improve error message when HPX_WITH_MAX_CPU_COUNT is too low for given system

• Issue #34533299 - Two HPX applications can’t run at the same time.

• Issue #34523300 - Scaling issue on the change to 2 NUMA domains

• Issue #34423301 - HPX set_difference, set_intersection failure cases

• Issue #34373302 - Ensure parent_task pointer when child task is created and child/parent are on same locality

• Issue #32553303 - Suspension with lock for --hpx:list-component-types

• Issue #30343304 - Use C++17 structured bindings for serialization

• Issue #29993305 - Change thread scheduling use of size_t for thread indexing

Closed pull requests

• PR #38653306 - adds hpx_target_compile_option_if_available

• PR #38643307 - Helper functions that are useful in numa binding and testing of allocator

• PR #38623308 - Temporary fix to local_dataflow_boost_small_vector test

• PR #38603309 - Add cache line padding to intermediate results in for loop reduction

• PR #38593310 - Remove HPX_TLL_PUBLIC and HPX_TLL_PRIVATE from CMake files

• PR #38583311 - Add compile flags and definitions to modules

• PR #38513312 - update hpxmp release tag to v0.2.0

• PR #38493313 - Correct BOOST_ROOT variable name in quick start guide
3292 https://github.com/STEllAR-GROUP/hpx/issues/3570
3293 https://github.com/STEllAR-GROUP/hpx/issues/3567
3294 https://github.com/STEllAR-GROUP/hpx/issues/3565
3295 https://github.com/STEllAR-GROUP/hpx/issues/3559
3296 https://github.com/STEllAR-GROUP/hpx/issues/3554
3297 https://github.com/STEllAR-GROUP/hpx/issues/3510
3298 https://github.com/STEllAR-GROUP/hpx/issues/3482
3299 https://github.com/STEllAR-GROUP/hpx/issues/3453
3300 https://github.com/STEllAR-GROUP/hpx/issues/3452
3301 https://github.com/STEllAR-GROUP/hpx/issues/3442
3302 https://github.com/STEllAR-GROUP/hpx/issues/3437
3303 https://github.com/STEllAR-GROUP/hpx/issues/3255
3304 https://github.com/STEllAR-GROUP/hpx/issues/3034
3305 https://github.com/STEllAR-GROUP/hpx/issues/2999
3306 https://github.com/STEllAR-GROUP/hpx/pull/3865
3307 https://github.com/STEllAR-GROUP/hpx/pull/3864
3308 https://github.com/STEllAR-GROUP/hpx/pull/3862
3309 https://github.com/STEllAR-GROUP/hpx/pull/3860
3310 https://github.com/STEllAR-GROUP/hpx/pull/3859
3311 https://github.com/STEllAR-GROUP/hpx/pull/3858
3312 https://github.com/STEllAR-GROUP/hpx/pull/3851
3313 https://github.com/STEllAR-GROUP/hpx/pull/3849

1678 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3570
https://github.com/STEllAR-GROUP/hpx/issues/3567
https://github.com/STEllAR-GROUP/hpx/issues/3565
https://github.com/STEllAR-GROUP/hpx/issues/3559
https://github.com/STEllAR-GROUP/hpx/issues/3554
https://github.com/STEllAR-GROUP/hpx/issues/3510
https://github.com/STEllAR-GROUP/hpx/issues/3482
https://github.com/STEllAR-GROUP/hpx/issues/3453
https://github.com/STEllAR-GROUP/hpx/issues/3452
https://github.com/STEllAR-GROUP/hpx/issues/3442
https://github.com/STEllAR-GROUP/hpx/issues/3437
https://github.com/STEllAR-GROUP/hpx/issues/3255
https://github.com/STEllAR-GROUP/hpx/issues/3034
https://github.com/STEllAR-GROUP/hpx/issues/2999
https://github.com/STEllAR-GROUP/hpx/pull/3865
https://github.com/STEllAR-GROUP/hpx/pull/3864
https://github.com/STEllAR-GROUP/hpx/pull/3862
https://github.com/STEllAR-GROUP/hpx/pull/3860
https://github.com/STEllAR-GROUP/hpx/pull/3859
https://github.com/STEllAR-GROUP/hpx/pull/3858
https://github.com/STEllAR-GROUP/hpx/pull/3851
https://github.com/STEllAR-GROUP/hpx/pull/3849

HPX Documentation, master

• PR #38473314 - Fix attach_debugger configuration option

• PR #38463315 - Add tests for libs header tests

• PR #38443316 - Fixing source_groups in preprocessor module to properly handle compatibility headers

• PR #38433317 - This fixes the launch_process/launched_process pair of tests

• PR #38423318 - Fix macro call with ITTNOTIFY enabled

• PR #38403319 - Fixing SLURM environment parsing

• PR #38373320 - Fixing misplaced #endif

• PR #38353321 - make all latch members protected for consistency

• PR #38343322 - Disable transpose_block_numa example on CircleCI

• PR #38333323 - make latch counter_ protected for deriving latch in hpxmp

• PR #38313324 - Fix CircleCI config for modules

• PR #38303325 - minor fix: option HPX_WITH_TEST was not working correctly

• PR #38283326 - Avoid for binaries that depend on HPX to directly link against internal modules

• PR #38273327 - Adding shortcut for hpx::get_ptr<>(sync, id) for a local, non-migratable objects

• PR #38263328 - Fix and update modules documentation

• PR #38253329 - Updating default APEX version to 2.1.3 with HPX

• PR #38233330 - Fix pkgconfig libs handling

• PR #38223331 - Change includes in hpx_wrap.cpp to more specific includes

• PR #38213332 - Disable barrier_3792 test when networking is disabled

• PR #38203333 - Assorted CMake fixes

• PR #38153334 - Removing left-over debug output

• PR #38143335 - Allow setting default scheduler mode via the configuration database

• PR #38133336 - Make the deprecation warnings issued by the old pp headers optional
3314 https://github.com/STEllAR-GROUP/hpx/pull/3847
3315 https://github.com/STEllAR-GROUP/hpx/pull/3846
3316 https://github.com/STEllAR-GROUP/hpx/pull/3844
3317 https://github.com/STEllAR-GROUP/hpx/pull/3843
3318 https://github.com/STEllAR-GROUP/hpx/pull/3842
3319 https://github.com/STEllAR-GROUP/hpx/pull/3840
3320 https://github.com/STEllAR-GROUP/hpx/pull/3837
3321 https://github.com/STEllAR-GROUP/hpx/pull/3835
3322 https://github.com/STEllAR-GROUP/hpx/pull/3834
3323 https://github.com/STEllAR-GROUP/hpx/pull/3833
3324 https://github.com/STEllAR-GROUP/hpx/pull/3831
3325 https://github.com/STEllAR-GROUP/hpx/pull/3830
3326 https://github.com/STEllAR-GROUP/hpx/pull/3828
3327 https://github.com/STEllAR-GROUP/hpx/pull/3827
3328 https://github.com/STEllAR-GROUP/hpx/pull/3826
3329 https://github.com/STEllAR-GROUP/hpx/pull/3825
3330 https://github.com/STEllAR-GROUP/hpx/pull/3823
3331 https://github.com/STEllAR-GROUP/hpx/pull/3822
3332 https://github.com/STEllAR-GROUP/hpx/pull/3821
3333 https://github.com/STEllAR-GROUP/hpx/pull/3820
3334 https://github.com/STEllAR-GROUP/hpx/pull/3815
3335 https://github.com/STEllAR-GROUP/hpx/pull/3814
3336 https://github.com/STEllAR-GROUP/hpx/pull/3813

2.10. Releases 1679

https://github.com/STEllAR-GROUP/hpx/pull/3847
https://github.com/STEllAR-GROUP/hpx/pull/3846
https://github.com/STEllAR-GROUP/hpx/pull/3844
https://github.com/STEllAR-GROUP/hpx/pull/3843
https://github.com/STEllAR-GROUP/hpx/pull/3842
https://github.com/STEllAR-GROUP/hpx/pull/3840
https://github.com/STEllAR-GROUP/hpx/pull/3837
https://github.com/STEllAR-GROUP/hpx/pull/3835
https://github.com/STEllAR-GROUP/hpx/pull/3834
https://github.com/STEllAR-GROUP/hpx/pull/3833
https://github.com/STEllAR-GROUP/hpx/pull/3831
https://github.com/STEllAR-GROUP/hpx/pull/3830
https://github.com/STEllAR-GROUP/hpx/pull/3828
https://github.com/STEllAR-GROUP/hpx/pull/3827
https://github.com/STEllAR-GROUP/hpx/pull/3826
https://github.com/STEllAR-GROUP/hpx/pull/3825
https://github.com/STEllAR-GROUP/hpx/pull/3823
https://github.com/STEllAR-GROUP/hpx/pull/3822
https://github.com/STEllAR-GROUP/hpx/pull/3821
https://github.com/STEllAR-GROUP/hpx/pull/3820
https://github.com/STEllAR-GROUP/hpx/pull/3815
https://github.com/STEllAR-GROUP/hpx/pull/3814
https://github.com/STEllAR-GROUP/hpx/pull/3813

HPX Documentation, master

• PR #38123337 - Windows requires to handle symlinks to directories differently from those linking files

• PR #38113338 - Clean up PP module and library skeleton

• PR #38063339 - Moving include path configuration to before APEX

• PR #38043340 - Fix latch

• PR #38033341 - Update hpxcxx to look at lib64 and use python3

• PR #38023342 - Numa binding allocator

• PR #38013343 - Remove duplicated includes

• PR #38003344 - Attempt to fix Posix context switching after lazy init changes

• PR #37983345 - count and count_if accepts different iterator types

• PR #37973346 - Adding a couple of override keywords to overloaded virtual functions

• PR #37963347 - Re-enable testing all schedulers in shutdown_suspended_test

• PR #37953348 - Change std::terminate to std::abort in SIGSEGV handler

• PR #37943349 - Fixing #3792

• PR #37933350 - Extending migrate_polymorphic_component unit test

• PR #37913351 - Change throw() to noexcept

• PR #37903352 - Remove deprecated options for 1.3.0 release

• PR #37893353 - Remove Boost filesystem compatibility header

• PR #37883354 - Disabled even more spots that should not execute if networking is disabled

• PR #37873355 - Bump minimal boost supported version to 1.61.0

• PR #37863356 - Bump minimum required versions for 1.3.0 release

• PR #37853357 - Explicitly set number of jobs for all ninja invocations on CircleCI

• PR #37843358 - Fix leak and address sanitizer problems

• PR #37833359 - Disabled even more spots that should not execute is networking is disabled
3337 https://github.com/STEllAR-GROUP/hpx/pull/3812
3338 https://github.com/STEllAR-GROUP/hpx/pull/3811
3339 https://github.com/STEllAR-GROUP/hpx/pull/3806
3340 https://github.com/STEllAR-GROUP/hpx/pull/3804
3341 https://github.com/STEllAR-GROUP/hpx/pull/3803
3342 https://github.com/STEllAR-GROUP/hpx/pull/3802
3343 https://github.com/STEllAR-GROUP/hpx/pull/3801
3344 https://github.com/STEllAR-GROUP/hpx/pull/3800
3345 https://github.com/STEllAR-GROUP/hpx/pull/3798
3346 https://github.com/STEllAR-GROUP/hpx/pull/3797
3347 https://github.com/STEllAR-GROUP/hpx/pull/3796
3348 https://github.com/STEllAR-GROUP/hpx/pull/3795
3349 https://github.com/STEllAR-GROUP/hpx/pull/3794
3350 https://github.com/STEllAR-GROUP/hpx/pull/3793
3351 https://github.com/STEllAR-GROUP/hpx/pull/3791
3352 https://github.com/STEllAR-GROUP/hpx/pull/3790
3353 https://github.com/STEllAR-GROUP/hpx/pull/3789
3354 https://github.com/STEllAR-GROUP/hpx/pull/3788
3355 https://github.com/STEllAR-GROUP/hpx/pull/3787
3356 https://github.com/STEllAR-GROUP/hpx/pull/3786
3357 https://github.com/STEllAR-GROUP/hpx/pull/3785
3358 https://github.com/STEllAR-GROUP/hpx/pull/3784
3359 https://github.com/STEllAR-GROUP/hpx/pull/3783

1680 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3812
https://github.com/STEllAR-GROUP/hpx/pull/3811
https://github.com/STEllAR-GROUP/hpx/pull/3806
https://github.com/STEllAR-GROUP/hpx/pull/3804
https://github.com/STEllAR-GROUP/hpx/pull/3803
https://github.com/STEllAR-GROUP/hpx/pull/3802
https://github.com/STEllAR-GROUP/hpx/pull/3801
https://github.com/STEllAR-GROUP/hpx/pull/3800
https://github.com/STEllAR-GROUP/hpx/pull/3798
https://github.com/STEllAR-GROUP/hpx/pull/3797
https://github.com/STEllAR-GROUP/hpx/pull/3796
https://github.com/STEllAR-GROUP/hpx/pull/3795
https://github.com/STEllAR-GROUP/hpx/pull/3794
https://github.com/STEllAR-GROUP/hpx/pull/3793
https://github.com/STEllAR-GROUP/hpx/pull/3791
https://github.com/STEllAR-GROUP/hpx/pull/3790
https://github.com/STEllAR-GROUP/hpx/pull/3789
https://github.com/STEllAR-GROUP/hpx/pull/3788
https://github.com/STEllAR-GROUP/hpx/pull/3787
https://github.com/STEllAR-GROUP/hpx/pull/3786
https://github.com/STEllAR-GROUP/hpx/pull/3785
https://github.com/STEllAR-GROUP/hpx/pull/3784
https://github.com/STEllAR-GROUP/hpx/pull/3783

HPX Documentation, master

• PR #37823360 - Cherry-picked tuple and thread_init_data fixes from #3701

• PR #37813361 - Fix generic context coroutines after lazy stack allocation changes

• PR #37803362 - Rename hello world examples

• PR #37763363 - Sort algorithms now use the supplied chunker to determine the required minimal chunk size

• PR #37753364 - Disable Boost auto-linking

• PR #37743365 - Tag and push stable builds

• PR #37733366 - Enable migration of polymorphic components

• PR #37713367 - Fix link to stackoverflow in documentation

• PR #37703368 - Replacing constexpr if in brace-serialization code

• PR #37693369 - Fix SIGSEGV handler

• PR #37683370 - Adding flags to scheduler allowing to control thread stealing and idle back-off

• PR #37673371 - Fix help formatting in hpxrun.py

• PR #37653372 - Fix a couple of bugs in the thread test

• PR #37643373 - Workaround for SFINAE regression in msvc14.2

• PR #37623374 - Prevent MSVC from prematurely instantiating things

• PR #37613375 - Update python scripts to work with python 3

• PR #37603376 - Fix callable vtable for GCC4.9

• PR #37593377 - Rename PAGE_SIZE to PAGE_SIZE_ because AppleClang

• PR #37553378 - Making sure locks are not held during suspension

• PR #37543379 - Disable more code if networking is not available/not enabled

• PR #37523380 - Move util::format implementation to source file

• PR #37513381 - Fixing problems with lcos::barrier and iostreams

• PR #37503382 - Change error message to take into account use_guard_page setting
3360 https://github.com/STEllAR-GROUP/hpx/pull/3782
3361 https://github.com/STEllAR-GROUP/hpx/pull/3781
3362 https://github.com/STEllAR-GROUP/hpx/pull/3780
3363 https://github.com/STEllAR-GROUP/hpx/pull/3776
3364 https://github.com/STEllAR-GROUP/hpx/pull/3775
3365 https://github.com/STEllAR-GROUP/hpx/pull/3774
3366 https://github.com/STEllAR-GROUP/hpx/pull/3773
3367 https://github.com/STEllAR-GROUP/hpx/pull/3771
3368 https://github.com/STEllAR-GROUP/hpx/pull/3770
3369 https://github.com/STEllAR-GROUP/hpx/pull/3769
3370 https://github.com/STEllAR-GROUP/hpx/pull/3768
3371 https://github.com/STEllAR-GROUP/hpx/pull/3767
3372 https://github.com/STEllAR-GROUP/hpx/pull/3765
3373 https://github.com/STEllAR-GROUP/hpx/pull/3764
3374 https://github.com/STEllAR-GROUP/hpx/pull/3762
3375 https://github.com/STEllAR-GROUP/hpx/pull/3761
3376 https://github.com/STEllAR-GROUP/hpx/pull/3760
3377 https://github.com/STEllAR-GROUP/hpx/pull/3759
3378 https://github.com/STEllAR-GROUP/hpx/pull/3755
3379 https://github.com/STEllAR-GROUP/hpx/pull/3754
3380 https://github.com/STEllAR-GROUP/hpx/pull/3752
3381 https://github.com/STEllAR-GROUP/hpx/pull/3751
3382 https://github.com/STEllAR-GROUP/hpx/pull/3750

2.10. Releases 1681

https://github.com/STEllAR-GROUP/hpx/pull/3782
https://github.com/STEllAR-GROUP/hpx/pull/3781
https://github.com/STEllAR-GROUP/hpx/pull/3780
https://github.com/STEllAR-GROUP/hpx/pull/3776
https://github.com/STEllAR-GROUP/hpx/pull/3775
https://github.com/STEllAR-GROUP/hpx/pull/3774
https://github.com/STEllAR-GROUP/hpx/pull/3773
https://github.com/STEllAR-GROUP/hpx/pull/3771
https://github.com/STEllAR-GROUP/hpx/pull/3770
https://github.com/STEllAR-GROUP/hpx/pull/3769
https://github.com/STEllAR-GROUP/hpx/pull/3768
https://github.com/STEllAR-GROUP/hpx/pull/3767
https://github.com/STEllAR-GROUP/hpx/pull/3765
https://github.com/STEllAR-GROUP/hpx/pull/3764
https://github.com/STEllAR-GROUP/hpx/pull/3762
https://github.com/STEllAR-GROUP/hpx/pull/3761
https://github.com/STEllAR-GROUP/hpx/pull/3760
https://github.com/STEllAR-GROUP/hpx/pull/3759
https://github.com/STEllAR-GROUP/hpx/pull/3755
https://github.com/STEllAR-GROUP/hpx/pull/3754
https://github.com/STEllAR-GROUP/hpx/pull/3752
https://github.com/STEllAR-GROUP/hpx/pull/3751
https://github.com/STEllAR-GROUP/hpx/pull/3750

HPX Documentation, master

• PR #37493383 - Fix lifetime problem in run_as_hpx_thread

• PR #37483384 - Fixed unusable behavior of the clang code analyzer.

• PR #37473385 - Added PMIX_RANK to the defaults of HPX_WITH_PARCELPORT_MPI_ENV.

• PR #37453386 - Introduced cache_aligned_data and cache_line_data helper structure

• PR #37423387 - Remove more unused functionality from util/logging

• PR #37403388 - Fix includes in partitioned vector tests

• PR #37393389 - More fixes to make sure that std::flush really flushes all output

• PR #37373390 - Fix potential shutdown problems

• PR #37363391 - Fix guided_pool_executor after dataflow changes caused compilation fail

• PR #37343392 - Limiting executor

• PR #37323393 - More constrained bound constructors

• PR #37303394 - Attempt to fix deadlocks during component loading

• PR #37293395 - Add latch member function count_up and reset, requested by hpxMP

• PR #37283396 - Send even empty buffers on hpx::endl and hpx::flush

• PR #37273397 - Adding example demonstrating how to customize the memory management for a component

• PR #37263398 - Adding support for passing command line options through the HPX_COMMANDLINE_OPTIONS
environment variable

• PR #37223399 - Document known broken OpenMPI builds

• PR #37163400 - Add barrier reset function, requested by hpxMP for reusing barrier

• PR #37153401 - More work on functions and vtables

• PR #37143402 - Generate single-page HTML, PDF, manpage from documentation

• PR #37133403 - Updating default APEX version to 2.1.2

• PR #37123404 - Update release procedure

• PR #37103405 - Fix the C++11 build, after #3704
3383 https://github.com/STEllAR-GROUP/hpx/pull/3749
3384 https://github.com/STEllAR-GROUP/hpx/pull/3748
3385 https://github.com/STEllAR-GROUP/hpx/pull/3747
3386 https://github.com/STEllAR-GROUP/hpx/pull/3745
3387 https://github.com/STEllAR-GROUP/hpx/pull/3742
3388 https://github.com/STEllAR-GROUP/hpx/pull/3740
3389 https://github.com/STEllAR-GROUP/hpx/pull/3739
3390 https://github.com/STEllAR-GROUP/hpx/pull/3737
3391 https://github.com/STEllAR-GROUP/hpx/pull/3736
3392 https://github.com/STEllAR-GROUP/hpx/pull/3734
3393 https://github.com/STEllAR-GROUP/hpx/pull/3732
3394 https://github.com/STEllAR-GROUP/hpx/pull/3730
3395 https://github.com/STEllAR-GROUP/hpx/pull/3729
3396 https://github.com/STEllAR-GROUP/hpx/pull/3728
3397 https://github.com/STEllAR-GROUP/hpx/pull/3727
3398 https://github.com/STEllAR-GROUP/hpx/pull/3726
3399 https://github.com/STEllAR-GROUP/hpx/pull/3722
3400 https://github.com/STEllAR-GROUP/hpx/pull/3716
3401 https://github.com/STEllAR-GROUP/hpx/pull/3715
3402 https://github.com/STEllAR-GROUP/hpx/pull/3714
3403 https://github.com/STEllAR-GROUP/hpx/pull/3713
3404 https://github.com/STEllAR-GROUP/hpx/pull/3712
3405 https://github.com/STEllAR-GROUP/hpx/pull/3710

1682 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3749
https://github.com/STEllAR-GROUP/hpx/pull/3748
https://github.com/STEllAR-GROUP/hpx/pull/3747
https://github.com/STEllAR-GROUP/hpx/pull/3745
https://github.com/STEllAR-GROUP/hpx/pull/3742
https://github.com/STEllAR-GROUP/hpx/pull/3740
https://github.com/STEllAR-GROUP/hpx/pull/3739
https://github.com/STEllAR-GROUP/hpx/pull/3737
https://github.com/STEllAR-GROUP/hpx/pull/3736
https://github.com/STEllAR-GROUP/hpx/pull/3734
https://github.com/STEllAR-GROUP/hpx/pull/3732
https://github.com/STEllAR-GROUP/hpx/pull/3730
https://github.com/STEllAR-GROUP/hpx/pull/3729
https://github.com/STEllAR-GROUP/hpx/pull/3728
https://github.com/STEllAR-GROUP/hpx/pull/3727
https://github.com/STEllAR-GROUP/hpx/pull/3726
https://github.com/STEllAR-GROUP/hpx/pull/3722
https://github.com/STEllAR-GROUP/hpx/pull/3716
https://github.com/STEllAR-GROUP/hpx/pull/3715
https://github.com/STEllAR-GROUP/hpx/pull/3714
https://github.com/STEllAR-GROUP/hpx/pull/3713
https://github.com/STEllAR-GROUP/hpx/pull/3712
https://github.com/STEllAR-GROUP/hpx/pull/3710

HPX Documentation, master

• PR #37093406 - Move some component_registry functionality to source file

• PR #37083407 - Ignore all locks while handling assertions

• PR #37073408 - Remove obsolete hpx runtime executable

• PR #37053409 - Fix and simplify make_ready_future overload sets

• PR #37043410 - Reduce use of binders

• PR #37033411 - Ini

• PR #37023412 - Fixing CUDA compiler errors

• PR #37003413 - Added barrier::increment function to increase total number of thread

• PR #36973414 - One more attempt to fix migration. . .

• PR #36943415 - Fixing component migration

• PR #36933416 - Print thread state when getting disallowed value in set_thread_state

• PR #36923417 - Only disable constexpr with clang-cuda, not nvcc+gcc

• PR #36913418 - Link with libsupc++ if needed for thread_local

• PR #36903419 - Remove thousands separators in set_operations_3442 to comply with C++11

• PR #36883420 - Decouple serialization from function vtables

• PR #36873421 - Fix a couple of test failures

• PR #36863422 - Make sure tests.unit.build are run after install on CircleCI

• PR #36853423 - Revise quickstart CMakeLists.txt explanation

• PR #36843424 - Provide concept emulation for Ranges-TS concepts

• PR #36833425 - Ignore uninitialized chunks

• PR #36823426 - Ignore uninitialized chunks. Check proper indices.

• PR #36803427 - Ignore uninitialized chunks. Check proper range indices

• PR #36793428 - Simplify basic action implementations
3406 https://github.com/STEllAR-GROUP/hpx/pull/3709
3407 https://github.com/STEllAR-GROUP/hpx/pull/3708
3408 https://github.com/STEllAR-GROUP/hpx/pull/3707
3409 https://github.com/STEllAR-GROUP/hpx/pull/3705
3410 https://github.com/STEllAR-GROUP/hpx/pull/3704
3411 https://github.com/STEllAR-GROUP/hpx/pull/3703
3412 https://github.com/STEllAR-GROUP/hpx/pull/3702
3413 https://github.com/STEllAR-GROUP/hpx/pull/3700
3414 https://github.com/STEllAR-GROUP/hpx/pull/3697
3415 https://github.com/STEllAR-GROUP/hpx/pull/3694
3416 https://github.com/STEllAR-GROUP/hpx/pull/3693
3417 https://github.com/STEllAR-GROUP/hpx/pull/3692
3418 https://github.com/STEllAR-GROUP/hpx/pull/3691
3419 https://github.com/STEllAR-GROUP/hpx/pull/3690
3420 https://github.com/STEllAR-GROUP/hpx/pull/3688
3421 https://github.com/STEllAR-GROUP/hpx/pull/3687
3422 https://github.com/STEllAR-GROUP/hpx/pull/3686
3423 https://github.com/STEllAR-GROUP/hpx/pull/3685
3424 https://github.com/STEllAR-GROUP/hpx/pull/3684
3425 https://github.com/STEllAR-GROUP/hpx/pull/3683
3426 https://github.com/STEllAR-GROUP/hpx/pull/3682
3427 https://github.com/STEllAR-GROUP/hpx/pull/3680
3428 https://github.com/STEllAR-GROUP/hpx/pull/3679

2.10. Releases 1683

https://github.com/STEllAR-GROUP/hpx/pull/3709
https://github.com/STEllAR-GROUP/hpx/pull/3708
https://github.com/STEllAR-GROUP/hpx/pull/3707
https://github.com/STEllAR-GROUP/hpx/pull/3705
https://github.com/STEllAR-GROUP/hpx/pull/3704
https://github.com/STEllAR-GROUP/hpx/pull/3703
https://github.com/STEllAR-GROUP/hpx/pull/3702
https://github.com/STEllAR-GROUP/hpx/pull/3700
https://github.com/STEllAR-GROUP/hpx/pull/3697
https://github.com/STEllAR-GROUP/hpx/pull/3694
https://github.com/STEllAR-GROUP/hpx/pull/3693
https://github.com/STEllAR-GROUP/hpx/pull/3692
https://github.com/STEllAR-GROUP/hpx/pull/3691
https://github.com/STEllAR-GROUP/hpx/pull/3690
https://github.com/STEllAR-GROUP/hpx/pull/3688
https://github.com/STEllAR-GROUP/hpx/pull/3687
https://github.com/STEllAR-GROUP/hpx/pull/3686
https://github.com/STEllAR-GROUP/hpx/pull/3685
https://github.com/STEllAR-GROUP/hpx/pull/3684
https://github.com/STEllAR-GROUP/hpx/pull/3683
https://github.com/STEllAR-GROUP/hpx/pull/3682
https://github.com/STEllAR-GROUP/hpx/pull/3680
https://github.com/STEllAR-GROUP/hpx/pull/3679

HPX Documentation, master

• PR #36783429 - Making sure HPX_HAVE_LIBATOMIC is unset before checking

• PR #36773430 - Fix generated full version number to be usable in expressions

• PR #36743431 - Reduce functional utilities call depth

• PR #36723432 - Change new build system to use existing macros related to pseudo dependencies

• PR #36693433 - Remove indirection in function_ref when thread description is disabled

• PR #36683434 - Unbreaking async_*cb* tests

• PR #36673435 - Generate version.hpp

• PR #36653436 - Enabling MPI parcelport for gitlab runners

• PR #36643437 - making clang-tidy work properly again

• PR #36623438 - Attempt to fix exception handling

• PR #36613439 - Move lcos::latch to source file

• PR #36603440 - Fix accidentally explicit gid_type default constructor

• PR #36593441 - Parallel executor latch

• PR #36583442 - Fixing execution_parameters

• PR #36573443 - Avoid dangling references in wait_all

• PR #36563444 - Avoiding lifetime problems with sync_put_parcel

• PR #36553445 - Fixing nullptr dereference inside of function

• PR #36523446 - Attempt to fix thread_map_type definition with C++11

• PR #36503447 - Allowing for end iterator being different from begin iterator

• PR #36493448 - Added architecture identification to cmake to be able to detect timestamp support

• PR #36453449 - Enabling sanitizers on gitlab runner

• PR #36443450 - Attempt to tackle timeouts during startup

• PR #36423451 - Cleanup parallel partitioners
3429 https://github.com/STEllAR-GROUP/hpx/pull/3678
3430 https://github.com/STEllAR-GROUP/hpx/pull/3677
3431 https://github.com/STEllAR-GROUP/hpx/pull/3674
3432 https://github.com/STEllAR-GROUP/hpx/pull/3672
3433 https://github.com/STEllAR-GROUP/hpx/pull/3669
3434 https://github.com/STEllAR-GROUP/hpx/pull/3668
3435 https://github.com/STEllAR-GROUP/hpx/pull/3667
3436 https://github.com/STEllAR-GROUP/hpx/pull/3665
3437 https://github.com/STEllAR-GROUP/hpx/pull/3664
3438 https://github.com/STEllAR-GROUP/hpx/pull/3662
3439 https://github.com/STEllAR-GROUP/hpx/pull/3661
3440 https://github.com/STEllAR-GROUP/hpx/pull/3660
3441 https://github.com/STEllAR-GROUP/hpx/pull/3659
3442 https://github.com/STEllAR-GROUP/hpx/pull/3658
3443 https://github.com/STEllAR-GROUP/hpx/pull/3657
3444 https://github.com/STEllAR-GROUP/hpx/pull/3656
3445 https://github.com/STEllAR-GROUP/hpx/pull/3655
3446 https://github.com/STEllAR-GROUP/hpx/pull/3652
3447 https://github.com/STEllAR-GROUP/hpx/pull/3650
3448 https://github.com/STEllAR-GROUP/hpx/pull/3649
3449 https://github.com/STEllAR-GROUP/hpx/pull/3645
3450 https://github.com/STEllAR-GROUP/hpx/pull/3644
3451 https://github.com/STEllAR-GROUP/hpx/pull/3642

1684 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3678
https://github.com/STEllAR-GROUP/hpx/pull/3677
https://github.com/STEllAR-GROUP/hpx/pull/3674
https://github.com/STEllAR-GROUP/hpx/pull/3672
https://github.com/STEllAR-GROUP/hpx/pull/3669
https://github.com/STEllAR-GROUP/hpx/pull/3668
https://github.com/STEllAR-GROUP/hpx/pull/3667
https://github.com/STEllAR-GROUP/hpx/pull/3665
https://github.com/STEllAR-GROUP/hpx/pull/3664
https://github.com/STEllAR-GROUP/hpx/pull/3662
https://github.com/STEllAR-GROUP/hpx/pull/3661
https://github.com/STEllAR-GROUP/hpx/pull/3660
https://github.com/STEllAR-GROUP/hpx/pull/3659
https://github.com/STEllAR-GROUP/hpx/pull/3658
https://github.com/STEllAR-GROUP/hpx/pull/3657
https://github.com/STEllAR-GROUP/hpx/pull/3656
https://github.com/STEllAR-GROUP/hpx/pull/3655
https://github.com/STEllAR-GROUP/hpx/pull/3652
https://github.com/STEllAR-GROUP/hpx/pull/3650
https://github.com/STEllAR-GROUP/hpx/pull/3649
https://github.com/STEllAR-GROUP/hpx/pull/3645
https://github.com/STEllAR-GROUP/hpx/pull/3644
https://github.com/STEllAR-GROUP/hpx/pull/3642

HPX Documentation, master

• PR #36403452 - Dataflow now works with functions that return a reference

• PR #36373453 - Merging the executor-enabled overloads of shared_future<>::then

• PR #36333454 - Replace deprecated boost endian macros

• PR #36323455 - Add instructions on getting HPX to documentation

• PR #36313456 - Simplify parcel creation

• PR #36303457 - Small additions and fixes to release procedure

• PR #36293458 - Modular pp

• PR #36273459 - Implement util::function_ref

• PR #36263460 - Fix cancelable_action_client example

• PR #36253461 - Added automatic serialization for simple structs (see #3034)

• PR #36243462 - Updating the default order of priority for thread_description

• PR #36213463 - Update copyright year and other small formatting fixes

• PR #36203464 - Adding support for gitlab runner

• PR #36193465 - Store debug logs and core dumps on CircleCI

• PR #36183466 - Various optimizations

• PR #36173467 - Fix link to the gpg key (#2)

• PR #36153468 - Fix unused variable warnings with networking off

• PR #36143469 - Restructuring counter data in scheduler to reduce false sharing

• PR #36133470 - Adding support for gitlab runners

• PR #36103471 - Don’t wait for stop_condition in main thread

• PR #36083472 - Add inline keyword to invalid_thread_id definition for nvcc

• PR #36073473 - Adding configuration key that allows one to explicitly add a directory to the component search
path

• PR #36063474 - Add nvcc to exclude constexpress since is it not supported by nvcc
3452 https://github.com/STEllAR-GROUP/hpx/pull/3640
3453 https://github.com/STEllAR-GROUP/hpx/pull/3637
3454 https://github.com/STEllAR-GROUP/hpx/pull/3633
3455 https://github.com/STEllAR-GROUP/hpx/pull/3632
3456 https://github.com/STEllAR-GROUP/hpx/pull/3631
3457 https://github.com/STEllAR-GROUP/hpx/pull/3630
3458 https://github.com/STEllAR-GROUP/hpx/pull/3629
3459 https://github.com/STEllAR-GROUP/hpx/pull/3627
3460 https://github.com/STEllAR-GROUP/hpx/pull/3626
3461 https://github.com/STEllAR-GROUP/hpx/pull/3625
3462 https://github.com/STEllAR-GROUP/hpx/pull/3624
3463 https://github.com/STEllAR-GROUP/hpx/pull/3621
3464 https://github.com/STEllAR-GROUP/hpx/pull/3620
3465 https://github.com/STEllAR-GROUP/hpx/pull/3619
3466 https://github.com/STEllAR-GROUP/hpx/pull/3618
3467 https://github.com/STEllAR-GROUP/hpx/pull/3617
3468 https://github.com/STEllAR-GROUP/hpx/pull/3615
3469 https://github.com/STEllAR-GROUP/hpx/pull/3614
3470 https://github.com/STEllAR-GROUP/hpx/pull/3613
3471 https://github.com/STEllAR-GROUP/hpx/pull/3610
3472 https://github.com/STEllAR-GROUP/hpx/pull/3608
3473 https://github.com/STEllAR-GROUP/hpx/pull/3607
3474 https://github.com/STEllAR-GROUP/hpx/pull/3606

2.10. Releases 1685

https://github.com/STEllAR-GROUP/hpx/pull/3640
https://github.com/STEllAR-GROUP/hpx/pull/3637
https://github.com/STEllAR-GROUP/hpx/pull/3633
https://github.com/STEllAR-GROUP/hpx/pull/3632
https://github.com/STEllAR-GROUP/hpx/pull/3631
https://github.com/STEllAR-GROUP/hpx/pull/3630
https://github.com/STEllAR-GROUP/hpx/pull/3629
https://github.com/STEllAR-GROUP/hpx/pull/3627
https://github.com/STEllAR-GROUP/hpx/pull/3626
https://github.com/STEllAR-GROUP/hpx/pull/3625
https://github.com/STEllAR-GROUP/hpx/pull/3624
https://github.com/STEllAR-GROUP/hpx/pull/3621
https://github.com/STEllAR-GROUP/hpx/pull/3620
https://github.com/STEllAR-GROUP/hpx/pull/3619
https://github.com/STEllAR-GROUP/hpx/pull/3618
https://github.com/STEllAR-GROUP/hpx/pull/3617
https://github.com/STEllAR-GROUP/hpx/pull/3615
https://github.com/STEllAR-GROUP/hpx/pull/3614
https://github.com/STEllAR-GROUP/hpx/pull/3613
https://github.com/STEllAR-GROUP/hpx/pull/3610
https://github.com/STEllAR-GROUP/hpx/pull/3608
https://github.com/STEllAR-GROUP/hpx/pull/3607
https://github.com/STEllAR-GROUP/hpx/pull/3606

HPX Documentation, master

• PR #36053475 - Add inline to definition of checkpoint stream operators to fix link error

• PR #36043476 - Use format for string formatting

• PR #36033477 - Improve the error message for using to less MAX_CPU_COUNT

• PR #36023478 - Improve the error message for to small values of MAX_CPU_COUNT

• PR #36003479 - Parallel executor aggregated

• PR #35993480 - Making sure networking is disabled for default one-locality-runs

• PR #35963481 - Store thread exit functions in forward_list instead of deque to avoid allocations

• PR #35903482 - Fix typo/mistake in thread queue cleanup_terminated

• PR #35883483 - Fix formatting errors in launching_and_configuring_hpx_applications.rst

• PR #35863484 - Make bind propagate value category

• PR #35853485 - Extend Cmake for building hpx as distribution packages (refs #3575)

• PR #35843486 - Untangle function storage from object pointer

• PR #35823487 - Towards Modularized HPX

• PR #35803488 - Remove extra || in merge.hpp

• PR #35773489 - Partially revert “Remove vtable empty flag”

• PR #35763490 - Make sure empty startup/shutdown functions are not being used

• PR #35743491 - Make sure DATAPAR settings are conveyed to depending projects

• PR #35733492 - Make sure HPX is usable with latest released version of Vc (V1.4.1)

• PR #35723493 - Adding test ensuring ticket 3565 is fixed

• PR #35713494 - Make empty [unique_]function vtable non-dependent

• PR #35663495 - Fix compilation with dynamic bitset for CPU masks

• PR #35633496 - Drop util::[unique_]function target_type

• PR #35623497 - Removing the target suffixes
3475 https://github.com/STEllAR-GROUP/hpx/pull/3605
3476 https://github.com/STEllAR-GROUP/hpx/pull/3604
3477 https://github.com/STEllAR-GROUP/hpx/pull/3603
3478 https://github.com/STEllAR-GROUP/hpx/pull/3602
3479 https://github.com/STEllAR-GROUP/hpx/pull/3600
3480 https://github.com/STEllAR-GROUP/hpx/pull/3599
3481 https://github.com/STEllAR-GROUP/hpx/pull/3596
3482 https://github.com/STEllAR-GROUP/hpx/pull/3590
3483 https://github.com/STEllAR-GROUP/hpx/pull/3588
3484 https://github.com/STEllAR-GROUP/hpx/pull/3586
3485 https://github.com/STEllAR-GROUP/hpx/pull/3585
3486 https://github.com/STEllAR-GROUP/hpx/pull/3584
3487 https://github.com/STEllAR-GROUP/hpx/pull/3582
3488 https://github.com/STEllAR-GROUP/hpx/pull/3580
3489 https://github.com/STEllAR-GROUP/hpx/pull/3577
3490 https://github.com/STEllAR-GROUP/hpx/pull/3576
3491 https://github.com/STEllAR-GROUP/hpx/pull/3574
3492 https://github.com/STEllAR-GROUP/hpx/pull/3573
3493 https://github.com/STEllAR-GROUP/hpx/pull/3572
3494 https://github.com/STEllAR-GROUP/hpx/pull/3571
3495 https://github.com/STEllAR-GROUP/hpx/pull/3566
3496 https://github.com/STEllAR-GROUP/hpx/pull/3563
3497 https://github.com/STEllAR-GROUP/hpx/pull/3562

1686 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3605
https://github.com/STEllAR-GROUP/hpx/pull/3604
https://github.com/STEllAR-GROUP/hpx/pull/3603
https://github.com/STEllAR-GROUP/hpx/pull/3602
https://github.com/STEllAR-GROUP/hpx/pull/3600
https://github.com/STEllAR-GROUP/hpx/pull/3599
https://github.com/STEllAR-GROUP/hpx/pull/3596
https://github.com/STEllAR-GROUP/hpx/pull/3590
https://github.com/STEllAR-GROUP/hpx/pull/3588
https://github.com/STEllAR-GROUP/hpx/pull/3586
https://github.com/STEllAR-GROUP/hpx/pull/3585
https://github.com/STEllAR-GROUP/hpx/pull/3584
https://github.com/STEllAR-GROUP/hpx/pull/3582
https://github.com/STEllAR-GROUP/hpx/pull/3580
https://github.com/STEllAR-GROUP/hpx/pull/3577
https://github.com/STEllAR-GROUP/hpx/pull/3576
https://github.com/STEllAR-GROUP/hpx/pull/3574
https://github.com/STEllAR-GROUP/hpx/pull/3573
https://github.com/STEllAR-GROUP/hpx/pull/3572
https://github.com/STEllAR-GROUP/hpx/pull/3571
https://github.com/STEllAR-GROUP/hpx/pull/3566
https://github.com/STEllAR-GROUP/hpx/pull/3563
https://github.com/STEllAR-GROUP/hpx/pull/3562

HPX Documentation, master

• PR #35613498 - Replace executor traits return type deduction (keep non-SFINAE)

• PR #35573499 - Replace the last usages of boost::atomic

• PR #35563500 - Replace boost::scoped_array with std::unique_ptr

• PR #35523501 - (Re)move APEX readme

• PR #35483502 - Replace boost::scoped_ptr with std::unique_ptr

• PR #35473503 - Remove last use of Boost.Signals2

• PR #35443504 - Post 1.2.0 version bumps

• PR #35433505 - added Ubuntu dependency list to readme

• PR #35313506 - Warnings, warnings. . .

• PR #35273507 - Add CircleCI filter for building all tags

• PR #35253508 - Segmented algorithms

• PR #35173509 - Replace boost::regex with C++11 <regex>

• PR #35143510 - Cleaning up the build system

• PR #35053511 - Fixing type attribute warning for transfer_action

• PR #35043512 - Add support for rpm packaging

• PR #34993513 - Improving spinlock pools

• PR #34983514 - Remove thread specific ptr

• PR #34863515 - Fix comparison for expect_connecting_localities config entry

• PR #34693516 - Enable (existing) code for extracting stack pointer on Power platform
3498 https://github.com/STEllAR-GROUP/hpx/pull/3561
3499 https://github.com/STEllAR-GROUP/hpx/pull/3557
3500 https://github.com/STEllAR-GROUP/hpx/pull/3556
3501 https://github.com/STEllAR-GROUP/hpx/pull/3552
3502 https://github.com/STEllAR-GROUP/hpx/pull/3548
3503 https://github.com/STEllAR-GROUP/hpx/pull/3547
3504 https://github.com/STEllAR-GROUP/hpx/pull/3544
3505 https://github.com/STEllAR-GROUP/hpx/pull/3543
3506 https://github.com/STEllAR-GROUP/hpx/pull/3531
3507 https://github.com/STEllAR-GROUP/hpx/pull/3527
3508 https://github.com/STEllAR-GROUP/hpx/pull/3525
3509 https://github.com/STEllAR-GROUP/hpx/pull/3517
3510 https://github.com/STEllAR-GROUP/hpx/pull/3514
3511 https://github.com/STEllAR-GROUP/hpx/pull/3505
3512 https://github.com/STEllAR-GROUP/hpx/pull/3504
3513 https://github.com/STEllAR-GROUP/hpx/pull/3499
3514 https://github.com/STEllAR-GROUP/hpx/pull/3498
3515 https://github.com/STEllAR-GROUP/hpx/pull/3486
3516 https://github.com/STEllAR-GROUP/hpx/pull/3469

2.10. Releases 1687

https://github.com/STEllAR-GROUP/hpx/pull/3561
https://github.com/STEllAR-GROUP/hpx/pull/3557
https://github.com/STEllAR-GROUP/hpx/pull/3556
https://github.com/STEllAR-GROUP/hpx/pull/3552
https://github.com/STEllAR-GROUP/hpx/pull/3548
https://github.com/STEllAR-GROUP/hpx/pull/3547
https://github.com/STEllAR-GROUP/hpx/pull/3544
https://github.com/STEllAR-GROUP/hpx/pull/3543
https://github.com/STEllAR-GROUP/hpx/pull/3531
https://github.com/STEllAR-GROUP/hpx/pull/3527
https://github.com/STEllAR-GROUP/hpx/pull/3525
https://github.com/STEllAR-GROUP/hpx/pull/3517
https://github.com/STEllAR-GROUP/hpx/pull/3514
https://github.com/STEllAR-GROUP/hpx/pull/3505
https://github.com/STEllAR-GROUP/hpx/pull/3504
https://github.com/STEllAR-GROUP/hpx/pull/3499
https://github.com/STEllAR-GROUP/hpx/pull/3498
https://github.com/STEllAR-GROUP/hpx/pull/3486
https://github.com/STEllAR-GROUP/hpx/pull/3469

HPX Documentation, master

HPX V1.2.1 (Feb 19, 2019)

General changes

This is a bugfix release. It contains the following changes:

• Fix compilation on ARM, s390x and 32-bit architectures.

• Fix a critical bug in the future implementation.

• Fix several problems in the CMake configuration which affects external projects.

• Add support for Boost 1.69.0.

Closed issues

• Issue #36383517 - Build HPX 1.2 with boost 1.69

• Issue #36353518 - Non-deterministic crashing on Stampede2

• Issue #35503519 - 1>e:000workhpxsrcthrow_exception.cpp(54): error C2440: ‘<function-style-cast>’: cannot
convert from ‘boost::system::error_code’ to ‘hpx::exception’

• Issue #35493520 - HPX 1.2.0 does not build on i686, but release candidate did

• Issue #35113521 - Build on s390x fails

• Issue #35093522 - Build on armv7l fails

Closed pull requests

• PR #36953523 - Don’t install CMake templates and packaging files

• PR #36663524 - Fixing yet another race in future_data

• PR #36633525 - Fixing race between setting and getting the value inside future_data

• PR #36483526 - Adding timestamp option for S390x platform

• PR #36473527 - Blind attempt to fix warnings issued by gcc V9

• PR #36113528 - Include GNUInstallDirs earlier to have it available for subdirectories

• PR #35953529 - Use GNUInstallDirs lib path in pkgconfig config file

• PR #35933530 - Add include(GNUInstallDirs) to HPXMacros.cmake
3517 https://github.com/STEllAR-GROUP/hpx/issues/3638
3518 https://github.com/STEllAR-GROUP/hpx/issues/3635
3519 https://github.com/STEllAR-GROUP/hpx/issues/3550
3520 https://github.com/STEllAR-GROUP/hpx/issues/3549
3521 https://github.com/STEllAR-GROUP/hpx/issues/3511
3522 https://github.com/STEllAR-GROUP/hpx/issues/3509
3523 https://github.com/STEllAR-GROUP/hpx/pull/3695
3524 https://github.com/STEllAR-GROUP/hpx/pull/3666
3525 https://github.com/STEllAR-GROUP/hpx/pull/3663
3526 https://github.com/STEllAR-GROUP/hpx/pull/3648
3527 https://github.com/STEllAR-GROUP/hpx/pull/3647
3528 https://github.com/STEllAR-GROUP/hpx/pull/3611
3529 https://github.com/STEllAR-GROUP/hpx/pull/3595
3530 https://github.com/STEllAR-GROUP/hpx/pull/3593

1688 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3638
https://github.com/STEllAR-GROUP/hpx/issues/3635
https://github.com/STEllAR-GROUP/hpx/issues/3550
https://github.com/STEllAR-GROUP/hpx/issues/3549
https://github.com/STEllAR-GROUP/hpx/issues/3511
https://github.com/STEllAR-GROUP/hpx/issues/3509
https://github.com/STEllAR-GROUP/hpx/pull/3695
https://github.com/STEllAR-GROUP/hpx/pull/3666
https://github.com/STEllAR-GROUP/hpx/pull/3663
https://github.com/STEllAR-GROUP/hpx/pull/3648
https://github.com/STEllAR-GROUP/hpx/pull/3647
https://github.com/STEllAR-GROUP/hpx/pull/3611
https://github.com/STEllAR-GROUP/hpx/pull/3595
https://github.com/STEllAR-GROUP/hpx/pull/3593

HPX Documentation, master

• PR #35913531 - Fix compilation error on arm7 architecture. Compiles and runs on Fedora 29 on Pi 3.

• PR #35583532 - Adding constructor exception(boost::system::error_code const&)

• PR #35553533 - cmake: make install locations configurable

• PR #35513534 - Fix uint64_t causing compilation fail on i686

HPX V1.2.0 (Nov 12, 2018)

General changes

Here are some of the main highlights and changes for this release:

• Thanks to the work of our Google Summer of Code student, Nikunj Gupta, we now have a new implementa-
tion of hpx_main.hpp on supported platforms (Linux, BSD and MacOS). This is intended to be a less fragile
drop-in replacement for the old implementation relying on preprocessor macros. The new implementation does
not require changes if you are using the CMake3535 or pkg-config. The old behaviour can be restored by set-
ting HPX_WITH_DYNAMIC_HPX_MAIN=OFF during CMake3536 configuration. The implementation on Windows
is unchanged.

• We have added functionality to allow passing scheduling hints to our schedulers. These will allow us to create
executors that for example target a specific NUMA domain or allow for HPX threads to be pinned to a particular
worker thread.

• We have significantly improved the performance of our futures implementation by making the shared state atomic.

• We have replaced Boostbook by Sphinx for our documentation. This means the documentation is easier to
navigate with built-in search and table of contents. We have also added a quick start section and restructured the
documentation to be easier to follow for new users.

• We have added a new option to the --hpx:threads command line option. It is now possible to use cores to
tell HPX to only use one worker thread per core, unlike the existing option all which uses one worker thread
per processing unit (processing unit can be a hyperthread if hyperthreads are available). The default value of
--hpx:threads has also been changed to cores as this leads to better performance in most cases.

• All command line options can now be passed alongside configuration options when initializing HPX. This means
that some options that were previously only available on the command line can now be set as configuration
options.

• HPXMP is a portable, scalable, and flexible application programming interface using the OpenMP specification
that supports multi-platform shared memory multiprocessing programming in C and C++. HPXMP can be
enabled within HPX by setting DHPX_WITH_HPXMP=ON during CMake3537 configuration.

• Two new performance counters were added for measuring the time spent doing background work. /threads/
time/background-work-duration returns the time spent doing background on a given thread or locality,
while /threads/time/background-overhead returns the fraction of time spent doing background work with
respect to the overall time spent running the scheduler. The new performance counters are disabled by default and
can be turned on by setting HPX_WITH_BACKGROUND_THREAD_COUNTERS=ON during CMake3538 configuration.

3531 https://github.com/STEllAR-GROUP/hpx/pull/3591
3532 https://github.com/STEllAR-GROUP/hpx/pull/3558
3533 https://github.com/STEllAR-GROUP/hpx/pull/3555
3534 https://github.com/STEllAR-GROUP/hpx/pull/3551
3535 https://www.cmake.org
3536 https://www.cmake.org
3537 https://www.cmake.org
3538 https://www.cmake.org

2.10. Releases 1689

https://github.com/STEllAR-GROUP/hpx/pull/3591
https://github.com/STEllAR-GROUP/hpx/pull/3558
https://github.com/STEllAR-GROUP/hpx/pull/3555
https://github.com/STEllAR-GROUP/hpx/pull/3551
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org

HPX Documentation, master

• The idling behaviour of HPX has been tweaked to allow for faster idling. This is useful in interactive applications
where the HPX worker threads may not have work all the time. This behaviour can be tweaked and turned off as
before with HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF=OFF during CMake3539 configuration.

• It is now possible to register callback functions for HPX worker thread events. Callbacks can be registered for
starting and stopping worker threads, and for when errors occur.

Breaking changes

• The implementation of hpx_main.hpp has changed. If you are using custom Makefiles you will need to make
changes. Please see the documentation on using Makefiles for more details.

• The default value of --hpx:threads has changed from all to cores. The new option cores only starts one
worker thread per core.

• We have dropped support for Boost 1.56 and 1.57. The minimal version of Boost we now test is 1.58.

• Our boost::format-based formatting implementation has been revised and replaced with a custom implemen-
tation. This changes the formatting syntax and requires changes if you are relying on hpx::util::format or
hpx::util::format_to. The pull request for this change contains more information: PR #32663540.

• The following deprecated options have now been completely removed:
HPX_WITH_ASYNC_FUNCTION_COMPATIBILITY, HPX_WITH_LOCAL_DATAFLOW,
HPX_WITH_GENERIC_EXECUTION_POLICY, HPX_WITH_BOOST_CHRONO_COMPATIBILITY,
HPX_WITH_EXECUTOR_COMPATIBILITY, HPX_WITH_EXECUTION_POLICY_COMPATIBILITY, and
HPX_WITH_TRANSFORM_REDUCE_COMPATIBILITY.

Closed issues

• Issue #35383541 - numa handling incorrect for hwloc 2

• Issue #35333542 - Cmake version 3.5.1does not work (git ff26b35 2018-11-06)

• Issue #35263543 - Failed building hpx-1.2.0-rc1 on Ubuntu16.04 x86-64 Virtualbox VM

• Issue #35123544 - Build on aarch64 fails

• Issue #34753545 - HPX fails to link if the MPI parcelport is enabled

• Issue #34623546 - CMake configuration shows a minor and inconsequential failure to create a symlink

• Issue #34613547 - Compilation Problems with the most recent Clang

• Issue #34603548 - Deadlock when create_partitioner fails (assertion fails) in debug mode

• Issue #34553549 - HPX build failing with HWLOC errors on POWER8 with hwloc 1.8

• Issue #34383550 - HPX no longer builds on IBM POWER8
3539 https://www.cmake.org
3540 https://github.com/STEllAR-GROUP/hpx/pull/3266
3541 https://github.com/STEllAR-GROUP/hpx/issues/3538
3542 https://github.com/STEllAR-GROUP/hpx/issues/3533
3543 https://github.com/STEllAR-GROUP/hpx/issues/3526
3544 https://github.com/STEllAR-GROUP/hpx/issues/3512
3545 https://github.com/STEllAR-GROUP/hpx/issues/3475
3546 https://github.com/STEllAR-GROUP/hpx/issues/3462
3547 https://github.com/STEllAR-GROUP/hpx/issues/3461
3548 https://github.com/STEllAR-GROUP/hpx/issues/3460
3549 https://github.com/STEllAR-GROUP/hpx/issues/3455
3550 https://github.com/STEllAR-GROUP/hpx/issues/3438

1690 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://github.com/STEllAR-GROUP/hpx/pull/3266
https://github.com/STEllAR-GROUP/hpx/issues/3538
https://github.com/STEllAR-GROUP/hpx/issues/3533
https://github.com/STEllAR-GROUP/hpx/issues/3526
https://github.com/STEllAR-GROUP/hpx/issues/3512
https://github.com/STEllAR-GROUP/hpx/issues/3475
https://github.com/STEllAR-GROUP/hpx/issues/3462
https://github.com/STEllAR-GROUP/hpx/issues/3461
https://github.com/STEllAR-GROUP/hpx/issues/3460
https://github.com/STEllAR-GROUP/hpx/issues/3455
https://github.com/STEllAR-GROUP/hpx/issues/3438

HPX Documentation, master

• Issue #34263551 - hpx build failed on MacOS

• Issue #34243552 - CircleCI builds broken for forked repositories

• Issue #34223553 - Benchmarks in tests.performance.local are not run nightly

• Issue #34083554 - CMake Targets for HPX

• Issue #33993555 - processing unit out of bounds

• Issue #33953556 - Floating point bug in hpx/runtime/threads/policies/scheduler_base.hpp

• Issue #33783557 - compile error with lcos::communicator

• Issue #33763558 - Failed to build HPX with APEX using clang

• Issue #33663559 - Adapted Safe_Object example fails for –hpx:threads > 1

• Issue #33603560 - Segmentation fault when passing component id as parameter

• Issue #33583561 - HPX runtime hangs after multiple (~thousands) start-stop sequences

• Issue #33523562 - Support TCP provider in libfabric ParcelPort

• Issue #33423563 - undefined reference to __atomic_load_16

• Issue #33393564 - setting command line options/flags from init cfg is not obvious

• Issue #33253565 - AGAS migrates components prematurely

• Issue #33213566 - hpx bad_parameter handling is awful

• Issue #33183567 - Benchmarks fail to build with C++11

• Issue #33043568 - hpx::threads::run_as_hpx_thread does not properly handle exceptions

• Issue #33003569 - Setting pu step or offset results in no threads in default pool

• Issue #32973570 - Crash with APEX when running Phylanx lra_csv with > 1 thread

• Issue #32963571 - Building HPX with APEX configuration gives compiler warnings

• Issue #32903572 - make tests failing at hello_world_component

• Issue #32853573 - possible compilation error when “using namespace std;” is defined before including “hpx”
headers files

3551 https://github.com/STEllAR-GROUP/hpx/issues/3426
3552 https://github.com/STEllAR-GROUP/hpx/issues/3424
3553 https://github.com/STEllAR-GROUP/hpx/issues/3422
3554 https://github.com/STEllAR-GROUP/hpx/issues/3408
3555 https://github.com/STEllAR-GROUP/hpx/issues/3399
3556 https://github.com/STEllAR-GROUP/hpx/issues/3395
3557 https://github.com/STEllAR-GROUP/hpx/issues/3378
3558 https://github.com/STEllAR-GROUP/hpx/issues/3376
3559 https://github.com/STEllAR-GROUP/hpx/issues/3366
3560 https://github.com/STEllAR-GROUP/hpx/issues/3360
3561 https://github.com/STEllAR-GROUP/hpx/issues/3358
3562 https://github.com/STEllAR-GROUP/hpx/issues/3352
3563 https://github.com/STEllAR-GROUP/hpx/issues/3342
3564 https://github.com/STEllAR-GROUP/hpx/issues/3339
3565 https://github.com/STEllAR-GROUP/hpx/issues/3325
3566 https://github.com/STEllAR-GROUP/hpx/issues/3321
3567 https://github.com/STEllAR-GROUP/hpx/issues/3318
3568 https://github.com/STEllAR-GROUP/hpx/issues/3304
3569 https://github.com/STEllAR-GROUP/hpx/issues/3300
3570 https://github.com/STEllAR-GROUP/hpx/issues/3297
3571 https://github.com/STEllAR-GROUP/hpx/issues/3296
3572 https://github.com/STEllAR-GROUP/hpx/issues/3290
3573 https://github.com/STEllAR-GROUP/hpx/issues/3285

2.10. Releases 1691

https://github.com/STEllAR-GROUP/hpx/issues/3426
https://github.com/STEllAR-GROUP/hpx/issues/3424
https://github.com/STEllAR-GROUP/hpx/issues/3422
https://github.com/STEllAR-GROUP/hpx/issues/3408
https://github.com/STEllAR-GROUP/hpx/issues/3399
https://github.com/STEllAR-GROUP/hpx/issues/3395
https://github.com/STEllAR-GROUP/hpx/issues/3378
https://github.com/STEllAR-GROUP/hpx/issues/3376
https://github.com/STEllAR-GROUP/hpx/issues/3366
https://github.com/STEllAR-GROUP/hpx/issues/3360
https://github.com/STEllAR-GROUP/hpx/issues/3358
https://github.com/STEllAR-GROUP/hpx/issues/3352
https://github.com/STEllAR-GROUP/hpx/issues/3342
https://github.com/STEllAR-GROUP/hpx/issues/3339
https://github.com/STEllAR-GROUP/hpx/issues/3325
https://github.com/STEllAR-GROUP/hpx/issues/3321
https://github.com/STEllAR-GROUP/hpx/issues/3318
https://github.com/STEllAR-GROUP/hpx/issues/3304
https://github.com/STEllAR-GROUP/hpx/issues/3300
https://github.com/STEllAR-GROUP/hpx/issues/3297
https://github.com/STEllAR-GROUP/hpx/issues/3296
https://github.com/STEllAR-GROUP/hpx/issues/3290
https://github.com/STEllAR-GROUP/hpx/issues/3285

HPX Documentation, master

• Issue #32803574 - HPX fails on OSX

• Issue #32723575 - CircleCI does not upload generated docker image any more

• Issue #32703576 - Error when compiling CUDA examples

• Issue #32673577 - tests.unit.host_.block_allocator fails occasionally

• Issue #32643578 - Possible move to Sphinx for documentation

• Issue #32633579 - Documentation improvements

• Issue #32593580 - set_parcel_write_handler test fails occasionally

• Issue #32583581 - Links to source code in documentation are broken

• Issue #32473582 - Rare tests.unit.host_.block_allocator test failure on 1.1.0-rc1

• Issue #32443583 - Slowing down and speeding up an interval_timer

• Issue #32153584 - Cannot build both tests and examples on MSVC with pseudo-dependencies enabled

• Issue #31953585 - Unnecessary customization point route causing performance penalty

• Issue #30883586 - A strange thing in parallel::sort.

• Issue #26503587 - libfabric support for passive endpoints

• Issue #12053588 - TSS is broken

Closed pull requests

• PR #35423589 - Fix numa lookup from pu when using hwloc 2.x

• PR #35413590 - Fixing the build system of the MPI parcelport

• PR #35403591 - Updating HPX people section

• PR #35393592 - Splitting test to avoid OOM on CircleCI

• PR #35373593 - Fix guided exec

• PR #35363594 - Updating grants which support the LSU team

• PR #35353595 - Fix hiding of docker credentials
3574 https://github.com/STEllAR-GROUP/hpx/issues/3280
3575 https://github.com/STEllAR-GROUP/hpx/issues/3272
3576 https://github.com/STEllAR-GROUP/hpx/issues/3270
3577 https://github.com/STEllAR-GROUP/hpx/issues/3267
3578 https://github.com/STEllAR-GROUP/hpx/issues/3264
3579 https://github.com/STEllAR-GROUP/hpx/issues/3263
3580 https://github.com/STEllAR-GROUP/hpx/issues/3259
3581 https://github.com/STEllAR-GROUP/hpx/issues/3258
3582 https://github.com/STEllAR-GROUP/hpx/issues/3247
3583 https://github.com/STEllAR-GROUP/hpx/issues/3244
3584 https://github.com/STEllAR-GROUP/hpx/issues/3215
3585 https://github.com/STEllAR-GROUP/hpx/issues/3195
3586 https://github.com/STEllAR-GROUP/hpx/issues/3088
3587 https://github.com/STEllAR-GROUP/hpx/issues/2650
3588 https://github.com/STEllAR-GROUP/hpx/issues/1205
3589 https://github.com/STEllAR-GROUP/hpx/pull/3542
3590 https://github.com/STEllAR-GROUP/hpx/pull/3541
3591 https://github.com/STEllAR-GROUP/hpx/pull/3540
3592 https://github.com/STEllAR-GROUP/hpx/pull/3539
3593 https://github.com/STEllAR-GROUP/hpx/pull/3537
3594 https://github.com/STEllAR-GROUP/hpx/pull/3536
3595 https://github.com/STEllAR-GROUP/hpx/pull/3535

1692 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3280
https://github.com/STEllAR-GROUP/hpx/issues/3272
https://github.com/STEllAR-GROUP/hpx/issues/3270
https://github.com/STEllAR-GROUP/hpx/issues/3267
https://github.com/STEllAR-GROUP/hpx/issues/3264
https://github.com/STEllAR-GROUP/hpx/issues/3263
https://github.com/STEllAR-GROUP/hpx/issues/3259
https://github.com/STEllAR-GROUP/hpx/issues/3258
https://github.com/STEllAR-GROUP/hpx/issues/3247
https://github.com/STEllAR-GROUP/hpx/issues/3244
https://github.com/STEllAR-GROUP/hpx/issues/3215
https://github.com/STEllAR-GROUP/hpx/issues/3195
https://github.com/STEllAR-GROUP/hpx/issues/3088
https://github.com/STEllAR-GROUP/hpx/issues/2650
https://github.com/STEllAR-GROUP/hpx/issues/1205
https://github.com/STEllAR-GROUP/hpx/pull/3542
https://github.com/STEllAR-GROUP/hpx/pull/3541
https://github.com/STEllAR-GROUP/hpx/pull/3540
https://github.com/STEllAR-GROUP/hpx/pull/3539
https://github.com/STEllAR-GROUP/hpx/pull/3537
https://github.com/STEllAR-GROUP/hpx/pull/3536
https://github.com/STEllAR-GROUP/hpx/pull/3535

HPX Documentation, master

• PR #35343596 - Fixing #3533

• PR #35323597 - fixing minor doc typo –hpx:print-counter-at arg

• PR #35303598 - Changing APEX default tag to v2.1.0

• PR #35293599 - Remove leftover security options and documentation

• PR #35283600 - Fix hwloc version check

• PR #35243601 - Do not build guided pool examples with older GCC compilers

• PR #35233602 - Fix logging regression

• PR #35223603 - Fix more warnings

• PR #35213604 - Fixing argument handling in induction and reduction clauses for parallel::for_loop

• PR #35203605 - Remove docs symlink and versioned docs folders

• PR #35193606 - hpxMP release

• PR #35183607 - Change all steps to use new docker image on CircleCI

• PR #35163608 - Drop usage of deprecated facilities removed in C++17

• PR #35153609 - Remove remaining uses of Boost.TypeTraits

• PR #35133610 - Fixing a CMake problem when trying to use libfabric

• PR #35083611 - Remove memory_block component

• PR #35073612 - Propagating the MPI compile definitions to all relevant targets

• PR #35033613 - Update documentation colors and logo

• PR #35023614 - Fix bogus `throws` bindings in scheduled_thread_pool_impl

• PR #35013615 - Split parallel::remove_if tests to avoid OOM on CircleCI

• PR #35003616 - Support NONAMEPREFIX in add_hpx_library()

• PR #34973617 - Note that cuda support requires cmake 3.9

• PR #34953618 - Fixing dataflow
3596 https://github.com/STEllAR-GROUP/hpx/pull/3534
3597 https://github.com/STEllAR-GROUP/hpx/pull/3532
3598 https://github.com/STEllAR-GROUP/hpx/pull/3530
3599 https://github.com/STEllAR-GROUP/hpx/pull/3529
3600 https://github.com/STEllAR-GROUP/hpx/pull/3528
3601 https://github.com/STEllAR-GROUP/hpx/pull/3524
3602 https://github.com/STEllAR-GROUP/hpx/pull/3523
3603 https://github.com/STEllAR-GROUP/hpx/pull/3522
3604 https://github.com/STEllAR-GROUP/hpx/pull/3521
3605 https://github.com/STEllAR-GROUP/hpx/pull/3520
3606 https://github.com/STEllAR-GROUP/hpx/pull/3519
3607 https://github.com/STEllAR-GROUP/hpx/pull/3518
3608 https://github.com/STEllAR-GROUP/hpx/pull/3516
3609 https://github.com/STEllAR-GROUP/hpx/pull/3515
3610 https://github.com/STEllAR-GROUP/hpx/pull/3513
3611 https://github.com/STEllAR-GROUP/hpx/pull/3508
3612 https://github.com/STEllAR-GROUP/hpx/pull/3507
3613 https://github.com/STEllAR-GROUP/hpx/pull/3503
3614 https://github.com/STEllAR-GROUP/hpx/pull/3502
3615 https://github.com/STEllAR-GROUP/hpx/pull/3501
3616 https://github.com/STEllAR-GROUP/hpx/pull/3500
3617 https://github.com/STEllAR-GROUP/hpx/pull/3497
3618 https://github.com/STEllAR-GROUP/hpx/pull/3495

2.10. Releases 1693

https://github.com/STEllAR-GROUP/hpx/pull/3534
https://github.com/STEllAR-GROUP/hpx/pull/3532
https://github.com/STEllAR-GROUP/hpx/pull/3530
https://github.com/STEllAR-GROUP/hpx/pull/3529
https://github.com/STEllAR-GROUP/hpx/pull/3528
https://github.com/STEllAR-GROUP/hpx/pull/3524
https://github.com/STEllAR-GROUP/hpx/pull/3523
https://github.com/STEllAR-GROUP/hpx/pull/3522
https://github.com/STEllAR-GROUP/hpx/pull/3521
https://github.com/STEllAR-GROUP/hpx/pull/3520
https://github.com/STEllAR-GROUP/hpx/pull/3519
https://github.com/STEllAR-GROUP/hpx/pull/3518
https://github.com/STEllAR-GROUP/hpx/pull/3516
https://github.com/STEllAR-GROUP/hpx/pull/3515
https://github.com/STEllAR-GROUP/hpx/pull/3513
https://github.com/STEllAR-GROUP/hpx/pull/3508
https://github.com/STEllAR-GROUP/hpx/pull/3507
https://github.com/STEllAR-GROUP/hpx/pull/3503
https://github.com/STEllAR-GROUP/hpx/pull/3502
https://github.com/STEllAR-GROUP/hpx/pull/3501
https://github.com/STEllAR-GROUP/hpx/pull/3500
https://github.com/STEllAR-GROUP/hpx/pull/3497
https://github.com/STEllAR-GROUP/hpx/pull/3495

HPX Documentation, master

• PR #34933619 - Remove deprecated options for 1.2.0 part 2

• PR #34923620 - Add CUDA_LINK_LIBRARIES_KEYWORD to allow PRIVATE keyword in linkage t. . .

• PR #34913621 - Changing Base docker image

• PR #34903622 - Don’t create tasks immediately with hpx::apply

• PR #34893623 - Remove deprecated options for 1.2.0

• PR #34883624 - Revert “Use BUILD_INTERFACE generator expression to fix cmake flag exports”

• PR #34873625 - Revert “Fixing type attribute warning for transfer_action”

• PR #34853626 - Use BUILD_INTERFACE generator expression to fix cmake flag exports

• PR #34833627 - Fixing type attribute warning for transfer_action

• PR #34813628 - Remove unused variables

• PR #34803629 - Towards a more lightweight transfer action

• PR #34793630 - Fix FLAGS - Use correct version of target_compile_options

• PR #34783631 - Making sure the application’s exit code is properly propagated back to the OS

• PR #34763632 - Don’t print docker credentials as part of the environment.

• PR #34733633 - Fixing invalid cmake code if no jemalloc prefix was given

• PR #34723634 - Attempting to work around recent clang test compilation failures

• PR #34713635 - Enable jemalloc on windows

• PR #34703636 - Updates readme

• PR #34683637 - Avoid hang if there is an exception thrown during startup

• PR #34673638 - Add compiler specific fallthrough attributes if C++17 attribute is not available

• PR #34663639 - - bugfix : fix compilation with llvm-7.0

• PR #34653640 - This patch adds various optimizations extracted from the thread_local_allocator work

• PR #34643641 - Check for forked repos in CircleCI docker push step
3619 https://github.com/STEllAR-GROUP/hpx/pull/3493
3620 https://github.com/STEllAR-GROUP/hpx/pull/3492
3621 https://github.com/STEllAR-GROUP/hpx/pull/3491
3622 https://github.com/STEllAR-GROUP/hpx/pull/3490
3623 https://github.com/STEllAR-GROUP/hpx/pull/3489
3624 https://github.com/STEllAR-GROUP/hpx/pull/3488
3625 https://github.com/STEllAR-GROUP/hpx/pull/3487
3626 https://github.com/STEllAR-GROUP/hpx/pull/3485
3627 https://github.com/STEllAR-GROUP/hpx/pull/3483
3628 https://github.com/STEllAR-GROUP/hpx/pull/3481
3629 https://github.com/STEllAR-GROUP/hpx/pull/3480
3630 https://github.com/STEllAR-GROUP/hpx/pull/3479
3631 https://github.com/STEllAR-GROUP/hpx/pull/3478
3632 https://github.com/STEllAR-GROUP/hpx/pull/3476
3633 https://github.com/STEllAR-GROUP/hpx/pull/3473
3634 https://github.com/STEllAR-GROUP/hpx/pull/3472
3635 https://github.com/STEllAR-GROUP/hpx/pull/3471
3636 https://github.com/STEllAR-GROUP/hpx/pull/3470
3637 https://github.com/STEllAR-GROUP/hpx/pull/3468
3638 https://github.com/STEllAR-GROUP/hpx/pull/3467
3639 https://github.com/STEllAR-GROUP/hpx/pull/3466
3640 https://github.com/STEllAR-GROUP/hpx/pull/3465
3641 https://github.com/STEllAR-GROUP/hpx/pull/3464

1694 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3493
https://github.com/STEllAR-GROUP/hpx/pull/3492
https://github.com/STEllAR-GROUP/hpx/pull/3491
https://github.com/STEllAR-GROUP/hpx/pull/3490
https://github.com/STEllAR-GROUP/hpx/pull/3489
https://github.com/STEllAR-GROUP/hpx/pull/3488
https://github.com/STEllAR-GROUP/hpx/pull/3487
https://github.com/STEllAR-GROUP/hpx/pull/3485
https://github.com/STEllAR-GROUP/hpx/pull/3483
https://github.com/STEllAR-GROUP/hpx/pull/3481
https://github.com/STEllAR-GROUP/hpx/pull/3480
https://github.com/STEllAR-GROUP/hpx/pull/3479
https://github.com/STEllAR-GROUP/hpx/pull/3478
https://github.com/STEllAR-GROUP/hpx/pull/3476
https://github.com/STEllAR-GROUP/hpx/pull/3473
https://github.com/STEllAR-GROUP/hpx/pull/3472
https://github.com/STEllAR-GROUP/hpx/pull/3471
https://github.com/STEllAR-GROUP/hpx/pull/3470
https://github.com/STEllAR-GROUP/hpx/pull/3468
https://github.com/STEllAR-GROUP/hpx/pull/3467
https://github.com/STEllAR-GROUP/hpx/pull/3466
https://github.com/STEllAR-GROUP/hpx/pull/3465
https://github.com/STEllAR-GROUP/hpx/pull/3464

HPX Documentation, master

• PR #34633642 - - cmake : create the parent directory before symlinking

• PR #34593643 - Remove unused/incomplete functionality from util/logging

• PR #34583644 - Fix a problem with scope of CMAKE_CXX_FLAGS and hpx_add_compile_flag

• PR #34573645 - Fixing more size_t -> int16_t (and similar) warnings

• PR #34563646 - Add #ifdefs to topology.cpp to support old hwloc versions again

• PR #34543647 - Fixing warnings related to silent conversion of size_t –> int16_t

• PR #34513648 - Add examples as unit tests

• PR #34503649 - Constexpr-fying bind and other functional facilities

• PR #34463650 - Fix some thread suspension timeouts

• PR #34453651 - Fix various warnings

• PR #34433652 - Only enable service pool config options if pools are enabled

• PR #34413653 - Fix missing closing brackets in documentation

• PR #34393654 - Use correct MPI CXX libraries for MPI parcelport

• PR #34363655 - Add projection function to find_* (and fix very bad bug)

• PR #34353656 - Fixing 1205

• PR #34343657 - Fix threads cores

• PR #34333658 - Add Heise Online to release announcement list

• PR #34323659 - Don’t track task dependencies for distributed runs

• PR #34313660 - Circle CI setting changes for hpxMP

• PR #34303661 - Fix unused params warning

• PR #34293662 - One thread per core

• PR #34283663 - This suppresses a deprecation warning that is being issued by MSVC 19.15.26726

• PR #34273664 - Fixes #3426
3642 https://github.com/STEllAR-GROUP/hpx/pull/3463
3643 https://github.com/STEllAR-GROUP/hpx/pull/3459
3644 https://github.com/STEllAR-GROUP/hpx/pull/3458
3645 https://github.com/STEllAR-GROUP/hpx/pull/3457
3646 https://github.com/STEllAR-GROUP/hpx/pull/3456
3647 https://github.com/STEllAR-GROUP/hpx/pull/3454
3648 https://github.com/STEllAR-GROUP/hpx/pull/3451
3649 https://github.com/STEllAR-GROUP/hpx/pull/3450
3650 https://github.com/STEllAR-GROUP/hpx/pull/3446
3651 https://github.com/STEllAR-GROUP/hpx/pull/3445
3652 https://github.com/STEllAR-GROUP/hpx/pull/3443
3653 https://github.com/STEllAR-GROUP/hpx/pull/3441
3654 https://github.com/STEllAR-GROUP/hpx/pull/3439
3655 https://github.com/STEllAR-GROUP/hpx/pull/3436
3656 https://github.com/STEllAR-GROUP/hpx/pull/3435
3657 https://github.com/STEllAR-GROUP/hpx/pull/3434
3658 https://github.com/STEllAR-GROUP/hpx/pull/3433
3659 https://github.com/STEllAR-GROUP/hpx/pull/3432
3660 https://github.com/STEllAR-GROUP/hpx/pull/3431
3661 https://github.com/STEllAR-GROUP/hpx/pull/3430
3662 https://github.com/STEllAR-GROUP/hpx/pull/3429
3663 https://github.com/STEllAR-GROUP/hpx/pull/3428
3664 https://github.com/STEllAR-GROUP/hpx/pull/3427

2.10. Releases 1695

https://github.com/STEllAR-GROUP/hpx/pull/3463
https://github.com/STEllAR-GROUP/hpx/pull/3459
https://github.com/STEllAR-GROUP/hpx/pull/3458
https://github.com/STEllAR-GROUP/hpx/pull/3457
https://github.com/STEllAR-GROUP/hpx/pull/3456
https://github.com/STEllAR-GROUP/hpx/pull/3454
https://github.com/STEllAR-GROUP/hpx/pull/3451
https://github.com/STEllAR-GROUP/hpx/pull/3450
https://github.com/STEllAR-GROUP/hpx/pull/3446
https://github.com/STEllAR-GROUP/hpx/pull/3445
https://github.com/STEllAR-GROUP/hpx/pull/3443
https://github.com/STEllAR-GROUP/hpx/pull/3441
https://github.com/STEllAR-GROUP/hpx/pull/3439
https://github.com/STEllAR-GROUP/hpx/pull/3436
https://github.com/STEllAR-GROUP/hpx/pull/3435
https://github.com/STEllAR-GROUP/hpx/pull/3434
https://github.com/STEllAR-GROUP/hpx/pull/3433
https://github.com/STEllAR-GROUP/hpx/pull/3432
https://github.com/STEllAR-GROUP/hpx/pull/3431
https://github.com/STEllAR-GROUP/hpx/pull/3430
https://github.com/STEllAR-GROUP/hpx/pull/3429
https://github.com/STEllAR-GROUP/hpx/pull/3428
https://github.com/STEllAR-GROUP/hpx/pull/3427

HPX Documentation, master

• PR #34253665 - Use source cache and workspace between job steps on CircleCI

• PR #34213666 - Add CDash timing output to future overhead test (for graphs)

• PR #34203667 - Add guided_pool_executor

• PR #34193668 - Fix typo in CircleCI config

• PR #34183669 - Add sphinx documentation

• PR #34153670 - Scheduler NUMA hint and shared priority scheduler

• PR #34143671 - Adding step to synchronize the APEX release

• PR #34133672 - Fixing multiple defines of APEX_HAVE_HPX

• PR #34123673 - Fixes linking with libhpx_wrap error with BSD and Windows based systems

• PR #34103674 - Fix typo in CMakeLists.txt

• PR #34093675 - Fix brackets and indentation in existing_performance_counters.qbk

• PR #34073676 - Fix unused param and extra ; warnings emitted by gcc 8.x

• PR #34063677 - Adding thread local allocator and use it for future shared states

• PR #34053678 - Adding DHPX_HAVE_THREAD_LOCAL_STORAGE=ON to builds

• PR #34043679 - fixing multiple definition of main() in linux

• PR #34023680 - Allow debug option to be enabled only for Linux systems with dynamic main on

• PR #34013681 - Fix cuda_future_helper.h when compiling with C++11

• PR #34003682 - Fix floating point exception scheduler_base idle backoff

• PR #33983683 - Atomic future state

• PR #33973684 - Fixing code for older gcc versions

• PR #33963685 - Allowing to register thread event functions (start/stop/error)

• PR #33943686 - Fix small mistake in primary_namespace_server.cpp

• PR #33933687 - Explicitly instantiate configured schedulers
3665 https://github.com/STEllAR-GROUP/hpx/pull/3425
3666 https://github.com/STEllAR-GROUP/hpx/pull/3421
3667 https://github.com/STEllAR-GROUP/hpx/pull/3420
3668 https://github.com/STEllAR-GROUP/hpx/pull/3419
3669 https://github.com/STEllAR-GROUP/hpx/pull/3418
3670 https://github.com/STEllAR-GROUP/hpx/pull/3415
3671 https://github.com/STEllAR-GROUP/hpx/pull/3414
3672 https://github.com/STEllAR-GROUP/hpx/pull/3413
3673 https://github.com/STEllAR-GROUP/hpx/pull/3412
3674 https://github.com/STEllAR-GROUP/hpx/pull/3410
3675 https://github.com/STEllAR-GROUP/hpx/pull/3409
3676 https://github.com/STEllAR-GROUP/hpx/pull/3407
3677 https://github.com/STEllAR-GROUP/hpx/pull/3406
3678 https://github.com/STEllAR-GROUP/hpx/pull/3405
3679 https://github.com/STEllAR-GROUP/hpx/pull/3404
3680 https://github.com/STEllAR-GROUP/hpx/pull/3402
3681 https://github.com/STEllAR-GROUP/hpx/pull/3401
3682 https://github.com/STEllAR-GROUP/hpx/pull/3400
3683 https://github.com/STEllAR-GROUP/hpx/pull/3398
3684 https://github.com/STEllAR-GROUP/hpx/pull/3397
3685 https://github.com/STEllAR-GROUP/hpx/pull/3396
3686 https://github.com/STEllAR-GROUP/hpx/pull/3394
3687 https://github.com/STEllAR-GROUP/hpx/pull/3393

1696 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3425
https://github.com/STEllAR-GROUP/hpx/pull/3421
https://github.com/STEllAR-GROUP/hpx/pull/3420
https://github.com/STEllAR-GROUP/hpx/pull/3419
https://github.com/STEllAR-GROUP/hpx/pull/3418
https://github.com/STEllAR-GROUP/hpx/pull/3415
https://github.com/STEllAR-GROUP/hpx/pull/3414
https://github.com/STEllAR-GROUP/hpx/pull/3413
https://github.com/STEllAR-GROUP/hpx/pull/3412
https://github.com/STEllAR-GROUP/hpx/pull/3410
https://github.com/STEllAR-GROUP/hpx/pull/3409
https://github.com/STEllAR-GROUP/hpx/pull/3407
https://github.com/STEllAR-GROUP/hpx/pull/3406
https://github.com/STEllAR-GROUP/hpx/pull/3405
https://github.com/STEllAR-GROUP/hpx/pull/3404
https://github.com/STEllAR-GROUP/hpx/pull/3402
https://github.com/STEllAR-GROUP/hpx/pull/3401
https://github.com/STEllAR-GROUP/hpx/pull/3400
https://github.com/STEllAR-GROUP/hpx/pull/3398
https://github.com/STEllAR-GROUP/hpx/pull/3397
https://github.com/STEllAR-GROUP/hpx/pull/3396
https://github.com/STEllAR-GROUP/hpx/pull/3394
https://github.com/STEllAR-GROUP/hpx/pull/3393

HPX Documentation, master

• PR #33923688 - Add performance counters background overhead and background work duration

• PR #33913689 - Adapt integration of HPXMP to latest build system changes

• PR #33903690 - Make AGAS measurements optional

• PR #33893691 - Fix deadlock during shutdown

• PR #33883692 - Add several functionalities allowing to optimize synchronous action invocation

• PR #33873693 - Add cmake option to opt out of fail-compile tests

• PR #33863694 - Adding support for boost::container::small_vector to dataflow

• PR #33853695 - Adds Debug option for hpx initializing from main

• PR #33843696 - This hopefully fixes two tests that occasionally fail

• PR #33833697 - Making sure thread local storage is enable for hpxMP

• PR #33823698 - Fix usage of HPX_CAPTURE together with default value capture [=]

• PR #33813699 - Replace undefined instantiations of uniform_int_distribution

• PR #33803700 - Add missing semicolons to uses of HPX_COMPILER_FENCE

• PR #33793701 - Fixing #3378

• PR #33773702 - Adding build system support to integrate hpxmp into hpx at the user’s machine

• PR #33753703 - Replacing wrapper for __libc_start_main with main

• PR #33743704 - Adds hpx_wrap to HPX_LINK_LIBRARIES which links only when specified.

• PR #33733705 - Forcing cache settings in HPXConfig.cmake to guarantee updated values

• PR #33723706 - Fix some more c++11 build problems

• PR #33713707 - Adds HPX_LINKER_FLAGS to HPX applications without editing their source codes

• PR #33703708 - util::format: add type_specifier<> specializations for %!s(MISSING) and %!l(MISSING)s

• PR #33693709 - Adding configuration option to allow explicit disable of the new hpx_main feature on Linux

• PR #33683710 - Updates doc with recent hpx_wrap implementation
3688 https://github.com/STEllAR-GROUP/hpx/pull/3392
3689 https://github.com/STEllAR-GROUP/hpx/pull/3391
3690 https://github.com/STEllAR-GROUP/hpx/pull/3390
3691 https://github.com/STEllAR-GROUP/hpx/pull/3389
3692 https://github.com/STEllAR-GROUP/hpx/pull/3388
3693 https://github.com/STEllAR-GROUP/hpx/pull/3387
3694 https://github.com/STEllAR-GROUP/hpx/pull/3386
3695 https://github.com/STEllAR-GROUP/hpx/pull/3385
3696 https://github.com/STEllAR-GROUP/hpx/pull/3384
3697 https://github.com/STEllAR-GROUP/hpx/pull/3383
3698 https://github.com/STEllAR-GROUP/hpx/pull/3382
3699 https://github.com/STEllAR-GROUP/hpx/pull/3381
3700 https://github.com/STEllAR-GROUP/hpx/pull/3380
3701 https://github.com/STEllAR-GROUP/hpx/pull/3379
3702 https://github.com/STEllAR-GROUP/hpx/pull/3377
3703 https://github.com/STEllAR-GROUP/hpx/pull/3375
3704 https://github.com/STEllAR-GROUP/hpx/pull/3374
3705 https://github.com/STEllAR-GROUP/hpx/pull/3373
3706 https://github.com/STEllAR-GROUP/hpx/pull/3372
3707 https://github.com/STEllAR-GROUP/hpx/pull/3371
3708 https://github.com/STEllAR-GROUP/hpx/pull/3370
3709 https://github.com/STEllAR-GROUP/hpx/pull/3369
3710 https://github.com/STEllAR-GROUP/hpx/pull/3368

2.10. Releases 1697

https://github.com/STEllAR-GROUP/hpx/pull/3392
https://github.com/STEllAR-GROUP/hpx/pull/3391
https://github.com/STEllAR-GROUP/hpx/pull/3390
https://github.com/STEllAR-GROUP/hpx/pull/3389
https://github.com/STEllAR-GROUP/hpx/pull/3388
https://github.com/STEllAR-GROUP/hpx/pull/3387
https://github.com/STEllAR-GROUP/hpx/pull/3386
https://github.com/STEllAR-GROUP/hpx/pull/3385
https://github.com/STEllAR-GROUP/hpx/pull/3384
https://github.com/STEllAR-GROUP/hpx/pull/3383
https://github.com/STEllAR-GROUP/hpx/pull/3382
https://github.com/STEllAR-GROUP/hpx/pull/3381
https://github.com/STEllAR-GROUP/hpx/pull/3380
https://github.com/STEllAR-GROUP/hpx/pull/3379
https://github.com/STEllAR-GROUP/hpx/pull/3377
https://github.com/STEllAR-GROUP/hpx/pull/3375
https://github.com/STEllAR-GROUP/hpx/pull/3374
https://github.com/STEllAR-GROUP/hpx/pull/3373
https://github.com/STEllAR-GROUP/hpx/pull/3372
https://github.com/STEllAR-GROUP/hpx/pull/3371
https://github.com/STEllAR-GROUP/hpx/pull/3370
https://github.com/STEllAR-GROUP/hpx/pull/3369
https://github.com/STEllAR-GROUP/hpx/pull/3368

HPX Documentation, master

• PR #33673711 - Adds Mac OS implementation to hpx_main.hpp

• PR #33653712 - Fix order of hpx libs in HPX_CONF_LIBRARIES.

• PR #33633713 - Apex fixing null wrapper

• PR #33613714 - Making sure all parcels get destroyed on an HPX thread (TCP pp)

• PR #33593715 - Feature/improveerrorforcompiler

• PR #33573716 - Static/dynamic executable implementation

• PR #33553717 - Reverting changes introduced by #3283 as those make applications hang

• PR #33543718 - Add external dependencies to HPX_LIBRARY_DIR

• PR #33533719 - Fix libfabric tcp

• PR #33513720 - Move obsolete header to tests directory.

• PR #33503721 - Renaming two functions to avoid problem described in #3285

• PR #33493722 - Make idle backoff exponential with maximum sleep time

• PR #33473723 - Replace simple_component* with component* in the Documentation

• PR #33463724 - Fix CMakeLists.txt example in quick start

• PR #33453725 - Fix automatic setting of HPX_MORE_THAN_64_THREADS

• PR #33443726 - Reduce amount of information printed for unknown command line options

• PR #33433727 - Safeguard HPX against destruction in global contexts

• PR #33413728 - Allowing for all command line options to be used as configuration settings

• PR #33403729 - Always convert inspect results to JUnit XML

• PR #33363730 - Only run docker push on master on CircleCI

• PR #33353731 - Update description of hpx.os_threads config parameter.

• PR #33343732 - Making sure early logging settings don’t get mixed with others

• PR #33333733 - Update CMake links and versions in documentation
3711 https://github.com/STEllAR-GROUP/hpx/pull/3367
3712 https://github.com/STEllAR-GROUP/hpx/pull/3365
3713 https://github.com/STEllAR-GROUP/hpx/pull/3363
3714 https://github.com/STEllAR-GROUP/hpx/pull/3361
3715 https://github.com/STEllAR-GROUP/hpx/pull/3359
3716 https://github.com/STEllAR-GROUP/hpx/pull/3357
3717 https://github.com/STEllAR-GROUP/hpx/pull/3355
3718 https://github.com/STEllAR-GROUP/hpx/pull/3354
3719 https://github.com/STEllAR-GROUP/hpx/pull/3353
3720 https://github.com/STEllAR-GROUP/hpx/pull/3351
3721 https://github.com/STEllAR-GROUP/hpx/pull/3350
3722 https://github.com/STEllAR-GROUP/hpx/pull/3349
3723 https://github.com/STEllAR-GROUP/hpx/pull/3347
3724 https://github.com/STEllAR-GROUP/hpx/pull/3346
3725 https://github.com/STEllAR-GROUP/hpx/pull/3345
3726 https://github.com/STEllAR-GROUP/hpx/pull/3344
3727 https://github.com/STEllAR-GROUP/hpx/pull/3343
3728 https://github.com/STEllAR-GROUP/hpx/pull/3341
3729 https://github.com/STEllAR-GROUP/hpx/pull/3340
3730 https://github.com/STEllAR-GROUP/hpx/pull/3336
3731 https://github.com/STEllAR-GROUP/hpx/pull/3335
3732 https://github.com/STEllAR-GROUP/hpx/pull/3334
3733 https://github.com/STEllAR-GROUP/hpx/pull/3333

1698 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3367
https://github.com/STEllAR-GROUP/hpx/pull/3365
https://github.com/STEllAR-GROUP/hpx/pull/3363
https://github.com/STEllAR-GROUP/hpx/pull/3361
https://github.com/STEllAR-GROUP/hpx/pull/3359
https://github.com/STEllAR-GROUP/hpx/pull/3357
https://github.com/STEllAR-GROUP/hpx/pull/3355
https://github.com/STEllAR-GROUP/hpx/pull/3354
https://github.com/STEllAR-GROUP/hpx/pull/3353
https://github.com/STEllAR-GROUP/hpx/pull/3351
https://github.com/STEllAR-GROUP/hpx/pull/3350
https://github.com/STEllAR-GROUP/hpx/pull/3349
https://github.com/STEllAR-GROUP/hpx/pull/3347
https://github.com/STEllAR-GROUP/hpx/pull/3346
https://github.com/STEllAR-GROUP/hpx/pull/3345
https://github.com/STEllAR-GROUP/hpx/pull/3344
https://github.com/STEllAR-GROUP/hpx/pull/3343
https://github.com/STEllAR-GROUP/hpx/pull/3341
https://github.com/STEllAR-GROUP/hpx/pull/3340
https://github.com/STEllAR-GROUP/hpx/pull/3336
https://github.com/STEllAR-GROUP/hpx/pull/3335
https://github.com/STEllAR-GROUP/hpx/pull/3334
https://github.com/STEllAR-GROUP/hpx/pull/3333

HPX Documentation, master

• PR #33323734 - Add notes on target suffixes to CMake documentation

• PR #33313735 - Add quickstart section to documentation

• PR #33303736 - Rename resource_partitioner test to avoid conflicts with pseudodependencies

• PR #33283737 - Making sure object is pinned while executing actions, even if action returns a future

• PR #33273738 - Add missing std::forward to tuple.hpp

• PR #33263739 - Make sure logging is up and running while modules are being discovered.

• PR #33243740 - Replace C++14 overload of std::equal with C++11 code.

• PR #33233741 - Fix a missing apex thread data (wrapper) initialization

• PR #33203742 - Adding support for -std=c++2a (define HPX_WITH_CXX2A=On)

• PR #33193743 - Replacing C++14 feature with equivalent C++11 code

• PR #33173744 - Fix compilation with VS 15.7.1 and /std:c++latest

• PR #33163745 - Fix includes for 1d_stencil_*_omp examples

• PR #33143746 - Remove some unused parameter warnings

• PR #33133747 - Fix pu-step and pu-offset command line options

• PR #33123748 - Add conversion of inspect reports to JUnit XML

• PR #33113749 - Fix escaping of closing braces in format specification syntax

• PR #33103750 - Don’t overwrite user settings with defaults in registration database

• PR #33093751 - Fixing potential stack overflow for dataflow

• PR #33083752 - This updates the .clang-format configuration file to utilize newer features

• PR #33063753 - Marking migratable objects in their gid to allow not handling migration in AGAS

• PR #33053754 - Add proper exception handling to run_as_hpx_thread

• PR #33033755 - Changed std::rand to a better inbuilt PRNG Generator

• PR #33023756 - All non-migratable (simple) components now encode their lva and component type in their gid
3734 https://github.com/STEllAR-GROUP/hpx/pull/3332
3735 https://github.com/STEllAR-GROUP/hpx/pull/3331
3736 https://github.com/STEllAR-GROUP/hpx/pull/3330
3737 https://github.com/STEllAR-GROUP/hpx/pull/3328
3738 https://github.com/STEllAR-GROUP/hpx/pull/3327
3739 https://github.com/STEllAR-GROUP/hpx/pull/3326
3740 https://github.com/STEllAR-GROUP/hpx/pull/3324
3741 https://github.com/STEllAR-GROUP/hpx/pull/3323
3742 https://github.com/STEllAR-GROUP/hpx/pull/3320
3743 https://github.com/STEllAR-GROUP/hpx/pull/3319
3744 https://github.com/STEllAR-GROUP/hpx/pull/3317
3745 https://github.com/STEllAR-GROUP/hpx/pull/3316
3746 https://github.com/STEllAR-GROUP/hpx/pull/3314
3747 https://github.com/STEllAR-GROUP/hpx/pull/3313
3748 https://github.com/STEllAR-GROUP/hpx/pull/3312
3749 https://github.com/STEllAR-GROUP/hpx/pull/3311
3750 https://github.com/STEllAR-GROUP/hpx/pull/3310
3751 https://github.com/STEllAR-GROUP/hpx/pull/3309
3752 https://github.com/STEllAR-GROUP/hpx/pull/3308
3753 https://github.com/STEllAR-GROUP/hpx/pull/3306
3754 https://github.com/STEllAR-GROUP/hpx/pull/3305
3755 https://github.com/STEllAR-GROUP/hpx/pull/3303
3756 https://github.com/STEllAR-GROUP/hpx/pull/3302

2.10. Releases 1699

https://github.com/STEllAR-GROUP/hpx/pull/3332
https://github.com/STEllAR-GROUP/hpx/pull/3331
https://github.com/STEllAR-GROUP/hpx/pull/3330
https://github.com/STEllAR-GROUP/hpx/pull/3328
https://github.com/STEllAR-GROUP/hpx/pull/3327
https://github.com/STEllAR-GROUP/hpx/pull/3326
https://github.com/STEllAR-GROUP/hpx/pull/3324
https://github.com/STEllAR-GROUP/hpx/pull/3323
https://github.com/STEllAR-GROUP/hpx/pull/3320
https://github.com/STEllAR-GROUP/hpx/pull/3319
https://github.com/STEllAR-GROUP/hpx/pull/3317
https://github.com/STEllAR-GROUP/hpx/pull/3316
https://github.com/STEllAR-GROUP/hpx/pull/3314
https://github.com/STEllAR-GROUP/hpx/pull/3313
https://github.com/STEllAR-GROUP/hpx/pull/3312
https://github.com/STEllAR-GROUP/hpx/pull/3311
https://github.com/STEllAR-GROUP/hpx/pull/3310
https://github.com/STEllAR-GROUP/hpx/pull/3309
https://github.com/STEllAR-GROUP/hpx/pull/3308
https://github.com/STEllAR-GROUP/hpx/pull/3306
https://github.com/STEllAR-GROUP/hpx/pull/3305
https://github.com/STEllAR-GROUP/hpx/pull/3303
https://github.com/STEllAR-GROUP/hpx/pull/3302

HPX Documentation, master

• PR #33013757 - Add nullptr_t overloads to resource partitioner

• PR #32983758 - Apex task wrapper memory bug

• PR #32953759 - Fix mistakes after merge of CircleCI config

• PR #32943760 - Fix partitioned vector include in partitioned_vector_find tests

• PR #32933761 - Adding emplace support to promise and make_ready_future

• PR #32923762 - Add new cuda kernel synchronization with hpx::future demo

• PR #32913763 - Fixes #3290

• PR #32893764 - Fixing Docker image creation

• PR #32883765 - Avoid allocating shared state for wait_all

• PR #32873766 - Fixing /scheduler/utilization/instantaneous performance counter

• PR #32863767 - dataflow() and future::then() use sync policy where possible

• PR #32843768 - Background thread can use relaxed atomics to manipulate thread state

• PR #32833769 - Do not unwrap ready future

• PR #32823770 - Fix virtual method override warnings in static schedulers

• PR #32813771 - Disable set_area_membind_nodeset for OSX

• PR #32793772 - Add two variations to the future_overhead benchmark

• PR #32783773 - Fix circleci workspace

• PR #32773774 - Support external plugins

• PR #32763775 - Fix missing parenthesis in hello_compute.cu.

• PR #32743776 - Reinit counters synchronously in reinit_counters test

• PR #32733777 - Splitting tests to avoid compiler OOM

• PR #32713778 - Remove leftover code from context_generic_context.hpp

• PR #32693779 - Fix bulk_construct with count = 0
3757 https://github.com/STEllAR-GROUP/hpx/pull/3301
3758 https://github.com/STEllAR-GROUP/hpx/pull/3298
3759 https://github.com/STEllAR-GROUP/hpx/pull/3295
3760 https://github.com/STEllAR-GROUP/hpx/pull/3294
3761 https://github.com/STEllAR-GROUP/hpx/pull/3293
3762 https://github.com/STEllAR-GROUP/hpx/pull/3292
3763 https://github.com/STEllAR-GROUP/hpx/pull/3291
3764 https://github.com/STEllAR-GROUP/hpx/pull/3289
3765 https://github.com/STEllAR-GROUP/hpx/pull/3288
3766 https://github.com/STEllAR-GROUP/hpx/pull/3287
3767 https://github.com/STEllAR-GROUP/hpx/pull/3286
3768 https://github.com/STEllAR-GROUP/hpx/pull/3284
3769 https://github.com/STEllAR-GROUP/hpx/pull/3283
3770 https://github.com/STEllAR-GROUP/hpx/pull/3282
3771 https://github.com/STEllAR-GROUP/hpx/pull/3281
3772 https://github.com/STEllAR-GROUP/hpx/pull/3279
3773 https://github.com/STEllAR-GROUP/hpx/pull/3278
3774 https://github.com/STEllAR-GROUP/hpx/pull/3277
3775 https://github.com/STEllAR-GROUP/hpx/pull/3276
3776 https://github.com/STEllAR-GROUP/hpx/pull/3274
3777 https://github.com/STEllAR-GROUP/hpx/pull/3273
3778 https://github.com/STEllAR-GROUP/hpx/pull/3271
3779 https://github.com/STEllAR-GROUP/hpx/pull/3269

1700 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3301
https://github.com/STEllAR-GROUP/hpx/pull/3298
https://github.com/STEllAR-GROUP/hpx/pull/3295
https://github.com/STEllAR-GROUP/hpx/pull/3294
https://github.com/STEllAR-GROUP/hpx/pull/3293
https://github.com/STEllAR-GROUP/hpx/pull/3292
https://github.com/STEllAR-GROUP/hpx/pull/3291
https://github.com/STEllAR-GROUP/hpx/pull/3289
https://github.com/STEllAR-GROUP/hpx/pull/3288
https://github.com/STEllAR-GROUP/hpx/pull/3287
https://github.com/STEllAR-GROUP/hpx/pull/3286
https://github.com/STEllAR-GROUP/hpx/pull/3284
https://github.com/STEllAR-GROUP/hpx/pull/3283
https://github.com/STEllAR-GROUP/hpx/pull/3282
https://github.com/STEllAR-GROUP/hpx/pull/3281
https://github.com/STEllAR-GROUP/hpx/pull/3279
https://github.com/STEllAR-GROUP/hpx/pull/3278
https://github.com/STEllAR-GROUP/hpx/pull/3277
https://github.com/STEllAR-GROUP/hpx/pull/3276
https://github.com/STEllAR-GROUP/hpx/pull/3274
https://github.com/STEllAR-GROUP/hpx/pull/3273
https://github.com/STEllAR-GROUP/hpx/pull/3271
https://github.com/STEllAR-GROUP/hpx/pull/3269

HPX Documentation, master

• PR #32683780 - Replace constexpr with HPX_CXX14_CONSTEXPR and HPX_CONSTEXPR

• PR #32663781 - Replace boost::format with custom sprintf-based implementation

• PR #32653782 - Split parallel tests on CircleCI

• PR #32623783 - Making sure documentation correctly links to source files

• PR #32613784 - Apex refactoring fix rebind

• PR #32603785 - Isolate performance counter parser into a separate TU

• PR #32563786 - Post 1.1.0 version bumps

• PR #32543787 - Adding trait for actions allowing to make runtime decision on whether to execute it directly

• PR #32533788 - Bump minimal supported Boost to 1.58.0

• PR #32513789 - Adds new feature: changing interval used in interval_timer (issue 3244)

• PR #32393790 - Changing std::rand() to a better inbuilt PRNG generator.

• PR #32343791 - Disable background thread when networking is off

• PR #32323792 - Clean up suspension tests

• PR #32303793 - Add optional scheduler mode parameter to create_thread_pool function

• PR #32283794 - Allow suspension also on static schedulers

• PR #31633795 - libfabric parcelport w/o HPX_PARCELPORT_LIBFABRIC_ENDPOINT_RDM

• PR #30363796 - Switching to CircleCI 2.0

HPX V1.1.0 (Mar 24, 2018)

General changes

Here are some of the main highlights and changes for this release (in no particular order):

• We have changed the way HPX manages the processing units on a node. We do not longer implicitly bind all
available cores to a single thread pool. The user has now full control over what processing units are bound to what
thread pool, each with a separate scheduler. It is now also possible to create your own scheduler implementation
and control what processing units this scheduler should use. We added the hpx::resource::partitioner
that manages all available processing units and assigns resources to the used thread pools. Thread pools can be

3780 https://github.com/STEllAR-GROUP/hpx/pull/3268
3781 https://github.com/STEllAR-GROUP/hpx/pull/3266
3782 https://github.com/STEllAR-GROUP/hpx/pull/3265
3783 https://github.com/STEllAR-GROUP/hpx/pull/3262
3784 https://github.com/STEllAR-GROUP/hpx/pull/3261
3785 https://github.com/STEllAR-GROUP/hpx/pull/3260
3786 https://github.com/STEllAR-GROUP/hpx/pull/3256
3787 https://github.com/STEllAR-GROUP/hpx/pull/3254
3788 https://github.com/STEllAR-GROUP/hpx/pull/3253
3789 https://github.com/STEllAR-GROUP/hpx/pull/3251
3790 https://github.com/STEllAR-GROUP/hpx/pull/3239
3791 https://github.com/STEllAR-GROUP/hpx/pull/3234
3792 https://github.com/STEllAR-GROUP/hpx/pull/3232
3793 https://github.com/STEllAR-GROUP/hpx/pull/3230
3794 https://github.com/STEllAR-GROUP/hpx/pull/3228
3795 https://github.com/STEllAR-GROUP/hpx/pull/3163
3796 https://github.com/STEllAR-GROUP/hpx/pull/3036

2.10. Releases 1701

https://github.com/STEllAR-GROUP/hpx/pull/3268
https://github.com/STEllAR-GROUP/hpx/pull/3266
https://github.com/STEllAR-GROUP/hpx/pull/3265
https://github.com/STEllAR-GROUP/hpx/pull/3262
https://github.com/STEllAR-GROUP/hpx/pull/3261
https://github.com/STEllAR-GROUP/hpx/pull/3260
https://github.com/STEllAR-GROUP/hpx/pull/3256
https://github.com/STEllAR-GROUP/hpx/pull/3254
https://github.com/STEllAR-GROUP/hpx/pull/3253
https://github.com/STEllAR-GROUP/hpx/pull/3251
https://github.com/STEllAR-GROUP/hpx/pull/3239
https://github.com/STEllAR-GROUP/hpx/pull/3234
https://github.com/STEllAR-GROUP/hpx/pull/3232
https://github.com/STEllAR-GROUP/hpx/pull/3230
https://github.com/STEllAR-GROUP/hpx/pull/3228
https://github.com/STEllAR-GROUP/hpx/pull/3163
https://github.com/STEllAR-GROUP/hpx/pull/3036

HPX Documentation, master

now be suspended/resumed independently. This functionality helps in running HPX concurrently to code that is
directly relying on OpenMP3797 and/or MPI3798.

• We have continued to implement various parallel algorithms. HPX now almost completely implements all of
the parallel algorithms as specified by the C++17 Standard3799. We have also continued to implement these
algorithms for the distributed use case (for segmented data structures, such as hpx::partitioned_vector).

• Added a compatibility layer for std::thread, std::mutex, and std::condition_variable allowing for
the code to use those facilities where available and to fall back to the corresponding Boost facilities otherwise.
The CMake3800 configuration option -DHPX_WITH_THREAD_COMPATIBILITY=On can be used to force using the
Boost equivalents.

• The parameter sequence for the hpx::parallel::transform_inclusive_scan overload taking one
iterator range has changed (again) to match the changes this algorithm has undergone while be-
ing moved to C++17. The old overloads can be still enabled at configure time by passing
-DHPX_WITH_TRANSFORM_REDUCE_COMPATIBILITY=On to CMake3801.

• The parameter sequence for the hpx::parallel::inclusive_scan overload taking one iterator range has
changed to match the changes this algorithm has undergone while being moved to C++17. The old overloads can
be still enabled at configure time by passing -DHPX_WITH_INCLUSIVE_SCAN_COMPATIBILITY=On to CMake.

• Added a helper facility hpx::local_new which is equivalent to hpx::new_ except that it creates components
locally only. As a consequence, the used component constructor may accept non-serializable argument types
and/or non-const references or pointers.

• Removed the (broken) component type hpx::lcos::queue<T>. The old type is still available at configure time
by passing -DHPX_WITH_QUEUE_COMPATIBILITY=On to CMake.

• The parallel algorithms adopted for C++17 restrict the iterator categories usable with those to at least forward
iterators. Our implementation of the parallel algorithms was supporting input iterators (and output iterators)
as well by simply falling back to sequential execution. We have now made our implementations conform-
ing by requiring at least forward iterators. In order to enable the old behavior use the compatibility option
-DHPX_WITH_ALGORITHM_INPUT_ITERATOR_SUPPORT=On on the CMake3802 command line.

• We have added the functionalities allowing for LCOs being implemented using (simple) components. Before
LCOs had to always be implemented using managed components.

• User defined components don’t have to be default-constructible anymore. Return types from actions don’t have to
be default-constructible anymore either. Our serialization layer now in general supports non-default-constructible
types.

• We have added a new launch policy hpx::launch::lazy that allows oneto defer the decision on what launch
policy to use to the point of execution. This policy is initialized with a function (object) that – when invoked –
is expected to produce the desired launch policy.

3797 https://openmp.org/wp/
3798 https://en.wikipedia.org/wiki/Message_Passing_Interface
3799 http://www.open-std.org/jtc1/sc22/wg21
3800 https://www.cmake.org
3801 https://www.cmake.org
3802 https://www.cmake.org

1702 Chapter 2. What’s so special about HPX?

https://openmp.org/wp/
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-std.org/jtc1/sc22/wg21
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org

HPX Documentation, master

Breaking changes

• We have dropped support for the gcc compiler version V4.8. The minimal gcc version we now test on is gcc
V4.9. The minimally required version of CMake3803 is now V3.3.2.

• We have dropped support for the Visual Studio 2013 compiler version. The minimal Visual Studio version we
now test on is Visual Studio 2015.5.

• We have dropped support for the Boost V1.51-V1.54. The minimal version of Boost we now test is Boost V1.55.

• We have dropped support for the hpx::util::unwrapped API. hpx::util::unwrapped will stay func-
tional to some degree, until it finally gets removed in a later version of HPX. The functional usage of
hpx::util::unwrapped should be changed to the new hpx::util::unwrapping function whereas the im-
mediate usage should be replaced to hpx::util::unwrap.

• The performance counter names referring to properties as exposed by the threading subsystem have changes as
those now additionally have to specify the thread-pool. See the corresponding documentation for more details.

• The overloads of hpx::async that invoke an action do not perform implicit unwrapping of the returned future
anymore in case the invoked function does return a future in the first place. In this case hpx::async now returns
a hpx::future<future<T>> making its behavior conforming to its local counterpart.

• We have replaced the use of boost::exception_ptr in our APIs with the equivalent std::exception_ptr.
Please change your codes accordingly. No compatibility settings are provided.

• We have removed the compatibility settings for HPX_WITH_COLOCATED_BACKWARDS_COMPATIBILITY and
HPX_WITH_COMPONENT_GET_GID_COMPATIBILITY as their life-cycle has reached its end.

• We have removed the experimental thread schedulers hierarchy_scheduler, periodic_priority_scheduler and throt-
tling_scheduler in an effort to clean up and consolidate our thread schedulers.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• PR #32503804 - Apex refactoring with guids

• PR #32493805 - Updating People.qbk

• PR #32463806 - Assorted fixes for CUDA

• PR #32453807 - Apex refactoring with guids

• PR #32423808 - Modify task counting in thread_queue.hpp

• PR #32403809 - Fixed typos

• PR #32383810 - Readding accidentally removed std::abort

• PR #32373811 - Adding Pipeline example

• PR #32363812 - Fixing memory_block
3803 https://www.cmake.org
3804 https://github.com/STEllAR-GROUP/hpx/pull/3250
3805 https://github.com/STEllAR-GROUP/hpx/pull/3249
3806 https://github.com/STEllAR-GROUP/hpx/pull/3246
3807 https://github.com/STEllAR-GROUP/hpx/pull/3245
3808 https://github.com/STEllAR-GROUP/hpx/pull/3242
3809 https://github.com/STEllAR-GROUP/hpx/pull/3240
3810 https://github.com/STEllAR-GROUP/hpx/pull/3238
3811 https://github.com/STEllAR-GROUP/hpx/pull/3237
3812 https://github.com/STEllAR-GROUP/hpx/pull/3236

2.10. Releases 1703

https://www.cmake.org
https://github.com/STEllAR-GROUP/hpx/pull/3250
https://github.com/STEllAR-GROUP/hpx/pull/3249
https://github.com/STEllAR-GROUP/hpx/pull/3246
https://github.com/STEllAR-GROUP/hpx/pull/3245
https://github.com/STEllAR-GROUP/hpx/pull/3242
https://github.com/STEllAR-GROUP/hpx/pull/3240
https://github.com/STEllAR-GROUP/hpx/pull/3238
https://github.com/STEllAR-GROUP/hpx/pull/3237
https://github.com/STEllAR-GROUP/hpx/pull/3236

HPX Documentation, master

• PR #32333813 - Make schedule_thread take suspended threads into account

• Issue #32263814 - memory_block is breaking, signaling SIGSEGV on a thread on creation and freeing

• PR #32253815 - Applying quick fix for hwloc-2.0

• Issue #32243816 - HPX counters crashing the application

• PR #32233817 - Fix returns when setting config entries

• Issue #32223818 - Errors linking libhpx.so

• Issue #32213819 - HPX on Mac OS X with HWLoc 2.0.0 fails to run

• PR #32163820 - Reorder a variadic array to satisfy VS 2017 15.6

• PR #32143821 - Changed prerequisites.qbk to avoid confusion while building boost

• PR #32133822 - Relax locks for thread suspension to avoid holding locks when yielding

• PR #32123823 - Fix check in sequenced_executor test

• PR #32113824 - Use preinit_array to set argc/argv in init_globally example

• PR #32103825 - Adapted parallel::{search | search_n} for Ranges TS (see #1668)

• PR #32093826 - Fix locking problems during shutdown

• Issue #32083827 - init_globally throwing a run-time error

• PR #32063828 - Addition of new arithmetic performance counter “Count”

• PR #32053829 - Fixing return type calculation for bulk_then_execute

• PR #32043830 - Changing std::rand() to a better inbuilt PRNG generator

• PR #32033831 - Resolving problems during shutdown for VS2015

• PR #32023832 - Making sure resource partitioner is not accessed if its not valid

• PR #32013833 - Fixing optional::swap

• Issue #32003834 - hpx::util::optional fails

• PR #31993835 - Fix sliding_semaphore test
3813 https://github.com/STEllAR-GROUP/hpx/pull/3233
3814 https://github.com/STEllAR-GROUP/hpx/issues/3226
3815 https://github.com/STEllAR-GROUP/hpx/pull/3225
3816 https://github.com/STEllAR-GROUP/hpx/issues/3224
3817 https://github.com/STEllAR-GROUP/hpx/pull/3223
3818 https://github.com/STEllAR-GROUP/hpx/issues/3222
3819 https://github.com/STEllAR-GROUP/hpx/issues/3221
3820 https://github.com/STEllAR-GROUP/hpx/pull/3216
3821 https://github.com/STEllAR-GROUP/hpx/pull/3214
3822 https://github.com/STEllAR-GROUP/hpx/pull/3213
3823 https://github.com/STEllAR-GROUP/hpx/pull/3212
3824 https://github.com/STEllAR-GROUP/hpx/pull/3211
3825 https://github.com/STEllAR-GROUP/hpx/pull/3210
3826 https://github.com/STEllAR-GROUP/hpx/pull/3209
3827 https://github.com/STEllAR-GROUP/hpx/issues/3208
3828 https://github.com/STEllAR-GROUP/hpx/pull/3206
3829 https://github.com/STEllAR-GROUP/hpx/pull/3205
3830 https://github.com/STEllAR-GROUP/hpx/pull/3204
3831 https://github.com/STEllAR-GROUP/hpx/pull/3203
3832 https://github.com/STEllAR-GROUP/hpx/pull/3202
3833 https://github.com/STEllAR-GROUP/hpx/pull/3201
3834 https://github.com/STEllAR-GROUP/hpx/issues/3200
3835 https://github.com/STEllAR-GROUP/hpx/pull/3199

1704 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3233
https://github.com/STEllAR-GROUP/hpx/issues/3226
https://github.com/STEllAR-GROUP/hpx/pull/3225
https://github.com/STEllAR-GROUP/hpx/issues/3224
https://github.com/STEllAR-GROUP/hpx/pull/3223
https://github.com/STEllAR-GROUP/hpx/issues/3222
https://github.com/STEllAR-GROUP/hpx/issues/3221
https://github.com/STEllAR-GROUP/hpx/pull/3216
https://github.com/STEllAR-GROUP/hpx/pull/3214
https://github.com/STEllAR-GROUP/hpx/pull/3213
https://github.com/STEllAR-GROUP/hpx/pull/3212
https://github.com/STEllAR-GROUP/hpx/pull/3211
https://github.com/STEllAR-GROUP/hpx/pull/3210
https://github.com/STEllAR-GROUP/hpx/pull/3209
https://github.com/STEllAR-GROUP/hpx/issues/3208
https://github.com/STEllAR-GROUP/hpx/pull/3206
https://github.com/STEllAR-GROUP/hpx/pull/3205
https://github.com/STEllAR-GROUP/hpx/pull/3204
https://github.com/STEllAR-GROUP/hpx/pull/3203
https://github.com/STEllAR-GROUP/hpx/pull/3202
https://github.com/STEllAR-GROUP/hpx/pull/3201
https://github.com/STEllAR-GROUP/hpx/issues/3200
https://github.com/STEllAR-GROUP/hpx/pull/3199

HPX Documentation, master

• PR #31983836 - Set pre_main status before launching run_helper

• PR #31973837 - Update README.rst

• PR #31943838 - parallel::{fill|fill_n} updated for Ranges TS

• PR #31933839 - Updating Runtime.cpp by adding correct description of Performance counters during register

• PR #31913840 - Fix sliding_semaphore_2338 test

• PR #31903841 - Topology improvements

• PR #31893842 - Deleting one include of median from BOOST library to arithmetics_counter file

• PR #31883843 - Optionally disable printing of diagnostics during terminate

• PR #31873844 - Suppressing cmake warning issued by cmake > V3.11

• PR #31853845 - Remove unused scoped_unlock, unlock_guard_try

• PR #31843846 - Fix nqueen example

• PR #31833847 - Add runtime start/stop, resume/suspend and OpenMP benchmarks

• Issue #31823848 - bulk_then_execute has unexpected return type/does not compile

• Issue #31813849 - hwloc 2.0 breaks topo class and cannot be used

• Issue #31803850 - Schedulers that don’t support suspend/resume are unusable

• PR #31793851 - Various minor changes to support FLeCSI

• PR #31783852 - Fix #3124

• PR #31773853 - Removed allgather

• PR #31763854 - Fixed Documentation for “using_hpx_pkgconfig”

• PR #31743855 - Add hpx::iostreams::ostream overload to format_to

• PR #31723856 - Fix lifo queue backend

• PR #31713857 - adding the missing unset() function to cpu_mask() for case of more than 64 threads

• PR #31703858 - Add cmake flag -DHPX_WITH_FAULT_TOLERANCE=ON (OFF by default)
3836 https://github.com/STEllAR-GROUP/hpx/pull/3198
3837 https://github.com/STEllAR-GROUP/hpx/pull/3197
3838 https://github.com/STEllAR-GROUP/hpx/pull/3194
3839 https://github.com/STEllAR-GROUP/hpx/pull/3193
3840 https://github.com/STEllAR-GROUP/hpx/pull/3191
3841 https://github.com/STEllAR-GROUP/hpx/pull/3190
3842 https://github.com/STEllAR-GROUP/hpx/pull/3189
3843 https://github.com/STEllAR-GROUP/hpx/pull/3188
3844 https://github.com/STEllAR-GROUP/hpx/pull/3187
3845 https://github.com/STEllAR-GROUP/hpx/pull/3185
3846 https://github.com/STEllAR-GROUP/hpx/pull/3184
3847 https://github.com/STEllAR-GROUP/hpx/pull/3183
3848 https://github.com/STEllAR-GROUP/hpx/issues/3182
3849 https://github.com/STEllAR-GROUP/hpx/issues/3181
3850 https://github.com/STEllAR-GROUP/hpx/issues/3180
3851 https://github.com/STEllAR-GROUP/hpx/pull/3179
3852 https://github.com/STEllAR-GROUP/hpx/pull/3178
3853 https://github.com/STEllAR-GROUP/hpx/pull/3177
3854 https://github.com/STEllAR-GROUP/hpx/pull/3176
3855 https://github.com/STEllAR-GROUP/hpx/pull/3174
3856 https://github.com/STEllAR-GROUP/hpx/pull/3172
3857 https://github.com/STEllAR-GROUP/hpx/pull/3171
3858 https://github.com/STEllAR-GROUP/hpx/pull/3170

2.10. Releases 1705

https://github.com/STEllAR-GROUP/hpx/pull/3198
https://github.com/STEllAR-GROUP/hpx/pull/3197
https://github.com/STEllAR-GROUP/hpx/pull/3194
https://github.com/STEllAR-GROUP/hpx/pull/3193
https://github.com/STEllAR-GROUP/hpx/pull/3191
https://github.com/STEllAR-GROUP/hpx/pull/3190
https://github.com/STEllAR-GROUP/hpx/pull/3189
https://github.com/STEllAR-GROUP/hpx/pull/3188
https://github.com/STEllAR-GROUP/hpx/pull/3187
https://github.com/STEllAR-GROUP/hpx/pull/3185
https://github.com/STEllAR-GROUP/hpx/pull/3184
https://github.com/STEllAR-GROUP/hpx/pull/3183
https://github.com/STEllAR-GROUP/hpx/issues/3182
https://github.com/STEllAR-GROUP/hpx/issues/3181
https://github.com/STEllAR-GROUP/hpx/issues/3180
https://github.com/STEllAR-GROUP/hpx/pull/3179
https://github.com/STEllAR-GROUP/hpx/pull/3178
https://github.com/STEllAR-GROUP/hpx/pull/3177
https://github.com/STEllAR-GROUP/hpx/pull/3176
https://github.com/STEllAR-GROUP/hpx/pull/3174
https://github.com/STEllAR-GROUP/hpx/pull/3172
https://github.com/STEllAR-GROUP/hpx/pull/3171
https://github.com/STEllAR-GROUP/hpx/pull/3170

HPX Documentation, master

• PR #31693859 - Adapted parallel::{count|count_if} for Ranges TS (see #1668)

• PR #31683860 - Changing used namespace for seq execution policy

• Issue #31673861 - Update GSoC projects

• Issue #31663862 - Application (Octotiger) gets stuck on hpx::finalize when only using one thread

• Issue #31653863 - Compilation of parallel algorithms with HPX_WITH_DATAPAR is broken

• PR #31643864 - Fixing component migration

• PR #31623865 - regex_from_pattern: escape regex special characters to avoid misinterpretation

• Issue #31613866 - Building HPX with hwloc 2.0.0 fails

• PR #31603867 - Fixing the handling of quoted command line arguments.

• PR #31583868 - Fixing a race with timed suspension (second attempt)

• PR #31573869 - Revert “Fixing a race with timed suspension”

• PR #31563870 - Fixing serialization of classes with incompatible serialize signature

• PR #31543871 - More refactorings based on clang-tidy reports

• PR #31533872 - Fixing a race with timed suspension

• PR #31523873 - Documentation for runtime suspension

• PR #31513874 - Use small_vector only from boost version 1.59 onwards

• PR #31503875 - Avoiding more stack overflows

• PR #31483876 - Refactoring component_base and base_action/transfer_base_action

• PR #31473877 - Move yield_while out of detail namespace and into own file

• PR #31453878 - Remove a leftover of the cxx11 std array cleanup

• PR #31443879 - Minor changes to how actions are executed

• PR #31433880 - Fix stack overhead

• PR #31423881 - Fix typo in config.hpp
3859 https://github.com/STEllAR-GROUP/hpx/pull/3169
3860 https://github.com/STEllAR-GROUP/hpx/pull/3168
3861 https://github.com/STEllAR-GROUP/hpx/issues/3167
3862 https://github.com/STEllAR-GROUP/hpx/issues/3166
3863 https://github.com/STEllAR-GROUP/hpx/issues/3165
3864 https://github.com/STEllAR-GROUP/hpx/pull/3164
3865 https://github.com/STEllAR-GROUP/hpx/pull/3162
3866 https://github.com/STEllAR-GROUP/hpx/issues/3161
3867 https://github.com/STEllAR-GROUP/hpx/pull/3160
3868 https://github.com/STEllAR-GROUP/hpx/pull/3158
3869 https://github.com/STEllAR-GROUP/hpx/pull/3157
3870 https://github.com/STEllAR-GROUP/hpx/pull/3156
3871 https://github.com/STEllAR-GROUP/hpx/pull/3154
3872 https://github.com/STEllAR-GROUP/hpx/pull/3153
3873 https://github.com/STEllAR-GROUP/hpx/pull/3152
3874 https://github.com/STEllAR-GROUP/hpx/pull/3151
3875 https://github.com/STEllAR-GROUP/hpx/pull/3150
3876 https://github.com/STEllAR-GROUP/hpx/pull/3148
3877 https://github.com/STEllAR-GROUP/hpx/pull/3147
3878 https://github.com/STEllAR-GROUP/hpx/pull/3145
3879 https://github.com/STEllAR-GROUP/hpx/pull/3144
3880 https://github.com/STEllAR-GROUP/hpx/pull/3143
3881 https://github.com/STEllAR-GROUP/hpx/pull/3142

1706 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3169
https://github.com/STEllAR-GROUP/hpx/pull/3168
https://github.com/STEllAR-GROUP/hpx/issues/3167
https://github.com/STEllAR-GROUP/hpx/issues/3166
https://github.com/STEllAR-GROUP/hpx/issues/3165
https://github.com/STEllAR-GROUP/hpx/pull/3164
https://github.com/STEllAR-GROUP/hpx/pull/3162
https://github.com/STEllAR-GROUP/hpx/issues/3161
https://github.com/STEllAR-GROUP/hpx/pull/3160
https://github.com/STEllAR-GROUP/hpx/pull/3158
https://github.com/STEllAR-GROUP/hpx/pull/3157
https://github.com/STEllAR-GROUP/hpx/pull/3156
https://github.com/STEllAR-GROUP/hpx/pull/3154
https://github.com/STEllAR-GROUP/hpx/pull/3153
https://github.com/STEllAR-GROUP/hpx/pull/3152
https://github.com/STEllAR-GROUP/hpx/pull/3151
https://github.com/STEllAR-GROUP/hpx/pull/3150
https://github.com/STEllAR-GROUP/hpx/pull/3148
https://github.com/STEllAR-GROUP/hpx/pull/3147
https://github.com/STEllAR-GROUP/hpx/pull/3145
https://github.com/STEllAR-GROUP/hpx/pull/3144
https://github.com/STEllAR-GROUP/hpx/pull/3143
https://github.com/STEllAR-GROUP/hpx/pull/3142

HPX Documentation, master

• PR #31413882 - Fixing small_vector compatibility with older boost version

• PR #31403883 - is_heap_text fix

• Issue #31393884 - Error in is_heap_tests.hpp

• PR #31383885 - Partially reverting #3126

• PR #31373886 - Suspend speedup

• PR #31363887 - Revert “Fixing #2325”

• PR #31353888 - Improving destruction of threads

• Issue #31343889 - HPX_SERIALIZATION_SPLIT_FREE does not stop compiler from looking for serialize()
method

• PR #31333890 - Make hwloc compulsory

• PR #31323891 - Update CXX14 constexpr feature test

• PR #31313892 - Fixing #2325

• PR #31303893 - Avoid completion handler allocation

• PR #31293894 - Suspend runtime

• PR #31283895 - Make docbook dtd and xsl path names consistent

• PR #31273896 - Add hpx::start nullptr overloads

• PR #31263897 - Cleaning up coroutine implementation

• PR #31253898 - Replacing nullptr with hpx::threads::invalid_thread_id

• Issue #31243899 - Add hello_world_component to CI builds

• PR #31233900 - Add new constructor.

• PR #31223901 - Fixing #3121

• Issue #31213902 - HPX_SMT_PAUSE is broken on non-x86 platforms when __GNUC__ is defined

• PR #31203903 - Don’t use boost::intrusive_ptr for thread_id_type

• PR #31193904 - Disable default executor compatibility with V1 executors
3882 https://github.com/STEllAR-GROUP/hpx/pull/3141
3883 https://github.com/STEllAR-GROUP/hpx/pull/3140
3884 https://github.com/STEllAR-GROUP/hpx/issues/3139
3885 https://github.com/STEllAR-GROUP/hpx/pull/3138
3886 https://github.com/STEllAR-GROUP/hpx/pull/3137
3887 https://github.com/STEllAR-GROUP/hpx/pull/3136
3888 https://github.com/STEllAR-GROUP/hpx/pull/3135
3889 https://github.com/STEllAR-GROUP/hpx/issues/3134
3890 https://github.com/STEllAR-GROUP/hpx/pull/3133
3891 https://github.com/STEllAR-GROUP/hpx/pull/3132
3892 https://github.com/STEllAR-GROUP/hpx/pull/3131
3893 https://github.com/STEllAR-GROUP/hpx/pull/3130
3894 https://github.com/STEllAR-GROUP/hpx/pull/3129
3895 https://github.com/STEllAR-GROUP/hpx/pull/3128
3896 https://github.com/STEllAR-GROUP/hpx/pull/3127
3897 https://github.com/STEllAR-GROUP/hpx/pull/3126
3898 https://github.com/STEllAR-GROUP/hpx/pull/3125
3899 https://github.com/STEllAR-GROUP/hpx/issues/3124
3900 https://github.com/STEllAR-GROUP/hpx/pull/3123
3901 https://github.com/STEllAR-GROUP/hpx/pull/3122
3902 https://github.com/STEllAR-GROUP/hpx/issues/3121
3903 https://github.com/STEllAR-GROUP/hpx/pull/3120
3904 https://github.com/STEllAR-GROUP/hpx/pull/3119

2.10. Releases 1707

https://github.com/STEllAR-GROUP/hpx/pull/3141
https://github.com/STEllAR-GROUP/hpx/pull/3140
https://github.com/STEllAR-GROUP/hpx/issues/3139
https://github.com/STEllAR-GROUP/hpx/pull/3138
https://github.com/STEllAR-GROUP/hpx/pull/3137
https://github.com/STEllAR-GROUP/hpx/pull/3136
https://github.com/STEllAR-GROUP/hpx/pull/3135
https://github.com/STEllAR-GROUP/hpx/issues/3134
https://github.com/STEllAR-GROUP/hpx/pull/3133
https://github.com/STEllAR-GROUP/hpx/pull/3132
https://github.com/STEllAR-GROUP/hpx/pull/3131
https://github.com/STEllAR-GROUP/hpx/pull/3130
https://github.com/STEllAR-GROUP/hpx/pull/3129
https://github.com/STEllAR-GROUP/hpx/pull/3128
https://github.com/STEllAR-GROUP/hpx/pull/3127
https://github.com/STEllAR-GROUP/hpx/pull/3126
https://github.com/STEllAR-GROUP/hpx/pull/3125
https://github.com/STEllAR-GROUP/hpx/issues/3124
https://github.com/STEllAR-GROUP/hpx/pull/3123
https://github.com/STEllAR-GROUP/hpx/pull/3122
https://github.com/STEllAR-GROUP/hpx/issues/3121
https://github.com/STEllAR-GROUP/hpx/pull/3120
https://github.com/STEllAR-GROUP/hpx/pull/3119

HPX Documentation, master

• PR #31183905 - Adding performance_counter::reinit to allow for dynamically changing counter sets

• PR #31173906 - Replace uses of boost/experimental::optional with util::optional

• PR #31163907 - Moving background thread APEX timer #2980

• PR #31153908 - Fixing race condition in channel test

• PR #31143909 - Avoid using util::function for thread function wrappers

• PR #31133910 - cmake V3.10.2 has changed the variable names used for MPI

• PR #31123911 - Minor fixes to exclusive_scan algorithm

• PR #31113912 - Revert “fix detection of cxx11_std_atomic”

• PR #31103913 - Suspend thread pool

• PR #31093914 - Fixing thread scheduling when yielding a thread id

• PR #31083915 - Revert “Suspend thread pool”

• PR #31073916 - Remove UB from thread::id relational operators

• PR #31063917 - Add cmake test for std::decay_t to fix cuda build

• PR #31053918 - Fixing refcount for async traversal frame

• PR #31043919 - Local execution of direct actions is now actually performed directly

• PR #31033920 - Adding support for generic counter_raw_values performance counter type

• Issue #31023921 - Introduce generic performance counter type returning an array of values

• PR #31013922 - Revert “Adapting stack overhead limit for gcc 4.9”

• PR #31003923 - Fix #3068 (condition_variable deadlock)

• PR #30993924 - Fixing lock held during suspension in papi counter component

• PR #30983925 - Unbreak broadcast_wait_for_2822 test

• PR #30973926 - Adapting stack overhead limit for gcc 4.9

• PR #30963927 - fix detection of cxx11_std_atomic
3905 https://github.com/STEllAR-GROUP/hpx/pull/3118
3906 https://github.com/STEllAR-GROUP/hpx/pull/3117
3907 https://github.com/STEllAR-GROUP/hpx/pull/3116
3908 https://github.com/STEllAR-GROUP/hpx/pull/3115
3909 https://github.com/STEllAR-GROUP/hpx/pull/3114
3910 https://github.com/STEllAR-GROUP/hpx/pull/3113
3911 https://github.com/STEllAR-GROUP/hpx/pull/3112
3912 https://github.com/STEllAR-GROUP/hpx/pull/3111
3913 https://github.com/STEllAR-GROUP/hpx/pull/3110
3914 https://github.com/STEllAR-GROUP/hpx/pull/3109
3915 https://github.com/STEllAR-GROUP/hpx/pull/3108
3916 https://github.com/STEllAR-GROUP/hpx/pull/3107
3917 https://github.com/STEllAR-GROUP/hpx/pull/3106
3918 https://github.com/STEllAR-GROUP/hpx/pull/3105
3919 https://github.com/STEllAR-GROUP/hpx/pull/3104
3920 https://github.com/STEllAR-GROUP/hpx/pull/3103
3921 https://github.com/STEllAR-GROUP/hpx/issues/3102
3922 https://github.com/STEllAR-GROUP/hpx/pull/3101
3923 https://github.com/STEllAR-GROUP/hpx/pull/3100
3924 https://github.com/STEllAR-GROUP/hpx/pull/3099
3925 https://github.com/STEllAR-GROUP/hpx/pull/3098
3926 https://github.com/STEllAR-GROUP/hpx/pull/3097
3927 https://github.com/STEllAR-GROUP/hpx/pull/3096

1708 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3118
https://github.com/STEllAR-GROUP/hpx/pull/3117
https://github.com/STEllAR-GROUP/hpx/pull/3116
https://github.com/STEllAR-GROUP/hpx/pull/3115
https://github.com/STEllAR-GROUP/hpx/pull/3114
https://github.com/STEllAR-GROUP/hpx/pull/3113
https://github.com/STEllAR-GROUP/hpx/pull/3112
https://github.com/STEllAR-GROUP/hpx/pull/3111
https://github.com/STEllAR-GROUP/hpx/pull/3110
https://github.com/STEllAR-GROUP/hpx/pull/3109
https://github.com/STEllAR-GROUP/hpx/pull/3108
https://github.com/STEllAR-GROUP/hpx/pull/3107
https://github.com/STEllAR-GROUP/hpx/pull/3106
https://github.com/STEllAR-GROUP/hpx/pull/3105
https://github.com/STEllAR-GROUP/hpx/pull/3104
https://github.com/STEllAR-GROUP/hpx/pull/3103
https://github.com/STEllAR-GROUP/hpx/issues/3102
https://github.com/STEllAR-GROUP/hpx/pull/3101
https://github.com/STEllAR-GROUP/hpx/pull/3100
https://github.com/STEllAR-GROUP/hpx/pull/3099
https://github.com/STEllAR-GROUP/hpx/pull/3098
https://github.com/STEllAR-GROUP/hpx/pull/3097
https://github.com/STEllAR-GROUP/hpx/pull/3096

HPX Documentation, master

• PR #30953928 - Add ciso646 header to get _LIBCPP_VERSION for testing inplace merge

• PR #30943929 - Relax atomic operations on performance counter values

• PR #30933930 - Short-circuit all_of/any_of/none_of instantiations

• PR #30923931 - Take advantage of C++14 lambda capture initialization syntax, where possible

• PR #30913932 - Remove more references to Boost from logging code

• PR #30903933 - Unify use of yield/yield_k

• PR #30893934 - Fix a strange thing in parallel::detail::handle_exception. (Fix #2834.)

• Issue #30883935 - A strange thing in parallel::sort.

• PR #30873936 - Fixing assertion in default_distribution_policy

• PR #30863937 - Implement parallel::remove and parallel::remove_if

• PR #30853938 - Addressing breaking changes in Boost V1.66

• PR #30843939 - Ignore build warnings round 2

• PR #30833940 - Fix typo HPX_WITH_MM_PREFECTH

• PR #30813941 - Pre-decay template arguments early

• PR #30803942 - Suspend thread pool

• PR #30793943 - Ignore build warnings

• PR #30783944 - Don’t test inplace_merge with libc++

• PR #30763945 - Fixing 3075: Part 1

• PR #30743946 - Fix more build warnings

• PR #30733947 - Suspend thread cleanup

• PR #30723948 - Change existing symbol_namespace::iterate to return all data instead of invoking a callback

• PR #30713949 - Fixing pack_traversal_async test

• PR #30703950 - Fix dynamic_counters_loaded_1508 test by adding dependency to memory_component
3928 https://github.com/STEllAR-GROUP/hpx/pull/3095
3929 https://github.com/STEllAR-GROUP/hpx/pull/3094
3930 https://github.com/STEllAR-GROUP/hpx/pull/3093
3931 https://github.com/STEllAR-GROUP/hpx/pull/3092
3932 https://github.com/STEllAR-GROUP/hpx/pull/3091
3933 https://github.com/STEllAR-GROUP/hpx/pull/3090
3934 https://github.com/STEllAR-GROUP/hpx/pull/3089
3935 https://github.com/STEllAR-GROUP/hpx/issues/3088
3936 https://github.com/STEllAR-GROUP/hpx/pull/3087
3937 https://github.com/STEllAR-GROUP/hpx/pull/3086
3938 https://github.com/STEllAR-GROUP/hpx/pull/3085
3939 https://github.com/STEllAR-GROUP/hpx/pull/3084
3940 https://github.com/STEllAR-GROUP/hpx/pull/3083
3941 https://github.com/STEllAR-GROUP/hpx/pull/3081
3942 https://github.com/STEllAR-GROUP/hpx/pull/3080
3943 https://github.com/STEllAR-GROUP/hpx/pull/3079
3944 https://github.com/STEllAR-GROUP/hpx/pull/3078
3945 https://github.com/STEllAR-GROUP/hpx/pull/3076
3946 https://github.com/STEllAR-GROUP/hpx/pull/3074
3947 https://github.com/STEllAR-GROUP/hpx/pull/3073
3948 https://github.com/STEllAR-GROUP/hpx/pull/3072
3949 https://github.com/STEllAR-GROUP/hpx/pull/3071
3950 https://github.com/STEllAR-GROUP/hpx/pull/3070

2.10. Releases 1709

https://github.com/STEllAR-GROUP/hpx/pull/3095
https://github.com/STEllAR-GROUP/hpx/pull/3094
https://github.com/STEllAR-GROUP/hpx/pull/3093
https://github.com/STEllAR-GROUP/hpx/pull/3092
https://github.com/STEllAR-GROUP/hpx/pull/3091
https://github.com/STEllAR-GROUP/hpx/pull/3090
https://github.com/STEllAR-GROUP/hpx/pull/3089
https://github.com/STEllAR-GROUP/hpx/issues/3088
https://github.com/STEllAR-GROUP/hpx/pull/3087
https://github.com/STEllAR-GROUP/hpx/pull/3086
https://github.com/STEllAR-GROUP/hpx/pull/3085
https://github.com/STEllAR-GROUP/hpx/pull/3084
https://github.com/STEllAR-GROUP/hpx/pull/3083
https://github.com/STEllAR-GROUP/hpx/pull/3081
https://github.com/STEllAR-GROUP/hpx/pull/3080
https://github.com/STEllAR-GROUP/hpx/pull/3079
https://github.com/STEllAR-GROUP/hpx/pull/3078
https://github.com/STEllAR-GROUP/hpx/pull/3076
https://github.com/STEllAR-GROUP/hpx/pull/3074
https://github.com/STEllAR-GROUP/hpx/pull/3073
https://github.com/STEllAR-GROUP/hpx/pull/3072
https://github.com/STEllAR-GROUP/hpx/pull/3071
https://github.com/STEllAR-GROUP/hpx/pull/3070

HPX Documentation, master

• PR #30693951 - Fix scheduling loop exit

• Issue #30683952 - hpx::lcos::condition_variable could be suspect to deadlocks

• PR #30673953 - #ifdef out random_shuffle deprecated in later c++

• PR #30663954 - Make coalescing test depend on coalescing library to ensure it gets built

• PR #30653955 - Workaround for minimal_timed_async_executor_test compilation failures, attempts to copy a
deferred call (in unevaluated context)

• PR #30643956 - Fixing wrong condition in wrapper_heap

• PR #30623957 - Fix exception handling for execution::seq

• PR #30613958 - Adapt MSVC C++ mode handling to VS15.5

• PR #30603959 - Fix compiler problem in MSVC release mode

• PR #30593960 - Fixing #2931

• Issue #30583961 - minimal_timed_async_executor_test_exe fails to compile on master (d6f505c)

• PR #30573962 - Fix stable_merge_2964 compilation problems

• PR #30563963 - Fix some build warnings caused by unused variables/unnecessary tests

• PR #30553964 - Update documentation for running tests

• Issue #30543965 - Assertion failure when using bulk hpx::new_ in asynchronous mode

• PR #30523966 - Do not bind test running to cmake test build rule

• PR #30513967 - Fix HPX-Qt interaction in Qt example.

• Issue #30483968 - nqueen example fails occasionally

• PR #30473969 - Fixing #3044

• PR #30463970 - Add OS thread suspension

• PR #30423971 - PyCicle - first attempt at a build toold for checking PR’s

• PR #30413972 - Fix a problem about asynchronous execution of parallel::merge and parallel::partition.

• PR #30403973 - Fix a mistake about exception handling in asynchronous execution of scan_partitioner.
3951 https://github.com/STEllAR-GROUP/hpx/pull/3069
3952 https://github.com/STEllAR-GROUP/hpx/issues/3068
3953 https://github.com/STEllAR-GROUP/hpx/pull/3067
3954 https://github.com/STEllAR-GROUP/hpx/pull/3066
3955 https://github.com/STEllAR-GROUP/hpx/pull/3065
3956 https://github.com/STEllAR-GROUP/hpx/pull/3064
3957 https://github.com/STEllAR-GROUP/hpx/pull/3062
3958 https://github.com/STEllAR-GROUP/hpx/pull/3061
3959 https://github.com/STEllAR-GROUP/hpx/pull/3060
3960 https://github.com/STEllAR-GROUP/hpx/pull/3059
3961 https://github.com/STEllAR-GROUP/hpx/issues/3058
3962 https://github.com/STEllAR-GROUP/hpx/pull/3057
3963 https://github.com/STEllAR-GROUP/hpx/pull/3056
3964 https://github.com/STEllAR-GROUP/hpx/pull/3055
3965 https://github.com/STEllAR-GROUP/hpx/issues/3054
3966 https://github.com/STEllAR-GROUP/hpx/pull/3052
3967 https://github.com/STEllAR-GROUP/hpx/pull/3051
3968 https://github.com/STEllAR-GROUP/hpx/issues/3048
3969 https://github.com/STEllAR-GROUP/hpx/pull/3047
3970 https://github.com/STEllAR-GROUP/hpx/pull/3046
3971 https://github.com/STEllAR-GROUP/hpx/pull/3042
3972 https://github.com/STEllAR-GROUP/hpx/pull/3041
3973 https://github.com/STEllAR-GROUP/hpx/pull/3040

1710 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3069
https://github.com/STEllAR-GROUP/hpx/issues/3068
https://github.com/STEllAR-GROUP/hpx/pull/3067
https://github.com/STEllAR-GROUP/hpx/pull/3066
https://github.com/STEllAR-GROUP/hpx/pull/3065
https://github.com/STEllAR-GROUP/hpx/pull/3064
https://github.com/STEllAR-GROUP/hpx/pull/3062
https://github.com/STEllAR-GROUP/hpx/pull/3061
https://github.com/STEllAR-GROUP/hpx/pull/3060
https://github.com/STEllAR-GROUP/hpx/pull/3059
https://github.com/STEllAR-GROUP/hpx/issues/3058
https://github.com/STEllAR-GROUP/hpx/pull/3057
https://github.com/STEllAR-GROUP/hpx/pull/3056
https://github.com/STEllAR-GROUP/hpx/pull/3055
https://github.com/STEllAR-GROUP/hpx/issues/3054
https://github.com/STEllAR-GROUP/hpx/pull/3052
https://github.com/STEllAR-GROUP/hpx/pull/3051
https://github.com/STEllAR-GROUP/hpx/issues/3048
https://github.com/STEllAR-GROUP/hpx/pull/3047
https://github.com/STEllAR-GROUP/hpx/pull/3046
https://github.com/STEllAR-GROUP/hpx/pull/3042
https://github.com/STEllAR-GROUP/hpx/pull/3041
https://github.com/STEllAR-GROUP/hpx/pull/3040

HPX Documentation, master

• PR #30393974 - Consistently use executors to schedule work

• PR #30383975 - Fixing local direct function execution and lambda actions perfect forwarding

• PR #30353976 - Make parallel unit test names match build target/folder names

• PR #30333977 - Fix setting of default build type

• Issue #30323978 - Fix partitioner arg copy found in #2982

• Issue #30313979 - Errors linking libhpx.so due to missing references (master branch, commit 6679a8882)

• PR #30303980 - Revert “implement executor then interface with && forwarding reference”

• PR #30293981 - Run CI inspect checks before building

• PR #30283982 - Added range version of parallel::move

• Issue #30273983 - Implement all scheduling APIs in terms of executors

• PR #30263984 - implement executor then interface with && forwarding reference

• PR #30253985 - Fix typo unitialized to uninitialized

• PR #30243986 - Inspect fixes

• PR #30233987 - P0356 Simplified partial function application

• PR #30223988 - Master fixes

• PR #30213989 - Segfault fix

• PR #30203990 - Disable command-line aliasing for applications that use user_main

• PR #30193991 - Adding enable_elasticity option to pool configuration

• PR #30183992 - Fix stack overflow detection configuration in header files

• PR #30173993 - Speed up local action execution

• PR #30163994 - Unify stack-overflow detection options, remove reference to libsigsegv

• PR #30153995 - Speeding up accessing the resource partitioner and the topology info

• Issue #30143996 - HPX does not compile on POWER8 with gcc 5.4
3974 https://github.com/STEllAR-GROUP/hpx/pull/3039
3975 https://github.com/STEllAR-GROUP/hpx/pull/3038
3976 https://github.com/STEllAR-GROUP/hpx/pull/3035
3977 https://github.com/STEllAR-GROUP/hpx/pull/3033
3978 https://github.com/STEllAR-GROUP/hpx/issues/3032
3979 https://github.com/STEllAR-GROUP/hpx/issues/3031
3980 https://github.com/STEllAR-GROUP/hpx/pull/3030
3981 https://github.com/STEllAR-GROUP/hpx/pull/3029
3982 https://github.com/STEllAR-GROUP/hpx/pull/3028
3983 https://github.com/STEllAR-GROUP/hpx/issues/3027
3984 https://github.com/STEllAR-GROUP/hpx/pull/3026
3985 https://github.com/STEllAR-GROUP/hpx/pull/3025
3986 https://github.com/STEllAR-GROUP/hpx/pull/3024
3987 https://github.com/STEllAR-GROUP/hpx/pull/3023
3988 https://github.com/STEllAR-GROUP/hpx/pull/3022
3989 https://github.com/STEllAR-GROUP/hpx/pull/3021
3990 https://github.com/STEllAR-GROUP/hpx/pull/3020
3991 https://github.com/STEllAR-GROUP/hpx/pull/3019
3992 https://github.com/STEllAR-GROUP/hpx/pull/3018
3993 https://github.com/STEllAR-GROUP/hpx/pull/3017
3994 https://github.com/STEllAR-GROUP/hpx/pull/3016
3995 https://github.com/STEllAR-GROUP/hpx/pull/3015
3996 https://github.com/STEllAR-GROUP/hpx/issues/3014

2.10. Releases 1711

https://github.com/STEllAR-GROUP/hpx/pull/3039
https://github.com/STEllAR-GROUP/hpx/pull/3038
https://github.com/STEllAR-GROUP/hpx/pull/3035
https://github.com/STEllAR-GROUP/hpx/pull/3033
https://github.com/STEllAR-GROUP/hpx/issues/3032
https://github.com/STEllAR-GROUP/hpx/issues/3031
https://github.com/STEllAR-GROUP/hpx/pull/3030
https://github.com/STEllAR-GROUP/hpx/pull/3029
https://github.com/STEllAR-GROUP/hpx/pull/3028
https://github.com/STEllAR-GROUP/hpx/issues/3027
https://github.com/STEllAR-GROUP/hpx/pull/3026
https://github.com/STEllAR-GROUP/hpx/pull/3025
https://github.com/STEllAR-GROUP/hpx/pull/3024
https://github.com/STEllAR-GROUP/hpx/pull/3023
https://github.com/STEllAR-GROUP/hpx/pull/3022
https://github.com/STEllAR-GROUP/hpx/pull/3021
https://github.com/STEllAR-GROUP/hpx/pull/3020
https://github.com/STEllAR-GROUP/hpx/pull/3019
https://github.com/STEllAR-GROUP/hpx/pull/3018
https://github.com/STEllAR-GROUP/hpx/pull/3017
https://github.com/STEllAR-GROUP/hpx/pull/3016
https://github.com/STEllAR-GROUP/hpx/pull/3015
https://github.com/STEllAR-GROUP/hpx/issues/3014

HPX Documentation, master

• Issue #30133997 - hello_world occasionally prints multiple lines from a single OS-thread

• PR #30123998 - Silence warning about casting away qualifiers in itt_notify.hpp

• PR #30113999 - Fix cpuset leak in hwloc_topology_info.cpp

• PR #30104000 - Remove useless decay_copy

• PR #30094001 - Fixing 2996

• PR #30084002 - Remove unused internal function

• PR #30074003 - Fixing wrapper_heap alignment problems

• Issue #30064004 - hwloc memory leak

• PR #30044005 - Silence C4251 (needs to have dll-interface) for future_data_void

• Issue #30034006 - Suspension of runtime

• PR #30014007 - Attempting to avoid data races in async_traversal while evaluating dataflow()

• PR #30004008 - Adding hpx::util::optional as a first step to replace experimental::optional

• PR #29984009 - Cleanup up and Fixing component creation and deletion

• Issue #29964010 - Build fails with HPX_WITH_HWLOC=OFF

• PR #29954011 - Push more future_data functionality to source file

• PR #29944012 - WIP: Fix throttle test

• PR #29934013 - Making sure –hpx:help does not throw for required (but missing) arguments

• PR #29924014 - Adding non-blocking (on destruction) service executors

• Issue #29914015 - run_as_os_thread locks up

• Issue #29904016 - –help will not work until all required options are provided

• PR #29894017 - Improve error messages caused by misuse of dataflow

• PR #29884018 - Improve error messages caused by misuse of .then

• Issue #29874019 - stack overflow detection producing false positives
3997 https://github.com/STEllAR-GROUP/hpx/issues/3013
3998 https://github.com/STEllAR-GROUP/hpx/pull/3012
3999 https://github.com/STEllAR-GROUP/hpx/pull/3011
4000 https://github.com/STEllAR-GROUP/hpx/pull/3010
4001 https://github.com/STEllAR-GROUP/hpx/pull/3009
4002 https://github.com/STEllAR-GROUP/hpx/pull/3008
4003 https://github.com/STEllAR-GROUP/hpx/pull/3007
4004 https://github.com/STEllAR-GROUP/hpx/issues/3006
4005 https://github.com/STEllAR-GROUP/hpx/pull/3004
4006 https://github.com/STEllAR-GROUP/hpx/issues/3003
4007 https://github.com/STEllAR-GROUP/hpx/pull/3001
4008 https://github.com/STEllAR-GROUP/hpx/pull/3000
4009 https://github.com/STEllAR-GROUP/hpx/pull/2998
4010 https://github.com/STEllAR-GROUP/hpx/issues/2996
4011 https://github.com/STEllAR-GROUP/hpx/pull/2995
4012 https://github.com/STEllAR-GROUP/hpx/pull/2994
4013 https://github.com/STEllAR-GROUP/hpx/pull/2993
4014 https://github.com/STEllAR-GROUP/hpx/pull/2992
4015 https://github.com/STEllAR-GROUP/hpx/issues/2991
4016 https://github.com/STEllAR-GROUP/hpx/issues/2990
4017 https://github.com/STEllAR-GROUP/hpx/pull/2989
4018 https://github.com/STEllAR-GROUP/hpx/pull/2988
4019 https://github.com/STEllAR-GROUP/hpx/issues/2987

1712 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3013
https://github.com/STEllAR-GROUP/hpx/pull/3012
https://github.com/STEllAR-GROUP/hpx/pull/3011
https://github.com/STEllAR-GROUP/hpx/pull/3010
https://github.com/STEllAR-GROUP/hpx/pull/3009
https://github.com/STEllAR-GROUP/hpx/pull/3008
https://github.com/STEllAR-GROUP/hpx/pull/3007
https://github.com/STEllAR-GROUP/hpx/issues/3006
https://github.com/STEllAR-GROUP/hpx/pull/3004
https://github.com/STEllAR-GROUP/hpx/issues/3003
https://github.com/STEllAR-GROUP/hpx/pull/3001
https://github.com/STEllAR-GROUP/hpx/pull/3000
https://github.com/STEllAR-GROUP/hpx/pull/2998
https://github.com/STEllAR-GROUP/hpx/issues/2996
https://github.com/STEllAR-GROUP/hpx/pull/2995
https://github.com/STEllAR-GROUP/hpx/pull/2994
https://github.com/STEllAR-GROUP/hpx/pull/2993
https://github.com/STEllAR-GROUP/hpx/pull/2992
https://github.com/STEllAR-GROUP/hpx/issues/2991
https://github.com/STEllAR-GROUP/hpx/issues/2990
https://github.com/STEllAR-GROUP/hpx/pull/2989
https://github.com/STEllAR-GROUP/hpx/pull/2988
https://github.com/STEllAR-GROUP/hpx/issues/2987

HPX Documentation, master

• PR #29864020 - Deduplicate non-dependent thread_info logging types

• PR #29854021 - Adapted parallel::{all_of|any_of|none_of} for Ranges TS (see #1668)

• PR #29844022 - Refactor one_size_heap code to simplify code

• PR #29834023 - Fixing local_new_component

• PR #29824024 - Clang tidy

• PR #29814025 - Simplify allocator rebinding in pack traversal

• PR #29794026 - Fixing integer overflows

• PR #29784027 - Implement parallel::inplace_merge

• Issue #29774028 - Make hwloc compulsory instead of optional

• PR #29764029 - Making sure client_base instance that registered the component does not unregister it when being
destructed

• PR #29754030 - Change version of pulled APEX to master

• PR #29744031 - Fix domain not being freed at the end of scheduling loop

• PR #29734032 - Fix small typos

• PR #29724033 - Adding uintstd.h header

• PR #29714034 - Fall back to creating local components using local_new

• PR #29704035 - Improve is_tuple_like trait

• PR #29694036 - Fix HPX_WITH_MORE_THAN_64_THREADS default value

• PR #29684037 - Cleaning up dataflow overload set

• PR #29674038 - Make parallel::merge is stable. (Fix #2964.)

• PR #29664039 - Fixing a couple of held locks during exception handling

• PR #29654040 - Adding missing #include

• Issue #29644041 - parallel merge is not stable

• PR #29634042 - Making sure any function object passed to dataflow is released after being invoked
4020 https://github.com/STEllAR-GROUP/hpx/pull/2986
4021 https://github.com/STEllAR-GROUP/hpx/pull/2985
4022 https://github.com/STEllAR-GROUP/hpx/pull/2984
4023 https://github.com/STEllAR-GROUP/hpx/pull/2983
4024 https://github.com/STEllAR-GROUP/hpx/pull/2982
4025 https://github.com/STEllAR-GROUP/hpx/pull/2981
4026 https://github.com/STEllAR-GROUP/hpx/pull/2979
4027 https://github.com/STEllAR-GROUP/hpx/pull/2978
4028 https://github.com/STEllAR-GROUP/hpx/issues/2977
4029 https://github.com/STEllAR-GROUP/hpx/pull/2976
4030 https://github.com/STEllAR-GROUP/hpx/pull/2975
4031 https://github.com/STEllAR-GROUP/hpx/pull/2974
4032 https://github.com/STEllAR-GROUP/hpx/pull/2973
4033 https://github.com/STEllAR-GROUP/hpx/pull/2972
4034 https://github.com/STEllAR-GROUP/hpx/pull/2971
4035 https://github.com/STEllAR-GROUP/hpx/pull/2970
4036 https://github.com/STEllAR-GROUP/hpx/pull/2969
4037 https://github.com/STEllAR-GROUP/hpx/pull/2968
4038 https://github.com/STEllAR-GROUP/hpx/pull/2967
4039 https://github.com/STEllAR-GROUP/hpx/pull/2966
4040 https://github.com/STEllAR-GROUP/hpx/pull/2965
4041 https://github.com/STEllAR-GROUP/hpx/issues/2964
4042 https://github.com/STEllAR-GROUP/hpx/pull/2963

2.10. Releases 1713

https://github.com/STEllAR-GROUP/hpx/pull/2986
https://github.com/STEllAR-GROUP/hpx/pull/2985
https://github.com/STEllAR-GROUP/hpx/pull/2984
https://github.com/STEllAR-GROUP/hpx/pull/2983
https://github.com/STEllAR-GROUP/hpx/pull/2982
https://github.com/STEllAR-GROUP/hpx/pull/2981
https://github.com/STEllAR-GROUP/hpx/pull/2979
https://github.com/STEllAR-GROUP/hpx/pull/2978
https://github.com/STEllAR-GROUP/hpx/issues/2977
https://github.com/STEllAR-GROUP/hpx/pull/2976
https://github.com/STEllAR-GROUP/hpx/pull/2975
https://github.com/STEllAR-GROUP/hpx/pull/2974
https://github.com/STEllAR-GROUP/hpx/pull/2973
https://github.com/STEllAR-GROUP/hpx/pull/2972
https://github.com/STEllAR-GROUP/hpx/pull/2971
https://github.com/STEllAR-GROUP/hpx/pull/2970
https://github.com/STEllAR-GROUP/hpx/pull/2969
https://github.com/STEllAR-GROUP/hpx/pull/2968
https://github.com/STEllAR-GROUP/hpx/pull/2967
https://github.com/STEllAR-GROUP/hpx/pull/2966
https://github.com/STEllAR-GROUP/hpx/pull/2965
https://github.com/STEllAR-GROUP/hpx/issues/2964
https://github.com/STEllAR-GROUP/hpx/pull/2963

HPX Documentation, master

• PR #29624043 - Partially reverting #2891

• PR #29614044 - Attempt to fix the gcc 4.9 problem with the async pack traversal

• Issue #29594045 - Program terminates during error handling

• Issue #29584046 - HPX_PLAIN_ACTION breaks due to missing include

• PR #29574047 - Fixing errors generated by mixing different attribute syntaxes

• Issue #29564048 - Mixing attribute syntaxes leads to compiler errors

• Issue #29554049 - Fix OS-Thread throttling

• PR #29534050 - Making sure any hpx.os_threads=N supplied through a –hpx::config file is taken into account

• PR #29524051 - Removing wrong call to cleanup_terminated_locked

• PR #29514052 - Revert “Make sure the function vtables are initialized before use”

• PR #29504053 - Fix a namespace compilation error when some schedulers are disabled

• Issue #29494054 - master branch giving lockups on shutdown

• Issue #29474055 - hpx.ini is not used correctly at initialization

• PR #29464056 - Adding explicit feature test for thread_local

• PR #29454057 - Make sure the function vtables are initialized before use

• PR #29444058 - Attempting to solve affinity problems on CircleCI

• PR #29434059 - Changing channel actions to be direct

• PR #29424060 - Adding split_future for std::vector

• PR #29414061 - Add a feature test to test for CXX11 override

• Issue #29404062 - Add split_future for future<vector<T>>

• PR #29394063 - Making error reporting during problems with setting affinity masks more verbose

• PR #29384064 - Fix this various executors

• PR #29374065 - Fix some typos in documentation
4043 https://github.com/STEllAR-GROUP/hpx/pull/2962
4044 https://github.com/STEllAR-GROUP/hpx/pull/2961
4045 https://github.com/STEllAR-GROUP/hpx/issues/2959
4046 https://github.com/STEllAR-GROUP/hpx/issues/2958
4047 https://github.com/STEllAR-GROUP/hpx/pull/2957
4048 https://github.com/STEllAR-GROUP/hpx/issues/2956
4049 https://github.com/STEllAR-GROUP/hpx/issues/2955
4050 https://github.com/STEllAR-GROUP/hpx/pull/2953
4051 https://github.com/STEllAR-GROUP/hpx/pull/2952
4052 https://github.com/STEllAR-GROUP/hpx/pull/2951
4053 https://github.com/STEllAR-GROUP/hpx/pull/2950
4054 https://github.com/STEllAR-GROUP/hpx/issues/2949
4055 https://github.com/STEllAR-GROUP/hpx/issues/2947
4056 https://github.com/STEllAR-GROUP/hpx/pull/2946
4057 https://github.com/STEllAR-GROUP/hpx/pull/2945
4058 https://github.com/STEllAR-GROUP/hpx/pull/2944
4059 https://github.com/STEllAR-GROUP/hpx/pull/2943
4060 https://github.com/STEllAR-GROUP/hpx/pull/2942
4061 https://github.com/STEllAR-GROUP/hpx/pull/2941
4062 https://github.com/STEllAR-GROUP/hpx/issues/2940
4063 https://github.com/STEllAR-GROUP/hpx/pull/2939
4064 https://github.com/STEllAR-GROUP/hpx/pull/2938
4065 https://github.com/STEllAR-GROUP/hpx/pull/2937

1714 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2962
https://github.com/STEllAR-GROUP/hpx/pull/2961
https://github.com/STEllAR-GROUP/hpx/issues/2959
https://github.com/STEllAR-GROUP/hpx/issues/2958
https://github.com/STEllAR-GROUP/hpx/pull/2957
https://github.com/STEllAR-GROUP/hpx/issues/2956
https://github.com/STEllAR-GROUP/hpx/issues/2955
https://github.com/STEllAR-GROUP/hpx/pull/2953
https://github.com/STEllAR-GROUP/hpx/pull/2952
https://github.com/STEllAR-GROUP/hpx/pull/2951
https://github.com/STEllAR-GROUP/hpx/pull/2950
https://github.com/STEllAR-GROUP/hpx/issues/2949
https://github.com/STEllAR-GROUP/hpx/issues/2947
https://github.com/STEllAR-GROUP/hpx/pull/2946
https://github.com/STEllAR-GROUP/hpx/pull/2945
https://github.com/STEllAR-GROUP/hpx/pull/2944
https://github.com/STEllAR-GROUP/hpx/pull/2943
https://github.com/STEllAR-GROUP/hpx/pull/2942
https://github.com/STEllAR-GROUP/hpx/pull/2941
https://github.com/STEllAR-GROUP/hpx/issues/2940
https://github.com/STEllAR-GROUP/hpx/pull/2939
https://github.com/STEllAR-GROUP/hpx/pull/2938
https://github.com/STEllAR-GROUP/hpx/pull/2937

HPX Documentation, master

• PR #29344066 - Remove the need for “complete” SFINAE checks

• PR #29334067 - Making sure parallel::for_loop is executed in parallel if requested

• PR #29324068 - Classify chunk_size_iterator to input iterator tag. (Fix #2866)

• Issue #29314069 - –hpx:help triggers unusual error with clang build

• PR #29304070 - Add #include files needed to set _POSIX_VERSION for debug check

• PR #29294071 - Fix a couple of deprecated c++ features

• PR #29284072 - Fixing execution parameters

• Issue #29274073 - CMake warning: . . . cycle in constraint graph

• PR #29264074 - Default pool rename

• Issue #29254075 - Default pool cannot be renamed

• Issue #29244076 - hpx:attach-debugger=startup does not work any more

• PR #29234077 - Alloc membind

• PR #29224078 - This fixes CircleCI errors when running with –hpx:bind=none

• PR #29214079 - Custom pool executor was missing priority and stacksize options

• PR #29204080 - Adding test to trigger problem reported in #2916

• PR #29194081 - Make sure the resource_partitioner is properly destructed on hpx::finalize

• Issue #29184082 - hpx::init calls wrong (first) callback when called multiple times

• PR #29174083 - Adding util::checkpoint

• Issue #29164084 - Weird runtime failures when using a channel and chained continuations

• PR #29154085 - Introduce executor parameters customization points

• Issue #29144086 - Task assignment to current Pool has unintended consequences

• PR #29134087 - Fix rp hang

• PR #29124088 - Update contributors
4066 https://github.com/STEllAR-GROUP/hpx/pull/2934
4067 https://github.com/STEllAR-GROUP/hpx/pull/2933
4068 https://github.com/STEllAR-GROUP/hpx/pull/2932
4069 https://github.com/STEllAR-GROUP/hpx/issues/2931
4070 https://github.com/STEllAR-GROUP/hpx/pull/2930
4071 https://github.com/STEllAR-GROUP/hpx/pull/2929
4072 https://github.com/STEllAR-GROUP/hpx/pull/2928
4073 https://github.com/STEllAR-GROUP/hpx/issues/2927
4074 https://github.com/STEllAR-GROUP/hpx/pull/2926
4075 https://github.com/STEllAR-GROUP/hpx/issues/2925
4076 https://github.com/STEllAR-GROUP/hpx/issues/2924
4077 https://github.com/STEllAR-GROUP/hpx/pull/2923
4078 https://github.com/STEllAR-GROUP/hpx/pull/2922
4079 https://github.com/STEllAR-GROUP/hpx/pull/2921
4080 https://github.com/STEllAR-GROUP/hpx/pull/2920
4081 https://github.com/STEllAR-GROUP/hpx/pull/2919
4082 https://github.com/STEllAR-GROUP/hpx/issues/2918
4083 https://github.com/STEllAR-GROUP/hpx/pull/2917
4084 https://github.com/STEllAR-GROUP/hpx/issues/2916
4085 https://github.com/STEllAR-GROUP/hpx/pull/2915
4086 https://github.com/STEllAR-GROUP/hpx/issues/2914
4087 https://github.com/STEllAR-GROUP/hpx/pull/2913
4088 https://github.com/STEllAR-GROUP/hpx/pull/2912

2.10. Releases 1715

https://github.com/STEllAR-GROUP/hpx/pull/2934
https://github.com/STEllAR-GROUP/hpx/pull/2933
https://github.com/STEllAR-GROUP/hpx/pull/2932
https://github.com/STEllAR-GROUP/hpx/issues/2931
https://github.com/STEllAR-GROUP/hpx/pull/2930
https://github.com/STEllAR-GROUP/hpx/pull/2929
https://github.com/STEllAR-GROUP/hpx/pull/2928
https://github.com/STEllAR-GROUP/hpx/issues/2927
https://github.com/STEllAR-GROUP/hpx/pull/2926
https://github.com/STEllAR-GROUP/hpx/issues/2925
https://github.com/STEllAR-GROUP/hpx/issues/2924
https://github.com/STEllAR-GROUP/hpx/pull/2923
https://github.com/STEllAR-GROUP/hpx/pull/2922
https://github.com/STEllAR-GROUP/hpx/pull/2921
https://github.com/STEllAR-GROUP/hpx/pull/2920
https://github.com/STEllAR-GROUP/hpx/pull/2919
https://github.com/STEllAR-GROUP/hpx/issues/2918
https://github.com/STEllAR-GROUP/hpx/pull/2917
https://github.com/STEllAR-GROUP/hpx/issues/2916
https://github.com/STEllAR-GROUP/hpx/pull/2915
https://github.com/STEllAR-GROUP/hpx/issues/2914
https://github.com/STEllAR-GROUP/hpx/pull/2913
https://github.com/STEllAR-GROUP/hpx/pull/2912

HPX Documentation, master

• PR #29114089 - Fixing CUDA problems

• PR #29104090 - Improve error reporting for process component on POSIX systems

• PR #29094091 - Fix typo in include path

• PR #29084092 - Use proper container according to iterator tag in benchmarks of parallel algorithms

• PR #29074093 - Optionally force-delete remaining channel items on close

• PR #29064094 - Making sure generated performance counter names are correct

• Issue #29054095 - collecting idle-rate performance counters on multiple localities produces an error

• Issue #29044096 - build broken for Intel 17 compilers

• PR #29034097 - Documentation Updates– Adding New People

• PR #29024098 - Fixing service_executor

• PR #29014099 - Fixing partitioned_vector creation

• PR #29004100 - Add numa-balanced mode to hpx::bind, spread cores over numa domains

• Issue #28994101 - hpx::bind does not have a mode that balances cores over numa domains

• PR #28984102 - Adding missing #include and missing guard for optional code section

• PR #28974103 - Removing dependency on Boost.ICL

• Issue #28964104 - Debug build fails without -fpermissive with GCC 7.1 and Boost 1.65

• PR #28954105 - Fixing SLURM environment parsing

• PR #28944106 - Fix incorrect handling of compile definition with value 0

• Issue #28934107 - Disabling schedulers causes build errors

• PR #28924108 - added list serializer

• PR #28914109 - Resource Partitioner Fixes

• Issue #28904110 - Destroying a non-empty channel causes an assertion failure

• PR #28894111 - Add check for libatomic
4089 https://github.com/STEllAR-GROUP/hpx/pull/2911
4090 https://github.com/STEllAR-GROUP/hpx/pull/2910
4091 https://github.com/STEllAR-GROUP/hpx/pull/2909
4092 https://github.com/STEllAR-GROUP/hpx/pull/2908
4093 https://github.com/STEllAR-GROUP/hpx/pull/2907
4094 https://github.com/STEllAR-GROUP/hpx/pull/2906
4095 https://github.com/STEllAR-GROUP/hpx/issues/2905
4096 https://github.com/STEllAR-GROUP/hpx/issues/2904
4097 https://github.com/STEllAR-GROUP/hpx/pull/2903
4098 https://github.com/STEllAR-GROUP/hpx/pull/2902
4099 https://github.com/STEllAR-GROUP/hpx/pull/2901
4100 https://github.com/STEllAR-GROUP/hpx/pull/2900
4101 https://github.com/STEllAR-GROUP/hpx/issues/2899
4102 https://github.com/STEllAR-GROUP/hpx/pull/2898
4103 https://github.com/STEllAR-GROUP/hpx/pull/2897
4104 https://github.com/STEllAR-GROUP/hpx/issues/2896
4105 https://github.com/STEllAR-GROUP/hpx/pull/2895
4106 https://github.com/STEllAR-GROUP/hpx/pull/2894
4107 https://github.com/STEllAR-GROUP/hpx/issues/2893
4108 https://github.com/STEllAR-GROUP/hpx/pull/2892
4109 https://github.com/STEllAR-GROUP/hpx/pull/2891
4110 https://github.com/STEllAR-GROUP/hpx/issues/2890
4111 https://github.com/STEllAR-GROUP/hpx/pull/2889

1716 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2911
https://github.com/STEllAR-GROUP/hpx/pull/2910
https://github.com/STEllAR-GROUP/hpx/pull/2909
https://github.com/STEllAR-GROUP/hpx/pull/2908
https://github.com/STEllAR-GROUP/hpx/pull/2907
https://github.com/STEllAR-GROUP/hpx/pull/2906
https://github.com/STEllAR-GROUP/hpx/issues/2905
https://github.com/STEllAR-GROUP/hpx/issues/2904
https://github.com/STEllAR-GROUP/hpx/pull/2903
https://github.com/STEllAR-GROUP/hpx/pull/2902
https://github.com/STEllAR-GROUP/hpx/pull/2901
https://github.com/STEllAR-GROUP/hpx/pull/2900
https://github.com/STEllAR-GROUP/hpx/issues/2899
https://github.com/STEllAR-GROUP/hpx/pull/2898
https://github.com/STEllAR-GROUP/hpx/pull/2897
https://github.com/STEllAR-GROUP/hpx/issues/2896
https://github.com/STEllAR-GROUP/hpx/pull/2895
https://github.com/STEllAR-GROUP/hpx/pull/2894
https://github.com/STEllAR-GROUP/hpx/issues/2893
https://github.com/STEllAR-GROUP/hpx/pull/2892
https://github.com/STEllAR-GROUP/hpx/pull/2891
https://github.com/STEllAR-GROUP/hpx/issues/2890
https://github.com/STEllAR-GROUP/hpx/pull/2889

HPX Documentation, master

• PR #28884112 - Fix compilation problems if HPX_WITH_ITT_NOTIFY=ON

• PR #28874113 - Adapt broadcast() to non-unwrapping async<Action>

• PR #28864114 - Replace Boost.Random with C++11 <random>

• Issue #28854115 - regression in broadcast?

• Issue #28844116 - linking -latomic is not portable

• PR #28834117 - Explicitly set -pthread flag if available

• PR #28824118 - Wrap boost::format uses

• Issue #28814119 - hpx not compiling with HPX_WITH_ITTNOTIFY=On

• Issue #28804120 - hpx::bind scatter/balanced give wrong pu masks

• PR #28784121 - Fix incorrect pool usage masks setup in RP/thread manager

• PR #28774122 - Require std::array by default

• PR #28754123 - Deprecate use of BOOST_ASSERT

• PR #28744124 - Changed serialization of boost.variant to use variadic templates

• Issue #28734125 - building with parcelport_mpi fails on cori

• PR #28714126 - Adding missing support for throttling scheduler

• PR #28704127 - Disambiguate use of base_lco_with_value macros with channel

• Issue #28694128 - Difficulty compiling HPX_REGISTER_CHANNEL_DECLARATION(double)

• PR #28684129 - Removing unneeded assert

• PR #28674130 - Implement parallel::unique

• Issue #28664131 - The chunk_size_iterator violates multipass guarantee

• PR #28654132 - Only use sched_getcpu on linux machines

• PR #28644133 - Create redistribution archive for successful builds

• PR #28634134 - Replace casts/assignments with hard-coded memcpy operations
4112 https://github.com/STEllAR-GROUP/hpx/pull/2888
4113 https://github.com/STEllAR-GROUP/hpx/pull/2887
4114 https://github.com/STEllAR-GROUP/hpx/pull/2886
4115 https://github.com/STEllAR-GROUP/hpx/issues/2885
4116 https://github.com/STEllAR-GROUP/hpx/issues/2884
4117 https://github.com/STEllAR-GROUP/hpx/pull/2883
4118 https://github.com/STEllAR-GROUP/hpx/pull/2882
4119 https://github.com/STEllAR-GROUP/hpx/issues/2881
4120 https://github.com/STEllAR-GROUP/hpx/issues/2880
4121 https://github.com/STEllAR-GROUP/hpx/pull/2878
4122 https://github.com/STEllAR-GROUP/hpx/pull/2877
4123 https://github.com/STEllAR-GROUP/hpx/pull/2875
4124 https://github.com/STEllAR-GROUP/hpx/pull/2874
4125 https://github.com/STEllAR-GROUP/hpx/issues/2873
4126 https://github.com/STEllAR-GROUP/hpx/pull/2871
4127 https://github.com/STEllAR-GROUP/hpx/pull/2870
4128 https://github.com/STEllAR-GROUP/hpx/issues/2869
4129 https://github.com/STEllAR-GROUP/hpx/pull/2868
4130 https://github.com/STEllAR-GROUP/hpx/pull/2867
4131 https://github.com/STEllAR-GROUP/hpx/issues/2866
4132 https://github.com/STEllAR-GROUP/hpx/pull/2865
4133 https://github.com/STEllAR-GROUP/hpx/pull/2864
4134 https://github.com/STEllAR-GROUP/hpx/pull/2863

2.10. Releases 1717

https://github.com/STEllAR-GROUP/hpx/pull/2888
https://github.com/STEllAR-GROUP/hpx/pull/2887
https://github.com/STEllAR-GROUP/hpx/pull/2886
https://github.com/STEllAR-GROUP/hpx/issues/2885
https://github.com/STEllAR-GROUP/hpx/issues/2884
https://github.com/STEllAR-GROUP/hpx/pull/2883
https://github.com/STEllAR-GROUP/hpx/pull/2882
https://github.com/STEllAR-GROUP/hpx/issues/2881
https://github.com/STEllAR-GROUP/hpx/issues/2880
https://github.com/STEllAR-GROUP/hpx/pull/2878
https://github.com/STEllAR-GROUP/hpx/pull/2877
https://github.com/STEllAR-GROUP/hpx/pull/2875
https://github.com/STEllAR-GROUP/hpx/pull/2874
https://github.com/STEllAR-GROUP/hpx/issues/2873
https://github.com/STEllAR-GROUP/hpx/pull/2871
https://github.com/STEllAR-GROUP/hpx/pull/2870
https://github.com/STEllAR-GROUP/hpx/issues/2869
https://github.com/STEllAR-GROUP/hpx/pull/2868
https://github.com/STEllAR-GROUP/hpx/pull/2867
https://github.com/STEllAR-GROUP/hpx/issues/2866
https://github.com/STEllAR-GROUP/hpx/pull/2865
https://github.com/STEllAR-GROUP/hpx/pull/2864
https://github.com/STEllAR-GROUP/hpx/pull/2863

HPX Documentation, master

• Issue #28624135 - sched_getcpu not available on MacOS

• PR #28614136 - Fixing unmatched header defines and recursive inclusion of threadmanager

• Issue #28604137 - Master program fails with assertion ‘type == data_type_address’ failed: HPX(assertion_failure)

• Issue #28524138 - Support for ARM64

• PR #28584139 - Fix misplaced #if #endif’s that cause build failure without THREAD_CUMULATIVE_COUNTS

• PR #28574140 - Fix some listing in documentation

• PR #28564141 - Fixing component handling for lcos

• PR #28554142 - Add documentation for coarrays

• PR #28544143 - Support ARM64 in timestamps

• PR #28534144 - Update Table 17. Non-modifying Parallel Algorithms in Documentation

• PR #28514145 - Allowing for non-default-constructible component types

• PR #28504146 - Enable returning future<R> from actions where R is not default-constructible

• PR #28494147 - Unify serialization of non-default-constructable types

• Issue #28484148 - Components have to be default constructible

• Issue #28474149 - Returning a future<R> where R is not default-constructable broken

• Issue #28464150 - Unify serialization of non-default-constructible types

• PR #28454151 - Add Visual Studio 2015 to the tested toolchains in Appveyor

• Issue #28444152 - Change the appveyor build to use the minimal required MSVC version

• Issue #28434153 - multi node hello_world hangs

• PR #28424154 - Correcting Spelling mistake in docs

• PR #28414155 - Fix usage of std::aligned_storage

• PR #28404156 - Remove constexpr from a void function

• Issue #28394157 - memcpy buffer overflow: load_construct_data() and std::complex members
4135 https://github.com/STEllAR-GROUP/hpx/issues/2862
4136 https://github.com/STEllAR-GROUP/hpx/pull/2861
4137 https://github.com/STEllAR-GROUP/hpx/issues/2860
4138 https://github.com/STEllAR-GROUP/hpx/issues/2852
4139 https://github.com/STEllAR-GROUP/hpx/pull/2858
4140 https://github.com/STEllAR-GROUP/hpx/pull/2857
4141 https://github.com/STEllAR-GROUP/hpx/pull/2856
4142 https://github.com/STEllAR-GROUP/hpx/pull/2855
4143 https://github.com/STEllAR-GROUP/hpx/pull/2854
4144 https://github.com/STEllAR-GROUP/hpx/pull/2853
4145 https://github.com/STEllAR-GROUP/hpx/pull/2851
4146 https://github.com/STEllAR-GROUP/hpx/pull/2850
4147 https://github.com/STEllAR-GROUP/hpx/pull/2849
4148 https://github.com/STEllAR-GROUP/hpx/issues/2848
4149 https://github.com/STEllAR-GROUP/hpx/issues/2847
4150 https://github.com/STEllAR-GROUP/hpx/issues/2846
4151 https://github.com/STEllAR-GROUP/hpx/pull/2845
4152 https://github.com/STEllAR-GROUP/hpx/issues/2844
4153 https://github.com/STEllAR-GROUP/hpx/issues/2843
4154 https://github.com/STEllAR-GROUP/hpx/pull/2842
4155 https://github.com/STEllAR-GROUP/hpx/pull/2841
4156 https://github.com/STEllAR-GROUP/hpx/pull/2840
4157 https://github.com/STEllAR-GROUP/hpx/issues/2839

1718 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2862
https://github.com/STEllAR-GROUP/hpx/pull/2861
https://github.com/STEllAR-GROUP/hpx/issues/2860
https://github.com/STEllAR-GROUP/hpx/issues/2852
https://github.com/STEllAR-GROUP/hpx/pull/2858
https://github.com/STEllAR-GROUP/hpx/pull/2857
https://github.com/STEllAR-GROUP/hpx/pull/2856
https://github.com/STEllAR-GROUP/hpx/pull/2855
https://github.com/STEllAR-GROUP/hpx/pull/2854
https://github.com/STEllAR-GROUP/hpx/pull/2853
https://github.com/STEllAR-GROUP/hpx/pull/2851
https://github.com/STEllAR-GROUP/hpx/pull/2850
https://github.com/STEllAR-GROUP/hpx/pull/2849
https://github.com/STEllAR-GROUP/hpx/issues/2848
https://github.com/STEllAR-GROUP/hpx/issues/2847
https://github.com/STEllAR-GROUP/hpx/issues/2846
https://github.com/STEllAR-GROUP/hpx/pull/2845
https://github.com/STEllAR-GROUP/hpx/issues/2844
https://github.com/STEllAR-GROUP/hpx/issues/2843
https://github.com/STEllAR-GROUP/hpx/pull/2842
https://github.com/STEllAR-GROUP/hpx/pull/2841
https://github.com/STEllAR-GROUP/hpx/pull/2840
https://github.com/STEllAR-GROUP/hpx/issues/2839

HPX Documentation, master

• Issue #28354158 - constexpr functions with void return type break compilation with CUDA 8.0

• Issue #28344159 - One suspicion in parallel::detail::handle_exception

• PR #28334160 - Implement parallel::merge

• PR #28324161 - Fix a strange thing in parallel::util::detail::handle_local_exceptions. (Fix #2818)

• PR #28304162 - Break the debugger when a test failed

• Issue #28314163 - parallel/executors/execution_fwd.hpp causes compilation failure in C++11 mode.

• PR #28294164 - Implement an API for asynchronous pack traversal

• PR #28284165 - Split unit test builds on CircleCI to avoid timeouts

• Issue #28274166 - failure to compile hello_world example with -Werror

• PR #28244167 - Making sure promises are marked as started when used as continuations

• PR #28234168 - Add documentation for partitioned_vector_view

• Issue #28224169 - Yet another issue with wait_for similar to #2796

• PR #28214170 - Fix bugs and improve that about HPX_HAVE_CXX11_AUTO_RETURN_VALUE of CMake

• PR #28204171 - Support C++11 in benchmark codes of parallel::partition and parallel::partition_copy

• PR #28194172 - Fix compile errors in unit test of container version of parallel::partition

• Issue #28184173 - A strange thing in parallel::util::detail::handle_local_exceptions

• Issue #28154174 - HPX fails to compile with HPX_WITH_CUDA=ON and the new CUDA 9.0 RC

• Issue #28144175 - Using ‘gmakeN’ after ‘cmake’ produces error in src/CMakeFiles/hpx.dir/runtime/agas/addressing_service.cpp.o

• PR #28134176 - Properly support [[noreturn]] attribute if available

• Issue #28124177 - Compilation fails with gcc 7.1.1

• PR #28114178 - Adding hpx::launch::lazy and support for async, dataflow, and future::then

• PR #28104179 - Add option allowing to disable deprecation warning

• PR #28094180 - Disable throttling scheduler if HWLOC is not found/used
4158 https://github.com/STEllAR-GROUP/hpx/issues/2835
4159 https://github.com/STEllAR-GROUP/hpx/issues/2834
4160 https://github.com/STEllAR-GROUP/hpx/pull/2833
4161 https://github.com/STEllAR-GROUP/hpx/pull/2832
4162 https://github.com/STEllAR-GROUP/hpx/pull/2830
4163 https://github.com/STEllAR-GROUP/hpx/issues/2831
4164 https://github.com/STEllAR-GROUP/hpx/pull/2829
4165 https://github.com/STEllAR-GROUP/hpx/pull/2828
4166 https://github.com/STEllAR-GROUP/hpx/issues/2827
4167 https://github.com/STEllAR-GROUP/hpx/pull/2824
4168 https://github.com/STEllAR-GROUP/hpx/pull/2823
4169 https://github.com/STEllAR-GROUP/hpx/issues/2822
4170 https://github.com/STEllAR-GROUP/hpx/pull/2821
4171 https://github.com/STEllAR-GROUP/hpx/pull/2820
4172 https://github.com/STEllAR-GROUP/hpx/pull/2819
4173 https://github.com/STEllAR-GROUP/hpx/issues/2818
4174 https://github.com/STEllAR-GROUP/hpx/issues/2815
4175 https://github.com/STEllAR-GROUP/hpx/issues/2814
4176 https://github.com/STEllAR-GROUP/hpx/pull/2813
4177 https://github.com/STEllAR-GROUP/hpx/issues/2812
4178 https://github.com/STEllAR-GROUP/hpx/pull/2811
4179 https://github.com/STEllAR-GROUP/hpx/pull/2810
4180 https://github.com/STEllAR-GROUP/hpx/pull/2809

2.10. Releases 1719

https://github.com/STEllAR-GROUP/hpx/issues/2835
https://github.com/STEllAR-GROUP/hpx/issues/2834
https://github.com/STEllAR-GROUP/hpx/pull/2833
https://github.com/STEllAR-GROUP/hpx/pull/2832
https://github.com/STEllAR-GROUP/hpx/pull/2830
https://github.com/STEllAR-GROUP/hpx/issues/2831
https://github.com/STEllAR-GROUP/hpx/pull/2829
https://github.com/STEllAR-GROUP/hpx/pull/2828
https://github.com/STEllAR-GROUP/hpx/issues/2827
https://github.com/STEllAR-GROUP/hpx/pull/2824
https://github.com/STEllAR-GROUP/hpx/pull/2823
https://github.com/STEllAR-GROUP/hpx/issues/2822
https://github.com/STEllAR-GROUP/hpx/pull/2821
https://github.com/STEllAR-GROUP/hpx/pull/2820
https://github.com/STEllAR-GROUP/hpx/pull/2819
https://github.com/STEllAR-GROUP/hpx/issues/2818
https://github.com/STEllAR-GROUP/hpx/issues/2815
https://github.com/STEllAR-GROUP/hpx/issues/2814
https://github.com/STEllAR-GROUP/hpx/pull/2813
https://github.com/STEllAR-GROUP/hpx/issues/2812
https://github.com/STEllAR-GROUP/hpx/pull/2811
https://github.com/STEllAR-GROUP/hpx/pull/2810
https://github.com/STEllAR-GROUP/hpx/pull/2809

HPX Documentation, master

• PR #28084181 - Fix compile errors on some environments of parallel::partition

• Issue #28074182 - Difficulty building with HPX_WITH_HWLOC=Off

• PR #28064183 - Partitioned vector

• PR #28054184 - Serializing collections with non-default constructible data

• PR #28024185 - Fix FreeBSD 11

• Issue #28014186 - Rate limiting techniques in io_service

• Issue #28004187 - New Launch Policy: async_if

• PR #27994188 - Fix a unit test failure on GCC in tuple_cat

• PR #27984189 - bump minimum required cmake to 3.0 in test

• PR #27974190 - Making sure future::wait_for et.al. work properly for action results

• Issue #27964191 - wait_for does always in “deferred” state for calls on remote localities

• Issue #27954192 - Serialization of types without default constructor

• PR #27944193 - Fixing test for partitioned_vector iteration

• PR #27924194 - Implemented segmented find and its variations for partitioned vector

• PR #27914195 - Circumvent scary warning about placement new

• PR #27904196 - Fix OSX build

• PR #27894197 - Resource partitioner

• PR #27884198 - Adapt parallel::is_heap and parallel::is_heap_until to Ranges TS

• PR #27874199 - Unwrap hotfixes

• PR #27864200 - Update CMake Minimum Version to 3.3.2 (refs #2565)

• Issue #27854201 - Issues with masks and cpuset

• PR #27844202 - Error with reduce and transform reduce fixed

• PR #27834203 - StackOverflow integration with libsigsegv
4181 https://github.com/STEllAR-GROUP/hpx/pull/2808
4182 https://github.com/STEllAR-GROUP/hpx/issues/2807
4183 https://github.com/STEllAR-GROUP/hpx/pull/2806
4184 https://github.com/STEllAR-GROUP/hpx/pull/2805
4185 https://github.com/STEllAR-GROUP/hpx/pull/2802
4186 https://github.com/STEllAR-GROUP/hpx/issues/2801
4187 https://github.com/STEllAR-GROUP/hpx/issues/2800
4188 https://github.com/STEllAR-GROUP/hpx/pull/2799
4189 https://github.com/STEllAR-GROUP/hpx/pull/2798
4190 https://github.com/STEllAR-GROUP/hpx/pull/2797
4191 https://github.com/STEllAR-GROUP/hpx/issues/2796
4192 https://github.com/STEllAR-GROUP/hpx/issues/2795
4193 https://github.com/STEllAR-GROUP/hpx/pull/2794
4194 https://github.com/STEllAR-GROUP/hpx/pull/2792
4195 https://github.com/STEllAR-GROUP/hpx/pull/2791
4196 https://github.com/STEllAR-GROUP/hpx/pull/2790
4197 https://github.com/STEllAR-GROUP/hpx/pull/2789
4198 https://github.com/STEllAR-GROUP/hpx/pull/2788
4199 https://github.com/STEllAR-GROUP/hpx/pull/2787
4200 https://github.com/STEllAR-GROUP/hpx/pull/2786
4201 https://github.com/STEllAR-GROUP/hpx/issues/2785
4202 https://github.com/STEllAR-GROUP/hpx/pull/2784
4203 https://github.com/STEllAR-GROUP/hpx/pull/2783

1720 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2808
https://github.com/STEllAR-GROUP/hpx/issues/2807
https://github.com/STEllAR-GROUP/hpx/pull/2806
https://github.com/STEllAR-GROUP/hpx/pull/2805
https://github.com/STEllAR-GROUP/hpx/pull/2802
https://github.com/STEllAR-GROUP/hpx/issues/2801
https://github.com/STEllAR-GROUP/hpx/issues/2800
https://github.com/STEllAR-GROUP/hpx/pull/2799
https://github.com/STEllAR-GROUP/hpx/pull/2798
https://github.com/STEllAR-GROUP/hpx/pull/2797
https://github.com/STEllAR-GROUP/hpx/issues/2796
https://github.com/STEllAR-GROUP/hpx/issues/2795
https://github.com/STEllAR-GROUP/hpx/pull/2794
https://github.com/STEllAR-GROUP/hpx/pull/2792
https://github.com/STEllAR-GROUP/hpx/pull/2791
https://github.com/STEllAR-GROUP/hpx/pull/2790
https://github.com/STEllAR-GROUP/hpx/pull/2789
https://github.com/STEllAR-GROUP/hpx/pull/2788
https://github.com/STEllAR-GROUP/hpx/pull/2787
https://github.com/STEllAR-GROUP/hpx/pull/2786
https://github.com/STEllAR-GROUP/hpx/issues/2785
https://github.com/STEllAR-GROUP/hpx/pull/2784
https://github.com/STEllAR-GROUP/hpx/pull/2783

HPX Documentation, master

• PR #27824204 - Replace boost::atomic with std::atomic (where possible)

• PR #27814205 - Check for and optionally use [[deprecated]] attribute

• PR #27804206 - Adding empty (but non-trivial) destructor to circumvent warnings

• PR #27794207 - Exception info tweaks

• PR #27784208 - Implement parallel::partition

• PR #27774209 - Improve error handling in gather_here/gather_there

• PR #27764210 - Fix a bug in compiler version check

• PR #27754211 - Fix compilation when HPX_WITH_LOGGING is OFF

• PR #27744212 - Removing dependency on Boost.Date_Time

• PR #27734213 - Add sync_images() method to spmd_block class

• PR #27724214 - Adding documentation for PAPI counters

• PR #27714215 - Removing boost preprocessor dependency

• PR #27704216 - Adding test, fixing deadlock in config registry

• PR #27694217 - Remove some other warnings and errors detected by clang 5.0

• Issue #27684218 - Is there iterator tag for HPX?

• PR #27674219 - Improvements to continuation annotation

• PR #27654220 - gcc split stack support for HPX threads #620

• PR #27644221 - Fix some uses of begin/end, remove unnecessary includes

• PR #27634222 - Bump minimal Boost version to 1.55.0

• PR #27624223 - hpx::partitioned_vector serializer

• PR #27614224 - Adding configuration summary to cmake output and –hpx:info

• PR #27604225 - Removing 1d_hydro example as it is broken

• PR #27584226 - Remove various warnings detected by clang 5.0
4204 https://github.com/STEllAR-GROUP/hpx/pull/2782
4205 https://github.com/STEllAR-GROUP/hpx/pull/2781
4206 https://github.com/STEllAR-GROUP/hpx/pull/2780
4207 https://github.com/STEllAR-GROUP/hpx/pull/2779
4208 https://github.com/STEllAR-GROUP/hpx/pull/2778
4209 https://github.com/STEllAR-GROUP/hpx/pull/2777
4210 https://github.com/STEllAR-GROUP/hpx/pull/2776
4211 https://github.com/STEllAR-GROUP/hpx/pull/2775
4212 https://github.com/STEllAR-GROUP/hpx/pull/2774
4213 https://github.com/STEllAR-GROUP/hpx/pull/2773
4214 https://github.com/STEllAR-GROUP/hpx/pull/2772
4215 https://github.com/STEllAR-GROUP/hpx/pull/2771
4216 https://github.com/STEllAR-GROUP/hpx/pull/2770
4217 https://github.com/STEllAR-GROUP/hpx/pull/2769
4218 https://github.com/STEllAR-GROUP/hpx/issues/2768
4219 https://github.com/STEllAR-GROUP/hpx/pull/2767
4220 https://github.com/STEllAR-GROUP/hpx/pull/2765
4221 https://github.com/STEllAR-GROUP/hpx/pull/2764
4222 https://github.com/STEllAR-GROUP/hpx/pull/2763
4223 https://github.com/STEllAR-GROUP/hpx/pull/2762
4224 https://github.com/STEllAR-GROUP/hpx/pull/2761
4225 https://github.com/STEllAR-GROUP/hpx/pull/2760
4226 https://github.com/STEllAR-GROUP/hpx/pull/2758

2.10. Releases 1721

https://github.com/STEllAR-GROUP/hpx/pull/2782
https://github.com/STEllAR-GROUP/hpx/pull/2781
https://github.com/STEllAR-GROUP/hpx/pull/2780
https://github.com/STEllAR-GROUP/hpx/pull/2779
https://github.com/STEllAR-GROUP/hpx/pull/2778
https://github.com/STEllAR-GROUP/hpx/pull/2777
https://github.com/STEllAR-GROUP/hpx/pull/2776
https://github.com/STEllAR-GROUP/hpx/pull/2775
https://github.com/STEllAR-GROUP/hpx/pull/2774
https://github.com/STEllAR-GROUP/hpx/pull/2773
https://github.com/STEllAR-GROUP/hpx/pull/2772
https://github.com/STEllAR-GROUP/hpx/pull/2771
https://github.com/STEllAR-GROUP/hpx/pull/2770
https://github.com/STEllAR-GROUP/hpx/pull/2769
https://github.com/STEllAR-GROUP/hpx/issues/2768
https://github.com/STEllAR-GROUP/hpx/pull/2767
https://github.com/STEllAR-GROUP/hpx/pull/2765
https://github.com/STEllAR-GROUP/hpx/pull/2764
https://github.com/STEllAR-GROUP/hpx/pull/2763
https://github.com/STEllAR-GROUP/hpx/pull/2762
https://github.com/STEllAR-GROUP/hpx/pull/2761
https://github.com/STEllAR-GROUP/hpx/pull/2760
https://github.com/STEllAR-GROUP/hpx/pull/2758

HPX Documentation, master

• Issue #27574227 - In case of a “raw thread” is needed per core for implementing parallel algorithm, what is good
practice in HPX?

• PR #27564228 - Allowing for LCOs to be simple components

• PR #27554229 - Removing make_index_pack_unrolled

• PR #27544230 - Implement parallel::unique_copy

• PR #27534231 - Fixing detection of [[fallthrough]] attribute

• PR #27524232 - New thread priority names

• PR #27514233 - Replace boost::exception with proposed exception_info

• PR #27504234 - Replace boost::iterator_range

• PR #27494235 - Fixing hdf5 examples

• Issue #27484236 - HPX fails to build with enabled hdf5 examples

• Issue #27474237 - Inherited task priorities break certain DAG optimizations

• Issue #27464238 - HPX segfaulting with valgrind

• PR #27454239 - Adding extended arithmetic performance counters

• PR #27444240 - Adding ability to statistics counters to reset base counter

• Issue #27434241 - Statistics counter does not support resetting

• PR #27424242 - Making sure Vc V2 builds without additional HPX configuration flags

• PR #27414243 - Deprecate unwrapped and implement unwrap and unwrapping

• PR #27404244 - Coroutine stackoverflow detection for linux/posix; Issue #2408

• PR #27394245 - Add files via upload

• PR #27384246 - Appveyor support

• PR #27374247 - Fixing 2735

• Issue #27364248 - 1d_hydro example doesn’t work

• Issue #27354249 - partitioned_vector_subview test failing
4227 https://github.com/STEllAR-GROUP/hpx/issues/2757
4228 https://github.com/STEllAR-GROUP/hpx/pull/2756
4229 https://github.com/STEllAR-GROUP/hpx/pull/2755
4230 https://github.com/STEllAR-GROUP/hpx/pull/2754
4231 https://github.com/STEllAR-GROUP/hpx/pull/2753
4232 https://github.com/STEllAR-GROUP/hpx/pull/2752
4233 https://github.com/STEllAR-GROUP/hpx/pull/2751
4234 https://github.com/STEllAR-GROUP/hpx/pull/2750
4235 https://github.com/STEllAR-GROUP/hpx/pull/2749
4236 https://github.com/STEllAR-GROUP/hpx/issues/2748
4237 https://github.com/STEllAR-GROUP/hpx/issues/2747
4238 https://github.com/STEllAR-GROUP/hpx/issues/2746
4239 https://github.com/STEllAR-GROUP/hpx/pull/2745
4240 https://github.com/STEllAR-GROUP/hpx/pull/2744
4241 https://github.com/STEllAR-GROUP/hpx/issues/2743
4242 https://github.com/STEllAR-GROUP/hpx/pull/2742
4243 https://github.com/STEllAR-GROUP/hpx/pull/2741
4244 https://github.com/STEllAR-GROUP/hpx/pull/2740
4245 https://github.com/STEllAR-GROUP/hpx/pull/2739
4246 https://github.com/STEllAR-GROUP/hpx/pull/2738
4247 https://github.com/STEllAR-GROUP/hpx/pull/2737
4248 https://github.com/STEllAR-GROUP/hpx/issues/2736
4249 https://github.com/STEllAR-GROUP/hpx/issues/2735

1722 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2757
https://github.com/STEllAR-GROUP/hpx/pull/2756
https://github.com/STEllAR-GROUP/hpx/pull/2755
https://github.com/STEllAR-GROUP/hpx/pull/2754
https://github.com/STEllAR-GROUP/hpx/pull/2753
https://github.com/STEllAR-GROUP/hpx/pull/2752
https://github.com/STEllAR-GROUP/hpx/pull/2751
https://github.com/STEllAR-GROUP/hpx/pull/2750
https://github.com/STEllAR-GROUP/hpx/pull/2749
https://github.com/STEllAR-GROUP/hpx/issues/2748
https://github.com/STEllAR-GROUP/hpx/issues/2747
https://github.com/STEllAR-GROUP/hpx/issues/2746
https://github.com/STEllAR-GROUP/hpx/pull/2745
https://github.com/STEllAR-GROUP/hpx/pull/2744
https://github.com/STEllAR-GROUP/hpx/issues/2743
https://github.com/STEllAR-GROUP/hpx/pull/2742
https://github.com/STEllAR-GROUP/hpx/pull/2741
https://github.com/STEllAR-GROUP/hpx/pull/2740
https://github.com/STEllAR-GROUP/hpx/pull/2739
https://github.com/STEllAR-GROUP/hpx/pull/2738
https://github.com/STEllAR-GROUP/hpx/pull/2737
https://github.com/STEllAR-GROUP/hpx/issues/2736
https://github.com/STEllAR-GROUP/hpx/issues/2735

HPX Documentation, master

• PR #27344250 - Add C++11 range utilities

• PR #27334251 - Adapting iterator requirements for parallel algorithms

• PR #27324252 - Integrate C++ Co-arrays

• PR #27314253 - Adding on_migrated event handler to migratable component instances

• Issue #27294254 - Add on_migrated() event handler to migratable components

• Issue #27284255 - Why Projection is needed in parallel algorithms?

• PR #27274256 - Cmake files for StackOverflow Detection

• PR #27264257 - CMake for Stack Overflow Detection

• PR #27254258 - Implemented segmented algorithms for partitioned vector

• PR #27244259 - Fix examples in Action documentation

• PR #27234260 - Enable lcos::channel<T>::register_as

• Issue #27224261 - channel register_as() failing on compilation

• PR #27214262 - Mind map

• PR #27204263 - reorder forward declarations to get rid of C++14-only auto return types

• PR #27194264 - Add documentation for partitioned_vector and add features in pack.hpp

• Issue #27184265 - Some forward declarations in execution_fwd.hpp aren’t C++11-compatible

• PR #27174266 - Config support for fallthrough attribute

• PR #27164267 - Implement parallel::partition_copy

• PR #27154268 - initial import of icu string serializer

• PR #27144269 - initial import of valarray serializer

• PR #27134270 - Remove slashes before CMAKE_FILES_DIRECTORY variables

• PR #27124271 - Fixing wait for 1751

• PR #27114272 - Adjust code for minimal supported GCC having being bumped to 4.9
4250 https://github.com/STEllAR-GROUP/hpx/pull/2734
4251 https://github.com/STEllAR-GROUP/hpx/pull/2733
4252 https://github.com/STEllAR-GROUP/hpx/pull/2732
4253 https://github.com/STEllAR-GROUP/hpx/pull/2731
4254 https://github.com/STEllAR-GROUP/hpx/issues/2729
4255 https://github.com/STEllAR-GROUP/hpx/issues/2728
4256 https://github.com/STEllAR-GROUP/hpx/pull/2727
4257 https://github.com/STEllAR-GROUP/hpx/pull/2726
4258 https://github.com/STEllAR-GROUP/hpx/pull/2725
4259 https://github.com/STEllAR-GROUP/hpx/pull/2724
4260 https://github.com/STEllAR-GROUP/hpx/pull/2723
4261 https://github.com/STEllAR-GROUP/hpx/issues/2722
4262 https://github.com/STEllAR-GROUP/hpx/pull/2721
4263 https://github.com/STEllAR-GROUP/hpx/pull/2720
4264 https://github.com/STEllAR-GROUP/hpx/pull/2719
4265 https://github.com/STEllAR-GROUP/hpx/issues/2718
4266 https://github.com/STEllAR-GROUP/hpx/pull/2717
4267 https://github.com/STEllAR-GROUP/hpx/pull/2716
4268 https://github.com/STEllAR-GROUP/hpx/pull/2715
4269 https://github.com/STEllAR-GROUP/hpx/pull/2714
4270 https://github.com/STEllAR-GROUP/hpx/pull/2713
4271 https://github.com/STEllAR-GROUP/hpx/pull/2712
4272 https://github.com/STEllAR-GROUP/hpx/pull/2711

2.10. Releases 1723

https://github.com/STEllAR-GROUP/hpx/pull/2734
https://github.com/STEllAR-GROUP/hpx/pull/2733
https://github.com/STEllAR-GROUP/hpx/pull/2732
https://github.com/STEllAR-GROUP/hpx/pull/2731
https://github.com/STEllAR-GROUP/hpx/issues/2729
https://github.com/STEllAR-GROUP/hpx/issues/2728
https://github.com/STEllAR-GROUP/hpx/pull/2727
https://github.com/STEllAR-GROUP/hpx/pull/2726
https://github.com/STEllAR-GROUP/hpx/pull/2725
https://github.com/STEllAR-GROUP/hpx/pull/2724
https://github.com/STEllAR-GROUP/hpx/pull/2723
https://github.com/STEllAR-GROUP/hpx/issues/2722
https://github.com/STEllAR-GROUP/hpx/pull/2721
https://github.com/STEllAR-GROUP/hpx/pull/2720
https://github.com/STEllAR-GROUP/hpx/pull/2719
https://github.com/STEllAR-GROUP/hpx/issues/2718
https://github.com/STEllAR-GROUP/hpx/pull/2717
https://github.com/STEllAR-GROUP/hpx/pull/2716
https://github.com/STEllAR-GROUP/hpx/pull/2715
https://github.com/STEllAR-GROUP/hpx/pull/2714
https://github.com/STEllAR-GROUP/hpx/pull/2713
https://github.com/STEllAR-GROUP/hpx/pull/2712
https://github.com/STEllAR-GROUP/hpx/pull/2711

HPX Documentation, master

• PR #27104273 - Adding code of conduct

• PR #27094274 - Fixing UB in destroy tests

• PR #27084275 - Add inline to prevent multiple definition issue

• Issue #27074276 - Multiple defined symbols for task_block.hpp in VS2015

• PR #27064277 - Adding .clang-format file

• PR #27044278 - Add a synchronous mapping API

• Issue #27034279 - Request: Add the .clang-format file to the repository

• Issue #27024280 - STEllAR-GROUP/Vc slower than VCv1 possibly due to wrong instructions generated

• Issue #27014281 - Datapar with STEllAR-GROUP/Vc requires obscure flag

• Issue #27004282 - Naming inconsistency in parallel algorithms

• Issue #26994283 - Iterator requirements are different from standard in parallel copy_if.

• PR #26984284 - Properly releasing parcelport write handlers

• Issue #26974285 - Compile error in addressing_service.cpp

• Issue #26964286 - Building and using HPX statically: undefined references from runtime_support_server.cpp

• Issue #26954287 - Executor changes cause compilation failures

• PR #26944288 - Refining C++ language mode detection for MSVC

• PR #26934289 - P0443 r2

• PR #26924290 - Partially reverting changes to parcel_await

• Issue #26894291 - HPX build fails when HPX_WITH_CUDA is enabled

• PR #26884292 - Make Cuda Clang builds pass

• PR #26874293 - Add an is_tuple_like trait for sequenceable type detection

• PR #26864294 - Allowing throttling scheduler to be used without idle backoff

• PR #26854295 - Add support of std::array to hpx::util::tuple_size and tuple_element
4273 https://github.com/STEllAR-GROUP/hpx/pull/2710
4274 https://github.com/STEllAR-GROUP/hpx/pull/2709
4275 https://github.com/STEllAR-GROUP/hpx/pull/2708
4276 https://github.com/STEllAR-GROUP/hpx/issues/2707
4277 https://github.com/STEllAR-GROUP/hpx/pull/2706
4278 https://github.com/STEllAR-GROUP/hpx/pull/2704
4279 https://github.com/STEllAR-GROUP/hpx/issues/2703
4280 https://github.com/STEllAR-GROUP/hpx/issues/2702
4281 https://github.com/STEllAR-GROUP/hpx/issues/2701
4282 https://github.com/STEllAR-GROUP/hpx/issues/2700
4283 https://github.com/STEllAR-GROUP/hpx/issues/2699
4284 https://github.com/STEllAR-GROUP/hpx/pull/2698
4285 https://github.com/STEllAR-GROUP/hpx/issues/2697
4286 https://github.com/STEllAR-GROUP/hpx/issues/2696
4287 https://github.com/STEllAR-GROUP/hpx/issues/2695
4288 https://github.com/STEllAR-GROUP/hpx/pull/2694
4289 https://github.com/STEllAR-GROUP/hpx/pull/2693
4290 https://github.com/STEllAR-GROUP/hpx/pull/2692
4291 https://github.com/STEllAR-GROUP/hpx/issues/2689
4292 https://github.com/STEllAR-GROUP/hpx/pull/2688
4293 https://github.com/STEllAR-GROUP/hpx/pull/2687
4294 https://github.com/STEllAR-GROUP/hpx/pull/2686
4295 https://github.com/STEllAR-GROUP/hpx/pull/2685

1724 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2710
https://github.com/STEllAR-GROUP/hpx/pull/2709
https://github.com/STEllAR-GROUP/hpx/pull/2708
https://github.com/STEllAR-GROUP/hpx/issues/2707
https://github.com/STEllAR-GROUP/hpx/pull/2706
https://github.com/STEllAR-GROUP/hpx/pull/2704
https://github.com/STEllAR-GROUP/hpx/issues/2703
https://github.com/STEllAR-GROUP/hpx/issues/2702
https://github.com/STEllAR-GROUP/hpx/issues/2701
https://github.com/STEllAR-GROUP/hpx/issues/2700
https://github.com/STEllAR-GROUP/hpx/issues/2699
https://github.com/STEllAR-GROUP/hpx/pull/2698
https://github.com/STEllAR-GROUP/hpx/issues/2697
https://github.com/STEllAR-GROUP/hpx/issues/2696
https://github.com/STEllAR-GROUP/hpx/issues/2695
https://github.com/STEllAR-GROUP/hpx/pull/2694
https://github.com/STEllAR-GROUP/hpx/pull/2693
https://github.com/STEllAR-GROUP/hpx/pull/2692
https://github.com/STEllAR-GROUP/hpx/issues/2689
https://github.com/STEllAR-GROUP/hpx/pull/2688
https://github.com/STEllAR-GROUP/hpx/pull/2687
https://github.com/STEllAR-GROUP/hpx/pull/2686
https://github.com/STEllAR-GROUP/hpx/pull/2685

HPX Documentation, master

• PR #26844296 - Adding new statistics performance counters

• PR #26834297 - Replace boost::exception_ptr with std::exception_ptr

• Issue #26824298 - HPX does not compile with HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF=OFF

• PR #26814299 - Attempt to fix problem in managed_component_base

• PR #26804300 - Fix bad size during archive creation

• Issue #26794301 - Mismatch between size of archive and container

• Issue #26784302 - In parallel algorithm, other tasks are executed to the end even if an exception occurs in any
task.

• PR #26774303 - Adding include check for std::addressof

• PR #26764304 - Adding parallel::destroy and destroy_n

• PR #26754305 - Making sure statistics counters work as expected

• PR #26744306 - Turning assertions into exceptions

• PR #26734307 - Inhibit direct conversion from future<future<T>> –> future<void>

• PR #26724308 - C++17 invoke forms

• PR #26714309 - Adding uninitialized_value_construct and uninitialized_value_construct_n

• PR #26704310 - Integrate spmd multidimensional views for partitioned_vectors

• PR #26694311 - Adding uninitialized_default_construct and uninitialized_default_construct_n

• PR #26684312 - Fixing documentation index

• Issue #26674313 - Ambiguity of nested hpx::future<void>’s

• Issue #26664314 - Statistics Performance counter is not working

• PR #26644315 - Adding uninitialized_move and uninitialized_move_n

• Issue #26634316 - Seg fault in managed_component::get_base_gid, possibly cause by util::reinitializable_static

• Issue #26624317 - Crash in managed_component::get_base_gid due to problem with util::reinitializable_static

• PR #26654318 - Hide the detail namespace in doxygen per default
4296 https://github.com/STEllAR-GROUP/hpx/pull/2684
4297 https://github.com/STEllAR-GROUP/hpx/pull/2683
4298 https://github.com/STEllAR-GROUP/hpx/issues/2682
4299 https://github.com/STEllAR-GROUP/hpx/pull/2681
4300 https://github.com/STEllAR-GROUP/hpx/pull/2680
4301 https://github.com/STEllAR-GROUP/hpx/issues/2679
4302 https://github.com/STEllAR-GROUP/hpx/issues/2678
4303 https://github.com/STEllAR-GROUP/hpx/pull/2677
4304 https://github.com/STEllAR-GROUP/hpx/pull/2676
4305 https://github.com/STEllAR-GROUP/hpx/pull/2675
4306 https://github.com/STEllAR-GROUP/hpx/pull/2674
4307 https://github.com/STEllAR-GROUP/hpx/pull/2673
4308 https://github.com/STEllAR-GROUP/hpx/pull/2672
4309 https://github.com/STEllAR-GROUP/hpx/pull/2671
4310 https://github.com/STEllAR-GROUP/hpx/pull/2670
4311 https://github.com/STEllAR-GROUP/hpx/pull/2669
4312 https://github.com/STEllAR-GROUP/hpx/pull/2668
4313 https://github.com/STEllAR-GROUP/hpx/issues/2667
4314 https://github.com/STEllAR-GROUP/hpx/issues/2666
4315 https://github.com/STEllAR-GROUP/hpx/pull/2664
4316 https://github.com/STEllAR-GROUP/hpx/issues/2663
4317 https://github.com/STEllAR-GROUP/hpx/issues/2662
4318 https://github.com/STEllAR-GROUP/hpx/pull/2665

2.10. Releases 1725

https://github.com/STEllAR-GROUP/hpx/pull/2684
https://github.com/STEllAR-GROUP/hpx/pull/2683
https://github.com/STEllAR-GROUP/hpx/issues/2682
https://github.com/STEllAR-GROUP/hpx/pull/2681
https://github.com/STEllAR-GROUP/hpx/pull/2680
https://github.com/STEllAR-GROUP/hpx/issues/2679
https://github.com/STEllAR-GROUP/hpx/issues/2678
https://github.com/STEllAR-GROUP/hpx/pull/2677
https://github.com/STEllAR-GROUP/hpx/pull/2676
https://github.com/STEllAR-GROUP/hpx/pull/2675
https://github.com/STEllAR-GROUP/hpx/pull/2674
https://github.com/STEllAR-GROUP/hpx/pull/2673
https://github.com/STEllAR-GROUP/hpx/pull/2672
https://github.com/STEllAR-GROUP/hpx/pull/2671
https://github.com/STEllAR-GROUP/hpx/pull/2670
https://github.com/STEllAR-GROUP/hpx/pull/2669
https://github.com/STEllAR-GROUP/hpx/pull/2668
https://github.com/STEllAR-GROUP/hpx/issues/2667
https://github.com/STEllAR-GROUP/hpx/issues/2666
https://github.com/STEllAR-GROUP/hpx/pull/2664
https://github.com/STEllAR-GROUP/hpx/issues/2663
https://github.com/STEllAR-GROUP/hpx/issues/2662
https://github.com/STEllAR-GROUP/hpx/pull/2665

HPX Documentation, master

• PR #26604319 - Add documentation to hpx::util::unwrapped and hpx::util::unwrapped2

• PR #26594320 - Improve integration with vcpkg

• PR #26584321 - Unify access_data trait for use in both, serialization and de-serialization

• PR #26574322 - Removing hpx::lcos::queue<T>

• PR #26564323 - Reduce MAX_TERMINATED_THREADS default, improve memory use on manycore cpus

• PR #26554324 - Mainteinance for emulate-deleted macros

• PR #26544325 - Implement parallel is_heap and is_heap_until

• PR #26534326 - Drop support for VS2013

• PR #26524327 - This patch makes sure that all parcels in a batch are properly handled

• PR #26494328 - Update docs (Table 18) - move transform to end

• Issue #26474329 - hpx::parcelset::detail::parcel_data::has_continuation_ is uninitialized

• Issue #26444330 - Some .vcxproj in the HPX.sln fail to build

• Issue #26414331 - hpx::lcos::queue should be deprecated

• PR #26404332 - A new throttling policy with public APIs to suspend/resume

• PR #26394333 - Fix a tiny typo in tutorial.

• Issue #26384334 - Invalid return type ‘void’ of constexpr function

• PR #26364335 - Add and use HPX_MSVC_WARNING_PRAGMA for #pragma warning

• PR #26334336 - Distributed define_spmd_block

• PR #26324337 - Making sure container serialization uses size-compatible types

• PR #26314338 - Add lcos::local::one_element_channel

• PR #26294339 - Move unordered_map out of parcelport into hpx/concurrent

• PR #26284340 - Making sure that shutdown does not hang

• PR #26274341 - Fix serialization
4319 https://github.com/STEllAR-GROUP/hpx/pull/2660
4320 https://github.com/STEllAR-GROUP/hpx/pull/2659
4321 https://github.com/STEllAR-GROUP/hpx/pull/2658
4322 https://github.com/STEllAR-GROUP/hpx/pull/2657
4323 https://github.com/STEllAR-GROUP/hpx/pull/2656
4324 https://github.com/STEllAR-GROUP/hpx/pull/2655
4325 https://github.com/STEllAR-GROUP/hpx/pull/2654
4326 https://github.com/STEllAR-GROUP/hpx/pull/2653
4327 https://github.com/STEllAR-GROUP/hpx/pull/2652
4328 https://github.com/STEllAR-GROUP/hpx/pull/2649
4329 https://github.com/STEllAR-GROUP/hpx/issues/2647
4330 https://github.com/STEllAR-GROUP/hpx/issues/2644
4331 https://github.com/STEllAR-GROUP/hpx/issues/2641
4332 https://github.com/STEllAR-GROUP/hpx/pull/2640
4333 https://github.com/STEllAR-GROUP/hpx/pull/2639
4334 https://github.com/STEllAR-GROUP/hpx/issues/2638
4335 https://github.com/STEllAR-GROUP/hpx/pull/2636
4336 https://github.com/STEllAR-GROUP/hpx/pull/2633
4337 https://github.com/STEllAR-GROUP/hpx/pull/2632
4338 https://github.com/STEllAR-GROUP/hpx/pull/2631
4339 https://github.com/STEllAR-GROUP/hpx/pull/2629
4340 https://github.com/STEllAR-GROUP/hpx/pull/2628
4341 https://github.com/STEllAR-GROUP/hpx/pull/2627

1726 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2660
https://github.com/STEllAR-GROUP/hpx/pull/2659
https://github.com/STEllAR-GROUP/hpx/pull/2658
https://github.com/STEllAR-GROUP/hpx/pull/2657
https://github.com/STEllAR-GROUP/hpx/pull/2656
https://github.com/STEllAR-GROUP/hpx/pull/2655
https://github.com/STEllAR-GROUP/hpx/pull/2654
https://github.com/STEllAR-GROUP/hpx/pull/2653
https://github.com/STEllAR-GROUP/hpx/pull/2652
https://github.com/STEllAR-GROUP/hpx/pull/2649
https://github.com/STEllAR-GROUP/hpx/issues/2647
https://github.com/STEllAR-GROUP/hpx/issues/2644
https://github.com/STEllAR-GROUP/hpx/issues/2641
https://github.com/STEllAR-GROUP/hpx/pull/2640
https://github.com/STEllAR-GROUP/hpx/pull/2639
https://github.com/STEllAR-GROUP/hpx/issues/2638
https://github.com/STEllAR-GROUP/hpx/pull/2636
https://github.com/STEllAR-GROUP/hpx/pull/2633
https://github.com/STEllAR-GROUP/hpx/pull/2632
https://github.com/STEllAR-GROUP/hpx/pull/2631
https://github.com/STEllAR-GROUP/hpx/pull/2629
https://github.com/STEllAR-GROUP/hpx/pull/2628
https://github.com/STEllAR-GROUP/hpx/pull/2627

HPX Documentation, master

• PR #26264342 - Generate cmake_variables.qbk and cmake_toolchains.qbk outside of the source tree

• PR #26254343 - Supporting -std=c++17 flag

• PR #26244344 - Fixing a small cmake typo

• PR #26224345 - Update CMake minimum required version to 3.0.2 (closes #2621)

• Issue #26214346 - Compiling hpx master fails with /usr/bin/ld: final link failed: Bad value

• PR #26204347 - Remove warnings due to some captured variables

• PR #26194348 - LF multiple parcels

• PR #26184349 - Some fixes to libfabric that didn’t get caught before the merge

• PR #26174350 - Adding hpx::local_new

• PR #26164351 - Documentation: Extract all entities in order to autolink functions correctly

• Issue #26154352 - Documentation: Linking functions is broken

• PR #26144353 - Adding serialization for std::deque

• PR #26134354 - We need to link with boost.thread and boost.chrono if we use boost.context

• PR #26124355 - Making sure for_loop_n(par, . . .) is actually executed in parallel

• PR #26114356 - Add documentation to invoke_fused and friends NFC

• PR #26104357 - Added reduction templates using an identity value

• PR #26084358 - Fixing some unused vars in inspect

• PR #26074359 - Fixed build for mingw

• PR #26064360 - Supporting generic context for boost >= 1.61

• PR #26054361 - Parcelport libfabric3

• PR #26044362 - Adding allocator support to promise and friends

• PR #26034363 - Barrier hang

• PR #26024364 - Changes to scheduler to steal from one high-priority queue
4342 https://github.com/STEllAR-GROUP/hpx/pull/2626
4343 https://github.com/STEllAR-GROUP/hpx/pull/2625
4344 https://github.com/STEllAR-GROUP/hpx/pull/2624
4345 https://github.com/STEllAR-GROUP/hpx/pull/2622
4346 https://github.com/STEllAR-GROUP/hpx/issues/2621
4347 https://github.com/STEllAR-GROUP/hpx/pull/2620
4348 https://github.com/STEllAR-GROUP/hpx/pull/2619
4349 https://github.com/STEllAR-GROUP/hpx/pull/2618
4350 https://github.com/STEllAR-GROUP/hpx/pull/2617
4351 https://github.com/STEllAR-GROUP/hpx/pull/2616
4352 https://github.com/STEllAR-GROUP/hpx/issues/2615
4353 https://github.com/STEllAR-GROUP/hpx/pull/2614
4354 https://github.com/STEllAR-GROUP/hpx/pull/2613
4355 https://github.com/STEllAR-GROUP/hpx/pull/2612
4356 https://github.com/STEllAR-GROUP/hpx/pull/2611
4357 https://github.com/STEllAR-GROUP/hpx/pull/2610
4358 https://github.com/STEllAR-GROUP/hpx/pull/2608
4359 https://github.com/STEllAR-GROUP/hpx/pull/2607
4360 https://github.com/STEllAR-GROUP/hpx/pull/2606
4361 https://github.com/STEllAR-GROUP/hpx/pull/2605
4362 https://github.com/STEllAR-GROUP/hpx/pull/2604
4363 https://github.com/STEllAR-GROUP/hpx/pull/2603
4364 https://github.com/STEllAR-GROUP/hpx/pull/2602

2.10. Releases 1727

https://github.com/STEllAR-GROUP/hpx/pull/2626
https://github.com/STEllAR-GROUP/hpx/pull/2625
https://github.com/STEllAR-GROUP/hpx/pull/2624
https://github.com/STEllAR-GROUP/hpx/pull/2622
https://github.com/STEllAR-GROUP/hpx/issues/2621
https://github.com/STEllAR-GROUP/hpx/pull/2620
https://github.com/STEllAR-GROUP/hpx/pull/2619
https://github.com/STEllAR-GROUP/hpx/pull/2618
https://github.com/STEllAR-GROUP/hpx/pull/2617
https://github.com/STEllAR-GROUP/hpx/pull/2616
https://github.com/STEllAR-GROUP/hpx/issues/2615
https://github.com/STEllAR-GROUP/hpx/pull/2614
https://github.com/STEllAR-GROUP/hpx/pull/2613
https://github.com/STEllAR-GROUP/hpx/pull/2612
https://github.com/STEllAR-GROUP/hpx/pull/2611
https://github.com/STEllAR-GROUP/hpx/pull/2610
https://github.com/STEllAR-GROUP/hpx/pull/2608
https://github.com/STEllAR-GROUP/hpx/pull/2607
https://github.com/STEllAR-GROUP/hpx/pull/2606
https://github.com/STEllAR-GROUP/hpx/pull/2605
https://github.com/STEllAR-GROUP/hpx/pull/2604
https://github.com/STEllAR-GROUP/hpx/pull/2603
https://github.com/STEllAR-GROUP/hpx/pull/2602

HPX Documentation, master

• Issue #26014365 - High priority tasks are not executed first

• PR #26004366 - Compat fixes

• PR #25994367 - Compatibility layer for threading support

• PR #25984368 - V1.1

• PR #25974369 - Release V1.0

• PR #25924370 - First attempt to introduce spmd_block in hpx

• PR #25864371 - local_segment in segmented_iterator_traits

• Issue #25844372 - Add allocator support to promise, packaged_task and friends

• PR #25764373 - Add missing dependencies of cuda based tests

• PR #25754374 - Remove warnings due to some captured variables

• Issue #25744375 - MSVC 2015 Compiler crash when building HPX

• Issue #25684376 - Remove throttle_scheduler as it has been abandoned

• Issue #25664377 - Add an inline versioning namespace before 1.0 release

• Issue #25654378 - Raise minimal cmake version requirement

• PR #25564379 - Fixing scan partitioner

• PR #25464380 - Broadcast async

• Issue #25434381 - make install fails due to a non-existing .so file

• PR #24954382 - wait_or_add_new returning thread_id_type

• Issue #24804383 - Unable to register new performance counter

• Issue #24714384 - no type named ‘fcontext_t’ in namespace

• Issue #24564385 - Re-implement hpx::util::unwrapped

• Issue #24554386 - Add more arithmetic performance counters

• PR #24544387 - Fix a couple of warnings and compiler errors
4365 https://github.com/STEllAR-GROUP/hpx/issues/2601
4366 https://github.com/STEllAR-GROUP/hpx/pull/2600
4367 https://github.com/STEllAR-GROUP/hpx/pull/2599
4368 https://github.com/STEllAR-GROUP/hpx/pull/2598
4369 https://github.com/STEllAR-GROUP/hpx/pull/2597
4370 https://github.com/STEllAR-GROUP/hpx/pull/2592
4371 https://github.com/STEllAR-GROUP/hpx/pull/2586
4372 https://github.com/STEllAR-GROUP/hpx/issues/2584
4373 https://github.com/STEllAR-GROUP/hpx/pull/2576
4374 https://github.com/STEllAR-GROUP/hpx/pull/2575
4375 https://github.com/STEllAR-GROUP/hpx/issues/2574
4376 https://github.com/STEllAR-GROUP/hpx/issues/2568
4377 https://github.com/STEllAR-GROUP/hpx/issues/2566
4378 https://github.com/STEllAR-GROUP/hpx/issues/2565
4379 https://github.com/STEllAR-GROUP/hpx/pull/2556
4380 https://github.com/STEllAR-GROUP/hpx/pull/2546
4381 https://github.com/STEllAR-GROUP/hpx/issues/2543
4382 https://github.com/STEllAR-GROUP/hpx/pull/2495
4383 https://github.com/STEllAR-GROUP/hpx/issues/2480
4384 https://github.com/STEllAR-GROUP/hpx/issues/2471
4385 https://github.com/STEllAR-GROUP/hpx/issues/2456
4386 https://github.com/STEllAR-GROUP/hpx/issues/2455
4387 https://github.com/STEllAR-GROUP/hpx/pull/2454

1728 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2601
https://github.com/STEllAR-GROUP/hpx/pull/2600
https://github.com/STEllAR-GROUP/hpx/pull/2599
https://github.com/STEllAR-GROUP/hpx/pull/2598
https://github.com/STEllAR-GROUP/hpx/pull/2597
https://github.com/STEllAR-GROUP/hpx/pull/2592
https://github.com/STEllAR-GROUP/hpx/pull/2586
https://github.com/STEllAR-GROUP/hpx/issues/2584
https://github.com/STEllAR-GROUP/hpx/pull/2576
https://github.com/STEllAR-GROUP/hpx/pull/2575
https://github.com/STEllAR-GROUP/hpx/issues/2574
https://github.com/STEllAR-GROUP/hpx/issues/2568
https://github.com/STEllAR-GROUP/hpx/issues/2566
https://github.com/STEllAR-GROUP/hpx/issues/2565
https://github.com/STEllAR-GROUP/hpx/pull/2556
https://github.com/STEllAR-GROUP/hpx/pull/2546
https://github.com/STEllAR-GROUP/hpx/issues/2543
https://github.com/STEllAR-GROUP/hpx/pull/2495
https://github.com/STEllAR-GROUP/hpx/issues/2480
https://github.com/STEllAR-GROUP/hpx/issues/2471
https://github.com/STEllAR-GROUP/hpx/issues/2456
https://github.com/STEllAR-GROUP/hpx/issues/2455
https://github.com/STEllAR-GROUP/hpx/pull/2454

HPX Documentation, master

• PR #24534388 - Timed executor support

• PR #24474389 - Implementing new executor API (P0443)

• Issue #24394390 - Implement executor proposal

• Issue #24084391 - Stackoverflow detection for linux, e.g. based on libsigsegv

• PR #23774392 - Add a customization point for put_parcel so we can override actions

• Issue #23684393 - HPX_ASSERT problem

• Issue #23244394 - Change default number of threads used to the maximum of the system

• Issue #22664395 - hpx_0.9.99 make tests fail

• PR #21954396 - Support for code completion in VIM

• Issue #21374397 - Hpx does not compile over osx

• Issue #20924398 - make tests should just build the tests

• Issue #20264399 - Build HPX with Apple’s clang

• Issue #19324400 - hpx with PBS fails on multiple localities

• PR #19144401 - Parallel heap algorithm implementations WIP

• Issue #15984402 - Disconnecting a locality results in segfault using heartbeat example

• Issue #14044403 - unwrapped doesn’t work with movable only types

• Issue #14004404 - hpx::util::unwrapped doesn’t work with non-future types

• Issue #12054405 - TSS is broken

• Issue #11264406 - vector<future<T> > does not work gracefully with dataflow, when_all and unwrapped

• Issue #10564407 - Thread manager cleanup

• Issue #8634408 - Futures should not require a default constructor

• Issue #8564409 - Allow runtimemode_connect to be used with security enabled

• Issue #7264410 - Valgrind
4388 https://github.com/STEllAR-GROUP/hpx/pull/2453
4389 https://github.com/STEllAR-GROUP/hpx/pull/2447
4390 https://github.com/STEllAR-GROUP/hpx/issues/2439
4391 https://github.com/STEllAR-GROUP/hpx/issues/2408
4392 https://github.com/STEllAR-GROUP/hpx/pull/2377
4393 https://github.com/STEllAR-GROUP/hpx/issues/2368
4394 https://github.com/STEllAR-GROUP/hpx/issues/2324
4395 https://github.com/STEllAR-GROUP/hpx/issues/2266
4396 https://github.com/STEllAR-GROUP/hpx/pull/2195
4397 https://github.com/STEllAR-GROUP/hpx/issues/2137
4398 https://github.com/STEllAR-GROUP/hpx/issues/2092
4399 https://github.com/STEllAR-GROUP/hpx/issues/2026
4400 https://github.com/STEllAR-GROUP/hpx/issues/1932
4401 https://github.com/STEllAR-GROUP/hpx/pull/1914
4402 https://github.com/STEllAR-GROUP/hpx/issues/1598
4403 https://github.com/STEllAR-GROUP/hpx/issues/1404
4404 https://github.com/STEllAR-GROUP/hpx/issues/1400
4405 https://github.com/STEllAR-GROUP/hpx/issues/1205
4406 https://github.com/STEllAR-GROUP/hpx/issues/1126
4407 https://github.com/STEllAR-GROUP/hpx/issues/1056
4408 https://github.com/STEllAR-GROUP/hpx/issues/863
4409 https://github.com/STEllAR-GROUP/hpx/issues/856
4410 https://github.com/STEllAR-GROUP/hpx/issues/726

2.10. Releases 1729

https://github.com/STEllAR-GROUP/hpx/pull/2453
https://github.com/STEllAR-GROUP/hpx/pull/2447
https://github.com/STEllAR-GROUP/hpx/issues/2439
https://github.com/STEllAR-GROUP/hpx/issues/2408
https://github.com/STEllAR-GROUP/hpx/pull/2377
https://github.com/STEllAR-GROUP/hpx/issues/2368
https://github.com/STEllAR-GROUP/hpx/issues/2324
https://github.com/STEllAR-GROUP/hpx/issues/2266
https://github.com/STEllAR-GROUP/hpx/pull/2195
https://github.com/STEllAR-GROUP/hpx/issues/2137
https://github.com/STEllAR-GROUP/hpx/issues/2092
https://github.com/STEllAR-GROUP/hpx/issues/2026
https://github.com/STEllAR-GROUP/hpx/issues/1932
https://github.com/STEllAR-GROUP/hpx/pull/1914
https://github.com/STEllAR-GROUP/hpx/issues/1598
https://github.com/STEllAR-GROUP/hpx/issues/1404
https://github.com/STEllAR-GROUP/hpx/issues/1400
https://github.com/STEllAR-GROUP/hpx/issues/1205
https://github.com/STEllAR-GROUP/hpx/issues/1126
https://github.com/STEllAR-GROUP/hpx/issues/1056
https://github.com/STEllAR-GROUP/hpx/issues/863
https://github.com/STEllAR-GROUP/hpx/issues/856
https://github.com/STEllAR-GROUP/hpx/issues/726

HPX Documentation, master

• Issue #7014411 - Add RCR performance counter component

• Issue #5284412 - Add support for known failures and warning count/comparisons to hpx_run_tests.py

HPX V1.0.0 (Apr 24, 2017)

General changes

Here are some of the main highlights and changes for this release (in no particular order):

• Added the facility hpx::split_future which allows one to convert a future<tuple<Ts...>> into a
tuple<future<Ts>...>. This functionality is not available when compiling HPX with VS2012.

• Added a new type of performance counter which allows one to return a list of values for each invocation. We
also added a first counter of this type which collects a histogram of the times between parcels being created.

• Added new LCOs: hpx::lcos::channel and hpx::lcos::local::channel which are very similar to the
well known channel constructs used in the Go language.

• Added new performance counters reporting the amount of data handled by the networking layer on a action-by-
action basis (please see PR #22894413 for more details).

• Added a new facility hpx::lcos::barrier, replacing the equally named older one. The new facility has a
slightly changed API and is much more efficient. Most notable, the new facility exposes a (global) function
hpx::lcos::barrier::synchronize() which represents a global barrier across all localities.

• We have started to add support for vectorization to our parallel algorithm implementations. This support depends
on using an external library, currently either Vc Library or |boost_simd|_. Please see Issue #23334414 for a list of
currently supported algorithms. This is an experimental feature and its implementation and/or API might change
in the future. Please see this blog-post4415 for more information.

• The parameter sequence for the hpx::parallel::transform_reduce overload taking one iterator range has
changed to match the changes this algorithm has undergone while being moved to C++17. The old overload
can be still enabled at configure time by specifying -DHPX_WITH_TRANSFORM_REDUCE_COMPATIBILITY=On to
CMake.

• The algorithm hpx::parallel::inner_product has been renamed to
hpx::parallel::transform_reduce to match the changes this algorithm has undergone while be-
ing moved to C++17. The old inner_product names can be still enabled at configure time by specifying
-DHPX_WITH_TRANSFORM_REDUCE_COMPATIBILITY=On to CMake.

• Added versions of hpx::get_ptr taking client side representations for component instances as their parameter
(instead of a global id).

• Added the helper utility hpx::performance_counters::performance_counter_set helping to encapsu-
late a set of performance counters to be managed concurrently.

• All execution policies and related classes have been renamed to be consistent with the naming changes applied
for C++17. All policies now live in the namespace hpx::parallel::execution. The ols names can be still
enabled at configure time by specifying -DHPX_WITH_EXECUTION_POLICY_COMPATIBILITY=On to CMake.

• The thread scheduling subsystem has undergone a major refactoring which results in significant performance im-
provements. We have also imroved the performance of creating hpx::future and of various facilities handling
those.

4411 https://github.com/STEllAR-GROUP/hpx/issues/701
4412 https://github.com/STEllAR-GROUP/hpx/issues/528
4413 https://github.com/STEllAR-GROUP/hpx/pull/2289
4414 https://github.com/STEllAR-GROUP/hpx/issues/2333
4415 http://stellar-group.org/2016/09/vectorized-cpp-parallel-algorithms-with-hpx/

1730 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/701
https://github.com/STEllAR-GROUP/hpx/issues/528
https://github.com/STEllAR-GROUP/hpx/pull/2289
https://github.com/STEllAR-GROUP/hpx/issues/2333
http://stellar-group.org/2016/09/vectorized-cpp-parallel-algorithms-with-hpx/

HPX Documentation, master

• We have consolidated all of the code in HPX.Compute related to the integration of CUDA.
hpx::partitioned_vector has been enabled to be usable with hpx::compute::vector which allows one
to place the partitions on one or more GPU devices.

• Added new performance counters exposing various internals of the thread scheduling subsystem, such as the
current idle- and busy-loop counters and instantaneous scheduler utilization.

• Extended and improved the use of the ITTNotify hooks allowing to collect performance counter data and function
annotation information from within the Intel Amplifier tool.

Breaking changes

• We have dropped support for the gcc compiler versions V4.6 and 4.7. The minimal gcc version we now test on
is gcc V4.8.

• We have removed (default) support for boost::chrono in interfaces, uses of it have been re-
placed with std::chrono. This facility can be still enabled at configure time by specifying
-DHPX_WITH_BOOST_CHRONO_COMPATIBILITY=On to CMake.

• The parameter sequence for the hpx::parallel::transform_reduce overload taking one iterator range has
changed to match the changes this algorithm has undergone while being moved to C++17.

• The algorithm hpx::parallel::inner_product has been renamed to
hpx::parallel::transform_reduce to match the changes this algorithm has undergone while being
moved to C++17.

• the build options HPX_WITH_COLOCATED_BACKWARDS_COMPATIBILITY and
HPX_WITH_COMPONENT_GET_GID_COMPATIBILITY are now disabled by default. Please change your
code still depending on the deprecated interfaces.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• PR #25964416 - Adding apex data

• PR #25954417 - Remove obsolete file

• Issue #25944418 - FindOpenCL.cmake mismatch with the official cmake module

• PR #25924419 - First attempt to introduce spmd_block in hpx

• Issue #25914420 - Feature request: continuation (then) which does not require the callable object to take a fu-
ture<R> as parameter

• PR #25884421 - Daint fixes

• PR #25874422 - Fixing transfer_(continuation)_action::schedule

• PR #25854423 - Work around MSVC having an ICE when compiling with -Ob2

• PR #25834424 - changing 7zip command to 7za in roll_release.sh
4416 https://github.com/STEllAR-GROUP/hpx/pull/2596
4417 https://github.com/STEllAR-GROUP/hpx/pull/2595
4418 https://github.com/STEllAR-GROUP/hpx/issues/2594
4419 https://github.com/STEllAR-GROUP/hpx/pull/2592
4420 https://github.com/STEllAR-GROUP/hpx/issues/2591
4421 https://github.com/STEllAR-GROUP/hpx/pull/2588
4422 https://github.com/STEllAR-GROUP/hpx/pull/2587
4423 https://github.com/STEllAR-GROUP/hpx/pull/2585
4424 https://github.com/STEllAR-GROUP/hpx/pull/2583

2.10. Releases 1731

https://github.com/STEllAR-GROUP/hpx/pull/2596
https://github.com/STEllAR-GROUP/hpx/pull/2595
https://github.com/STEllAR-GROUP/hpx/issues/2594
https://github.com/STEllAR-GROUP/hpx/pull/2592
https://github.com/STEllAR-GROUP/hpx/issues/2591
https://github.com/STEllAR-GROUP/hpx/pull/2588
https://github.com/STEllAR-GROUP/hpx/pull/2587
https://github.com/STEllAR-GROUP/hpx/pull/2585
https://github.com/STEllAR-GROUP/hpx/pull/2583

HPX Documentation, master

• PR #25824425 - First attempt to introduce spmd_block in hpx

• PR #25814426 - Enable annotated function for parallel algorithms

• PR #25804427 - First attempt to introduce spmd_block in hpx

• PR #25794428 - Make thread NICE level setting an option

• PR #25784429 - Implementing enqueue instead of busy wait when no sender is available

• PR #25774430 - Retrieve -std=c++11 consistent nvcc flag

• PR #25764431 - Add missing dependencies of cuda based tests

• PR #25754432 - Remove warnings due to some captured variables

• PR #25734433 - Attempt to resolve resolve_locality

• PR #25724434 - Adding APEX hooks to background thread

• PR #25714435 - Pick up hpx.ignore_batch_env from config map

• PR #25704436 - Add commandline options –hpx:print-counters-locally

• PR #25694437 - Fix computeapi unit tests

• PR #25674438 - This adds another barrier::synchronize before registering performance counters

• PR #25644439 - Cray static toolchain support

• PR #25634440 - Fixed unhandled exception during startup

• PR #25624441 - Remove partitioned_vector.cu from build tree when nvcc is used

• Issue #25614442 - octo-tiger crash with commit 6e921495ff6c26f125d62629cbaad0525f14f7ab

• PR #25604443 - Prevent -Wundef warnings on Vc version checks

• PR #25594444 - Allowing CUDA callback to set the future directly from an OS thread

• PR #25584445 - Remove warnings due to float precisions

• PR #25574446 - Removing bogus handling of compile flags for CUDA

• PR #25564447 - Fixing scan partitioner
4425 https://github.com/STEllAR-GROUP/hpx/pull/2582
4426 https://github.com/STEllAR-GROUP/hpx/pull/2581
4427 https://github.com/STEllAR-GROUP/hpx/pull/2580
4428 https://github.com/STEllAR-GROUP/hpx/pull/2579
4429 https://github.com/STEllAR-GROUP/hpx/pull/2578
4430 https://github.com/STEllAR-GROUP/hpx/pull/2577
4431 https://github.com/STEllAR-GROUP/hpx/pull/2576
4432 https://github.com/STEllAR-GROUP/hpx/pull/2575
4433 https://github.com/STEllAR-GROUP/hpx/pull/2573
4434 https://github.com/STEllAR-GROUP/hpx/pull/2572
4435 https://github.com/STEllAR-GROUP/hpx/pull/2571
4436 https://github.com/STEllAR-GROUP/hpx/pull/2570
4437 https://github.com/STEllAR-GROUP/hpx/pull/2569
4438 https://github.com/STEllAR-GROUP/hpx/pull/2567
4439 https://github.com/STEllAR-GROUP/hpx/pull/2564
4440 https://github.com/STEllAR-GROUP/hpx/pull/2563
4441 https://github.com/STEllAR-GROUP/hpx/pull/2562
4442 https://github.com/STEllAR-GROUP/hpx/issues/2561
4443 https://github.com/STEllAR-GROUP/hpx/pull/2560
4444 https://github.com/STEllAR-GROUP/hpx/pull/2559
4445 https://github.com/STEllAR-GROUP/hpx/pull/2558
4446 https://github.com/STEllAR-GROUP/hpx/pull/2557
4447 https://github.com/STEllAR-GROUP/hpx/pull/2556

1732 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2582
https://github.com/STEllAR-GROUP/hpx/pull/2581
https://github.com/STEllAR-GROUP/hpx/pull/2580
https://github.com/STEllAR-GROUP/hpx/pull/2579
https://github.com/STEllAR-GROUP/hpx/pull/2578
https://github.com/STEllAR-GROUP/hpx/pull/2577
https://github.com/STEllAR-GROUP/hpx/pull/2576
https://github.com/STEllAR-GROUP/hpx/pull/2575
https://github.com/STEllAR-GROUP/hpx/pull/2573
https://github.com/STEllAR-GROUP/hpx/pull/2572
https://github.com/STEllAR-GROUP/hpx/pull/2571
https://github.com/STEllAR-GROUP/hpx/pull/2570
https://github.com/STEllAR-GROUP/hpx/pull/2569
https://github.com/STEllAR-GROUP/hpx/pull/2567
https://github.com/STEllAR-GROUP/hpx/pull/2564
https://github.com/STEllAR-GROUP/hpx/pull/2563
https://github.com/STEllAR-GROUP/hpx/pull/2562
https://github.com/STEllAR-GROUP/hpx/issues/2561
https://github.com/STEllAR-GROUP/hpx/pull/2560
https://github.com/STEllAR-GROUP/hpx/pull/2559
https://github.com/STEllAR-GROUP/hpx/pull/2558
https://github.com/STEllAR-GROUP/hpx/pull/2557
https://github.com/STEllAR-GROUP/hpx/pull/2556

HPX Documentation, master

• PR #25544448 - Add more diagnostics to error thrown from find_appropriate_destination

• Issue #25554449 - No valid parcelport configured

• PR #25534450 - Add cmake cuda_arch option

• PR #25524451 - Remove incomplete datapar bindings to libflatarray

• PR #25514452 - Rename hwloc_topology to hwloc_topology_info

• PR #25504453 - Apex api updates

• PR #25494454 - Pre-include defines.hpp to get the macro HPX_HAVE_CUDA value

• PR #25484455 - Fixing issue with disconnect

• PR #25464456 - Some fixes around cuda clang partitioned_vector example

• PR #25454457 - Fix uses of the Vc2 datapar flags; the value, not the type, should be passed to functions

• PR #25424458 - Make HPX_WITH_MALLOC easier to use

• PR #25414459 - avoid recompiles when enabling/disabling examples

• PR #25404460 - Fixing usage of target_link_libraries()

• PR #25394461 - fix RPATH behaviour

• Issue #25384462 - HPX_WITH_CUDA corrupts compilation flags

• PR #25374463 - Add output of a Bazel Skylark extension for paths and compile options

• PR #25364464 - Add counter exposing total available memory to Windows as well

• PR #25354465 - Remove obsolete support for security

• Issue #25344466 - Remove command line option --hpx:run-agas-server

• PR #25334467 - Pre-cache locality endpoints during bootstrap

• PR #25324468 - Fixing handling of GIDs during serialization preprocessing

• PR #25314469 - Amend uses of the term “functor”

• PR #25294470 - added counter for reading available memory
4448 https://github.com/STEllAR-GROUP/hpx/pull/2554
4449 https://github.com/STEllAR-GROUP/hpx/issues/2555
4450 https://github.com/STEllAR-GROUP/hpx/pull/2553
4451 https://github.com/STEllAR-GROUP/hpx/pull/2552
4452 https://github.com/STEllAR-GROUP/hpx/pull/2551
4453 https://github.com/STEllAR-GROUP/hpx/pull/2550
4454 https://github.com/STEllAR-GROUP/hpx/pull/2549
4455 https://github.com/STEllAR-GROUP/hpx/pull/2548
4456 https://github.com/STEllAR-GROUP/hpx/pull/2546
4457 https://github.com/STEllAR-GROUP/hpx/pull/2545
4458 https://github.com/STEllAR-GROUP/hpx/pull/2542
4459 https://github.com/STEllAR-GROUP/hpx/pull/2541
4460 https://github.com/STEllAR-GROUP/hpx/pull/2540
4461 https://github.com/STEllAR-GROUP/hpx/pull/2539
4462 https://github.com/STEllAR-GROUP/hpx/issues/2538
4463 https://github.com/STEllAR-GROUP/hpx/pull/2537
4464 https://github.com/STEllAR-GROUP/hpx/pull/2536
4465 https://github.com/STEllAR-GROUP/hpx/pull/2535
4466 https://github.com/STEllAR-GROUP/hpx/issues/2534
4467 https://github.com/STEllAR-GROUP/hpx/pull/2533
4468 https://github.com/STEllAR-GROUP/hpx/pull/2532
4469 https://github.com/STEllAR-GROUP/hpx/pull/2531
4470 https://github.com/STEllAR-GROUP/hpx/pull/2529

2.10. Releases 1733

https://github.com/STEllAR-GROUP/hpx/pull/2554
https://github.com/STEllAR-GROUP/hpx/issues/2555
https://github.com/STEllAR-GROUP/hpx/pull/2553
https://github.com/STEllAR-GROUP/hpx/pull/2552
https://github.com/STEllAR-GROUP/hpx/pull/2551
https://github.com/STEllAR-GROUP/hpx/pull/2550
https://github.com/STEllAR-GROUP/hpx/pull/2549
https://github.com/STEllAR-GROUP/hpx/pull/2548
https://github.com/STEllAR-GROUP/hpx/pull/2546
https://github.com/STEllAR-GROUP/hpx/pull/2545
https://github.com/STEllAR-GROUP/hpx/pull/2542
https://github.com/STEllAR-GROUP/hpx/pull/2541
https://github.com/STEllAR-GROUP/hpx/pull/2540
https://github.com/STEllAR-GROUP/hpx/pull/2539
https://github.com/STEllAR-GROUP/hpx/issues/2538
https://github.com/STEllAR-GROUP/hpx/pull/2537
https://github.com/STEllAR-GROUP/hpx/pull/2536
https://github.com/STEllAR-GROUP/hpx/pull/2535
https://github.com/STEllAR-GROUP/hpx/issues/2534
https://github.com/STEllAR-GROUP/hpx/pull/2533
https://github.com/STEllAR-GROUP/hpx/pull/2532
https://github.com/STEllAR-GROUP/hpx/pull/2531
https://github.com/STEllAR-GROUP/hpx/pull/2529

HPX Documentation, master

• PR #25274471 - Facilities to create actions from lambdas

• PR #25264472 - Updated docs: HPX_WITH_EXAMPLES

• PR #25254473 - Remove warnings related to unused captured variables

• Issue #25244474 - CMAKE failed because it is missing: TCMALLOC_LIBRARY TCMAL-
LOC_INCLUDE_DIR

• PR #25234475 - Fixing compose_cb stack overflow

• PR #25224476 - Instead of unlocking, ignore the lock while creating the message handler

• PR #25214477 - Create LPROGRESS_ logging macro to simplify progress tracking and timings

• PR #25204478 - Intel 17 support

• PR #25194479 - Fix components example

• PR #25184480 - Fixing parcel scheduling

• Issue #25174481 - Race condition during Parcel Coalescing Handler creation

• Issue #25164482 - HPX locks up when using at least 256 localities

• Issue #25154483 - error: Install cannot find “/lib/hpx/libparcel_coalescing.so.0.9.99” but I can see that file

• PR #25144484 - Making sure that all continuations of a shared_future are invoked in order

• PR #25134485 - Fixing locks held during suspension

• PR #25124486 - MPI Parcelport improvements and fixes related to the background work changes

• PR #25114487 - Fixing bit-wise (zero-copy) serialization

• Issue #25094488 - Linking errors in hwloc_topology

• PR #25084489 - Added documentation for debugging with core files

• PR #25064490 - Fixing background work invocations

• PR #25054491 - Fix tuple serialization

• Issue #25044492 - Ensure continuations are called in the order they have been attached

• PR #25034493 - Adding serialization support for Vc v2 (datapar)
4471 https://github.com/STEllAR-GROUP/hpx/pull/2527
4472 https://github.com/STEllAR-GROUP/hpx/pull/2526
4473 https://github.com/STEllAR-GROUP/hpx/pull/2525
4474 https://github.com/STEllAR-GROUP/hpx/issues/2524
4475 https://github.com/STEllAR-GROUP/hpx/pull/2523
4476 https://github.com/STEllAR-GROUP/hpx/pull/2522
4477 https://github.com/STEllAR-GROUP/hpx/pull/2521
4478 https://github.com/STEllAR-GROUP/hpx/pull/2520
4479 https://github.com/STEllAR-GROUP/hpx/pull/2519
4480 https://github.com/STEllAR-GROUP/hpx/pull/2518
4481 https://github.com/STEllAR-GROUP/hpx/issues/2517
4482 https://github.com/STEllAR-GROUP/hpx/issues/2516
4483 https://github.com/STEllAR-GROUP/hpx/issues/2515
4484 https://github.com/STEllAR-GROUP/hpx/pull/2514
4485 https://github.com/STEllAR-GROUP/hpx/pull/2513
4486 https://github.com/STEllAR-GROUP/hpx/pull/2512
4487 https://github.com/STEllAR-GROUP/hpx/pull/2511
4488 https://github.com/STEllAR-GROUP/hpx/issues/2509
4489 https://github.com/STEllAR-GROUP/hpx/pull/2508
4490 https://github.com/STEllAR-GROUP/hpx/pull/2506
4491 https://github.com/STEllAR-GROUP/hpx/pull/2505
4492 https://github.com/STEllAR-GROUP/hpx/issues/2504
4493 https://github.com/STEllAR-GROUP/hpx/pull/2503

1734 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2527
https://github.com/STEllAR-GROUP/hpx/pull/2526
https://github.com/STEllAR-GROUP/hpx/pull/2525
https://github.com/STEllAR-GROUP/hpx/issues/2524
https://github.com/STEllAR-GROUP/hpx/pull/2523
https://github.com/STEllAR-GROUP/hpx/pull/2522
https://github.com/STEllAR-GROUP/hpx/pull/2521
https://github.com/STEllAR-GROUP/hpx/pull/2520
https://github.com/STEllAR-GROUP/hpx/pull/2519
https://github.com/STEllAR-GROUP/hpx/pull/2518
https://github.com/STEllAR-GROUP/hpx/issues/2517
https://github.com/STEllAR-GROUP/hpx/issues/2516
https://github.com/STEllAR-GROUP/hpx/issues/2515
https://github.com/STEllAR-GROUP/hpx/pull/2514
https://github.com/STEllAR-GROUP/hpx/pull/2513
https://github.com/STEllAR-GROUP/hpx/pull/2512
https://github.com/STEllAR-GROUP/hpx/pull/2511
https://github.com/STEllAR-GROUP/hpx/issues/2509
https://github.com/STEllAR-GROUP/hpx/pull/2508
https://github.com/STEllAR-GROUP/hpx/pull/2506
https://github.com/STEllAR-GROUP/hpx/pull/2505
https://github.com/STEllAR-GROUP/hpx/issues/2504
https://github.com/STEllAR-GROUP/hpx/pull/2503

HPX Documentation, master

• PR #25024494 - Resolve various, minor compiler warnings

• PR #25014495 - Some other fixes around cuda examples

• Issue #25004496 - nvcc / cuda clang issue due to a missing -DHPX_WITH_CUDA flag

• PR #24994497 - Adding support for std::array to wait_all and friends

• PR #24984498 - Execute background work as HPX thread

• PR #24974499 - Fixing configuration options for spinlock-deadlock detection

• PR #24964500 - Accounting for different compilers in CrayKNL toolchain file

• PR #24944501 - Adding component base class which ties a component instance to a given executor

• PR #24934502 - Enable controlling amount of pending threads which must be available to allow thread stealing

• PR #24924503 - Adding new command line option –hpx:print-counter-reset

• PR #24914504 - Resolve ambiguities when compiling with APEX

• PR #24904505 - Resuming threads waiting on future with higher priority

• Issue #24894506 - nvcc issue because -std=c++11 appears twice

• PR #24884507 - Adding performance counters exposing the internal idle and busy-loop counters

• PR #24874508 - Allowing for plain suspend to reschedule thread right away

• PR #24864509 - Only flag HPX code for CUDA if HPX_WITH_CUDA is set

• PR #24854510 - Making thread-queue parameters runtime-configurable

• PR #24844511 - Added atomic counter for parcel-destinations

• PR #24834512 - Added priority-queue lifo scheduler

• PR #24824513 - Changing scheduler to steal only if more than a minimal number of tasks are available

• PR #24814514 - Extending command line option –hpx:print-counter-destination to support value ‘none’

• PR #24794515 - Added option to disable signal handler

• PR #24784516 - Making sure the sine performance counter module gets loaded only for the corresponding example
4494 https://github.com/STEllAR-GROUP/hpx/pull/2502
4495 https://github.com/STEllAR-GROUP/hpx/pull/2501
4496 https://github.com/STEllAR-GROUP/hpx/issues/2500
4497 https://github.com/STEllAR-GROUP/hpx/pull/2499
4498 https://github.com/STEllAR-GROUP/hpx/pull/2498
4499 https://github.com/STEllAR-GROUP/hpx/pull/2497
4500 https://github.com/STEllAR-GROUP/hpx/pull/2496
4501 https://github.com/STEllAR-GROUP/hpx/pull/2494
4502 https://github.com/STEllAR-GROUP/hpx/pull/2493
4503 https://github.com/STEllAR-GROUP/hpx/pull/2492
4504 https://github.com/STEllAR-GROUP/hpx/pull/2491
4505 https://github.com/STEllAR-GROUP/hpx/pull/2490
4506 https://github.com/STEllAR-GROUP/hpx/issues/2489
4507 https://github.com/STEllAR-GROUP/hpx/pull/2488
4508 https://github.com/STEllAR-GROUP/hpx/pull/2487
4509 https://github.com/STEllAR-GROUP/hpx/pull/2486
4510 https://github.com/STEllAR-GROUP/hpx/pull/2485
4511 https://github.com/STEllAR-GROUP/hpx/pull/2484
4512 https://github.com/STEllAR-GROUP/hpx/pull/2483
4513 https://github.com/STEllAR-GROUP/hpx/pull/2482
4514 https://github.com/STEllAR-GROUP/hpx/pull/2481
4515 https://github.com/STEllAR-GROUP/hpx/pull/2479
4516 https://github.com/STEllAR-GROUP/hpx/pull/2478

2.10. Releases 1735

https://github.com/STEllAR-GROUP/hpx/pull/2502
https://github.com/STEllAR-GROUP/hpx/pull/2501
https://github.com/STEllAR-GROUP/hpx/issues/2500
https://github.com/STEllAR-GROUP/hpx/pull/2499
https://github.com/STEllAR-GROUP/hpx/pull/2498
https://github.com/STEllAR-GROUP/hpx/pull/2497
https://github.com/STEllAR-GROUP/hpx/pull/2496
https://github.com/STEllAR-GROUP/hpx/pull/2494
https://github.com/STEllAR-GROUP/hpx/pull/2493
https://github.com/STEllAR-GROUP/hpx/pull/2492
https://github.com/STEllAR-GROUP/hpx/pull/2491
https://github.com/STEllAR-GROUP/hpx/pull/2490
https://github.com/STEllAR-GROUP/hpx/issues/2489
https://github.com/STEllAR-GROUP/hpx/pull/2488
https://github.com/STEllAR-GROUP/hpx/pull/2487
https://github.com/STEllAR-GROUP/hpx/pull/2486
https://github.com/STEllAR-GROUP/hpx/pull/2485
https://github.com/STEllAR-GROUP/hpx/pull/2484
https://github.com/STEllAR-GROUP/hpx/pull/2483
https://github.com/STEllAR-GROUP/hpx/pull/2482
https://github.com/STEllAR-GROUP/hpx/pull/2481
https://github.com/STEllAR-GROUP/hpx/pull/2479
https://github.com/STEllAR-GROUP/hpx/pull/2478

HPX Documentation, master

• Issue #24774517 - Breaking at a throw statement

• PR #24764518 - Annotated function

• PR #24754519 - Ensure that using %osthread% during logging will not throw for non-hpx threads

• PR #24744520 - Remove now superficial non_direct actions from base_lco and friends

• PR #24734521 - Refining support for ITTNotify

• PR #24724522 - Some fixes around hpx compute

• Issue #24704523 - redefinition of boost::detail::spinlock

• Issue #24694524 - Dataflow performance issue

• PR #24684525 - Perf docs update

• PR #24664526 - Guarantee to execute remote direct actions on HPX-thread

• PR #24654527 - Improve demo : Async copy and fixed device handling

• PR #24644528 - Adding performance counter exposing instantaneous scheduler utilization

• PR #24634529 - Downcast to future<void>

• PR #24624530 - Fixed usage of ITT-Notify API with Intel Amplifier

• PR #24614531 - Cublas demo

• PR #24604532 - Fixing thread bindings

• PR #24594533 - Make -std=c++11 nvcc flag consistent for in-build and installed versions

• Issue #24574534 - Segmentation fault when registering a partitioned vector

• PR #24524535 - Properly releasing global barrier for unhandled exceptions

• PR #24514536 - Fixing long shutdown times

• PR #24504537 - Attempting to fix initialization errors on newer platforms (Boost V1.63)

• PR #24494538 - Replace BOOST_COMPILER_FENCE with an HPX version

• PR #24484539 - This fixes a possible race in the migration code
4517 https://github.com/STEllAR-GROUP/hpx/issues/2477
4518 https://github.com/STEllAR-GROUP/hpx/pull/2476
4519 https://github.com/STEllAR-GROUP/hpx/pull/2475
4520 https://github.com/STEllAR-GROUP/hpx/pull/2474
4521 https://github.com/STEllAR-GROUP/hpx/pull/2473
4522 https://github.com/STEllAR-GROUP/hpx/pull/2472
4523 https://github.com/STEllAR-GROUP/hpx/issues/2470
4524 https://github.com/STEllAR-GROUP/hpx/issues/2469
4525 https://github.com/STEllAR-GROUP/hpx/pull/2468
4526 https://github.com/STEllAR-GROUP/hpx/pull/2466
4527 https://github.com/STEllAR-GROUP/hpx/pull/2465
4528 https://github.com/STEllAR-GROUP/hpx/pull/2464
4529 https://github.com/STEllAR-GROUP/hpx/pull/2463
4530 https://github.com/STEllAR-GROUP/hpx/pull/2462
4531 https://github.com/STEllAR-GROUP/hpx/pull/2461
4532 https://github.com/STEllAR-GROUP/hpx/pull/2460
4533 https://github.com/STEllAR-GROUP/hpx/pull/2459
4534 https://github.com/STEllAR-GROUP/hpx/issues/2457
4535 https://github.com/STEllAR-GROUP/hpx/pull/2452
4536 https://github.com/STEllAR-GROUP/hpx/pull/2451
4537 https://github.com/STEllAR-GROUP/hpx/pull/2450
4538 https://github.com/STEllAR-GROUP/hpx/pull/2449
4539 https://github.com/STEllAR-GROUP/hpx/pull/2448

1736 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2477
https://github.com/STEllAR-GROUP/hpx/pull/2476
https://github.com/STEllAR-GROUP/hpx/pull/2475
https://github.com/STEllAR-GROUP/hpx/pull/2474
https://github.com/STEllAR-GROUP/hpx/pull/2473
https://github.com/STEllAR-GROUP/hpx/pull/2472
https://github.com/STEllAR-GROUP/hpx/issues/2470
https://github.com/STEllAR-GROUP/hpx/issues/2469
https://github.com/STEllAR-GROUP/hpx/pull/2468
https://github.com/STEllAR-GROUP/hpx/pull/2466
https://github.com/STEllAR-GROUP/hpx/pull/2465
https://github.com/STEllAR-GROUP/hpx/pull/2464
https://github.com/STEllAR-GROUP/hpx/pull/2463
https://github.com/STEllAR-GROUP/hpx/pull/2462
https://github.com/STEllAR-GROUP/hpx/pull/2461
https://github.com/STEllAR-GROUP/hpx/pull/2460
https://github.com/STEllAR-GROUP/hpx/pull/2459
https://github.com/STEllAR-GROUP/hpx/issues/2457
https://github.com/STEllAR-GROUP/hpx/pull/2452
https://github.com/STEllAR-GROUP/hpx/pull/2451
https://github.com/STEllAR-GROUP/hpx/pull/2450
https://github.com/STEllAR-GROUP/hpx/pull/2449
https://github.com/STEllAR-GROUP/hpx/pull/2448

HPX Documentation, master

• PR #2445Page 1737, 4540 - Fixing dataflow et.al. for futures or future-ranges wrapped into ref()

• PR #24444541 - Fix segfaults

• PR #24434542 - Issue 2442

• Issue #24424543 - Mismatch between #if/#endif and namespace scope brackets in this_thread_executers.hpp

• Issue #24414544 - undeclared identifier BOOST_COMPILER_FENCE

• PR #24404545 - Knl build

• PR #24384546 - Datapar backend

• PR #24374547 - Adapt algorithm parameter sequence changes from C++17

• PR #24364548 - Adapt execution policy name changes from C++17

• Issue #24354549 - Trunk broken, undefined reference to hpx::thread::interrupt(hpx::thread::id, bool)

• PR #24344550 - More fixes to resource manager

• PR #24334551 - Added versions of hpx::get_ptr taking client side representations

• PR #24324552 - Warning fixes

• PR #24314553 - Adding facility representing set of performance counters

• PR #24304554 - Fix parallel_executor thread spawning

• PR #24294555 - Fix attribute warning for gcc

• Issue #24274556 - Seg fault running octo-tiger with latest HPX commit

• Issue #24264557 - Bug in 9592f5c0bc29806fce0dbe73f35b6ca7e027edcb causes immediate crash in Octo-tiger

• PR #24254558 - Fix nvcc errors due to constexpr specifier

• Issue #24244559 - Async action on component present on hpx::find_here is executing synchronously

• PR #24234560 - Fix nvcc errors due to constexpr specifier

• PR #24224561 - Implementing hpx::this_thread thread data functions

• PR #24214562 - Adding benchmark for wait_all
4540 https://github.com/STEllAR-GROUP/hpx/pull/2445
4541 https://github.com/STEllAR-GROUP/hpx/pull/2444
4542 https://github.com/STEllAR-GROUP/hpx/pull/2443
4543 https://github.com/STEllAR-GROUP/hpx/issues/2442
4544 https://github.com/STEllAR-GROUP/hpx/issues/2441
4545 https://github.com/STEllAR-GROUP/hpx/pull/2440
4546 https://github.com/STEllAR-GROUP/hpx/pull/2438
4547 https://github.com/STEllAR-GROUP/hpx/pull/2437
4548 https://github.com/STEllAR-GROUP/hpx/pull/2436
4549 https://github.com/STEllAR-GROUP/hpx/issues/2435
4550 https://github.com/STEllAR-GROUP/hpx/pull/2434
4551 https://github.com/STEllAR-GROUP/hpx/pull/2433
4552 https://github.com/STEllAR-GROUP/hpx/pull/2432
4553 https://github.com/STEllAR-GROUP/hpx/pull/2431
4554 https://github.com/STEllAR-GROUP/hpx/pull/2430
4555 https://github.com/STEllAR-GROUP/hpx/pull/2429
4556 https://github.com/STEllAR-GROUP/hpx/issues/2427
4557 https://github.com/STEllAR-GROUP/hpx/issues/2426
4558 https://github.com/STEllAR-GROUP/hpx/pull/2425
4559 https://github.com/STEllAR-GROUP/hpx/issues/2424
4560 https://github.com/STEllAR-GROUP/hpx/pull/2423
4561 https://github.com/STEllAR-GROUP/hpx/pull/2422
4562 https://github.com/STEllAR-GROUP/hpx/pull/2421

2.10. Releases 1737

https://github.com/STEllAR-GROUP/hpx/pull/2445
https://github.com/STEllAR-GROUP/hpx/pull/2444
https://github.com/STEllAR-GROUP/hpx/pull/2443
https://github.com/STEllAR-GROUP/hpx/issues/2442
https://github.com/STEllAR-GROUP/hpx/issues/2441
https://github.com/STEllAR-GROUP/hpx/pull/2440
https://github.com/STEllAR-GROUP/hpx/pull/2438
https://github.com/STEllAR-GROUP/hpx/pull/2437
https://github.com/STEllAR-GROUP/hpx/pull/2436
https://github.com/STEllAR-GROUP/hpx/issues/2435
https://github.com/STEllAR-GROUP/hpx/pull/2434
https://github.com/STEllAR-GROUP/hpx/pull/2433
https://github.com/STEllAR-GROUP/hpx/pull/2432
https://github.com/STEllAR-GROUP/hpx/pull/2431
https://github.com/STEllAR-GROUP/hpx/pull/2430
https://github.com/STEllAR-GROUP/hpx/pull/2429
https://github.com/STEllAR-GROUP/hpx/issues/2427
https://github.com/STEllAR-GROUP/hpx/issues/2426
https://github.com/STEllAR-GROUP/hpx/pull/2425
https://github.com/STEllAR-GROUP/hpx/issues/2424
https://github.com/STEllAR-GROUP/hpx/pull/2423
https://github.com/STEllAR-GROUP/hpx/pull/2422
https://github.com/STEllAR-GROUP/hpx/pull/2421

HPX Documentation, master

• Issue #24204563 - Returning object of a component client from another component action fails

• PR #24194564 - Infiniband parcelport

• Issue #24184565 - gcc + nvcc fails to compile code that uses partitioned_vector

• PR #24174566 - Fixing context switching

• PR #24164567 - Adding fixes and workarounds to allow compilation with nvcc/msvc (VS2015up3)

• PR #24154568 - Fix errors coming from hpx compute examples

• PR #24144569 - Fixing msvc12

• PR #24134570 - Enable cuda/nvcc or cuda/clang when using add_hpx_executable()

• PR #24124571 - Fix issue in HPX_SetupTarget.cmake when cuda is used

• PR #24114572 - This fixes the core compilation issues with MSVC12

• Issue #24104573 - undefined reference to opal_hwloc191_hwloc_.....

• PR #24094574 - Fixing locking for channel and receive_buffer

• PR #24074575 - Solving #2402 and #2403

• PR #24064576 - Improve guards

• PR #24054577 - Enable parallel::for_each for iterators returning proxy types

• PR #24044578 - Forward the explicitly given result_type in the hpx invoke

• Issue #24034579 - datapar_execution + zip iterator: lambda arguments aren’t references

• Issue #24024580 - datapar algorithm instantiated with wrong type #2402

• PR #24014581 - Added support for imported libraries to HPX_Libraries.cmake

• PR #24004582 - Use CMake policy CMP0060

• Issue #23994583 - Error trying to push back vector of futures to vector

• PR #23984584 - Allow config #defines to be written out to custom config/defines.hpp

• Issue #23974585 - CMake generated config defines can cause tedious rebuilds category
4563 https://github.com/STEllAR-GROUP/hpx/issues/2420
4564 https://github.com/STEllAR-GROUP/hpx/pull/2419
4565 https://github.com/STEllAR-GROUP/hpx/issues/2418
4566 https://github.com/STEllAR-GROUP/hpx/pull/2417
4567 https://github.com/STEllAR-GROUP/hpx/pull/2416
4568 https://github.com/STEllAR-GROUP/hpx/pull/2415
4569 https://github.com/STEllAR-GROUP/hpx/pull/2414
4570 https://github.com/STEllAR-GROUP/hpx/pull/2413
4571 https://github.com/STEllAR-GROUP/hpx/pull/2412
4572 https://github.com/STEllAR-GROUP/hpx/pull/2411
4573 https://github.com/STEllAR-GROUP/hpx/issues/2410
4574 https://github.com/STEllAR-GROUP/hpx/pull/2409
4575 https://github.com/STEllAR-GROUP/hpx/pull/2407
4576 https://github.com/STEllAR-GROUP/hpx/pull/2406
4577 https://github.com/STEllAR-GROUP/hpx/pull/2405
4578 https://github.com/STEllAR-GROUP/hpx/pull/2404
4579 https://github.com/STEllAR-GROUP/hpx/issues/2403
4580 https://github.com/STEllAR-GROUP/hpx/issues/2402
4581 https://github.com/STEllAR-GROUP/hpx/pull/2401
4582 https://github.com/STEllAR-GROUP/hpx/pull/2400
4583 https://github.com/STEllAR-GROUP/hpx/issues/2399
4584 https://github.com/STEllAR-GROUP/hpx/pull/2398
4585 https://github.com/STEllAR-GROUP/hpx/issues/2397

1738 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2420
https://github.com/STEllAR-GROUP/hpx/pull/2419
https://github.com/STEllAR-GROUP/hpx/issues/2418
https://github.com/STEllAR-GROUP/hpx/pull/2417
https://github.com/STEllAR-GROUP/hpx/pull/2416
https://github.com/STEllAR-GROUP/hpx/pull/2415
https://github.com/STEllAR-GROUP/hpx/pull/2414
https://github.com/STEllAR-GROUP/hpx/pull/2413
https://github.com/STEllAR-GROUP/hpx/pull/2412
https://github.com/STEllAR-GROUP/hpx/pull/2411
https://github.com/STEllAR-GROUP/hpx/issues/2410
https://github.com/STEllAR-GROUP/hpx/pull/2409
https://github.com/STEllAR-GROUP/hpx/pull/2407
https://github.com/STEllAR-GROUP/hpx/pull/2406
https://github.com/STEllAR-GROUP/hpx/pull/2405
https://github.com/STEllAR-GROUP/hpx/pull/2404
https://github.com/STEllAR-GROUP/hpx/issues/2403
https://github.com/STEllAR-GROUP/hpx/issues/2402
https://github.com/STEllAR-GROUP/hpx/pull/2401
https://github.com/STEllAR-GROUP/hpx/pull/2400
https://github.com/STEllAR-GROUP/hpx/issues/2399
https://github.com/STEllAR-GROUP/hpx/pull/2398
https://github.com/STEllAR-GROUP/hpx/issues/2397

HPX Documentation, master

• Issue #23964586 - BOOST_ROOT paths are not used at link time

• PR #23954587 - Fix target_link_libraries() issue when HPX Cuda is enabled

• Issue #23944588 - Template compilation error using HPX_WITH_DATAPAR_LIBFLATARRAY

• PR #23934589 - Fixing lock registration for recursive mutex

• PR #23924590 - Add keywords in target_link_libraries in hpx_setup_target

• PR #23914591 - Clang goroutines

• Issue #23904592 - Adapt execution policy name changes from C++17

• PR #23894593 - Chunk allocator and pool are not used and are obsolete

• PR #23884594 - Adding functionalities to datapar needed by octotiger

• PR #23874595 - Fixing race condition for early parcels

• Issue #23864596 - Lock registration broken for recursive_mutex

• PR #23854597 - Datapar zip iterator

• PR #23844598 - Fixing race condition in for_loop_reduction

• PR #23834599 - Continuations

• PR #23824600 - add LibFlatArray-based backend for datapar

• PR #23814601 - remove unused typedef to get rid of compiler warnings

• PR #23804602 - Tau cleanup

• PR #23794603 - Can send immediate

• PR #23784604 - Renaming copy_helper/copy_n_helper/move_helper/move_n_helper

• Issue #23764605 - Boost trunk’s spinlock initializer fails to compile

• PR #23754606 - Add support for minimal thread local data

• PR #23744607 - Adding API functions set_config_entry_callback

• PR #23734608 - Add a simple utility for debugging that gives suspended task backtraces
4586 https://github.com/STEllAR-GROUP/hpx/issues/2396
4587 https://github.com/STEllAR-GROUP/hpx/pull/2395
4588 https://github.com/STEllAR-GROUP/hpx/issues/2394
4589 https://github.com/STEllAR-GROUP/hpx/pull/2393
4590 https://github.com/STEllAR-GROUP/hpx/pull/2392
4591 https://github.com/STEllAR-GROUP/hpx/pull/2391
4592 https://github.com/STEllAR-GROUP/hpx/issues/2390
4593 https://github.com/STEllAR-GROUP/hpx/pull/2389
4594 https://github.com/STEllAR-GROUP/hpx/pull/2388
4595 https://github.com/STEllAR-GROUP/hpx/pull/2387
4596 https://github.com/STEllAR-GROUP/hpx/issues/2386
4597 https://github.com/STEllAR-GROUP/hpx/pull/2385
4598 https://github.com/STEllAR-GROUP/hpx/pull/2384
4599 https://github.com/STEllAR-GROUP/hpx/pull/2383
4600 https://github.com/STEllAR-GROUP/hpx/pull/2382
4601 https://github.com/STEllAR-GROUP/hpx/pull/2381
4602 https://github.com/STEllAR-GROUP/hpx/pull/2380
4603 https://github.com/STEllAR-GROUP/hpx/pull/2379
4604 https://github.com/STEllAR-GROUP/hpx/pull/2378
4605 https://github.com/STEllAR-GROUP/hpx/issues/2376
4606 https://github.com/STEllAR-GROUP/hpx/pull/2375
4607 https://github.com/STEllAR-GROUP/hpx/pull/2374
4608 https://github.com/STEllAR-GROUP/hpx/pull/2373

2.10. Releases 1739

https://github.com/STEllAR-GROUP/hpx/issues/2396
https://github.com/STEllAR-GROUP/hpx/pull/2395
https://github.com/STEllAR-GROUP/hpx/issues/2394
https://github.com/STEllAR-GROUP/hpx/pull/2393
https://github.com/STEllAR-GROUP/hpx/pull/2392
https://github.com/STEllAR-GROUP/hpx/pull/2391
https://github.com/STEllAR-GROUP/hpx/issues/2390
https://github.com/STEllAR-GROUP/hpx/pull/2389
https://github.com/STEllAR-GROUP/hpx/pull/2388
https://github.com/STEllAR-GROUP/hpx/pull/2387
https://github.com/STEllAR-GROUP/hpx/issues/2386
https://github.com/STEllAR-GROUP/hpx/pull/2385
https://github.com/STEllAR-GROUP/hpx/pull/2384
https://github.com/STEllAR-GROUP/hpx/pull/2383
https://github.com/STEllAR-GROUP/hpx/pull/2382
https://github.com/STEllAR-GROUP/hpx/pull/2381
https://github.com/STEllAR-GROUP/hpx/pull/2380
https://github.com/STEllAR-GROUP/hpx/pull/2379
https://github.com/STEllAR-GROUP/hpx/pull/2378
https://github.com/STEllAR-GROUP/hpx/issues/2376
https://github.com/STEllAR-GROUP/hpx/pull/2375
https://github.com/STEllAR-GROUP/hpx/pull/2374
https://github.com/STEllAR-GROUP/hpx/pull/2373

HPX Documentation, master

• PR #23724609 - Barrier Fixes

• Issue #23704610 - Can’t wait on a wrapped future

• PR #23694611 - Fixing stable_partition

• PR #23674612 - Fixing find_prefixes for Windows platforms

• PR #23664613 - Testing for experimental/optional only in C++14 mode

• PR #23644614 - Adding set_config_entry

• PR #23634615 - Fix papi

• PR #23624616 - Adding missing macros for new non-direct actions

• PR #23614617 - Improve cmake output to help debug compiler incompatibility check

• PR #23604618 - Fixing race condition in condition_variable

• PR #23594619 - Fixing shutdown when parcels are still in flight

• Issue #23574620 - failed to insert console_print_action into typename_to_id_t registry

• PR #23564621 - Fixing return type of get_iterator_tuple

• PR #23554622 - Fixing compilation against Boost 1 62

• PR #23544623 - Adding serialization for mask_type if CPU_COUNT > 64

• PR #23534624 - Adding hooks to tie in APEX into the parcel layer

• Issue #23524625 - Compile errors when using intel 17 beta (for KNL) on edison

• PR #23514626 - Fix function vtable get_function_address implementation

• Issue #23504627 - Build failure - master branch (4de09f5) with Intel Compiler v17

• PR #23494628 - Enabling zero-copy serialization support for std::vector<>

• PR #23484629 - Adding test to verify #2334 is fixed

• PR #23474630 - Bug fixes for hpx.compute and hpx::lcos::channel

• PR #23464631 - Removing cmake “find” files that are in the APEX cmake Modules
4609 https://github.com/STEllAR-GROUP/hpx/pull/2372
4610 https://github.com/STEllAR-GROUP/hpx/issues/2370
4611 https://github.com/STEllAR-GROUP/hpx/pull/2369
4612 https://github.com/STEllAR-GROUP/hpx/pull/2367
4613 https://github.com/STEllAR-GROUP/hpx/pull/2366
4614 https://github.com/STEllAR-GROUP/hpx/pull/2364
4615 https://github.com/STEllAR-GROUP/hpx/pull/2363
4616 https://github.com/STEllAR-GROUP/hpx/pull/2362
4617 https://github.com/STEllAR-GROUP/hpx/pull/2361
4618 https://github.com/STEllAR-GROUP/hpx/pull/2360
4619 https://github.com/STEllAR-GROUP/hpx/pull/2359
4620 https://github.com/STEllAR-GROUP/hpx/issues/2357
4621 https://github.com/STEllAR-GROUP/hpx/pull/2356
4622 https://github.com/STEllAR-GROUP/hpx/pull/2355
4623 https://github.com/STEllAR-GROUP/hpx/pull/2354
4624 https://github.com/STEllAR-GROUP/hpx/pull/2353
4625 https://github.com/STEllAR-GROUP/hpx/issues/2352
4626 https://github.com/STEllAR-GROUP/hpx/pull/2351
4627 https://github.com/STEllAR-GROUP/hpx/issues/2350
4628 https://github.com/STEllAR-GROUP/hpx/pull/2349
4629 https://github.com/STEllAR-GROUP/hpx/pull/2348
4630 https://github.com/STEllAR-GROUP/hpx/pull/2347
4631 https://github.com/STEllAR-GROUP/hpx/pull/2346

1740 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2372
https://github.com/STEllAR-GROUP/hpx/issues/2370
https://github.com/STEllAR-GROUP/hpx/pull/2369
https://github.com/STEllAR-GROUP/hpx/pull/2367
https://github.com/STEllAR-GROUP/hpx/pull/2366
https://github.com/STEllAR-GROUP/hpx/pull/2364
https://github.com/STEllAR-GROUP/hpx/pull/2363
https://github.com/STEllAR-GROUP/hpx/pull/2362
https://github.com/STEllAR-GROUP/hpx/pull/2361
https://github.com/STEllAR-GROUP/hpx/pull/2360
https://github.com/STEllAR-GROUP/hpx/pull/2359
https://github.com/STEllAR-GROUP/hpx/issues/2357
https://github.com/STEllAR-GROUP/hpx/pull/2356
https://github.com/STEllAR-GROUP/hpx/pull/2355
https://github.com/STEllAR-GROUP/hpx/pull/2354
https://github.com/STEllAR-GROUP/hpx/pull/2353
https://github.com/STEllAR-GROUP/hpx/issues/2352
https://github.com/STEllAR-GROUP/hpx/pull/2351
https://github.com/STEllAR-GROUP/hpx/issues/2350
https://github.com/STEllAR-GROUP/hpx/pull/2349
https://github.com/STEllAR-GROUP/hpx/pull/2348
https://github.com/STEllAR-GROUP/hpx/pull/2347
https://github.com/STEllAR-GROUP/hpx/pull/2346

HPX Documentation, master

• PR #23454632 - Implemented parallel::stable_partition

• PR #23444633 - Making hpx::lcos::channel usable with basename registration

• PR #23434634 - Fix a couple of examples that failed to compile after recent api changes

• Issue #23424635 - Enabling APEX causes link errors

• PR #23414636 - Removing cmake “find” files that are in the APEX cmake Modules

• PR #23404637 - Implemented all existing datapar algorithms using Boost.SIMD

• PR #23394638 - Fixing 2338

• PR #23384639 - Possible race in sliding semaphore

• PR #23374640 - Adjust osu_latency test to measure window_size parcels in flight at once

• PR #23364641 - Allowing remote direct actions to be executed without spawning a task

• PR #23354642 - Making sure multiple components are properly initialized from arguments

• Issue #23344643 - Cannot construct component with large vector on a remote locality

• PR #23324644 - Fixing hpx::lcos::local::barrier

• PR #23314645 - Updating APEX support to include OTF2

• PR #23304646 - Support for data-parallelism for parallel algorithms

• Issue #23294647 - Coordinate settings in cmake

• PR #23284648 - fix LibGeoDecomp builds with HPX + GCC 5.3.0 + CUDA 8RC

• PR #23264649 - Making scan_partitioner work (for now)

• Issue #23234650 - Constructing a vector of components only correctly initializes the first component

• PR #23224651 - Fix problems that bubbled up after merging #2278

• PR #23214652 - Scalable barrier

• PR #23204653 - Std flag fixes

• Issue #23194654 - -std=c++14 and -std=c++1y with Intel can’t build recent Boost builds due to insufficient C++14
support; don’t enable these flags by default for Intel

4632 https://github.com/STEllAR-GROUP/hpx/pull/2345
4633 https://github.com/STEllAR-GROUP/hpx/pull/2344
4634 https://github.com/STEllAR-GROUP/hpx/pull/2343
4635 https://github.com/STEllAR-GROUP/hpx/issues/2342
4636 https://github.com/STEllAR-GROUP/hpx/pull/2341
4637 https://github.com/STEllAR-GROUP/hpx/pull/2340
4638 https://github.com/STEllAR-GROUP/hpx/pull/2339
4639 https://github.com/STEllAR-GROUP/hpx/pull/2338
4640 https://github.com/STEllAR-GROUP/hpx/pull/2337
4641 https://github.com/STEllAR-GROUP/hpx/pull/2336
4642 https://github.com/STEllAR-GROUP/hpx/pull/2335
4643 https://github.com/STEllAR-GROUP/hpx/issues/2334
4644 https://github.com/STEllAR-GROUP/hpx/pull/2332
4645 https://github.com/STEllAR-GROUP/hpx/pull/2331
4646 https://github.com/STEllAR-GROUP/hpx/pull/2330
4647 https://github.com/STEllAR-GROUP/hpx/issues/2329
4648 https://github.com/STEllAR-GROUP/hpx/pull/2328
4649 https://github.com/STEllAR-GROUP/hpx/pull/2326
4650 https://github.com/STEllAR-GROUP/hpx/issues/2323
4651 https://github.com/STEllAR-GROUP/hpx/pull/2322
4652 https://github.com/STEllAR-GROUP/hpx/pull/2321
4653 https://github.com/STEllAR-GROUP/hpx/pull/2320
4654 https://github.com/STEllAR-GROUP/hpx/issues/2319

2.10. Releases 1741

https://github.com/STEllAR-GROUP/hpx/pull/2345
https://github.com/STEllAR-GROUP/hpx/pull/2344
https://github.com/STEllAR-GROUP/hpx/pull/2343
https://github.com/STEllAR-GROUP/hpx/issues/2342
https://github.com/STEllAR-GROUP/hpx/pull/2341
https://github.com/STEllAR-GROUP/hpx/pull/2340
https://github.com/STEllAR-GROUP/hpx/pull/2339
https://github.com/STEllAR-GROUP/hpx/pull/2338
https://github.com/STEllAR-GROUP/hpx/pull/2337
https://github.com/STEllAR-GROUP/hpx/pull/2336
https://github.com/STEllAR-GROUP/hpx/pull/2335
https://github.com/STEllAR-GROUP/hpx/issues/2334
https://github.com/STEllAR-GROUP/hpx/pull/2332
https://github.com/STEllAR-GROUP/hpx/pull/2331
https://github.com/STEllAR-GROUP/hpx/pull/2330
https://github.com/STEllAR-GROUP/hpx/issues/2329
https://github.com/STEllAR-GROUP/hpx/pull/2328
https://github.com/STEllAR-GROUP/hpx/pull/2326
https://github.com/STEllAR-GROUP/hpx/issues/2323
https://github.com/STEllAR-GROUP/hpx/pull/2322
https://github.com/STEllAR-GROUP/hpx/pull/2321
https://github.com/STEllAR-GROUP/hpx/pull/2320
https://github.com/STEllAR-GROUP/hpx/issues/2319

HPX Documentation, master

• PR #23184655 - Improve handling of –hpx:bind=<bind-spec>

• PR #23174656 - Making sure command line warnings are printed once only

• PR #23164657 - Fixing command line handling for default bind mode

• PR #23154658 - Set id_retrieved if set_id is present

• Issue #23144659 - Warning for requested/allocated thread discrepancy is printed twice

• Issue #23134660 - –hpx:print-bind doesn’t work with –hpx:pu-step

• Issue #23124661 - –hpx:bind range specifier restrictions are overly restrictive

• Issue #23114662 - hpx_0.9.99 out of project build fails

• PR #23104663 - Simplify function registration

• PR #23094664 - Spelling and grammar revisions in documentation (and some code)

• PR #23064665 - Correct minor typo in the documentation

• PR #23054666 - Cleaning up and fixing parcel coalescing

• PR #23044667 - Inspect checks for stream related includes

• PR #23034668 - Add functionality allowing to enumerate threads of given state

• PR #23014669 - Algorithm overloads fix for VS2013

• PR #23004670 - Use <cstdint>, add inspect checks

• PR #22994671 - Replace boost::[c]ref with std::[c]ref, add inspect checks

• PR #22974672 - Fixing compilation with no hw_loc

• PR #22964673 - Hpx compute

• PR #22954674 - Making sure for_loop(execution::par, 0, N, . . .) is actually executed in parallel

• PR #22944675 - Throwing exceptions if the runtime is not up and running

• PR #22934676 - Removing unused parcel port code

• PR #22924677 - Refactor function vtables
4655 https://github.com/STEllAR-GROUP/hpx/pull/2318
4656 https://github.com/STEllAR-GROUP/hpx/pull/2317
4657 https://github.com/STEllAR-GROUP/hpx/pull/2316
4658 https://github.com/STEllAR-GROUP/hpx/pull/2315
4659 https://github.com/STEllAR-GROUP/hpx/issues/2314
4660 https://github.com/STEllAR-GROUP/hpx/issues/2313
4661 https://github.com/STEllAR-GROUP/hpx/issues/2312
4662 https://github.com/STEllAR-GROUP/hpx/issues/2311
4663 https://github.com/STEllAR-GROUP/hpx/pull/2310
4664 https://github.com/STEllAR-GROUP/hpx/pull/2309
4665 https://github.com/STEllAR-GROUP/hpx/pull/2306
4666 https://github.com/STEllAR-GROUP/hpx/pull/2305
4667 https://github.com/STEllAR-GROUP/hpx/pull/2304
4668 https://github.com/STEllAR-GROUP/hpx/pull/2303
4669 https://github.com/STEllAR-GROUP/hpx/pull/2301
4670 https://github.com/STEllAR-GROUP/hpx/pull/2300
4671 https://github.com/STEllAR-GROUP/hpx/pull/2299
4672 https://github.com/STEllAR-GROUP/hpx/pull/2297
4673 https://github.com/STEllAR-GROUP/hpx/pull/2296
4674 https://github.com/STEllAR-GROUP/hpx/pull/2295
4675 https://github.com/STEllAR-GROUP/hpx/pull/2294
4676 https://github.com/STEllAR-GROUP/hpx/pull/2293
4677 https://github.com/STEllAR-GROUP/hpx/pull/2292

1742 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2318
https://github.com/STEllAR-GROUP/hpx/pull/2317
https://github.com/STEllAR-GROUP/hpx/pull/2316
https://github.com/STEllAR-GROUP/hpx/pull/2315
https://github.com/STEllAR-GROUP/hpx/issues/2314
https://github.com/STEllAR-GROUP/hpx/issues/2313
https://github.com/STEllAR-GROUP/hpx/issues/2312
https://github.com/STEllAR-GROUP/hpx/issues/2311
https://github.com/STEllAR-GROUP/hpx/pull/2310
https://github.com/STEllAR-GROUP/hpx/pull/2309
https://github.com/STEllAR-GROUP/hpx/pull/2306
https://github.com/STEllAR-GROUP/hpx/pull/2305
https://github.com/STEllAR-GROUP/hpx/pull/2304
https://github.com/STEllAR-GROUP/hpx/pull/2303
https://github.com/STEllAR-GROUP/hpx/pull/2301
https://github.com/STEllAR-GROUP/hpx/pull/2300
https://github.com/STEllAR-GROUP/hpx/pull/2299
https://github.com/STEllAR-GROUP/hpx/pull/2297
https://github.com/STEllAR-GROUP/hpx/pull/2296
https://github.com/STEllAR-GROUP/hpx/pull/2295
https://github.com/STEllAR-GROUP/hpx/pull/2294
https://github.com/STEllAR-GROUP/hpx/pull/2293
https://github.com/STEllAR-GROUP/hpx/pull/2292

HPX Documentation, master

• PR #22914678 - Fixing 2286

• PR #22904679 - Simplify algorithm overloads

• PR #22894680 - Adding performance counters reporting parcel related data on a per-action basis

• Issue #22884681 - Remove dormant parcelports

• Issue #22864682 - adjustments to parcel handling to support parcelports that do not need a connection cache

• PR #22854683 - add CMake option to disable package export

• PR #22834684 - Add more inspect checks for use of deprecated components

• Issue #22824685 - Arithmetic exception in executor static chunker

• Issue #22814686 - For loop doesn’t parallelize

• PR #22804687 - Fixing 2277: build failure with PAPI

• PR #22794688 - Child vs parent stealing

• Issue #22774689 - master branch build failure (53c5b4f) with papi

• PR #22764690 - Compile time launch policies

• PR #22754691 - Replace boost::chrono with std::chrono in interfaces

• PR #22744692 - Replace most uses of Boost.Assign with initializer list

• PR #22734693 - Fixed typos

• PR #22724694 - Inspect checks

• PR #22704695 - Adding test verifying -Ihpx.os_threads=all

• PR #22694696 - Added inspect check for now obsolete boost type traits

• PR #22684697 - Moving more code into source files

• Issue #22674698 - Add inspect support to deprecate Boost.TypeTraits

• PR #22654699 - Adding channel LCO

• PR #22644700 - Make support for std::ref mandatory
4678 https://github.com/STEllAR-GROUP/hpx/pull/2291
4679 https://github.com/STEllAR-GROUP/hpx/pull/2290
4680 https://github.com/STEllAR-GROUP/hpx/pull/2289
4681 https://github.com/STEllAR-GROUP/hpx/issues/2288
4682 https://github.com/STEllAR-GROUP/hpx/issues/2286
4683 https://github.com/STEllAR-GROUP/hpx/pull/2285
4684 https://github.com/STEllAR-GROUP/hpx/pull/2283
4685 https://github.com/STEllAR-GROUP/hpx/issues/2282
4686 https://github.com/STEllAR-GROUP/hpx/issues/2281
4687 https://github.com/STEllAR-GROUP/hpx/pull/2280
4688 https://github.com/STEllAR-GROUP/hpx/pull/2279
4689 https://github.com/STEllAR-GROUP/hpx/issues/2277
4690 https://github.com/STEllAR-GROUP/hpx/pull/2276
4691 https://github.com/STEllAR-GROUP/hpx/pull/2275
4692 https://github.com/STEllAR-GROUP/hpx/pull/2274
4693 https://github.com/STEllAR-GROUP/hpx/pull/2273
4694 https://github.com/STEllAR-GROUP/hpx/pull/2272
4695 https://github.com/STEllAR-GROUP/hpx/pull/2270
4696 https://github.com/STEllAR-GROUP/hpx/pull/2269
4697 https://github.com/STEllAR-GROUP/hpx/pull/2268
4698 https://github.com/STEllAR-GROUP/hpx/issues/2267
4699 https://github.com/STEllAR-GROUP/hpx/pull/2265
4700 https://github.com/STEllAR-GROUP/hpx/pull/2264

2.10. Releases 1743

https://github.com/STEllAR-GROUP/hpx/pull/2291
https://github.com/STEllAR-GROUP/hpx/pull/2290
https://github.com/STEllAR-GROUP/hpx/pull/2289
https://github.com/STEllAR-GROUP/hpx/issues/2288
https://github.com/STEllAR-GROUP/hpx/issues/2286
https://github.com/STEllAR-GROUP/hpx/pull/2285
https://github.com/STEllAR-GROUP/hpx/pull/2283
https://github.com/STEllAR-GROUP/hpx/issues/2282
https://github.com/STEllAR-GROUP/hpx/issues/2281
https://github.com/STEllAR-GROUP/hpx/pull/2280
https://github.com/STEllAR-GROUP/hpx/pull/2279
https://github.com/STEllAR-GROUP/hpx/issues/2277
https://github.com/STEllAR-GROUP/hpx/pull/2276
https://github.com/STEllAR-GROUP/hpx/pull/2275
https://github.com/STEllAR-GROUP/hpx/pull/2274
https://github.com/STEllAR-GROUP/hpx/pull/2273
https://github.com/STEllAR-GROUP/hpx/pull/2272
https://github.com/STEllAR-GROUP/hpx/pull/2270
https://github.com/STEllAR-GROUP/hpx/pull/2269
https://github.com/STEllAR-GROUP/hpx/pull/2268
https://github.com/STEllAR-GROUP/hpx/issues/2267
https://github.com/STEllAR-GROUP/hpx/pull/2265
https://github.com/STEllAR-GROUP/hpx/pull/2264

HPX Documentation, master

• PR #22634701 - Constrain tuple_member forwarding constructor

• Issue #22624702 - Test hpx.os_threads=all

• Issue #22614703 - OS X: Error: no matching constructor for initialization of
‘hpx::lcos::local::condition_variable_any’

• Issue #22604704 - Make support for std::ref mandatory

• PR #22594705 - Remove most of Boost.MPL, Boost.EnableIf and Boost.TypeTraits

• PR #22584706 - Fixing #2256

• PR #22574707 - Fixing launch process

• Issue #22564708 - Actions are not registered if not invoked

• PR #22554709 - Coalescing histogram

• PR #22544710 - Silence explicit initialization in copy-constructor warnings

• PR #22534711 - Drop support for GCC 4.6 and 4.7

• PR #22524712 - Prepare V1.0

• PR #22514713 - Convert to 0.9.99

• PR #22494714 - Adding iterator_facade and iterator_adaptor

• Issue #22484715 - Need a feature to yield to a new task immediately

• PR #22464716 - Adding split_future

• PR #22454717 - Add an example for handing over a component instance to a dynamically launched locality

• Issue #22434718 - Add example demonstrating AGAS symbolic name registration

• Issue #22424719 - pkgconfig test broken on CentOS 7 / Boost 1.61

• Issue #22414720 - Compilation error for partitioned vector in hpx_compute branch

• PR #22404721 - Fixing termination detection on one locality

• Issue #22394722 - Create a new facility lcos::split_all

• Issue #22364723 - hpx::cout vs. std::cout
4701 https://github.com/STEllAR-GROUP/hpx/pull/2263
4702 https://github.com/STEllAR-GROUP/hpx/issues/2262
4703 https://github.com/STEllAR-GROUP/hpx/issues/2261
4704 https://github.com/STEllAR-GROUP/hpx/issues/2260
4705 https://github.com/STEllAR-GROUP/hpx/pull/2259
4706 https://github.com/STEllAR-GROUP/hpx/pull/2258
4707 https://github.com/STEllAR-GROUP/hpx/pull/2257
4708 https://github.com/STEllAR-GROUP/hpx/issues/2256
4709 https://github.com/STEllAR-GROUP/hpx/pull/2255
4710 https://github.com/STEllAR-GROUP/hpx/pull/2254
4711 https://github.com/STEllAR-GROUP/hpx/pull/2253
4712 https://github.com/STEllAR-GROUP/hpx/pull/2252
4713 https://github.com/STEllAR-GROUP/hpx/pull/2251
4714 https://github.com/STEllAR-GROUP/hpx/pull/2249
4715 https://github.com/STEllAR-GROUP/hpx/issues/2248
4716 https://github.com/STEllAR-GROUP/hpx/pull/2246
4717 https://github.com/STEllAR-GROUP/hpx/pull/2245
4718 https://github.com/STEllAR-GROUP/hpx/issues/2243
4719 https://github.com/STEllAR-GROUP/hpx/issues/2242
4720 https://github.com/STEllAR-GROUP/hpx/issues/2241
4721 https://github.com/STEllAR-GROUP/hpx/pull/2240
4722 https://github.com/STEllAR-GROUP/hpx/issues/2239
4723 https://github.com/STEllAR-GROUP/hpx/issues/2236

1744 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2263
https://github.com/STEllAR-GROUP/hpx/issues/2262
https://github.com/STEllAR-GROUP/hpx/issues/2261
https://github.com/STEllAR-GROUP/hpx/issues/2260
https://github.com/STEllAR-GROUP/hpx/pull/2259
https://github.com/STEllAR-GROUP/hpx/pull/2258
https://github.com/STEllAR-GROUP/hpx/pull/2257
https://github.com/STEllAR-GROUP/hpx/issues/2256
https://github.com/STEllAR-GROUP/hpx/pull/2255
https://github.com/STEllAR-GROUP/hpx/pull/2254
https://github.com/STEllAR-GROUP/hpx/pull/2253
https://github.com/STEllAR-GROUP/hpx/pull/2252
https://github.com/STEllAR-GROUP/hpx/pull/2251
https://github.com/STEllAR-GROUP/hpx/pull/2249
https://github.com/STEllAR-GROUP/hpx/issues/2248
https://github.com/STEllAR-GROUP/hpx/pull/2246
https://github.com/STEllAR-GROUP/hpx/pull/2245
https://github.com/STEllAR-GROUP/hpx/issues/2243
https://github.com/STEllAR-GROUP/hpx/issues/2242
https://github.com/STEllAR-GROUP/hpx/issues/2241
https://github.com/STEllAR-GROUP/hpx/pull/2240
https://github.com/STEllAR-GROUP/hpx/issues/2239
https://github.com/STEllAR-GROUP/hpx/issues/2236

HPX Documentation, master

• PR #22324724 - Implement local-only primary namespace service

• Issue #21474725 - would like to know how much data is being routed by particular actions

• Issue #21094726 - Warning while compiling hpx

• Issue #19734727 - Setting INTERFACE_COMPILE_OPTIONS for hpx_init in CMake taints Fortran_FLAGS

• Issue #18644728 - run_guarded using bound function ignores reference

• Issue #17544729 - Running with TCP parcelport causes immediate crash or freeze

• Issue #16554730 - Enable zip_iterator to be used with Boost traversal iterator categories

• Issue #15914731 - Optimize AGAS for shared memory only operation

• Issue #14014732 - Need an efficient infiniband parcelport

• Issue #11254733 - Fix the IPC parcelport

• Issue #8394734 - Refactor ibverbs and shmem parcelport

• Issue #7024735 - Add instrumentation of parcel layer

• Issue #6684736 - Implement ispc task interface

• Issue #5334737 - Thread queue/deque internal parameters should be runtime configurable

• Issue #4754738 - Create a means of combining performance counters into querysets

HPX V0.9.99 (Jul 15, 2016)

General changes

As the version number of this release hints, we consider this release to be a preview for the upcoming HPX V1.0. All
of the functionalities we set out to implement for V1.0 are in place; all of the features we wanted to have exposed are
ready. We are very happy with the stability and performance of HPX and we would like to present this release to the
community in order for us to gather broad feedback before releasing V1.0. We still expect for some minor details to
change, but on the whole this release represents what we would like to have in a V1.0.

Overall, since the last release we have had almost 1600 commits while closing almost 400 tickets. These numbers
reflect the incredible development activity we have seen over the last couple of months. We would like to express a big
‘Thank you!’ to all contributors and those who helped to make this release happen.

The most notable addition in terms of new functionality available with this release is the full implementation of object
migration (i.e. the ability to transparently move HPX components to a different compute node). Additionally, this
release of HPX cleans up many minor issues and some API inconsistencies.

Here are some of the main highlights and changes for this release (in no particular order):
4724 https://github.com/STEllAR-GROUP/hpx/pull/2232
4725 https://github.com/STEllAR-GROUP/hpx/issues/2147
4726 https://github.com/STEllAR-GROUP/hpx/issues/2109
4727 https://github.com/STEllAR-GROUP/hpx/issues/1973
4728 https://github.com/STEllAR-GROUP/hpx/issues/1864
4729 https://github.com/STEllAR-GROUP/hpx/issues/1754
4730 https://github.com/STEllAR-GROUP/hpx/issues/1655
4731 https://github.com/STEllAR-GROUP/hpx/issues/1591
4732 https://github.com/STEllAR-GROUP/hpx/issues/1401
4733 https://github.com/STEllAR-GROUP/hpx/issues/1125
4734 https://github.com/STEllAR-GROUP/hpx/issues/839
4735 https://github.com/STEllAR-GROUP/hpx/issues/702
4736 https://github.com/STEllAR-GROUP/hpx/issues/668
4737 https://github.com/STEllAR-GROUP/hpx/issues/533
4738 https://github.com/STEllAR-GROUP/hpx/issues/475

2.10. Releases 1745

https://github.com/STEllAR-GROUP/hpx/pull/2232
https://github.com/STEllAR-GROUP/hpx/issues/2147
https://github.com/STEllAR-GROUP/hpx/issues/2109
https://github.com/STEllAR-GROUP/hpx/issues/1973
https://github.com/STEllAR-GROUP/hpx/issues/1864
https://github.com/STEllAR-GROUP/hpx/issues/1754
https://github.com/STEllAR-GROUP/hpx/issues/1655
https://github.com/STEllAR-GROUP/hpx/issues/1591
https://github.com/STEllAR-GROUP/hpx/issues/1401
https://github.com/STEllAR-GROUP/hpx/issues/1125
https://github.com/STEllAR-GROUP/hpx/issues/839
https://github.com/STEllAR-GROUP/hpx/issues/702
https://github.com/STEllAR-GROUP/hpx/issues/668
https://github.com/STEllAR-GROUP/hpx/issues/533
https://github.com/STEllAR-GROUP/hpx/issues/475

HPX Documentation, master

• We have fixed a couple of issues in AGAS and the parcel layer which have caused hangs, segmentation faults at
exit, and a slowdown of applications over time. Fixing those has significantly increased the overall stability and
performance of distributed runs.

• We have started to add parallel algorithm overloads based on the C++ Extensions for Ranges (N45604739) pro-
posal. This also includes the addition of projections to the existing algorithms. Please see Issue #16684740 for a
list of algorithms which have been adapted to N45604741.

• We have implemented index-based parallel for-loops based on a corresponding standardization proposal
(P0075R14742). Please see Issue #20164743 for a list of available algorithms.

• We have added implementations for more parallel algorithms as proposed for the upcoming C++ 17 Standard.
See Issue #11414744 for an overview of which algorithms are available by now.

• We have started to implement a new prototypical functionality with HPX.Compute which uniformly exposes
some of the higher level APIs to heterogeneous architectures (currently CUDA). This functionality is an early
preview and should not be considered stable. It may change considerably in the future.

• We have pervasively added (optional) executor arguments to all API functions which schedule new work. Ex-
ecutors are now used throughout the code base as the main means of executing tasks.

• Added hpx::make_future<R>(future<T> &&) allowing to convert a future of any type T into a future of any
other type R, either based on default conversion rules of the embedded types or using a given explicit conversion
function.

• We finally finished the implementation of transparent migration of components to another locality. It is now
possible to trigger a migration operation without ‘stopping the world’ for the object to migrate. HPX will make
sure that no work is being performed on an object before it is migrated and that all subsequently scheduled work
for the migrated object will be transparently forwarded to the new locality. Please note that the global id of the
migrated object does not change, thus the application will not have to be changed in any way to support this
new functionality. Please note that this feature is currently considered experimental. See Issue #5594745 and PR
#19664746 for more details.

• The hpx::dataflow facility is now usable with actions. Similarly to hpx::async, actions can be speci-
fied as an explicit template argument (hpx::dataflow<Action>(target, ...)) or as the first argument
(hpx::dataflow(Action(), target, ...)). We have also enabled the use of distribution policies as the
target for dataflow invocations. Please see Issue #12654747 and PR #19124748 for more information.

• Adding overloads of gather_here and gather_there to accept the plain values of the data to gather (in addi-
tion to the existing overloads expecting futures).

• We have cleaned up and refactored large parts of the code base. This helped reducing compile and link times of
HPX itself and also of applications depending on it. We have further decreased the dependency of HPX on the
Boost libraries by replacing part of those with facilities available from the standard libraries.

• Wherever possible we have removed dependencies of our API on Boost by replacing those with the equivalent
facility from the C++11 standard library.

• We have added new performance counters for parcel coalescing, file-IO, the AGAS cache, and overall scheduler
time. Resetting performance counters has been overhauled and fixed.

4739 http://wg21.link/n4560
4740 https://github.com/STEllAR-GROUP/hpx/issues/1668
4741 http://wg21.link/n4560
4742 http://wg21.link/p0075r1
4743 https://github.com/STEllAR-GROUP/hpx/issues/2016
4744 https://github.com/STEllAR-GROUP/hpx/issues/1141
4745 https://github.com/STEllAR-GROUP/hpx/issues/559
4746 https://github.com/STEllAR-GROUP/hpx/pull/1966
4747 https://github.com/STEllAR-GROUP/hpx/issues/1265
4748 https://github.com/STEllAR-GROUP/hpx/pull/1912

1746 Chapter 2. What’s so special about HPX?

http://wg21.link/n4560
https://github.com/STEllAR-GROUP/hpx/issues/1668
http://wg21.link/n4560
http://wg21.link/p0075r1
https://github.com/STEllAR-GROUP/hpx/issues/2016
https://github.com/STEllAR-GROUP/hpx/issues/1141
https://github.com/STEllAR-GROUP/hpx/issues/559
https://github.com/STEllAR-GROUP/hpx/pull/1966
https://github.com/STEllAR-GROUP/hpx/pull/1966
https://github.com/STEllAR-GROUP/hpx/issues/1265
https://github.com/STEllAR-GROUP/hpx/pull/1912

HPX Documentation, master

• We have introduced a generic client type hpx::components::client<> and added support for using it with
hpx::async. This removes the necessity to implement specific client types for every component type without
losing type safety. This deemphasizes the need for using the low level hpx::id_type for referencing (possibly
remote) component instances. The plan is to deprecate the direct use of hpx::id_type in user code in the
future.

• We have added a special iterator which supports automatic prefetching of one or more arrays for speeding up
loop-like code (see hpx::parallel::util::make_prefetcher_context()).

• We have extended the interfaces exposed from executors (as proposed by N44064749) to accept an arbitrary num-
ber of arguments.

Breaking changes

• In order to move the dataflow facility to namespace hpx we added a definition of hpx::dataflow which might
create ambiguities in existing codes. The previous definition of this facility (hpx::lcos::local::dataflow)
has been deprecated and is available only if the constant -DHPX_WITH_LOCAL_DATAFLOW_COMPATIBILITY=On
to CMake4750 is defined at configuration time. Please explicitly qualify all uses of the dataflow facility if you
enable this compatibility setting and encounter ambiguities.

• The adaptation of the C++ Extensions for Ranges (N45604751) proposal imposes some breaking changes related
to the return types of some of the parallel algorithms. Please see Issue #16684752 for a list of algorithms which
have already been adapted.

• The facility hpx::lcos::make_future_void() has been replaced by hpx::make_future<void>().

• We have removed support for Intel V13 and gcc 4.4.x.

• We have removed (default) support for the generic hpx::parallel::execution_poliy be-
cause it was removed from the Parallelism TS (__cpp11_n4104__) while it was being added to
the upcoming C++17 Standard. This facility can be still enabled at configure time by specifying
-DHPX_WITH_GENERIC_EXECUTION_POLICY=On to CMake.

• Uses of boost::shared_ptr and related facilities have been replaced with std::shared_ptr and friends.
Uses of boost::unique_lock, boost::lock_guard etc. have also been replaced by the equivalent (and
equally named) tools available from the C++11 standard library.

• Facilities that used to expect an explicit boost::unique_lock now take an std::unique_lock. Addition-
ally, condition_variable no longer aliases condition_variable_any; its interface now only works with
std::unique_lock<local::mutex>.

• Uses of boost::function, boost::bind, boost::tuple have been replaced by the corresponding facilities
in HPX (hpx::util::function, hpx::util::bind, and hpx::util::tuple, respectively).

4749 http://wg21.link/n4406
4750 https://www.cmake.org
4751 http://wg21.link/n4560
4752 https://github.com/STEllAR-GROUP/hpx/issues/1668

2.10. Releases 1747

http://wg21.link/n4406
https://www.cmake.org
http://wg21.link/n4560
https://github.com/STEllAR-GROUP/hpx/issues/1668

HPX Documentation, master

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• PR #22504753 - change default chunker of parallel executor to static one

• PR #22474754 - HPX on ppc64le

• PR #22444755 - Fixing MSVC problems

• PR #22384756 - Fixing small typos

• PR #22374757 - Fixing small typos

• PR #22344758 - Fix broken add test macro when extra args are passed in

• PR #22314759 - Fixing possible race during future awaiting in serialization

• PR #22304760 - Fix stream nvcc

• PR #22294761 - Fixed run_as_hpx_thread

• PR #22284762 - On prefetching_test branch : adding prefetching_iterator and related tests used for prefetching
containers within lambda functions

• PR #22274763 - Support for HPXCL’s opencl::event

• PR #22264764 - Preparing for release of V0.9.99

• PR #22254765 - fix issue when compiling components with hpxcxx

• PR #22244766 - Compute alloc fix

• PR #22234767 - Simplify promise

• PR #22224768 - Replace last uses of boost::function by util::function_nonser

• PR #22214769 - Fix config tests

• PR #22204770 - Fixing gcc 4.6 compilation issues

• PR #22194771 - nullptr support for [unique_]function

• PR #22184772 - Introducing clang tidy

• PR #22164773 - Replace NULL with nullptr
4753 https://github.com/STEllAR-GROUP/hpx/pull/2250
4754 https://github.com/STEllAR-GROUP/hpx/pull/2247
4755 https://github.com/STEllAR-GROUP/hpx/pull/2244
4756 https://github.com/STEllAR-GROUP/hpx/pull/2238
4757 https://github.com/STEllAR-GROUP/hpx/pull/2237
4758 https://github.com/STEllAR-GROUP/hpx/pull/2234
4759 https://github.com/STEllAR-GROUP/hpx/pull/2231
4760 https://github.com/STEllAR-GROUP/hpx/pull/2230
4761 https://github.com/STEllAR-GROUP/hpx/pull/2229
4762 https://github.com/STEllAR-GROUP/hpx/pull/2228
4763 https://github.com/STEllAR-GROUP/hpx/pull/2227
4764 https://github.com/STEllAR-GROUP/hpx/pull/2226
4765 https://github.com/STEllAR-GROUP/hpx/pull/2225
4766 https://github.com/STEllAR-GROUP/hpx/pull/2224
4767 https://github.com/STEllAR-GROUP/hpx/pull/2223
4768 https://github.com/STEllAR-GROUP/hpx/pull/2222
4769 https://github.com/STEllAR-GROUP/hpx/pull/2221
4770 https://github.com/STEllAR-GROUP/hpx/pull/2220
4771 https://github.com/STEllAR-GROUP/hpx/pull/2219
4772 https://github.com/STEllAR-GROUP/hpx/pull/2218
4773 https://github.com/STEllAR-GROUP/hpx/pull/2216

1748 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2250
https://github.com/STEllAR-GROUP/hpx/pull/2247
https://github.com/STEllAR-GROUP/hpx/pull/2244
https://github.com/STEllAR-GROUP/hpx/pull/2238
https://github.com/STEllAR-GROUP/hpx/pull/2237
https://github.com/STEllAR-GROUP/hpx/pull/2234
https://github.com/STEllAR-GROUP/hpx/pull/2231
https://github.com/STEllAR-GROUP/hpx/pull/2230
https://github.com/STEllAR-GROUP/hpx/pull/2229
https://github.com/STEllAR-GROUP/hpx/pull/2228
https://github.com/STEllAR-GROUP/hpx/pull/2227
https://github.com/STEllAR-GROUP/hpx/pull/2226
https://github.com/STEllAR-GROUP/hpx/pull/2225
https://github.com/STEllAR-GROUP/hpx/pull/2224
https://github.com/STEllAR-GROUP/hpx/pull/2223
https://github.com/STEllAR-GROUP/hpx/pull/2222
https://github.com/STEllAR-GROUP/hpx/pull/2221
https://github.com/STEllAR-GROUP/hpx/pull/2220
https://github.com/STEllAR-GROUP/hpx/pull/2219
https://github.com/STEllAR-GROUP/hpx/pull/2218
https://github.com/STEllAR-GROUP/hpx/pull/2216

HPX Documentation, master

• Issue #22144774 - Let inspect flag use of NULL, suggest nullptr instead

• PR #22134775 - Require support for nullptr

• PR #22124776 - Properly find jemalloc through pkg-config

• PR #22114777 - Disable a couple of warnings reported by Intel on Windows

• PR #22104778 - Fixed host::block_allocator::bulk_construct

• PR #22094779 - Started to clean up new sort algorithms, made things compile for sort_by_key

• PR #22084780 - A couple of fixes that were exposed by a new sort algorithm

• PR #22074781 - Adding missing includes in /hpx/include/serialization.hpp

• PR #22064782 - Call package_action::get_future before package_action::apply

• PR #22054783 - The indirect_packaged_task::operator() needs to be run on a HPX thread

• PR #22044784 - Variadic executor parameters

• PR #22034785 - Delay-initialize members of partitioned iterator

• PR #22024786 - Added segmented fill for hpx::vector

• Issue #22014787 - Null Thread id encountered on partitioned_vector

• PR #22004788 - Fix hangs

• PR #21994789 - Deprecating hpx/traits.hpp

• PR #21984790 - Making explicit inclusion of external libraries into build

• PR #21974791 - Fix typo in QT CMakeLists

• PR #21964792 - Fixing a gcc warning about attributes being ignored

• PR #21944793 - Fixing partitioned_vector_spmd_foreach example

• Issue #21934794 - partitioned_vector_spmd_foreach seg faults

• PR #21924795 - Support Boost.Thread v4

• PR #21914796 - HPX.Compute prototype
4774 https://github.com/STEllAR-GROUP/hpx/issues/2214
4775 https://github.com/STEllAR-GROUP/hpx/pull/2213
4776 https://github.com/STEllAR-GROUP/hpx/pull/2212
4777 https://github.com/STEllAR-GROUP/hpx/pull/2211
4778 https://github.com/STEllAR-GROUP/hpx/pull/2210
4779 https://github.com/STEllAR-GROUP/hpx/pull/2209
4780 https://github.com/STEllAR-GROUP/hpx/pull/2208
4781 https://github.com/STEllAR-GROUP/hpx/pull/2207
4782 https://github.com/STEllAR-GROUP/hpx/pull/2206
4783 https://github.com/STEllAR-GROUP/hpx/pull/2205
4784 https://github.com/STEllAR-GROUP/hpx/pull/2204
4785 https://github.com/STEllAR-GROUP/hpx/pull/2203
4786 https://github.com/STEllAR-GROUP/hpx/pull/2202
4787 https://github.com/STEllAR-GROUP/hpx/issues/2201
4788 https://github.com/STEllAR-GROUP/hpx/pull/2200
4789 https://github.com/STEllAR-GROUP/hpx/pull/2199
4790 https://github.com/STEllAR-GROUP/hpx/pull/2198
4791 https://github.com/STEllAR-GROUP/hpx/pull/2197
4792 https://github.com/STEllAR-GROUP/hpx/pull/2196
4793 https://github.com/STEllAR-GROUP/hpx/pull/2194
4794 https://github.com/STEllAR-GROUP/hpx/issues/2193
4795 https://github.com/STEllAR-GROUP/hpx/pull/2192
4796 https://github.com/STEllAR-GROUP/hpx/pull/2191

2.10. Releases 1749

https://github.com/STEllAR-GROUP/hpx/issues/2214
https://github.com/STEllAR-GROUP/hpx/pull/2213
https://github.com/STEllAR-GROUP/hpx/pull/2212
https://github.com/STEllAR-GROUP/hpx/pull/2211
https://github.com/STEllAR-GROUP/hpx/pull/2210
https://github.com/STEllAR-GROUP/hpx/pull/2209
https://github.com/STEllAR-GROUP/hpx/pull/2208
https://github.com/STEllAR-GROUP/hpx/pull/2207
https://github.com/STEllAR-GROUP/hpx/pull/2206
https://github.com/STEllAR-GROUP/hpx/pull/2205
https://github.com/STEllAR-GROUP/hpx/pull/2204
https://github.com/STEllAR-GROUP/hpx/pull/2203
https://github.com/STEllAR-GROUP/hpx/pull/2202
https://github.com/STEllAR-GROUP/hpx/issues/2201
https://github.com/STEllAR-GROUP/hpx/pull/2200
https://github.com/STEllAR-GROUP/hpx/pull/2199
https://github.com/STEllAR-GROUP/hpx/pull/2198
https://github.com/STEllAR-GROUP/hpx/pull/2197
https://github.com/STEllAR-GROUP/hpx/pull/2196
https://github.com/STEllAR-GROUP/hpx/pull/2194
https://github.com/STEllAR-GROUP/hpx/issues/2193
https://github.com/STEllAR-GROUP/hpx/pull/2192
https://github.com/STEllAR-GROUP/hpx/pull/2191

HPX Documentation, master

• PR #21904797 - Spawning operation on new thread if remaining stack space becomes too small

• PR #21894798 - Adding callback taking index and future to when_each

• PR #21884799 - Adding new example demonstrating receive_buffer

• PR #21874800 - Mask 128-bit ints if CUDA is being used

• PR #21864801 - Make startup & shutdown functions unique_function

• PR #21854802 - Fixing logging output not to cause hang on shutdown

• PR #21844803 - Allowing component clients as action return types

• Issue #21834804 - Enabling logging output causes hang on shutdown

• Issue #21824805 - 1d_stencil seg fault

• Issue #21814806 - Setting small stack size does not change default

• PR #21804807 - Changing default bind mode to balanced

• PR #21794808 - adding prefetching_iterator and related tests used for prefetching containers within lambda func-
tions

• PR #21774809 - Fixing 2176

• Issue #21764810 - Launch process test fails on OSX

• PR #21754811 - Fix unbalanced config/warnings includes, add some new ones

• PR #21744812 - Fix test categorization : regression not unit

• Issue #21724813 - Different performance results

• Issue #21714814 - “negative entry in reference count table” running octotiger on 32 nodes on queenbee

• Issue #21704815 - Error while compiling on Mac + boost 1.60

• PR #21684816 - Fixing problems with is_bitwise_serializable

• Issue #21674817 - startup & shutdown function should accept unique_function

• Issue #21664818 - Simple receive_buffer example

• PR #21654819 - Fix wait all
4797 https://github.com/STEllAR-GROUP/hpx/pull/2190
4798 https://github.com/STEllAR-GROUP/hpx/pull/2189
4799 https://github.com/STEllAR-GROUP/hpx/pull/2188
4800 https://github.com/STEllAR-GROUP/hpx/pull/2187
4801 https://github.com/STEllAR-GROUP/hpx/pull/2186
4802 https://github.com/STEllAR-GROUP/hpx/pull/2185
4803 https://github.com/STEllAR-GROUP/hpx/pull/2184
4804 https://github.com/STEllAR-GROUP/hpx/issues/2183
4805 https://github.com/STEllAR-GROUP/hpx/issues/2182
4806 https://github.com/STEllAR-GROUP/hpx/issues/2181
4807 https://github.com/STEllAR-GROUP/hpx/pull/2180
4808 https://github.com/STEllAR-GROUP/hpx/pull/2179
4809 https://github.com/STEllAR-GROUP/hpx/pull/2177
4810 https://github.com/STEllAR-GROUP/hpx/issues/2176
4811 https://github.com/STEllAR-GROUP/hpx/pull/2175
4812 https://github.com/STEllAR-GROUP/hpx/pull/2174
4813 https://github.com/STEllAR-GROUP/hpx/issues/2172
4814 https://github.com/STEllAR-GROUP/hpx/issues/2171
4815 https://github.com/STEllAR-GROUP/hpx/issues/2170
4816 https://github.com/STEllAR-GROUP/hpx/pull/2168
4817 https://github.com/STEllAR-GROUP/hpx/issues/2167
4818 https://github.com/STEllAR-GROUP/hpx/issues/2166
4819 https://github.com/STEllAR-GROUP/hpx/pull/2165

1750 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2190
https://github.com/STEllAR-GROUP/hpx/pull/2189
https://github.com/STEllAR-GROUP/hpx/pull/2188
https://github.com/STEllAR-GROUP/hpx/pull/2187
https://github.com/STEllAR-GROUP/hpx/pull/2186
https://github.com/STEllAR-GROUP/hpx/pull/2185
https://github.com/STEllAR-GROUP/hpx/pull/2184
https://github.com/STEllAR-GROUP/hpx/issues/2183
https://github.com/STEllAR-GROUP/hpx/issues/2182
https://github.com/STEllAR-GROUP/hpx/issues/2181
https://github.com/STEllAR-GROUP/hpx/pull/2180
https://github.com/STEllAR-GROUP/hpx/pull/2179
https://github.com/STEllAR-GROUP/hpx/pull/2177
https://github.com/STEllAR-GROUP/hpx/issues/2176
https://github.com/STEllAR-GROUP/hpx/pull/2175
https://github.com/STEllAR-GROUP/hpx/pull/2174
https://github.com/STEllAR-GROUP/hpx/issues/2172
https://github.com/STEllAR-GROUP/hpx/issues/2171
https://github.com/STEllAR-GROUP/hpx/issues/2170
https://github.com/STEllAR-GROUP/hpx/pull/2168
https://github.com/STEllAR-GROUP/hpx/issues/2167
https://github.com/STEllAR-GROUP/hpx/issues/2166
https://github.com/STEllAR-GROUP/hpx/pull/2165

HPX Documentation, master

• PR #21644820 - Fix wait all

• PR #21634821 - Fix some typos in config tests

• PR #21624822 - Improve #includes

• PR #21604823 - Add inspect check for missing #include <list>

• PR #21594824 - Add missing finalize call to stop test hanging

• PR #21584825 - Algo fixes

• PR #21574826 - Stack check

• Issue #21564827 - OSX reports stack space incorrectly (generic context coroutines)

• Issue #21554828 - Race condition suspected in runtime

• PR #21544829 - Replace boost::detail::atomic_count with the new util::atomic_count

• PR #21534830 - Fix stack overflow on OSX

• PR #21524831 - Define is_bitwise_serializable as is_trivially_copyable when available

• PR #21514832 - Adding missing <cstring> for std::mem* functions

• Issue #21504833 - Unable to use component clients as action return types

• PR #21494834 - std::memmove copies bytes, use bytes*sizeof(type) when copying larger types

• PR #21464835 - Adding customization point for parallel copy/move

• PR #21454836 - Applying changes to address warnings issued by latest version of PVS Studio

• Issue #21484837 - hpx::parallel::copy is broken after trivially copyable changes

• PR #21444838 - Some minor tweaks to compute prototype

• PR #21434839 - Added Boost version support information over OSX platform

• PR #21424840 - Fixing memory leak in example

• PR #21414841 - Add missing specializations in execution policies

• PR #21394842 - This PR fixes a few problems reported by Clang’s Undefined Behavior sanitizer
4820 https://github.com/STEllAR-GROUP/hpx/pull/2164
4821 https://github.com/STEllAR-GROUP/hpx/pull/2163
4822 https://github.com/STEllAR-GROUP/hpx/pull/2162
4823 https://github.com/STEllAR-GROUP/hpx/pull/2160
4824 https://github.com/STEllAR-GROUP/hpx/pull/2159
4825 https://github.com/STEllAR-GROUP/hpx/pull/2158
4826 https://github.com/STEllAR-GROUP/hpx/pull/2157
4827 https://github.com/STEllAR-GROUP/hpx/issues/2156
4828 https://github.com/STEllAR-GROUP/hpx/issues/2155
4829 https://github.com/STEllAR-GROUP/hpx/pull/2154
4830 https://github.com/STEllAR-GROUP/hpx/pull/2153
4831 https://github.com/STEllAR-GROUP/hpx/pull/2152
4832 https://github.com/STEllAR-GROUP/hpx/pull/2151
4833 https://github.com/STEllAR-GROUP/hpx/issues/2150
4834 https://github.com/STEllAR-GROUP/hpx/pull/2149
4835 https://github.com/STEllAR-GROUP/hpx/pull/2146
4836 https://github.com/STEllAR-GROUP/hpx/pull/2145
4837 https://github.com/STEllAR-GROUP/hpx/issues/2148
4838 https://github.com/STEllAR-GROUP/hpx/pull/2144
4839 https://github.com/STEllAR-GROUP/hpx/pull/2143
4840 https://github.com/STEllAR-GROUP/hpx/pull/2142
4841 https://github.com/STEllAR-GROUP/hpx/pull/2141
4842 https://github.com/STEllAR-GROUP/hpx/pull/2139

2.10. Releases 1751

https://github.com/STEllAR-GROUP/hpx/pull/2164
https://github.com/STEllAR-GROUP/hpx/pull/2163
https://github.com/STEllAR-GROUP/hpx/pull/2162
https://github.com/STEllAR-GROUP/hpx/pull/2160
https://github.com/STEllAR-GROUP/hpx/pull/2159
https://github.com/STEllAR-GROUP/hpx/pull/2158
https://github.com/STEllAR-GROUP/hpx/pull/2157
https://github.com/STEllAR-GROUP/hpx/issues/2156
https://github.com/STEllAR-GROUP/hpx/issues/2155
https://github.com/STEllAR-GROUP/hpx/pull/2154
https://github.com/STEllAR-GROUP/hpx/pull/2153
https://github.com/STEllAR-GROUP/hpx/pull/2152
https://github.com/STEllAR-GROUP/hpx/pull/2151
https://github.com/STEllAR-GROUP/hpx/issues/2150
https://github.com/STEllAR-GROUP/hpx/pull/2149
https://github.com/STEllAR-GROUP/hpx/pull/2146
https://github.com/STEllAR-GROUP/hpx/pull/2145
https://github.com/STEllAR-GROUP/hpx/issues/2148
https://github.com/STEllAR-GROUP/hpx/pull/2144
https://github.com/STEllAR-GROUP/hpx/pull/2143
https://github.com/STEllAR-GROUP/hpx/pull/2142
https://github.com/STEllAR-GROUP/hpx/pull/2141
https://github.com/STEllAR-GROUP/hpx/pull/2139

HPX Documentation, master

• PR #21384843 - Revert “Adding fedora docs”

• PR #21364844 - Removed double semicolon

• PR #21354845 - Add deprecated #include check for hpx_fwd.hpp

• PR #21344846 - Resolved memory leak in stencil_8

• PR #21334847 - Replace uses of boost pointer containers

• PR #21324848 - Removing unused typedef

• PR #21314849 - Add several include checks for std facilities

• PR #21304850 - Fixing parcel compression, adding test

• PR #21294851 - Fix invalid attribute warnings

• Issue #21284852 - hpx::init seems to segfault

• PR #21274853 - Making executor_traits N-nary

• PR #21264854 - GCC 4.6 fails to deduce the correct type in lambda

• PR #21254855 - Making parcel coalescing test actually test something

• Issue #21244856 - Make a testcase for parcel compression

• Issue #21234857 - hpx/hpx/runtime/applier_fwd.hpp - Multiple defined types

• Issue #21224858 - Exception in primary_namespace::resolve_free_list

• Issue #21214859 - Possible memory leak in 1d_stencil_8

• PR #21204860 - Fixing 2119

• Issue #21194861 - reduce_by_key compilation problems

• Issue #21184862 - Premature unwrapping of boost::ref’ed arguments

• PR #21174863 - Added missing initializer on last constructor for thread_description

• PR #21164864 - Use a lightweight bind implementation when no placeholders are given

• PR #21154865 - Replace boost::shared_ptr with std::shared_ptr
4843 https://github.com/STEllAR-GROUP/hpx/pull/2138
4844 https://github.com/STEllAR-GROUP/hpx/pull/2136
4845 https://github.com/STEllAR-GROUP/hpx/pull/2135
4846 https://github.com/STEllAR-GROUP/hpx/pull/2134
4847 https://github.com/STEllAR-GROUP/hpx/pull/2133
4848 https://github.com/STEllAR-GROUP/hpx/pull/2132
4849 https://github.com/STEllAR-GROUP/hpx/pull/2131
4850 https://github.com/STEllAR-GROUP/hpx/pull/2130
4851 https://github.com/STEllAR-GROUP/hpx/pull/2129
4852 https://github.com/STEllAR-GROUP/hpx/issues/2128
4853 https://github.com/STEllAR-GROUP/hpx/pull/2127
4854 https://github.com/STEllAR-GROUP/hpx/pull/2126
4855 https://github.com/STEllAR-GROUP/hpx/pull/2125
4856 https://github.com/STEllAR-GROUP/hpx/issues/2124
4857 https://github.com/STEllAR-GROUP/hpx/issues/2123
4858 https://github.com/STEllAR-GROUP/hpx/issues/2122
4859 https://github.com/STEllAR-GROUP/hpx/issues/2121
4860 https://github.com/STEllAR-GROUP/hpx/pull/2120
4861 https://github.com/STEllAR-GROUP/hpx/issues/2119
4862 https://github.com/STEllAR-GROUP/hpx/issues/2118
4863 https://github.com/STEllAR-GROUP/hpx/pull/2117
4864 https://github.com/STEllAR-GROUP/hpx/pull/2116
4865 https://github.com/STEllAR-GROUP/hpx/pull/2115

1752 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2138
https://github.com/STEllAR-GROUP/hpx/pull/2136
https://github.com/STEllAR-GROUP/hpx/pull/2135
https://github.com/STEllAR-GROUP/hpx/pull/2134
https://github.com/STEllAR-GROUP/hpx/pull/2133
https://github.com/STEllAR-GROUP/hpx/pull/2132
https://github.com/STEllAR-GROUP/hpx/pull/2131
https://github.com/STEllAR-GROUP/hpx/pull/2130
https://github.com/STEllAR-GROUP/hpx/pull/2129
https://github.com/STEllAR-GROUP/hpx/issues/2128
https://github.com/STEllAR-GROUP/hpx/pull/2127
https://github.com/STEllAR-GROUP/hpx/pull/2126
https://github.com/STEllAR-GROUP/hpx/pull/2125
https://github.com/STEllAR-GROUP/hpx/issues/2124
https://github.com/STEllAR-GROUP/hpx/issues/2123
https://github.com/STEllAR-GROUP/hpx/issues/2122
https://github.com/STEllAR-GROUP/hpx/issues/2121
https://github.com/STEllAR-GROUP/hpx/pull/2120
https://github.com/STEllAR-GROUP/hpx/issues/2119
https://github.com/STEllAR-GROUP/hpx/issues/2118
https://github.com/STEllAR-GROUP/hpx/pull/2117
https://github.com/STEllAR-GROUP/hpx/pull/2116
https://github.com/STEllAR-GROUP/hpx/pull/2115

HPX Documentation, master

• PR #21144866 - Adding hook functions for executor_parameter_traits supporting timers

• Issue #21134867 - Compilation error with gcc version 4.9.3 (MacPorts gcc49 4.9.3_0)

• PR #21124868 - Replace uses of safe_bool with explicit operator bool

• Issue #21114869 - Compilation error on QT example

• Issue #21104870 - Compilation error when passing non-future argument to unwrapped continuation in dataflow

• Issue #21094871 - Warning while compiling hpx

• Issue #21094872 - Stack trace of last bug causing issues with octotiger

• Issue #21084873 - Stack trace of last bug causing issues with octotiger

• PR #21074874 - Making sure that a missing parcel_coalescing module does not cause startup exceptions

• PR #21064875 - Stop using hpx_fwd.hpp

• Issue #21054876 - coalescing plugin handler is not optional any more

• Issue #21044877 - Make executor_traits N-nary

• Issue #21034878 - Build error with octotiger and hpx commit e657426d

• PR #21024879 - Combining thread data storage

• PR #21014880 - Added repartition version of 1d stencil that uses any performance counter

• PR #21004881 - Drop obsolete TR1 result_of protocol

• PR #20994882 - Replace uses of boost::bind with util::bind

• PR #20984883 - Deprecated inspect checks

• PR #20974884 - Reduce by key, extends #1141

• PR #20964885 - Moving local cache from external to hpx/util

• PR #20954886 - Bump minimum required Boost to 1.50.0

• PR #20944887 - Add include checks for several Boost utilities

• Issue #20934888 - /. . . /local_cache.hpp(89): error #303: explicit type is missing (“int” assumed)
4866 https://github.com/STEllAR-GROUP/hpx/pull/2114
4867 https://github.com/STEllAR-GROUP/hpx/issues/2113
4868 https://github.com/STEllAR-GROUP/hpx/pull/2112
4869 https://github.com/STEllAR-GROUP/hpx/issues/2111
4870 https://github.com/STEllAR-GROUP/hpx/issues/2110
4871 https://github.com/STEllAR-GROUP/hpx/issues/2109
4872 https://github.com/STEllAR-GROUP/hpx/issues/2109
4873 https://github.com/STEllAR-GROUP/hpx/issues/2108
4874 https://github.com/STEllAR-GROUP/hpx/pull/2107
4875 https://github.com/STEllAR-GROUP/hpx/pull/2106
4876 https://github.com/STEllAR-GROUP/hpx/issues/2105
4877 https://github.com/STEllAR-GROUP/hpx/issues/2104
4878 https://github.com/STEllAR-GROUP/hpx/issues/2103
4879 https://github.com/STEllAR-GROUP/hpx/pull/2102
4880 https://github.com/STEllAR-GROUP/hpx/pull/2101
4881 https://github.com/STEllAR-GROUP/hpx/pull/2100
4882 https://github.com/STEllAR-GROUP/hpx/pull/2099
4883 https://github.com/STEllAR-GROUP/hpx/pull/2098
4884 https://github.com/STEllAR-GROUP/hpx/pull/2097
4885 https://github.com/STEllAR-GROUP/hpx/pull/2096
4886 https://github.com/STEllAR-GROUP/hpx/pull/2095
4887 https://github.com/STEllAR-GROUP/hpx/pull/2094
4888 https://github.com/STEllAR-GROUP/hpx/issues/2093

2.10. Releases 1753

https://github.com/STEllAR-GROUP/hpx/pull/2114
https://github.com/STEllAR-GROUP/hpx/issues/2113
https://github.com/STEllAR-GROUP/hpx/pull/2112
https://github.com/STEllAR-GROUP/hpx/issues/2111
https://github.com/STEllAR-GROUP/hpx/issues/2110
https://github.com/STEllAR-GROUP/hpx/issues/2109
https://github.com/STEllAR-GROUP/hpx/issues/2109
https://github.com/STEllAR-GROUP/hpx/issues/2108
https://github.com/STEllAR-GROUP/hpx/pull/2107
https://github.com/STEllAR-GROUP/hpx/pull/2106
https://github.com/STEllAR-GROUP/hpx/issues/2105
https://github.com/STEllAR-GROUP/hpx/issues/2104
https://github.com/STEllAR-GROUP/hpx/issues/2103
https://github.com/STEllAR-GROUP/hpx/pull/2102
https://github.com/STEllAR-GROUP/hpx/pull/2101
https://github.com/STEllAR-GROUP/hpx/pull/2100
https://github.com/STEllAR-GROUP/hpx/pull/2099
https://github.com/STEllAR-GROUP/hpx/pull/2098
https://github.com/STEllAR-GROUP/hpx/pull/2097
https://github.com/STEllAR-GROUP/hpx/pull/2096
https://github.com/STEllAR-GROUP/hpx/pull/2095
https://github.com/STEllAR-GROUP/hpx/pull/2094
https://github.com/STEllAR-GROUP/hpx/issues/2093

HPX Documentation, master

• PR #20914889 - Fix for Raspberry pi build

• PR #20904890 - Fix storage size for util::function<>

• PR #20894891 - Fix #2088

• Issue #20884892 - More verbose output from cmake configuration

• PR #20874893 - Making sure init_globally always executes hpx_main

• Issue #20864894 - Race condition with recent HPX

• PR #20854895 - Adding #include checker

• PR #20844896 - Replace boost lock types with standard library ones

• PR #20834897 - Simplify packaged task

• PR #20824898 - Updating APEX version for testing

• PR #20814899 - Cleanup exception headers

• PR #20804900 - Make call_once variadic

• Issue #20794901 - With GNU C++, line 85 of hpx/config/version.hpp causes link failure when linking application

• Issue #20784902 - Simple test fails with _GLIBCXX_DEBUG defined

• PR #20774903 - Instantiate board in nqueen client

• PR #20764904 - Moving coalescing registration to TUs

• PR #20754905 - Fixed some documentation typos

• PR #20744906 - Adding flush-mode to message handler flush

• PR #20734907 - Fixing performance regression introduced lately

• PR #20724908 - Refactor local::condition_variable

• PR #20714909 - Timer based on boost::asio::deadline_timer

• PR #20704910 - Refactor tuple based functionality

• PR #20694911 - Fixed typos
4889 https://github.com/STEllAR-GROUP/hpx/pull/2091
4890 https://github.com/STEllAR-GROUP/hpx/pull/2090
4891 https://github.com/STEllAR-GROUP/hpx/pull/2089
4892 https://github.com/STEllAR-GROUP/hpx/issues/2088
4893 https://github.com/STEllAR-GROUP/hpx/pull/2087
4894 https://github.com/STEllAR-GROUP/hpx/issues/2086
4895 https://github.com/STEllAR-GROUP/hpx/pull/2085
4896 https://github.com/STEllAR-GROUP/hpx/pull/2084
4897 https://github.com/STEllAR-GROUP/hpx/pull/2083
4898 https://github.com/STEllAR-GROUP/hpx/pull/2082
4899 https://github.com/STEllAR-GROUP/hpx/pull/2081
4900 https://github.com/STEllAR-GROUP/hpx/pull/2080
4901 https://github.com/STEllAR-GROUP/hpx/issues/2079
4902 https://github.com/STEllAR-GROUP/hpx/issues/2078
4903 https://github.com/STEllAR-GROUP/hpx/pull/2077
4904 https://github.com/STEllAR-GROUP/hpx/pull/2076
4905 https://github.com/STEllAR-GROUP/hpx/pull/2075
4906 https://github.com/STEllAR-GROUP/hpx/pull/2074
4907 https://github.com/STEllAR-GROUP/hpx/pull/2073
4908 https://github.com/STEllAR-GROUP/hpx/pull/2072
4909 https://github.com/STEllAR-GROUP/hpx/pull/2071
4910 https://github.com/STEllAR-GROUP/hpx/pull/2070
4911 https://github.com/STEllAR-GROUP/hpx/pull/2069

1754 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2091
https://github.com/STEllAR-GROUP/hpx/pull/2090
https://github.com/STEllAR-GROUP/hpx/pull/2089
https://github.com/STEllAR-GROUP/hpx/issues/2088
https://github.com/STEllAR-GROUP/hpx/pull/2087
https://github.com/STEllAR-GROUP/hpx/issues/2086
https://github.com/STEllAR-GROUP/hpx/pull/2085
https://github.com/STEllAR-GROUP/hpx/pull/2084
https://github.com/STEllAR-GROUP/hpx/pull/2083
https://github.com/STEllAR-GROUP/hpx/pull/2082
https://github.com/STEllAR-GROUP/hpx/pull/2081
https://github.com/STEllAR-GROUP/hpx/pull/2080
https://github.com/STEllAR-GROUP/hpx/issues/2079
https://github.com/STEllAR-GROUP/hpx/issues/2078
https://github.com/STEllAR-GROUP/hpx/pull/2077
https://github.com/STEllAR-GROUP/hpx/pull/2076
https://github.com/STEllAR-GROUP/hpx/pull/2075
https://github.com/STEllAR-GROUP/hpx/pull/2074
https://github.com/STEllAR-GROUP/hpx/pull/2073
https://github.com/STEllAR-GROUP/hpx/pull/2072
https://github.com/STEllAR-GROUP/hpx/pull/2071
https://github.com/STEllAR-GROUP/hpx/pull/2070
https://github.com/STEllAR-GROUP/hpx/pull/2069

HPX Documentation, master

• Issue #20684912 - Seg fault with octotiger

• PR #20674913 - Algorithm cleanup

• PR #20664914 - Split credit fixes

• PR #20654915 - Rename HPX_MOVABLE_BUT_NOT_COPYABLE to HPX_MOVABLE_ONLY

• PR #20644916 - Fixed some typos in docs

• PR #20634917 - Adding example demonstrating template components

• Issue #20624918 - Support component templates

• PR #20614919 - Replace some uses of lexical_cast<string> with C++11 std::to_string

• PR #20604920 - Replace uses of boost::noncopyable with HPX_NON_COPYABLE

• PR #20594921 - Adding missing for_loop algorithms

• PR #20584922 - Move several definitions to more appropriate headers

• PR #20574923 - Simplify assert_owns_lock and ignore_while_checking

• PR #20564924 - Replacing std::result_of with util::result_of

• PR #20554925 - Fix process launching/connecting back

• PR #20544926 - Add a forwarding coroutine header

• PR #20534927 - Replace uses of boost::unordered_map with std::unordered_map

• PR #20524928 - Rewrite tuple unwrap

• PR #20504929 - Replace uses of BOOST_SCOPED_ENUM with C++11 scoped enums

• PR #20494930 - Attempt to narrow down split_credit problem

• PR #20484931 - Fixing gcc startup hangs

• PR #20474932 - Fixing when_xxx and wait_xxx for MSVC12

• PR #20464933 - adding persistent_auto_chunk_size and related tests for for_each

• PR #20454934 - Fixing HPX_HAVE_THREAD_BACKTRACE_DEPTH build time configuration
4912 https://github.com/STEllAR-GROUP/hpx/issues/2068
4913 https://github.com/STEllAR-GROUP/hpx/pull/2067
4914 https://github.com/STEllAR-GROUP/hpx/pull/2066
4915 https://github.com/STEllAR-GROUP/hpx/pull/2065
4916 https://github.com/STEllAR-GROUP/hpx/pull/2064
4917 https://github.com/STEllAR-GROUP/hpx/pull/2063
4918 https://github.com/STEllAR-GROUP/hpx/issues/2062
4919 https://github.com/STEllAR-GROUP/hpx/pull/2061
4920 https://github.com/STEllAR-GROUP/hpx/pull/2060
4921 https://github.com/STEllAR-GROUP/hpx/pull/2059
4922 https://github.com/STEllAR-GROUP/hpx/pull/2058
4923 https://github.com/STEllAR-GROUP/hpx/pull/2057
4924 https://github.com/STEllAR-GROUP/hpx/pull/2056
4925 https://github.com/STEllAR-GROUP/hpx/pull/2055
4926 https://github.com/STEllAR-GROUP/hpx/pull/2054
4927 https://github.com/STEllAR-GROUP/hpx/pull/2053
4928 https://github.com/STEllAR-GROUP/hpx/pull/2052
4929 https://github.com/STEllAR-GROUP/hpx/pull/2050
4930 https://github.com/STEllAR-GROUP/hpx/pull/2049
4931 https://github.com/STEllAR-GROUP/hpx/pull/2048
4932 https://github.com/STEllAR-GROUP/hpx/pull/2047
4933 https://github.com/STEllAR-GROUP/hpx/pull/2046
4934 https://github.com/STEllAR-GROUP/hpx/pull/2045

2.10. Releases 1755

https://github.com/STEllAR-GROUP/hpx/issues/2068
https://github.com/STEllAR-GROUP/hpx/pull/2067
https://github.com/STEllAR-GROUP/hpx/pull/2066
https://github.com/STEllAR-GROUP/hpx/pull/2065
https://github.com/STEllAR-GROUP/hpx/pull/2064
https://github.com/STEllAR-GROUP/hpx/pull/2063
https://github.com/STEllAR-GROUP/hpx/issues/2062
https://github.com/STEllAR-GROUP/hpx/pull/2061
https://github.com/STEllAR-GROUP/hpx/pull/2060
https://github.com/STEllAR-GROUP/hpx/pull/2059
https://github.com/STEllAR-GROUP/hpx/pull/2058
https://github.com/STEllAR-GROUP/hpx/pull/2057
https://github.com/STEllAR-GROUP/hpx/pull/2056
https://github.com/STEllAR-GROUP/hpx/pull/2055
https://github.com/STEllAR-GROUP/hpx/pull/2054
https://github.com/STEllAR-GROUP/hpx/pull/2053
https://github.com/STEllAR-GROUP/hpx/pull/2052
https://github.com/STEllAR-GROUP/hpx/pull/2050
https://github.com/STEllAR-GROUP/hpx/pull/2049
https://github.com/STEllAR-GROUP/hpx/pull/2048
https://github.com/STEllAR-GROUP/hpx/pull/2047
https://github.com/STEllAR-GROUP/hpx/pull/2046
https://github.com/STEllAR-GROUP/hpx/pull/2045

HPX Documentation, master

• PR #20444935 - Adding missing service executor types

• PR #20434936 - Removing ambiguous definitions for is_future_range and future_range_traits

• PR #20424937 - Clarify that HPX builds can use (much) more than 2GB per process

• PR #20414938 - Changing future_iterator_traits to support pointers

• Issue #20404939 - Improve documentation memory usage warning?

• PR #20394940 - Coroutine cleanup

• PR #20384941 - Fix cmake policy CMP0042 warning MACOSX_RPATH

• PR #20374942 - Avoid redundant specialization of [unique_]function_nonser

• PR #20364943 - nvcc dies with an internal error upon pushing/popping warnings inside templates

• Issue #20354944 - Use a less restrictive iterator definition in hpx::lcos::detail::future_iterator_traits

• PR #20344945 - Fixing compilation error with thread queue wait time performance counter

• Issue #20334946 - Compilation error when compiling with thread queue waittime performance counter

• Issue #20324947 - Ambiguous template instantiation for is_future_range and future_range_traits.

• PR #20314948 - Don’t restart timer on every incoming parcel

• PR #20304949 - Unify handling of execution policies in parallel algorithms

• PR #20294950 - Make pkg-config .pc files use .dylib on OSX

• PR #20284951 - Adding process component

• PR #20274952 - Making check for compiler compatibility independent on compiler path

• PR #20254953 - Fixing inspect tool

• PR #20244954 - Intel13 removal

• PR #20234955 - Fix errors related to older boost versions and parameter pack expansions in lambdas

• Issue #20224956 - gmake fail: “No rule to make target /usr/lib46/libboost_context-mt.so”

• PR #20214957 - Added Sudoku example
4935 https://github.com/STEllAR-GROUP/hpx/pull/2044
4936 https://github.com/STEllAR-GROUP/hpx/pull/2043
4937 https://github.com/STEllAR-GROUP/hpx/pull/2042
4938 https://github.com/STEllAR-GROUP/hpx/pull/2041
4939 https://github.com/STEllAR-GROUP/hpx/issues/2040
4940 https://github.com/STEllAR-GROUP/hpx/pull/2039
4941 https://github.com/STEllAR-GROUP/hpx/pull/2038
4942 https://github.com/STEllAR-GROUP/hpx/pull/2037
4943 https://github.com/STEllAR-GROUP/hpx/pull/2036
4944 https://github.com/STEllAR-GROUP/hpx/issues/2035
4945 https://github.com/STEllAR-GROUP/hpx/pull/2034
4946 https://github.com/STEllAR-GROUP/hpx/issues/2033
4947 https://github.com/STEllAR-GROUP/hpx/issues/2032
4948 https://github.com/STEllAR-GROUP/hpx/pull/2031
4949 https://github.com/STEllAR-GROUP/hpx/pull/2030
4950 https://github.com/STEllAR-GROUP/hpx/pull/2029
4951 https://github.com/STEllAR-GROUP/hpx/pull/2028
4952 https://github.com/STEllAR-GROUP/hpx/pull/2027
4953 https://github.com/STEllAR-GROUP/hpx/pull/2025
4954 https://github.com/STEllAR-GROUP/hpx/pull/2024
4955 https://github.com/STEllAR-GROUP/hpx/pull/2023
4956 https://github.com/STEllAR-GROUP/hpx/issues/2022
4957 https://github.com/STEllAR-GROUP/hpx/pull/2021

1756 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2044
https://github.com/STEllAR-GROUP/hpx/pull/2043
https://github.com/STEllAR-GROUP/hpx/pull/2042
https://github.com/STEllAR-GROUP/hpx/pull/2041
https://github.com/STEllAR-GROUP/hpx/issues/2040
https://github.com/STEllAR-GROUP/hpx/pull/2039
https://github.com/STEllAR-GROUP/hpx/pull/2038
https://github.com/STEllAR-GROUP/hpx/pull/2037
https://github.com/STEllAR-GROUP/hpx/pull/2036
https://github.com/STEllAR-GROUP/hpx/issues/2035
https://github.com/STEllAR-GROUP/hpx/pull/2034
https://github.com/STEllAR-GROUP/hpx/issues/2033
https://github.com/STEllAR-GROUP/hpx/issues/2032
https://github.com/STEllAR-GROUP/hpx/pull/2031
https://github.com/STEllAR-GROUP/hpx/pull/2030
https://github.com/STEllAR-GROUP/hpx/pull/2029
https://github.com/STEllAR-GROUP/hpx/pull/2028
https://github.com/STEllAR-GROUP/hpx/pull/2027
https://github.com/STEllAR-GROUP/hpx/pull/2025
https://github.com/STEllAR-GROUP/hpx/pull/2024
https://github.com/STEllAR-GROUP/hpx/pull/2023
https://github.com/STEllAR-GROUP/hpx/issues/2022
https://github.com/STEllAR-GROUP/hpx/pull/2021

HPX Documentation, master

• Issue #20204958 - Make errors related to init_globally.cpp example while building HPX out of the box

• PR #20194959 - Fixed some compilation and cmake errors encountered in nqueen example

• PR #20184960 - For loop algorithms

• PR #20174961 - Non-recursive at_index implementation

• Issue #20164962 - Add index-based for-loops

• Issue #20154963 - Change default bind-mode to balanced

• PR #20144964 - Fixed dataflow if invoked action returns a future

• PR #20134965 - Fixing compilation issues with external example

• PR #20124966 - Added Sierpinski Triangle example

• Issue #20114967 - Compilation error while running sample hello_world_component code

• PR #20104968 - Segmented move implemented for hpx::vector

• Issue #20094969 - pkg-config order incorrect on 14.04 / GCC 4.8

• Issue #20084970 - Compilation error in dataflow of action returning a future

• PR #20074971 - Adding new performance counter exposing overall scheduler time

• PR #20064972 - Function includes

• PR #20054973 - Adding an example demonstrating how to initialize HPX from a global object

• PR #20044974 - Fixing 2000

• PR #20034975 - Adding generation parameter to gather to enable using it more than once

• PR #20024976 - Turn on position independent code to solve link problem with hpx_init

• Issue #20014977 - Gathering more than once segfaults

• Issue #20004978 - Undefined reference to hpx::assertion_failed

• Issue #19994979 - Seg fault in hpx::lcos::base_lco_with_value<*>::set_value_nonvirt() when running octo-tiger

• PR #19984980 - Detect unknown command line options
4958 https://github.com/STEllAR-GROUP/hpx/issues/2020
4959 https://github.com/STEllAR-GROUP/hpx/pull/2019
4960 https://github.com/STEllAR-GROUP/hpx/pull/2018
4961 https://github.com/STEllAR-GROUP/hpx/pull/2017
4962 https://github.com/STEllAR-GROUP/hpx/issues/2016
4963 https://github.com/STEllAR-GROUP/hpx/issues/2015
4964 https://github.com/STEllAR-GROUP/hpx/pull/2014
4965 https://github.com/STEllAR-GROUP/hpx/pull/2013
4966 https://github.com/STEllAR-GROUP/hpx/pull/2012
4967 https://github.com/STEllAR-GROUP/hpx/issues/2011
4968 https://github.com/STEllAR-GROUP/hpx/pull/2010
4969 https://github.com/STEllAR-GROUP/hpx/issues/2009
4970 https://github.com/STEllAR-GROUP/hpx/issues/2008
4971 https://github.com/STEllAR-GROUP/hpx/pull/2007
4972 https://github.com/STEllAR-GROUP/hpx/pull/2006
4973 https://github.com/STEllAR-GROUP/hpx/pull/2005
4974 https://github.com/STEllAR-GROUP/hpx/pull/2004
4975 https://github.com/STEllAR-GROUP/hpx/pull/2003
4976 https://github.com/STEllAR-GROUP/hpx/pull/2002
4977 https://github.com/STEllAR-GROUP/hpx/issues/2001
4978 https://github.com/STEllAR-GROUP/hpx/issues/2000
4979 https://github.com/STEllAR-GROUP/hpx/issues/1999
4980 https://github.com/STEllAR-GROUP/hpx/pull/1998

2.10. Releases 1757

https://github.com/STEllAR-GROUP/hpx/issues/2020
https://github.com/STEllAR-GROUP/hpx/pull/2019
https://github.com/STEllAR-GROUP/hpx/pull/2018
https://github.com/STEllAR-GROUP/hpx/pull/2017
https://github.com/STEllAR-GROUP/hpx/issues/2016
https://github.com/STEllAR-GROUP/hpx/issues/2015
https://github.com/STEllAR-GROUP/hpx/pull/2014
https://github.com/STEllAR-GROUP/hpx/pull/2013
https://github.com/STEllAR-GROUP/hpx/pull/2012
https://github.com/STEllAR-GROUP/hpx/issues/2011
https://github.com/STEllAR-GROUP/hpx/pull/2010
https://github.com/STEllAR-GROUP/hpx/issues/2009
https://github.com/STEllAR-GROUP/hpx/issues/2008
https://github.com/STEllAR-GROUP/hpx/pull/2007
https://github.com/STEllAR-GROUP/hpx/pull/2006
https://github.com/STEllAR-GROUP/hpx/pull/2005
https://github.com/STEllAR-GROUP/hpx/pull/2004
https://github.com/STEllAR-GROUP/hpx/pull/2003
https://github.com/STEllAR-GROUP/hpx/pull/2002
https://github.com/STEllAR-GROUP/hpx/issues/2001
https://github.com/STEllAR-GROUP/hpx/issues/2000
https://github.com/STEllAR-GROUP/hpx/issues/1999
https://github.com/STEllAR-GROUP/hpx/pull/1998

HPX Documentation, master

• PR #19974981 - Extending thread description

• PR #19964982 - Adding natvis files to solution (MSVC only)

• Issue #19954983 - Command line handling does not produce error

• PR #19944984 - Possible missing include in test_utils.hpp

• PR #19934985 - Add missing LANGUAGES tag to a hpx_add_compile_flag_if_available() call in CMakeLists.txt

• PR #19924986 - Fixing shared_executor_test

• PR #19914987 - Making sure the winsock library is properly initialized

• PR #19904988 - Fixing bind_test placeholder ambiguity coming from boost-1.60

• PR #19894989 - Performance tuning

• PR #19874990 - Make configurable size of internal storage in util::function

• PR #19864991 - AGAS Refactoring+1753 Cache mods

• PR #19854992 - Adding missing task_block::run() overload taking an executor

• PR #19844993 - Adding an optimized LRU Cache implementation (for AGAS)

• PR #19834994 - Avoid invoking migration table look up for all objects

• PR #19814995 - Replacing uintptr_t (which is not defined everywhere) with std::size_t

• PR #19804996 - Optimizing LCO continuations

• PR #19794997 - Fixing Cori

• PR #19784998 - Fix test check that got broken in hasty fix to memory overflow

• PR #19774999 - Refactor action traits

• PR #19765000 - Fixes typo in README.rst

• PR #19755001 - Reduce size of benchmark timing arrays to fix test failures

• PR #19745002 - Add action to update data owned by the partitioned_vector component

• PR #19725003 - Adding partitioned_vector SPMD example
4981 https://github.com/STEllAR-GROUP/hpx/pull/1997
4982 https://github.com/STEllAR-GROUP/hpx/pull/1996
4983 https://github.com/STEllAR-GROUP/hpx/issues/1995
4984 https://github.com/STEllAR-GROUP/hpx/pull/1994
4985 https://github.com/STEllAR-GROUP/hpx/pull/1993
4986 https://github.com/STEllAR-GROUP/hpx/pull/1992
4987 https://github.com/STEllAR-GROUP/hpx/pull/1991
4988 https://github.com/STEllAR-GROUP/hpx/pull/1990
4989 https://github.com/STEllAR-GROUP/hpx/pull/1989
4990 https://github.com/STEllAR-GROUP/hpx/pull/1987
4991 https://github.com/STEllAR-GROUP/hpx/pull/1986
4992 https://github.com/STEllAR-GROUP/hpx/pull/1985
4993 https://github.com/STEllAR-GROUP/hpx/pull/1984
4994 https://github.com/STEllAR-GROUP/hpx/pull/1983
4995 https://github.com/STEllAR-GROUP/hpx/pull/1981
4996 https://github.com/STEllAR-GROUP/hpx/pull/1980
4997 https://github.com/STEllAR-GROUP/hpx/pull/1979
4998 https://github.com/STEllAR-GROUP/hpx/pull/1978
4999 https://github.com/STEllAR-GROUP/hpx/pull/1977
5000 https://github.com/STEllAR-GROUP/hpx/pull/1976
5001 https://github.com/STEllAR-GROUP/hpx/pull/1975
5002 https://github.com/STEllAR-GROUP/hpx/pull/1974
5003 https://github.com/STEllAR-GROUP/hpx/pull/1972

1758 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1997
https://github.com/STEllAR-GROUP/hpx/pull/1996
https://github.com/STEllAR-GROUP/hpx/issues/1995
https://github.com/STEllAR-GROUP/hpx/pull/1994
https://github.com/STEllAR-GROUP/hpx/pull/1993
https://github.com/STEllAR-GROUP/hpx/pull/1992
https://github.com/STEllAR-GROUP/hpx/pull/1991
https://github.com/STEllAR-GROUP/hpx/pull/1990
https://github.com/STEllAR-GROUP/hpx/pull/1989
https://github.com/STEllAR-GROUP/hpx/pull/1987
https://github.com/STEllAR-GROUP/hpx/pull/1986
https://github.com/STEllAR-GROUP/hpx/pull/1985
https://github.com/STEllAR-GROUP/hpx/pull/1984
https://github.com/STEllAR-GROUP/hpx/pull/1983
https://github.com/STEllAR-GROUP/hpx/pull/1981
https://github.com/STEllAR-GROUP/hpx/pull/1980
https://github.com/STEllAR-GROUP/hpx/pull/1979
https://github.com/STEllAR-GROUP/hpx/pull/1978
https://github.com/STEllAR-GROUP/hpx/pull/1977
https://github.com/STEllAR-GROUP/hpx/pull/1976
https://github.com/STEllAR-GROUP/hpx/pull/1975
https://github.com/STEllAR-GROUP/hpx/pull/1974
https://github.com/STEllAR-GROUP/hpx/pull/1972

HPX Documentation, master

• PR #19715004 - Fixing 1965

• PR #19705005 - Papi fixes

• PR #19695006 - Fixing continuation recursions to not depend on fixed amount of recursions

• PR #19685007 - More segmented algorithms

• Issue #19675008 - Simplify component implementations

• PR #19665009 - Migrate components

• Issue #19645010 - fatal error: ‘boost/lockfree/detail/branch_hints.hpp’ file not found

• Issue #19625011 - parallel:copy_if has race condition when used on in place arrays

• PR #19635012 - Fixing Static Parcelport initialization

• PR #19615013 - Fix function target

• Issue #19605014 - Papi counters don’t reset

• PR #19595015 - Fixing 1958

• Issue #19585016 - inclusive_scan gives incorrect results with non-commutative operator

• PR #19575017 - Fixing #1950

• PR #19565018 - Sort by key example

• PR #19555019 - Adding regression test for #1946: Hang in wait_all() in distributed run

• Issue #19545020 - HPX releases should not use -Werror

• PR #19535021 - Adding performance analysis for AGAS cache

• PR #19525022 - Adapting test for explicit variadics to fail for gcc 4.6

• PR #19515023 - Fixing memory leak

• Issue #19505024 - Simplify external builds

• PR #19495025 - Fixing yet another lock that is being held during suspension

• PR #19485026 - Fixed container algorithms for Intel
5004 https://github.com/STEllAR-GROUP/hpx/pull/1971
5005 https://github.com/STEllAR-GROUP/hpx/pull/1970
5006 https://github.com/STEllAR-GROUP/hpx/pull/1969
5007 https://github.com/STEllAR-GROUP/hpx/pull/1968
5008 https://github.com/STEllAR-GROUP/hpx/issues/1967
5009 https://github.com/STEllAR-GROUP/hpx/pull/1966
5010 https://github.com/STEllAR-GROUP/hpx/issues/1964
5011 https://github.com/STEllAR-GROUP/hpx/issues/1962
5012 https://github.com/STEllAR-GROUP/hpx/pull/1963
5013 https://github.com/STEllAR-GROUP/hpx/pull/1961
5014 https://github.com/STEllAR-GROUP/hpx/issues/1960
5015 https://github.com/STEllAR-GROUP/hpx/pull/1959
5016 https://github.com/STEllAR-GROUP/hpx/issues/1958
5017 https://github.com/STEllAR-GROUP/hpx/pull/1957
5018 https://github.com/STEllAR-GROUP/hpx/pull/1956
5019 https://github.com/STEllAR-GROUP/hpx/pull/1955
5020 https://github.com/STEllAR-GROUP/hpx/issues/1954
5021 https://github.com/STEllAR-GROUP/hpx/pull/1953
5022 https://github.com/STEllAR-GROUP/hpx/pull/1952
5023 https://github.com/STEllAR-GROUP/hpx/pull/1951
5024 https://github.com/STEllAR-GROUP/hpx/issues/1950
5025 https://github.com/STEllAR-GROUP/hpx/pull/1949
5026 https://github.com/STEllAR-GROUP/hpx/pull/1948

2.10. Releases 1759

https://github.com/STEllAR-GROUP/hpx/pull/1971
https://github.com/STEllAR-GROUP/hpx/pull/1970
https://github.com/STEllAR-GROUP/hpx/pull/1969
https://github.com/STEllAR-GROUP/hpx/pull/1968
https://github.com/STEllAR-GROUP/hpx/issues/1967
https://github.com/STEllAR-GROUP/hpx/pull/1966
https://github.com/STEllAR-GROUP/hpx/issues/1964
https://github.com/STEllAR-GROUP/hpx/issues/1962
https://github.com/STEllAR-GROUP/hpx/pull/1963
https://github.com/STEllAR-GROUP/hpx/pull/1961
https://github.com/STEllAR-GROUP/hpx/issues/1960
https://github.com/STEllAR-GROUP/hpx/pull/1959
https://github.com/STEllAR-GROUP/hpx/issues/1958
https://github.com/STEllAR-GROUP/hpx/pull/1957
https://github.com/STEllAR-GROUP/hpx/pull/1956
https://github.com/STEllAR-GROUP/hpx/pull/1955
https://github.com/STEllAR-GROUP/hpx/issues/1954
https://github.com/STEllAR-GROUP/hpx/pull/1953
https://github.com/STEllAR-GROUP/hpx/pull/1952
https://github.com/STEllAR-GROUP/hpx/pull/1951
https://github.com/STEllAR-GROUP/hpx/issues/1950
https://github.com/STEllAR-GROUP/hpx/pull/1949
https://github.com/STEllAR-GROUP/hpx/pull/1948

HPX Documentation, master

• PR #19475027 - Adding workaround for tagged_tuple

• Issue #19465028 - Hang in wait_all() in distributed run

• PR #19455029 - Fixed container algorithm tests

• Issue #19445030 - assertion ‘p.destination_locality() == hpx::get_locality()’ failed

• PR #19435031 - Fix a couple of compile errors with clang

• PR #19425032 - Making parcel coalescing functional

• Issue #19415033 - Re-enable parcel coalescing

• PR #19405034 - Touching up make_future

• PR #19395035 - Fixing problems in over-subscription management in the resource manager

• PR #19385036 - Removing use of unified Boost.Thread header

• PR #19375037 - Cleaning up the use of Boost.Accumulator headers

• PR #19365038 - Making sure interval timer is started for aggregating performance counters

• PR #19355039 - Tagged results

• PR #19345040 - Fix remote async with deferred launch policy

• Issue #19335041 - Floating point exception in statistics_counter<boost::accumulators::tag::mean>::get_counter_value

• PR #19325042 - Removing superfluous includes of boost/lockfree/detail/branch_hints.hpp

• PR #19315043 - fix compilation with clang 3.8.0

• Issue #19305044 - Missing online documentation for HPX 0.9.11

• PR #19295045 - LWG2485: get() should be overloaded for const tuple&&

• PR #19285046 - Revert “Using ninja for circle-ci builds”

• PR #19275047 - Using ninja for circle-ci builds

• PR #19265048 - Fixing serialization of std::array

• Issue #19255049 - Issues with static HPX libraries
5027 https://github.com/STEllAR-GROUP/hpx/pull/1947
5028 https://github.com/STEllAR-GROUP/hpx/issues/1946
5029 https://github.com/STEllAR-GROUP/hpx/pull/1945
5030 https://github.com/STEllAR-GROUP/hpx/issues/1944
5031 https://github.com/STEllAR-GROUP/hpx/pull/1943
5032 https://github.com/STEllAR-GROUP/hpx/pull/1942
5033 https://github.com/STEllAR-GROUP/hpx/issues/1941
5034 https://github.com/STEllAR-GROUP/hpx/pull/1940
5035 https://github.com/STEllAR-GROUP/hpx/pull/1939
5036 https://github.com/STEllAR-GROUP/hpx/pull/1938
5037 https://github.com/STEllAR-GROUP/hpx/pull/1937
5038 https://github.com/STEllAR-GROUP/hpx/pull/1936
5039 https://github.com/STEllAR-GROUP/hpx/pull/1935
5040 https://github.com/STEllAR-GROUP/hpx/pull/1934
5041 https://github.com/STEllAR-GROUP/hpx/issues/1933
5042 https://github.com/STEllAR-GROUP/hpx/pull/1932
5043 https://github.com/STEllAR-GROUP/hpx/pull/1931
5044 https://github.com/STEllAR-GROUP/hpx/issues/1930
5045 https://github.com/STEllAR-GROUP/hpx/pull/1929
5046 https://github.com/STEllAR-GROUP/hpx/pull/1928
5047 https://github.com/STEllAR-GROUP/hpx/pull/1927
5048 https://github.com/STEllAR-GROUP/hpx/pull/1926
5049 https://github.com/STEllAR-GROUP/hpx/issues/1925

1760 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1947
https://github.com/STEllAR-GROUP/hpx/issues/1946
https://github.com/STEllAR-GROUP/hpx/pull/1945
https://github.com/STEllAR-GROUP/hpx/issues/1944
https://github.com/STEllAR-GROUP/hpx/pull/1943
https://github.com/STEllAR-GROUP/hpx/pull/1942
https://github.com/STEllAR-GROUP/hpx/issues/1941
https://github.com/STEllAR-GROUP/hpx/pull/1940
https://github.com/STEllAR-GROUP/hpx/pull/1939
https://github.com/STEllAR-GROUP/hpx/pull/1938
https://github.com/STEllAR-GROUP/hpx/pull/1937
https://github.com/STEllAR-GROUP/hpx/pull/1936
https://github.com/STEllAR-GROUP/hpx/pull/1935
https://github.com/STEllAR-GROUP/hpx/pull/1934
https://github.com/STEllAR-GROUP/hpx/issues/1933
https://github.com/STEllAR-GROUP/hpx/pull/1932
https://github.com/STEllAR-GROUP/hpx/pull/1931
https://github.com/STEllAR-GROUP/hpx/issues/1930
https://github.com/STEllAR-GROUP/hpx/pull/1929
https://github.com/STEllAR-GROUP/hpx/pull/1928
https://github.com/STEllAR-GROUP/hpx/pull/1927
https://github.com/STEllAR-GROUP/hpx/pull/1926
https://github.com/STEllAR-GROUP/hpx/issues/1925

HPX Documentation, master

• Issue #19245050 - Performance degrading over time

• Issue #19235051 - serialization of std::array appears broken in latest commit

• PR #19225052 - Container algorithms

• PR #19215053 - Tons of smaller quality improvements

• Issue #19205054 - Seg fault in hpx::serialization::output_archive::add_gid when running octotiger

• Issue #19195055 - Intel 15 compiler bug preventing HPX build

• PR #19185056 - Address sanitizer fixes

• PR #19175057 - Fixing compilation problems of parallel::sort with Intel compilers

• PR #19165058 - Making sure code compiles if HPX_WITH_HWLOC=Off

• Issue #19155059 - max_cores undefined if HPX_WITH_HWLOC=Off

• PR #19135060 - Add utility member functions for partitioned_vector

• PR #19125061 - Adding support for invoking actions to dataflow

• PR #19115062 - Adding first batch of container algorithms

• PR #19105063 - Keep cmake_module_path

• PR #19095064 - Fix mpirun with pbs

• PR #19085065 - Changing parallel::sort to return the last iterator as proposed by N4560

• PR #19075066 - Adding a minimum version for Open MPI

• PR #19065067 - Updates to the Release Procedure

• PR #19055068 - Fixing #1903

• PR #19045069 - Making sure std containers are cleared before serialization loads data

• Issue #19035070 - When running octotiger, I get: assertion '(*new_gids_)[gid].size() == 1' failed:
HPX(assertion_failure)

• Issue #19025071 - Immediate crash when running hpx/octotiger with _GLIBCXX_DEBUG defined.

• PR #19015072 - Making non-serializable classes non-serializable
5050 https://github.com/STEllAR-GROUP/hpx/issues/1924
5051 https://github.com/STEllAR-GROUP/hpx/issues/1923
5052 https://github.com/STEllAR-GROUP/hpx/pull/1922
5053 https://github.com/STEllAR-GROUP/hpx/pull/1921
5054 https://github.com/STEllAR-GROUP/hpx/issues/1920
5055 https://github.com/STEllAR-GROUP/hpx/issues/1919
5056 https://github.com/STEllAR-GROUP/hpx/pull/1918
5057 https://github.com/STEllAR-GROUP/hpx/pull/1917
5058 https://github.com/STEllAR-GROUP/hpx/pull/1916
5059 https://github.com/STEllAR-GROUP/hpx/issues/1915
5060 https://github.com/STEllAR-GROUP/hpx/pull/1913
5061 https://github.com/STEllAR-GROUP/hpx/pull/1912
5062 https://github.com/STEllAR-GROUP/hpx/pull/1911
5063 https://github.com/STEllAR-GROUP/hpx/pull/1910
5064 https://github.com/STEllAR-GROUP/hpx/pull/1909
5065 https://github.com/STEllAR-GROUP/hpx/pull/1908
5066 https://github.com/STEllAR-GROUP/hpx/pull/1907
5067 https://github.com/STEllAR-GROUP/hpx/pull/1906
5068 https://github.com/STEllAR-GROUP/hpx/pull/1905
5069 https://github.com/STEllAR-GROUP/hpx/pull/1904
5070 https://github.com/STEllAR-GROUP/hpx/issues/1903
5071 https://github.com/STEllAR-GROUP/hpx/issues/1902
5072 https://github.com/STEllAR-GROUP/hpx/pull/1901

2.10. Releases 1761

https://github.com/STEllAR-GROUP/hpx/issues/1924
https://github.com/STEllAR-GROUP/hpx/issues/1923
https://github.com/STEllAR-GROUP/hpx/pull/1922
https://github.com/STEllAR-GROUP/hpx/pull/1921
https://github.com/STEllAR-GROUP/hpx/issues/1920
https://github.com/STEllAR-GROUP/hpx/issues/1919
https://github.com/STEllAR-GROUP/hpx/pull/1918
https://github.com/STEllAR-GROUP/hpx/pull/1917
https://github.com/STEllAR-GROUP/hpx/pull/1916
https://github.com/STEllAR-GROUP/hpx/issues/1915
https://github.com/STEllAR-GROUP/hpx/pull/1913
https://github.com/STEllAR-GROUP/hpx/pull/1912
https://github.com/STEllAR-GROUP/hpx/pull/1911
https://github.com/STEllAR-GROUP/hpx/pull/1910
https://github.com/STEllAR-GROUP/hpx/pull/1909
https://github.com/STEllAR-GROUP/hpx/pull/1908
https://github.com/STEllAR-GROUP/hpx/pull/1907
https://github.com/STEllAR-GROUP/hpx/pull/1906
https://github.com/STEllAR-GROUP/hpx/pull/1905
https://github.com/STEllAR-GROUP/hpx/pull/1904
https://github.com/STEllAR-GROUP/hpx/issues/1903
https://github.com/STEllAR-GROUP/hpx/issues/1902
https://github.com/STEllAR-GROUP/hpx/pull/1901

HPX Documentation, master

• Issue #19005073 - Two possible issues with std::list serialization

• PR #18995074 - Fixing a problem with credit splitting as revealed by #1898

• Issue #18985075 - Accessing component from locality where it was not created segfaults

• PR #18975076 - Changing parallel::sort to return the last iterator as proposed by N4560

• Issue #18965077 - version 1.0?

• Issue #18955078 - Warning comment on numa_allocator is not very clear

• PR #18945079 - Add support for compilers that have thread_local

• PR #18935080 - Fixing 1890

• PR #18925081 - Adds typed future_type for executor_traits

• PR #18915082 - Fix wording in certain parallel algorithm docs

• Issue #18905083 - Invoking papi counters give segfault

• PR #18895084 - Fixing problems as reported by clang-check

• PR #18885085 - WIP parallel is_heap

• PR #18875086 - Fixed resetting performance counters related to idle-rate, etc

• Issue #18865087 - Run hpx with qsub does not work

• PR #18855088 - Warning cleaning pass

• PR #18845089 - Add missing parallel algorithm header

• PR #18835090 - Add feature test for thread_local on Clang for TLS

• PR #18825091 - Fix some redundant qualifiers

• Issue #18815092 - Unable to compile Octotiger using HPX and Intel MPI on SuperMIC

• Issue #18805093 - clang with libc++ on Linux needs TLS case

• PR #18795094 - Doc fixes for #1868

• PR #18785095 - Simplify functions
5073 https://github.com/STEllAR-GROUP/hpx/issues/1900
5074 https://github.com/STEllAR-GROUP/hpx/pull/1899
5075 https://github.com/STEllAR-GROUP/hpx/issues/1898
5076 https://github.com/STEllAR-GROUP/hpx/pull/1897
5077 https://github.com/STEllAR-GROUP/hpx/issues/1896
5078 https://github.com/STEllAR-GROUP/hpx/issues/1895
5079 https://github.com/STEllAR-GROUP/hpx/pull/1894
5080 https://github.com/STEllAR-GROUP/hpx/pull/1893
5081 https://github.com/STEllAR-GROUP/hpx/pull/1892
5082 https://github.com/STEllAR-GROUP/hpx/pull/1891
5083 https://github.com/STEllAR-GROUP/hpx/issues/1890
5084 https://github.com/STEllAR-GROUP/hpx/pull/1889
5085 https://github.com/STEllAR-GROUP/hpx/pull/1888
5086 https://github.com/STEllAR-GROUP/hpx/pull/1887
5087 https://github.com/STEllAR-GROUP/hpx/issues/1886
5088 https://github.com/STEllAR-GROUP/hpx/pull/1885
5089 https://github.com/STEllAR-GROUP/hpx/pull/1884
5090 https://github.com/STEllAR-GROUP/hpx/pull/1883
5091 https://github.com/STEllAR-GROUP/hpx/pull/1882
5092 https://github.com/STEllAR-GROUP/hpx/issues/1881
5093 https://github.com/STEllAR-GROUP/hpx/issues/1880
5094 https://github.com/STEllAR-GROUP/hpx/pull/1879
5095 https://github.com/STEllAR-GROUP/hpx/pull/1878

1762 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1900
https://github.com/STEllAR-GROUP/hpx/pull/1899
https://github.com/STEllAR-GROUP/hpx/issues/1898
https://github.com/STEllAR-GROUP/hpx/pull/1897
https://github.com/STEllAR-GROUP/hpx/issues/1896
https://github.com/STEllAR-GROUP/hpx/issues/1895
https://github.com/STEllAR-GROUP/hpx/pull/1894
https://github.com/STEllAR-GROUP/hpx/pull/1893
https://github.com/STEllAR-GROUP/hpx/pull/1892
https://github.com/STEllAR-GROUP/hpx/pull/1891
https://github.com/STEllAR-GROUP/hpx/issues/1890
https://github.com/STEllAR-GROUP/hpx/pull/1889
https://github.com/STEllAR-GROUP/hpx/pull/1888
https://github.com/STEllAR-GROUP/hpx/pull/1887
https://github.com/STEllAR-GROUP/hpx/issues/1886
https://github.com/STEllAR-GROUP/hpx/pull/1885
https://github.com/STEllAR-GROUP/hpx/pull/1884
https://github.com/STEllAR-GROUP/hpx/pull/1883
https://github.com/STEllAR-GROUP/hpx/pull/1882
https://github.com/STEllAR-GROUP/hpx/issues/1881
https://github.com/STEllAR-GROUP/hpx/issues/1880
https://github.com/STEllAR-GROUP/hpx/pull/1879
https://github.com/STEllAR-GROUP/hpx/pull/1878

HPX Documentation, master

• PR #18775096 - Removing most usage of Boost.Config

• PR #18765097 - Add missing parallel algorithms to algorithm.hpp

• PR #18755098 - Simplify callables

• PR #18745099 - Address long standing FIXME on using std::unique_ptr with incomplete types

• PR #18735100 - Fixing 1871

• PR #18725101 - Making sure PBS environment uses specified node list even if no PBS_NODEFILE env is avail-
able

• Issue #18715102 - Fortran checks should be optional

• PR #18705103 - Touch local::mutex

• PR #18695104 - Documentation refactoring based off #1868

• PR #18675105 - Embrace static_assert

• PR #18665106 - Fix #1803 with documentation refactoring

• PR #18655107 - Setting OUTPUT_NAME as target properties

• PR #18635108 - Use SYSTEM for boost includes

• PR #18625109 - Minor cleanups

• PR #18615110 - Minor Corrections for Release

• PR #18605111 - Fixing hpx gdb script

• Issue #18595112 - reset_active_counters resets times and thread counts before some of the counters are evaluated

• PR #18585113 - Release V0.9.11

• PR #18575114 - removing diskperf example from 9.11 release

• PR #18565115 - fix return in packaged_task_base::reset()

• Issue #18425116 - Install error: file INSTALL cannot find libhpx_parcel_coalescing.so.0.9.11

• PR #18395117 - Adding fedora docs

• PR #18245118 - Changing version on master to V0.9.12
5096 https://github.com/STEllAR-GROUP/hpx/pull/1877
5097 https://github.com/STEllAR-GROUP/hpx/pull/1876
5098 https://github.com/STEllAR-GROUP/hpx/pull/1875
5099 https://github.com/STEllAR-GROUP/hpx/pull/1874
5100 https://github.com/STEllAR-GROUP/hpx/pull/1873
5101 https://github.com/STEllAR-GROUP/hpx/pull/1872
5102 https://github.com/STEllAR-GROUP/hpx/issues/1871
5103 https://github.com/STEllAR-GROUP/hpx/pull/1870
5104 https://github.com/STEllAR-GROUP/hpx/pull/1869
5105 https://github.com/STEllAR-GROUP/hpx/pull/1867
5106 https://github.com/STEllAR-GROUP/hpx/pull/1866
5107 https://github.com/STEllAR-GROUP/hpx/pull/1865
5108 https://github.com/STEllAR-GROUP/hpx/pull/1863
5109 https://github.com/STEllAR-GROUP/hpx/pull/1862
5110 https://github.com/STEllAR-GROUP/hpx/pull/1861
5111 https://github.com/STEllAR-GROUP/hpx/pull/1860
5112 https://github.com/STEllAR-GROUP/hpx/issues/1859
5113 https://github.com/STEllAR-GROUP/hpx/pull/1858
5114 https://github.com/STEllAR-GROUP/hpx/pull/1857
5115 https://github.com/STEllAR-GROUP/hpx/pull/1856
5116 https://github.com/STEllAR-GROUP/hpx/issues/1842
5117 https://github.com/STEllAR-GROUP/hpx/pull/1839
5118 https://github.com/STEllAR-GROUP/hpx/pull/1824

2.10. Releases 1763

https://github.com/STEllAR-GROUP/hpx/pull/1877
https://github.com/STEllAR-GROUP/hpx/pull/1876
https://github.com/STEllAR-GROUP/hpx/pull/1875
https://github.com/STEllAR-GROUP/hpx/pull/1874
https://github.com/STEllAR-GROUP/hpx/pull/1873
https://github.com/STEllAR-GROUP/hpx/pull/1872
https://github.com/STEllAR-GROUP/hpx/issues/1871
https://github.com/STEllAR-GROUP/hpx/pull/1870
https://github.com/STEllAR-GROUP/hpx/pull/1869
https://github.com/STEllAR-GROUP/hpx/pull/1867
https://github.com/STEllAR-GROUP/hpx/pull/1866
https://github.com/STEllAR-GROUP/hpx/pull/1865
https://github.com/STEllAR-GROUP/hpx/pull/1863
https://github.com/STEllAR-GROUP/hpx/pull/1862
https://github.com/STEllAR-GROUP/hpx/pull/1861
https://github.com/STEllAR-GROUP/hpx/pull/1860
https://github.com/STEllAR-GROUP/hpx/issues/1859
https://github.com/STEllAR-GROUP/hpx/pull/1858
https://github.com/STEllAR-GROUP/hpx/pull/1857
https://github.com/STEllAR-GROUP/hpx/pull/1856
https://github.com/STEllAR-GROUP/hpx/issues/1842
https://github.com/STEllAR-GROUP/hpx/pull/1839
https://github.com/STEllAR-GROUP/hpx/pull/1824

HPX Documentation, master

• PR #18185119 - Fixing #1748

• Issue #18155120 - seg fault in AGAS

• Issue #18035121 - wait_all documentation

• Issue #17965122 - Outdated documentation to be revised

• Issue #17595123 - glibc munmap_chunk or free(): invalid pointer on SuperMIC

• Issue #17535124 - HPX performance degrades with time since execution begins

• Issue #17485125 - All public HPX headers need to be self contained

• PR #17195126 - How to build HPX with Visual Studio

• Issue #16845127 - Race condition when using –hpx:connect?

• PR #16585128 - Add serialization for std::set (as there is for std::vector and std::map)

• PR #16415129 - Generic client

• Issue #16325130 - heartbeat example fails on separate nodes

• PR #16035131 - Adds preferred namespace check to inspect tool

• Issue #15595132 - Extend inspect tool

• Issue #15235133 - Remote async with deferred launch policy never executes

• Issue #14725134 - Serialization issues

• Issue #14575135 - Implement N4392: C++ Latches and Barriers

• PR #14445136 - Enabling usage of moveonly types for component construction

• Issue #14075137 - The Intel 13 compiler has failing unit tests

• Issue #14055138 - Allow component constructors to take movable only types

• Issue #12655139 - Enable dataflow() to be usable with actions

• Issue #12365140 - NUMA aware allocators

• Issue #8025141 - Fix Broken Examples
5119 https://github.com/STEllAR-GROUP/hpx/pull/1818
5120 https://github.com/STEllAR-GROUP/hpx/issues/1815
5121 https://github.com/STEllAR-GROUP/hpx/issues/1803
5122 https://github.com/STEllAR-GROUP/hpx/issues/1796
5123 https://github.com/STEllAR-GROUP/hpx/issues/1759
5124 https://github.com/STEllAR-GROUP/hpx/issues/1753
5125 https://github.com/STEllAR-GROUP/hpx/issues/1748
5126 https://github.com/STEllAR-GROUP/hpx/pull/1719
5127 https://github.com/STEllAR-GROUP/hpx/issues/1684
5128 https://github.com/STEllAR-GROUP/hpx/pull/1658
5129 https://github.com/STEllAR-GROUP/hpx/pull/1641
5130 https://github.com/STEllAR-GROUP/hpx/issues/1632
5131 https://github.com/STEllAR-GROUP/hpx/pull/1603
5132 https://github.com/STEllAR-GROUP/hpx/issues/1559
5133 https://github.com/STEllAR-GROUP/hpx/issues/1523
5134 https://github.com/STEllAR-GROUP/hpx/issues/1472
5135 https://github.com/STEllAR-GROUP/hpx/issues/1457
5136 https://github.com/STEllAR-GROUP/hpx/pull/1444
5137 https://github.com/STEllAR-GROUP/hpx/issues/1407
5138 https://github.com/STEllAR-GROUP/hpx/issues/1405
5139 https://github.com/STEllAR-GROUP/hpx/issues/1265
5140 https://github.com/STEllAR-GROUP/hpx/issues/1236
5141 https://github.com/STEllAR-GROUP/hpx/issues/802

1764 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1818
https://github.com/STEllAR-GROUP/hpx/issues/1815
https://github.com/STEllAR-GROUP/hpx/issues/1803
https://github.com/STEllAR-GROUP/hpx/issues/1796
https://github.com/STEllAR-GROUP/hpx/issues/1759
https://github.com/STEllAR-GROUP/hpx/issues/1753
https://github.com/STEllAR-GROUP/hpx/issues/1748
https://github.com/STEllAR-GROUP/hpx/pull/1719
https://github.com/STEllAR-GROUP/hpx/issues/1684
https://github.com/STEllAR-GROUP/hpx/pull/1658
https://github.com/STEllAR-GROUP/hpx/pull/1641
https://github.com/STEllAR-GROUP/hpx/issues/1632
https://github.com/STEllAR-GROUP/hpx/pull/1603
https://github.com/STEllAR-GROUP/hpx/issues/1559
https://github.com/STEllAR-GROUP/hpx/issues/1523
https://github.com/STEllAR-GROUP/hpx/issues/1472
https://github.com/STEllAR-GROUP/hpx/issues/1457
https://github.com/STEllAR-GROUP/hpx/pull/1444
https://github.com/STEllAR-GROUP/hpx/issues/1407
https://github.com/STEllAR-GROUP/hpx/issues/1405
https://github.com/STEllAR-GROUP/hpx/issues/1265
https://github.com/STEllAR-GROUP/hpx/issues/1236
https://github.com/STEllAR-GROUP/hpx/issues/802

HPX Documentation, master

• Issue #5595142 - Add hpx::migrate facility

• Issue #4495143 - Make actions with template arguments usable and add documentation

• Issue #2795144 - Refactor addressing_service into a base class and two derived classes

• Issue #2245145 - Changing thread state metadata is not thread safe

• Issue #555146 - Uniform syntax for enums should be implemented

HPX V0.9.11 (Nov 11, 2015)

Our main focus for this release was the design and development of a coherent set of higher-level APIs exposing various
types of parallelism to the application programmer. We introduced the concepts of an executor, which can be used to
customize the where and when of execution of tasks in the context of parallelizing codes. We extended all APIs related
to managing parallel tasks to support executors which gives the user the choce of either using one of the predefined
executor types or to provide its own, possibly application specific, executor. We paid very close attention to align all
of these changes with the existing C++ Standards documents or with the ongoing proposals for standardization.

This release is the first after our change to a new development policy. We switched all development to be strictly per-
formed on branches only, all direct commits to our main branch (master) are prohibited. Any change has to go through
a peer review before it will be merged to master. As a result the overall stability of our code base has significantly
increased, the development process itself has been simplified. This change manifests itself in a large number of pull-
requests which have been merged (please see below for a full list of closed issues and pull-requests). All in all for this
release, we closed almost 100 issues and merged over 290 pull-requests. There have been over 1600 commits to the
master branch since the last release.

General changes

• We are moving into the direction of unifying managed and simple components. As such, the classes
hpx::components::component and hpx::components::component_base have been added which cur-
rently just forward to the currently existing simple component facilities. The examples have been converted
to only use those two classes.

• Added integration with the CircleCI5147 hosted continuous integration service. This gives us constant and im-
mediate feedback on the health of our master branch.

• The compiler configuration subsystem in the build system has been reimplemented. Instead of using Boost.Config
we now use our own lightweight set of cmake scripts to determine the available language and library features
supported by the used compiler.

• The API for creating instances of components has been consolidated. All component instances should be created
using the hpx::new_ only. It allows one to instantiate both, single component instances and multiple component
instances. The placement of the created components can be controlled by special distribution policies. Please
see the corresponding documentation outlining the use of hpx::new_.

• Introduced four new distribution policies which can be used with many API functions which traditionally ex-
pected to be used with a locality id. The new distribution policies are:

– hpx::components::default_distribution_policy which tries to place multiple component in-
stances as evenly as possible.

5142 https://github.com/STEllAR-GROUP/hpx/issues/559
5143 https://github.com/STEllAR-GROUP/hpx/issues/449
5144 https://github.com/STEllAR-GROUP/hpx/issues/279
5145 https://github.com/STEllAR-GROUP/hpx/issues/224
5146 https://github.com/STEllAR-GROUP/hpx/issues/55
5147 https://circleci.com/gh/STEllAR-GROUP/hpx

2.10. Releases 1765

https://github.com/STEllAR-GROUP/hpx/issues/559
https://github.com/STEllAR-GROUP/hpx/issues/449
https://github.com/STEllAR-GROUP/hpx/issues/279
https://github.com/STEllAR-GROUP/hpx/issues/224
https://github.com/STEllAR-GROUP/hpx/issues/55
https://circleci.com/gh/STEllAR-GROUP/hpx

HPX Documentation, master

– hpx::components::colocating_distribution_policy which will refer to the locality where a given
component instance is currently placed.

– hpx::components::binpacking_distribution_policy which will place multiple component in-
stances as evenly as possible based on any performance counter.

– hpx::components::target_distribution_policy which allows one to represent a given locality in
the context of a distrwibution policy.

• The new distribution policies can now be also used with hpx::async. This change also dep-
recates hpx::async_colocated(id, ...) which now is replaced by a distribution policy:
hpx::async(hpx::colocated(id), ...).

• The hpx::vector and hpx::unordered_map data structures can now be used with the new distribution policies
as well.

• The parallel facility hpx::parallel::task_region has been renamed to hpx::parallel::task_block
based on the changes in the corresponding standardization proposal N44115148.

• Added extensions to the parallel facility hpx::parallel::task_block allowing to combine a task_block with
an execution policy. This implies a minor breaking change as the hpx::parallel::task_block is now a
template.

• Added new LCOs: hpx::lcos::latch and hpx::lcos::local::latch which semantically conform to the
proposed std::latch (see N43995149).

• Added performance counters exposing data related to data transferred by input/output (filesystem) operations
(thanks to Maciej Brodowicz).

• Added performance counters allowing to track the number of action invocations (local and remote invocations).

• Added new command line options –hpx:print-counter-at and –hpx:reset-counters.

• The hpx::vector component has been renamed to hpx::partitioned_vector to make it explicit that the
underlying memory is not contiguous.

• Introduced a completely new and uniform higher-level parallelism API which is based on executors. All existing
parallelism APIs have been adapted to this. We have added a large number of different executor types, such as a
numa-aware executor, a this-thread executor, etc.

• Added support for the MingW toolchain on Windows (thanks to Eric Lemanissier).

• HPX now includes support for APEX, (Autonomic Performance Environment for eXascale). APEX is an in-
strumentation and software adaptation library that provides an interface to TAU profiling / tracing as well as
runtime adaptation of HPX applications through policy definitions. For more information and documenta-
tion, please see https://github.com/UO-OACISS/xpress-apex. To enable APEX at configuration time, specify
-DHPX_WITH_APEX=On. To also include support for TAU profiling, specify -DHPX_WITH_TAU=On and specify
the -DTAU_ROOT, -DTAU_ARCH and -DTAU_OPTIONS cmake parameters.

• We have implemented many more of the Using parallel algorithms. Please see Issue #11415150 for the list of all
available parallel algorithms (thanks to Daniel Bourgeois and John Biddiscombe for contributing their work).

5148 http://wg21.link/n4411
5149 http://wg21.link/n4399
5150 https://github.com/STEllAR-GROUP/hpx/issues/1141

1766 Chapter 2. What’s so special about HPX?

http://wg21.link/n4411
http://wg21.link/n4399
https://github.com/UO-OACISS/xpress-apex
https://github.com/STEllAR-GROUP/hpx/issues/1141

HPX Documentation, master

Breaking changes

• We are moving into the direction of unifying managed and simple components. In order to stop expos-
ing the old facilities, all examples have been converted to use the new classes. The breaking change
in this release is that performance counters are now a hpx::components::component_base instead of
hpx::components::managed_component_base.

• We removed the support for stackless threads. It turned out that there was no performance benefit when using
stackless threads. As such, we decided to clean up our codebase. This feature was not documented.

• The CMake project name has changed from ‘hpx’ to ‘HPX’ for consistency and compatibility with naming
conventions and other CMake projects. Generated config files go into <prefix>/lib/cmake/HPX and not <pre-
fix>/lib/cmake/hpx.

• The macro HPX_REGISTER_MINIMAL_COMPONENT_FACTORY has been deprecated. Please use
HPX_REGISTER_COMPONENT. instead. The old macro will be removed in the next release.

• The obsolete distributing_factory and binpacking_factory components have been removed. The corresponding
functionality is now provided by the hpx::new_ API function in conjunction with the hpx::default_layout
and hpx::binpacking distribution policies (hpx::components::default_distribution_policy and
hpx::components::binpacking_distribution_policy)

• The API function hpx::new_colocated has been deprecated. Please use the consol-
idated API hpx::new_ in conjunction with the new hpx::colocated distribution pol-
icy (hpx::components::colocating_distribution_policy) instead. The old API func-
tion will still be available for at least one release of HPX if the configuration variable
HPX_WITH_COLOCATED_BACKWARDS_COMPATIBILITY is enabled.

• The API function hpx::async_colocated has been deprecated. Please use the consol-
idated API hpx::async in conjunction with the new hpx::colocated distribution pol-
icy (hpx::components::colocating_distribution_policy) instead. The old API func-
tion will still be available for at least one release of HPX if the configuration variable
HPX_WITH_COLOCATED_BACKWARDS_COMPATIBILITY is enabled.

• The obsolete remote_object component has been removed.

• Replaced the use of Boost.Serialization with our own solution. While the new version is mostly compatible with
Boost.Serialization, this change requires some minor code modifications in user code. For more information,
please see the corresponding announcement5151 on the hpx-users@stellar.cct.lsu.edu mailing list.

• The names used by cmake to influence various configuration options have been unified. The new naming scheme
relies on all configuration constants to start with HPX_WITH_..., while the preprocessor constant which is used at
build time starts with HPX_HAVE_.... For instance, the former cmake command line -DHPX_MALLOC=... now
has to be specified a -DHPX_WITH_MALLOC=... and will cause the preprocessor constant HPX_HAVE_MALLOC
to be defined. The actual name of the constant (i.e. MALLOC) has not changed. Please see the corresponding
documentation for more details (CMake options).

• The get_gid() functions exposed by the component base classes hpx::components::server::simple_component_base,
hpx::components::server::managed_component_base, and hpx::components::server::fixed_component_base
have been replaced by two new functions: get_unmanaged_id() and get_id(). To en-
able the old function name for backwards compatibility, use the cmake configuration option
HPX_WITH_COMPONENT_GET_GID_COMPATIBILITY=On.

• All functions which were named get_gid() but were returning hpx::id_type have been renamed to
get_id(). To enable the old function names for backwards compatibility, use the cmake configuration option
HPX_WITH_COMPONENT_GET_GID_COMPATIBILITY=On.

5151 http://thread.gmane.org/gmane.comp.lib.hpx.devel/196

2.10. Releases 1767

http://thread.gmane.org/gmane.comp.lib.hpx.devel/196
mailto:hpx-users@stellar.cct.lsu.edu
mailto:hpx-users@stellar.cct.lsu.edu

HPX Documentation, master

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• PR #18555152 - Completely removing external/endian

• PR #18545153 - Don’t pollute CMAKE_CXX_FLAGS through find_package()

• PR #18535154 - Updating CMake configuration to get correct version of TAU library

• PR #18525155 - Fixing Performance Problems with MPI Parcelport

• PR #18515156 - Fixing hpx_add_link_flag() and hpx_remove_link_flag()

• PR #18505157 - Fixing 1836, adding parallel::sort

• PR #18495158 - Fixing configuration for use of more than 64 cores

• PR #18485159 - Change default APEX version for release

• PR #18475160 - Fix client_base::then on release

• PR #18465161 - Removing broken lcos::local::channel from release

• PR #18455162 - Adding example demonstrating a possible safe-object implementation to release

• PR #18445163 - Removing stubs from accumulator examples

• PR #18435164 - Don’t pollute CMAKE_CXX_FLAGS through find_package()

• PR #18415165 - Fixing client_base<>::then

• PR #18405166 - Adding example demonstrating a possible safe-object implementation

• PR #18385167 - Update version rc1

• PR #18375168 - Removing broken lcos::local::channel

• PR #18355169 - Adding explicit move constructor and assignment operator to hpx::lcos::promise

• PR #18345170 - Making hpx::lcos::promise move-only

• PR #18335171 - Adding fedora docs

• Issue #18325172 - hpx::lcos::promise<> must be move-only
5152 https://github.com/STEllAR-GROUP/hpx/pull/1855
5153 https://github.com/STEllAR-GROUP/hpx/pull/1854
5154 https://github.com/STEllAR-GROUP/hpx/pull/1853
5155 https://github.com/STEllAR-GROUP/hpx/pull/1852
5156 https://github.com/STEllAR-GROUP/hpx/pull/1851
5157 https://github.com/STEllAR-GROUP/hpx/pull/1850
5158 https://github.com/STEllAR-GROUP/hpx/pull/1849
5159 https://github.com/STEllAR-GROUP/hpx/pull/1848
5160 https://github.com/STEllAR-GROUP/hpx/pull/1847
5161 https://github.com/STEllAR-GROUP/hpx/pull/1846
5162 https://github.com/STEllAR-GROUP/hpx/pull/1845
5163 https://github.com/STEllAR-GROUP/hpx/pull/1844
5164 https://github.com/STEllAR-GROUP/hpx/pull/1843
5165 https://github.com/STEllAR-GROUP/hpx/pull/1841
5166 https://github.com/STEllAR-GROUP/hpx/pull/1840
5167 https://github.com/STEllAR-GROUP/hpx/pull/1838
5168 https://github.com/STEllAR-GROUP/hpx/pull/1837
5169 https://github.com/STEllAR-GROUP/hpx/pull/1835
5170 https://github.com/STEllAR-GROUP/hpx/pull/1834
5171 https://github.com/STEllAR-GROUP/hpx/pull/1833
5172 https://github.com/STEllAR-GROUP/hpx/issues/1832

1768 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1855
https://github.com/STEllAR-GROUP/hpx/pull/1854
https://github.com/STEllAR-GROUP/hpx/pull/1853
https://github.com/STEllAR-GROUP/hpx/pull/1852
https://github.com/STEllAR-GROUP/hpx/pull/1851
https://github.com/STEllAR-GROUP/hpx/pull/1850
https://github.com/STEllAR-GROUP/hpx/pull/1849
https://github.com/STEllAR-GROUP/hpx/pull/1848
https://github.com/STEllAR-GROUP/hpx/pull/1847
https://github.com/STEllAR-GROUP/hpx/pull/1846
https://github.com/STEllAR-GROUP/hpx/pull/1845
https://github.com/STEllAR-GROUP/hpx/pull/1844
https://github.com/STEllAR-GROUP/hpx/pull/1843
https://github.com/STEllAR-GROUP/hpx/pull/1841
https://github.com/STEllAR-GROUP/hpx/pull/1840
https://github.com/STEllAR-GROUP/hpx/pull/1838
https://github.com/STEllAR-GROUP/hpx/pull/1837
https://github.com/STEllAR-GROUP/hpx/pull/1835
https://github.com/STEllAR-GROUP/hpx/pull/1834
https://github.com/STEllAR-GROUP/hpx/pull/1833
https://github.com/STEllAR-GROUP/hpx/issues/1832

HPX Documentation, master

• PR #18315173 - Fixing resource manager gcc5.2

• PR #18305174 - Fix intel13

• PR #18295175 - Unbreaking thread test

• PR #18285176 - Fixing #1620

• PR #18275177 - Fixing a memory management issue for the Parquet application

• Issue #18265178 - Memory management issue in hpx::lcos::promise

• PR #18255179 - Adding hpx::components::component and hpx::components::component_base

• PR #18235180 - Adding git commit id to circleci build

• PR #18225181 - applying fixes suggested by clang 3.7

• PR #18215182 - Hyperlink fixes

• PR #18205183 - added parallel multi-locality sanity test

• PR #18195184 - Fixing #1667

• Issue #18175185 - Hyperlinks generated by inspect tool are wrong

• PR #18165186 - Support hpxrx

• PR #18145187 - Fix async to dispatch to the correct locality in all cases

• Issue #18135188 - async(launch::. . . , action(), . . .) always invokes locally

• PR #18125189 - fixed syntax error in CMakeLists.txt

• PR #18115190 - Agas optimizations

• PR #18105191 - drop superfluous typedefs

• PR #18095192 - Allow HPX to be used as an optional package in 3rd party code

• PR #18085193 - Fixing #1723

• PR #18075194 - Making sure resolve_localities does not hang during normal operation

• Issue #18065195 - Spinlock no longer movable and deletes operator ‘=’, breaks MiniGhost
5173 https://github.com/STEllAR-GROUP/hpx/pull/1831
5174 https://github.com/STEllAR-GROUP/hpx/pull/1830
5175 https://github.com/STEllAR-GROUP/hpx/pull/1829
5176 https://github.com/STEllAR-GROUP/hpx/pull/1828
5177 https://github.com/STEllAR-GROUP/hpx/pull/1827
5178 https://github.com/STEllAR-GROUP/hpx/issues/1826
5179 https://github.com/STEllAR-GROUP/hpx/pull/1825
5180 https://github.com/STEllAR-GROUP/hpx/pull/1823
5181 https://github.com/STEllAR-GROUP/hpx/pull/1822
5182 https://github.com/STEllAR-GROUP/hpx/pull/1821
5183 https://github.com/STEllAR-GROUP/hpx/pull/1820
5184 https://github.com/STEllAR-GROUP/hpx/pull/1819
5185 https://github.com/STEllAR-GROUP/hpx/issues/1817
5186 https://github.com/STEllAR-GROUP/hpx/pull/1816
5187 https://github.com/STEllAR-GROUP/hpx/pull/1814
5188 https://github.com/STEllAR-GROUP/hpx/issues/1813
5189 https://github.com/STEllAR-GROUP/hpx/pull/1812
5190 https://github.com/STEllAR-GROUP/hpx/pull/1811
5191 https://github.com/STEllAR-GROUP/hpx/pull/1810
5192 https://github.com/STEllAR-GROUP/hpx/pull/1809
5193 https://github.com/STEllAR-GROUP/hpx/pull/1808
5194 https://github.com/STEllAR-GROUP/hpx/pull/1807
5195 https://github.com/STEllAR-GROUP/hpx/issues/1806

2.10. Releases 1769

https://github.com/STEllAR-GROUP/hpx/pull/1831
https://github.com/STEllAR-GROUP/hpx/pull/1830
https://github.com/STEllAR-GROUP/hpx/pull/1829
https://github.com/STEllAR-GROUP/hpx/pull/1828
https://github.com/STEllAR-GROUP/hpx/pull/1827
https://github.com/STEllAR-GROUP/hpx/issues/1826
https://github.com/STEllAR-GROUP/hpx/pull/1825
https://github.com/STEllAR-GROUP/hpx/pull/1823
https://github.com/STEllAR-GROUP/hpx/pull/1822
https://github.com/STEllAR-GROUP/hpx/pull/1821
https://github.com/STEllAR-GROUP/hpx/pull/1820
https://github.com/STEllAR-GROUP/hpx/pull/1819
https://github.com/STEllAR-GROUP/hpx/issues/1817
https://github.com/STEllAR-GROUP/hpx/pull/1816
https://github.com/STEllAR-GROUP/hpx/pull/1814
https://github.com/STEllAR-GROUP/hpx/issues/1813
https://github.com/STEllAR-GROUP/hpx/pull/1812
https://github.com/STEllAR-GROUP/hpx/pull/1811
https://github.com/STEllAR-GROUP/hpx/pull/1810
https://github.com/STEllAR-GROUP/hpx/pull/1809
https://github.com/STEllAR-GROUP/hpx/pull/1808
https://github.com/STEllAR-GROUP/hpx/pull/1807
https://github.com/STEllAR-GROUP/hpx/issues/1806

HPX Documentation, master

• Issue #18045196 - register_with_basename causes hangs

• PR #18015197 - Enhanced the inspect tool to take user directly to the problem with hyperlinks

• Issue #18005198 - Problems compiling application on smic

• PR #17995199 - Fixing cv exceptions

• PR #17985200 - Documentation refactoring & updating

• PR #17975201 - Updating the activeharmony CMake module

• PR #17955202 - Fixing cv

• PR #17945203 - Fix connect with hpx::runtime_mode_connect

• PR #17935204 - fix a wrong use of HPX_MAX_CPU_COUNT instead of HPX_HAVE_MAX_CPU_COUNT

• PR #17925205 - Allow for default constructed parcel instances to be moved

• PR #17915206 - Fix connect with hpx::runtime_mode_connect

• Issue #17905207 - assertion action_.get() failed: HPX(assertion_failure) when running Octotiger with pull
request 1786

• PR #17895208 - Fixing discover_counter_types API function

• Issue #17885209 - connect with hpx::runtime_mode_connect

• Issue #17875210 - discover_counter_types not working

• PR #17865211 - Changing addressing_service to use std::unordered_map instead of std::map

• PR #17855212 - Fix is_iterator for container algorithms

• PR #17845213 - Adding new command line options:

• PR #17835214 - Minor changes for APEX support

• PR #17825215 - Drop legacy forwarding action traits

• PR #17815216 - Attempt to resolve the race between cv::wait_xxx and cv::notify_all

• PR #17805217 - Removing serialize_sequence

• PR #17795218 - Fixed #1501: hwloc configuration options are wrong for MIC
5196 https://github.com/STEllAR-GROUP/hpx/issues/1804
5197 https://github.com/STEllAR-GROUP/hpx/pull/1801
5198 https://github.com/STEllAR-GROUP/hpx/issues/1800
5199 https://github.com/STEllAR-GROUP/hpx/pull/1799
5200 https://github.com/STEllAR-GROUP/hpx/pull/1798
5201 https://github.com/STEllAR-GROUP/hpx/pull/1797
5202 https://github.com/STEllAR-GROUP/hpx/pull/1795
5203 https://github.com/STEllAR-GROUP/hpx/pull/1794
5204 https://github.com/STEllAR-GROUP/hpx/pull/1793
5205 https://github.com/STEllAR-GROUP/hpx/pull/1792
5206 https://github.com/STEllAR-GROUP/hpx/pull/1791
5207 https://github.com/STEllAR-GROUP/hpx/issues/1790
5208 https://github.com/STEllAR-GROUP/hpx/pull/1789
5209 https://github.com/STEllAR-GROUP/hpx/issues/1788
5210 https://github.com/STEllAR-GROUP/hpx/issues/1787
5211 https://github.com/STEllAR-GROUP/hpx/pull/1786
5212 https://github.com/STEllAR-GROUP/hpx/pull/1785
5213 https://github.com/STEllAR-GROUP/hpx/pull/1784
5214 https://github.com/STEllAR-GROUP/hpx/pull/1783
5215 https://github.com/STEllAR-GROUP/hpx/pull/1782
5216 https://github.com/STEllAR-GROUP/hpx/pull/1781
5217 https://github.com/STEllAR-GROUP/hpx/pull/1780
5218 https://github.com/STEllAR-GROUP/hpx/pull/1779

1770 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1804
https://github.com/STEllAR-GROUP/hpx/pull/1801
https://github.com/STEllAR-GROUP/hpx/issues/1800
https://github.com/STEllAR-GROUP/hpx/pull/1799
https://github.com/STEllAR-GROUP/hpx/pull/1798
https://github.com/STEllAR-GROUP/hpx/pull/1797
https://github.com/STEllAR-GROUP/hpx/pull/1795
https://github.com/STEllAR-GROUP/hpx/pull/1794
https://github.com/STEllAR-GROUP/hpx/pull/1793
https://github.com/STEllAR-GROUP/hpx/pull/1792
https://github.com/STEllAR-GROUP/hpx/pull/1791
https://github.com/STEllAR-GROUP/hpx/issues/1790
https://github.com/STEllAR-GROUP/hpx/pull/1789
https://github.com/STEllAR-GROUP/hpx/issues/1788
https://github.com/STEllAR-GROUP/hpx/issues/1787
https://github.com/STEllAR-GROUP/hpx/pull/1786
https://github.com/STEllAR-GROUP/hpx/pull/1785
https://github.com/STEllAR-GROUP/hpx/pull/1784
https://github.com/STEllAR-GROUP/hpx/pull/1783
https://github.com/STEllAR-GROUP/hpx/pull/1782
https://github.com/STEllAR-GROUP/hpx/pull/1781
https://github.com/STEllAR-GROUP/hpx/pull/1780
https://github.com/STEllAR-GROUP/hpx/pull/1779

HPX Documentation, master

• PR #17785219 - Removing ability to enable/disable parcel handling

• PR #17775220 - Completely removing stackless threads

• PR #17765221 - Cleaning up util/plugin

• PR #17755222 - Agas fixes

• PR #17745223 - Action invocation count

• PR #17735224 - replaced MSVC variable with WIN32

• PR #17725225 - Fixing Problems in MPI parcelport and future serialization.

• PR #17715226 - Fixing intel 13 compiler errors related to variadic template template parameters for lcos::when_
tests

• PR #17705227 - Forwarding decay to std::

• PR #17695228 - Add more characters with special regex meaning to the existing patch

• PR #17685229 - Adding test for receive_buffer

• PR #17675230 - Making sure that uptime counter throws exception on any attempt to be reset

• PR #17665231 - Cleaning up code related to throttling scheduler

• PR #17655232 - Restricting thread_data to creating only with intrusive_pointers

• PR #17645233 - Fixing 1763

• Issue #17635234 - UB in thread_data::operator delete

• PR #17625235 - Making sure all serialization registries/factories are unique

• PR #17615236 - Fixed #1751: hpx::future::wait_for fails a simple test

• PR #17585237 - Fixing #1757

• Issue #17575238 - pinning not correct using –hpx:bind

• Issue #17565239 - compilation error with MinGW

• PR #17555240 - Making output serialization const-correct

• Issue #17535241 - HPX performance degrades with time since execution begins
5219 https://github.com/STEllAR-GROUP/hpx/pull/1778
5220 https://github.com/STEllAR-GROUP/hpx/pull/1777
5221 https://github.com/STEllAR-GROUP/hpx/pull/1776
5222 https://github.com/STEllAR-GROUP/hpx/pull/1775
5223 https://github.com/STEllAR-GROUP/hpx/pull/1774
5224 https://github.com/STEllAR-GROUP/hpx/pull/1773
5225 https://github.com/STEllAR-GROUP/hpx/pull/1772
5226 https://github.com/STEllAR-GROUP/hpx/pull/1771
5227 https://github.com/STEllAR-GROUP/hpx/pull/1770
5228 https://github.com/STEllAR-GROUP/hpx/pull/1769
5229 https://github.com/STEllAR-GROUP/hpx/pull/1768
5230 https://github.com/STEllAR-GROUP/hpx/pull/1767
5231 https://github.com/STEllAR-GROUP/hpx/pull/1766
5232 https://github.com/STEllAR-GROUP/hpx/pull/1765
5233 https://github.com/STEllAR-GROUP/hpx/pull/1764
5234 https://github.com/STEllAR-GROUP/hpx/issues/1763
5235 https://github.com/STEllAR-GROUP/hpx/pull/1762
5236 https://github.com/STEllAR-GROUP/hpx/pull/1761
5237 https://github.com/STEllAR-GROUP/hpx/pull/1758
5238 https://github.com/STEllAR-GROUP/hpx/issues/1757
5239 https://github.com/STEllAR-GROUP/hpx/issues/1756
5240 https://github.com/STEllAR-GROUP/hpx/pull/1755
5241 https://github.com/STEllAR-GROUP/hpx/issues/1753

2.10. Releases 1771

https://github.com/STEllAR-GROUP/hpx/pull/1778
https://github.com/STEllAR-GROUP/hpx/pull/1777
https://github.com/STEllAR-GROUP/hpx/pull/1776
https://github.com/STEllAR-GROUP/hpx/pull/1775
https://github.com/STEllAR-GROUP/hpx/pull/1774
https://github.com/STEllAR-GROUP/hpx/pull/1773
https://github.com/STEllAR-GROUP/hpx/pull/1772
https://github.com/STEllAR-GROUP/hpx/pull/1771
https://github.com/STEllAR-GROUP/hpx/pull/1770
https://github.com/STEllAR-GROUP/hpx/pull/1769
https://github.com/STEllAR-GROUP/hpx/pull/1768
https://github.com/STEllAR-GROUP/hpx/pull/1767
https://github.com/STEllAR-GROUP/hpx/pull/1766
https://github.com/STEllAR-GROUP/hpx/pull/1765
https://github.com/STEllAR-GROUP/hpx/pull/1764
https://github.com/STEllAR-GROUP/hpx/issues/1763
https://github.com/STEllAR-GROUP/hpx/pull/1762
https://github.com/STEllAR-GROUP/hpx/pull/1761
https://github.com/STEllAR-GROUP/hpx/pull/1758
https://github.com/STEllAR-GROUP/hpx/issues/1757
https://github.com/STEllAR-GROUP/hpx/issues/1756
https://github.com/STEllAR-GROUP/hpx/pull/1755
https://github.com/STEllAR-GROUP/hpx/issues/1753

HPX Documentation, master

• Issue #17525242 - Error in AGAS

• Issue #17515243 - hpx::future::wait_for fails a simple test

• PR #17505244 - Removing hpx_fwd.hpp includes

• PR #17495245 - Simplify result_of and friends

• PR #17475246 - Removed superfluous code from message_buffer.hpp

• PR #17465247 - Tuple dependencies

• Issue #17455248 - Broken when_some which takes iterators

• PR #17445249 - Refining archive interface

• PR #17435250 - Fixing when_all when only a single future is passed

• PR #17425251 - Config includes

• PR #17415252 - Os executors

• Issue #17405253 - hpx::promise has some problems

• PR #17395254 - Parallel composition with generic containers

• Issue #17385255 - After building program and successfully linking to a version of hpx DHPX_DIR seems to be
ignored

• Issue #17375256 - Uptime problems

• PR #17365257 - added convenience c-tor and begin()/end() to serialize_buffer

• PR #17355258 - Config includes

• PR #17345259 - Fixed #1688: Add timer counters for tfunc_total and exec_total

• Issue #17335260 - Add unit test for hpx/lcos/local/receive_buffer.hpp

• PR #17325261 - Renaming get_os_thread_count

• PR #17315262 - Basename registration

• Issue #17305263 - Use after move of thread_init_data

• PR #17295264 - Rewriting channel based on new gate component
5242 https://github.com/STEllAR-GROUP/hpx/issues/1752
5243 https://github.com/STEllAR-GROUP/hpx/issues/1751
5244 https://github.com/STEllAR-GROUP/hpx/pull/1750
5245 https://github.com/STEllAR-GROUP/hpx/pull/1749
5246 https://github.com/STEllAR-GROUP/hpx/pull/1747
5247 https://github.com/STEllAR-GROUP/hpx/pull/1746
5248 https://github.com/STEllAR-GROUP/hpx/issues/1745
5249 https://github.com/STEllAR-GROUP/hpx/pull/1744
5250 https://github.com/STEllAR-GROUP/hpx/pull/1743
5251 https://github.com/STEllAR-GROUP/hpx/pull/1742
5252 https://github.com/STEllAR-GROUP/hpx/pull/1741
5253 https://github.com/STEllAR-GROUP/hpx/issues/1740
5254 https://github.com/STEllAR-GROUP/hpx/pull/1739
5255 https://github.com/STEllAR-GROUP/hpx/issues/1738
5256 https://github.com/STEllAR-GROUP/hpx/issues/1737
5257 https://github.com/STEllAR-GROUP/hpx/pull/1736
5258 https://github.com/STEllAR-GROUP/hpx/pull/1735
5259 https://github.com/STEllAR-GROUP/hpx/pull/1734
5260 https://github.com/STEllAR-GROUP/hpx/issues/1733
5261 https://github.com/STEllAR-GROUP/hpx/pull/1732
5262 https://github.com/STEllAR-GROUP/hpx/pull/1731
5263 https://github.com/STEllAR-GROUP/hpx/issues/1730
5264 https://github.com/STEllAR-GROUP/hpx/pull/1729

1772 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1752
https://github.com/STEllAR-GROUP/hpx/issues/1751
https://github.com/STEllAR-GROUP/hpx/pull/1750
https://github.com/STEllAR-GROUP/hpx/pull/1749
https://github.com/STEllAR-GROUP/hpx/pull/1747
https://github.com/STEllAR-GROUP/hpx/pull/1746
https://github.com/STEllAR-GROUP/hpx/issues/1745
https://github.com/STEllAR-GROUP/hpx/pull/1744
https://github.com/STEllAR-GROUP/hpx/pull/1743
https://github.com/STEllAR-GROUP/hpx/pull/1742
https://github.com/STEllAR-GROUP/hpx/pull/1741
https://github.com/STEllAR-GROUP/hpx/issues/1740
https://github.com/STEllAR-GROUP/hpx/pull/1739
https://github.com/STEllAR-GROUP/hpx/issues/1738
https://github.com/STEllAR-GROUP/hpx/issues/1737
https://github.com/STEllAR-GROUP/hpx/pull/1736
https://github.com/STEllAR-GROUP/hpx/pull/1735
https://github.com/STEllAR-GROUP/hpx/pull/1734
https://github.com/STEllAR-GROUP/hpx/issues/1733
https://github.com/STEllAR-GROUP/hpx/pull/1732
https://github.com/STEllAR-GROUP/hpx/pull/1731
https://github.com/STEllAR-GROUP/hpx/issues/1730
https://github.com/STEllAR-GROUP/hpx/pull/1729

HPX Documentation, master

• PR #17285265 - Fixing #1722

• PR #17275266 - Fixing compile problems with apply_colocated

• PR #17265267 - Apex integration

• PR #17255268 - fixed test timeouts

• PR #17245269 - Renaming vector

• Issue #17235270 - Drop support for intel compilers and gcc 4.4. based standard libs

• Issue #17225271 - Add support for detecting non-ready futures before serialization

• PR #17215272 - Unifying parallel executors, initializing from launch policy

• PR #17205273 - dropped superfluous typedef

• Issue #17185274 - Windows 10 x64, VS 2015 - Unknown CMake command “add_hpx_pseudo_target”.

• PR #17175275 - Timed executor traits for thread-executors

• PR #17165276 - serialization of arrays didn’t work with non-pod types. fixed

• PR #17155277 - List serialization

• PR #17145278 - changing misspellings

• PR #17135279 - Fixed distribution policy executors

• PR #17125280 - Moving library detection to be executed after feature tests

• PR #17115281 - Simplify parcel

• PR #17105282 - Compile only tests

• PR #17095283 - Implemented timed executors

• PR #17085284 - Implement parallel::executor_traits for thread-executors

• PR #17075285 - Various fixes to threads::executors to make custom schedulers work

• PR #17065286 - Command line option –hpx:cores does not work as expected

• Issue #17055287 - command line option –hpx:cores does not work as expected
5265 https://github.com/STEllAR-GROUP/hpx/pull/1728
5266 https://github.com/STEllAR-GROUP/hpx/pull/1727
5267 https://github.com/STEllAR-GROUP/hpx/pull/1726
5268 https://github.com/STEllAR-GROUP/hpx/pull/1725
5269 https://github.com/STEllAR-GROUP/hpx/pull/1724
5270 https://github.com/STEllAR-GROUP/hpx/issues/1723
5271 https://github.com/STEllAR-GROUP/hpx/issues/1722
5272 https://github.com/STEllAR-GROUP/hpx/pull/1721
5273 https://github.com/STEllAR-GROUP/hpx/pull/1720
5274 https://github.com/STEllAR-GROUP/hpx/issues/1718
5275 https://github.com/STEllAR-GROUP/hpx/pull/1717
5276 https://github.com/STEllAR-GROUP/hpx/pull/1716
5277 https://github.com/STEllAR-GROUP/hpx/pull/1715
5278 https://github.com/STEllAR-GROUP/hpx/pull/1714
5279 https://github.com/STEllAR-GROUP/hpx/pull/1713
5280 https://github.com/STEllAR-GROUP/hpx/pull/1712
5281 https://github.com/STEllAR-GROUP/hpx/pull/1711
5282 https://github.com/STEllAR-GROUP/hpx/pull/1710
5283 https://github.com/STEllAR-GROUP/hpx/pull/1709
5284 https://github.com/STEllAR-GROUP/hpx/pull/1708
5285 https://github.com/STEllAR-GROUP/hpx/pull/1707
5286 https://github.com/STEllAR-GROUP/hpx/pull/1706
5287 https://github.com/STEllAR-GROUP/hpx/issues/1705

2.10. Releases 1773

https://github.com/STEllAR-GROUP/hpx/pull/1728
https://github.com/STEllAR-GROUP/hpx/pull/1727
https://github.com/STEllAR-GROUP/hpx/pull/1726
https://github.com/STEllAR-GROUP/hpx/pull/1725
https://github.com/STEllAR-GROUP/hpx/pull/1724
https://github.com/STEllAR-GROUP/hpx/issues/1723
https://github.com/STEllAR-GROUP/hpx/issues/1722
https://github.com/STEllAR-GROUP/hpx/pull/1721
https://github.com/STEllAR-GROUP/hpx/pull/1720
https://github.com/STEllAR-GROUP/hpx/issues/1718
https://github.com/STEllAR-GROUP/hpx/pull/1717
https://github.com/STEllAR-GROUP/hpx/pull/1716
https://github.com/STEllAR-GROUP/hpx/pull/1715
https://github.com/STEllAR-GROUP/hpx/pull/1714
https://github.com/STEllAR-GROUP/hpx/pull/1713
https://github.com/STEllAR-GROUP/hpx/pull/1712
https://github.com/STEllAR-GROUP/hpx/pull/1711
https://github.com/STEllAR-GROUP/hpx/pull/1710
https://github.com/STEllAR-GROUP/hpx/pull/1709
https://github.com/STEllAR-GROUP/hpx/pull/1708
https://github.com/STEllAR-GROUP/hpx/pull/1707
https://github.com/STEllAR-GROUP/hpx/pull/1706
https://github.com/STEllAR-GROUP/hpx/issues/1705

HPX Documentation, master

• PR #17045288 - vector deserialization is speeded up a little

• PR #17035289 - Fixing shared_mutes

• Issue #17025290 - Shared_mutex does not compile with no_mutex cond_var

• PR #17015291 - Add distribution_policy_executor

• PR #17005292 - Executor parameters

• PR #16995293 - Readers writer lock

• PR #16985294 - Remove leftovers

• PR #16975295 - Fixing held locks

• PR #16965296 - Modified Scan Partitioner for Algorithms

• PR #16955297 - This thread executors

• PR #16945298 - Fixed #1688: Add timer counters for tfunc_total and exec_total

• PR #16935299 - Fix #1691: is_executor template specification fails for inherited executors

• PR #16925300 - Fixed #1662: Possible exception source in coalescing_message_handler

• Issue #16915301 - is_executor template specification fails for inherited executors

• PR #16905302 - added macro for non-intrusive serialization of classes without a default c-tor

• PR #16895303 - Replace value_or_error with custom storage, unify future_data state

• Issue #16885304 - Add timer counters for tfunc_total and exec_total

• PR #16875305 - Fixed interval timer

• PR #16865306 - Fixing cmake warnings about not existing pseudo target dependencies

• PR #16855307 - Converting partitioners to use bulk async execute

• PR #16835308 - Adds a tool for inspect that checks for character limits

• PR #16825309 - Change project name to (uppercase) HPX

• PR #16815310 - Counter shortnames
5288 https://github.com/STEllAR-GROUP/hpx/pull/1704
5289 https://github.com/STEllAR-GROUP/hpx/pull/1703
5290 https://github.com/STEllAR-GROUP/hpx/issues/1702
5291 https://github.com/STEllAR-GROUP/hpx/pull/1701
5292 https://github.com/STEllAR-GROUP/hpx/pull/1700
5293 https://github.com/STEllAR-GROUP/hpx/pull/1699
5294 https://github.com/STEllAR-GROUP/hpx/pull/1698
5295 https://github.com/STEllAR-GROUP/hpx/pull/1697
5296 https://github.com/STEllAR-GROUP/hpx/pull/1696
5297 https://github.com/STEllAR-GROUP/hpx/pull/1695
5298 https://github.com/STEllAR-GROUP/hpx/pull/1694
5299 https://github.com/STEllAR-GROUP/hpx/pull/1693
5300 https://github.com/STEllAR-GROUP/hpx/pull/1692
5301 https://github.com/STEllAR-GROUP/hpx/issues/1691
5302 https://github.com/STEllAR-GROUP/hpx/pull/1690
5303 https://github.com/STEllAR-GROUP/hpx/pull/1689
5304 https://github.com/STEllAR-GROUP/hpx/issues/1688
5305 https://github.com/STEllAR-GROUP/hpx/pull/1687
5306 https://github.com/STEllAR-GROUP/hpx/pull/1686
5307 https://github.com/STEllAR-GROUP/hpx/pull/1685
5308 https://github.com/STEllAR-GROUP/hpx/pull/1683
5309 https://github.com/STEllAR-GROUP/hpx/pull/1682
5310 https://github.com/STEllAR-GROUP/hpx/pull/1681

1774 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1704
https://github.com/STEllAR-GROUP/hpx/pull/1703
https://github.com/STEllAR-GROUP/hpx/issues/1702
https://github.com/STEllAR-GROUP/hpx/pull/1701
https://github.com/STEllAR-GROUP/hpx/pull/1700
https://github.com/STEllAR-GROUP/hpx/pull/1699
https://github.com/STEllAR-GROUP/hpx/pull/1698
https://github.com/STEllAR-GROUP/hpx/pull/1697
https://github.com/STEllAR-GROUP/hpx/pull/1696
https://github.com/STEllAR-GROUP/hpx/pull/1695
https://github.com/STEllAR-GROUP/hpx/pull/1694
https://github.com/STEllAR-GROUP/hpx/pull/1693
https://github.com/STEllAR-GROUP/hpx/pull/1692
https://github.com/STEllAR-GROUP/hpx/issues/1691
https://github.com/STEllAR-GROUP/hpx/pull/1690
https://github.com/STEllAR-GROUP/hpx/pull/1689
https://github.com/STEllAR-GROUP/hpx/issues/1688
https://github.com/STEllAR-GROUP/hpx/pull/1687
https://github.com/STEllAR-GROUP/hpx/pull/1686
https://github.com/STEllAR-GROUP/hpx/pull/1685
https://github.com/STEllAR-GROUP/hpx/pull/1683
https://github.com/STEllAR-GROUP/hpx/pull/1682
https://github.com/STEllAR-GROUP/hpx/pull/1681

HPX Documentation, master

• PR #16805311 - Extended Non-intrusive Serialization to Ease Usage for Library Developers

• PR #16795312 - Working on 1544: More executor changes

• PR #16785313 - Transpose fixes

• PR #16775314 - Improve Boost compatibility check

• PR #16765315 - 1d stencil fix

• Issue #16755316 - hpx project name is not HPX

• PR #16745317 - Fixing the MPI parcelport

• PR #16735318 - added move semantics to map/vector deserialization

• PR #16725319 - Vs2015 await

• PR #16715320 - Adapt transform for #1668

• PR #16705321 - Started to work on #1668

• PR #16695322 - Add this_thread_executors

• Issue #16675323 - Apple build instructions in docs are out of date

• PR #16665324 - Apex integration

• PR #16655325 - Fixes an error with the whitespace check that showed the incorrect location of the error

• Issue #16645326 - Inspect tool found incorrect endline whitespace

• PR #16635327 - Improve use of locks

• Issue #16625328 - Possible exception source in coalescing_message_handler

• PR #16615329 - Added support for 128bit number serialization

• PR #16605330 - Serialization 128bits

• PR #16595331 - Implemented inner_product and adjacent_diff algos

• PR #16585332 - Add serialization for std::set (as there is for std::vector and std::map)

• PR #16575333 - Use of shared_ptr in io_service_pool changed to unique_ptr
5311 https://github.com/STEllAR-GROUP/hpx/pull/1680
5312 https://github.com/STEllAR-GROUP/hpx/pull/1679
5313 https://github.com/STEllAR-GROUP/hpx/pull/1678
5314 https://github.com/STEllAR-GROUP/hpx/pull/1677
5315 https://github.com/STEllAR-GROUP/hpx/pull/1676
5316 https://github.com/STEllAR-GROUP/hpx/issues/1675
5317 https://github.com/STEllAR-GROUP/hpx/pull/1674
5318 https://github.com/STEllAR-GROUP/hpx/pull/1673
5319 https://github.com/STEllAR-GROUP/hpx/pull/1672
5320 https://github.com/STEllAR-GROUP/hpx/pull/1671
5321 https://github.com/STEllAR-GROUP/hpx/pull/1670
5322 https://github.com/STEllAR-GROUP/hpx/pull/1669
5323 https://github.com/STEllAR-GROUP/hpx/issues/1667
5324 https://github.com/STEllAR-GROUP/hpx/pull/1666
5325 https://github.com/STEllAR-GROUP/hpx/pull/1665
5326 https://github.com/STEllAR-GROUP/hpx/issues/1664
5327 https://github.com/STEllAR-GROUP/hpx/pull/1663
5328 https://github.com/STEllAR-GROUP/hpx/issues/1662
5329 https://github.com/STEllAR-GROUP/hpx/pull/1661
5330 https://github.com/STEllAR-GROUP/hpx/pull/1660
5331 https://github.com/STEllAR-GROUP/hpx/pull/1659
5332 https://github.com/STEllAR-GROUP/hpx/pull/1658
5333 https://github.com/STEllAR-GROUP/hpx/pull/1657

2.10. Releases 1775

https://github.com/STEllAR-GROUP/hpx/pull/1680
https://github.com/STEllAR-GROUP/hpx/pull/1679
https://github.com/STEllAR-GROUP/hpx/pull/1678
https://github.com/STEllAR-GROUP/hpx/pull/1677
https://github.com/STEllAR-GROUP/hpx/pull/1676
https://github.com/STEllAR-GROUP/hpx/issues/1675
https://github.com/STEllAR-GROUP/hpx/pull/1674
https://github.com/STEllAR-GROUP/hpx/pull/1673
https://github.com/STEllAR-GROUP/hpx/pull/1672
https://github.com/STEllAR-GROUP/hpx/pull/1671
https://github.com/STEllAR-GROUP/hpx/pull/1670
https://github.com/STEllAR-GROUP/hpx/pull/1669
https://github.com/STEllAR-GROUP/hpx/issues/1667
https://github.com/STEllAR-GROUP/hpx/pull/1666
https://github.com/STEllAR-GROUP/hpx/pull/1665
https://github.com/STEllAR-GROUP/hpx/issues/1664
https://github.com/STEllAR-GROUP/hpx/pull/1663
https://github.com/STEllAR-GROUP/hpx/issues/1662
https://github.com/STEllAR-GROUP/hpx/pull/1661
https://github.com/STEllAR-GROUP/hpx/pull/1660
https://github.com/STEllAR-GROUP/hpx/pull/1659
https://github.com/STEllAR-GROUP/hpx/pull/1658
https://github.com/STEllAR-GROUP/hpx/pull/1657

HPX Documentation, master

• Issue #16565334 - 1d_stencil codes all have wrong factor

• PR #16545335 - When using runtime_mode_connect, find the correct localhost public ip address

• PR #16535336 - Fixing 1617

• PR #16525337 - Remove traits::action_may_require_id_splitting

• PR #16515338 - Fixed performance counters related to AGAS cache timings

• PR #16505339 - Remove leftovers of traits::type_size

• PR #16495340 - Shorten target names on Windows to shorten used path names

• PR #16485341 - Fixing problems introduced by merging #1623 for older compilers

• PR #16475342 - Simplify running automatic builds on Windows

• Issue #16465343 - Cache insert and update performance counters are broken

• Issue #16445344 - Remove leftovers of traits::type_size

• Issue #16435345 - Remove traits::action_may_require_id_splitting

• PR #16425346 - Adds spell checker to the inspect tool for qbk and doxygen comments

• PR #16405347 - First step towards fixing 688

• PR #16395348 - Re-apply remaining changes from limit_dataflow_recursion branch

• PR #16385349 - This fixes possible deadlock in the test ignore_while_locked_1485

• PR #16375350 - Fixing hpx::wait_all() invoked with two vector<future<T>>

• PR #16365351 - Partially re-apply changes from limit_dataflow_recursion branch

• PR #16355352 - Adding missing test for #1572

• PR #16345353 - Revert “Limit recursion-depth in dataflow to a configurable constant”

• PR #16335354 - Add command line option to ignore batch environment

• PR #16315355 - hpx::lcos::queue exhibits strange behavior

• PR #16305356 - Fixed endline_whitespace_check.cpp to detect lines with only whitespace
5334 https://github.com/STEllAR-GROUP/hpx/issues/1656
5335 https://github.com/STEllAR-GROUP/hpx/pull/1654
5336 https://github.com/STEllAR-GROUP/hpx/pull/1653
5337 https://github.com/STEllAR-GROUP/hpx/pull/1652
5338 https://github.com/STEllAR-GROUP/hpx/pull/1651
5339 https://github.com/STEllAR-GROUP/hpx/pull/1650
5340 https://github.com/STEllAR-GROUP/hpx/pull/1649
5341 https://github.com/STEllAR-GROUP/hpx/pull/1648
5342 https://github.com/STEllAR-GROUP/hpx/pull/1647
5343 https://github.com/STEllAR-GROUP/hpx/issues/1646
5344 https://github.com/STEllAR-GROUP/hpx/issues/1644
5345 https://github.com/STEllAR-GROUP/hpx/issues/1643
5346 https://github.com/STEllAR-GROUP/hpx/pull/1642
5347 https://github.com/STEllAR-GROUP/hpx/pull/1640
5348 https://github.com/STEllAR-GROUP/hpx/pull/1639
5349 https://github.com/STEllAR-GROUP/hpx/pull/1638
5350 https://github.com/STEllAR-GROUP/hpx/pull/1637
5351 https://github.com/STEllAR-GROUP/hpx/pull/1636
5352 https://github.com/STEllAR-GROUP/hpx/pull/1635
5353 https://github.com/STEllAR-GROUP/hpx/pull/1634
5354 https://github.com/STEllAR-GROUP/hpx/pull/1633
5355 https://github.com/STEllAR-GROUP/hpx/pull/1631
5356 https://github.com/STEllAR-GROUP/hpx/pull/1630

1776 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1656
https://github.com/STEllAR-GROUP/hpx/pull/1654
https://github.com/STEllAR-GROUP/hpx/pull/1653
https://github.com/STEllAR-GROUP/hpx/pull/1652
https://github.com/STEllAR-GROUP/hpx/pull/1651
https://github.com/STEllAR-GROUP/hpx/pull/1650
https://github.com/STEllAR-GROUP/hpx/pull/1649
https://github.com/STEllAR-GROUP/hpx/pull/1648
https://github.com/STEllAR-GROUP/hpx/pull/1647
https://github.com/STEllAR-GROUP/hpx/issues/1646
https://github.com/STEllAR-GROUP/hpx/issues/1644
https://github.com/STEllAR-GROUP/hpx/issues/1643
https://github.com/STEllAR-GROUP/hpx/pull/1642
https://github.com/STEllAR-GROUP/hpx/pull/1640
https://github.com/STEllAR-GROUP/hpx/pull/1639
https://github.com/STEllAR-GROUP/hpx/pull/1638
https://github.com/STEllAR-GROUP/hpx/pull/1637
https://github.com/STEllAR-GROUP/hpx/pull/1636
https://github.com/STEllAR-GROUP/hpx/pull/1635
https://github.com/STEllAR-GROUP/hpx/pull/1634
https://github.com/STEllAR-GROUP/hpx/pull/1633
https://github.com/STEllAR-GROUP/hpx/pull/1631
https://github.com/STEllAR-GROUP/hpx/pull/1630

HPX Documentation, master

• Issue #16295357 - Inspect trailing whitespace checker problem

• PR #16285358 - Removed meaningless const qualifiers. Minor icpc fix.

• PR #16275359 - Fixing the queue LCO and add example demonstrating its use

• PR #16265360 - Deprecating get_gid(), add get_id() and get_unmanaged_id()

• PR #16255361 - Allowing to specify whether to send credits along with message

• Issue #16245362 - Lifetime issue

• Issue #16235363 - hpx::wait_all() invoked with two vector<future<T>> fails

• PR #16225364 - Executor partitioners

• PR #16215365 - Clean up coroutines implementation

• Issue #16205366 - Revert #1535

• PR #16195367 - Fix result type calculation for hpx::make_continuation

• PR #16185368 - Fixing RDTSC on Xeon/Phi

• Issue #16175369 - hpx cmake not working when run as a subproject

• Issue #16165370 - cmake problem resulting in RDTSC not working correctly for Xeon Phi creates very strange
results for duration counters

• Issue #16155371 - hpx::make_continuation requires input and output to be the same

• PR #16145372 - Fixed remove copy test

• Issue #16135373 - Dataflow causes stack overflow

• PR #16125374 - Modified foreach partitioner to use bulk execute

• PR #16115375 - Limit recursion-depth in dataflow to a configurable constant

• PR #16105376 - Increase timeout for CircleCI

• PR #16095377 - Refactoring thread manager, mainly extracting thread pool

• PR #16085378 - Fixed running multiple localities without localities parameter

• PR #16075379 - More algorithm fixes to adjacentfind
5357 https://github.com/STEllAR-GROUP/hpx/issues/1629
5358 https://github.com/STEllAR-GROUP/hpx/pull/1628
5359 https://github.com/STEllAR-GROUP/hpx/pull/1627
5360 https://github.com/STEllAR-GROUP/hpx/pull/1626
5361 https://github.com/STEllAR-GROUP/hpx/pull/1625
5362 https://github.com/STEllAR-GROUP/hpx/issues/1624
5363 https://github.com/STEllAR-GROUP/hpx/issues/1623
5364 https://github.com/STEllAR-GROUP/hpx/pull/1622
5365 https://github.com/STEllAR-GROUP/hpx/pull/1621
5366 https://github.com/STEllAR-GROUP/hpx/issues/1620
5367 https://github.com/STEllAR-GROUP/hpx/pull/1619
5368 https://github.com/STEllAR-GROUP/hpx/pull/1618
5369 https://github.com/STEllAR-GROUP/hpx/issues/1617
5370 https://github.com/STEllAR-GROUP/hpx/issues/1616
5371 https://github.com/STEllAR-GROUP/hpx/issues/1615
5372 https://github.com/STEllAR-GROUP/hpx/pull/1614
5373 https://github.com/STEllAR-GROUP/hpx/issues/1613
5374 https://github.com/STEllAR-GROUP/hpx/pull/1612
5375 https://github.com/STEllAR-GROUP/hpx/pull/1611
5376 https://github.com/STEllAR-GROUP/hpx/pull/1610
5377 https://github.com/STEllAR-GROUP/hpx/pull/1609
5378 https://github.com/STEllAR-GROUP/hpx/pull/1608
5379 https://github.com/STEllAR-GROUP/hpx/pull/1607

2.10. Releases 1777

https://github.com/STEllAR-GROUP/hpx/issues/1629
https://github.com/STEllAR-GROUP/hpx/pull/1628
https://github.com/STEllAR-GROUP/hpx/pull/1627
https://github.com/STEllAR-GROUP/hpx/pull/1626
https://github.com/STEllAR-GROUP/hpx/pull/1625
https://github.com/STEllAR-GROUP/hpx/issues/1624
https://github.com/STEllAR-GROUP/hpx/issues/1623
https://github.com/STEllAR-GROUP/hpx/pull/1622
https://github.com/STEllAR-GROUP/hpx/pull/1621
https://github.com/STEllAR-GROUP/hpx/issues/1620
https://github.com/STEllAR-GROUP/hpx/pull/1619
https://github.com/STEllAR-GROUP/hpx/pull/1618
https://github.com/STEllAR-GROUP/hpx/issues/1617
https://github.com/STEllAR-GROUP/hpx/issues/1616
https://github.com/STEllAR-GROUP/hpx/issues/1615
https://github.com/STEllAR-GROUP/hpx/pull/1614
https://github.com/STEllAR-GROUP/hpx/issues/1613
https://github.com/STEllAR-GROUP/hpx/pull/1612
https://github.com/STEllAR-GROUP/hpx/pull/1611
https://github.com/STEllAR-GROUP/hpx/pull/1610
https://github.com/STEllAR-GROUP/hpx/pull/1609
https://github.com/STEllAR-GROUP/hpx/pull/1608
https://github.com/STEllAR-GROUP/hpx/pull/1607

HPX Documentation, master

• Issue #16065380 - Running without localities parameter binds to bogus port range

• Issue #16055381 - Too many serializations

• PR #16045382 - Changes the HPX image into a hyperlink

• PR #16015383 - Fixing problems with remove_copy algorithm tests

• PR #16005384 - Actions with ids cleanup

• PR #15995385 - Duplicate binding of global ids should fail

• PR #15985386 - Fixing array access

• PR #15975387 - Improved the reliability of connecting/disconnecting localities

• Issue #15965388 - Duplicate id binding should fail

• PR #15955389 - Fixing more cmake config constants

• PR #15945390 - Fixing preprocessor constant used to enable C++11 chrono

• PR #15935391 - Adding operator|() for hpx::launch

• Issue #15925392 - Error (typo) in the docs

• Issue #15905393 - CMake fails when CMAKE_BINARY_DIR contains ‘+’.

• Issue #15895394 - Disconnecting a locality results in segfault using heartbeat example

• PR #15885395 - Fix doc string for config option HPX_WITH_EXAMPLES

• PR #15865396 - Fixing 1493

• PR #15855397 - Additional Check for Inspect Tool to detect Endline Whitespace

• Issue #15845398 - Clean up coroutines implementation

• PR #15835399 - Adding a check for end line whitespace

• PR #15825400 - Attempt to fix assert firing after scheduling loop was exited

• PR #15815401 - Fixed adjacentfind_binary test

• PR #15805402 - Prevent some of the internal cmake lists from growing indefinitely
5380 https://github.com/STEllAR-GROUP/hpx/issues/1606
5381 https://github.com/STEllAR-GROUP/hpx/issues/1605
5382 https://github.com/STEllAR-GROUP/hpx/pull/1604
5383 https://github.com/STEllAR-GROUP/hpx/pull/1601
5384 https://github.com/STEllAR-GROUP/hpx/pull/1600
5385 https://github.com/STEllAR-GROUP/hpx/pull/1599
5386 https://github.com/STEllAR-GROUP/hpx/pull/1598
5387 https://github.com/STEllAR-GROUP/hpx/pull/1597
5388 https://github.com/STEllAR-GROUP/hpx/issues/1596
5389 https://github.com/STEllAR-GROUP/hpx/pull/1595
5390 https://github.com/STEllAR-GROUP/hpx/pull/1594
5391 https://github.com/STEllAR-GROUP/hpx/pull/1593
5392 https://github.com/STEllAR-GROUP/hpx/issues/1592
5393 https://github.com/STEllAR-GROUP/hpx/issues/1590
5394 https://github.com/STEllAR-GROUP/hpx/issues/1589
5395 https://github.com/STEllAR-GROUP/hpx/pull/1588
5396 https://github.com/STEllAR-GROUP/hpx/pull/1586
5397 https://github.com/STEllAR-GROUP/hpx/pull/1585
5398 https://github.com/STEllAR-GROUP/hpx/issues/1584
5399 https://github.com/STEllAR-GROUP/hpx/pull/1583
5400 https://github.com/STEllAR-GROUP/hpx/pull/1582
5401 https://github.com/STEllAR-GROUP/hpx/pull/1581
5402 https://github.com/STEllAR-GROUP/hpx/pull/1580

1778 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1606
https://github.com/STEllAR-GROUP/hpx/issues/1605
https://github.com/STEllAR-GROUP/hpx/pull/1604
https://github.com/STEllAR-GROUP/hpx/pull/1601
https://github.com/STEllAR-GROUP/hpx/pull/1600
https://github.com/STEllAR-GROUP/hpx/pull/1599
https://github.com/STEllAR-GROUP/hpx/pull/1598
https://github.com/STEllAR-GROUP/hpx/pull/1597
https://github.com/STEllAR-GROUP/hpx/issues/1596
https://github.com/STEllAR-GROUP/hpx/pull/1595
https://github.com/STEllAR-GROUP/hpx/pull/1594
https://github.com/STEllAR-GROUP/hpx/pull/1593
https://github.com/STEllAR-GROUP/hpx/issues/1592
https://github.com/STEllAR-GROUP/hpx/issues/1590
https://github.com/STEllAR-GROUP/hpx/issues/1589
https://github.com/STEllAR-GROUP/hpx/pull/1588
https://github.com/STEllAR-GROUP/hpx/pull/1586
https://github.com/STEllAR-GROUP/hpx/pull/1585
https://github.com/STEllAR-GROUP/hpx/issues/1584
https://github.com/STEllAR-GROUP/hpx/pull/1583
https://github.com/STEllAR-GROUP/hpx/pull/1582
https://github.com/STEllAR-GROUP/hpx/pull/1581
https://github.com/STEllAR-GROUP/hpx/pull/1580

HPX Documentation, master

• PR #15795403 - Removing type_size trait, replacing it with special archive type

• Issue #15785404 - Remove demangle_helper

• PR #15775405 - Get ptr problems

• Issue #15765406 - Refactor async, dataflow, and future::then

• PR #15755407 - Fixing tests for parallel rotate

• PR #15745408 - Cleaning up schedulers

• PR #15735409 - Fixing thread pool executor

• PR #15725410 - Fixing number of configured localities

• PR #15715411 - Reimplement decay

• PR #15705412 - Refactoring async, apply, and dataflow APIs

• PR #15695413 - Changed range for mach-o library lookup

• PR #15685414 - Mark decltype support as required

• PR #15675415 - Removed const from algorithms

• Issue #15665416 - CMAKE Configuration Test Failures for clang 3.5 on debian

• PR #15655417 - Dylib support

• PR #15645418 - Converted partitioners and some algorithms to use executors

• PR #15635419 - Fix several #includes for Boost.Preprocessor

• PR #15625420 - Adding configuration option disabling/enabling all message handlers

• PR #15615421 - Removed all occurrences of boost::move replacing it with std::move

• Issue #15605422 - Leftover HPX_REGISTER_ACTION_DECLARATION_2

• PR #15585423 - Revisit async/apply SFINAE conditions

• PR #15575424 - Removing type_size trait, replacing it with special archive type

• PR #15565425 - Executor algorithms
5403 https://github.com/STEllAR-GROUP/hpx/pull/1579
5404 https://github.com/STEllAR-GROUP/hpx/issues/1578
5405 https://github.com/STEllAR-GROUP/hpx/pull/1577
5406 https://github.com/STEllAR-GROUP/hpx/issues/1576
5407 https://github.com/STEllAR-GROUP/hpx/pull/1575
5408 https://github.com/STEllAR-GROUP/hpx/pull/1574
5409 https://github.com/STEllAR-GROUP/hpx/pull/1573
5410 https://github.com/STEllAR-GROUP/hpx/pull/1572
5411 https://github.com/STEllAR-GROUP/hpx/pull/1571
5412 https://github.com/STEllAR-GROUP/hpx/pull/1570
5413 https://github.com/STEllAR-GROUP/hpx/pull/1569
5414 https://github.com/STEllAR-GROUP/hpx/pull/1568
5415 https://github.com/STEllAR-GROUP/hpx/pull/1567
5416 https://github.com/STEllAR-GROUP/hpx/issues/1566
5417 https://github.com/STEllAR-GROUP/hpx/pull/1565
5418 https://github.com/STEllAR-GROUP/hpx/pull/1564
5419 https://github.com/STEllAR-GROUP/hpx/pull/1563
5420 https://github.com/STEllAR-GROUP/hpx/pull/1562
5421 https://github.com/STEllAR-GROUP/hpx/pull/1561
5422 https://github.com/STEllAR-GROUP/hpx/issues/1560
5423 https://github.com/STEllAR-GROUP/hpx/pull/1558
5424 https://github.com/STEllAR-GROUP/hpx/pull/1557
5425 https://github.com/STEllAR-GROUP/hpx/pull/1556

2.10. Releases 1779

https://github.com/STEllAR-GROUP/hpx/pull/1579
https://github.com/STEllAR-GROUP/hpx/issues/1578
https://github.com/STEllAR-GROUP/hpx/pull/1577
https://github.com/STEllAR-GROUP/hpx/issues/1576
https://github.com/STEllAR-GROUP/hpx/pull/1575
https://github.com/STEllAR-GROUP/hpx/pull/1574
https://github.com/STEllAR-GROUP/hpx/pull/1573
https://github.com/STEllAR-GROUP/hpx/pull/1572
https://github.com/STEllAR-GROUP/hpx/pull/1571
https://github.com/STEllAR-GROUP/hpx/pull/1570
https://github.com/STEllAR-GROUP/hpx/pull/1569
https://github.com/STEllAR-GROUP/hpx/pull/1568
https://github.com/STEllAR-GROUP/hpx/pull/1567
https://github.com/STEllAR-GROUP/hpx/issues/1566
https://github.com/STEllAR-GROUP/hpx/pull/1565
https://github.com/STEllAR-GROUP/hpx/pull/1564
https://github.com/STEllAR-GROUP/hpx/pull/1563
https://github.com/STEllAR-GROUP/hpx/pull/1562
https://github.com/STEllAR-GROUP/hpx/pull/1561
https://github.com/STEllAR-GROUP/hpx/issues/1560
https://github.com/STEllAR-GROUP/hpx/pull/1558
https://github.com/STEllAR-GROUP/hpx/pull/1557
https://github.com/STEllAR-GROUP/hpx/pull/1556

HPX Documentation, master

• PR #15555426 - Remove the necessity to specify archive flags on the receiving end

• PR #15545427 - Removing obsolete Boost.Serialization macros

• PR #15535428 - Properly fix HPX_DEFINE_*_ACTION macros

• PR #15525429 - Fixed algorithms relying on copy_if implementation

• PR #15515430 - Pxfs - Modifying FindOrangeFS.cmake based on OrangeFS 2.9.X

• Issue #15505431 - Passing plain identifier inside HPX_DEFINE_PLAIN_ACTION_1

• PR #15495432 - Fixing intel14/libstdc++4.4

• PR #15485433 - Moving raw_ptr to detail namespace

• PR #15475434 - Adding support for executors to future.then

• PR #15465435 - Executor traits result types

• PR #15455436 - Integrate executors with dataflow

• PR #15435437 - Fix potential zero-copy for primarynamespace::bulk_service_async et.al.

• PR #15425438 - Merging HPX0.9.10 into pxfs branch

• PR #15415439 - Removed stale cmake tests, unused since the great cmake refactoring

• PR #15405440 - Fix idle-rate on platforms without TSC

• PR #15395441 - Reporting situation if zero-copy-serialization was performed by a parcel generated from a plain
apply/async

• PR #15385442 - Changed return type of bulk executors and added test

• Issue #15375443 - Incorrect cpuid config tests

• PR #15365444 - Changed return type of bulk executors and added test

• PR #15355445 - Make sure promise::get_gid() can be called more than once

• PR #15345446 - Fixed async_callback with bound callback

• PR #15335447 - Updated the link in the documentation to a publically- accessible URL

• PR #15325448 - Make sure sync primitives are not copyable nor movable
5426 https://github.com/STEllAR-GROUP/hpx/pull/1555
5427 https://github.com/STEllAR-GROUP/hpx/pull/1554
5428 https://github.com/STEllAR-GROUP/hpx/pull/1553
5429 https://github.com/STEllAR-GROUP/hpx/pull/1552
5430 https://github.com/STEllAR-GROUP/hpx/pull/1551
5431 https://github.com/STEllAR-GROUP/hpx/issues/1550
5432 https://github.com/STEllAR-GROUP/hpx/pull/1549
5433 https://github.com/STEllAR-GROUP/hpx/pull/1548
5434 https://github.com/STEllAR-GROUP/hpx/pull/1547
5435 https://github.com/STEllAR-GROUP/hpx/pull/1546
5436 https://github.com/STEllAR-GROUP/hpx/pull/1545
5437 https://github.com/STEllAR-GROUP/hpx/pull/1543
5438 https://github.com/STEllAR-GROUP/hpx/pull/1542
5439 https://github.com/STEllAR-GROUP/hpx/pull/1541
5440 https://github.com/STEllAR-GROUP/hpx/pull/1540
5441 https://github.com/STEllAR-GROUP/hpx/pull/1539
5442 https://github.com/STEllAR-GROUP/hpx/pull/1538
5443 https://github.com/STEllAR-GROUP/hpx/issues/1537
5444 https://github.com/STEllAR-GROUP/hpx/pull/1536
5445 https://github.com/STEllAR-GROUP/hpx/pull/1535
5446 https://github.com/STEllAR-GROUP/hpx/pull/1534
5447 https://github.com/STEllAR-GROUP/hpx/pull/1533
5448 https://github.com/STEllAR-GROUP/hpx/pull/1532

1780 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1555
https://github.com/STEllAR-GROUP/hpx/pull/1554
https://github.com/STEllAR-GROUP/hpx/pull/1553
https://github.com/STEllAR-GROUP/hpx/pull/1552
https://github.com/STEllAR-GROUP/hpx/pull/1551
https://github.com/STEllAR-GROUP/hpx/issues/1550
https://github.com/STEllAR-GROUP/hpx/pull/1549
https://github.com/STEllAR-GROUP/hpx/pull/1548
https://github.com/STEllAR-GROUP/hpx/pull/1547
https://github.com/STEllAR-GROUP/hpx/pull/1546
https://github.com/STEllAR-GROUP/hpx/pull/1545
https://github.com/STEllAR-GROUP/hpx/pull/1543
https://github.com/STEllAR-GROUP/hpx/pull/1542
https://github.com/STEllAR-GROUP/hpx/pull/1541
https://github.com/STEllAR-GROUP/hpx/pull/1540
https://github.com/STEllAR-GROUP/hpx/pull/1539
https://github.com/STEllAR-GROUP/hpx/pull/1538
https://github.com/STEllAR-GROUP/hpx/issues/1537
https://github.com/STEllAR-GROUP/hpx/pull/1536
https://github.com/STEllAR-GROUP/hpx/pull/1535
https://github.com/STEllAR-GROUP/hpx/pull/1534
https://github.com/STEllAR-GROUP/hpx/pull/1533
https://github.com/STEllAR-GROUP/hpx/pull/1532

HPX Documentation, master

• PR #15315449 - Fix unwrapped issue with future ranges of void type

• PR #15305450 - Serialization complex

• Issue #15285451 - Unwrapped issue with future<void>

• Issue #15275452 - HPX does not build with Boost 1.58.0

• PR #15265453 - Added support for boost.multi_array serialization

• PR #15255454 - Properly handle deferred futures, fixes #1506

• PR #15245455 - Making sure invalid action argument types generate clear error message

• Issue #15225456 - Need serialization support for boost multi array

• Issue #15215457 - Remote async and zero-copy serialization optimizations don’t play well together

• PR #15205458 - Fixing UB whil registering polymorphic classes for serialization

• PR #15195459 - Making detail::condition_variable safe to use

• PR #15185460 - Fix when_some bug missing indices in its result

• Issue #15175461 - Typo may affect CMake build system tests

• PR #15165462 - Fixing Posix context

• PR #15155463 - Fixing Posix context

• PR #15145464 - Correct problems with loading dynamic components

• PR #15135465 - Fixing intel glibc4 4

• Issue #15085466 - memory and papi counters do not work

• Issue #15075467 - Unrecognized Command Line Option Error causing exit status 0

• Issue #15065468 - Properly handle deferred futures

• PR #15055469 - Adding #include - would not compile without this

• Issue #15025470 - boost::filesystem::exists throws unexpected exception

• Issue #15015471 - hwloc configuration options are wrong for MIC
5449 https://github.com/STEllAR-GROUP/hpx/pull/1531
5450 https://github.com/STEllAR-GROUP/hpx/pull/1530
5451 https://github.com/STEllAR-GROUP/hpx/issues/1528
5452 https://github.com/STEllAR-GROUP/hpx/issues/1527
5453 https://github.com/STEllAR-GROUP/hpx/pull/1526
5454 https://github.com/STEllAR-GROUP/hpx/pull/1525
5455 https://github.com/STEllAR-GROUP/hpx/pull/1524
5456 https://github.com/STEllAR-GROUP/hpx/issues/1522
5457 https://github.com/STEllAR-GROUP/hpx/issues/1521
5458 https://github.com/STEllAR-GROUP/hpx/pull/1520
5459 https://github.com/STEllAR-GROUP/hpx/pull/1519
5460 https://github.com/STEllAR-GROUP/hpx/pull/1518
5461 https://github.com/STEllAR-GROUP/hpx/issues/1517
5462 https://github.com/STEllAR-GROUP/hpx/pull/1516
5463 https://github.com/STEllAR-GROUP/hpx/pull/1515
5464 https://github.com/STEllAR-GROUP/hpx/pull/1514
5465 https://github.com/STEllAR-GROUP/hpx/pull/1513
5466 https://github.com/STEllAR-GROUP/hpx/issues/1508
5467 https://github.com/STEllAR-GROUP/hpx/issues/1507
5468 https://github.com/STEllAR-GROUP/hpx/issues/1506
5469 https://github.com/STEllAR-GROUP/hpx/pull/1505
5470 https://github.com/STEllAR-GROUP/hpx/issues/1502
5471 https://github.com/STEllAR-GROUP/hpx/issues/1501

2.10. Releases 1781

https://github.com/STEllAR-GROUP/hpx/pull/1531
https://github.com/STEllAR-GROUP/hpx/pull/1530
https://github.com/STEllAR-GROUP/hpx/issues/1528
https://github.com/STEllAR-GROUP/hpx/issues/1527
https://github.com/STEllAR-GROUP/hpx/pull/1526
https://github.com/STEllAR-GROUP/hpx/pull/1525
https://github.com/STEllAR-GROUP/hpx/pull/1524
https://github.com/STEllAR-GROUP/hpx/issues/1522
https://github.com/STEllAR-GROUP/hpx/issues/1521
https://github.com/STEllAR-GROUP/hpx/pull/1520
https://github.com/STEllAR-GROUP/hpx/pull/1519
https://github.com/STEllAR-GROUP/hpx/pull/1518
https://github.com/STEllAR-GROUP/hpx/issues/1517
https://github.com/STEllAR-GROUP/hpx/pull/1516
https://github.com/STEllAR-GROUP/hpx/pull/1515
https://github.com/STEllAR-GROUP/hpx/pull/1514
https://github.com/STEllAR-GROUP/hpx/pull/1513
https://github.com/STEllAR-GROUP/hpx/issues/1508
https://github.com/STEllAR-GROUP/hpx/issues/1507
https://github.com/STEllAR-GROUP/hpx/issues/1506
https://github.com/STEllAR-GROUP/hpx/pull/1505
https://github.com/STEllAR-GROUP/hpx/issues/1502
https://github.com/STEllAR-GROUP/hpx/issues/1501

HPX Documentation, master

• PR #15045472 - Making sure boost::filesystem::exists() does not throw

• PR #15005473 - Exit application on --hpx:version/-v and --hpx:info

• PR #14985474 - Extended task block

• PR #14975475 - Unique ptr serialization

• PR #14965476 - Unique ptr serialization (closed)

• PR #14955477 - Switching circleci build type to debug

• Issue #14945478 - --hpx:version/-v does not exit after printing version information

• Issue #14935479 - add an hpx_ prefix to libraries and components to avoid name conflicts

• Issue #14925480 - Define and ensure limitations for arguments to async/apply

• PR #14895481 - Enable idle rate counter on demand

• PR #14885482 - Made sure detail::condition_variable can be safely destroyed

• PR #14875483 - Introduced default (main) template implementation for ignore_while_checking

• PR #14865484 - Add HPX inspect tool

• Issue #14855485 - ignore_while_locked doesn’t support all Lockable types

• PR #14845486 - Docker image generation

• PR #14835487 - Move external endian library into HPX

• PR #14825488 - Actions with integer type ids

• Issue #14815489 - Sync primitives safe destruction

• Issue #14805490 - Move external/boost/endian into hpx/util

• Issue #14785491 - Boost inspect violations

• PR #14795492 - Adds serialization for arrays; some further/minor fixes

• PR #14775493 - Fixing problems with the Intel compiler using a GCC 4.4 std library

• PR #14765494 - Adding hpx::lcos::latch and hpx::lcos::local::latch

5472 https://github.com/STEllAR-GROUP/hpx/pull/1504
5473 https://github.com/STEllAR-GROUP/hpx/pull/1500
5474 https://github.com/STEllAR-GROUP/hpx/pull/1498
5475 https://github.com/STEllAR-GROUP/hpx/pull/1497
5476 https://github.com/STEllAR-GROUP/hpx/pull/1496
5477 https://github.com/STEllAR-GROUP/hpx/pull/1495
5478 https://github.com/STEllAR-GROUP/hpx/issues/1494
5479 https://github.com/STEllAR-GROUP/hpx/issues/1493
5480 https://github.com/STEllAR-GROUP/hpx/issues/1492
5481 https://github.com/STEllAR-GROUP/hpx/pull/1489
5482 https://github.com/STEllAR-GROUP/hpx/pull/1488
5483 https://github.com/STEllAR-GROUP/hpx/pull/1487
5484 https://github.com/STEllAR-GROUP/hpx/pull/1486
5485 https://github.com/STEllAR-GROUP/hpx/issues/1485
5486 https://github.com/STEllAR-GROUP/hpx/pull/1484
5487 https://github.com/STEllAR-GROUP/hpx/pull/1483
5488 https://github.com/STEllAR-GROUP/hpx/pull/1482
5489 https://github.com/STEllAR-GROUP/hpx/issues/1481
5490 https://github.com/STEllAR-GROUP/hpx/issues/1480
5491 https://github.com/STEllAR-GROUP/hpx/issues/1478
5492 https://github.com/STEllAR-GROUP/hpx/pull/1479
5493 https://github.com/STEllAR-GROUP/hpx/pull/1477
5494 https://github.com/STEllAR-GROUP/hpx/pull/1476

1782 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1504
https://github.com/STEllAR-GROUP/hpx/pull/1500
https://github.com/STEllAR-GROUP/hpx/pull/1498
https://github.com/STEllAR-GROUP/hpx/pull/1497
https://github.com/STEllAR-GROUP/hpx/pull/1496
https://github.com/STEllAR-GROUP/hpx/pull/1495
https://github.com/STEllAR-GROUP/hpx/issues/1494
https://github.com/STEllAR-GROUP/hpx/issues/1493
https://github.com/STEllAR-GROUP/hpx/issues/1492
https://github.com/STEllAR-GROUP/hpx/pull/1489
https://github.com/STEllAR-GROUP/hpx/pull/1488
https://github.com/STEllAR-GROUP/hpx/pull/1487
https://github.com/STEllAR-GROUP/hpx/pull/1486
https://github.com/STEllAR-GROUP/hpx/issues/1485
https://github.com/STEllAR-GROUP/hpx/pull/1484
https://github.com/STEllAR-GROUP/hpx/pull/1483
https://github.com/STEllAR-GROUP/hpx/pull/1482
https://github.com/STEllAR-GROUP/hpx/issues/1481
https://github.com/STEllAR-GROUP/hpx/issues/1480
https://github.com/STEllAR-GROUP/hpx/issues/1478
https://github.com/STEllAR-GROUP/hpx/pull/1479
https://github.com/STEllAR-GROUP/hpx/pull/1477
https://github.com/STEllAR-GROUP/hpx/pull/1476

HPX Documentation, master

• Issue #14755495 - Boost inspect violations

• PR #14735496 - Fixing action move tests

• Issue #14715497 - Sync primitives should not be movable

• PR #14705498 - Removing hpx::util::polymorphic_factory

• PR #14685499 - Fixed container creation

• Issue #14675500 - HPX application fail during finalization

• Issue #14665501 - HPX doesn’t pick up Torque’s nodefile on SuperMIC

• Issue #14645502 - HPX option for pre and post bootstrap performance counters

• PR #14635503 - Replacing async_colocated(id, ...) with async(colocated(id), ...)

• PR #14625504 - Consolidated task_region with N4411

• PR #14615505 - Consolidate inconsistent CMake option names

• Issue #14605506 - Which malloc is actually used? or at least which one is HPX built with

• Issue #14595507 - Make cmake configure step fail explicitly if compiler version is not supported

• Issue #14585508 - Update parallel::task_region with N4411

• PR #14565509 - Consolidating new_<>()

• Issue #14555510 - Replace async_colocated(id, ...) with async(colocated(id), ...)

• PR #14545511 - Removed harmful std::moves from return statements

• PR #14535512 - Use range-based for-loop instead of Boost.Foreach

• PR #14525513 - C++ feature tests

• PR #14515514 - When serializing, pass archive flags to traits::get_type_size

• Issue #14505515 - traits:get_type_size needs archive flags to enable zero_copy optimizations

• Issue #14495516 - “couldn’t create performance counter” - AGAS

• Issue #14485517 - Replace distributing factories with new_<T[]>(...)

5495 https://github.com/STEllAR-GROUP/hpx/issues/1475
5496 https://github.com/STEllAR-GROUP/hpx/pull/1473
5497 https://github.com/STEllAR-GROUP/hpx/issues/1471
5498 https://github.com/STEllAR-GROUP/hpx/pull/1470
5499 https://github.com/STEllAR-GROUP/hpx/pull/1468
5500 https://github.com/STEllAR-GROUP/hpx/issues/1467
5501 https://github.com/STEllAR-GROUP/hpx/issues/1466
5502 https://github.com/STEllAR-GROUP/hpx/issues/1464
5503 https://github.com/STEllAR-GROUP/hpx/pull/1463
5504 https://github.com/STEllAR-GROUP/hpx/pull/1462
5505 https://github.com/STEllAR-GROUP/hpx/pull/1461
5506 https://github.com/STEllAR-GROUP/hpx/issues/1460
5507 https://github.com/STEllAR-GROUP/hpx/issues/1459
5508 https://github.com/STEllAR-GROUP/hpx/issues/1458
5509 https://github.com/STEllAR-GROUP/hpx/pull/1456
5510 https://github.com/STEllAR-GROUP/hpx/issues/1455
5511 https://github.com/STEllAR-GROUP/hpx/pull/1454
5512 https://github.com/STEllAR-GROUP/hpx/pull/1453
5513 https://github.com/STEllAR-GROUP/hpx/pull/1452
5514 https://github.com/STEllAR-GROUP/hpx/pull/1451
5515 https://github.com/STEllAR-GROUP/hpx/issues/1450
5516 https://github.com/STEllAR-GROUP/hpx/issues/1449
5517 https://github.com/STEllAR-GROUP/hpx/issues/1448

2.10. Releases 1783

https://github.com/STEllAR-GROUP/hpx/issues/1475
https://github.com/STEllAR-GROUP/hpx/pull/1473
https://github.com/STEllAR-GROUP/hpx/issues/1471
https://github.com/STEllAR-GROUP/hpx/pull/1470
https://github.com/STEllAR-GROUP/hpx/pull/1468
https://github.com/STEllAR-GROUP/hpx/issues/1467
https://github.com/STEllAR-GROUP/hpx/issues/1466
https://github.com/STEllAR-GROUP/hpx/issues/1464
https://github.com/STEllAR-GROUP/hpx/pull/1463
https://github.com/STEllAR-GROUP/hpx/pull/1462
https://github.com/STEllAR-GROUP/hpx/pull/1461
https://github.com/STEllAR-GROUP/hpx/issues/1460
https://github.com/STEllAR-GROUP/hpx/issues/1459
https://github.com/STEllAR-GROUP/hpx/issues/1458
https://github.com/STEllAR-GROUP/hpx/pull/1456
https://github.com/STEllAR-GROUP/hpx/issues/1455
https://github.com/STEllAR-GROUP/hpx/pull/1454
https://github.com/STEllAR-GROUP/hpx/pull/1453
https://github.com/STEllAR-GROUP/hpx/pull/1452
https://github.com/STEllAR-GROUP/hpx/pull/1451
https://github.com/STEllAR-GROUP/hpx/issues/1450
https://github.com/STEllAR-GROUP/hpx/issues/1449
https://github.com/STEllAR-GROUP/hpx/issues/1448

HPX Documentation, master

• PR #14475518 - Removing obsolete remote_object component

• PR #14465519 - Hpx serialization

• PR #14455520 - Replacing travis with circleci

• PR #14435521 - Always stripping HPX command line arguments before executing start function

• PR #14425522 - Adding –hpx:bind=none to disable thread affinities

• Issue #14395523 - Libraries get linked in multiple times, RPATH is not properly set

• PR #14385524 - Removed superfluous typedefs

• Issue #14375525 - hpx::init() should strip HPX-related flags from argv

• Issue #14365526 - Add strong scaling option to htts

• PR #14355527 - Adding async_cb, async_continue_cb, and async_colocated_cb

• PR #14345528 - Added missing install rule, removed some dead CMake code

• PR #14335529 - Add GitExternal and SubProject cmake scripts from eyescale/cmake repo

• Issue #14325530 - Add command line flag to disable thread pinning

• PR #14315531 - Fix #1423

• Issue #14305532 - Inconsistent CMake option names

• Issue #14295533 - Configure setting HPX_HAVE_PARCELPORT_MPI is ignored

• PR #14285534 - Fixes #1419 (closed)

• PR #14275535 - Adding stencil_iterator and transform_iterator

• PR #14265536 - Fixes #1419

• PR #14255537 - During serialization memory allocation should honour allocator chunk size

• Issue #14245538 - chunk allocation during serialization does not use memory pool/allocator chunk size

• Issue #14235539 - Remove HPX_STD_UNIQUE_PTR

• Issue #14225540 - hpx:threads=all allocates too many os threads
5518 https://github.com/STEllAR-GROUP/hpx/pull/1447
5519 https://github.com/STEllAR-GROUP/hpx/pull/1446
5520 https://github.com/STEllAR-GROUP/hpx/pull/1445
5521 https://github.com/STEllAR-GROUP/hpx/pull/1443
5522 https://github.com/STEllAR-GROUP/hpx/pull/1442
5523 https://github.com/STEllAR-GROUP/hpx/issues/1439
5524 https://github.com/STEllAR-GROUP/hpx/pull/1438
5525 https://github.com/STEllAR-GROUP/hpx/issues/1437
5526 https://github.com/STEllAR-GROUP/hpx/issues/1436
5527 https://github.com/STEllAR-GROUP/hpx/pull/1435
5528 https://github.com/STEllAR-GROUP/hpx/pull/1434
5529 https://github.com/STEllAR-GROUP/hpx/pull/1433
5530 https://github.com/STEllAR-GROUP/hpx/issues/1432
5531 https://github.com/STEllAR-GROUP/hpx/pull/1431
5532 https://github.com/STEllAR-GROUP/hpx/issues/1430
5533 https://github.com/STEllAR-GROUP/hpx/issues/1429
5534 https://github.com/STEllAR-GROUP/hpx/pull/1428
5535 https://github.com/STEllAR-GROUP/hpx/pull/1427
5536 https://github.com/STEllAR-GROUP/hpx/pull/1426
5537 https://github.com/STEllAR-GROUP/hpx/pull/1425
5538 https://github.com/STEllAR-GROUP/hpx/issues/1424
5539 https://github.com/STEllAR-GROUP/hpx/issues/1423
5540 https://github.com/STEllAR-GROUP/hpx/issues/1422

1784 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1447
https://github.com/STEllAR-GROUP/hpx/pull/1446
https://github.com/STEllAR-GROUP/hpx/pull/1445
https://github.com/STEllAR-GROUP/hpx/pull/1443
https://github.com/STEllAR-GROUP/hpx/pull/1442
https://github.com/STEllAR-GROUP/hpx/issues/1439
https://github.com/STEllAR-GROUP/hpx/pull/1438
https://github.com/STEllAR-GROUP/hpx/issues/1437
https://github.com/STEllAR-GROUP/hpx/issues/1436
https://github.com/STEllAR-GROUP/hpx/pull/1435
https://github.com/STEllAR-GROUP/hpx/pull/1434
https://github.com/STEllAR-GROUP/hpx/pull/1433
https://github.com/STEllAR-GROUP/hpx/issues/1432
https://github.com/STEllAR-GROUP/hpx/pull/1431
https://github.com/STEllAR-GROUP/hpx/issues/1430
https://github.com/STEllAR-GROUP/hpx/issues/1429
https://github.com/STEllAR-GROUP/hpx/pull/1428
https://github.com/STEllAR-GROUP/hpx/pull/1427
https://github.com/STEllAR-GROUP/hpx/pull/1426
https://github.com/STEllAR-GROUP/hpx/pull/1425
https://github.com/STEllAR-GROUP/hpx/issues/1424
https://github.com/STEllAR-GROUP/hpx/issues/1423
https://github.com/STEllAR-GROUP/hpx/issues/1422

HPX Documentation, master

• PR #14205541 - added .travis.yml

• Issue #14195542 - Unify enums: hpx::runtime::state and hpx::state

• PR #14165543 - Adding travis builder

• Issue #14145544 - Correct directory for dispatch_gcc46.hpp iteration

• Issue #14105545 - Set operation algorithms

• Issue #13895546 - Parallel algorithms relying on scan partitioner break for small number of elements

• Issue #13255547 - Exceptions thrown during parcel handling are not handled correctly

• Issue #13155548 - Errors while running performance tests

• Issue #13095549 - hpx::vector partitions are not easily extendable by applications

• PR #13005550 - Added serialization/de-serialization to examples.tuplespace

• Issue #12515551 - hpx::threads::get_thread_count doesn’t consider pending threads

• Issue #10085552 - Decrease in application performance overtime; occasional spikes of major slowdown

• Issue #10015553 - Zero copy serialization raises assert

• Issue #7215554 - Make HPX usable for Xeon Phi

• Issue #5245555 - Extend scheduler to support threads which can’t be stolen

HPX V0.9.10 (Mar 24, 2015)

General changes

This is the 12th official release of HPX. It coincides with the 7th anniversary of the first commit to our source code
repository. Since then, we have seen over 12300 commits amounting to more than 220000 lines of C++ code.

The major focus of this release was to improve the reliability of large scale runs. We believe to have achieved this goal
as we now can reliably run HPX applications on up to ~24k cores. We have also shown that HPX can be used with
success for symmetric runs (applications using both, host cores and Intel Xeon/Phi coprocessors). This is a huge step
forward in terms of the usability of HPX. The main focus of this work involved isolating the causes of the segmentation
faults at start up and shut down. Many of these issues were discovered to be the result of the suspension of threads
which hold locks.

A very important improvement introduced with this release is the refactoring of the code representing our parcel-port
implementation. Parcel- ports can now be implemented by 3rd parties as independent plugins which are dynamically
loaded at runtime (static linking of parcel-ports is also supported). This refactoring also includes a massive improve-
ment of the performance of our existing parcel-ports. We were able to significantly reduce the networking latencies
5541 https://github.com/STEllAR-GROUP/hpx/pull/1420
5542 https://github.com/STEllAR-GROUP/hpx/issues/1419
5543 https://github.com/STEllAR-GROUP/hpx/pull/1416
5544 https://github.com/STEllAR-GROUP/hpx/issues/1414
5545 https://github.com/STEllAR-GROUP/hpx/issues/1410
5546 https://github.com/STEllAR-GROUP/hpx/issues/1389
5547 https://github.com/STEllAR-GROUP/hpx/issues/1325
5548 https://github.com/STEllAR-GROUP/hpx/issues/1315
5549 https://github.com/STEllAR-GROUP/hpx/issues/1309
5550 https://github.com/STEllAR-GROUP/hpx/pull/1300
5551 https://github.com/STEllAR-GROUP/hpx/issues/1251
5552 https://github.com/STEllAR-GROUP/hpx/issues/1008
5553 https://github.com/STEllAR-GROUP/hpx/issues/1001
5554 https://github.com/STEllAR-GROUP/hpx/issues/721
5555 https://github.com/STEllAR-GROUP/hpx/issues/524

2.10. Releases 1785

https://github.com/STEllAR-GROUP/hpx/pull/1420
https://github.com/STEllAR-GROUP/hpx/issues/1419
https://github.com/STEllAR-GROUP/hpx/pull/1416
https://github.com/STEllAR-GROUP/hpx/issues/1414
https://github.com/STEllAR-GROUP/hpx/issues/1410
https://github.com/STEllAR-GROUP/hpx/issues/1389
https://github.com/STEllAR-GROUP/hpx/issues/1325
https://github.com/STEllAR-GROUP/hpx/issues/1315
https://github.com/STEllAR-GROUP/hpx/issues/1309
https://github.com/STEllAR-GROUP/hpx/pull/1300
https://github.com/STEllAR-GROUP/hpx/issues/1251
https://github.com/STEllAR-GROUP/hpx/issues/1008
https://github.com/STEllAR-GROUP/hpx/issues/1001
https://github.com/STEllAR-GROUP/hpx/issues/721
https://github.com/STEllAR-GROUP/hpx/issues/524

HPX Documentation, master

and to improve the available networking bandwidth. Please note that in this release we disabled the ibverbs and ipc
parcel ports as those have not been ported to the new plugin system yet (see Issue #8395556).

Another corner stone of this release is our work towards a complete implementation of __cpp11_n4104__ (Working
Draft, Technical Specification for C++ Extensions for Parallelism). This document defines a set of parallel algorithms
to be added to the C++ standard library. We now have implemented about 75% of all specified parallel algorithms
(see [link hpx.manual.parallel.parallel_algorithms Parallel Algorithms] for more details). We also implemented some
extensions to __cpp11_n4104__ allowing to invoke all of the algorithms asynchronously.

This release adds a first implementation of hpx::vector which is a distributed data structure closely aligned to the
functionality of std::vector. The difference is that hpx::vector stores the data in partitions where the parti-
tions can be distributed over different localities. We started to work on allowing to use the parallel algorithms with
hpx::vector. At this point we have implemented only a few of the parallel algorithms to support distributed data
structures (like hpx::vector) for testing purposes (see Issue #13385557 for a documentation of our progress).

Breaking changes

With this release we put a lot of effort into changing the code base to be more compatible to C++11. These changes
have caused the following issues for backward compatibility:

• Move to Variadics- All of the API now uses variadic templates. However, this change required to modify the
argument sequence for some of the exiting API functions (hpx::async_continue, hpx::apply_continue,
hpx::when_each , hpx::wait_each , synchronous invocation of actions).

• Changes to Macros- We also removed the macros HPX_STD_FUNCTION and HPX_STD_TUPLE. This shouldn’t
affect any user code as we replaced HPX_STD_FUNCTION with hpx::util::function_nonser which was the
default expansion used for this macro. All HPX API functions which expect a hpx::util::function_nonser
(or a hpx::util::unique_function_nonser) can now be transparently called with a compatible
std::function instead. Similarly, HPX_STD_TUPLE was replaced by its default expansion as well:
hpx::util::tuple.

• Changes to hpx::unique_future- hpx::unique_future, which was deprecated in the previous release for
hpx::future is now completely removed from HPX. This completes the transition to a completely standards
conforming implementation of hpx::future.

• Changes to Supported Compilers. Finally, in order to utilize more C++11 semantics, we have officially dropped
support for GCC 4.4 and MSVC 2012. Please see our Prerequisites page for more details.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• Issue #14025558 - Internal shared_future serialization copies

• Issue #13995559 - Build takes unusually long time. . .

• Issue #13985560 - Tests using the scan partitioner are broken on at least gcc 4.7 and intel compiler

• Issue #13975561 - Completely remove hpx::unique_future

• Issue #13965562 - Parallel scan algorithms with different initial values
5556 https://github.com/STEllAR-GROUP/hpx/issues/839
5557 https://github.com/STEllAR-GROUP/hpx/issues/1338
5558 https://github.com/STEllAR-GROUP/hpx/issues/1402
5559 https://github.com/STEllAR-GROUP/hpx/issues/1399
5560 https://github.com/STEllAR-GROUP/hpx/issues/1398
5561 https://github.com/STEllAR-GROUP/hpx/issues/1397
5562 https://github.com/STEllAR-GROUP/hpx/issues/1396

1786 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/839
https://github.com/STEllAR-GROUP/hpx/issues/1338
https://github.com/STEllAR-GROUP/hpx/issues/1402
https://github.com/STEllAR-GROUP/hpx/issues/1399
https://github.com/STEllAR-GROUP/hpx/issues/1398
https://github.com/STEllAR-GROUP/hpx/issues/1397
https://github.com/STEllAR-GROUP/hpx/issues/1396

HPX Documentation, master

• Issue #13955563 - Race Condition - 1d_stencil_8 - SuperMIC

• Issue #13945564 - “suspending thread while at least one lock is being held” - 1d_stencil_8 - SuperMIC

• Issue #13935565 - SEGFAULT in 1d_stencil_8 on SuperMIC

• Issue #13925566 - Fixing #1168

• Issue #13915567 - Parallel Algorithms for scan partitioner for small number of elements

• Issue #13875568 - Failure with more than 4 localities

• Issue #13865569 - Dispatching unhandled exceptions to outer user code

• Issue #13855570 - Adding Copy algorithms, fixing parallel::copy_if

• Issue #13845571 - Fixing 1325

• Issue #13835572 - Fixed #504: Refactor Dataflow LCO to work with futures, this removes the dataflow component
as it is obsolete

• Issue #13825573 - is_sorted, is_sorted_until and is_partitioned algorithms

• Issue #13815574 - fix for CMake versions prior to 3.1

• Issue #13805575 - resolved warning in CMake 3.1 and newer

• Issue #13795576 - Compilation error with papi

• Issue #13785577 - Towards safer migration

• Issue #13775578 - HPXConfig.cmake should include TCMALLOC_LIBRARY and TCMALLOC_INCLUDE_DIR

• Issue #13765579 - Warning on uninitialized member

• Issue #13755580 - Fixing 1163

• Issue #13745581 - Fixing the MSVC 12 release builder

• Issue #13735582 - Modifying parallel search algorithm for zero length searches

• Issue #13725583 - Modifying parallel search algorithm for zero length searches

• Issue #13715584 - Avoid holding a lock during agas::incref while doing a credit split

• Issue #13705585 - --hpx:bind throws unexpected error
5563 https://github.com/STEllAR-GROUP/hpx/issues/1395
5564 https://github.com/STEllAR-GROUP/hpx/issues/1394
5565 https://github.com/STEllAR-GROUP/hpx/issues/1393
5566 https://github.com/STEllAR-GROUP/hpx/issues/1392
5567 https://github.com/STEllAR-GROUP/hpx/issues/1391
5568 https://github.com/STEllAR-GROUP/hpx/issues/1387
5569 https://github.com/STEllAR-GROUP/hpx/issues/1386
5570 https://github.com/STEllAR-GROUP/hpx/issues/1385
5571 https://github.com/STEllAR-GROUP/hpx/issues/1384
5572 https://github.com/STEllAR-GROUP/hpx/issues/1383
5573 https://github.com/STEllAR-GROUP/hpx/issues/1382
5574 https://github.com/STEllAR-GROUP/hpx/issues/1381
5575 https://github.com/STEllAR-GROUP/hpx/issues/1380
5576 https://github.com/STEllAR-GROUP/hpx/issues/1379
5577 https://github.com/STEllAR-GROUP/hpx/issues/1378
5578 https://github.com/STEllAR-GROUP/hpx/issues/1377
5579 https://github.com/STEllAR-GROUP/hpx/issues/1376
5580 https://github.com/STEllAR-GROUP/hpx/issues/1375
5581 https://github.com/STEllAR-GROUP/hpx/issues/1374
5582 https://github.com/STEllAR-GROUP/hpx/issues/1373
5583 https://github.com/STEllAR-GROUP/hpx/issues/1372
5584 https://github.com/STEllAR-GROUP/hpx/issues/1371
5585 https://github.com/STEllAR-GROUP/hpx/issues/1370

2.10. Releases 1787

https://github.com/STEllAR-GROUP/hpx/issues/1395
https://github.com/STEllAR-GROUP/hpx/issues/1394
https://github.com/STEllAR-GROUP/hpx/issues/1393
https://github.com/STEllAR-GROUP/hpx/issues/1392
https://github.com/STEllAR-GROUP/hpx/issues/1391
https://github.com/STEllAR-GROUP/hpx/issues/1387
https://github.com/STEllAR-GROUP/hpx/issues/1386
https://github.com/STEllAR-GROUP/hpx/issues/1385
https://github.com/STEllAR-GROUP/hpx/issues/1384
https://github.com/STEllAR-GROUP/hpx/issues/1383
https://github.com/STEllAR-GROUP/hpx/issues/1382
https://github.com/STEllAR-GROUP/hpx/issues/1381
https://github.com/STEllAR-GROUP/hpx/issues/1380
https://github.com/STEllAR-GROUP/hpx/issues/1379
https://github.com/STEllAR-GROUP/hpx/issues/1378
https://github.com/STEllAR-GROUP/hpx/issues/1377
https://github.com/STEllAR-GROUP/hpx/issues/1376
https://github.com/STEllAR-GROUP/hpx/issues/1375
https://github.com/STEllAR-GROUP/hpx/issues/1374
https://github.com/STEllAR-GROUP/hpx/issues/1373
https://github.com/STEllAR-GROUP/hpx/issues/1372
https://github.com/STEllAR-GROUP/hpx/issues/1371
https://github.com/STEllAR-GROUP/hpx/issues/1370

HPX Documentation, master

• Issue #13695586 - Getting rid of (void) in loops

• Issue #13685587 - Variadic templates support for tuple

• Issue #13675588 - One last batch of variadic templates support

• Issue #13665589 - Fixing symbolic namespace hang

• Issue #13655590 - More held locks

• Issue #13645591 - Add counters 1363

• Issue #13635592 - Add thread overhead counters

• Issue #13625593 - Std config removal

• Issue #13615594 - Parcelport plugins

• Issue #13605595 - Detuplify transfer_action

• Issue #13595596 - Removed obsolete checks

• Issue #13585597 - Fixing 1352

• Issue #13575598 - Variadic templates support for runtime_support and components

• Issue #13565599 - fixed coordinate test for intel13

• Issue #13555600 - fixed coordinate.hpp

• Issue #13545601 - Lexicographical Compare completed

• Issue #13535602 - HPX should set Boost_ADDITIONAL_VERSIONS flags

• Issue #13525603 - Error: Cannot find action ‘’ in type registry: HPX(bad_action_code)

• Issue #13515604 - Variadic templates support for appliers

• Issue #13505605 - Actions simplification

• Issue #13495606 - Variadic when and wait functions

• Issue #13485607 - Added hpx_init header to test files

• Issue #13475608 - Another batch of variadic templates support
5586 https://github.com/STEllAR-GROUP/hpx/issues/1369
5587 https://github.com/STEllAR-GROUP/hpx/issues/1368
5588 https://github.com/STEllAR-GROUP/hpx/issues/1367
5589 https://github.com/STEllAR-GROUP/hpx/issues/1366
5590 https://github.com/STEllAR-GROUP/hpx/issues/1365
5591 https://github.com/STEllAR-GROUP/hpx/issues/1364
5592 https://github.com/STEllAR-GROUP/hpx/issues/1363
5593 https://github.com/STEllAR-GROUP/hpx/issues/1362
5594 https://github.com/STEllAR-GROUP/hpx/issues/1361
5595 https://github.com/STEllAR-GROUP/hpx/issues/1360
5596 https://github.com/STEllAR-GROUP/hpx/issues/1359
5597 https://github.com/STEllAR-GROUP/hpx/issues/1358
5598 https://github.com/STEllAR-GROUP/hpx/issues/1357
5599 https://github.com/STEllAR-GROUP/hpx/issues/1356
5600 https://github.com/STEllAR-GROUP/hpx/issues/1355
5601 https://github.com/STEllAR-GROUP/hpx/issues/1354
5602 https://github.com/STEllAR-GROUP/hpx/issues/1353
5603 https://github.com/STEllAR-GROUP/hpx/issues/1352
5604 https://github.com/STEllAR-GROUP/hpx/issues/1351
5605 https://github.com/STEllAR-GROUP/hpx/issues/1350
5606 https://github.com/STEllAR-GROUP/hpx/issues/1349
5607 https://github.com/STEllAR-GROUP/hpx/issues/1348
5608 https://github.com/STEllAR-GROUP/hpx/issues/1347

1788 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1369
https://github.com/STEllAR-GROUP/hpx/issues/1368
https://github.com/STEllAR-GROUP/hpx/issues/1367
https://github.com/STEllAR-GROUP/hpx/issues/1366
https://github.com/STEllAR-GROUP/hpx/issues/1365
https://github.com/STEllAR-GROUP/hpx/issues/1364
https://github.com/STEllAR-GROUP/hpx/issues/1363
https://github.com/STEllAR-GROUP/hpx/issues/1362
https://github.com/STEllAR-GROUP/hpx/issues/1361
https://github.com/STEllAR-GROUP/hpx/issues/1360
https://github.com/STEllAR-GROUP/hpx/issues/1359
https://github.com/STEllAR-GROUP/hpx/issues/1358
https://github.com/STEllAR-GROUP/hpx/issues/1357
https://github.com/STEllAR-GROUP/hpx/issues/1356
https://github.com/STEllAR-GROUP/hpx/issues/1355
https://github.com/STEllAR-GROUP/hpx/issues/1354
https://github.com/STEllAR-GROUP/hpx/issues/1353
https://github.com/STEllAR-GROUP/hpx/issues/1352
https://github.com/STEllAR-GROUP/hpx/issues/1351
https://github.com/STEllAR-GROUP/hpx/issues/1350
https://github.com/STEllAR-GROUP/hpx/issues/1349
https://github.com/STEllAR-GROUP/hpx/issues/1348
https://github.com/STEllAR-GROUP/hpx/issues/1347

HPX Documentation, master

• Issue #13465609 - Segmented copy

• Issue #13455610 - Attempting to fix hangs during shutdown

• Issue #13445611 - Std config removal

• Issue #13435612 - Removing various distribution policies for hpx::vector

• Issue #13425613 - Inclusive scan

• Issue #13415614 - Exclusive scan

• Issue #13405615 - Adding parallel::count for distributed data structures, adding tests

• Issue #13395616 - Update argument order for transform_reduce

• Issue #13375617 - Fix dataflow to handle properly ranges of futures

• Issue #13365618 - dataflow needs to hold onto futures passed to it

• Issue #13355619 - Fails to compile with msvc14

• Issue #13345620 - Examples build problem

• Issue #13335621 - Distributed transform reduce

• Issue #13325622 - Variadic templates support for actions

• Issue #13315623 - Some ambiguous calls of map::erase have been prevented by adding additional check in locality
constructor.

• Issue #13305624 - Defining Plain Actions does not work as described in the documentation

• Issue #13295625 - Distributed vector cleanup

• Issue #13285626 - Sync docs and comments with code in hello_world example

• Issue #13275627 - Typos in docs

• Issue #13265628 - Documentation and code diverged in Fibonacci tutorial

• Issue #13255629 - Exceptions thrown during parcel handling are not handled correctly

• Issue #13245630 - fixed bandwidth calculation

• Issue #13235631 - mmap() failed to allocate thread stack due to insufficient resources
5609 https://github.com/STEllAR-GROUP/hpx/issues/1346
5610 https://github.com/STEllAR-GROUP/hpx/issues/1345
5611 https://github.com/STEllAR-GROUP/hpx/issues/1344
5612 https://github.com/STEllAR-GROUP/hpx/issues/1343
5613 https://github.com/STEllAR-GROUP/hpx/issues/1342
5614 https://github.com/STEllAR-GROUP/hpx/issues/1341
5615 https://github.com/STEllAR-GROUP/hpx/issues/1340
5616 https://github.com/STEllAR-GROUP/hpx/issues/1339
5617 https://github.com/STEllAR-GROUP/hpx/issues/1337
5618 https://github.com/STEllAR-GROUP/hpx/issues/1336
5619 https://github.com/STEllAR-GROUP/hpx/issues/1335
5620 https://github.com/STEllAR-GROUP/hpx/issues/1334
5621 https://github.com/STEllAR-GROUP/hpx/issues/1333
5622 https://github.com/STEllAR-GROUP/hpx/issues/1332
5623 https://github.com/STEllAR-GROUP/hpx/issues/1331
5624 https://github.com/STEllAR-GROUP/hpx/issues/1330
5625 https://github.com/STEllAR-GROUP/hpx/issues/1329
5626 https://github.com/STEllAR-GROUP/hpx/issues/1328
5627 https://github.com/STEllAR-GROUP/hpx/issues/1327
5628 https://github.com/STEllAR-GROUP/hpx/issues/1326
5629 https://github.com/STEllAR-GROUP/hpx/issues/1325
5630 https://github.com/STEllAR-GROUP/hpx/issues/1324
5631 https://github.com/STEllAR-GROUP/hpx/issues/1323

2.10. Releases 1789

https://github.com/STEllAR-GROUP/hpx/issues/1346
https://github.com/STEllAR-GROUP/hpx/issues/1345
https://github.com/STEllAR-GROUP/hpx/issues/1344
https://github.com/STEllAR-GROUP/hpx/issues/1343
https://github.com/STEllAR-GROUP/hpx/issues/1342
https://github.com/STEllAR-GROUP/hpx/issues/1341
https://github.com/STEllAR-GROUP/hpx/issues/1340
https://github.com/STEllAR-GROUP/hpx/issues/1339
https://github.com/STEllAR-GROUP/hpx/issues/1337
https://github.com/STEllAR-GROUP/hpx/issues/1336
https://github.com/STEllAR-GROUP/hpx/issues/1335
https://github.com/STEllAR-GROUP/hpx/issues/1334
https://github.com/STEllAR-GROUP/hpx/issues/1333
https://github.com/STEllAR-GROUP/hpx/issues/1332
https://github.com/STEllAR-GROUP/hpx/issues/1331
https://github.com/STEllAR-GROUP/hpx/issues/1330
https://github.com/STEllAR-GROUP/hpx/issues/1329
https://github.com/STEllAR-GROUP/hpx/issues/1328
https://github.com/STEllAR-GROUP/hpx/issues/1327
https://github.com/STEllAR-GROUP/hpx/issues/1326
https://github.com/STEllAR-GROUP/hpx/issues/1325
https://github.com/STEllAR-GROUP/hpx/issues/1324
https://github.com/STEllAR-GROUP/hpx/issues/1323

HPX Documentation, master

• Issue #13225632 - HPX fails to build aa182cf

• Issue #13215633 - Limiting size of outgoing messages while coalescing parcels

• Issue #13205634 - passing a future with launch::deferred in remote function call causes hang

• Issue #13195635 - An exception when tries to specify number high priority threads with abp-priority

• Issue #13185636 - Unable to run program with abp-priority and numa-sensitivity enabled

• Issue #13175637 - N4071 Search/Search_n finished, minor changes

• Issue #13165638 - Add config option to make -Ihpx.run_hpx_main!=1 the default

• Issue #13145639 - Variadic support for async and apply

• Issue #13135640 - Adjust when_any/some to the latest proposed interfaces

• Issue #13125641 - Fixing #857: hpx::naming::locality leaks parcelport specific information into the public inter-
face

• Issue #13115642 - Distributed get’er/set’er_values for distributed vector

• Issue #13105643 - Crashing in hpx::parcelset::policies::mpi::connection_handler::handle_messages() on Super-
MIC

• Issue #13085644 - Unable to execute an application with –hpx:threads

• Issue #13075645 - merge_graph linking issue

• Issue #13065646 - First batch of variadic templates support

• Issue #13055647 - Create a compiler wrapper

• Issue #13045648 - Provide a compiler wrapper for hpx

• Issue #13035649 - Drop support for GCC44

• Issue #13025650 - Fixing #1297

• Issue #13015651 - Compilation error when tried to use boost range iterators with wait_all

• Issue #12985652 - Distributed vector

• Issue #12975653 - Unable to invoke component actions recursively
5632 https://github.com/STEllAR-GROUP/hpx/issues/1322
5633 https://github.com/STEllAR-GROUP/hpx/issues/1321
5634 https://github.com/STEllAR-GROUP/hpx/issues/1320
5635 https://github.com/STEllAR-GROUP/hpx/issues/1319
5636 https://github.com/STEllAR-GROUP/hpx/issues/1318
5637 https://github.com/STEllAR-GROUP/hpx/issues/1317
5638 https://github.com/STEllAR-GROUP/hpx/issues/1316
5639 https://github.com/STEllAR-GROUP/hpx/issues/1314
5640 https://github.com/STEllAR-GROUP/hpx/issues/1313
5641 https://github.com/STEllAR-GROUP/hpx/issues/1312
5642 https://github.com/STEllAR-GROUP/hpx/issues/1311
5643 https://github.com/STEllAR-GROUP/hpx/issues/1310
5644 https://github.com/STEllAR-GROUP/hpx/issues/1308
5645 https://github.com/STEllAR-GROUP/hpx/issues/1307
5646 https://github.com/STEllAR-GROUP/hpx/issues/1306
5647 https://github.com/STEllAR-GROUP/hpx/issues/1305
5648 https://github.com/STEllAR-GROUP/hpx/issues/1304
5649 https://github.com/STEllAR-GROUP/hpx/issues/1303
5650 https://github.com/STEllAR-GROUP/hpx/issues/1302
5651 https://github.com/STEllAR-GROUP/hpx/issues/1301
5652 https://github.com/STEllAR-GROUP/hpx/issues/1298
5653 https://github.com/STEllAR-GROUP/hpx/issues/1297

1790 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1322
https://github.com/STEllAR-GROUP/hpx/issues/1321
https://github.com/STEllAR-GROUP/hpx/issues/1320
https://github.com/STEllAR-GROUP/hpx/issues/1319
https://github.com/STEllAR-GROUP/hpx/issues/1318
https://github.com/STEllAR-GROUP/hpx/issues/1317
https://github.com/STEllAR-GROUP/hpx/issues/1316
https://github.com/STEllAR-GROUP/hpx/issues/1314
https://github.com/STEllAR-GROUP/hpx/issues/1313
https://github.com/STEllAR-GROUP/hpx/issues/1312
https://github.com/STEllAR-GROUP/hpx/issues/1311
https://github.com/STEllAR-GROUP/hpx/issues/1310
https://github.com/STEllAR-GROUP/hpx/issues/1308
https://github.com/STEllAR-GROUP/hpx/issues/1307
https://github.com/STEllAR-GROUP/hpx/issues/1306
https://github.com/STEllAR-GROUP/hpx/issues/1305
https://github.com/STEllAR-GROUP/hpx/issues/1304
https://github.com/STEllAR-GROUP/hpx/issues/1303
https://github.com/STEllAR-GROUP/hpx/issues/1302
https://github.com/STEllAR-GROUP/hpx/issues/1301
https://github.com/STEllAR-GROUP/hpx/issues/1298
https://github.com/STEllAR-GROUP/hpx/issues/1297

HPX Documentation, master

• Issue #12945654 - HDF5 build error

• Issue #12755655 - The parcelport implementation is non-optimal

• Issue #12675656 - Added classes and unit tests for local_file, orangefs_file and pxfs_file

• Issue #12645657 - Error “assertion ‘!m_fun’ failed” randomly occurs when using TCP

• Issue #12545658 - thread binding seems to not work properly

• Issue #12205659 - parallel::copy_if is broken

• Issue #12175660 - Find a better way of fixing the issue patched by #1216

• Issue #11685661 - Starting HPX on Cray machines using aprun isn’t working correctly

• Issue #10855662 - Replace startup and shutdown barriers with broadcasts

• Issue #9815663 - With SLURM, –hpx:threads=8 should not be necessary

• Issue #8575664 - hpx::naming::locality leaks parcelport specific information into the public interface

• Issue #8505665 - “flush” not documented

• Issue #7635666 - Create buildbot instance that uses std::bind as HPX_STD_BIND

• Issue #6805667 - Convert parcel ports into a plugin system

• Issue #5825668 - Make exception thrown from HPX threads available from hpx::init

• Issue #5045669 - Refactor Dataflow LCO to work with futures

• Issue #1965670 - Don’t store copies of the locality network metadata in the gva table

HPX V0.9.9 (Oct 31, 2014, codename Spooky)

General changes

We have had over 1500 commits since the last release and we have closed over 200 tickets (bugs, feature requests, pull
requests, etc.). These are by far the largest numbers of commits and resolved issues for any of the HPX releases so far.
We are especially happy about the large number of people who contributed for the first time to HPX.

• We completed the transition from the older (non-conforming) implementation of hpx::future to the new
and fully conforming version by removing the old code and by renaming the type hpx::unique_future
to hpx::future. In order to maintain backwards compatibility with existing code which uses the type
hpx::unique_future we support the configuration variable HPX_UNIQUE_FUTURE_ALIAS. If this variable is
set to ON while running cmake it will additionally define a template alias for this type.

5654 https://github.com/STEllAR-GROUP/hpx/issues/1294
5655 https://github.com/STEllAR-GROUP/hpx/issues/1275
5656 https://github.com/STEllAR-GROUP/hpx/issues/1267
5657 https://github.com/STEllAR-GROUP/hpx/issues/1264
5658 https://github.com/STEllAR-GROUP/hpx/issues/1254
5659 https://github.com/STEllAR-GROUP/hpx/issues/1220
5660 https://github.com/STEllAR-GROUP/hpx/issues/1217
5661 https://github.com/STEllAR-GROUP/hpx/issues/1168
5662 https://github.com/STEllAR-GROUP/hpx/issues/1085
5663 https://github.com/STEllAR-GROUP/hpx/issues/981
5664 https://github.com/STEllAR-GROUP/hpx/issues/857
5665 https://github.com/STEllAR-GROUP/hpx/issues/850
5666 https://github.com/STEllAR-GROUP/hpx/issues/763
5667 https://github.com/STEllAR-GROUP/hpx/issues/680
5668 https://github.com/STEllAR-GROUP/hpx/issues/582
5669 https://github.com/STEllAR-GROUP/hpx/issues/504
5670 https://github.com/STEllAR-GROUP/hpx/issues/196

2.10. Releases 1791

https://github.com/STEllAR-GROUP/hpx/issues/1294
https://github.com/STEllAR-GROUP/hpx/issues/1275
https://github.com/STEllAR-GROUP/hpx/issues/1267
https://github.com/STEllAR-GROUP/hpx/issues/1264
https://github.com/STEllAR-GROUP/hpx/issues/1254
https://github.com/STEllAR-GROUP/hpx/issues/1220
https://github.com/STEllAR-GROUP/hpx/issues/1217
https://github.com/STEllAR-GROUP/hpx/issues/1168
https://github.com/STEllAR-GROUP/hpx/issues/1085
https://github.com/STEllAR-GROUP/hpx/issues/981
https://github.com/STEllAR-GROUP/hpx/issues/857
https://github.com/STEllAR-GROUP/hpx/issues/850
https://github.com/STEllAR-GROUP/hpx/issues/763
https://github.com/STEllAR-GROUP/hpx/issues/680
https://github.com/STEllAR-GROUP/hpx/issues/582
https://github.com/STEllAR-GROUP/hpx/issues/504
https://github.com/STEllAR-GROUP/hpx/issues/196

HPX Documentation, master

• We rewrote and significantly changed our build system. Please have a look at the new (now generated) documen-
tation here: Building HPX. Please revisit your build scripts to adapt to the changes. The most notable changes
are:

– HPX_NO_INSTALL is no longer necessary.

– For external builds, you need to set HPX_DIR instead of HPX_ROOT as described here: Using HPX with
CMake-based projects.

– IDEs that support multiple configurations (Visual Studio and XCode) can now be used as intended. that
means no build dir.

– Building HPX statically (without dynamic libraries) is now supported (-DHPX_STATIC_LINKING=On).

– Please note that many variables used to configure the build process have been renamed to unify the naming
conventions (see the section CMake options for more information).

– This also fixes a long list of issues, for more information see Issue #12045671.

• We started to implement various proposals to the C++ Standardization committee related to parallelism and con-
currency, most notably N44095672 (Working Draft, Technical Specification for C++ Extensions for Parallelism),
N44115673 (Task Region Rev. 3), and N43135674 (Working Draft, Technical Specification for C++ Extensions for
Concurrency).

• We completely remodeled our automatic build system to run builds and unit tests on various systems and com-
pilers. This allows us to find most bugs right as they were introduced and helps to maintain a high level of quality
and compatibility. The newest build logs can be found at HPX Buildbot Website5675.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• Issue #12965676 - Rename make_error_future to make_exceptional_future, adjust to N4123

• Issue #12955677 - building issue

• Issue #12935678 - Transpose example

• Issue #12925679 - Wrong abs() function used in example

• Issue #12915680 - non-synchronized shift operators have been removed

• Issue #12905681 - RDTSCP is defined as true for Xeon Phi build

• Issue #12895682 - Fixing 1288

• Issue #12885683 - Add new performance counters

• Issue #12875684 - Hierarchy scheduler broken performance counters
5671 https://github.com/STEllAR-GROUP/hpx/issues/1204
5672 http://wg21.link/n4409
5673 http://wg21.link/n4411
5674 http://wg21.link/n4313
5675 http://rostam.cct.lsu.edu/
5676 https://github.com/STEllAR-GROUP/hpx/issues/1296
5677 https://github.com/STEllAR-GROUP/hpx/issues/1295
5678 https://github.com/STEllAR-GROUP/hpx/issues/1293
5679 https://github.com/STEllAR-GROUP/hpx/issues/1292
5680 https://github.com/STEllAR-GROUP/hpx/issues/1291
5681 https://github.com/STEllAR-GROUP/hpx/issues/1290
5682 https://github.com/STEllAR-GROUP/hpx/issues/1289
5683 https://github.com/STEllAR-GROUP/hpx/issues/1288
5684 https://github.com/STEllAR-GROUP/hpx/issues/1287

1792 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1204
http://wg21.link/n4409
http://wg21.link/n4411
http://wg21.link/n4313
http://rostam.cct.lsu.edu/
https://github.com/STEllAR-GROUP/hpx/issues/1296
https://github.com/STEllAR-GROUP/hpx/issues/1295
https://github.com/STEllAR-GROUP/hpx/issues/1293
https://github.com/STEllAR-GROUP/hpx/issues/1292
https://github.com/STEllAR-GROUP/hpx/issues/1291
https://github.com/STEllAR-GROUP/hpx/issues/1290
https://github.com/STEllAR-GROUP/hpx/issues/1289
https://github.com/STEllAR-GROUP/hpx/issues/1288
https://github.com/STEllAR-GROUP/hpx/issues/1287

HPX Documentation, master

• Issue #12865685 - Algorithm cleanup

• Issue #12855686 - Broken Links in Documentation

• Issue #12845687 - Uninitialized copy

• Issue #12835688 - missing boost::scoped_ptr includes

• Issue #12825689 - Update documentation of build options for schedulers

• Issue #12815690 - reset idle rate counter

• Issue #12805691 - Bug when executing on Intel MIC

• Issue #12795692 - Add improved when_all/wait_all

• Issue #12785693 - Implement improved when_all/wait_all

• Issue #12775694 - feature request: get access to argc argv and variables_map

• Issue #12765695 - Remove merging map

• Issue #12745696 - Weird (wrong) string code in papi.cpp

• Issue #12735697 - Sequential task execution policy

• Issue #12725698 - Avoid CMake name clash for Boost.Thread library

• Issue #12715699 - Updates on HPX Test Units

• Issue #12705700 - hpx/util/safe_lexical_cast.hpp is added

• Issue #12695701 - Added default value for “LIB” cmake variable

• Issue #12685702 - Memory Counters not working

• Issue #12665703 - FindHPX.cmake is not installed

• Issue #12635704 - apply_remote test takes too long

• Issue #12625705 - Chrono cleanup

• Issue #12615706 - Need make install for papi counters and this builds all the examples

• Issue #12605707 - Documentation of Stencil example claims
5685 https://github.com/STEllAR-GROUP/hpx/issues/1286
5686 https://github.com/STEllAR-GROUP/hpx/issues/1285
5687 https://github.com/STEllAR-GROUP/hpx/issues/1284
5688 https://github.com/STEllAR-GROUP/hpx/issues/1283
5689 https://github.com/STEllAR-GROUP/hpx/issues/1282
5690 https://github.com/STEllAR-GROUP/hpx/issues/1281
5691 https://github.com/STEllAR-GROUP/hpx/issues/1280
5692 https://github.com/STEllAR-GROUP/hpx/issues/1279
5693 https://github.com/STEllAR-GROUP/hpx/issues/1278
5694 https://github.com/STEllAR-GROUP/hpx/issues/1277
5695 https://github.com/STEllAR-GROUP/hpx/issues/1276
5696 https://github.com/STEllAR-GROUP/hpx/issues/1274
5697 https://github.com/STEllAR-GROUP/hpx/issues/1273
5698 https://github.com/STEllAR-GROUP/hpx/issues/1272
5699 https://github.com/STEllAR-GROUP/hpx/issues/1271
5700 https://github.com/STEllAR-GROUP/hpx/issues/1270
5701 https://github.com/STEllAR-GROUP/hpx/issues/1269
5702 https://github.com/STEllAR-GROUP/hpx/issues/1268
5703 https://github.com/STEllAR-GROUP/hpx/issues/1266
5704 https://github.com/STEllAR-GROUP/hpx/issues/1263
5705 https://github.com/STEllAR-GROUP/hpx/issues/1262
5706 https://github.com/STEllAR-GROUP/hpx/issues/1261
5707 https://github.com/STEllAR-GROUP/hpx/issues/1260

2.10. Releases 1793

https://github.com/STEllAR-GROUP/hpx/issues/1286
https://github.com/STEllAR-GROUP/hpx/issues/1285
https://github.com/STEllAR-GROUP/hpx/issues/1284
https://github.com/STEllAR-GROUP/hpx/issues/1283
https://github.com/STEllAR-GROUP/hpx/issues/1282
https://github.com/STEllAR-GROUP/hpx/issues/1281
https://github.com/STEllAR-GROUP/hpx/issues/1280
https://github.com/STEllAR-GROUP/hpx/issues/1279
https://github.com/STEllAR-GROUP/hpx/issues/1278
https://github.com/STEllAR-GROUP/hpx/issues/1277
https://github.com/STEllAR-GROUP/hpx/issues/1276
https://github.com/STEllAR-GROUP/hpx/issues/1274
https://github.com/STEllAR-GROUP/hpx/issues/1273
https://github.com/STEllAR-GROUP/hpx/issues/1272
https://github.com/STEllAR-GROUP/hpx/issues/1271
https://github.com/STEllAR-GROUP/hpx/issues/1270
https://github.com/STEllAR-GROUP/hpx/issues/1269
https://github.com/STEllAR-GROUP/hpx/issues/1268
https://github.com/STEllAR-GROUP/hpx/issues/1266
https://github.com/STEllAR-GROUP/hpx/issues/1263
https://github.com/STEllAR-GROUP/hpx/issues/1262
https://github.com/STEllAR-GROUP/hpx/issues/1261
https://github.com/STEllAR-GROUP/hpx/issues/1260

HPX Documentation, master

• Issue #12595708 - Avoid double-linking Boost on Windows

• Issue #12575709 - Adding additional parameter to create_thread

• Issue #12565710 - added buildbot changes to release notes

• Issue #12555711 - Cannot build MiniGhost

• Issue #12535712 - hpx::thread defects

• Issue #12525713 - HPX_PREFIX is too fragile

• Issue #12505714 - switch_to_fiber_emulation does not work properly

• Issue #12495715 - Documentation is generated under Release folder

• Issue #12485716 - Fix usage of hpx_generic_coroutine_context and get tests passing on powerpc

• Issue #12475717 - Dynamic linking error

• Issue #12465718 - Make cpuid.cpp C++11 compliant

• Issue #12455719 - HPX fails on startup (setting thread affinity mask)

• Issue #12445720 - HPX_WITH_RDTSC configure test fails, but should succeed

• Issue #12435721 - CTest dashboard info for CSCS CDash drop location

• Issue #12425722 - Mac fixes

• Issue #12415723 - Failure in Distributed with Boost 1.56

• Issue #12405724 - fix a race condition in examples.diskperf

• Issue #12395725 - fix wait_each in examples.diskperf

• Issue #12385726 - Fixed #1237: hpx::util::portable_binary_iarchive failed

• Issue #12375727 - hpx::util::portable_binary_iarchive faileds

• Issue #12355728 - Fixing clang warnings and errors

• Issue #12345729 - TCP runs fail: Transport endpoint is not connected

• Issue #12335730 - Making sure the correct number of threads is registered with AGAS
5708 https://github.com/STEllAR-GROUP/hpx/issues/1259
5709 https://github.com/STEllAR-GROUP/hpx/issues/1257
5710 https://github.com/STEllAR-GROUP/hpx/issues/1256
5711 https://github.com/STEllAR-GROUP/hpx/issues/1255
5712 https://github.com/STEllAR-GROUP/hpx/issues/1253
5713 https://github.com/STEllAR-GROUP/hpx/issues/1252
5714 https://github.com/STEllAR-GROUP/hpx/issues/1250
5715 https://github.com/STEllAR-GROUP/hpx/issues/1249
5716 https://github.com/STEllAR-GROUP/hpx/issues/1248
5717 https://github.com/STEllAR-GROUP/hpx/issues/1247
5718 https://github.com/STEllAR-GROUP/hpx/issues/1246
5719 https://github.com/STEllAR-GROUP/hpx/issues/1245
5720 https://github.com/STEllAR-GROUP/hpx/issues/1244
5721 https://github.com/STEllAR-GROUP/hpx/issues/1243
5722 https://github.com/STEllAR-GROUP/hpx/issues/1242
5723 https://github.com/STEllAR-GROUP/hpx/issues/1241
5724 https://github.com/STEllAR-GROUP/hpx/issues/1240
5725 https://github.com/STEllAR-GROUP/hpx/issues/1239
5726 https://github.com/STEllAR-GROUP/hpx/issues/1238
5727 https://github.com/STEllAR-GROUP/hpx/issues/1237
5728 https://github.com/STEllAR-GROUP/hpx/issues/1235
5729 https://github.com/STEllAR-GROUP/hpx/issues/1234
5730 https://github.com/STEllAR-GROUP/hpx/issues/1233

1794 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1259
https://github.com/STEllAR-GROUP/hpx/issues/1257
https://github.com/STEllAR-GROUP/hpx/issues/1256
https://github.com/STEllAR-GROUP/hpx/issues/1255
https://github.com/STEllAR-GROUP/hpx/issues/1253
https://github.com/STEllAR-GROUP/hpx/issues/1252
https://github.com/STEllAR-GROUP/hpx/issues/1250
https://github.com/STEllAR-GROUP/hpx/issues/1249
https://github.com/STEllAR-GROUP/hpx/issues/1248
https://github.com/STEllAR-GROUP/hpx/issues/1247
https://github.com/STEllAR-GROUP/hpx/issues/1246
https://github.com/STEllAR-GROUP/hpx/issues/1245
https://github.com/STEllAR-GROUP/hpx/issues/1244
https://github.com/STEllAR-GROUP/hpx/issues/1243
https://github.com/STEllAR-GROUP/hpx/issues/1242
https://github.com/STEllAR-GROUP/hpx/issues/1241
https://github.com/STEllAR-GROUP/hpx/issues/1240
https://github.com/STEllAR-GROUP/hpx/issues/1239
https://github.com/STEllAR-GROUP/hpx/issues/1238
https://github.com/STEllAR-GROUP/hpx/issues/1237
https://github.com/STEllAR-GROUP/hpx/issues/1235
https://github.com/STEllAR-GROUP/hpx/issues/1234
https://github.com/STEllAR-GROUP/hpx/issues/1233

HPX Documentation, master

• Issue #12325731 - Fixing race in wait_xxx

• Issue #12315732 - Parallel minmax

• Issue #12305733 - Distributed run of 1d_stencil_8 uses less threads than spec. & sometimes gives errors

• Issue #12295734 - Unstable number of threads

• Issue #12285735 - HPX link error (cmake / MPI)

• Issue #12265736 - Warning about struct/class thread_counters

• Issue #12255737 - Adding parallel::replace etc

• Issue #12245738 - Extending dataflow to pass through non-future arguments

• Issue #12235739 - Remaining find algorithms implemented, N4071

• Issue #12225740 - Merging all the changes

• Issue #12215741 - No error output when using mpirun with hpx

• Issue #12195742 - Adding new AGAS cache performance counters

• Issue #12165743 - Fixing using futures (clients) as arguments to actions

• Issue #12155744 - Error compiling simple component

• Issue #12145745 - Stencil docs

• Issue #12135746 - Using more than a few dozen MPI processes on SuperMike results in a seg fault before getting
to hpx_main

• Issue #12125747 - Parallel rotate

• Issue #12115748 - Direct actions cause the future’s shared_state to be leaked

• Issue #12105749 - Refactored local::promise to be standard conformant

• Issue #12095750 - Improve command line handling

• Issue #12085751 - Adding parallel::reverse and parallel::reverse_copy

• Issue #12075752 - Add copy_backward and move_backward

• Issue #12065753 - N4071 additional algorithms implemented
5731 https://github.com/STEllAR-GROUP/hpx/issues/1232
5732 https://github.com/STEllAR-GROUP/hpx/issues/1231
5733 https://github.com/STEllAR-GROUP/hpx/issues/1230
5734 https://github.com/STEllAR-GROUP/hpx/issues/1229
5735 https://github.com/STEllAR-GROUP/hpx/issues/1228
5736 https://github.com/STEllAR-GROUP/hpx/issues/1226
5737 https://github.com/STEllAR-GROUP/hpx/issues/1225
5738 https://github.com/STEllAR-GROUP/hpx/issues/1224
5739 https://github.com/STEllAR-GROUP/hpx/issues/1223
5740 https://github.com/STEllAR-GROUP/hpx/issues/1222
5741 https://github.com/STEllAR-GROUP/hpx/issues/1221
5742 https://github.com/STEllAR-GROUP/hpx/issues/1219
5743 https://github.com/STEllAR-GROUP/hpx/issues/1216
5744 https://github.com/STEllAR-GROUP/hpx/issues/1215
5745 https://github.com/STEllAR-GROUP/hpx/issues/1214
5746 https://github.com/STEllAR-GROUP/hpx/issues/1213
5747 https://github.com/STEllAR-GROUP/hpx/issues/1212
5748 https://github.com/STEllAR-GROUP/hpx/issues/1211
5749 https://github.com/STEllAR-GROUP/hpx/issues/1210
5750 https://github.com/STEllAR-GROUP/hpx/issues/1209
5751 https://github.com/STEllAR-GROUP/hpx/issues/1208
5752 https://github.com/STEllAR-GROUP/hpx/issues/1207
5753 https://github.com/STEllAR-GROUP/hpx/issues/1206

2.10. Releases 1795

https://github.com/STEllAR-GROUP/hpx/issues/1232
https://github.com/STEllAR-GROUP/hpx/issues/1231
https://github.com/STEllAR-GROUP/hpx/issues/1230
https://github.com/STEllAR-GROUP/hpx/issues/1229
https://github.com/STEllAR-GROUP/hpx/issues/1228
https://github.com/STEllAR-GROUP/hpx/issues/1226
https://github.com/STEllAR-GROUP/hpx/issues/1225
https://github.com/STEllAR-GROUP/hpx/issues/1224
https://github.com/STEllAR-GROUP/hpx/issues/1223
https://github.com/STEllAR-GROUP/hpx/issues/1222
https://github.com/STEllAR-GROUP/hpx/issues/1221
https://github.com/STEllAR-GROUP/hpx/issues/1219
https://github.com/STEllAR-GROUP/hpx/issues/1216
https://github.com/STEllAR-GROUP/hpx/issues/1215
https://github.com/STEllAR-GROUP/hpx/issues/1214
https://github.com/STEllAR-GROUP/hpx/issues/1213
https://github.com/STEllAR-GROUP/hpx/issues/1212
https://github.com/STEllAR-GROUP/hpx/issues/1211
https://github.com/STEllAR-GROUP/hpx/issues/1210
https://github.com/STEllAR-GROUP/hpx/issues/1209
https://github.com/STEllAR-GROUP/hpx/issues/1208
https://github.com/STEllAR-GROUP/hpx/issues/1207
https://github.com/STEllAR-GROUP/hpx/issues/1206

HPX Documentation, master

• Issue #12045754 - Cmake simplification and various other minor changes

• Issue #12035755 - Implementing new launch policy for (local) async: hpx::launch::fork.

• Issue #12025756 - Failed assertion in connection_cache.hpp

• Issue #12015757 - pkg-config doesn’t add mpi link directories

• Issue #12005758 - Error when querying time performance counters

• Issue #11995759 - library path is now configurable (again)

• Issue #11985760 - Error when querying performance counters

• Issue #11975761 - tests fail with intel compiler

• Issue #11965762 - Silence several warnings

• Issue #11955763 - Rephrase initializers to work with VC++ 2012

• Issue #11945764 - Simplify parallel algorithms

• Issue #11935765 - Adding parallel::equal

• Issue #11925766 - HPX(out_of_memory) on including <hpx/hpx.hpp>

• Issue #11915767 - Fixing #1189

• Issue #11905768 - Chrono cleanup

• Issue #11895769 - Deadlock .. somewhere? (probably serialization)

• Issue #11885770 - Removed future::get_status()

• Issue #11865771 - Fixed FindOpenCL to find current AMD APP SDK

• Issue #11845772 - Tweaking future unwrapping

• Issue #11835773 - Extended parallel::reduce

• Issue #11825774 - future::unwrap hangs for launch::deferred

• Issue #11815775 - Adding all_of, any_of, and none_of and corresponding documentation

• Issue #11805776 - hpx::cout defect
5754 https://github.com/STEllAR-GROUP/hpx/issues/1204
5755 https://github.com/STEllAR-GROUP/hpx/issues/1203
5756 https://github.com/STEllAR-GROUP/hpx/issues/1202
5757 https://github.com/STEllAR-GROUP/hpx/issues/1201
5758 https://github.com/STEllAR-GROUP/hpx/issues/1200
5759 https://github.com/STEllAR-GROUP/hpx/issues/1199
5760 https://github.com/STEllAR-GROUP/hpx/issues/1198
5761 https://github.com/STEllAR-GROUP/hpx/issues/1197
5762 https://github.com/STEllAR-GROUP/hpx/issues/1196
5763 https://github.com/STEllAR-GROUP/hpx/issues/1195
5764 https://github.com/STEllAR-GROUP/hpx/issues/1194
5765 https://github.com/STEllAR-GROUP/hpx/issues/1193
5766 https://github.com/STEllAR-GROUP/hpx/issues/1192
5767 https://github.com/STEllAR-GROUP/hpx/issues/1191
5768 https://github.com/STEllAR-GROUP/hpx/issues/1190
5769 https://github.com/STEllAR-GROUP/hpx/issues/1189
5770 https://github.com/STEllAR-GROUP/hpx/issues/1188
5771 https://github.com/STEllAR-GROUP/hpx/issues/1186
5772 https://github.com/STEllAR-GROUP/hpx/issues/1184
5773 https://github.com/STEllAR-GROUP/hpx/issues/1183
5774 https://github.com/STEllAR-GROUP/hpx/issues/1182
5775 https://github.com/STEllAR-GROUP/hpx/issues/1181
5776 https://github.com/STEllAR-GROUP/hpx/issues/1180

1796 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1204
https://github.com/STEllAR-GROUP/hpx/issues/1203
https://github.com/STEllAR-GROUP/hpx/issues/1202
https://github.com/STEllAR-GROUP/hpx/issues/1201
https://github.com/STEllAR-GROUP/hpx/issues/1200
https://github.com/STEllAR-GROUP/hpx/issues/1199
https://github.com/STEllAR-GROUP/hpx/issues/1198
https://github.com/STEllAR-GROUP/hpx/issues/1197
https://github.com/STEllAR-GROUP/hpx/issues/1196
https://github.com/STEllAR-GROUP/hpx/issues/1195
https://github.com/STEllAR-GROUP/hpx/issues/1194
https://github.com/STEllAR-GROUP/hpx/issues/1193
https://github.com/STEllAR-GROUP/hpx/issues/1192
https://github.com/STEllAR-GROUP/hpx/issues/1191
https://github.com/STEllAR-GROUP/hpx/issues/1190
https://github.com/STEllAR-GROUP/hpx/issues/1189
https://github.com/STEllAR-GROUP/hpx/issues/1188
https://github.com/STEllAR-GROUP/hpx/issues/1186
https://github.com/STEllAR-GROUP/hpx/issues/1184
https://github.com/STEllAR-GROUP/hpx/issues/1183
https://github.com/STEllAR-GROUP/hpx/issues/1182
https://github.com/STEllAR-GROUP/hpx/issues/1181
https://github.com/STEllAR-GROUP/hpx/issues/1180

HPX Documentation, master

• Issue #11795777 - hpx::async does not work for member function pointers when called on types with self-
defined unary operator*

• Issue #11785778 - Implemented variadic hpx::util::zip_iterator

• Issue #11775779 - MPI parcelport defect

• Issue #11765780 - HPX_DEFINE_COMPONENT_CONST_ACTION_TPL does not have a 2-argument version

• Issue #11755781 - Create util::zip_iterator working with util::tuple<>

• Issue #11745782 - Error Building HPX on linux, root_certificate_authority.cpp

• Issue #11735783 - hpx::cout output lost

• Issue #11725784 - HPX build error with Clang 3.4.2

• Issue #11715785 - CMAKE_INSTALL_PREFIX ignored

• Issue #11705786 - Close hpx_benchmarks repository on Github

• Issue #11695787 - Buildbot emails have syntax error in url

• Issue #11675788 - Merge partial implementation of standards proposal N3960

• Issue #11665789 - Fixed several compiler warnings

• Issue #11655790 - cmake warns: “tests.regressions.actions” does not exist

• Issue #11645791 - Want my own serialization of hpx::future

• Issue #11625792 - Segfault in hello_world example

• Issue #11615793 - Use HPX_ASSERT to aid the compiler

• Issue #11605794 - Do not put -DNDEBUG into hpx_application.pc

• Issue #11595795 - Support Clang 3.4.2

• Issue #11585796 - Fixed #1157: Rename when_n/wait_n, add when_xxx_n/wait_xxx_n

• Issue #11575797 - Rename when_n/wait_n, add when_xxx_n/wait_xxx_n

• Issue #11565798 - Force inlining fails

• Issue #11555799 - changed header of printout to be compatible with python csv module
5777 https://github.com/STEllAR-GROUP/hpx/issues/1179
5778 https://github.com/STEllAR-GROUP/hpx/issues/1178
5779 https://github.com/STEllAR-GROUP/hpx/issues/1177
5780 https://github.com/STEllAR-GROUP/hpx/issues/1176
5781 https://github.com/STEllAR-GROUP/hpx/issues/1175
5782 https://github.com/STEllAR-GROUP/hpx/issues/1174
5783 https://github.com/STEllAR-GROUP/hpx/issues/1173
5784 https://github.com/STEllAR-GROUP/hpx/issues/1172
5785 https://github.com/STEllAR-GROUP/hpx/issues/1171
5786 https://github.com/STEllAR-GROUP/hpx/issues/1170
5787 https://github.com/STEllAR-GROUP/hpx/issues/1169
5788 https://github.com/STEllAR-GROUP/hpx/issues/1167
5789 https://github.com/STEllAR-GROUP/hpx/issues/1166
5790 https://github.com/STEllAR-GROUP/hpx/issues/1165
5791 https://github.com/STEllAR-GROUP/hpx/issues/1164
5792 https://github.com/STEllAR-GROUP/hpx/issues/1162
5793 https://github.com/STEllAR-GROUP/hpx/issues/1161
5794 https://github.com/STEllAR-GROUP/hpx/issues/1160
5795 https://github.com/STEllAR-GROUP/hpx/issues/1159
5796 https://github.com/STEllAR-GROUP/hpx/issues/1158
5797 https://github.com/STEllAR-GROUP/hpx/issues/1157
5798 https://github.com/STEllAR-GROUP/hpx/issues/1156
5799 https://github.com/STEllAR-GROUP/hpx/issues/1155

2.10. Releases 1797

https://github.com/STEllAR-GROUP/hpx/issues/1179
https://github.com/STEllAR-GROUP/hpx/issues/1178
https://github.com/STEllAR-GROUP/hpx/issues/1177
https://github.com/STEllAR-GROUP/hpx/issues/1176
https://github.com/STEllAR-GROUP/hpx/issues/1175
https://github.com/STEllAR-GROUP/hpx/issues/1174
https://github.com/STEllAR-GROUP/hpx/issues/1173
https://github.com/STEllAR-GROUP/hpx/issues/1172
https://github.com/STEllAR-GROUP/hpx/issues/1171
https://github.com/STEllAR-GROUP/hpx/issues/1170
https://github.com/STEllAR-GROUP/hpx/issues/1169
https://github.com/STEllAR-GROUP/hpx/issues/1167
https://github.com/STEllAR-GROUP/hpx/issues/1166
https://github.com/STEllAR-GROUP/hpx/issues/1165
https://github.com/STEllAR-GROUP/hpx/issues/1164
https://github.com/STEllAR-GROUP/hpx/issues/1162
https://github.com/STEllAR-GROUP/hpx/issues/1161
https://github.com/STEllAR-GROUP/hpx/issues/1160
https://github.com/STEllAR-GROUP/hpx/issues/1159
https://github.com/STEllAR-GROUP/hpx/issues/1158
https://github.com/STEllAR-GROUP/hpx/issues/1157
https://github.com/STEllAR-GROUP/hpx/issues/1156
https://github.com/STEllAR-GROUP/hpx/issues/1155

HPX Documentation, master

• Issue #11545800 - Fixing iostreams

• Issue #11535801 - Standard manipulators (like std::endl) do not work with hpx::ostream

• Issue #11525802 - Functions revamp

• Issue #11515803 - Suppressing cmake 3.0 policy warning for CMP0026

• Issue #11505804 - Client Serialization error

• Issue #11495805 - Segfault on Stampede

• Issue #11485806 - Refactoring mini-ghost

• Issue #11475807 - N3960 copy_if and copy_n implemented and tested

• Issue #11465808 - Stencil print

• Issue #11455809 - N3960 hpx::parallel::copy implemented and tested

• Issue #11445810 - OpenMP examples 1d_stencil do not build

• Issue #11435811 - 1d_stencil OpenMP examples do not build

• Issue #11425812 - Cannot build HPX with gcc 4.6 on OS X

• Issue #11405813 - Fix OpenMP lookup, enable usage of config tests in external CMake projects.

• Issue #11395814 - hpx/hpx/config/compiler_specific.hpp

• Issue #11385815 - clean up pkg-config files

• Issue #11375816 - Improvements to create binary packages

• Issue #11365817 - HPX_GCC_VERSION not defined on all compilers

• Issue #11355818 - Avoiding collision between winsock2.h and windows.h

• Issue #11345819 - Making sure, that hpx::finalize can be called from any locality

• Issue #11335820 - 1d stencil examples

• Issue #11315821 - Refactor unique_function implementation

• Issue #11305822 - Unique function
5800 https://github.com/STEllAR-GROUP/hpx/issues/1154
5801 https://github.com/STEllAR-GROUP/hpx/issues/1153
5802 https://github.com/STEllAR-GROUP/hpx/issues/1152
5803 https://github.com/STEllAR-GROUP/hpx/issues/1151
5804 https://github.com/STEllAR-GROUP/hpx/issues/1150
5805 https://github.com/STEllAR-GROUP/hpx/issues/1149
5806 https://github.com/STEllAR-GROUP/hpx/issues/1148
5807 https://github.com/STEllAR-GROUP/hpx/issues/1147
5808 https://github.com/STEllAR-GROUP/hpx/issues/1146
5809 https://github.com/STEllAR-GROUP/hpx/issues/1145
5810 https://github.com/STEllAR-GROUP/hpx/issues/1144
5811 https://github.com/STEllAR-GROUP/hpx/issues/1143
5812 https://github.com/STEllAR-GROUP/hpx/issues/1142
5813 https://github.com/STEllAR-GROUP/hpx/issues/1140
5814 https://github.com/STEllAR-GROUP/hpx/issues/1139
5815 https://github.com/STEllAR-GROUP/hpx/issues/1138
5816 https://github.com/STEllAR-GROUP/hpx/issues/1137
5817 https://github.com/STEllAR-GROUP/hpx/issues/1136
5818 https://github.com/STEllAR-GROUP/hpx/issues/1135
5819 https://github.com/STEllAR-GROUP/hpx/issues/1134
5820 https://github.com/STEllAR-GROUP/hpx/issues/1133
5821 https://github.com/STEllAR-GROUP/hpx/issues/1131
5822 https://github.com/STEllAR-GROUP/hpx/issues/1130

1798 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1154
https://github.com/STEllAR-GROUP/hpx/issues/1153
https://github.com/STEllAR-GROUP/hpx/issues/1152
https://github.com/STEllAR-GROUP/hpx/issues/1151
https://github.com/STEllAR-GROUP/hpx/issues/1150
https://github.com/STEllAR-GROUP/hpx/issues/1149
https://github.com/STEllAR-GROUP/hpx/issues/1148
https://github.com/STEllAR-GROUP/hpx/issues/1147
https://github.com/STEllAR-GROUP/hpx/issues/1146
https://github.com/STEllAR-GROUP/hpx/issues/1145
https://github.com/STEllAR-GROUP/hpx/issues/1144
https://github.com/STEllAR-GROUP/hpx/issues/1143
https://github.com/STEllAR-GROUP/hpx/issues/1142
https://github.com/STEllAR-GROUP/hpx/issues/1140
https://github.com/STEllAR-GROUP/hpx/issues/1139
https://github.com/STEllAR-GROUP/hpx/issues/1138
https://github.com/STEllAR-GROUP/hpx/issues/1137
https://github.com/STEllAR-GROUP/hpx/issues/1136
https://github.com/STEllAR-GROUP/hpx/issues/1135
https://github.com/STEllAR-GROUP/hpx/issues/1134
https://github.com/STEllAR-GROUP/hpx/issues/1133
https://github.com/STEllAR-GROUP/hpx/issues/1131
https://github.com/STEllAR-GROUP/hpx/issues/1130

HPX Documentation, master

• Issue #11295823 - Some fixes to the Build system on OS X

• Issue #11285824 - Action future args

• Issue #11275825 - Executor causes segmentation fault

• Issue #11245826 - Adding new API functions: register_id_with_basename,
unregister_id_with_basename, find_ids_from_basename; adding test

• Issue #11235827 - Reduce nesting of try-catch construct in encode_parcels?

• Issue #11225828 - Client base fixes

• Issue #11215829 - Update hpxrun.py.in

• Issue #11205830 - HTTS2 tests compile errors on v110 (VS2012)

• Issue #11195831 - Remove references to boost::atomic in accumulator example

• Issue #11185832 - Only build test thread_pool_executor_1114_test if HPX_SCHEDULER is set

• Issue #11175833 - local_queue_executor linker error on vc110

• Issue #11165834 - Disabled performance counter should give runtime errors, not invalid data

• Issue #11155835 - Compile error with Intel C++ 13.1

• Issue #11145836 - Default constructed executor is not usable

• Issue #11135837 - Fast compilation of logging causes ABI incompatibilities between different NDEBUG values

• Issue #11125838 - Using thread_pool_executors causes segfault

• Issue #11115839 - hpx::threads::get_thread_data always returns zero

• Issue #11105840 - Remove unnecessary null pointer checks

• Issue #11095841 - More tests adjustments

• Issue #11085842 - Clarify build rules for “libboost_atomic-mt.so”?

• Issue #11075843 - Remove unnecessary null pointer checks

• Issue #11065844 - network_storage benchmark improvements, adding legends to plots and tidying layout

• Issue #11055845 - Add more plot outputs and improve instructions doc
5823 https://github.com/STEllAR-GROUP/hpx/issues/1129
5824 https://github.com/STEllAR-GROUP/hpx/issues/1128
5825 https://github.com/STEllAR-GROUP/hpx/issues/1127
5826 https://github.com/STEllAR-GROUP/hpx/issues/1124
5827 https://github.com/STEllAR-GROUP/hpx/issues/1123
5828 https://github.com/STEllAR-GROUP/hpx/issues/1122
5829 https://github.com/STEllAR-GROUP/hpx/issues/1121
5830 https://github.com/STEllAR-GROUP/hpx/issues/1120
5831 https://github.com/STEllAR-GROUP/hpx/issues/1119
5832 https://github.com/STEllAR-GROUP/hpx/issues/1118
5833 https://github.com/STEllAR-GROUP/hpx/issues/1117
5834 https://github.com/STEllAR-GROUP/hpx/issues/1116
5835 https://github.com/STEllAR-GROUP/hpx/issues/1115
5836 https://github.com/STEllAR-GROUP/hpx/issues/1114
5837 https://github.com/STEllAR-GROUP/hpx/issues/1113
5838 https://github.com/STEllAR-GROUP/hpx/issues/1112
5839 https://github.com/STEllAR-GROUP/hpx/issues/1111
5840 https://github.com/STEllAR-GROUP/hpx/issues/1110
5841 https://github.com/STEllAR-GROUP/hpx/issues/1109
5842 https://github.com/STEllAR-GROUP/hpx/issues/1108
5843 https://github.com/STEllAR-GROUP/hpx/issues/1107
5844 https://github.com/STEllAR-GROUP/hpx/issues/1106
5845 https://github.com/STEllAR-GROUP/hpx/issues/1105

2.10. Releases 1799

https://github.com/STEllAR-GROUP/hpx/issues/1129
https://github.com/STEllAR-GROUP/hpx/issues/1128
https://github.com/STEllAR-GROUP/hpx/issues/1127
https://github.com/STEllAR-GROUP/hpx/issues/1124
https://github.com/STEllAR-GROUP/hpx/issues/1123
https://github.com/STEllAR-GROUP/hpx/issues/1122
https://github.com/STEllAR-GROUP/hpx/issues/1121
https://github.com/STEllAR-GROUP/hpx/issues/1120
https://github.com/STEllAR-GROUP/hpx/issues/1119
https://github.com/STEllAR-GROUP/hpx/issues/1118
https://github.com/STEllAR-GROUP/hpx/issues/1117
https://github.com/STEllAR-GROUP/hpx/issues/1116
https://github.com/STEllAR-GROUP/hpx/issues/1115
https://github.com/STEllAR-GROUP/hpx/issues/1114
https://github.com/STEllAR-GROUP/hpx/issues/1113
https://github.com/STEllAR-GROUP/hpx/issues/1112
https://github.com/STEllAR-GROUP/hpx/issues/1111
https://github.com/STEllAR-GROUP/hpx/issues/1110
https://github.com/STEllAR-GROUP/hpx/issues/1109
https://github.com/STEllAR-GROUP/hpx/issues/1108
https://github.com/STEllAR-GROUP/hpx/issues/1107
https://github.com/STEllAR-GROUP/hpx/issues/1106
https://github.com/STEllAR-GROUP/hpx/issues/1105

HPX Documentation, master

• Issue #11045846 - Complete quoting for parameters of some CMake commands

• Issue #11035847 - Work on test/scripts

• Issue #11025848 - Changed minimum requirement of window install to 2012

• Issue #11015849 - Changed minimum requirement of window install to 2012

• Issue #11005850 - Changed readme to no longer specify using MSVC 2010 compiler

• Issue #10995851 - Error returning futures from component actions

• Issue #10985852 - Improve storage test

• Issue #10975853 - data_actions quickstart example calls missing function decorate_action of data_get_action

• Issue #10965854 - MPI parcelport broken with new zero copy optimization

• Issue #10955855 - Warning C4005: _WIN32_WINNT: Macro redefinition

• Issue #10945856 - Syntax error for -DHPX_UNIQUE_FUTURE_ALIAS in master

• Issue #10935857 - Syntax error for -DHPX_UNIQUE_FUTURE_ALIAS

• Issue #10925858 - Rename unique_future<> back to future<>

• Issue #10915859 - Inconsistent error message

• Issue #10905860 - On windows 8.1 the examples crashed if using more than one os thread

• Issue #10895861 - Components should be allowed to have their own executor

• Issue #10885862 - Add possibility to select a network interface for the ibverbs parcelport

• Issue #10875863 - ibverbs and ipc parcelport uses zero copy optimization

• Issue #10835864 - Make shell examples copyable in docs

• Issue #10825865 - Implement proper termination detection during shutdown

• Issue #10815866 - Implement thread_specific_ptr for hpx::threads

• Issue #10725867 - make install not working properly

• Issue #10705868 - Complete quoting for parameters of some CMake commands
5846 https://github.com/STEllAR-GROUP/hpx/issues/1104
5847 https://github.com/STEllAR-GROUP/hpx/issues/1103
5848 https://github.com/STEllAR-GROUP/hpx/issues/1102
5849 https://github.com/STEllAR-GROUP/hpx/issues/1101
5850 https://github.com/STEllAR-GROUP/hpx/issues/1100
5851 https://github.com/STEllAR-GROUP/hpx/issues/1099
5852 https://github.com/STEllAR-GROUP/hpx/issues/1098
5853 https://github.com/STEllAR-GROUP/hpx/issues/1097
5854 https://github.com/STEllAR-GROUP/hpx/issues/1096
5855 https://github.com/STEllAR-GROUP/hpx/issues/1095
5856 https://github.com/STEllAR-GROUP/hpx/issues/1094
5857 https://github.com/STEllAR-GROUP/hpx/issues/1093
5858 https://github.com/STEllAR-GROUP/hpx/issues/1092
5859 https://github.com/STEllAR-GROUP/hpx/issues/1091
5860 https://github.com/STEllAR-GROUP/hpx/issues/1090
5861 https://github.com/STEllAR-GROUP/hpx/issues/1089
5862 https://github.com/STEllAR-GROUP/hpx/issues/1088
5863 https://github.com/STEllAR-GROUP/hpx/issues/1087
5864 https://github.com/STEllAR-GROUP/hpx/issues/1083
5865 https://github.com/STEllAR-GROUP/hpx/issues/1082
5866 https://github.com/STEllAR-GROUP/hpx/issues/1081
5867 https://github.com/STEllAR-GROUP/hpx/issues/1072
5868 https://github.com/STEllAR-GROUP/hpx/issues/1070

1800 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1104
https://github.com/STEllAR-GROUP/hpx/issues/1103
https://github.com/STEllAR-GROUP/hpx/issues/1102
https://github.com/STEllAR-GROUP/hpx/issues/1101
https://github.com/STEllAR-GROUP/hpx/issues/1100
https://github.com/STEllAR-GROUP/hpx/issues/1099
https://github.com/STEllAR-GROUP/hpx/issues/1098
https://github.com/STEllAR-GROUP/hpx/issues/1097
https://github.com/STEllAR-GROUP/hpx/issues/1096
https://github.com/STEllAR-GROUP/hpx/issues/1095
https://github.com/STEllAR-GROUP/hpx/issues/1094
https://github.com/STEllAR-GROUP/hpx/issues/1093
https://github.com/STEllAR-GROUP/hpx/issues/1092
https://github.com/STEllAR-GROUP/hpx/issues/1091
https://github.com/STEllAR-GROUP/hpx/issues/1090
https://github.com/STEllAR-GROUP/hpx/issues/1089
https://github.com/STEllAR-GROUP/hpx/issues/1088
https://github.com/STEllAR-GROUP/hpx/issues/1087
https://github.com/STEllAR-GROUP/hpx/issues/1083
https://github.com/STEllAR-GROUP/hpx/issues/1082
https://github.com/STEllAR-GROUP/hpx/issues/1081
https://github.com/STEllAR-GROUP/hpx/issues/1072
https://github.com/STEllAR-GROUP/hpx/issues/1070

HPX Documentation, master

• Issue #10595869 - Fix more unused variable warnings

• Issue #10515870 - Implement when_each

• Issue #9735871 - Would like option to report hwloc bindings

• Issue #9705872 - Bad flags for Fortran compiler

• Issue #9415873 - Create a proper user level context switching class for BG/Q

• Issue #9355874 - Build error with gcc 4.6 and Boost 1.54.0 on hpx trunk and 0.9.6

• Issue #9345875 - Want to build HPX without dynamic libraries

• Issue #9275876 - Make hpx/lcos/reduce.hpp accept futures of id_type

• Issue #9265877 - All unit tests that are run with more than one thread with CTest/hpx_run_test should configure
hpx.os_threads

• Issue #9255878 - regression_dataflow_791 needs to be brought in line with HPX standards

• Issue #8995879 - Fix race conditions in regression tests

• Issue #8795880 - Hung test leads to cascading test failure; make tests should support the MPI parcelport

• Issue #8655881 - future<T> and friends shall work for movable only Ts

• Issue #8475882 - Dynamic libraries are not installed on OS X

• Issue #8165883 - First Program tutorial pull request

• Issue #7995884 - Wrap lexical_cast to avoid exceptions

• Issue #7205885 - broken configuration when using ccmake on Ubuntu

• Issue #6225886 - --hpx:hpx and --hpx:debug-hpx-log is nonsensical

• Issue #5255887 - Extend barrier LCO test to run in distributed

• Issue #5155888 - Multi-destination version of hpx::apply is broken

• Issue #5095889 - Push Boost.Atomic changes upstream

• Issue #5035890 - Running HPX applications on Windows should not require setting %PATH%

• Issue #4615891 - Add a compilation sanity test
5869 https://github.com/STEllAR-GROUP/hpx/issues/1059
5870 https://github.com/STEllAR-GROUP/hpx/issues/1051
5871 https://github.com/STEllAR-GROUP/hpx/issues/973
5872 https://github.com/STEllAR-GROUP/hpx/issues/970
5873 https://github.com/STEllAR-GROUP/hpx/issues/941
5874 https://github.com/STEllAR-GROUP/hpx/issues/935
5875 https://github.com/STEllAR-GROUP/hpx/issues/934
5876 https://github.com/STEllAR-GROUP/hpx/issues/927
5877 https://github.com/STEllAR-GROUP/hpx/issues/926
5878 https://github.com/STEllAR-GROUP/hpx/issues/925
5879 https://github.com/STEllAR-GROUP/hpx/issues/899
5880 https://github.com/STEllAR-GROUP/hpx/issues/879
5881 https://github.com/STEllAR-GROUP/hpx/issues/865
5882 https://github.com/STEllAR-GROUP/hpx/issues/847
5883 https://github.com/STEllAR-GROUP/hpx/issues/816
5884 https://github.com/STEllAR-GROUP/hpx/issues/799
5885 https://github.com/STEllAR-GROUP/hpx/issues/720
5886 https://github.com/STEllAR-GROUP/hpx/issues/622
5887 https://github.com/STEllAR-GROUP/hpx/issues/525
5888 https://github.com/STEllAR-GROUP/hpx/issues/515
5889 https://github.com/STEllAR-GROUP/hpx/issues/509
5890 https://github.com/STEllAR-GROUP/hpx/issues/503
5891 https://github.com/STEllAR-GROUP/hpx/issues/461

2.10. Releases 1801

https://github.com/STEllAR-GROUP/hpx/issues/1059
https://github.com/STEllAR-GROUP/hpx/issues/1051
https://github.com/STEllAR-GROUP/hpx/issues/973
https://github.com/STEllAR-GROUP/hpx/issues/970
https://github.com/STEllAR-GROUP/hpx/issues/941
https://github.com/STEllAR-GROUP/hpx/issues/935
https://github.com/STEllAR-GROUP/hpx/issues/934
https://github.com/STEllAR-GROUP/hpx/issues/927
https://github.com/STEllAR-GROUP/hpx/issues/926
https://github.com/STEllAR-GROUP/hpx/issues/925
https://github.com/STEllAR-GROUP/hpx/issues/899
https://github.com/STEllAR-GROUP/hpx/issues/879
https://github.com/STEllAR-GROUP/hpx/issues/865
https://github.com/STEllAR-GROUP/hpx/issues/847
https://github.com/STEllAR-GROUP/hpx/issues/816
https://github.com/STEllAR-GROUP/hpx/issues/799
https://github.com/STEllAR-GROUP/hpx/issues/720
https://github.com/STEllAR-GROUP/hpx/issues/622
https://github.com/STEllAR-GROUP/hpx/issues/525
https://github.com/STEllAR-GROUP/hpx/issues/515
https://github.com/STEllAR-GROUP/hpx/issues/509
https://github.com/STEllAR-GROUP/hpx/issues/503
https://github.com/STEllAR-GROUP/hpx/issues/461

HPX Documentation, master

• Issue #4565892 - hpx_run_tests.py should log output from tests that timeout

• Issue #4545893 - Investigate threadmanager performance

• Issue #3455894 - Add more versatile environmental/cmake variable support to hpx_find_* CMake macros

• Issue #2095895 - Support multiple configurations in generated build files

• Issue #1905896 - hpx::cout should be a std::ostream

• Issue #1895897 - iostreams component should use startup/shutdown functions

• Issue #1835898 - Use Boost.ICL for correctness in AGAS

• Issue #445899 - Implement real futures

HPX V0.9.8 (Mar 24, 2014)

We have had over 800 commits since the last release and we have closed over 65 tickets (bugs, feature requests, etc.).

With the changes below, HPX is once again leading the charge of a whole new era of computation. By intrinsically
breaking down and synchronizing the work to be done, HPX insures that application developers will no longer have
to fret about where a segment of code executes. That allows coders to focus their time and energy to understanding
the data dependencies of their algorithms and thereby the core obstacles to an efficient code. Here are some of the
advantages of using HPX:

• HPX is solidly rooted in a sophisticated theoretical execution model – ParalleX

• HPX exposes an API fully conforming to the C++11 and the draft C++14 standards, extended and applied to
distributed computing. Everything programmers know about the concurrency primitives of the standard C++
library is still valid in the context of HPX.

• It provides a competitive, high performance implementation of modern, future-proof ideas which gives an smooth
migration path from today’s mainstream techniques

• There is no need for the programmer to worry about lower level parallelization paradigms like threads or message
passing; no need to understand pthreads, MPI, OpenMP, or Windows threads, etc.

• There is no need to think about different types of parallelism such as tasks, pipelines, or fork-join, task or data
parallelism.

• The same source of your program compiles and runs on Linux, BlueGene/Q, Mac OS X, Windows, and Android.

• The same code runs on shared memory multi-core systems and supercomputers, on handheld devices and Intel®
Xeon Phi™ accelerators, or a heterogeneous mix of those.

5892 https://github.com/STEllAR-GROUP/hpx/issues/456
5893 https://github.com/STEllAR-GROUP/hpx/issues/454
5894 https://github.com/STEllAR-GROUP/hpx/issues/345
5895 https://github.com/STEllAR-GROUP/hpx/issues/209
5896 https://github.com/STEllAR-GROUP/hpx/issues/190
5897 https://github.com/STEllAR-GROUP/hpx/issues/189
5898 https://github.com/STEllAR-GROUP/hpx/issues/183
5899 https://github.com/STEllAR-GROUP/hpx/issues/44

1802 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/456
https://github.com/STEllAR-GROUP/hpx/issues/454
https://github.com/STEllAR-GROUP/hpx/issues/345
https://github.com/STEllAR-GROUP/hpx/issues/209
https://github.com/STEllAR-GROUP/hpx/issues/190
https://github.com/STEllAR-GROUP/hpx/issues/189
https://github.com/STEllAR-GROUP/hpx/issues/183
https://github.com/STEllAR-GROUP/hpx/issues/44

HPX Documentation, master

General changes

• A major API breaking change for this release was introduced by implementing hpx::future and
hpx::shared_future fully in conformance with the C++11 Standard5900. While hpx::shared_future is
new and will not create any compatibility problems, we revised the interface and implementation of the existing
hpx::future. For more details please see the mailing list archive5901. To avoid any incompatibilities for exist-
ing code we named the type which implements the std::future interface as hpx::unique_future. For the
next release this will be renamed to hpx::future, making it full conforming to C++11 Standard5902.

• A large part of the code base of HPX has been refactored and partially re-implemented. The main changes were
related to

– The threading subsystem: these changes significantly reduce the amount of overheads caused by the sched-
ulers, improve the modularity of the code base, and extend the variety of available scheduling algorithms.

– The parcel subsystem: these changes improve the performance of the HPX networking layer, modularize the
structure of the parcelports, and simplify the creation of new parcelports for other underlying networking
libraries.

– The API subsystem: these changes improved the conformance of the API to C++11 Standard, extend and
unify the available API functionality, and decrease the overheads created by various elements of the API.

– The robustness of the component loading subsystem has been improved significantly, allowing to more
portably and more reliably register the components needed by an application as startup. This additionally
speeds up general application initialization.

• We added new API functionality like hpx::migrate and hpx::copy_component which are the basic building
blocks necessary for implementing higher level abstractions for system-wide load balancing, runtime-adaptive
resource management, and object-oriented checkpointing and state-management.

• We removed the use of C++11 move emulation (using Boost.Move), replacing it with C++11 rvalue references.
This is the first step towards using more and more native C++11 facilities which we plan to introduce in the
future.

• We improved the reference counting scheme used by HPX which helps managing distributed objects and memory.
This improves the overall stability of HPX and further simplifies writing real world applications.

• The minimal Boost version required to use HPX is now V1.49.0.

• This release coincides with the first release of HPXPI (V0.1.0), the first implementation of the XPI specifica-
tion5903.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• Issue #10865904 - Expose internal boost::shared_array to allow user management of array lifetime

• Issue #10835905 - Make shell examples copyable in docs

• Issue #10805906 - /threads{locality#*/total}/count/cumulative broken

• Issue #10795907 - Build problems on OS X
5900 http://www.open-std.org/jtc1/sc22/wg21
5901 http://mail.cct.lsu.edu/pipermail/hpx-users/2014-January/000141.html
5902 http://www.open-std.org/jtc1/sc22/wg21
5903 https://github.com/STEllAR-GROUP/hpxpi/blob/master/spec.pdf?raw=true
5904 https://github.com/STEllAR-GROUP/hpx/issues/1086
5905 https://github.com/STEllAR-GROUP/hpx/issues/1083
5906 https://github.com/STEllAR-GROUP/hpx/issues/1080
5907 https://github.com/STEllAR-GROUP/hpx/issues/1079

2.10. Releases 1803

http://www.open-std.org/jtc1/sc22/wg21
http://mail.cct.lsu.edu/pipermail/hpx-users/2014-January/000141.html
http://www.open-std.org/jtc1/sc22/wg21
https://github.com/STEllAR-GROUP/hpxpi/blob/master/spec.pdf?raw=true
https://github.com/STEllAR-GROUP/hpxpi/blob/master/spec.pdf?raw=true
https://github.com/STEllAR-GROUP/hpx/issues/1086
https://github.com/STEllAR-GROUP/hpx/issues/1083
https://github.com/STEllAR-GROUP/hpx/issues/1080
https://github.com/STEllAR-GROUP/hpx/issues/1079

HPX Documentation, master

• Issue #10785908 - Improve robustness of component loading

• Issue #10775909 - Fix a missing enum definition for ‘take’ mode

• Issue #10765910 - Merge Jb master

• Issue #10755911 - Unknown CMake command “add_hpx_pseudo_target”

• Issue #10745912 - Implement apply_continue_callback and apply_colocated_callback

• Issue #10735913 - The new apply_colocated and async_colocated functions lead to automatic registered
functions

• Issue #10715914 - Remove deferred_packaged_task

• Issue #10695915 - serialize_buffer with allocator fails at destruction

• Issue #10685916 - Coroutine include and forward declarations missing

• Issue #10675917 - Add allocator support to util::serialize_buffer

• Issue #10665918 - Allow for MPI_Init being called before HPX launches

• Issue #10655919 - AGAS cache isn’t used/populated on worker localities

• Issue #10645920 - Reorder includes to ensure ws2 includes early

• Issue #10635921 - Add hpx::runtime::suspend and hpx::runtime::resume

• Issue #10625922 - Fix async_continue to properly handle return types

• Issue #10615923 - Implement async_colocated and apply_colocated

• Issue #10605924 - Implement minimal component migration

• Issue #10585925 - Remove HPX_UTIL_TUPLE from code base

• Issue #10575926 - Add performance counters for threading subsystem

• Issue #10555927 - Thread allocation uses two memory pools

• Issue #10535928 - Work stealing flawed

• Issue #10525929 - Fix a number of warnings

• Issue #10495930 - Fixes for TLS on OSX and more reliable test running
5908 https://github.com/STEllAR-GROUP/hpx/issues/1078
5909 https://github.com/STEllAR-GROUP/hpx/issues/1077
5910 https://github.com/STEllAR-GROUP/hpx/issues/1076
5911 https://github.com/STEllAR-GROUP/hpx/issues/1075
5912 https://github.com/STEllAR-GROUP/hpx/issues/1074
5913 https://github.com/STEllAR-GROUP/hpx/issues/1073
5914 https://github.com/STEllAR-GROUP/hpx/issues/1071
5915 https://github.com/STEllAR-GROUP/hpx/issues/1069
5916 https://github.com/STEllAR-GROUP/hpx/issues/1068
5917 https://github.com/STEllAR-GROUP/hpx/issues/1067
5918 https://github.com/STEllAR-GROUP/hpx/issues/1066
5919 https://github.com/STEllAR-GROUP/hpx/issues/1065
5920 https://github.com/STEllAR-GROUP/hpx/issues/1064
5921 https://github.com/STEllAR-GROUP/hpx/issues/1063
5922 https://github.com/STEllAR-GROUP/hpx/issues/1062
5923 https://github.com/STEllAR-GROUP/hpx/issues/1061
5924 https://github.com/STEllAR-GROUP/hpx/issues/1060
5925 https://github.com/STEllAR-GROUP/hpx/issues/1058
5926 https://github.com/STEllAR-GROUP/hpx/issues/1057
5927 https://github.com/STEllAR-GROUP/hpx/issues/1055
5928 https://github.com/STEllAR-GROUP/hpx/issues/1053
5929 https://github.com/STEllAR-GROUP/hpx/issues/1052
5930 https://github.com/STEllAR-GROUP/hpx/issues/1049

1804 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1078
https://github.com/STEllAR-GROUP/hpx/issues/1077
https://github.com/STEllAR-GROUP/hpx/issues/1076
https://github.com/STEllAR-GROUP/hpx/issues/1075
https://github.com/STEllAR-GROUP/hpx/issues/1074
https://github.com/STEllAR-GROUP/hpx/issues/1073
https://github.com/STEllAR-GROUP/hpx/issues/1071
https://github.com/STEllAR-GROUP/hpx/issues/1069
https://github.com/STEllAR-GROUP/hpx/issues/1068
https://github.com/STEllAR-GROUP/hpx/issues/1067
https://github.com/STEllAR-GROUP/hpx/issues/1066
https://github.com/STEllAR-GROUP/hpx/issues/1065
https://github.com/STEllAR-GROUP/hpx/issues/1064
https://github.com/STEllAR-GROUP/hpx/issues/1063
https://github.com/STEllAR-GROUP/hpx/issues/1062
https://github.com/STEllAR-GROUP/hpx/issues/1061
https://github.com/STEllAR-GROUP/hpx/issues/1060
https://github.com/STEllAR-GROUP/hpx/issues/1058
https://github.com/STEllAR-GROUP/hpx/issues/1057
https://github.com/STEllAR-GROUP/hpx/issues/1055
https://github.com/STEllAR-GROUP/hpx/issues/1053
https://github.com/STEllAR-GROUP/hpx/issues/1052
https://github.com/STEllAR-GROUP/hpx/issues/1049

HPX Documentation, master

• Issue #10485931 - Fixing after 588 hang

• Issue #10475932 - Use port ‘0’ for networking when using one locality

• Issue #10465933 - composable_guard test is broken when having more than one thread

• Issue #10455934 - Security missing headers

• Issue #10445935 - Native TLS on FreeBSD via __thread

• Issue #10435936 - async et.al. compute the wrong result type

• Issue #10425937 - async et.al. implicitly unwrap reference_wrappers

• Issue #10415938 - Remove redundant costly Kleene stars from regex searches

• Issue #10405939 - CMake script regex match patterns has unnecessary kleenes

• Issue #10395940 - Remove use of Boost.Move and replace with std::move and real rvalue refs

• Issue #10385941 - Bump minimal required Boost to 1.49.0

• Issue #10375942 - Implicit unwrapping of futures in async broken

• Issue #10365943 - Scheduler hangs when user code attempts to “block” OS-threads

• Issue #10355944 - Idle-rate counter always reports 100% idle rate

• Issue #10345945 - Symbolic name registration causes application hangs

• Issue #10335946 - Application options read in from an options file generate an error message

• Issue #10325947 - hpx::id_type local reference counting is wrong

• Issue #10315948 - Negative entry in reference count table

• Issue #10305949 - Implement condition_variable

• Issue #10295950 - Deadlock in thread scheduling subsystem

• Issue #10285951 - HPX-thread cumulative count performance counters report incorrect value

• Issue #10275952 - Expose hpx::thread_interrupted error code as a separate exception type

• Issue #10265953 - Exceptions thrown in asynchronous calls can be lost if the value of the future is never queried
5931 https://github.com/STEllAR-GROUP/hpx/issues/1048
5932 https://github.com/STEllAR-GROUP/hpx/issues/1047
5933 https://github.com/STEllAR-GROUP/hpx/issues/1046
5934 https://github.com/STEllAR-GROUP/hpx/issues/1045
5935 https://github.com/STEllAR-GROUP/hpx/issues/1044
5936 https://github.com/STEllAR-GROUP/hpx/issues/1043
5937 https://github.com/STEllAR-GROUP/hpx/issues/1042
5938 https://github.com/STEllAR-GROUP/hpx/issues/1041
5939 https://github.com/STEllAR-GROUP/hpx/issues/1040
5940 https://github.com/STEllAR-GROUP/hpx/issues/1039
5941 https://github.com/STEllAR-GROUP/hpx/issues/1038
5942 https://github.com/STEllAR-GROUP/hpx/issues/1037
5943 https://github.com/STEllAR-GROUP/hpx/issues/1036
5944 https://github.com/STEllAR-GROUP/hpx/issues/1035
5945 https://github.com/STEllAR-GROUP/hpx/issues/1034
5946 https://github.com/STEllAR-GROUP/hpx/issues/1033
5947 https://github.com/STEllAR-GROUP/hpx/issues/1032
5948 https://github.com/STEllAR-GROUP/hpx/issues/1031
5949 https://github.com/STEllAR-GROUP/hpx/issues/1030
5950 https://github.com/STEllAR-GROUP/hpx/issues/1029
5951 https://github.com/STEllAR-GROUP/hpx/issues/1028
5952 https://github.com/STEllAR-GROUP/hpx/issues/1027
5953 https://github.com/STEllAR-GROUP/hpx/issues/1026

2.10. Releases 1805

https://github.com/STEllAR-GROUP/hpx/issues/1048
https://github.com/STEllAR-GROUP/hpx/issues/1047
https://github.com/STEllAR-GROUP/hpx/issues/1046
https://github.com/STEllAR-GROUP/hpx/issues/1045
https://github.com/STEllAR-GROUP/hpx/issues/1044
https://github.com/STEllAR-GROUP/hpx/issues/1043
https://github.com/STEllAR-GROUP/hpx/issues/1042
https://github.com/STEllAR-GROUP/hpx/issues/1041
https://github.com/STEllAR-GROUP/hpx/issues/1040
https://github.com/STEllAR-GROUP/hpx/issues/1039
https://github.com/STEllAR-GROUP/hpx/issues/1038
https://github.com/STEllAR-GROUP/hpx/issues/1037
https://github.com/STEllAR-GROUP/hpx/issues/1036
https://github.com/STEllAR-GROUP/hpx/issues/1035
https://github.com/STEllAR-GROUP/hpx/issues/1034
https://github.com/STEllAR-GROUP/hpx/issues/1033
https://github.com/STEllAR-GROUP/hpx/issues/1032
https://github.com/STEllAR-GROUP/hpx/issues/1031
https://github.com/STEllAR-GROUP/hpx/issues/1030
https://github.com/STEllAR-GROUP/hpx/issues/1029
https://github.com/STEllAR-GROUP/hpx/issues/1028
https://github.com/STEllAR-GROUP/hpx/issues/1027
https://github.com/STEllAR-GROUP/hpx/issues/1026

HPX Documentation, master

• Issue #10255954 - future::wait_for/wait_until do not remove callback

• Issue #10245955 - Remove dependence to boost assert and create hpx assert

• Issue #10235956 - Segfaults with tcmalloc

• Issue #10225957 - prerequisites link in readme is broken

• Issue #10205958 - HPX Deadlock on external synchronization

• Issue #10195959 - Convert using BOOST_ASSERT to HPX_ASSERT

• Issue #10185960 - compiling bug with gcc 4.8.1

• Issue #10175961 - Possible crash in io_pool executor

• Issue #10165962 - Crash at startup

• Issue #10145963 - Implement Increment/Decrement Merging

• Issue #10135964 - Add more logging channels to enable greater control over logging granularity

• Issue #10125965 - --hpx:debug-hpx-log and --hpx:debug-agas-log lead to non-thread safe writes

• Issue #10115966 - After installation, running applications from the build/staging directory no longer works

• Issue #10105967 - Mergeable decrement requests are not being merged

• Issue #10095968 - --hpx:list-symbolic-names crashes

• Issue #10075969 - Components are not properly destroyed

• Issue #10065970 - Segfault/hang in set_data

• Issue #10035971 - Performance counter naming issue

• Issue #9825972 - Race condition during startup

• Issue #9125973 - OS X: component type not found in map

• Issue #6635974 - Create a buildbot slave based on Clang 3.2/OSX

• Issue #6365975 - Expose this_locality::apply<act>(p1, p2); for local execution

• Issue #1975976 - Add --console=address option for PBS runs
5954 https://github.com/STEllAR-GROUP/hpx/issues/1025
5955 https://github.com/STEllAR-GROUP/hpx/issues/1024
5956 https://github.com/STEllAR-GROUP/hpx/issues/1023
5957 https://github.com/STEllAR-GROUP/hpx/issues/1022
5958 https://github.com/STEllAR-GROUP/hpx/issues/1020
5959 https://github.com/STEllAR-GROUP/hpx/issues/1019
5960 https://github.com/STEllAR-GROUP/hpx/issues/1018
5961 https://github.com/STEllAR-GROUP/hpx/issues/1017
5962 https://github.com/STEllAR-GROUP/hpx/issues/1016
5963 https://github.com/STEllAR-GROUP/hpx/issues/1014
5964 https://github.com/STEllAR-GROUP/hpx/issues/1013
5965 https://github.com/STEllAR-GROUP/hpx/issues/1012
5966 https://github.com/STEllAR-GROUP/hpx/issues/1011
5967 https://github.com/STEllAR-GROUP/hpx/issues/1010
5968 https://github.com/STEllAR-GROUP/hpx/issues/1009
5969 https://github.com/STEllAR-GROUP/hpx/issues/1007
5970 https://github.com/STEllAR-GROUP/hpx/issues/1006
5971 https://github.com/STEllAR-GROUP/hpx/issues/1003
5972 https://github.com/STEllAR-GROUP/hpx/issues/982
5973 https://github.com/STEllAR-GROUP/hpx/issues/912
5974 https://github.com/STEllAR-GROUP/hpx/issues/663
5975 https://github.com/STEllAR-GROUP/hpx/issues/636
5976 https://github.com/STEllAR-GROUP/hpx/issues/197

1806 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1025
https://github.com/STEllAR-GROUP/hpx/issues/1024
https://github.com/STEllAR-GROUP/hpx/issues/1023
https://github.com/STEllAR-GROUP/hpx/issues/1022
https://github.com/STEllAR-GROUP/hpx/issues/1020
https://github.com/STEllAR-GROUP/hpx/issues/1019
https://github.com/STEllAR-GROUP/hpx/issues/1018
https://github.com/STEllAR-GROUP/hpx/issues/1017
https://github.com/STEllAR-GROUP/hpx/issues/1016
https://github.com/STEllAR-GROUP/hpx/issues/1014
https://github.com/STEllAR-GROUP/hpx/issues/1013
https://github.com/STEllAR-GROUP/hpx/issues/1012
https://github.com/STEllAR-GROUP/hpx/issues/1011
https://github.com/STEllAR-GROUP/hpx/issues/1010
https://github.com/STEllAR-GROUP/hpx/issues/1009
https://github.com/STEllAR-GROUP/hpx/issues/1007
https://github.com/STEllAR-GROUP/hpx/issues/1006
https://github.com/STEllAR-GROUP/hpx/issues/1003
https://github.com/STEllAR-GROUP/hpx/issues/982
https://github.com/STEllAR-GROUP/hpx/issues/912
https://github.com/STEllAR-GROUP/hpx/issues/663
https://github.com/STEllAR-GROUP/hpx/issues/636
https://github.com/STEllAR-GROUP/hpx/issues/197

HPX Documentation, master

• Issue #1755977 - Asynchronous AGAS API

HPX V0.9.7 (Nov 13, 2013)

We have had over 1000 commits since the last release and we have closed over 180 tickets (bugs, feature requests, etc.).

General changes

• Ported HPX to BlueGene/Q

• Improved HPX support for Xeon/Phi accelerators

• Reimplemented hpx::bind, hpx::tuple, and hpx::function for better performance and better compliance
with the C++11 Standard. Added hpx::mem_fn.

• Reworked hpx::when_all and hpx::when_any for better compliance with the ongoing C++ standardization
effort, added heterogeneous version for those functions. Added hpx::when_any_swapped.

• Added hpx::copy as a precursor for a migrate functionality

• Added hpx::get_ptr allowing to directly access the memory underlying a given component

• Added the hpx::lcos::broadcast, hpx::lcos::reduce, and hpx::lcos::fold collective operations

• Added hpx::get_locality_name allowing to retrieve the name of any of the localities for the application.

• Added support for more flexible thread affinity control from the HPX command line, such as new modes for
--hpx:bind (balanced, scattered, compact), improved default settings when running multiple localities on
the same node.

• Added experimental executors for simpler thread pooling and scheduling. This API may change in the future as
it will stay aligned with the ongoing C++ standardization efforts.

• Massively improved the performance of the HPX serialization code. Added partial support for zero copy serial-
ization of array and bitwise-copyable types.

• General performance improvements of the code related to threads and futures.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• Issue #10055978 - Allow one to disable array optimizations and zero copy optimizations for each parcelport

• Issue #10045979 - Generate new HPX logo image for the docs

• Issue #10025980 - If MPI parcelport is not available, running HPX under mpirun should fail

• Issue #10015981 - Zero copy serialization raises assert

• Issue #10005982 - Can’t connect to a HPX application running with the MPI parcelport from a non MPI parcelport
locality

• Issue #9995983 - Optimize hpx::when_n
5977 https://github.com/STEllAR-GROUP/hpx/issues/175
5978 https://github.com/STEllAR-GROUP/hpx/issues/1005
5979 https://github.com/STEllAR-GROUP/hpx/issues/1004
5980 https://github.com/STEllAR-GROUP/hpx/issues/1002
5981 https://github.com/STEllAR-GROUP/hpx/issues/1001
5982 https://github.com/STEllAR-GROUP/hpx/issues/1000
5983 https://github.com/STEllAR-GROUP/hpx/issues/999

2.10. Releases 1807

https://github.com/STEllAR-GROUP/hpx/issues/175
https://github.com/STEllAR-GROUP/hpx/issues/1005
https://github.com/STEllAR-GROUP/hpx/issues/1004
https://github.com/STEllAR-GROUP/hpx/issues/1002
https://github.com/STEllAR-GROUP/hpx/issues/1001
https://github.com/STEllAR-GROUP/hpx/issues/1000
https://github.com/STEllAR-GROUP/hpx/issues/999

HPX Documentation, master

• Issue #9985984 - Fixed const-correctness

• Issue #9975985 - Making serialize_buffer::data() type save

• Issue #9965986 - Memory leak in hpx::lcos::promise

• Issue #9955987 - Race while registering pre-shutdown functions

• Issue #9945988 - thread_rescheduling regression test does not compile

• Issue #9925989 - Correct comments and messages

• Issue #9915990 - setcap cap_sys_rawio=ep for power profiling causes an HPX application to abort

• Issue #9895991 - Jacobi hangs during execution

• Issue #9885992 - multiple_init test is failing

• Issue #9865993 - Can’t call a function called “init” from “main” when using <hpx/hpx_main.hpp>

• Issue #9845994 - Reference counting tests are failing

• Issue #9835995 - thread_suspension_executor test fails

• Issue #9805996 - Terminating HPX threads don’t leave stack in virgin state

• Issue #9795997 - Static scheduler not in documents

• Issue #9785998 - Preprocessing limits are broken

• Issue #9775999 - Make tests.regressions.lcos.future_hang_on_get shorter

• Issue #9766000 - Wrong library order in pkgconfig

• Issue #9756001 - Please reopen #963

• Issue #9746002 - Option pu-offset ignored in fixing_588 branch

• Issue #9726003 - Cannot use MKL with HPX

• Issue #9696004 - Non-existent INI files requested on the command line via --hpx:config do not cause warnings
or errors.

• Issue #9686005 - Cannot build examples in fixing_588 branch

• Issue #9676006 - Command line description of --hpx:queuing seems wrong
5984 https://github.com/STEllAR-GROUP/hpx/issues/998
5985 https://github.com/STEllAR-GROUP/hpx/issues/997
5986 https://github.com/STEllAR-GROUP/hpx/issues/996
5987 https://github.com/STEllAR-GROUP/hpx/issues/995
5988 https://github.com/STEllAR-GROUP/hpx/issues/994
5989 https://github.com/STEllAR-GROUP/hpx/issues/992
5990 https://github.com/STEllAR-GROUP/hpx/issues/991
5991 https://github.com/STEllAR-GROUP/hpx/issues/989
5992 https://github.com/STEllAR-GROUP/hpx/issues/988
5993 https://github.com/STEllAR-GROUP/hpx/issues/986
5994 https://github.com/STEllAR-GROUP/hpx/issues/984
5995 https://github.com/STEllAR-GROUP/hpx/issues/983
5996 https://github.com/STEllAR-GROUP/hpx/issues/980
5997 https://github.com/STEllAR-GROUP/hpx/issues/979
5998 https://github.com/STEllAR-GROUP/hpx/issues/978
5999 https://github.com/STEllAR-GROUP/hpx/issues/977
6000 https://github.com/STEllAR-GROUP/hpx/issues/976
6001 https://github.com/STEllAR-GROUP/hpx/issues/975
6002 https://github.com/STEllAR-GROUP/hpx/issues/974
6003 https://github.com/STEllAR-GROUP/hpx/issues/972
6004 https://github.com/STEllAR-GROUP/hpx/issues/969
6005 https://github.com/STEllAR-GROUP/hpx/issues/968
6006 https://github.com/STEllAR-GROUP/hpx/issues/967

1808 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/998
https://github.com/STEllAR-GROUP/hpx/issues/997
https://github.com/STEllAR-GROUP/hpx/issues/996
https://github.com/STEllAR-GROUP/hpx/issues/995
https://github.com/STEllAR-GROUP/hpx/issues/994
https://github.com/STEllAR-GROUP/hpx/issues/992
https://github.com/STEllAR-GROUP/hpx/issues/991
https://github.com/STEllAR-GROUP/hpx/issues/989
https://github.com/STEllAR-GROUP/hpx/issues/988
https://github.com/STEllAR-GROUP/hpx/issues/986
https://github.com/STEllAR-GROUP/hpx/issues/984
https://github.com/STEllAR-GROUP/hpx/issues/983
https://github.com/STEllAR-GROUP/hpx/issues/980
https://github.com/STEllAR-GROUP/hpx/issues/979
https://github.com/STEllAR-GROUP/hpx/issues/978
https://github.com/STEllAR-GROUP/hpx/issues/977
https://github.com/STEllAR-GROUP/hpx/issues/976
https://github.com/STEllAR-GROUP/hpx/issues/975
https://github.com/STEllAR-GROUP/hpx/issues/974
https://github.com/STEllAR-GROUP/hpx/issues/972
https://github.com/STEllAR-GROUP/hpx/issues/969
https://github.com/STEllAR-GROUP/hpx/issues/968
https://github.com/STEllAR-GROUP/hpx/issues/967

HPX Documentation, master

• Issue #9666007 - --hpx:print-bind physical core numbers are wrong

• Issue #9656008 - Deadlock when building in Release mode

• Issue #9636009 - Not all worker threads are working

• Issue #9626010 - Problem with SLURM integration

• Issue #9616011 - --hpx:print-bind outputs incorrect information

• Issue #9606012 - Fix cut and paste error in documentation of get_thread_priority

• Issue #9596013 - Change link to boost.atomic in documentation to point to boost.org

• Issue #9586014 - Undefined reference to intrusive_ptr_release

• Issue #9576015 - Make tuple standard compliant

• Issue #9566016 - Segfault with a3382fb

• Issue #9556017 - --hpx:nodes and --hpx:nodefiles do not work with foreign nodes

• Issue #9546018 - Make order of arguments for hpx::async and hpx::broadcast consistent

• Issue #9536019 - Cannot use MKL with HPX

• Issue #9526020 - register_[pre_]shutdown_function never throw

• Issue #9516021 - Assert when number of threads is greater than hardware concurrency

• Issue #9486022 - HPX_HAVE_GENERIC_CONTEXT_COROUTINES conflicts with
HPX_HAVE_FIBER_BASED_COROUTINES

• Issue #9476023 - Need MPI_THREAD_MULTIPLE for backward compatibility

• Issue #9466024 - HPX does not call MPI_Finalize

• Issue #9456025 - Segfault with hpx::lcos::broadcast

• Issue #9446026 - OS X: assertion pu_offset_ < hardware_concurrency failed

• Issue #9436027 - #include <hpx/hpx_main.hpp> does not work

• Issue #9426028 - Make the BG/Q work with -O3

• Issue #9406029 - Use separator when concatenating locality name
6007 https://github.com/STEllAR-GROUP/hpx/issues/966
6008 https://github.com/STEllAR-GROUP/hpx/issues/965
6009 https://github.com/STEllAR-GROUP/hpx/issues/963
6010 https://github.com/STEllAR-GROUP/hpx/issues/962
6011 https://github.com/STEllAR-GROUP/hpx/issues/961
6012 https://github.com/STEllAR-GROUP/hpx/issues/960
6013 https://github.com/STEllAR-GROUP/hpx/issues/959
6014 https://github.com/STEllAR-GROUP/hpx/issues/958
6015 https://github.com/STEllAR-GROUP/hpx/issues/957
6016 https://github.com/STEllAR-GROUP/hpx/issues/956
6017 https://github.com/STEllAR-GROUP/hpx/issues/955
6018 https://github.com/STEllAR-GROUP/hpx/issues/954
6019 https://github.com/STEllAR-GROUP/hpx/issues/953
6020 https://github.com/STEllAR-GROUP/hpx/issues/952
6021 https://github.com/STEllAR-GROUP/hpx/issues/951
6022 https://github.com/STEllAR-GROUP/hpx/issues/948
6023 https://github.com/STEllAR-GROUP/hpx/issues/947
6024 https://github.com/STEllAR-GROUP/hpx/issues/946
6025 https://github.com/STEllAR-GROUP/hpx/issues/945
6026 https://github.com/STEllAR-GROUP/hpx/issues/944
6027 https://github.com/STEllAR-GROUP/hpx/issues/943
6028 https://github.com/STEllAR-GROUP/hpx/issues/942
6029 https://github.com/STEllAR-GROUP/hpx/issues/940

2.10. Releases 1809

https://github.com/STEllAR-GROUP/hpx/issues/966
https://github.com/STEllAR-GROUP/hpx/issues/965
https://github.com/STEllAR-GROUP/hpx/issues/963
https://github.com/STEllAR-GROUP/hpx/issues/962
https://github.com/STEllAR-GROUP/hpx/issues/961
https://github.com/STEllAR-GROUP/hpx/issues/960
https://github.com/STEllAR-GROUP/hpx/issues/959
https://github.com/STEllAR-GROUP/hpx/issues/958
https://github.com/STEllAR-GROUP/hpx/issues/957
https://github.com/STEllAR-GROUP/hpx/issues/956
https://github.com/STEllAR-GROUP/hpx/issues/955
https://github.com/STEllAR-GROUP/hpx/issues/954
https://github.com/STEllAR-GROUP/hpx/issues/953
https://github.com/STEllAR-GROUP/hpx/issues/952
https://github.com/STEllAR-GROUP/hpx/issues/951
https://github.com/STEllAR-GROUP/hpx/issues/948
https://github.com/STEllAR-GROUP/hpx/issues/947
https://github.com/STEllAR-GROUP/hpx/issues/946
https://github.com/STEllAR-GROUP/hpx/issues/945
https://github.com/STEllAR-GROUP/hpx/issues/944
https://github.com/STEllAR-GROUP/hpx/issues/943
https://github.com/STEllAR-GROUP/hpx/issues/942
https://github.com/STEllAR-GROUP/hpx/issues/940

HPX Documentation, master

• Issue #9396030 - Refactor MPI parcelport to use MPI_Wait instead of multiple MPI_Test calls

• Issue #9386031 - Want to officially access client_base::gid_

• Issue #9376032 - client_base::gid_ should be private``

• Issue #9366033 - Want doxygen-like source code index

• Issue #9356034 - Build error with gcc 4.6 and Boost 1.54.0 on hpx trunk and 0.9.6

• Issue #9336035 - Cannot build HPX with Boost 1.54.0

• Issue #9326036 - Components are destructed too early

• Issue #9316037 - Make HPX work on BG/Q

• Issue #9306038 - make git-docs is broken

• Issue #9296039 - Generating index in docs broken

• Issue #9286040 - Optimize hpx::util::static_ for C++11 compilers supporting magic statics

• Issue #9246041 - Make kill_process_tree (in process.py) more robust on Mac OSX

• Issue #9236042 - Correct BLAS and RNPL cmake tests

• Issue #9226043 - Cannot link against BLAS

• Issue #9216044 - Implement hpx::mem_fn

• Issue #9206045 - Output locality with --hpx:print-bind

• Issue #9196046 - Correct grammar; simplify boolean expressions

• Issue #9186047 - Link to hello_world.cpp is broken

• Issue #9176048 - adapt cmake file to new boostbook version

• Issue #9166049 - fix problem building documentation with xsltproc >= 1.1.27

• Issue #9156050 - Add another TBBMalloc library search path

• Issue #9146051 - Build problem with Intel compiler on Stampede (TACC)

• Issue #9136052 - fix error messages in fibonacci examples
6030 https://github.com/STEllAR-GROUP/hpx/issues/939
6031 https://github.com/STEllAR-GROUP/hpx/issues/938
6032 https://github.com/STEllAR-GROUP/hpx/issues/937
6033 https://github.com/STEllAR-GROUP/hpx/issues/936
6034 https://github.com/STEllAR-GROUP/hpx/issues/935
6035 https://github.com/STEllAR-GROUP/hpx/issues/933
6036 https://github.com/STEllAR-GROUP/hpx/issues/932
6037 https://github.com/STEllAR-GROUP/hpx/issues/931
6038 https://github.com/STEllAR-GROUP/hpx/issues/930
6039 https://github.com/STEllAR-GROUP/hpx/issues/929
6040 https://github.com/STEllAR-GROUP/hpx/issues/928
6041 https://github.com/STEllAR-GROUP/hpx/issues/924
6042 https://github.com/STEllAR-GROUP/hpx/issues/923
6043 https://github.com/STEllAR-GROUP/hpx/issues/922
6044 https://github.com/STEllAR-GROUP/hpx/issues/921
6045 https://github.com/STEllAR-GROUP/hpx/issues/920
6046 https://github.com/STEllAR-GROUP/hpx/issues/919
6047 https://github.com/STEllAR-GROUP/hpx/issues/918
6048 https://github.com/STEllAR-GROUP/hpx/issues/917
6049 https://github.com/STEllAR-GROUP/hpx/issues/916
6050 https://github.com/STEllAR-GROUP/hpx/issues/915
6051 https://github.com/STEllAR-GROUP/hpx/issues/914
6052 https://github.com/STEllAR-GROUP/hpx/issues/913

1810 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/939
https://github.com/STEllAR-GROUP/hpx/issues/938
https://github.com/STEllAR-GROUP/hpx/issues/937
https://github.com/STEllAR-GROUP/hpx/issues/936
https://github.com/STEllAR-GROUP/hpx/issues/935
https://github.com/STEllAR-GROUP/hpx/issues/933
https://github.com/STEllAR-GROUP/hpx/issues/932
https://github.com/STEllAR-GROUP/hpx/issues/931
https://github.com/STEllAR-GROUP/hpx/issues/930
https://github.com/STEllAR-GROUP/hpx/issues/929
https://github.com/STEllAR-GROUP/hpx/issues/928
https://github.com/STEllAR-GROUP/hpx/issues/924
https://github.com/STEllAR-GROUP/hpx/issues/923
https://github.com/STEllAR-GROUP/hpx/issues/922
https://github.com/STEllAR-GROUP/hpx/issues/921
https://github.com/STEllAR-GROUP/hpx/issues/920
https://github.com/STEllAR-GROUP/hpx/issues/919
https://github.com/STEllAR-GROUP/hpx/issues/918
https://github.com/STEllAR-GROUP/hpx/issues/917
https://github.com/STEllAR-GROUP/hpx/issues/916
https://github.com/STEllAR-GROUP/hpx/issues/915
https://github.com/STEllAR-GROUP/hpx/issues/914
https://github.com/STEllAR-GROUP/hpx/issues/913

HPX Documentation, master

• Issue #9116053 - Update OS X build instructions

• Issue #9106054 - Want like to specify MPI_ROOT instead of compiler wrapper script

• Issue #9096055 - Warning about void* arithmetic

• Issue #9086056 - Buildbot for MIC is broken

• Issue #9066057 - Can’t use --hpx:bind=balanced with multiple MPI processes

• Issue #9056058 - --hpx:bind documentation should describe full grammar

• Issue #9046059 - Add hpx::lcos::fold and hpx::lcos::inverse_fold collective operation

• Issue #9036060 - Add hpx::when_any_swapped()

• Issue #9026061 - Add hpx::lcos::reduce collective operation

• Issue #9016062 - Web documentation is not searchable

• Issue #9006063 - Web documentation for trunk has no index

• Issue #8986064 - Some tests fail with GCC 4.8.1 and MPI parcel port

• Issue #8976065 - HWLOC causes failures on Mac

• Issue #8966066 - pu-offset leads to startup error

• Issue #8956067 - hpx::get_locality_name not defined

• Issue #8946068 - Race condition at shutdown

• Issue #8936069 - --hpx:print-bind switches std::cout to hexadecimal mode

• Issue #8926070 - hwloc_topology_load can be expensive – don’t call multiple times

• Issue #8916071 - The documentation for get_locality_name is wrong

• Issue #8906072 - --hpx:print-bind should not exit

• Issue #8896073 - --hpx:debug-hpx-log=FILE does not work

• Issue #8886074 - MPI parcelport does not exit cleanly for –hpx:print-bind

• Issue #8876075 - Choose thread affinities more cleverly
6053 https://github.com/STEllAR-GROUP/hpx/issues/911
6054 https://github.com/STEllAR-GROUP/hpx/issues/910
6055 https://github.com/STEllAR-GROUP/hpx/issues/909
6056 https://github.com/STEllAR-GROUP/hpx/issues/908
6057 https://github.com/STEllAR-GROUP/hpx/issues/906
6058 https://github.com/STEllAR-GROUP/hpx/issues/905
6059 https://github.com/STEllAR-GROUP/hpx/issues/904
6060 https://github.com/STEllAR-GROUP/hpx/issues/903
6061 https://github.com/STEllAR-GROUP/hpx/issues/902
6062 https://github.com/STEllAR-GROUP/hpx/issues/901
6063 https://github.com/STEllAR-GROUP/hpx/issues/900
6064 https://github.com/STEllAR-GROUP/hpx/issues/898
6065 https://github.com/STEllAR-GROUP/hpx/issues/897
6066 https://github.com/STEllAR-GROUP/hpx/issues/896
6067 https://github.com/STEllAR-GROUP/hpx/issues/895
6068 https://github.com/STEllAR-GROUP/hpx/issues/894
6069 https://github.com/STEllAR-GROUP/hpx/issues/893
6070 https://github.com/STEllAR-GROUP/hpx/issues/892
6071 https://github.com/STEllAR-GROUP/hpx/issues/891
6072 https://github.com/STEllAR-GROUP/hpx/issues/890
6073 https://github.com/STEllAR-GROUP/hpx/issues/889
6074 https://github.com/STEllAR-GROUP/hpx/issues/888
6075 https://github.com/STEllAR-GROUP/hpx/issues/887

2.10. Releases 1811

https://github.com/STEllAR-GROUP/hpx/issues/911
https://github.com/STEllAR-GROUP/hpx/issues/910
https://github.com/STEllAR-GROUP/hpx/issues/909
https://github.com/STEllAR-GROUP/hpx/issues/908
https://github.com/STEllAR-GROUP/hpx/issues/906
https://github.com/STEllAR-GROUP/hpx/issues/905
https://github.com/STEllAR-GROUP/hpx/issues/904
https://github.com/STEllAR-GROUP/hpx/issues/903
https://github.com/STEllAR-GROUP/hpx/issues/902
https://github.com/STEllAR-GROUP/hpx/issues/901
https://github.com/STEllAR-GROUP/hpx/issues/900
https://github.com/STEllAR-GROUP/hpx/issues/898
https://github.com/STEllAR-GROUP/hpx/issues/897
https://github.com/STEllAR-GROUP/hpx/issues/896
https://github.com/STEllAR-GROUP/hpx/issues/895
https://github.com/STEllAR-GROUP/hpx/issues/894
https://github.com/STEllAR-GROUP/hpx/issues/893
https://github.com/STEllAR-GROUP/hpx/issues/892
https://github.com/STEllAR-GROUP/hpx/issues/891
https://github.com/STEllAR-GROUP/hpx/issues/890
https://github.com/STEllAR-GROUP/hpx/issues/889
https://github.com/STEllAR-GROUP/hpx/issues/888
https://github.com/STEllAR-GROUP/hpx/issues/887

HPX Documentation, master

• Issue #8866076 - Logging documentation is confusing

• Issue #8856077 - Two threads are slower than one

• Issue #8846078 - is_callable failing with member pointers in C++11

• Issue #8836079 - Need help with is_callable_test

• Issue #8826080 - tests.regressions.lcos.future_hang_on_get does not terminate

• Issue #8816081 - tests/regressions/block_matrix/matrix.hh won’t compile with GCC 4.8.1

• Issue #8806082 - HPX does not work on OS X

• Issue #8786083 - future::unwrap triggers assertion

• Issue #8776084 - “make tests” has build errors on Ubuntu 12.10

• Issue #8766085 - tcmalloc is used by default, even if it is not present

• Issue #8756086 - global_fixture is defined in a header file

• Issue #8746087 - Some tests take very long

• Issue #8736088 - Add block-matrix code as regression test

• Issue #8726089 - HPX documentation does not say how to run tests with detailed output

• Issue #8716090 - All tests fail with “make test”

• Issue #8706091 - Please explicitly disable serialization in classes that don’t support it

• Issue #8686092 - boost_any test failing

• Issue #8676093 - Reduce the number of copies of hpx::function arguments

• Issue #8636094 - Futures should not require a default constructor

• Issue #8626095 - value_or_error shall not default construct its result

• Issue #8616096 - HPX_UNUSED macro

• Issue #8606097 - Add functionality to copy construct a component

• Issue #8596098 - hpx::endl should flush
6076 https://github.com/STEllAR-GROUP/hpx/issues/886
6077 https://github.com/STEllAR-GROUP/hpx/issues/885
6078 https://github.com/STEllAR-GROUP/hpx/issues/884
6079 https://github.com/STEllAR-GROUP/hpx/issues/883
6080 https://github.com/STEllAR-GROUP/hpx/issues/882
6081 https://github.com/STEllAR-GROUP/hpx/issues/881
6082 https://github.com/STEllAR-GROUP/hpx/issues/880
6083 https://github.com/STEllAR-GROUP/hpx/issues/878
6084 https://github.com/STEllAR-GROUP/hpx/issues/877
6085 https://github.com/STEllAR-GROUP/hpx/issues/876
6086 https://github.com/STEllAR-GROUP/hpx/issues/875
6087 https://github.com/STEllAR-GROUP/hpx/issues/874
6088 https://github.com/STEllAR-GROUP/hpx/issues/873
6089 https://github.com/STEllAR-GROUP/hpx/issues/872
6090 https://github.com/STEllAR-GROUP/hpx/issues/871
6091 https://github.com/STEllAR-GROUP/hpx/issues/870
6092 https://github.com/STEllAR-GROUP/hpx/issues/868
6093 https://github.com/STEllAR-GROUP/hpx/issues/867
6094 https://github.com/STEllAR-GROUP/hpx/issues/863
6095 https://github.com/STEllAR-GROUP/hpx/issues/862
6096 https://github.com/STEllAR-GROUP/hpx/issues/861
6097 https://github.com/STEllAR-GROUP/hpx/issues/860
6098 https://github.com/STEllAR-GROUP/hpx/issues/859

1812 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/886
https://github.com/STEllAR-GROUP/hpx/issues/885
https://github.com/STEllAR-GROUP/hpx/issues/884
https://github.com/STEllAR-GROUP/hpx/issues/883
https://github.com/STEllAR-GROUP/hpx/issues/882
https://github.com/STEllAR-GROUP/hpx/issues/881
https://github.com/STEllAR-GROUP/hpx/issues/880
https://github.com/STEllAR-GROUP/hpx/issues/878
https://github.com/STEllAR-GROUP/hpx/issues/877
https://github.com/STEllAR-GROUP/hpx/issues/876
https://github.com/STEllAR-GROUP/hpx/issues/875
https://github.com/STEllAR-GROUP/hpx/issues/874
https://github.com/STEllAR-GROUP/hpx/issues/873
https://github.com/STEllAR-GROUP/hpx/issues/872
https://github.com/STEllAR-GROUP/hpx/issues/871
https://github.com/STEllAR-GROUP/hpx/issues/870
https://github.com/STEllAR-GROUP/hpx/issues/868
https://github.com/STEllAR-GROUP/hpx/issues/867
https://github.com/STEllAR-GROUP/hpx/issues/863
https://github.com/STEllAR-GROUP/hpx/issues/862
https://github.com/STEllAR-GROUP/hpx/issues/861
https://github.com/STEllAR-GROUP/hpx/issues/860
https://github.com/STEllAR-GROUP/hpx/issues/859

HPX Documentation, master

• Issue #8586099 - Create hpx::get_ptr<> allowing to access component implementation

• Issue #8556100 - Implement hpx::INVOKE

• Issue #8546101 - hpx/hpx.hpp does not include hpx/include/iostreams.hpp

• Issue #8536102 - Feature request: null future

• Issue #8526103 - Feature request: Locality names

• Issue #8516104 - hpx::cout output does not appear on screen

• Issue #8496105 - All tests fail on OS X after installing

• Issue #8486106 - Update OS X build instructions

• Issue #8466107 - Update hpx_external_example

• Issue #8456108 - Issues with having both debug and release modules in the same directory

• Issue #8446109 - Create configuration header

• Issue #8436110 - Tests should use CTest

• Issue #8426111 - Remove buffer_pool from MPI parcelport

• Issue #8416112 - Add possibility to broadcast an index with hpx::lcos::broadcast

• Issue #8386113 - Simplify util::tuple

• Issue #8376114 - Adopt boost::tuple tests for util::tuple

• Issue #8366115 - Adopt boost::function tests for util::function

• Issue #8356116 - Tuple interface missing pieces

• Issue #8336117 - Partially preprocessing files not working

• Issue #8326118 - Native papi counters do not work with wild cards

• Issue #8316119 - Arithmetics counter fails if only one parameter is given

• Issue #8306120 - Convert hpx::util::function to use new scheme for serializing its base pointer

• Issue #8296121 - Consistently use decay<T> instead of remove_const< remove_reference<T>>

6099 https://github.com/STEllAR-GROUP/hpx/issues/858
6100 https://github.com/STEllAR-GROUP/hpx/issues/855
6101 https://github.com/STEllAR-GROUP/hpx/issues/854
6102 https://github.com/STEllAR-GROUP/hpx/issues/853
6103 https://github.com/STEllAR-GROUP/hpx/issues/852
6104 https://github.com/STEllAR-GROUP/hpx/issues/851
6105 https://github.com/STEllAR-GROUP/hpx/issues/849
6106 https://github.com/STEllAR-GROUP/hpx/issues/848
6107 https://github.com/STEllAR-GROUP/hpx/issues/846
6108 https://github.com/STEllAR-GROUP/hpx/issues/845
6109 https://github.com/STEllAR-GROUP/hpx/issues/844
6110 https://github.com/STEllAR-GROUP/hpx/issues/843
6111 https://github.com/STEllAR-GROUP/hpx/issues/842
6112 https://github.com/STEllAR-GROUP/hpx/issues/841
6113 https://github.com/STEllAR-GROUP/hpx/issues/838
6114 https://github.com/STEllAR-GROUP/hpx/issues/837
6115 https://github.com/STEllAR-GROUP/hpx/issues/836
6116 https://github.com/STEllAR-GROUP/hpx/issues/835
6117 https://github.com/STEllAR-GROUP/hpx/issues/833
6118 https://github.com/STEllAR-GROUP/hpx/issues/832
6119 https://github.com/STEllAR-GROUP/hpx/issues/831
6120 https://github.com/STEllAR-GROUP/hpx/issues/830
6121 https://github.com/STEllAR-GROUP/hpx/issues/829

2.10. Releases 1813

https://github.com/STEllAR-GROUP/hpx/issues/858
https://github.com/STEllAR-GROUP/hpx/issues/855
https://github.com/STEllAR-GROUP/hpx/issues/854
https://github.com/STEllAR-GROUP/hpx/issues/853
https://github.com/STEllAR-GROUP/hpx/issues/852
https://github.com/STEllAR-GROUP/hpx/issues/851
https://github.com/STEllAR-GROUP/hpx/issues/849
https://github.com/STEllAR-GROUP/hpx/issues/848
https://github.com/STEllAR-GROUP/hpx/issues/846
https://github.com/STEllAR-GROUP/hpx/issues/845
https://github.com/STEllAR-GROUP/hpx/issues/844
https://github.com/STEllAR-GROUP/hpx/issues/843
https://github.com/STEllAR-GROUP/hpx/issues/842
https://github.com/STEllAR-GROUP/hpx/issues/841
https://github.com/STEllAR-GROUP/hpx/issues/838
https://github.com/STEllAR-GROUP/hpx/issues/837
https://github.com/STEllAR-GROUP/hpx/issues/836
https://github.com/STEllAR-GROUP/hpx/issues/835
https://github.com/STEllAR-GROUP/hpx/issues/833
https://github.com/STEllAR-GROUP/hpx/issues/832
https://github.com/STEllAR-GROUP/hpx/issues/831
https://github.com/STEllAR-GROUP/hpx/issues/830
https://github.com/STEllAR-GROUP/hpx/issues/829

HPX Documentation, master

• Issue #8286122 - Update future implementation to N3721 and N3722

• Issue #8276123 - Enable MPI parcelport for bootstrapping whenever application was started using mpirun

• Issue #8266124 - Support command line option --hpx:print-bind even if --hpx::bind was not used

• Issue #8256125 - Memory counters give segfault when attempting to use thread wild cards or numbers only total
works

• Issue #8246126 - Enable lambda functions to be used with hpx::async/hpx::apply

• Issue #8236127 - Using a hashing filter

• Issue #8226128 - Silence unused variable warning

• Issue #8216129 - Detect if a function object is callable with given arguments

• Issue #8206130 - Allow wildcards to be used for performance counter names

• Issue #8196131 - Make the AGAS symbolic name registry distributed

• Issue #8186132 - Add future::then() overload taking an executor

• Issue #8176133 - Fixed typo

• Issue #8156134 - Create an lco that is performing an efficient broadcast of actions

• Issue #8146135 - Papi counters cannot specify thread#* to get the counts for all threads

• Issue #8136136 - Scoped unlock

• Issue #8116137 - simple_central_tuplespace_client run error

• Issue #8106138 - ostream error when << any objects

• Issue #8096139 - Optimize parcel serialization

• Issue #8086140 - HPX applications throw exception when executed from the build directory

• Issue #8076141 - Create performance counters exposing overall AGAS statistics

• Issue #7956142 - Create timed make_ready_future

• Issue #7946143 - Create heterogeneous when_all/when_any/etc.

• Issue #7216144 - Make HPX usable for Xeon Phi
6122 https://github.com/STEllAR-GROUP/hpx/issues/828
6123 https://github.com/STEllAR-GROUP/hpx/issues/827
6124 https://github.com/STEllAR-GROUP/hpx/issues/826
6125 https://github.com/STEllAR-GROUP/hpx/issues/825
6126 https://github.com/STEllAR-GROUP/hpx/issues/824
6127 https://github.com/STEllAR-GROUP/hpx/issues/823
6128 https://github.com/STEllAR-GROUP/hpx/issues/822
6129 https://github.com/STEllAR-GROUP/hpx/issues/821
6130 https://github.com/STEllAR-GROUP/hpx/issues/820
6131 https://github.com/STEllAR-GROUP/hpx/issues/819
6132 https://github.com/STEllAR-GROUP/hpx/issues/818
6133 https://github.com/STEllAR-GROUP/hpx/issues/817
6134 https://github.com/STEllAR-GROUP/hpx/issues/815
6135 https://github.com/STEllAR-GROUP/hpx/issues/814
6136 https://github.com/STEllAR-GROUP/hpx/issues/813
6137 https://github.com/STEllAR-GROUP/hpx/issues/811
6138 https://github.com/STEllAR-GROUP/hpx/issues/810
6139 https://github.com/STEllAR-GROUP/hpx/issues/809
6140 https://github.com/STEllAR-GROUP/hpx/issues/808
6141 https://github.com/STEllAR-GROUP/hpx/issues/807
6142 https://github.com/STEllAR-GROUP/hpx/issues/795
6143 https://github.com/STEllAR-GROUP/hpx/issues/794
6144 https://github.com/STEllAR-GROUP/hpx/issues/721

1814 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/828
https://github.com/STEllAR-GROUP/hpx/issues/827
https://github.com/STEllAR-GROUP/hpx/issues/826
https://github.com/STEllAR-GROUP/hpx/issues/825
https://github.com/STEllAR-GROUP/hpx/issues/824
https://github.com/STEllAR-GROUP/hpx/issues/823
https://github.com/STEllAR-GROUP/hpx/issues/822
https://github.com/STEllAR-GROUP/hpx/issues/821
https://github.com/STEllAR-GROUP/hpx/issues/820
https://github.com/STEllAR-GROUP/hpx/issues/819
https://github.com/STEllAR-GROUP/hpx/issues/818
https://github.com/STEllAR-GROUP/hpx/issues/817
https://github.com/STEllAR-GROUP/hpx/issues/815
https://github.com/STEllAR-GROUP/hpx/issues/814
https://github.com/STEllAR-GROUP/hpx/issues/813
https://github.com/STEllAR-GROUP/hpx/issues/811
https://github.com/STEllAR-GROUP/hpx/issues/810
https://github.com/STEllAR-GROUP/hpx/issues/809
https://github.com/STEllAR-GROUP/hpx/issues/808
https://github.com/STEllAR-GROUP/hpx/issues/807
https://github.com/STEllAR-GROUP/hpx/issues/795
https://github.com/STEllAR-GROUP/hpx/issues/794
https://github.com/STEllAR-GROUP/hpx/issues/721

HPX Documentation, master

• Issue #6946145 - CMake should complain if you attempt to build an example without its dependencies

• Issue #6926146 - SLURM support broken

• Issue #6836147 - python/hpx/process.py imports epoll on all platforms

• Issue #6196148 - Automate the doc building process

• Issue #6006149 - GTC performance broken

• Issue #5776150 - Allow for zero copy serialization/networking

• Issue #5516151 - Change executable names to have debug postfix in Debug builds

• Issue #5446152 - Write a custom .lib file on Windows pulling in hpx_init and hpx.dll, phase out hpx_init

• Issue #5346153 - hpx::init should take functions by std::function and should accept all forms of hpx_main

• Issue #5086154 - FindPackage fails to set FOO_LIBRARY_DIR

• Issue #5066155 - Add cmake support to generate ini files for external applications

• Issue #4706156 - Changing build-type after configure does not update boost library names

• Issue #4536157 - Document hpx_run_tests.py

• Issue #4456158 - Significant performance mismatch between MPI and HPX in SMP for allgather example

• Issue #4436159 - Make docs viewable from build directory

• Issue #4216160 - Support multiple HPX instances per node in a batch environment like PBS or SLURM

• Issue #3166161 - Add message size limitation

• Issue #2496162 - Clean up locking code in big boot barrier

• Issue #1366163 - Persistent CMake variables need to be marked as cache variables
6145 https://github.com/STEllAR-GROUP/hpx/issues/694
6146 https://github.com/STEllAR-GROUP/hpx/issues/692
6147 https://github.com/STEllAR-GROUP/hpx/issues/683
6148 https://github.com/STEllAR-GROUP/hpx/issues/619
6149 https://github.com/STEllAR-GROUP/hpx/issues/600
6150 https://github.com/STEllAR-GROUP/hpx/issues/577
6151 https://github.com/STEllAR-GROUP/hpx/issues/551
6152 https://github.com/STEllAR-GROUP/hpx/issues/544
6153 https://github.com/STEllAR-GROUP/hpx/issues/534
6154 https://github.com/STEllAR-GROUP/hpx/issues/508
6155 https://github.com/STEllAR-GROUP/hpx/issues/506
6156 https://github.com/STEllAR-GROUP/hpx/issues/470
6157 https://github.com/STEllAR-GROUP/hpx/issues/453
6158 https://github.com/STEllAR-GROUP/hpx/issues/445
6159 https://github.com/STEllAR-GROUP/hpx/issues/443
6160 https://github.com/STEllAR-GROUP/hpx/issues/421
6161 https://github.com/STEllAR-GROUP/hpx/issues/316
6162 https://github.com/STEllAR-GROUP/hpx/issues/249
6163 https://github.com/STEllAR-GROUP/hpx/issues/136

2.10. Releases 1815

https://github.com/STEllAR-GROUP/hpx/issues/694
https://github.com/STEllAR-GROUP/hpx/issues/692
https://github.com/STEllAR-GROUP/hpx/issues/683
https://github.com/STEllAR-GROUP/hpx/issues/619
https://github.com/STEllAR-GROUP/hpx/issues/600
https://github.com/STEllAR-GROUP/hpx/issues/577
https://github.com/STEllAR-GROUP/hpx/issues/551
https://github.com/STEllAR-GROUP/hpx/issues/544
https://github.com/STEllAR-GROUP/hpx/issues/534
https://github.com/STEllAR-GROUP/hpx/issues/508
https://github.com/STEllAR-GROUP/hpx/issues/506
https://github.com/STEllAR-GROUP/hpx/issues/470
https://github.com/STEllAR-GROUP/hpx/issues/453
https://github.com/STEllAR-GROUP/hpx/issues/445
https://github.com/STEllAR-GROUP/hpx/issues/443
https://github.com/STEllAR-GROUP/hpx/issues/421
https://github.com/STEllAR-GROUP/hpx/issues/316
https://github.com/STEllAR-GROUP/hpx/issues/249
https://github.com/STEllAR-GROUP/hpx/issues/136

HPX Documentation, master

HPX V0.9.6 (Jul 30, 2013)

We have had over 1200 commits since the last release and we have closed roughly 140 tickets (bugs, feature requests,
etc.).

General changes

The major new features in this release are:

• We further consolidated the API exposed by HPX. We aligned our APIs as much as possible with the exist-
ing C++11 Standard6164 and related proposals to the C++ standardization committee (such as N36326165 and
N38576166).

• We implemented a first version of a distributed AGAS service which essentially eliminates all explicit AGAS
network traffic.

• We created a native ibverbs parcelport allowing to take advantage of the superior latency and bandwidth charac-
teristics of Infiniband networks.

• We successfully ported HPX to the Xeon Phi platform.

• Support for the SLURM scheduling system was implemented.

• Major efforts have been dedicated to improving the performance counter framework, numerous new counters
were implemented and new APIs were added.

• We added a modular parcel compression system allowing to improve bandwidth utilization (by reducing the
overall size of the transferred data).

• We added a modular parcel coalescing system allowing to combine several parcels into larger messages. This
reduces latencies introduced by the communication layer.

• Added an experimental executors API allowing to use different scheduling policies for different parts of the code.
This API has been modelled after the Standards proposal N35626167. This API is bound to change in the future,
though.

• Added minimal security support for localities which is enforced on the parcelport level. This support is prelimi-
nary and experimental and might change in the future.

• We created a parcelport using low level MPI functions. This is in support of legacy applications which are to be
gradually ported and to support platforms where MPI is the only available portable networking layer.

• We added a preliminary and experimental implementation of a tuple-space object which exposes an interface
similar to such systems described in the literature (see for instance The Linda Coordination Language6168).

6164 http://www.open-std.org/jtc1/sc22/wg21
6165 http://wg21.link/n3632
6166 http://wg21.link/n3857
6167 http://wg21.link/n3562
6168 https://en.wikipedia.org/wiki/Linda_(coordination_language)

1816 Chapter 2. What’s so special about HPX?

http://www.open-std.org/jtc1/sc22/wg21
http://wg21.link/n3632
http://wg21.link/n3857
http://wg21.link/n3562
https://en.wikipedia.org/wiki/Linda_(coordination_language)

HPX Documentation, master

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release. This is again a very long list of newly implemented
features and fixed issues.

• Issue #8066169 - make (all) in examples folder does nothing

• Issue #8056170 - Adding the introduction and fixing DOCBOOK dependencies for Windows use

• Issue #8046171 - Add stackless (non-suspendable) thread type

• Issue #8036172 - Create proper serialization support functions for util::tuple

• Issue #8006173 - Add possibility to disable array optimizations during serialization

• Issue #7986174 - HPX_LIMIT does not work for local dataflow

• Issue #7976175 - Create a parcelport which uses MPI

• Issue #7966176 - Problem with Large Numbers of Threads

• Issue #7936177 - Changing dataflow test case to hang consistently

• Issue #7926178 - CMake Error

• Issue #7916179 - Problems with local::dataflow

• Issue #7906180 - wait_for() doesn’t compile

• Issue #7896181 - HPX with Intel compiler segfaults

• Issue #7886182 - Intel compiler support

• Issue #7876183 - Fixed SFINAEd specializations

• Issue #7866184 - Memory issues during benchmarking.

• Issue #7856185 - Create an API allowing to register external threads with HPX

• Issue #7846186 - util::plugin is throwing an error when a symbol is not found

• Issue #7836187 - How does hpx:bind work?

• Issue #7826188 - Added quotes around STRING REPLACE potentially empty arguments

• Issue #7816189 - Make sure no exceptions propagate into the thread manager
6169 https://github.com/STEllAR-GROUP/hpx/issues/806
6170 https://github.com/STEllAR-GROUP/hpx/issues/805
6171 https://github.com/STEllAR-GROUP/hpx/issues/804
6172 https://github.com/STEllAR-GROUP/hpx/issues/803
6173 https://github.com/STEllAR-GROUP/hpx/issues/800
6174 https://github.com/STEllAR-GROUP/hpx/issues/798
6175 https://github.com/STEllAR-GROUP/hpx/issues/797
6176 https://github.com/STEllAR-GROUP/hpx/issues/796
6177 https://github.com/STEllAR-GROUP/hpx/issues/793
6178 https://github.com/STEllAR-GROUP/hpx/issues/792
6179 https://github.com/STEllAR-GROUP/hpx/issues/791
6180 https://github.com/STEllAR-GROUP/hpx/issues/790
6181 https://github.com/STEllAR-GROUP/hpx/issues/789
6182 https://github.com/STEllAR-GROUP/hpx/issues/788
6183 https://github.com/STEllAR-GROUP/hpx/issues/787
6184 https://github.com/STEllAR-GROUP/hpx/issues/786
6185 https://github.com/STEllAR-GROUP/hpx/issues/785
6186 https://github.com/STEllAR-GROUP/hpx/issues/784
6187 https://github.com/STEllAR-GROUP/hpx/issues/783
6188 https://github.com/STEllAR-GROUP/hpx/issues/782
6189 https://github.com/STEllAR-GROUP/hpx/issues/781

2.10. Releases 1817

https://github.com/STEllAR-GROUP/hpx/issues/806
https://github.com/STEllAR-GROUP/hpx/issues/805
https://github.com/STEllAR-GROUP/hpx/issues/804
https://github.com/STEllAR-GROUP/hpx/issues/803
https://github.com/STEllAR-GROUP/hpx/issues/800
https://github.com/STEllAR-GROUP/hpx/issues/798
https://github.com/STEllAR-GROUP/hpx/issues/797
https://github.com/STEllAR-GROUP/hpx/issues/796
https://github.com/STEllAR-GROUP/hpx/issues/793
https://github.com/STEllAR-GROUP/hpx/issues/792
https://github.com/STEllAR-GROUP/hpx/issues/791
https://github.com/STEllAR-GROUP/hpx/issues/790
https://github.com/STEllAR-GROUP/hpx/issues/789
https://github.com/STEllAR-GROUP/hpx/issues/788
https://github.com/STEllAR-GROUP/hpx/issues/787
https://github.com/STEllAR-GROUP/hpx/issues/786
https://github.com/STEllAR-GROUP/hpx/issues/785
https://github.com/STEllAR-GROUP/hpx/issues/784
https://github.com/STEllAR-GROUP/hpx/issues/783
https://github.com/STEllAR-GROUP/hpx/issues/782
https://github.com/STEllAR-GROUP/hpx/issues/781

HPX Documentation, master

• Issue #7806190 - Allow arithmetics performance counters to expand its parameters

• Issue #7796191 - Test case for 778

• Issue #7786192 - Swapping futures segfaults

• Issue #7776193 - hpx::lcos::details::when_xxx don’t restore completion handlers

• Issue #7766194 - Compiler chokes on dataflow overload with launch policy

• Issue #7756195 - Runtime error with local dataflow (copying futures?)

• Issue #7746196 - Using local dataflow without explicit namespace

• Issue #7736197 - Local dataflow with unwrap: functor operators need to be const

• Issue #7726198 - Allow (remote) actions to return a future

• Issue #7716199 - Setting HPX_LIMIT gives huge boost MPL errors

• Issue #7706200 - Add launch policy to (local) dataflow

• Issue #7696201 - Make compile time configuration information available

• Issue #7686202 - Const correctness problem in local dataflow

• Issue #7676203 - Add launch policies to async

• Issue #7666204 - Mark data structures for optimized (array based) serialization

• Issue #7656205 - Align hpx::any with N3508: Any Library Proposal (Revision 2)

• Issue #7646206 - Align hpx::future with newest N3558: A Standardized Representation of Asynchronous Opera-
tions

• Issue #7626207 - added a human readable output for the ping pong example

• Issue #7616208 - Ambiguous typename when constructing derived component

• Issue #7606209 - Simple components can not be derived

• Issue #7596210 - make install doesn’t give a complete install

• Issue #7586211 - Stack overflow when using locking_hook<>

• Issue #7576212 - copy paste error; unsupported function overloading
6190 https://github.com/STEllAR-GROUP/hpx/issues/780
6191 https://github.com/STEllAR-GROUP/hpx/issues/779
6192 https://github.com/STEllAR-GROUP/hpx/issues/778
6193 https://github.com/STEllAR-GROUP/hpx/issues/777
6194 https://github.com/STEllAR-GROUP/hpx/issues/776
6195 https://github.com/STEllAR-GROUP/hpx/issues/775
6196 https://github.com/STEllAR-GROUP/hpx/issues/774
6197 https://github.com/STEllAR-GROUP/hpx/issues/773
6198 https://github.com/STEllAR-GROUP/hpx/issues/772
6199 https://github.com/STEllAR-GROUP/hpx/issues/771
6200 https://github.com/STEllAR-GROUP/hpx/issues/770
6201 https://github.com/STEllAR-GROUP/hpx/issues/769
6202 https://github.com/STEllAR-GROUP/hpx/issues/768
6203 https://github.com/STEllAR-GROUP/hpx/issues/767
6204 https://github.com/STEllAR-GROUP/hpx/issues/766
6205 https://github.com/STEllAR-GROUP/hpx/issues/765
6206 https://github.com/STEllAR-GROUP/hpx/issues/764
6207 https://github.com/STEllAR-GROUP/hpx/issues/762
6208 https://github.com/STEllAR-GROUP/hpx/issues/761
6209 https://github.com/STEllAR-GROUP/hpx/issues/760
6210 https://github.com/STEllAR-GROUP/hpx/issues/759
6211 https://github.com/STEllAR-GROUP/hpx/issues/758
6212 https://github.com/STEllAR-GROUP/hpx/issues/757

1818 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/780
https://github.com/STEllAR-GROUP/hpx/issues/779
https://github.com/STEllAR-GROUP/hpx/issues/778
https://github.com/STEllAR-GROUP/hpx/issues/777
https://github.com/STEllAR-GROUP/hpx/issues/776
https://github.com/STEllAR-GROUP/hpx/issues/775
https://github.com/STEllAR-GROUP/hpx/issues/774
https://github.com/STEllAR-GROUP/hpx/issues/773
https://github.com/STEllAR-GROUP/hpx/issues/772
https://github.com/STEllAR-GROUP/hpx/issues/771
https://github.com/STEllAR-GROUP/hpx/issues/770
https://github.com/STEllAR-GROUP/hpx/issues/769
https://github.com/STEllAR-GROUP/hpx/issues/768
https://github.com/STEllAR-GROUP/hpx/issues/767
https://github.com/STEllAR-GROUP/hpx/issues/766
https://github.com/STEllAR-GROUP/hpx/issues/765
https://github.com/STEllAR-GROUP/hpx/issues/764
https://github.com/STEllAR-GROUP/hpx/issues/762
https://github.com/STEllAR-GROUP/hpx/issues/761
https://github.com/STEllAR-GROUP/hpx/issues/760
https://github.com/STEllAR-GROUP/hpx/issues/759
https://github.com/STEllAR-GROUP/hpx/issues/758
https://github.com/STEllAR-GROUP/hpx/issues/757

HPX Documentation, master

• Issue #7566213 - GTCX runtime issue in Gordon

• Issue #7556214 - Papi counters don’t work with reset and evaluate API’s

• Issue #7536215 - cmake bugfix and improved component action docs

• Issue #7526216 - hpx simple component docs

• Issue #7506217 - Add hpx::util::any

• Issue #7496218 - Thread phase counter is not reset

• Issue #7486219 - Memory performance counter are not registered

• Issue #7476220 - Create performance counters exposing arithmetic operations

• Issue #7456221 - apply_callback needs to invoke callback when applied locally

• Issue #7446222 - CMake fixes

• Issue #7436223 - Problem Building github version of HPX

• Issue #7426224 - Remove HPX_STD_BIND

• Issue #7416225 - assertion ‘px != 0’ failed: HPX(assertion_failure) for low numbers of OS threads

• Issue #7396226 - Performance counters do not count to the end of the program or evaluation

• Issue #7386227 - Dedicated AGAS server runs don’t work; console ignores -a option.

• Issue #7376228 - Missing bind overloads

• Issue #7366229 - Performance counter wildcards do not always work

• Issue #7356230 - Create native ibverbs parcelport based on rdma operations

• Issue #7346231 - Threads stolen performance counter total is incorrect

• Issue #7336232 - Test benchmarks need to be checked and fixed

• Issue #7326233 - Build fails with Mac, using mac ports clang-3.3 on latest git branch

• Issue #7316234 - Add global start/stop API for performance counters

• Issue #7306235 - Performance counter values are apparently incorrect
6213 https://github.com/STEllAR-GROUP/hpx/issues/756
6214 https://github.com/STEllAR-GROUP/hpx/issues/755
6215 https://github.com/STEllAR-GROUP/hpx/issues/753
6216 https://github.com/STEllAR-GROUP/hpx/issues/752
6217 https://github.com/STEllAR-GROUP/hpx/issues/750
6218 https://github.com/STEllAR-GROUP/hpx/issues/749
6219 https://github.com/STEllAR-GROUP/hpx/issues/748
6220 https://github.com/STEllAR-GROUP/hpx/issues/747
6221 https://github.com/STEllAR-GROUP/hpx/issues/745
6222 https://github.com/STEllAR-GROUP/hpx/issues/744
6223 https://github.com/STEllAR-GROUP/hpx/issues/743
6224 https://github.com/STEllAR-GROUP/hpx/issues/742
6225 https://github.com/STEllAR-GROUP/hpx/issues/741
6226 https://github.com/STEllAR-GROUP/hpx/issues/739
6227 https://github.com/STEllAR-GROUP/hpx/issues/738
6228 https://github.com/STEllAR-GROUP/hpx/issues/737
6229 https://github.com/STEllAR-GROUP/hpx/issues/736
6230 https://github.com/STEllAR-GROUP/hpx/issues/735
6231 https://github.com/STEllAR-GROUP/hpx/issues/734
6232 https://github.com/STEllAR-GROUP/hpx/issues/733
6233 https://github.com/STEllAR-GROUP/hpx/issues/732
6234 https://github.com/STEllAR-GROUP/hpx/issues/731
6235 https://github.com/STEllAR-GROUP/hpx/issues/730

2.10. Releases 1819

https://github.com/STEllAR-GROUP/hpx/issues/756
https://github.com/STEllAR-GROUP/hpx/issues/755
https://github.com/STEllAR-GROUP/hpx/issues/753
https://github.com/STEllAR-GROUP/hpx/issues/752
https://github.com/STEllAR-GROUP/hpx/issues/750
https://github.com/STEllAR-GROUP/hpx/issues/749
https://github.com/STEllAR-GROUP/hpx/issues/748
https://github.com/STEllAR-GROUP/hpx/issues/747
https://github.com/STEllAR-GROUP/hpx/issues/745
https://github.com/STEllAR-GROUP/hpx/issues/744
https://github.com/STEllAR-GROUP/hpx/issues/743
https://github.com/STEllAR-GROUP/hpx/issues/742
https://github.com/STEllAR-GROUP/hpx/issues/741
https://github.com/STEllAR-GROUP/hpx/issues/739
https://github.com/STEllAR-GROUP/hpx/issues/738
https://github.com/STEllAR-GROUP/hpx/issues/737
https://github.com/STEllAR-GROUP/hpx/issues/736
https://github.com/STEllAR-GROUP/hpx/issues/735
https://github.com/STEllAR-GROUP/hpx/issues/734
https://github.com/STEllAR-GROUP/hpx/issues/733
https://github.com/STEllAR-GROUP/hpx/issues/732
https://github.com/STEllAR-GROUP/hpx/issues/731
https://github.com/STEllAR-GROUP/hpx/issues/730

HPX Documentation, master

• Issue #7296236 - Unhandled switch

• Issue #7286237 - Serialization of hpx::util::function between two localities causes seg faults

• Issue #7276238 - Memory counters on Mac OS X

• Issue #7256239 - Restore original thread priority on resume

• Issue #7246240 - Performance benchmarks do not depend on main HPX libraries

• Issue #7236241 - [teletype]–hpx:nodes=``cat $PBS_NODEFILE`` works; –hpx:nodefile=$PBS_NODEFILE does
not.[c++]

• Issue #7226242 - Fix binding const member functions as actions

• Issue #7196243 - Create performance counter exposing compression ratio

• Issue #7186244 - Add possibility to compress parcel data

• Issue #7176245 - strip_credit_from_gid has misleading semantics

• Issue #7166246 - Non-option arguments to programs run using pbsdsh must be before --hpx:nodes, contrary
to directions

• Issue #7156247 - Re-thrown exceptions should retain the original call site

• Issue #7146248 - failed assertion in debug mode

• Issue #7136249 - Add performance counters monitoring connection caches

• Issue #7126250 - Adjust parcel related performance counters to be connection type specific

• Issue #7116251 - configuration failure

• Issue #7106252 - Error “timed out while trying to find room in the connection cache” when trying to start multiple
localities on a single computer

• Issue #7096253 - Add new thread state ‘staged’ referring to task descriptions

• Issue #7086254 - Detect/mitigate bad non-system installs of GCC on Redhat systems

• Issue #7076255 - Many examples do not link with Git HEAD version

• Issue #7066256 - hpx::init removes portions of non-option command line arguments before last = sign

• Issue #7056257 - Create rolling average and median aggregating performance counters
6236 https://github.com/STEllAR-GROUP/hpx/issues/729
6237 https://github.com/STEllAR-GROUP/hpx/issues/728
6238 https://github.com/STEllAR-GROUP/hpx/issues/727
6239 https://github.com/STEllAR-GROUP/hpx/issues/725
6240 https://github.com/STEllAR-GROUP/hpx/issues/724
6241 https://github.com/STEllAR-GROUP/hpx/issues/723
6242 https://github.com/STEllAR-GROUP/hpx/issues/722
6243 https://github.com/STEllAR-GROUP/hpx/issues/719
6244 https://github.com/STEllAR-GROUP/hpx/issues/718
6245 https://github.com/STEllAR-GROUP/hpx/issues/717
6246 https://github.com/STEllAR-GROUP/hpx/issues/716
6247 https://github.com/STEllAR-GROUP/hpx/issues/715
6248 https://github.com/STEllAR-GROUP/hpx/issues/714
6249 https://github.com/STEllAR-GROUP/hpx/issues/713
6250 https://github.com/STEllAR-GROUP/hpx/issues/712
6251 https://github.com/STEllAR-GROUP/hpx/issues/711
6252 https://github.com/STEllAR-GROUP/hpx/issues/710
6253 https://github.com/STEllAR-GROUP/hpx/issues/709
6254 https://github.com/STEllAR-GROUP/hpx/issues/708
6255 https://github.com/STEllAR-GROUP/hpx/issues/707
6256 https://github.com/STEllAR-GROUP/hpx/issues/706
6257 https://github.com/STEllAR-GROUP/hpx/issues/705

1820 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/729
https://github.com/STEllAR-GROUP/hpx/issues/728
https://github.com/STEllAR-GROUP/hpx/issues/727
https://github.com/STEllAR-GROUP/hpx/issues/725
https://github.com/STEllAR-GROUP/hpx/issues/724
https://github.com/STEllAR-GROUP/hpx/issues/723
https://github.com/STEllAR-GROUP/hpx/issues/722
https://github.com/STEllAR-GROUP/hpx/issues/719
https://github.com/STEllAR-GROUP/hpx/issues/718
https://github.com/STEllAR-GROUP/hpx/issues/717
https://github.com/STEllAR-GROUP/hpx/issues/716
https://github.com/STEllAR-GROUP/hpx/issues/715
https://github.com/STEllAR-GROUP/hpx/issues/714
https://github.com/STEllAR-GROUP/hpx/issues/713
https://github.com/STEllAR-GROUP/hpx/issues/712
https://github.com/STEllAR-GROUP/hpx/issues/711
https://github.com/STEllAR-GROUP/hpx/issues/710
https://github.com/STEllAR-GROUP/hpx/issues/709
https://github.com/STEllAR-GROUP/hpx/issues/708
https://github.com/STEllAR-GROUP/hpx/issues/707
https://github.com/STEllAR-GROUP/hpx/issues/706
https://github.com/STEllAR-GROUP/hpx/issues/705

HPX Documentation, master

• Issue #7046258 - Create performance counter to expose thread queue waiting time

• Issue #7036259 - Add support to HPX build system to find librcrtool.a and related headers

• Issue #6996260 - Generalize instrumentation support

• Issue #6986261 - compilation failure with hwloc absent

• Issue #6976262 - Performance counter counts should be zero indexed

• Issue #6966263 - Distributed problem

• Issue #6956264 - Bad perf counter time printed

• Issue #6936265 - --help doesn’t print component specific command line options

• Issue #6926266 - SLURM support broken

• Issue #6916267 - exception while executing any application linked with hwloc

• Issue #6906268 - thread_id_test and thread_launcher_test failing

• Issue #6896269 - Make the buildbots use hwloc

• Issue #6876270 - compilation error fix (hwloc_topology)

• Issue #6866271 - Linker Error for Applications

• Issue #6846272 - Pinning of service thread fails when number of worker threads equals the number of cores

• Issue #6826273 - Add performance counters exposing number of stolen threads

• Issue #6816274 - Add apply_continue for asynchronous chaining of actions

• Issue #6796275 - Remove obsolete async_callback API functions

• Issue #6786276 - Add new API for setting/triggering LCOs

• Issue #6776277 - Add async_continue for true continuation style actions

• Issue #6766278 - Buildbot for gcc 4.4 broken

• Issue #6756279 - Partial preprocessing broken

• Issue #6746280 - HPX segfaults when built with gcc 4.7
6258 https://github.com/STEllAR-GROUP/hpx/issues/704
6259 https://github.com/STEllAR-GROUP/hpx/issues/703
6260 https://github.com/STEllAR-GROUP/hpx/issues/699
6261 https://github.com/STEllAR-GROUP/hpx/issues/698
6262 https://github.com/STEllAR-GROUP/hpx/issues/697
6263 https://github.com/STEllAR-GROUP/hpx/issues/696
6264 https://github.com/STEllAR-GROUP/hpx/issues/695
6265 https://github.com/STEllAR-GROUP/hpx/issues/693
6266 https://github.com/STEllAR-GROUP/hpx/issues/692
6267 https://github.com/STEllAR-GROUP/hpx/issues/691
6268 https://github.com/STEllAR-GROUP/hpx/issues/690
6269 https://github.com/STEllAR-GROUP/hpx/issues/689
6270 https://github.com/STEllAR-GROUP/hpx/issues/687
6271 https://github.com/STEllAR-GROUP/hpx/issues/686
6272 https://github.com/STEllAR-GROUP/hpx/issues/684
6273 https://github.com/STEllAR-GROUP/hpx/issues/682
6274 https://github.com/STEllAR-GROUP/hpx/issues/681
6275 https://github.com/STEllAR-GROUP/hpx/issues/679
6276 https://github.com/STEllAR-GROUP/hpx/issues/678
6277 https://github.com/STEllAR-GROUP/hpx/issues/677
6278 https://github.com/STEllAR-GROUP/hpx/issues/676
6279 https://github.com/STEllAR-GROUP/hpx/issues/675
6280 https://github.com/STEllAR-GROUP/hpx/issues/674

2.10. Releases 1821

https://github.com/STEllAR-GROUP/hpx/issues/704
https://github.com/STEllAR-GROUP/hpx/issues/703
https://github.com/STEllAR-GROUP/hpx/issues/699
https://github.com/STEllAR-GROUP/hpx/issues/698
https://github.com/STEllAR-GROUP/hpx/issues/697
https://github.com/STEllAR-GROUP/hpx/issues/696
https://github.com/STEllAR-GROUP/hpx/issues/695
https://github.com/STEllAR-GROUP/hpx/issues/693
https://github.com/STEllAR-GROUP/hpx/issues/692
https://github.com/STEllAR-GROUP/hpx/issues/691
https://github.com/STEllAR-GROUP/hpx/issues/690
https://github.com/STEllAR-GROUP/hpx/issues/689
https://github.com/STEllAR-GROUP/hpx/issues/687
https://github.com/STEllAR-GROUP/hpx/issues/686
https://github.com/STEllAR-GROUP/hpx/issues/684
https://github.com/STEllAR-GROUP/hpx/issues/682
https://github.com/STEllAR-GROUP/hpx/issues/681
https://github.com/STEllAR-GROUP/hpx/issues/679
https://github.com/STEllAR-GROUP/hpx/issues/678
https://github.com/STEllAR-GROUP/hpx/issues/677
https://github.com/STEllAR-GROUP/hpx/issues/676
https://github.com/STEllAR-GROUP/hpx/issues/675
https://github.com/STEllAR-GROUP/hpx/issues/674

HPX Documentation, master

• Issue #6736281 - use_guard_pages has inconsistent preprocessor guards

• Issue #6726282 - External build breaks if library path has spaces

• Issue #6716283 - release tarballs are tarbombs

• Issue #6706284 - CMake won’t find Boost headers in layout=versioned install

• Issue #6696285 - Links in docs to source files broken if not installed

• Issue #6676286 - Not reading ini file properly

• Issue #6646287 - Adapt new meanings of ‘const’ and ‘mutable’

• Issue #6616288 - Implement BTL Parcel port

• Issue #6556289 - Make HPX work with the “decltype” result_of

• Issue #6476290 - documentation for specifying the number of high priority threads
--hpx:high-priority-threads

• Issue #6436291 - Error parsing host file

• Issue #6426292 - HWLoc issue with TAU

• Issue #6396293 - Logging potentially suspends a running thread

• Issue #6346294 - Improve error reporting from parcel layer

• Issue #6276295 - Add tests for async and apply overloads that accept regular C++ functions

• Issue #6266296 - hpx/future.hpp header

• Issue #6016297 - Intel support

• Issue #5576298 - Remove action codes

• Issue #5316299 - AGAS request and response classes should use switch statements

• Issue #5296300 - Investigate the state of hwloc support

• Issue #5266301 - Make HPX aware of hyper-threading

• Issue #5186302 - Create facilities allowing to use plain arrays as action arguments

• Issue #4736303 - hwloc thread binding is broken on CPUs with hyperthreading
6281 https://github.com/STEllAR-GROUP/hpx/issues/673
6282 https://github.com/STEllAR-GROUP/hpx/issues/672
6283 https://github.com/STEllAR-GROUP/hpx/issues/671
6284 https://github.com/STEllAR-GROUP/hpx/issues/670
6285 https://github.com/STEllAR-GROUP/hpx/issues/669
6286 https://github.com/STEllAR-GROUP/hpx/issues/667
6287 https://github.com/STEllAR-GROUP/hpx/issues/664
6288 https://github.com/STEllAR-GROUP/hpx/issues/661
6289 https://github.com/STEllAR-GROUP/hpx/issues/655
6290 https://github.com/STEllAR-GROUP/hpx/issues/647
6291 https://github.com/STEllAR-GROUP/hpx/issues/643
6292 https://github.com/STEllAR-GROUP/hpx/issues/642
6293 https://github.com/STEllAR-GROUP/hpx/issues/639
6294 https://github.com/STEllAR-GROUP/hpx/issues/634
6295 https://github.com/STEllAR-GROUP/hpx/issues/627
6296 https://github.com/STEllAR-GROUP/hpx/issues/626
6297 https://github.com/STEllAR-GROUP/hpx/issues/601
6298 https://github.com/STEllAR-GROUP/hpx/issues/557
6299 https://github.com/STEllAR-GROUP/hpx/issues/531
6300 https://github.com/STEllAR-GROUP/hpx/issues/529
6301 https://github.com/STEllAR-GROUP/hpx/issues/526
6302 https://github.com/STEllAR-GROUP/hpx/issues/518
6303 https://github.com/STEllAR-GROUP/hpx/issues/473

1822 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/673
https://github.com/STEllAR-GROUP/hpx/issues/672
https://github.com/STEllAR-GROUP/hpx/issues/671
https://github.com/STEllAR-GROUP/hpx/issues/670
https://github.com/STEllAR-GROUP/hpx/issues/669
https://github.com/STEllAR-GROUP/hpx/issues/667
https://github.com/STEllAR-GROUP/hpx/issues/664
https://github.com/STEllAR-GROUP/hpx/issues/661
https://github.com/STEllAR-GROUP/hpx/issues/655
https://github.com/STEllAR-GROUP/hpx/issues/647
https://github.com/STEllAR-GROUP/hpx/issues/643
https://github.com/STEllAR-GROUP/hpx/issues/642
https://github.com/STEllAR-GROUP/hpx/issues/639
https://github.com/STEllAR-GROUP/hpx/issues/634
https://github.com/STEllAR-GROUP/hpx/issues/627
https://github.com/STEllAR-GROUP/hpx/issues/626
https://github.com/STEllAR-GROUP/hpx/issues/601
https://github.com/STEllAR-GROUP/hpx/issues/557
https://github.com/STEllAR-GROUP/hpx/issues/531
https://github.com/STEllAR-GROUP/hpx/issues/529
https://github.com/STEllAR-GROUP/hpx/issues/526
https://github.com/STEllAR-GROUP/hpx/issues/518
https://github.com/STEllAR-GROUP/hpx/issues/473

HPX Documentation, master

• Issue #3836304 - Change result type detection for hpx::util::bind to use result_of protocol

• Issue #3416305 - Consolidate route code

• Issue #2196306 - Only copy arguments into actions once

• Issue #1776307 - Implement distributed AGAS

• Issue #436308 - Support for Darwin (Xcode + Clang)

HPX V0.9.5 (Jan 16, 2013)

We have had over 1000 commits since the last release and we have closed roughly 150 tickets (bugs, feature requests,
etc.).

General changes

This release is continuing along the lines of code and API consolidation, and overall usability inprovements. We
dedicated much attention to performance and we were able to significantly improve the threading and networking
subsystems.

We successfully ported HPX to the Android platform. HPX applications now not only can run on mobile devices, but
we support heterogeneous applications running across architecture boundaries. At the Supercomputing Conference
2012 we demonstrated connecting Android tablets to simulations running on a Linux cluster. The Android tablet was
used to query performance counters from the Linux simulation and to steer its parameters.

We successfully ported HPX to Mac OSX (using the Clang compiler). Thanks to Pyry Jahkola for contributing the
corresponding patches. Please see the section macos_installation for more details.

We made a special effort to make HPX usable in highly concurrent use cases. Many of the HPX API functions which
possibly take longer than 100 microseconds to execute now can be invoked asynchronously. We added uniform support
for composing futures which simplifies to write asynchronous code. HPX actions (function objects encapsulating pos-
sibly concurrent remote function invocations) are now well integrated with all other API facilities such like hpx::bind.

All of the API has been aligned as much as possible with established paradigms. HPX now mirrors many of the facilities
as defined in the C++11 Standard, such as hpx::thread, hpx::function, hpx::future, etc.

A lot of work has been put into improving the documentation. Many of the API functions are documented now, concepts
are explained in detail, and examples are better described than before. The new documentation index enables finding
information with lesser effort.

This is the first release of HPX we perform after the move to Github6309 This step has enabled a wider participation
from the community and further encourages us in our decision to release HPX as a true open source library (HPX is
licensed under the very liberal Boost Software License6310).
6304 https://github.com/STEllAR-GROUP/hpx/issues/383
6305 https://github.com/STEllAR-GROUP/hpx/issues/341
6306 https://github.com/STEllAR-GROUP/hpx/issues/219
6307 https://github.com/STEllAR-GROUP/hpx/issues/177
6308 https://github.com/STEllAR-GROUP/hpx/issues/43
6309 https://github.com/STEllAR-GROUP/hpx/
6310 https://www.boost.org/LICENSE_1_0.txt

2.10. Releases 1823

https://github.com/STEllAR-GROUP/hpx/issues/383
https://github.com/STEllAR-GROUP/hpx/issues/341
https://github.com/STEllAR-GROUP/hpx/issues/219
https://github.com/STEllAR-GROUP/hpx/issues/177
https://github.com/STEllAR-GROUP/hpx/issues/43
https://github.com/STEllAR-GROUP/hpx/
https://www.boost.org/LICENSE_1_0.txt

HPX Documentation, master

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release. This is by far the longest list of newly implemented
features and fixed issues for any of HPX’ releases so far.

• Issue #6666311 - Segfault on calling hpx::finalize twice

• Issue #6656312 - Adding declaration num_of_cores

• Issue #6626313 - pkgconfig is building wrong

• Issue #6606314 - Need uninterrupt function

• Issue #6596315 - Move our logging library into a different namespace

• Issue #6586316 - Dynamic performance counter types are broken

• Issue #6576317 - HPX v0.9.5 (RC1) hello_world example segfaulting

• Issue #6566318 - Define the affinity of parcel-pool, io-pool, and timer-pool threads

• Issue #6546319 - Integrate the Boost auto_index tool with documentation

• Issue #6536320 - Make HPX build on OS X + Clang + libc++

• Issue #6516321 - Add fine-grained control for thread pinning

• Issue #6506322 - Command line no error message when using -hpx:(anything)

• Issue #6456323 - Command line aliases don’t work in [teletype]``@file``[c++]

• Issue #6446324 - Terminated threads are not always properly cleaned up

• Issue #6406325 - future_data<T>::set_on_completed_ used without locks

• Issue #6386326 - hpx build with intel compilers fails on linux

• Issue #6376327 - –copy-dt-needed-entries breaks with gold

• Issue #6356328 - Boost V1.53 will add Boost.Lockfree and Boost.Atomic

• Issue #6336329 - Re-add examples to final 0.9.5 release

• Issue #6326330 - Example thread_aware_timer is broken

• Issue #6316331 - FFT application throws error in parcellayer
6311 https://github.com/STEllAR-GROUP/hpx/issues/666
6312 https://github.com/STEllAR-GROUP/hpx/issues/665
6313 https://github.com/STEllAR-GROUP/hpx/issues/662
6314 https://github.com/STEllAR-GROUP/hpx/issues/660
6315 https://github.com/STEllAR-GROUP/hpx/issues/659
6316 https://github.com/STEllAR-GROUP/hpx/issues/658
6317 https://github.com/STEllAR-GROUP/hpx/issues/657
6318 https://github.com/STEllAR-GROUP/hpx/issues/656
6319 https://github.com/STEllAR-GROUP/hpx/issues/654
6320 https://github.com/STEllAR-GROUP/hpx/issues/653
6321 https://github.com/STEllAR-GROUP/hpx/issues/651
6322 https://github.com/STEllAR-GROUP/hpx/issues/650
6323 https://github.com/STEllAR-GROUP/hpx/issues/645
6324 https://github.com/STEllAR-GROUP/hpx/issues/644
6325 https://github.com/STEllAR-GROUP/hpx/issues/640
6326 https://github.com/STEllAR-GROUP/hpx/issues/638
6327 https://github.com/STEllAR-GROUP/hpx/issues/637
6328 https://github.com/STEllAR-GROUP/hpx/issues/635
6329 https://github.com/STEllAR-GROUP/hpx/issues/633
6330 https://github.com/STEllAR-GROUP/hpx/issues/632
6331 https://github.com/STEllAR-GROUP/hpx/issues/631

1824 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/666
https://github.com/STEllAR-GROUP/hpx/issues/665
https://github.com/STEllAR-GROUP/hpx/issues/662
https://github.com/STEllAR-GROUP/hpx/issues/660
https://github.com/STEllAR-GROUP/hpx/issues/659
https://github.com/STEllAR-GROUP/hpx/issues/658
https://github.com/STEllAR-GROUP/hpx/issues/657
https://github.com/STEllAR-GROUP/hpx/issues/656
https://github.com/STEllAR-GROUP/hpx/issues/654
https://github.com/STEllAR-GROUP/hpx/issues/653
https://github.com/STEllAR-GROUP/hpx/issues/651
https://github.com/STEllAR-GROUP/hpx/issues/650
https://github.com/STEllAR-GROUP/hpx/issues/645
https://github.com/STEllAR-GROUP/hpx/issues/644
https://github.com/STEllAR-GROUP/hpx/issues/640
https://github.com/STEllAR-GROUP/hpx/issues/638
https://github.com/STEllAR-GROUP/hpx/issues/637
https://github.com/STEllAR-GROUP/hpx/issues/635
https://github.com/STEllAR-GROUP/hpx/issues/633
https://github.com/STEllAR-GROUP/hpx/issues/632
https://github.com/STEllAR-GROUP/hpx/issues/631

HPX Documentation, master

• Issue #6306332 - Event synchronization example is broken

• Issue #6296333 - Waiting on futures hangs

• Issue #6286334 - Add an HPX_ALWAYS_ASSERT macro

• Issue #6256335 - Port coroutines context switch benchmark

• Issue #6216336 - New INI section for stack sizes

• Issue #6186337 - pkg_config support does not work with a HPX debug build

• Issue #6176338 - hpx/external/logging/boost/logging/detail/cache_before_init.hpp:139:67: error: ‘get_thread_id’
was not declared in this scope

• Issue #6166339 - Change wait_xxx not to use locking

• Issue #6156340 - Revert visibility ‘fix’ (fb0b6b8245dad1127b0c25ebafd9386b3945cca9)

• Issue #6146341 - Fix Dataflow linker error

• Issue #6136342 - find_here should throw an exception on failure

• Issue #6126343 - Thread phase doesn’t show up in debug mode

• Issue #6116344 - Make stack guard pages configurable at runtime (initialization time)

• Issue #6106345 - Co-Locate Components

• Issue #6096346 - future_overhead

• Issue #6086347 - --hpx:list-counter-infos problem

• Issue #6076348 - Update Boost.Context based backend for coroutines

• Issue #6066349 - 1d_wave_equation is not working

• Issue #6056350 - Any C++ function that has serializable arguments and a serializable return type should be re-
motable

• Issue #6046351 - Connecting localities isn’t working anymore

• Issue #6036352 - Do not verify any ini entries read from a file

• Issue #6026353 - Rename argument_size to type_size/ added implementation to get parcel size
6332 https://github.com/STEllAR-GROUP/hpx/issues/630
6333 https://github.com/STEllAR-GROUP/hpx/issues/629
6334 https://github.com/STEllAR-GROUP/hpx/issues/628
6335 https://github.com/STEllAR-GROUP/hpx/issues/625
6336 https://github.com/STEllAR-GROUP/hpx/issues/621
6337 https://github.com/STEllAR-GROUP/hpx/issues/618
6338 https://github.com/STEllAR-GROUP/hpx/issues/617
6339 https://github.com/STEllAR-GROUP/hpx/issues/616
6340 https://github.com/STEllAR-GROUP/hpx/issues/615
6341 https://github.com/STEllAR-GROUP/hpx/issues/614
6342 https://github.com/STEllAR-GROUP/hpx/issues/613
6343 https://github.com/STEllAR-GROUP/hpx/issues/612
6344 https://github.com/STEllAR-GROUP/hpx/issues/611
6345 https://github.com/STEllAR-GROUP/hpx/issues/610
6346 https://github.com/STEllAR-GROUP/hpx/issues/609
6347 https://github.com/STEllAR-GROUP/hpx/issues/608
6348 https://github.com/STEllAR-GROUP/hpx/issues/607
6349 https://github.com/STEllAR-GROUP/hpx/issues/606
6350 https://github.com/STEllAR-GROUP/hpx/issues/605
6351 https://github.com/STEllAR-GROUP/hpx/issues/604
6352 https://github.com/STEllAR-GROUP/hpx/issues/603
6353 https://github.com/STEllAR-GROUP/hpx/issues/602

2.10. Releases 1825

https://github.com/STEllAR-GROUP/hpx/issues/630
https://github.com/STEllAR-GROUP/hpx/issues/629
https://github.com/STEllAR-GROUP/hpx/issues/628
https://github.com/STEllAR-GROUP/hpx/issues/625
https://github.com/STEllAR-GROUP/hpx/issues/621
https://github.com/STEllAR-GROUP/hpx/issues/618
https://github.com/STEllAR-GROUP/hpx/issues/617
https://github.com/STEllAR-GROUP/hpx/issues/616
https://github.com/STEllAR-GROUP/hpx/issues/615
https://github.com/STEllAR-GROUP/hpx/issues/614
https://github.com/STEllAR-GROUP/hpx/issues/613
https://github.com/STEllAR-GROUP/hpx/issues/612
https://github.com/STEllAR-GROUP/hpx/issues/611
https://github.com/STEllAR-GROUP/hpx/issues/610
https://github.com/STEllAR-GROUP/hpx/issues/609
https://github.com/STEllAR-GROUP/hpx/issues/608
https://github.com/STEllAR-GROUP/hpx/issues/607
https://github.com/STEllAR-GROUP/hpx/issues/606
https://github.com/STEllAR-GROUP/hpx/issues/605
https://github.com/STEllAR-GROUP/hpx/issues/604
https://github.com/STEllAR-GROUP/hpx/issues/603
https://github.com/STEllAR-GROUP/hpx/issues/602

HPX Documentation, master

• Issue #5996354 - Enable locality specific command line options

• Issue #5986355 - Need an API that accesses the performance counter reporting the system uptime

• Issue #5976356 - compiling on ranger

• Issue #5956357 - I need a place to store data in a thread self pointer

• Issue #5946358 - 32/64 interoperability

• Issue #5936359 - Warn if logging is disabled at compile time but requested at runtime

• Issue #5926360 - Add optional argument value to --hpx:list-counters and --hpx:list-counter-infos

• Issue #5916361 - Allow for wildcards in performance counter names specified with --hpx:print-counter

• Issue #5906362 - Local promise semantic differences

• Issue #5896363 - Create API to query performance counter names

• Issue #5876364 - Add get_num_localities and get_num_threads to AGAS API

• Issue #5866365 - Adjust local AGAS cache size based on number of localities

• Issue #5856366 - Error while using counters in HPX

• Issue #5846367 - counting argument size of actions, initial pass.

• Issue #5816368 - Remove RemoteResult template parameter for future<>

• Issue #5806369 - Add possibility to hook into actions

• Issue #5786370 - Use angle brackets in HPX error dumps

• Issue #5766371 - Exception incorrectly thrown when --help is used

• Issue #5756372 - HPX(bad_component_type) with gcc 4.7.2 and boost 1.51

• Issue #5746373 - --hpx:connect command line parameter not working correctly

• Issue #5716374 - hpx::wait() (callback version) should pass the future to the callback function

• Issue #5706375 - hpx::wait should operate on boost::arrays and std::lists

• Issue #5696376 - Add a logging sink for Android
6354 https://github.com/STEllAR-GROUP/hpx/issues/599
6355 https://github.com/STEllAR-GROUP/hpx/issues/598
6356 https://github.com/STEllAR-GROUP/hpx/issues/597
6357 https://github.com/STEllAR-GROUP/hpx/issues/595
6358 https://github.com/STEllAR-GROUP/hpx/issues/594
6359 https://github.com/STEllAR-GROUP/hpx/issues/593
6360 https://github.com/STEllAR-GROUP/hpx/issues/592
6361 https://github.com/STEllAR-GROUP/hpx/issues/591
6362 https://github.com/STEllAR-GROUP/hpx/issues/590
6363 https://github.com/STEllAR-GROUP/hpx/issues/589
6364 https://github.com/STEllAR-GROUP/hpx/issues/587
6365 https://github.com/STEllAR-GROUP/hpx/issues/586
6366 https://github.com/STEllAR-GROUP/hpx/issues/585
6367 https://github.com/STEllAR-GROUP/hpx/issues/584
6368 https://github.com/STEllAR-GROUP/hpx/issues/581
6369 https://github.com/STEllAR-GROUP/hpx/issues/580
6370 https://github.com/STEllAR-GROUP/hpx/issues/578
6371 https://github.com/STEllAR-GROUP/hpx/issues/576
6372 https://github.com/STEllAR-GROUP/hpx/issues/575
6373 https://github.com/STEllAR-GROUP/hpx/issues/574
6374 https://github.com/STEllAR-GROUP/hpx/issues/571
6375 https://github.com/STEllAR-GROUP/hpx/issues/570
6376 https://github.com/STEllAR-GROUP/hpx/issues/569

1826 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/599
https://github.com/STEllAR-GROUP/hpx/issues/598
https://github.com/STEllAR-GROUP/hpx/issues/597
https://github.com/STEllAR-GROUP/hpx/issues/595
https://github.com/STEllAR-GROUP/hpx/issues/594
https://github.com/STEllAR-GROUP/hpx/issues/593
https://github.com/STEllAR-GROUP/hpx/issues/592
https://github.com/STEllAR-GROUP/hpx/issues/591
https://github.com/STEllAR-GROUP/hpx/issues/590
https://github.com/STEllAR-GROUP/hpx/issues/589
https://github.com/STEllAR-GROUP/hpx/issues/587
https://github.com/STEllAR-GROUP/hpx/issues/586
https://github.com/STEllAR-GROUP/hpx/issues/585
https://github.com/STEllAR-GROUP/hpx/issues/584
https://github.com/STEllAR-GROUP/hpx/issues/581
https://github.com/STEllAR-GROUP/hpx/issues/580
https://github.com/STEllAR-GROUP/hpx/issues/578
https://github.com/STEllAR-GROUP/hpx/issues/576
https://github.com/STEllAR-GROUP/hpx/issues/575
https://github.com/STEllAR-GROUP/hpx/issues/574
https://github.com/STEllAR-GROUP/hpx/issues/571
https://github.com/STEllAR-GROUP/hpx/issues/570
https://github.com/STEllAR-GROUP/hpx/issues/569

HPX Documentation, master

• Issue #5686377 - 2-argument version of HPX_DEFINE_COMPONENT_ACTION

• Issue #5676378 - Connecting to a running HPX application works only once

• Issue #5656379 - HPX doesn’t shutdown properly

• Issue #5646380 - Partial preprocessing of new component creation interface

• Issue #5636381 - Add hpx::start/hpx::stop to avoid blocking main thread

• Issue #5626382 - All command line arguments swallowed by hpx

• Issue #5616383 - Boost.Tuple is not move aware

• Issue #5586384 - boost::shared_ptr<> style semantics/syntax for client classes

• Issue #5566385 - Creation of partially preprocessed headers should be enabled for Boost newer than V1.50

• Issue #5556386 - BOOST_FORCEINLINE does not name a type

• Issue #5546387 - Possible race condition in thread get_id()

• Issue #5526388 - Move enable client_base

• Issue #5506389 - Add stack size category ‘huge’

• Issue #5496390 - ShenEOS run seg-faults on single or distributed runs

• Issue #5456391 - AUTOGLOB broken for add_hpx_component

• Issue #5426392 - FindHPX_HDF5 still searches multiple times

• Issue #5416393 - Quotes around application name in hpx::init

• Issue #5396394 - Race conditition occurring with new lightweight threads

• Issue #5356395 - hpx_run_tests.py exits with no error code when tests are missing

• Issue #5306396 - Thread description(<unknown>) in logs

• Issue #5236397 - Make thread objects more lightweight

• Issue #5216398 - hpx::error_code is not usable for lightweight error handling

• Issue #5206399 - Add full user environment to HPX logs
6377 https://github.com/STEllAR-GROUP/hpx/issues/568
6378 https://github.com/STEllAR-GROUP/hpx/issues/567
6379 https://github.com/STEllAR-GROUP/hpx/issues/565
6380 https://github.com/STEllAR-GROUP/hpx/issues/564
6381 https://github.com/STEllAR-GROUP/hpx/issues/563
6382 https://github.com/STEllAR-GROUP/hpx/issues/562
6383 https://github.com/STEllAR-GROUP/hpx/issues/561
6384 https://github.com/STEllAR-GROUP/hpx/issues/558
6385 https://github.com/STEllAR-GROUP/hpx/issues/556
6386 https://github.com/STEllAR-GROUP/hpx/issues/555
6387 https://github.com/STEllAR-GROUP/hpx/issues/554
6388 https://github.com/STEllAR-GROUP/hpx/issues/552
6389 https://github.com/STEllAR-GROUP/hpx/issues/550
6390 https://github.com/STEllAR-GROUP/hpx/issues/549
6391 https://github.com/STEllAR-GROUP/hpx/issues/545
6392 https://github.com/STEllAR-GROUP/hpx/issues/542
6393 https://github.com/STEllAR-GROUP/hpx/issues/541
6394 https://github.com/STEllAR-GROUP/hpx/issues/539
6395 https://github.com/STEllAR-GROUP/hpx/issues/535
6396 https://github.com/STEllAR-GROUP/hpx/issues/530
6397 https://github.com/STEllAR-GROUP/hpx/issues/523
6398 https://github.com/STEllAR-GROUP/hpx/issues/521
6399 https://github.com/STEllAR-GROUP/hpx/issues/520

2.10. Releases 1827

https://github.com/STEllAR-GROUP/hpx/issues/568
https://github.com/STEllAR-GROUP/hpx/issues/567
https://github.com/STEllAR-GROUP/hpx/issues/565
https://github.com/STEllAR-GROUP/hpx/issues/564
https://github.com/STEllAR-GROUP/hpx/issues/563
https://github.com/STEllAR-GROUP/hpx/issues/562
https://github.com/STEllAR-GROUP/hpx/issues/561
https://github.com/STEllAR-GROUP/hpx/issues/558
https://github.com/STEllAR-GROUP/hpx/issues/556
https://github.com/STEllAR-GROUP/hpx/issues/555
https://github.com/STEllAR-GROUP/hpx/issues/554
https://github.com/STEllAR-GROUP/hpx/issues/552
https://github.com/STEllAR-GROUP/hpx/issues/550
https://github.com/STEllAR-GROUP/hpx/issues/549
https://github.com/STEllAR-GROUP/hpx/issues/545
https://github.com/STEllAR-GROUP/hpx/issues/542
https://github.com/STEllAR-GROUP/hpx/issues/541
https://github.com/STEllAR-GROUP/hpx/issues/539
https://github.com/STEllAR-GROUP/hpx/issues/535
https://github.com/STEllAR-GROUP/hpx/issues/530
https://github.com/STEllAR-GROUP/hpx/issues/523
https://github.com/STEllAR-GROUP/hpx/issues/521
https://github.com/STEllAR-GROUP/hpx/issues/520

HPX Documentation, master

• Issue #5196400 - Build succeeds, running fails

• Issue #5176401 - Add a guard page to linux coroutine stacks

• Issue #5166402 - hpx::thread::detach suspends while holding locks, leads to hang in debug

• Issue #5146403 - Preprocessed headers for <hpx/apply.hpp> don’t compile

• Issue #5136404 - Buildbot configuration problem

• Issue #5126405 - Implement action based stack size customization

• Issue #5116406 - Move action priority into a separate type trait

• Issue #5106407 - trunk broken

• Issue #5076408 - no matching function for call to boost::scoped_ptr<hpx::threads::topology>::scoped_ptr(hpx::threads::linux_topology*)

• Issue #5056409 - undefined_symbol regression test currently failing

• Issue #5026410 - Adding OpenCL and OCLM support to HPX for Windows and Linux

• Issue #5016411 - find_package(HPX) sets cmake output variables

• Issue #5006412 - wait_any/wait_all are badly named

• Issue #4996413 - Add support for disabling pbs support in pbs runs

• Issue #4986414 - Error during no-cache runs

• Issue #4966415 - Add partial preprocessing support to cmake

• Issue #4956416 - Support HPX modules exporting startup/shutdown functions only

• Issue #4946417 - Allow modules to specify when to run startup/shutdown functions

• Issue #4936418 - Avoid constructing a string in make_success_code

• Issue #4926419 - Performance counter creation is no longer synchronized at startup

• Issue #4916420 - Performance counter creation is no longer synchronized at startup

• Issue #4906421 - Sheneos on_completed_bulk seg fault in distributed

• Issue #4896422 - compiling issue with g++44
6400 https://github.com/STEllAR-GROUP/hpx/issues/519
6401 https://github.com/STEllAR-GROUP/hpx/issues/517
6402 https://github.com/STEllAR-GROUP/hpx/issues/516
6403 https://github.com/STEllAR-GROUP/hpx/issues/514
6404 https://github.com/STEllAR-GROUP/hpx/issues/513
6405 https://github.com/STEllAR-GROUP/hpx/issues/512
6406 https://github.com/STEllAR-GROUP/hpx/issues/511
6407 https://github.com/STEllAR-GROUP/hpx/issues/510
6408 https://github.com/STEllAR-GROUP/hpx/issues/507
6409 https://github.com/STEllAR-GROUP/hpx/issues/505
6410 https://github.com/STEllAR-GROUP/hpx/issues/502
6411 https://github.com/STEllAR-GROUP/hpx/issues/501
6412 https://github.com/STEllAR-GROUP/hpx/issues/500
6413 https://github.com/STEllAR-GROUP/hpx/issues/499
6414 https://github.com/STEllAR-GROUP/hpx/issues/498
6415 https://github.com/STEllAR-GROUP/hpx/issues/496
6416 https://github.com/STEllAR-GROUP/hpx/issues/495
6417 https://github.com/STEllAR-GROUP/hpx/issues/494
6418 https://github.com/STEllAR-GROUP/hpx/issues/493
6419 https://github.com/STEllAR-GROUP/hpx/issues/492
6420 https://github.com/STEllAR-GROUP/hpx/issues/491
6421 https://github.com/STEllAR-GROUP/hpx/issues/490
6422 https://github.com/STEllAR-GROUP/hpx/issues/489

1828 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/519
https://github.com/STEllAR-GROUP/hpx/issues/517
https://github.com/STEllAR-GROUP/hpx/issues/516
https://github.com/STEllAR-GROUP/hpx/issues/514
https://github.com/STEllAR-GROUP/hpx/issues/513
https://github.com/STEllAR-GROUP/hpx/issues/512
https://github.com/STEllAR-GROUP/hpx/issues/511
https://github.com/STEllAR-GROUP/hpx/issues/510
https://github.com/STEllAR-GROUP/hpx/issues/507
https://github.com/STEllAR-GROUP/hpx/issues/505
https://github.com/STEllAR-GROUP/hpx/issues/502
https://github.com/STEllAR-GROUP/hpx/issues/501
https://github.com/STEllAR-GROUP/hpx/issues/500
https://github.com/STEllAR-GROUP/hpx/issues/499
https://github.com/STEllAR-GROUP/hpx/issues/498
https://github.com/STEllAR-GROUP/hpx/issues/496
https://github.com/STEllAR-GROUP/hpx/issues/495
https://github.com/STEllAR-GROUP/hpx/issues/494
https://github.com/STEllAR-GROUP/hpx/issues/493
https://github.com/STEllAR-GROUP/hpx/issues/492
https://github.com/STEllAR-GROUP/hpx/issues/491
https://github.com/STEllAR-GROUP/hpx/issues/490
https://github.com/STEllAR-GROUP/hpx/issues/489

HPX Documentation, master

• Issue #4886423 - Adding OpenCL and OCLM support to HPX for the MSVC platform

• Issue #4876424 - FindHPX.cmake problems

• Issue #4856425 - Change distributing_factory and binpacking_factory to use bulk creation

• Issue #4846426 - Change HPX_DONT_USE_PREPROCESSED_FILES to HPX_USE_PREPROCESSED_FILES

• Issue #4836427 - Memory counter for Windows

• Issue #4796428 - strange errors appear when requesting performance counters on multiple nodes

• Issue #4776429 - Create (global) timer for multi-threaded measurements

• Issue #4726430 - Add partial preprocessing using Wave

• Issue #4716431 - Segfault stack traces don’t show up in release

• Issue #4686432 - External projects need to link with internal components

• Issue #4626433 - Startup/shutdown functions are called more than once

• Issue #4586434 - Consolidate hpx::util::high_resolution_timer and hpx::util::high_resolution_clock

• Issue #4576435 - index out of bounds in allgather_and_gate on 4 cores or more

• Issue #4486436 - Make HPX compile with clang

• Issue #4476437 - ‘make tests’ should execute tests on local installation

• Issue #4466438 - Remove SVN-related code from the codebase

• Issue #4446439 - race condition in smp

• Issue #4416440 - Patched Boost.Serialization headers should only be installed if needed

• Issue #4396441 - Components using HPX_REGISTER_STARTUP_MODULE fail to compile with MSVC

• Issue #4366442 - Verify that no locks are being held while threads are suspended

• Issue #4356443 - Installing HPX should not clobber existing Boost installation

• Issue #4346444 - Logging external component failed (Boost 1.50)

• Issue #4336445 - Runtime crash when building all examples
6423 https://github.com/STEllAR-GROUP/hpx/issues/488
6424 https://github.com/STEllAR-GROUP/hpx/issues/487
6425 https://github.com/STEllAR-GROUP/hpx/issues/485
6426 https://github.com/STEllAR-GROUP/hpx/issues/484
6427 https://github.com/STEllAR-GROUP/hpx/issues/483
6428 https://github.com/STEllAR-GROUP/hpx/issues/479
6429 https://github.com/STEllAR-GROUP/hpx/issues/477
6430 https://github.com/STEllAR-GROUP/hpx/issues/472
6431 https://github.com/STEllAR-GROUP/hpx/issues/471
6432 https://github.com/STEllAR-GROUP/hpx/issues/468
6433 https://github.com/STEllAR-GROUP/hpx/issues/462
6434 https://github.com/STEllAR-GROUP/hpx/issues/458
6435 https://github.com/STEllAR-GROUP/hpx/issues/457
6436 https://github.com/STEllAR-GROUP/hpx/issues/448
6437 https://github.com/STEllAR-GROUP/hpx/issues/447
6438 https://github.com/STEllAR-GROUP/hpx/issues/446
6439 https://github.com/STEllAR-GROUP/hpx/issues/444
6440 https://github.com/STEllAR-GROUP/hpx/issues/441
6441 https://github.com/STEllAR-GROUP/hpx/issues/439
6442 https://github.com/STEllAR-GROUP/hpx/issues/436
6443 https://github.com/STEllAR-GROUP/hpx/issues/435
6444 https://github.com/STEllAR-GROUP/hpx/issues/434
6445 https://github.com/STEllAR-GROUP/hpx/issues/433

2.10. Releases 1829

https://github.com/STEllAR-GROUP/hpx/issues/488
https://github.com/STEllAR-GROUP/hpx/issues/487
https://github.com/STEllAR-GROUP/hpx/issues/485
https://github.com/STEllAR-GROUP/hpx/issues/484
https://github.com/STEllAR-GROUP/hpx/issues/483
https://github.com/STEllAR-GROUP/hpx/issues/479
https://github.com/STEllAR-GROUP/hpx/issues/477
https://github.com/STEllAR-GROUP/hpx/issues/472
https://github.com/STEllAR-GROUP/hpx/issues/471
https://github.com/STEllAR-GROUP/hpx/issues/468
https://github.com/STEllAR-GROUP/hpx/issues/462
https://github.com/STEllAR-GROUP/hpx/issues/458
https://github.com/STEllAR-GROUP/hpx/issues/457
https://github.com/STEllAR-GROUP/hpx/issues/448
https://github.com/STEllAR-GROUP/hpx/issues/447
https://github.com/STEllAR-GROUP/hpx/issues/446
https://github.com/STEllAR-GROUP/hpx/issues/444
https://github.com/STEllAR-GROUP/hpx/issues/441
https://github.com/STEllAR-GROUP/hpx/issues/439
https://github.com/STEllAR-GROUP/hpx/issues/436
https://github.com/STEllAR-GROUP/hpx/issues/435
https://github.com/STEllAR-GROUP/hpx/issues/434
https://github.com/STEllAR-GROUP/hpx/issues/433

HPX Documentation, master

• Issue #4326446 - Dataflow hangs on 512 cores/64 nodes

• Issue #4306447 - Problem with distributing factory

• Issue #4246448 - File paths referring to XSL-files need to be properly escaped

• Issue #4176449 - Make dataflow LCOs work out of the box by using partial preprocessing

• Issue #4136450 - hpx_svnversion.py fails on Windows

• Issue #4126451 - Make hpx::error_code equivalent to hpx::exception

• Issue #3986452 - HPX clobbers out-of-tree application specific CMake variables (specifically
CMAKE_BUILD_TYPE)

• Issue #3946453 - Remove code generating random port numbers for network

• Issue #3786454 - ShenEOS scaling issues

• Issue #3546455 - Create a coroutines wrapper for Boost.Context

• Issue #3496456 - Commandline option --localities=N/-lN should be necessary only on AGAS locality

• Issue #3346457 - Add auto_index support to cmake based documentation toolchain

• Issue #3186458 - Network benchmarks

• Issue #3176459 - Implement network performance counters

• Issue #3106460 - Duplicate logging entries

• Issue #2306461 - Add compile time option to disable thread debugging info

• Issue #1716462 - Add an INI option to turn off deadlock detection independently of logging

• Issue #1706463 - OSHL internal counters are incorrect

• Issue #1036464 - Better diagnostics for multiple component/action registerations under the same name

• Issue #486465 - Support for Darwin (Xcode + Clang)

• Issue #216466 - Build fails with GCC 4.6
6446 https://github.com/STEllAR-GROUP/hpx/issues/432
6447 https://github.com/STEllAR-GROUP/hpx/issues/430
6448 https://github.com/STEllAR-GROUP/hpx/issues/424
6449 https://github.com/STEllAR-GROUP/hpx/issues/417
6450 https://github.com/STEllAR-GROUP/hpx/issues/413
6451 https://github.com/STEllAR-GROUP/hpx/issues/412
6452 https://github.com/STEllAR-GROUP/hpx/issues/398
6453 https://github.com/STEllAR-GROUP/hpx/issues/394
6454 https://github.com/STEllAR-GROUP/hpx/issues/378
6455 https://github.com/STEllAR-GROUP/hpx/issues/354
6456 https://github.com/STEllAR-GROUP/hpx/issues/349
6457 https://github.com/STEllAR-GROUP/hpx/issues/334
6458 https://github.com/STEllAR-GROUP/hpx/issues/318
6459 https://github.com/STEllAR-GROUP/hpx/issues/317
6460 https://github.com/STEllAR-GROUP/hpx/issues/310
6461 https://github.com/STEllAR-GROUP/hpx/issues/230
6462 https://github.com/STEllAR-GROUP/hpx/issues/171
6463 https://github.com/STEllAR-GROUP/hpx/issues/170
6464 https://github.com/STEllAR-GROUP/hpx/issues/103
6465 https://github.com/STEllAR-GROUP/hpx/issues/48
6466 https://github.com/STEllAR-GROUP/hpx/issues/21

1830 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/432
https://github.com/STEllAR-GROUP/hpx/issues/430
https://github.com/STEllAR-GROUP/hpx/issues/424
https://github.com/STEllAR-GROUP/hpx/issues/417
https://github.com/STEllAR-GROUP/hpx/issues/413
https://github.com/STEllAR-GROUP/hpx/issues/412
https://github.com/STEllAR-GROUP/hpx/issues/398
https://github.com/STEllAR-GROUP/hpx/issues/394
https://github.com/STEllAR-GROUP/hpx/issues/378
https://github.com/STEllAR-GROUP/hpx/issues/354
https://github.com/STEllAR-GROUP/hpx/issues/349
https://github.com/STEllAR-GROUP/hpx/issues/334
https://github.com/STEllAR-GROUP/hpx/issues/318
https://github.com/STEllAR-GROUP/hpx/issues/317
https://github.com/STEllAR-GROUP/hpx/issues/310
https://github.com/STEllAR-GROUP/hpx/issues/230
https://github.com/STEllAR-GROUP/hpx/issues/171
https://github.com/STEllAR-GROUP/hpx/issues/170
https://github.com/STEllAR-GROUP/hpx/issues/103
https://github.com/STEllAR-GROUP/hpx/issues/48
https://github.com/STEllAR-GROUP/hpx/issues/21

HPX Documentation, master

HPX V0.9.0 (Jul 5, 2012)

We have had roughly 800 commits since the last release and we have closed approximately 80 tickets (bugs, feature
requests, etc.).

General changes

• Significant improvements made to the usability of HPX in large-scale, distributed environments.

• Renamed hpx::lcos::packaged_task to hpx::lcos::packaged_action to reflect the semantic differ-
ences to a packaged_task as defined by the C++11 Standard6467.

• HPX now exposes hpx::thread which is compliant to the C++11 std::thread type except that it (purely locally)
represents an HPX thread. This new type does not expose any of the remote capabilities of the underlying HPX-
thread implementation.

• The type hpx::lcos::future is now compliant to the C++11 std::future<> type. This type can be used to
synchronize both, local and remote operations. In both cases the control flow will ‘return’ to the future in order
to trigger any continuation.

• The types hpx::lcos::local::promise and hpx::lcos::local::packaged_task are now compliant to
the C++11 std::promise<> and std::packaged_task<> types. These can be used to create a future repre-
senting local work only. Use the types hpx::lcos::promise and hpx::lcos::packaged_action to wrap
any (possibly remote) action into a future.

• hpx::thread and hpx::lcos::future are now cancelable.

• Added support for sequential and logic composition of hpx::lcos::futures. The member func-
tion hpx::lcos::future::when permits futures to be sequentially composed. The helper functions
hpx::wait_all, hpx::wait_any, and hpx::wait_n can be used to wait for more than one future at a time.

• HPX now exposes hpx::apply and hpx::async as the preferred way of creating (or invoking) any deferred
work. These functions are usable with various types of functions, function objects, and actions and provide a
uniform way to spawn deferred tasks.

• HPX now utilizes hpx::util::bind to (partially) bind local functions and function objects, and also actions.
Remote bound actions can have placeholders as well.

• HPX continuations are now fully polymorphic. The class hpx::actions::forwarding_continuation is an
example of how the user can write is own types of continuations. It can be used to execute any function as an
continuation of a particular action.

• Reworked the action invocation API to be fully conformant to normal functions. Actions can now be invoked
using hpx::apply, hpx::async, or using the operator() implemented on actions. Actions themselves can
now be cheaply instantiated as they do not have any members anymore.

• Reworked the lazy action invocation API. Actions can now be directly bound using hpx::util::bind by pass-
ing an action instance as the first argument.

• A minimal HPX program now looks like this:

#include <hpx/hpx_init.hpp>

int hpx_main()
{

return hpx::finalize();
}

(continues on next page)

6467 http://www.open-std.org/jtc1/sc22/wg21

2.10. Releases 1831

http://www.open-std.org/jtc1/sc22/wg21

HPX Documentation, master

(continued from previous page)

int main()
{

return hpx::init();
}

This removes the immediate dependency on the Boost.Program_options6468 library.

Note: This minimal version of an HPX program does not support any of the default command line arguments
(such as –help, or command line options related to PBS). It is suggested to always pass argc and argv to HPX
as shown in the example below.

• In order to support those, but still not to depend on Boost.Program_options6469, the minimal program can be
written as:

#include <hpx/hpx_init.hpp>

// The arguments for hpx_main can be left off, which very similar to the
// behavior of ``main()`` as defined by C++.
int hpx_main(int argc, char* argv[])
{

return hpx::finalize();
}

int main(int argc, char* argv[])
{

return hpx::init(argc, argv);
}

• Added performance counters exposing the number of component instances which are alive on a given locality.

• Added performance counters exposing then number of messages sent and received, the number of parcels sent
and received, the number of bytes sent and received, the overall time required to send and receive data, and the
overall time required to serialize and deserialize the data.

• Added a new component: hpx::components::binpacking_factory which is equivalent to the existing
hpx::components::distributing_factory component, except that it equalizes the overall population of
the components to create. It exposes two factory methods, one based on the number of existing instances of
the component type to create, and one based on an arbitrary performance counter which will be queried for all
relevant localities.

• Added API functions allowing to access elements of the diagnostic information embedded in the given exception:
hpx::get_locality_id , hpx::get_host_name, hpx::get_process_id, hpx::get_function_name,
hpx::get_file_name, hpx::get_line_number, hpx::get_os_thread, hpx::get_thread_id, and
hpx::get_thread_description.

6468 https://www.boost.org/doc/html/program_options.html
6469 https://www.boost.org/doc/html/program_options.html

1832 Chapter 2. What’s so special about HPX?

https://www.boost.org/doc/html/program_options.html
https://www.boost.org/doc/html/program_options.html

HPX Documentation, master

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release:

• Issue #716470 - GIDs that are not serialized via handle_gid<> should raise an exception

• Issue #1056471 - Allow for hpx::util::functions to be registered in the AGAS symbolic namespace

• Issue #1076472 - Nasty threadmanger race condition (reproducible in sheneos_test)

• Issue #1086473 - Add millisecond resolution to HPX logs on Linux

• Issue #1106474 - Shutdown hang in distributed with release build

• Issue #1166475 - Don’t use TSS for the applier and runtime pointers

• Issue #1626476 - Move local synchronous execution shortcut from hpx::function to the applier

• Issue #1726477 - Cache sources in CMake and check if they change manually

• Issue #1786478 - Add an INI option to turn off ranged-based AGAS caching

• Issue #1876479 - Support for disabling performance counter deployment

• Issue #2026480 - Support for sending performance counter data to a specific file

• Issue #2186481 - boost.coroutines allows different stack sizes, but stack pool is unaware of this

• Issue #2316482 - Implement movable boost::bind

• Issue #2326483 - Implement movable boost::function

• Issue #2366484 - Allow binding hpx::util::function to actions

• Issue #2396485 - Replace hpx::function with hpx::util::function

• Issue #2406486 - Can’t specify RemoteResult with lcos::async

• Issue #2426487 - REGISTER_TEMPLATE support for plain actions

• Issue #2436488 - handle_gid<> support for hpx::util::function

• Issue #2456489 - *_c_cache code throws an exception if the queried GID is not in the local cache

• Issue #2466490 - Undefined references in dataflow/adaptive1d example
6470 https://github.com/STEllAR-GROUP/hpx/issues/71
6471 https://github.com/STEllAR-GROUP/hpx/issues/105
6472 https://github.com/STEllAR-GROUP/hpx/issues/107
6473 https://github.com/STEllAR-GROUP/hpx/issues/108
6474 https://github.com/STEllAR-GROUP/hpx/issues/110
6475 https://github.com/STEllAR-GROUP/hpx/issues/116
6476 https://github.com/STEllAR-GROUP/hpx/issues/162
6477 https://github.com/STEllAR-GROUP/hpx/issues/172
6478 https://github.com/STEllAR-GROUP/hpx/issues/178
6479 https://github.com/STEllAR-GROUP/hpx/issues/187
6480 https://github.com/STEllAR-GROUP/hpx/issues/202
6481 https://github.com/STEllAR-GROUP/hpx/issues/218
6482 https://github.com/STEllAR-GROUP/hpx/issues/231
6483 https://github.com/STEllAR-GROUP/hpx/issues/232
6484 https://github.com/STEllAR-GROUP/hpx/issues/236
6485 https://github.com/STEllAR-GROUP/hpx/issues/239
6486 https://github.com/STEllAR-GROUP/hpx/issues/240
6487 https://github.com/STEllAR-GROUP/hpx/issues/242
6488 https://github.com/STEllAR-GROUP/hpx/issues/243
6489 https://github.com/STEllAR-GROUP/hpx/issues/245
6490 https://github.com/STEllAR-GROUP/hpx/issues/246

2.10. Releases 1833

https://github.com/STEllAR-GROUP/hpx/issues/71
https://github.com/STEllAR-GROUP/hpx/issues/105
https://github.com/STEllAR-GROUP/hpx/issues/107
https://github.com/STEllAR-GROUP/hpx/issues/108
https://github.com/STEllAR-GROUP/hpx/issues/110
https://github.com/STEllAR-GROUP/hpx/issues/116
https://github.com/STEllAR-GROUP/hpx/issues/162
https://github.com/STEllAR-GROUP/hpx/issues/172
https://github.com/STEllAR-GROUP/hpx/issues/178
https://github.com/STEllAR-GROUP/hpx/issues/187
https://github.com/STEllAR-GROUP/hpx/issues/202
https://github.com/STEllAR-GROUP/hpx/issues/218
https://github.com/STEllAR-GROUP/hpx/issues/231
https://github.com/STEllAR-GROUP/hpx/issues/232
https://github.com/STEllAR-GROUP/hpx/issues/236
https://github.com/STEllAR-GROUP/hpx/issues/239
https://github.com/STEllAR-GROUP/hpx/issues/240
https://github.com/STEllAR-GROUP/hpx/issues/242
https://github.com/STEllAR-GROUP/hpx/issues/243
https://github.com/STEllAR-GROUP/hpx/issues/245
https://github.com/STEllAR-GROUP/hpx/issues/246

HPX Documentation, master

• Issue #2526491 - Problems configuring sheneos with CMake

• Issue #2546492 - Lifetime of components doesn’t end when client goes out of scope

• Issue #2596493 - CMake does not detect that MSVC10 has lambdas

• Issue #2606494 - io_service_pool segfault

• Issue #2616495 - Late parcel executed outside of pxthread

• Issue #2636496 - Cannot select allocator with CMake

• Issue #2646497 - Fix allocator select

• Issue #2676498 - Runtime error for hello_world

• Issue #2696499 - pthread_affinity_np test fails to compile

• Issue #2706500 - Compiler noise due to -Wcast-qual

• Issue #2756501 - Problem with configuration tests/include paths on Gentoo

• Issue #3256502 - Sheneos is 200-400 times slower than the fortran equivalent

• Issue #3316503 - hpx::init and hpx_main() should not depend on program_options

• Issue #3336504 - Add doxygen support to CMake for doc toolchain

• Issue #3406505 - Performance counters for parcels

• Issue #3466506 - Component loading error when running hello_world in distributed on MSVC2010

• Issue #3626507 - Missing initializer error

• Issue #3636508 - Parcel port serialization error

• Issue #3666509 - Parcel buffering leads to types incompatible exception

• Issue #3686510 - Scalable alternative to rand() needed for HPX

• Issue #3696511 - IB over IP is substantially slower than just using standard TCP/IP

• Issue #3746512 - hpx::lcos::wait should work with dataflows and arbitrary classes meeting the future interface

• Issue #3756513 - Conflicting/ambiguous overloads of hpx::lcos::wait
6491 https://github.com/STEllAR-GROUP/hpx/issues/252
6492 https://github.com/STEllAR-GROUP/hpx/issues/254
6493 https://github.com/STEllAR-GROUP/hpx/issues/259
6494 https://github.com/STEllAR-GROUP/hpx/issues/260
6495 https://github.com/STEllAR-GROUP/hpx/issues/261
6496 https://github.com/STEllAR-GROUP/hpx/issues/263
6497 https://github.com/STEllAR-GROUP/hpx/issues/264
6498 https://github.com/STEllAR-GROUP/hpx/issues/267
6499 https://github.com/STEllAR-GROUP/hpx/issues/269
6500 https://github.com/STEllAR-GROUP/hpx/issues/270
6501 https://github.com/STEllAR-GROUP/hpx/issues/275
6502 https://github.com/STEllAR-GROUP/hpx/issues/325
6503 https://github.com/STEllAR-GROUP/hpx/issues/331
6504 https://github.com/STEllAR-GROUP/hpx/issues/333
6505 https://github.com/STEllAR-GROUP/hpx/issues/340
6506 https://github.com/STEllAR-GROUP/hpx/issues/346
6507 https://github.com/STEllAR-GROUP/hpx/issues/362
6508 https://github.com/STEllAR-GROUP/hpx/issues/363
6509 https://github.com/STEllAR-GROUP/hpx/issues/366
6510 https://github.com/STEllAR-GROUP/hpx/issues/368
6511 https://github.com/STEllAR-GROUP/hpx/issues/369
6512 https://github.com/STEllAR-GROUP/hpx/issues/374
6513 https://github.com/STEllAR-GROUP/hpx/issues/375

1834 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/252
https://github.com/STEllAR-GROUP/hpx/issues/254
https://github.com/STEllAR-GROUP/hpx/issues/259
https://github.com/STEllAR-GROUP/hpx/issues/260
https://github.com/STEllAR-GROUP/hpx/issues/261
https://github.com/STEllAR-GROUP/hpx/issues/263
https://github.com/STEllAR-GROUP/hpx/issues/264
https://github.com/STEllAR-GROUP/hpx/issues/267
https://github.com/STEllAR-GROUP/hpx/issues/269
https://github.com/STEllAR-GROUP/hpx/issues/270
https://github.com/STEllAR-GROUP/hpx/issues/275
https://github.com/STEllAR-GROUP/hpx/issues/325
https://github.com/STEllAR-GROUP/hpx/issues/331
https://github.com/STEllAR-GROUP/hpx/issues/333
https://github.com/STEllAR-GROUP/hpx/issues/340
https://github.com/STEllAR-GROUP/hpx/issues/346
https://github.com/STEllAR-GROUP/hpx/issues/362
https://github.com/STEllAR-GROUP/hpx/issues/363
https://github.com/STEllAR-GROUP/hpx/issues/366
https://github.com/STEllAR-GROUP/hpx/issues/368
https://github.com/STEllAR-GROUP/hpx/issues/369
https://github.com/STEllAR-GROUP/hpx/issues/374
https://github.com/STEllAR-GROUP/hpx/issues/375

HPX Documentation, master

• Issue #3766514 - Find_HPX.cmake should set CMake variable HPX_FOUND for out of tree builds

• Issue #3776515 - ShenEOS interpolate bulk and interpolate_one_bulk are broken

• Issue #3796516 - Add support for distributed runs under SLURM

• Issue #3826517 - _Unwind_Word not declared in boost.backtrace

• Issue #3876518 - Doxygen should look only at list of specified files

• Issue #3886519 - Running make install on an out-of-tree application is broken

• Issue #3916520 - Out-of-tree application segfaults when running in qsub

• Issue #3926521 - Remove HPX_NO_INSTALL option from cmake build system

• Issue #3966522 - Pragma related warnings when compiling with older gcc versions

• Issue #3996523 - Out of tree component build problems

• Issue #4006524 - Out of source builds on Windows: linker should not receive compiler flags

• Issue #4016525 - Out of source builds on Windows: components need to be linked with hpx_serialization

• Issue #4046526 - gfortran fails to link automatically when fortran files are present

• Issue #4056527 - Inability to specify linking order for external libraries

• Issue #4066528 - Adapt action limits such that dataflow applications work without additional defines

• Issue #4156529 - locality_results is not a member of hpx::components::server

• Issue #4256530 - Breaking changes to traits::*result wrt std::vector<id_type>

• Issue #4266531 - AUTOGLOB needs to be updated to support fortran

HPX V0.8.1 (Apr 21, 2012)

This is a point release including important bug fixes for HPX V0.8.0 (Mar 23, 2012).
6514 https://github.com/STEllAR-GROUP/hpx/issues/376
6515 https://github.com/STEllAR-GROUP/hpx/issues/377
6516 https://github.com/STEllAR-GROUP/hpx/issues/379
6517 https://github.com/STEllAR-GROUP/hpx/issues/382
6518 https://github.com/STEllAR-GROUP/hpx/issues/387
6519 https://github.com/STEllAR-GROUP/hpx/issues/388
6520 https://github.com/STEllAR-GROUP/hpx/issues/391
6521 https://github.com/STEllAR-GROUP/hpx/issues/392
6522 https://github.com/STEllAR-GROUP/hpx/issues/396
6523 https://github.com/STEllAR-GROUP/hpx/issues/399
6524 https://github.com/STEllAR-GROUP/hpx/issues/400
6525 https://github.com/STEllAR-GROUP/hpx/issues/401
6526 https://github.com/STEllAR-GROUP/hpx/issues/404
6527 https://github.com/STEllAR-GROUP/hpx/issues/405
6528 https://github.com/STEllAR-GROUP/hpx/issues/406
6529 https://github.com/STEllAR-GROUP/hpx/issues/415
6530 https://github.com/STEllAR-GROUP/hpx/issues/425
6531 https://github.com/STEllAR-GROUP/hpx/issues/426

2.10. Releases 1835

https://github.com/STEllAR-GROUP/hpx/issues/376
https://github.com/STEllAR-GROUP/hpx/issues/377
https://github.com/STEllAR-GROUP/hpx/issues/379
https://github.com/STEllAR-GROUP/hpx/issues/382
https://github.com/STEllAR-GROUP/hpx/issues/387
https://github.com/STEllAR-GROUP/hpx/issues/388
https://github.com/STEllAR-GROUP/hpx/issues/391
https://github.com/STEllAR-GROUP/hpx/issues/392
https://github.com/STEllAR-GROUP/hpx/issues/396
https://github.com/STEllAR-GROUP/hpx/issues/399
https://github.com/STEllAR-GROUP/hpx/issues/400
https://github.com/STEllAR-GROUP/hpx/issues/401
https://github.com/STEllAR-GROUP/hpx/issues/404
https://github.com/STEllAR-GROUP/hpx/issues/405
https://github.com/STEllAR-GROUP/hpx/issues/406
https://github.com/STEllAR-GROUP/hpx/issues/415
https://github.com/STEllAR-GROUP/hpx/issues/425
https://github.com/STEllAR-GROUP/hpx/issues/426

HPX Documentation, master

General changes

• HPX does not need to be installed anymore to be functional.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this point release:

• Issue #2956532 - Don’t require install path to be known at compile time.

• Issue #3716533 - Add hpx iostreams to standard build.

• Issue #3846534 - Fix compilation with GCC 4.7.

• Issue #3906535 - Remove keep_factory_alive startup call from ShenEOS; add shutdown call to H5close.

• Issue #3936536 - Thread affinity control is broken.

Bug fixes (commits)

Here is a list of the important commits included in this point release:

• r7642 - External: Fix backtrace memory violation.

• r7775 - Components: Fix symbol visibility bug with component startup providers. This prevents one com-
ponents providers from overriding another components.

• r7778 - Components: Fix startup/shutdown provider shadowing issues.

HPX V0.8.0 (Mar 23, 2012)

We have had roughly 1000 commits since the last release and we have closed approximately 70 tickets (bugs, feature
requests, etc.).

General changes

• Improved PBS support, allowing for arbitrary naming schemes of node-hostnames.

• Finished verification of the reference counting framework.

• Implemented decrement merging logic to optimize the distributed reference counting system.

• Restructured the LCO framework. Renamed hpx::lcos::eager_future<>
and hpx::lcos::lazy_future<> into hpx::lcos::packaged_task and
hpx::lcos::deferred_packaged_task. Split hpx::lcos::promise into hpx::lcos::packaged_task
and hpx::lcos::future. Added ‘local’ futures (in namespace hpx::lcos::local).

• Improved the general performance of local and remote action invocations. This (under certain circumstances)
drastically reduces the number of copies created for each of the parameters and return values.

6532 https://github.com/STEllAR-GROUP/hpx/issues/295
6533 https://github.com/STEllAR-GROUP/hpx/issues/371
6534 https://github.com/STEllAR-GROUP/hpx/issues/384
6535 https://github.com/STEllAR-GROUP/hpx/issues/390
6536 https://github.com/STEllAR-GROUP/hpx/issues/393

1836 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/295
https://github.com/STEllAR-GROUP/hpx/issues/371
https://github.com/STEllAR-GROUP/hpx/issues/384
https://github.com/STEllAR-GROUP/hpx/issues/390
https://github.com/STEllAR-GROUP/hpx/issues/393

HPX Documentation, master

• Reworked the performance counter framework. Performance counters are now created only when needed, which
reduces the overall resource requirements. The new framework allows for much more flexible creation and
management of performance counters. The new sine example application demonstrates some of the capabilities
of the new infrastructure.

• Added a buildbot-based continuous build system which gives instant, automated feedback on each commit to
SVN.

• Added more automated tests to verify proper functioning of HPX.

• Started to create documentation for HPX and its API.

• Added documentation toolchain to the build system.

• Added dataflow LCO.

• Changed default HPX command line options to have hpx: prefix. For instance, the former option --threads is
now --hpx:threads. This has been done to make ambiguities with possible application specific command line
options as unlikely as possible. See the section HPX Command Line Options for a full list of available options.

• Added the possibility to define command line aliases. The former short (one-letter) command line options have
been predefined as aliases for backwards compatibility. See the section HPX Command Line Options for a
detailed description of command line option aliasing.

• Network connections are now cached based on the connected host. The number of simultaneous connections to
a particular host is now limited. Parcels are buffered and bundled if all connections are in use.

• Added more refined thread affinity control. This is based on the external library Portable Hardware Locality
(HWLOC).

• Improved support for Windows builds with CMake.

• Added support for components to register their own command line options.

• Added the possibility to register custom startup/shutdown functions for any component. These functions are
guaranteed to be executed by an HPX thread.

• Added two new experimental thread schedulers: hierarchy_scheduler and periodic_priority_scheduler.
These can be activated by using the command line options --hpx:queuing=hierarchy or
--hpx:queuing=periodic.

Example applications

• Graph500 performance benchmark6537 (thanks to Matthew Anderson for contributing this application).

• GTC (Gyrokinetic Toroidal Code)6538: a skeleton for particle in cell type codes.

• Random Memory Access: an example demonstrating random memory accesses in a large array

• ShenEOS example6539, demonstrating partitioning of large read-only data structures and exposing an interpola-
tion API.

• Sine performance counter demo.

• Accumulator examples demonstrating how to write and use HPX components.

• Quickstart examples (like hello_world, fibonacci, quicksort, factorial, etc.) demonstrating simple HPX concepts
which introduce some of the concepts in HPX.

• Load balancing and work stealing demos.
6537 http://www.graph500.org/
6538 http://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization/nersc-6-benchmarks/gtc/
6539 http://stellarcollapse.org/equationofstate

2.10. Releases 1837

http://www.graph500.org/
http://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization/nersc-6-benchmarks/gtc/
http://stellarcollapse.org/equationofstate

HPX Documentation, master

API changes

• Moved all local LCOs into a separate namespace hpx::lcos::local (for instance,
hpx::lcos::local_mutex is now hpx::lcos::local::mutex).

• Replaced hpx::actions::function with hpx::util::function. Cleaned up related code.

• Removed hpx::traits::handle_gid and moved handling of global reference counts into the corresponding
serialization code.

• Changed terminology: prefix is now called locality_id, renamed the corresponding API functions (such as
hpx::get_prefix, which is now called hpx::get_locality_id).

• Adding hpx::find_remote_localities, and hpx::get_num_localities.

• Changed performance counter naming scheme to make it more bash friendly. The new performance counter
naming scheme is now

/object{parentname#parentindex/instance#index}/counter#parameters

• Added hpx::get_worker_thread_num replacing hpx::threadmanager_base::get_thread_num.

• Renamed hpx::get_num_os_threads to hpx::get_os_threads_count.

• Added hpx::threads::get_thread_count.

• Restructured the Futures sub-system, renaming types in accordance with the terminology used by the C++11
ISO standard.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release:

• Issue #316540 - Specialize handle_gid<> for examples and tests

• Issue #726541 - Fix AGAS reference counting

• Issue #1046542 - heartbeat throws an exception when decrefing the performance counter it’s watching

• Issue #1116543 - throttle causes an exception on the target application

• Issue #1426544 - One failed component loading causes an unrelated component to fail

• Issue #1656545 - Remote exception propagation bug in AGAS reference counting test

• Issue #1866546 - Test credit exhaustion/splitting (e.g. prepare_gid and symbol NS)

• Issue #1886547 - Implement remaining AGAS reference counting test cases

• Issue #2586548 - No type checking of GIDs in stubs classes

• Issue #2716549 - Seg fault/shared pointer assertion in distributed code
6540 https://github.com/STEllAR-GROUP/hpx/issues/31
6541 https://github.com/STEllAR-GROUP/hpx/issues/72
6542 https://github.com/STEllAR-GROUP/hpx/issues/104
6543 https://github.com/STEllAR-GROUP/hpx/issues/111
6544 https://github.com/STEllAR-GROUP/hpx/issues/142
6545 https://github.com/STEllAR-GROUP/hpx/issues/165
6546 https://github.com/STEllAR-GROUP/hpx/issues/186
6547 https://github.com/STEllAR-GROUP/hpx/issues/188
6548 https://github.com/STEllAR-GROUP/hpx/issues/258
6549 https://github.com/STEllAR-GROUP/hpx/issues/271

1838 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/31
https://github.com/STEllAR-GROUP/hpx/issues/72
https://github.com/STEllAR-GROUP/hpx/issues/104
https://github.com/STEllAR-GROUP/hpx/issues/111
https://github.com/STEllAR-GROUP/hpx/issues/142
https://github.com/STEllAR-GROUP/hpx/issues/165
https://github.com/STEllAR-GROUP/hpx/issues/186
https://github.com/STEllAR-GROUP/hpx/issues/188
https://github.com/STEllAR-GROUP/hpx/issues/258
https://github.com/STEllAR-GROUP/hpx/issues/271

HPX Documentation, master

• Issue #2816550 - CMake options need descriptive text

• Issue #2836551 - AGAS caching broken (gva_cache needs to be rewritten with ICL)

• Issue #2856552 - HPX_INSTALL root directory not the same as CMAKE_INSTALL_PREFIX

• Issue #2866553 - New segfault in dataflow applications

• Issue #2896554 - Exceptions should only be logged if not handled

• Issue #2906555 - c++11 tests failure

• Issue #2936556 - Build target for component libraries

• Issue #2966557 - Compilation error with Boost V1.49rc1

• Issue #2986558 - Illegal instructions on termination

• Issue #2996559 - gravity aborts with multiple threads

• Issue #3016560 - Build error with Boost trunk

• Issue #3036561 - Logging assertion failure in distributed runs

• Issue #3046562 - Exception ‘what’ strings are lost when exceptions from decode_parcel are reported

• Issue #3066563 - Performance counter user interface issues

• Issue #3076564 - Logging exception in distributed runs

• Issue #3086565 - Logging deadlocks in distributed

• Issue #3096566 - Reference counting test failures and exceptions

• Issue #3116567 - Merge AGAS remote_interface with the runtime_support object

• Issue #3146568 - Object tracking for id_types

• Issue #3156569 - Remove handle_gid and handle credit splitting in id_type serialization

• Issue #3206570 - applier::get_locality_id() should return an error value (or throw an exception)

• Issue #3216571 - Optimization for id_types which are never split should be restored

• Issue #3226572 - Command line processing ignored with Boost 1.47.0
6550 https://github.com/STEllAR-GROUP/hpx/issues/281
6551 https://github.com/STEllAR-GROUP/hpx/issues/283
6552 https://github.com/STEllAR-GROUP/hpx/issues/285
6553 https://github.com/STEllAR-GROUP/hpx/issues/286
6554 https://github.com/STEllAR-GROUP/hpx/issues/289
6555 https://github.com/STEllAR-GROUP/hpx/issues/290
6556 https://github.com/STEllAR-GROUP/hpx/issues/293
6557 https://github.com/STEllAR-GROUP/hpx/issues/296
6558 https://github.com/STEllAR-GROUP/hpx/issues/298
6559 https://github.com/STEllAR-GROUP/hpx/issues/299
6560 https://github.com/STEllAR-GROUP/hpx/issues/301
6561 https://github.com/STEllAR-GROUP/hpx/issues/303
6562 https://github.com/STEllAR-GROUP/hpx/issues/304
6563 https://github.com/STEllAR-GROUP/hpx/issues/306
6564 https://github.com/STEllAR-GROUP/hpx/issues/307
6565 https://github.com/STEllAR-GROUP/hpx/issues/308
6566 https://github.com/STEllAR-GROUP/hpx/issues/309
6567 https://github.com/STEllAR-GROUP/hpx/issues/311
6568 https://github.com/STEllAR-GROUP/hpx/issues/314
6569 https://github.com/STEllAR-GROUP/hpx/issues/315
6570 https://github.com/STEllAR-GROUP/hpx/issues/320
6571 https://github.com/STEllAR-GROUP/hpx/issues/321
6572 https://github.com/STEllAR-GROUP/hpx/issues/322

2.10. Releases 1839

https://github.com/STEllAR-GROUP/hpx/issues/281
https://github.com/STEllAR-GROUP/hpx/issues/283
https://github.com/STEllAR-GROUP/hpx/issues/285
https://github.com/STEllAR-GROUP/hpx/issues/286
https://github.com/STEllAR-GROUP/hpx/issues/289
https://github.com/STEllAR-GROUP/hpx/issues/290
https://github.com/STEllAR-GROUP/hpx/issues/293
https://github.com/STEllAR-GROUP/hpx/issues/296
https://github.com/STEllAR-GROUP/hpx/issues/298
https://github.com/STEllAR-GROUP/hpx/issues/299
https://github.com/STEllAR-GROUP/hpx/issues/301
https://github.com/STEllAR-GROUP/hpx/issues/303
https://github.com/STEllAR-GROUP/hpx/issues/304
https://github.com/STEllAR-GROUP/hpx/issues/306
https://github.com/STEllAR-GROUP/hpx/issues/307
https://github.com/STEllAR-GROUP/hpx/issues/308
https://github.com/STEllAR-GROUP/hpx/issues/309
https://github.com/STEllAR-GROUP/hpx/issues/311
https://github.com/STEllAR-GROUP/hpx/issues/314
https://github.com/STEllAR-GROUP/hpx/issues/315
https://github.com/STEllAR-GROUP/hpx/issues/320
https://github.com/STEllAR-GROUP/hpx/issues/321
https://github.com/STEllAR-GROUP/hpx/issues/322

HPX Documentation, master

• Issue #3236573 - Credit exhaustion causes object to stay alive

• Issue #3246574 - Duplicate exception messages

• Issue #3266575 - Integrate Quickbook with CMake

• Issue #3296576 - –help and –version should still work

• Issue #3306577 - Create pkg-config files

• Issue #3376578 - Improve usability of performance counter timestamps

• Issue #3386579 - Non-std exceptions deriving from std::exceptions in tfunc may be sliced

• Issue #3396580 - Decrease the number of send_pending_parcels threads

• Issue #3436581 - Dynamically setting the stack size doesn’t work

• Issue #3516582 - ‘make install’ does not update documents

• Issue #3536583 - Disable FIXMEs in the docs by default; add a doc developer CMake option to enable FIXMEs

• Issue #3556584 - ‘make’ doesn’t do anything after correct configuration

• Issue #3566585 - Don’t use hpx::util::static_ in topology code

• Issue #3596586 - Infinite recursion in hpx::tuple serialization

• Issue #3616587 - Add compile time option to disable logging completely

• Issue #3646588 - Installation seriously broken in r7443

HPX V0.7.0 (Dec 12, 2011)

We have had roughly 1000 commits since the last release and we have closed approximately 120 tickets (bugs, feature
requests, etc.).
6573 https://github.com/STEllAR-GROUP/hpx/issues/323
6574 https://github.com/STEllAR-GROUP/hpx/issues/324
6575 https://github.com/STEllAR-GROUP/hpx/issues/326
6576 https://github.com/STEllAR-GROUP/hpx/issues/329
6577 https://github.com/STEllAR-GROUP/hpx/issues/330
6578 https://github.com/STEllAR-GROUP/hpx/issues/337
6579 https://github.com/STEllAR-GROUP/hpx/issues/338
6580 https://github.com/STEllAR-GROUP/hpx/issues/339
6581 https://github.com/STEllAR-GROUP/hpx/issues/343
6582 https://github.com/STEllAR-GROUP/hpx/issues/351
6583 https://github.com/STEllAR-GROUP/hpx/issues/353
6584 https://github.com/STEllAR-GROUP/hpx/issues/355
6585 https://github.com/STEllAR-GROUP/hpx/issues/356
6586 https://github.com/STEllAR-GROUP/hpx/issues/359
6587 https://github.com/STEllAR-GROUP/hpx/issues/361
6588 https://github.com/STEllAR-GROUP/hpx/issues/364

1840 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/323
https://github.com/STEllAR-GROUP/hpx/issues/324
https://github.com/STEllAR-GROUP/hpx/issues/326
https://github.com/STEllAR-GROUP/hpx/issues/329
https://github.com/STEllAR-GROUP/hpx/issues/330
https://github.com/STEllAR-GROUP/hpx/issues/337
https://github.com/STEllAR-GROUP/hpx/issues/338
https://github.com/STEllAR-GROUP/hpx/issues/339
https://github.com/STEllAR-GROUP/hpx/issues/343
https://github.com/STEllAR-GROUP/hpx/issues/351
https://github.com/STEllAR-GROUP/hpx/issues/353
https://github.com/STEllAR-GROUP/hpx/issues/355
https://github.com/STEllAR-GROUP/hpx/issues/356
https://github.com/STEllAR-GROUP/hpx/issues/359
https://github.com/STEllAR-GROUP/hpx/issues/361
https://github.com/STEllAR-GROUP/hpx/issues/364

HPX Documentation, master

General changes

• Completely removed code related to deprecated AGAS V1, started to work on AGAS V2.1.

• Started to clean up and streamline the exposed APIs (see ‘API changes’ below for more details).

• Revamped and unified performance counter framework, added a lot of new performance counter instances for
monitoring of a diverse set of internal HPX parameters (queue lengths, access statistics, etc.).

• Improved general error handling and logging support.

• Fixed several race conditions, improved overall stability, decreased memory footprint, improved overall perfor-
mance (major optimizations include native TLS support and ranged-based AGAS caching).

• Added support for running HPX applications with PBS.

• Many updates to the build system, added support for gcc 4.5.x and 4.6.x, added C++11 support.

• Many updates to default command line options.

• Added many tests, set up buildbot for continuous integration testing.

• Better shutdown handling of distributed applications.

Example applications

• quickstart/factorial and quickstart/fibonacci, future-recursive parallel algorithms.

• quickstart/hello_world, distributed hello world example.

• quickstart/rma, simple remote memory access example

• quickstart/quicksort, parallel quicksort implementation.

• gtc, gyrokinetic torodial code.

• bfs, breadth-first-search, example code for a graph application.

• sheneos, partitioning of large data sets.

• accumulator, simple component example.

• balancing/os_thread_num, balancing/px_thread_phase, examples demonstrating load balancing and work steal-
ing.

API changes

• Added hpx::find_all_localities.

• Added hpx::terminate for non-graceful termination of applications.

• Added hpx::lcos::async functions for simpler asynchronous programming.

• Added new AGAS interface for handling of symbolic namespace (hpx::agas::*).

• Renamed hpx::components::wait to hpx::lcos::wait.

• Renamed hpx::lcos::future_value to hpx::lcos::promise.

• Renamed hpx::lcos::recursive_mutex to hpx::lcos::local_recursive_mutex, hpx::lcos::mutex
to hpx::lcos::local_mutex

• Removed support for Boost versions older than V1.38, recommended Boost version is now V1.47 and newer.

2.10. Releases 1841

HPX Documentation, master

• Removed hpx::process (this will be replaced by a real process implementation in the future).

• Removed non-functional LCO code (hpx::lcos::dataflow, hpx::lcos::thunk,
hpx::lcos::dataflow_variable).

• Removed deprecated hpx::naming::full_address.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release:

• Issue #286589 - Integrate Windows/Linux CMake code for HPX core

• Issue #326590 - hpx::cout() should be hpx::cout

• Issue #336591 - AGAS V2 legacy client does not properly handle error_code

• Issue #606592 - AGAS: allow for registerid to optionally take ownership of the gid

• Issue #626593 - adaptive1d compilation failure in Fusion

• Issue #646594 - Parcel subsystem doesn’t resolve domain names

• Issue #836595 - No error handling if no console is available

• Issue #846596 - No error handling if a hosted locality is treated as the bootstrap server

• Issue #906597 - Add general commandline option -N

• Issue #916598 - Add possibility to read command line arguments from file

• Issue #926599 - Always log exceptions/errors to the log file

• Issue #936600 - Log the command line/program name

• Issue #956601 - Support for distributed launches

• Issue #976602 - Attempt to create a bad component type in AMR examples

• Issue #1006603 - factorial and factorial_get examples trigger AGAS component type assertions

• Issue #1016604 - Segfault when hpx::process::here() is called in fibonacci2

• Issue #1026605 - unknown_component_address in int_object_semaphore_client

• Issue #1146606 - marduk raises assertion with default parameters
6589 https://github.com/STEllAR-GROUP/hpx/issues/28
6590 https://github.com/STEllAR-GROUP/hpx/issues/32
6591 https://github.com/STEllAR-GROUP/hpx/issues/33
6592 https://github.com/STEllAR-GROUP/hpx/issues/60
6593 https://github.com/STEllAR-GROUP/hpx/issues/62
6594 https://github.com/STEllAR-GROUP/hpx/issues/64
6595 https://github.com/STEllAR-GROUP/hpx/issues/83
6596 https://github.com/STEllAR-GROUP/hpx/issues/84
6597 https://github.com/STEllAR-GROUP/hpx/issues/90
6598 https://github.com/STEllAR-GROUP/hpx/issues/91
6599 https://github.com/STEllAR-GROUP/hpx/issues/92
6600 https://github.com/STEllAR-GROUP/hpx/issues/93
6601 https://github.com/STEllAR-GROUP/hpx/issues/95
6602 https://github.com/STEllAR-GROUP/hpx/issues/97
6603 https://github.com/STEllAR-GROUP/hpx/issues/100
6604 https://github.com/STEllAR-GROUP/hpx/issues/101
6605 https://github.com/STEllAR-GROUP/hpx/issues/102
6606 https://github.com/STEllAR-GROUP/hpx/issues/114

1842 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/28
https://github.com/STEllAR-GROUP/hpx/issues/32
https://github.com/STEllAR-GROUP/hpx/issues/33
https://github.com/STEllAR-GROUP/hpx/issues/60
https://github.com/STEllAR-GROUP/hpx/issues/62
https://github.com/STEllAR-GROUP/hpx/issues/64
https://github.com/STEllAR-GROUP/hpx/issues/83
https://github.com/STEllAR-GROUP/hpx/issues/84
https://github.com/STEllAR-GROUP/hpx/issues/90
https://github.com/STEllAR-GROUP/hpx/issues/91
https://github.com/STEllAR-GROUP/hpx/issues/92
https://github.com/STEllAR-GROUP/hpx/issues/93
https://github.com/STEllAR-GROUP/hpx/issues/95
https://github.com/STEllAR-GROUP/hpx/issues/97
https://github.com/STEllAR-GROUP/hpx/issues/100
https://github.com/STEllAR-GROUP/hpx/issues/101
https://github.com/STEllAR-GROUP/hpx/issues/102
https://github.com/STEllAR-GROUP/hpx/issues/114

HPX Documentation, master

• Issue #1156607 - Logging messages for SMP runs (on the console) shouldn’t be buffered

• Issue #1196608 - marduk linking strategy breaks other applications

• Issue #1216609 - pbsdsh problem

• Issue #1236610 - marduk, dataflow and adaptive1d fail to build

• Issue #1246611 - Lower default preprocessing arity

• Issue #1256612 - Move hpx::detail::diagnostic_information out of the detail namespace

• Issue #1266613 - Test definitions for AGAS reference counting

• Issue #1286614 - Add averaging performance counter

• Issue #1296615 - Error with endian.hpp while building adaptive1d

• Issue #1306616 - Bad initialization of performance counters

• Issue #1316617 - Add global startup/shutdown functions to component modules

• Issue #1326618 - Avoid using auto_ptr

• Issue #1336619 - On Windows hpx.dll doesn’t get installed

• Issue #1346620 - HPX_LIBRARY does not reflect real library name (on Windows)

• Issue #1356621 - Add detection of unique_ptr to build system

• Issue #1376622 - Add command line option allowing to repeatedly evaluate performance counters

• Issue #1396623 - Logging is broken

• Issue #1406624 - CMake problem on windows

• Issue #1416625 - Move all non-component libraries into $PREFIX/lib/hpx

• Issue #1436626 - adaptive1d throws an exception with the default command line options

• Issue #1466627 - Early exception handling is broken

• Issue #1476628 - Sheneos doesn’t link on Linux

• Issue #1496629 - sheneos_test hangs
6607 https://github.com/STEllAR-GROUP/hpx/issues/115
6608 https://github.com/STEllAR-GROUP/hpx/issues/119
6609 https://github.com/STEllAR-GROUP/hpx/issues/121
6610 https://github.com/STEllAR-GROUP/hpx/issues/123
6611 https://github.com/STEllAR-GROUP/hpx/issues/124
6612 https://github.com/STEllAR-GROUP/hpx/issues/125
6613 https://github.com/STEllAR-GROUP/hpx/issues/126
6614 https://github.com/STEllAR-GROUP/hpx/issues/128
6615 https://github.com/STEllAR-GROUP/hpx/issues/129
6616 https://github.com/STEllAR-GROUP/hpx/issues/130
6617 https://github.com/STEllAR-GROUP/hpx/issues/131
6618 https://github.com/STEllAR-GROUP/hpx/issues/132
6619 https://github.com/STEllAR-GROUP/hpx/issues/133
6620 https://github.com/STEllAR-GROUP/hpx/issues/134
6621 https://github.com/STEllAR-GROUP/hpx/issues/135
6622 https://github.com/STEllAR-GROUP/hpx/issues/137
6623 https://github.com/STEllAR-GROUP/hpx/issues/139
6624 https://github.com/STEllAR-GROUP/hpx/issues/140
6625 https://github.com/STEllAR-GROUP/hpx/issues/141
6626 https://github.com/STEllAR-GROUP/hpx/issues/143
6627 https://github.com/STEllAR-GROUP/hpx/issues/146
6628 https://github.com/STEllAR-GROUP/hpx/issues/147
6629 https://github.com/STEllAR-GROUP/hpx/issues/149

2.10. Releases 1843

https://github.com/STEllAR-GROUP/hpx/issues/115
https://github.com/STEllAR-GROUP/hpx/issues/119
https://github.com/STEllAR-GROUP/hpx/issues/121
https://github.com/STEllAR-GROUP/hpx/issues/123
https://github.com/STEllAR-GROUP/hpx/issues/124
https://github.com/STEllAR-GROUP/hpx/issues/125
https://github.com/STEllAR-GROUP/hpx/issues/126
https://github.com/STEllAR-GROUP/hpx/issues/128
https://github.com/STEllAR-GROUP/hpx/issues/129
https://github.com/STEllAR-GROUP/hpx/issues/130
https://github.com/STEllAR-GROUP/hpx/issues/131
https://github.com/STEllAR-GROUP/hpx/issues/132
https://github.com/STEllAR-GROUP/hpx/issues/133
https://github.com/STEllAR-GROUP/hpx/issues/134
https://github.com/STEllAR-GROUP/hpx/issues/135
https://github.com/STEllAR-GROUP/hpx/issues/137
https://github.com/STEllAR-GROUP/hpx/issues/139
https://github.com/STEllAR-GROUP/hpx/issues/140
https://github.com/STEllAR-GROUP/hpx/issues/141
https://github.com/STEllAR-GROUP/hpx/issues/143
https://github.com/STEllAR-GROUP/hpx/issues/146
https://github.com/STEllAR-GROUP/hpx/issues/147
https://github.com/STEllAR-GROUP/hpx/issues/149

HPX Documentation, master

• Issue #1546630 - Compilation fails for r5661

• Issue #1556631 - Sine performance counters example chokes on chrono headers

• Issue #1566632 - Add build type to –version

• Issue #1576633 - Extend AGAS caching to store gid ranges

• Issue #1586634 - r5691 doesn’t compile

• Issue #1606635 - Re-add AGAS function for resolving a locality to its prefix

• Issue #1686636 - Managed components should be able to access their own GID

• Issue #1696637 - Rewrite AGAS future pool

• Issue #1796638 - Complete switch to request class for AGAS server interface

• Issue #1826639 - Sine performance counter is loaded by other examples

• Issue #1856640 - Write tests for symbol namespace reference counting

• Issue #1916641 - Assignment of read-only variable in point_geometry

• Issue #2006642 - Seg faults when querying performance counters

• Issue #2046643 - –ifnames and suffix stripping needs to be more generic

• Issue #2056644 - –list-* and –print-counter-* options do not work together and produce no warning

• Issue #2076645 - Implement decrement entry merging

• Issue #2086646 - Replace the spinlocks in AGAS with hpx::lcos::local_mutexes

• Issue #2106647 - Add an –ifprefix option

• Issue #2146648 - Performance test for PX-thread creation

• Issue #2166649 - VS2010 compilation

• Issue #2226650 - r6045 context_linux_x86.hpp

• Issue #2236651 - fibonacci hangs when changing the state of an active thread

• Issue #2256652 - Active threads end up in the FEB wait queue
6630 https://github.com/STEllAR-GROUP/hpx/issues/154
6631 https://github.com/STEllAR-GROUP/hpx/issues/155
6632 https://github.com/STEllAR-GROUP/hpx/issues/156
6633 https://github.com/STEllAR-GROUP/hpx/issues/157
6634 https://github.com/STEllAR-GROUP/hpx/issues/158
6635 https://github.com/STEllAR-GROUP/hpx/issues/160
6636 https://github.com/STEllAR-GROUP/hpx/issues/168
6637 https://github.com/STEllAR-GROUP/hpx/issues/169
6638 https://github.com/STEllAR-GROUP/hpx/issues/179
6639 https://github.com/STEllAR-GROUP/hpx/issues/182
6640 https://github.com/STEllAR-GROUP/hpx/issues/185
6641 https://github.com/STEllAR-GROUP/hpx/issues/191
6642 https://github.com/STEllAR-GROUP/hpx/issues/200
6643 https://github.com/STEllAR-GROUP/hpx/issues/204
6644 https://github.com/STEllAR-GROUP/hpx/issues/205
6645 https://github.com/STEllAR-GROUP/hpx/issues/207
6646 https://github.com/STEllAR-GROUP/hpx/issues/208
6647 https://github.com/STEllAR-GROUP/hpx/issues/210
6648 https://github.com/STEllAR-GROUP/hpx/issues/214
6649 https://github.com/STEllAR-GROUP/hpx/issues/216
6650 https://github.com/STEllAR-GROUP/hpx/issues/222
6651 https://github.com/STEllAR-GROUP/hpx/issues/223
6652 https://github.com/STEllAR-GROUP/hpx/issues/225

1844 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/154
https://github.com/STEllAR-GROUP/hpx/issues/155
https://github.com/STEllAR-GROUP/hpx/issues/156
https://github.com/STEllAR-GROUP/hpx/issues/157
https://github.com/STEllAR-GROUP/hpx/issues/158
https://github.com/STEllAR-GROUP/hpx/issues/160
https://github.com/STEllAR-GROUP/hpx/issues/168
https://github.com/STEllAR-GROUP/hpx/issues/169
https://github.com/STEllAR-GROUP/hpx/issues/179
https://github.com/STEllAR-GROUP/hpx/issues/182
https://github.com/STEllAR-GROUP/hpx/issues/185
https://github.com/STEllAR-GROUP/hpx/issues/191
https://github.com/STEllAR-GROUP/hpx/issues/200
https://github.com/STEllAR-GROUP/hpx/issues/204
https://github.com/STEllAR-GROUP/hpx/issues/205
https://github.com/STEllAR-GROUP/hpx/issues/207
https://github.com/STEllAR-GROUP/hpx/issues/208
https://github.com/STEllAR-GROUP/hpx/issues/210
https://github.com/STEllAR-GROUP/hpx/issues/214
https://github.com/STEllAR-GROUP/hpx/issues/216
https://github.com/STEllAR-GROUP/hpx/issues/222
https://github.com/STEllAR-GROUP/hpx/issues/223
https://github.com/STEllAR-GROUP/hpx/issues/225

HPX Documentation, master

• Issue #2266653 - VS Build Error for Accumulator Client

• Issue #2286654 - Move all traits into namespace hpx::traits

• Issue #2296655 - Invalid initialization of reference in thread_init_data

• Issue #2356656 - Invalid GID in iostreams

• Issue #2386657 - Demangle type names for the default implementation of get_action_name

• Issue #2416658 - C++11 support breaks GCC 4.5

• Issue #2476659 - Reference to temporary with GCC 4.4

• Issue #2486660 - Seg fault at shutdown with GCC 4.4

• Issue #2536661 - Default component action registration kills compiler

• Issue #2726662 - G++ unrecognized command line option

• Issue #2736663 - quicksort example doesn’t compile

• Issue #2776664 - Invalid CMake logic for Windows

2.10.3 Namespace changes

HPX V1.9.0 Namespace changes

The latest release includes amongst others changes in the namespaces so that HPX facilities correspond to the C++
Standard Library. The old namespaces are deprecated. Below is a comprehensive list of the namespace changes.

Table 2.187: Namespace changes in V1.9.0
Old namespace New namespace
hpx::util::mem_fn hpx::mem_fn
hpx::util::invoke hpx::invoke
hpx::util::invoke_r hpx::invoke_r
hpx::util::invoke_fused hpx::invoke_fused
hpx::util::invoke_fused_r hpx::invoke_fused_r
hpx::util::unlock_guard hpx::unlock_guard
hpx::parallel::v1::reduce_by_key hpx::experimental::reduce_by_key
hpx::parallel::v1::sort_by_key hpx::experimental::sort_by_key
hpx::parallel::task_canceled_exception hpx::experimental::task_canceled_exception
hpx::parallel::task_block hpx::experimental::task_block
hpx::parallel::define_task_block hpx::experimental::define_task_block |
hpx::parallel::define_task_block_restore_threadhpx::experimental::define_task_block_restore_thread
hpx::execution::experimental::task_group hpx::experimental::task_group

6653 https://github.com/STEllAR-GROUP/hpx/issues/226
6654 https://github.com/STEllAR-GROUP/hpx/issues/228
6655 https://github.com/STEllAR-GROUP/hpx/issues/229
6656 https://github.com/STEllAR-GROUP/hpx/issues/235
6657 https://github.com/STEllAR-GROUP/hpx/issues/238
6658 https://github.com/STEllAR-GROUP/hpx/issues/241
6659 https://github.com/STEllAR-GROUP/hpx/issues/247
6660 https://github.com/STEllAR-GROUP/hpx/issues/248
6661 https://github.com/STEllAR-GROUP/hpx/issues/253
6662 https://github.com/STEllAR-GROUP/hpx/issues/272
6663 https://github.com/STEllAR-GROUP/hpx/issues/273
6664 https://github.com/STEllAR-GROUP/hpx/issues/277

2.10. Releases 1845

https://github.com/STEllAR-GROUP/hpx/issues/226
https://github.com/STEllAR-GROUP/hpx/issues/228
https://github.com/STEllAR-GROUP/hpx/issues/229
https://github.com/STEllAR-GROUP/hpx/issues/235
https://github.com/STEllAR-GROUP/hpx/issues/238
https://github.com/STEllAR-GROUP/hpx/issues/241
https://github.com/STEllAR-GROUP/hpx/issues/247
https://github.com/STEllAR-GROUP/hpx/issues/248
https://github.com/STEllAR-GROUP/hpx/issues/253
https://github.com/STEllAR-GROUP/hpx/issues/272
https://github.com/STEllAR-GROUP/hpx/issues/273
https://github.com/STEllAR-GROUP/hpx/issues/277

HPX Documentation, master

2.11 Citing HPX

Please cite HPX whenever you use it for publications. Use our paper in The Journal of Open Source Software as the
main citation for HPX: 6665. Use the Zenodo entry for referring to the latest version of HPX: 6666. Entries for citing
specific versions of HPX can also be found at 6667.

2.12 HPX users

A list of institutions and projects using HPX can be found on the HPX Users6668 page.

2.13 About HPX

2.13.1 History

The development of High Performance ParalleX (HPX) began in 2007. At that time, Hartmut Kaiser became interested
in the work done by the ParalleX group at the Center for Computation and Technology (CCT)6669, a multi-disciplinary
research institute at Louisiana State University (LSU)6670. The ParalleX group was working to develop a new and ex-
perimental execution model for future high performance computing architectures. This model was christened ParalleX.
The first implementations of ParalleX were crude, and many of those designs had to be discarded entirely. However,
over time the team learned quite a bit about how to design a parallel, distributed runtime system which implements the
concepts of ParalleX.

From the very beginning, this endeavour has been a group effort. In addition to a handful of interested researchers, there
have always been graduate and undergraduate students participating in the discussions, design, and implementation of
HPX. In 2011 we decided to formalize our collective research efforts by creating the STE||AR6671 group (Systems
Technology, Emergent Parallelism, and Algorithm Research). Over time, the team grew to include researchers around
the country and the world. In 2014, the STE||AR6672 Group was reorganized to become the international community
it is today. This consortium of researchers aims to develop stable, sustainable, and scalable tools which will enable
application developers to exploit the parallelism latent in the machines of today and tomorrow. Our goal of the HPX
project is to create a high quality, freely available, open source implementation of ParalleX concepts for conventional
and future systems by building a modular and standards conforming runtime system for SMP and distributed application
environments. The API exposed by HPX is conformant to the interfaces defined by the C++ ISO Standard and adheres
to the programming guidelines used by the Boost6673 collection of C++ libraries. We steer the development of HPX
with real world applications and aim to provide a smooth migration path for domain scientists.

To learn more about STE||AR6674 and ParalleX, see People and Why HPX?.
6665 https://joss.theoj.org/papers/022e5917b95517dff20cd3742ab95eca
6666 https://doi.org/10.5281/zenodo.598202
6667 https://doi.org/10.5281/zenodo.598202
6668 https://hpx.stellar-group.org/hpx-users/
6669 https://www.cct.lsu.edu
6670 https://www.lsu.edu
6671 https://stellar-group.org
6672 https://stellar-group.org
6673 https://www.boost.org/
6674 https://stellar-group.org

1846 Chapter 2. What’s so special about HPX?

https://joss.theoj.org/papers/022e5917b95517dff20cd3742ab95eca
https://doi.org/10.5281/zenodo.598202
https://doi.org/10.5281/zenodo.598202
https://hpx.stellar-group.org/hpx-users/
https://www.cct.lsu.edu
https://www.lsu.edu
https://stellar-group.org
https://stellar-group.org
https://www.boost.org/
https://stellar-group.org

HPX Documentation, master

2.13.2 People

The STE||AR6675 Group (pronounced as stellar) stands for “Systems Technology, Emergent Parallelism, and Algorithm
Research”. We are an international group of faculty, researchers, and students working at various institutions around the
world. The goal of the STE||AR6676 Group is to promote the development of scalable parallel applications by providing
a community for ideas, a framework for collaboration, and a platform for communicating these concepts to the broader
community.

Our work is focused on building technologies for scalable parallel applications. HPX, our general purpose C++ runtime
system for parallel and distributed applications, is no exception. We use HPX for a broad range of scientific applications,
helping scientists and developers to write code which scales better and shows better performance compared to more
conventional programming models such as MPI.

HPX is based on ParalleX which is a new (and still experimental) parallel execution model aiming to overcome the
limitations imposed by the current hardware and the techniques we use to write applications today. Our group focuses
on two types of applications - those requiring excellent strong scaling, allowing for a dramatic reduction of execution
time for fixed workloads and those needing highest level of sustained performance through massive parallelism. These
applications are presently unable (through conventional practices) to effectively exploit a relatively small number of
cores in a multi-core system. By extension, these application will not be able to exploit high-end exascale computing
systems which are likely to employ hundreds of millions of such cores by the end of this decade.

Critical bottlenecks to the effective use of new generation high performance computing (HPC) systems include:

• Starvation: due to lack of usable application parallelism and means of managing it,

• Overhead: reduction to permit strong scalability, improve efficiency, and enable dynamic resource management,

• Latency: from remote access across system or to local memories,

• Contention: due to multicore chip I/O pins, memory banks, and system interconnects.

The ParalleX model has been devised to address these challenges by enabling a new computing dynamic through the
application of message-driven computation in a global address space context with lightweight synchronization. The
work on HPX is centered around implementing the concepts as defined by the ParalleX model. HPX is currently
targeted at conventional machines, such as classical Linux based Beowulf clusters and SMP nodes.

We fully understand that the success of HPX (and ParalleX) is very much the result of the work of many people. To
see a list of who is contributing see our tables below.

6675 https://stellar-group.org
6676 https://stellar-group.org

2.13. About HPX 1847

https://stellar-group.org
https://stellar-group.org

HPX Documentation, master

HPX contributors

Table 2.188: Contributors
Name Institution Email

Hartmut
Kaiser

Center for Computation and Technology (CCT)6677, Louisiana State
University (LSU)6678

Thomas
Heller

Department of Computer Science 3 - Computer Architecture6679,
Friedrich-Alexander University Erlangen-Nuremberg (FAU)6680

Agustin
Berge

Mikael Sim-
berg

Swiss National Supercomputing Centre6681

John Biddis-
combe

Swiss National Supercomputing Centre6682

Anton Biki-
neev

Center for Computation and Technology (CCT)6683, Louisiana State
University (LSU)6684

Martin
Stumpf

Department of Computer Science 3 - Computer Architecture6685,
Friedrich-Alexander University Erlangen-Nuremberg (FAU)6686

Bryce Adel-
stein Lelbach

Shuangyang
Yang

Center for Computation and Technology (CCT)6687, Louisiana State
University (LSU)6688

Jeroen
Habraken

Steven
Brandt

Center for Computation and Technology (CCT)6689, Louisiana State
University (LSU)6690

Antoine Tran
Tan

Paris-Saclay University6691,

Adrian S.
Lemoine

AMD6692

Maciej
Brodowicz
Giannis Go-
nidelis

Center for Computation and Technology (CCT)6693, Louisiana State
University (LSU)6694

6677 https://www.cct.lsu.edu
6678 https://www.lsu.edu
6679 https://www3.cs.fau.de
6680 https://www.fau.de
6681 https://www.cscs.ch
6682 https://www.cscs.ch
6683 https://www.cct.lsu.edu
6684 https://www.lsu.edu
6685 https://www3.cs.fau.de
6686 https://www.fau.de
6687 https://www.cct.lsu.edu
6688 https://www.lsu.edu
6689 https://www.cct.lsu.edu
6690 https://www.lsu.edu
6691 https://www.universite-paris-saclay.fr/en
6692 https://www.amd.com/en
6693 https://www.cct.lsu.edu
6694 https://www.lsu.edu

1848 Chapter 2. What’s so special about HPX?

https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www3.cs.fau.de
https://www.fau.de
https://www.cscs.ch
https://www.cscs.ch
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www3.cs.fau.de
https://www.fau.de
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.universite-paris-saclay.fr/en
https://www.amd.com/en
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu

HPX Documentation, master

Contributors to this document

Table 2.189: Documentation authors
Name Institution Email

Hartmut
Kaiser

Center for Computation and Technology (CCT)6695, Louisiana
State University (LSU)6696

Thomas
Heller

Department of Computer Science 3 - Computer Architecture6697,
Friedrich-Alexander University Erlangen-Nuremberg (FAU)6698

Bryce
Adelstein
Lelbach

Vinay C
Amatya

Center for Computation and Technology (CCT)6699, Louisiana
State University (LSU)6700

Steven
Brandt

Center for Computation and Technology (CCT)6701, Louisiana
State University (LSU)6702

Maciej
Brodowicz
Adrian S.
Lemoine

AMD6703

Rebecca
Stobaugh
Dimitra
Karatza

Faculty of Electrical Engineering, Mathematics & Computer Sci-
ence6704, Delft University of Technology6705

Bhumit At-
tarde

Acknowledgements

Thanks also to the following people who contributed directly or indirectly to the project through discussions, pull
requests, documentation patches, etc.

• Panos Syskakis for benchmarking and optimizing our parallel algorithms.

• Shreyas Atre, for contributing fixes to our implementation of senders/receivers and extending our coroutines
integration with senders/receivers.

• Alexander Neumann, for contributing fixes to the cmake build system.

• Dimitra Karatza, for her work on refactoring the documentation and providing a new user-friendly environment
during and after Google Season of Docs 2021.

6695 https://www.cct.lsu.edu
6696 https://www.lsu.edu
6697 https://www3.cs.fau.de
6698 https://www.fau.de
6699 https://www.cct.lsu.edu
6700 https://www.lsu.edu
6701 https://www.cct.lsu.edu
6702 https://www.lsu.edu
6703 https://www.amd.com/en
6704 https://www.tudelft.nl/en/eemcs
6705 https://www.tudelft.nl/en/

2.13. About HPX 1849

https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www3.cs.fau.de
https://www.fau.de
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.amd.com/en
https://www.tudelft.nl/en/eemcs
https://www.tudelft.nl/en/eemcs
https://www.tudelft.nl/en/

HPX Documentation, master

• Srinivas Yadav, for his work on SIMD support in algorithms before and during Google Summer of Code 2021.

• Akhil Nair, for his work on adapting algorithms to C++20 before and during Google Summer of Code 2021.

• Alexander Toktarev, for updating the parallel algorithm customization points to use tag_fallback_invoke for
the default implementations.

• Brice Goglin, for reporting and helping fix issues related to the integration of hwloc in HPX.

• Giannis Gonidelis, for his work on the ranges adaptation during the Google Summer of Code 2020.

• Auriane Reverdell (Swiss National Supercomputing Centre6706), for her tireless work on refactoring our CMake
setup and modularizing HPX.

• Christopher Hinz, for his work on refactoring our CMake setup.

• Weile Wei, for fixing HPX builds with CUDA on Summit.

• Severin Strobl, for fixing our CMake setup related to linking and adding new entry points to the HPX runtime.

• Rebecca Stobaugh, for her major documentation review and contributions during and after the 2019 Google
Season of Documentation.

• Jan Melech, for adding automatic serialization of simple structs.

• Austin McCartney, for adding concept emulation of the Ranges TS bidirectional and random access iterator
concepts.

• Marco Diers, reporting and fixing issues related PMIx.

• Maximilian Bremer, for reporting multiple issues and extending the component migration tests.

• Piotr Mikolajczyk, for his improvements and fixes to the set and count algorithms.

• Grant Rostig, for reporting several deficiencies on our web pages.

• Jakub Golinowski, for implementing an HPX backend for OpenCV and in the process improving documentation
and reporting issues.

• Mikael Simberg (Swiss National Supercomputing Centre6707), for his tireless help cleaning up and maintaining
HPX.

• Tianyi Zhang, for his work on HPXMP.

• Shahrzad Shirzad, for her contributions related to Phylanx.

• Christopher Ogle, for his contributions to the parallel algorithms.

• Surya Priy, for his work with statistic performance counters.

• Anushi Maheshwari, for her work on random number generation.

• Bruno Pitrus, for his work with parallel algorithms.

• Nikunj Gupta, for rewriting the implementation of hpx_main.hpp and for his fixes for tests.

• Christopher Taylor, for his interest in HPX and the fixes he provided. Chris also contributed support for RISC-V
architectures.

• Shoshana Jakobovits, for her work on the resource partitioner.

• Denis Blank, who re-wrote our unwrapped function to accept plain values arbitrary containers, and properly deal
with nested futures.

• Ajai V. George, who implemented several of the parallel algorithms.
6706 https://www.cscs.ch
6707 https://www.cscs.ch

1850 Chapter 2. What’s so special about HPX?

https://www.cscs.ch
https://www.cscs.ch

HPX Documentation, master

• Taeguk Kwon, who worked on implementing parallel algorithms as well as adapting the parallel algorithms to
the Ranges TS.

• Zach Byerly (Louisiana State University (LSU)6708), who in his work developing applications on top of HPX
opened tickets and contributed to the HPX examples.

• Daniel Estermann, for his work porting HPX to the Raspberry Pi.

• Alireza Kheirkhahan (Louisiana State University (LSU)6709), who built and administered our local cluster as well
as his work in distributed IO.

• Abhimanyu Rawat, who worked on stack overflow detection.

• David Pfander, who improved signal handling in HPX, provided his optimization expertise, and worked on in-
corporating the Vc vectorization into HPX.

• Denis Demidov, who contributed his insights with VexCL.

• Khalid Hasanov, who contributed changes which allowed to run HPX on 64Bit power-pc architectures.

• Zahra Khatami (Louisiana State University (LSU)6710), who contributed the prefetching iterators and the persis-
tent auto chunking executor parameters implementation.

• Marcin Copik, who worked on implementing GPU support for C++AMP and HCC. He also worked on imple-
menting a HCC backend for HPX.Compute.

• Minh-Khanh Do, who contributed the implementation of several segmented algorithms.

• Bibek Wagle (Louisiana State University (LSU)6711), who worked on fixing and analyzing the performance of
the parcel coalescing plugin in HPX.

• Lukas Troska, who reported several problems and contributed various test cases allowing to reproduce the cor-
responding issues.

• Andreas Schaefer, who worked on integrating his library (LibGeoDecomp6712) with HPX. He reported various
problems and submitted several patches to fix issues allowing for a better integration with LibGeoDecomp6713.

• Satyaki Upadhyay, who contributed several examples to HPX.

• Brandon Cordes, who contributed several improvements to the inspect tool.

• Harris Brakmic, who contributed an extensive build system description for building HPX with Visual Studio.

• Parsa Amini (Louisiana State University (LSU)6714), who refactored and simplified the implementation of AGAS
in HPX and who works on its implementation and optimization.

• Luis Martinez de Bartolome who implemented a build system extension for HPX integrating it with the Conan6715

C/C++ package manager.

• Vinay C Amatya (Louisiana State University (LSU)6716), who contributed to the documentation and provided
some of the HPX examples.

• Kevin Huck and Nick Chaimov (University of Oregon6717), who contributed the integration of APEX (Autonomic
Performance Environment for eXascale) with HPX.

• Francisco Jose Tapia, who helped with implementing the parallel sort algorithm for HPX.
6708 https://www.lsu.edu
6709 https://www.lsu.edu
6710 https://www.lsu.edu
6711 https://www.lsu.edu
6712 https://www.libgeodecomp.org/
6713 https://www.libgeodecomp.org/
6714 https://www.lsu.edu
6715 https://www.conan.io/
6716 https://www.lsu.edu
6717 https://uoregon.edu/

2.13. About HPX 1851

https://www.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.libgeodecomp.org/
https://www.libgeodecomp.org/
https://www.lsu.edu
https://www.conan.io/
https://www.lsu.edu
https://uoregon.edu/

HPX Documentation, master

• Patrick Diehl, who worked on implementing CUDA support for our companion library targeting GPGPUs
(HPXCL6718).

• Eric Lemanissier contributed fixes to allow compilation using the MingW toolchain.

• Nidhi Makhijani who helped cleaning up some enum consistencies in HPX and contributed to the resource
manager used in the thread scheduling subsystem. She also worked on HPX in the context of the Google Summer
of Code 2015.

• Larry Xiao, Devang Bacharwar, Marcin Copik, and Konstantin Kronfeldner who worked on HPX in the context
of the Google Summer of Code program 2015.

• Daniel Bourgeois (Center for Computation and Technology (CCT)6719) who contributed to HPX the implemen-
tation of several parallel algorithms (as proposed by N43136720).

• Anuj Sharma and Christopher Bross (Department of Computer Science 3 - Computer Architecture6721), who
worked on HPX in the context of the Google Summer of Code6722 program 2014.

• Martin Stumpf (Department of Computer Science 3 - Computer Architecture6723), who rebuilt our contiguous
testing infrastructure (see the HPX Buildbot Website6724). Martin is also working on HPXCL6725 (mainly all
work related to OpenCL6726) and implementing an HPX backend for POCL6727, a portable computing language
solution based on OpenCL6728.

• Grant Mercer (University of Nevada, Las Vegas6729), who helped creating many of the parallel algorithms (as
proposed by N43136730).

• Damond Howard (Louisiana State University (LSU)6731), who works on HPXCL6732 (mainly all work related to
CUDA6733).

• Christoph Junghans (Los Alamos National Lab), who helped making our buildsystem more portable.

• Antoine Tran Tan (Laboratoire de Recherche en Informatique, Paris), who worked on integrating HPX as a
backend for NT26734. He also contributed an implementation of an API similar to Fortran co-arrays on top of
HPX.

• John Biddiscombe (Swiss National Supercomputing Centre6735), who helped with the BlueGene/Q port of HPX,
implemented the parallel sort algorithm, and made several other contributions.

• Erik Schnetter (Perimeter Institute for Theoretical Physics), who greatly helped to make HPX more robust by
submitting a large amount of problem reports, feature requests, and made several direct contributions.

• Mathias Gaunard (Metascale), who contributed several patches to reduce compile time warnings generated while
compiling HPX.

• Andreas Buhr, who helped with improving our documentation, especially by suggesting some fixes for inconsis-
tencies.

6718 https://github.com/STEllAR-GROUP/hpxcl/
6719 https://www.cct.lsu.edu
6720 http://wg21.link/n4313
6721 https://www3.cs.fau.de
6722 https://developers.google.com/open-source/soc/
6723 https://www3.cs.fau.de
6724 http://rostam.cct.lsu.edu/
6725 https://github.com/STEllAR-GROUP/hpxcl/
6726 https://www.khronos.org/opencl/
6727 https://portablecl.org/
6728 https://www.khronos.org/opencl/
6729 https://www.unlv.edu
6730 http://wg21.link/n4313
6731 https://www.lsu.edu
6732 https://github.com/STEllAR-GROUP/hpxcl/
6733 https://www.nvidia.com/object/cuda_home_new.html
6734 https://www.numscale.com/nt2/
6735 https://www.cscs.ch

1852 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpxcl/
https://www.cct.lsu.edu
http://wg21.link/n4313
https://www3.cs.fau.de
https://developers.google.com/open-source/soc/
https://www3.cs.fau.de
http://rostam.cct.lsu.edu/
https://github.com/STEllAR-GROUP/hpxcl/
https://www.khronos.org/opencl/
https://portablecl.org/
https://www.khronos.org/opencl/
https://www.unlv.edu
http://wg21.link/n4313
https://www.lsu.edu
https://github.com/STEllAR-GROUP/hpxcl/
https://www.nvidia.com/object/cuda_home_new.html
https://www.numscale.com/nt2/
https://www.cscs.ch

HPX Documentation, master

• Patricia Grubel (New Mexico State University6736), who contributed the description of the different HPX thread
scheduler policies and is working on the performance analysis of our thread scheduling subsystem.

• Lars Viklund, whose wit, passion for testing, and love of odd architectures has been an amazing contribution to
our team. He has also contributed platform specific patches for FreeBSD and MSVC12.

• Agustin Berge, who contributed patches fixing some very nasty hidden template meta-programming issues. He
rewrote large parts of the API elements ensuring strict conformance with the C++ ISO Standard.

• Anton Bikineev for contributing changes to make using boost::lexical_cast safer, he also contributed a
thread safety fix to the iostreams module. He also contributed a complete rewrite of the serialization infrastructure
replacing Boost.Serialization inside HPX.

• Pyry Jahkola, who contributed the Mac OS build system and build documentation on how to build HPX using
Clang and libc++.

• Mario Mulansky, who created an HPX backend for his Boost.Odeint library, and who submitted several test cases
allowing us to reproduce and fix problems in HPX.

• Rekha Raj, who contributed changes to the description of the Windows build instructions.

• Jeremy Kemp how worked on an HPX OpenMP backend and added regression tests.

• Alex Nagelberg for his work on implementing a C wrapper API for HPX.

• Chen Guo, helvihartmann, Nicholas Pezolano, and John West who added and improved examples in HPX.

• Joseph Kleinhenz, Markus Elfring, Kirill Kropivyansky, Alexander Neundorf, Bryant Lam, and Alex Hirsch
who improved our CMake.

• Tapasweni Pathak, Praveen Velliengiri, Jean-Loup Tastet, Michael Levine, Aalekh Nigam, HadrienG2, Prayag
Verma, lslada, Alex Myczko, and Avyav Kumar who improved the documentation.

• Jayesh Badwaik, J. F. Bastien, Christoph Garth, Christopher Hinz, Brandon Kohn, Mario Lang, Maikel Nadolski,
pierrele, hendrx, Dekken, woodmeister123, xaguilar, Andrew Kemp, Dylan Stark, Matthew Anderson, Jeremy
Wilke, Jiazheng Yuan, CyberDrudge, david8dixon, Maxwell Reeser, Raffaele Solca, Marco Ippolito, Jules Penu-
chot, Weile Wei, Severin Strobl, Kor de Jong, albestro, Jeff Trull, Yuri Victorovich, and Gregor Daiß who con-
tributed to the general improvement of HPX.

HPX Funding Acknowledgements6737 lists current and past funding sources for HPX. Special thanks to Google Summer
of Code6738 and Google Season of Docs6739 for the continuous support they provide which helps us enhance both our
code and our documentation.

6736 https://www.nmsu.edu
6737 https://hpx.stellar-group.org/funding-acknowledgements/
6738 https://developers.google.com/open-source/soc/
6739 https://developers.google.com/season-of-docs

2.13. About HPX 1853

https://www.nmsu.edu
https://hpx.stellar-group.org/funding-acknowledgements/
https://developers.google.com/open-source/soc/
https://developers.google.com/open-source/soc/
https://developers.google.com/season-of-docs

HPX Documentation, master

1854 Chapter 2. What’s so special about HPX?

CHAPTER

THREE

INDEX

• genindex

1855

HPX Documentation, master

1856 Chapter 3. Index

INDEX

Symbols
--hpx:affinity

command line option, 150
--hpx:agas

command line option, 149
--hpx:app-config

command line option, 151
--hpx:attach-debugger

command line option, 152
--hpx:bind

command line option, 150
--hpx:config

command line option, 151
--hpx:connect

command line option, 149
--hpx:console

command line option, 149
--hpx:cores

command line option, 150
--hpx:debug-agas-log

command line option, 151
--hpx:debug-app-log

command line option, 151
--hpx:debug-clp

command line option, 152
--hpx:debug-hpx-log

command line option, 151
--hpx:debug-parcel-log

command line option, 151
--hpx:debug-timing-log

command line option, 151
--hpx:dump-config

command line option, 151
--hpx:dump-config-initial

command line option, 151
--hpx:endnodes

command line option, 149
--hpx:exit

command line option, 151
--hpx:expect-connecting-localities

command line option, 150
--hpx:force_ipv4

command line option, 150
--hpx:help

command line option, 149
--hpx:high-priority-threads

command line option, 151
--hpx:hpx

command line option, 149
--hpx:ifprefix

command line option, 150
--hpx:ifsuffix

command line option, 149
--hpx:iftransform

command line option, 150
--hpx:ignore-batch-env

command line option, 150
--hpx:info

command line option, 149
--hpx:ini

command line option, 151, 271
--hpx:list-component-types

command line option, 151
--hpx:list-counter-infos

command line option, 152
--hpx:list-counters

command line option, 152
--hpx:list-symbolic-names

command line option, 151
--hpx:localities

command line option, 150
--hpx:no-csv-header

command line option, 152
--hpx:node

command line option, 150
--hpx:nodefile

command line option, 149
--hpx:nodes

command line option, 149
--hpx:numa-sensitive

command line option, 151
--hpx:options-file

command line option, 149
--hpx:print-bind

1857

HPX Documentation, master

command line option, 150
--hpx:print-counter

command line option, 152
--hpx:print-counter-at

command line option, 152
--hpx:print-counter-destination

command line option, 152
--hpx:print-counter-format

command line option, 152
--hpx:print-counter-interval

command line option, 152
--hpx:print-counter-reset

command line option, 152
--hpx:print-counters-locally

command line option, 152
--hpx:pu-offset

command line option, 150
--hpx:pu-step

command line option, 150
--hpx:queuing

command line option, 150
--hpx:reset-counters

command line option, 152
--hpx:run-agas-server

command line option, 149
--hpx:run-agas-server-only

command line option, 149
--hpx:run-hpx-main

command line option, 149
--hpx:threads

command line option, 150
--hpx:use-process-mask

command line option, 150
--hpx:version

command line option, 149
--hpx:worker

command line option, 149

A
Action, 285
Active Global Address Space, 284
AGAS, 284
Amplifier_ROOT:PATH

command line option, 68
applier (C++ type), 1508

B
Boost_ROOT:PATH

command line option, 67
Breathe_APIDOC_ROOT:PATH

command line option, 1548

C
command line option

--hpx:affinity, 150
--hpx:agas, 149
--hpx:app-config, 151
--hpx:attach-debugger, 152
--hpx:bind, 150
--hpx:config, 151
--hpx:connect, 149
--hpx:console, 149
--hpx:cores, 150
--hpx:debug-agas-log, 151
--hpx:debug-app-log, 151
--hpx:debug-clp, 152
--hpx:debug-hpx-log, 151
--hpx:debug-parcel-log, 151
--hpx:debug-timing-log, 151
--hpx:dump-config, 151
--hpx:dump-config-initial, 151
--hpx:endnodes, 149
--hpx:exit, 151
--hpx:expect-connecting-localities, 150
--hpx:force_ipv4, 150
--hpx:help, 149
--hpx:high-priority-threads, 151
--hpx:hpx, 149
--hpx:ifprefix, 150
--hpx:ifsuffix, 149
--hpx:iftransform, 150
--hpx:ignore-batch-env, 150
--hpx:info, 149
--hpx:ini, 151, 271
--hpx:list-component-types, 151
--hpx:list-counter-infos, 152
--hpx:list-counters, 152
--hpx:list-symbolic-names, 151
--hpx:localities, 150
--hpx:no-csv-header, 152
--hpx:node, 150
--hpx:nodefile, 149
--hpx:nodes, 149
--hpx:numa-sensitive, 151
--hpx:options-file, 149
--hpx:print-bind, 150
--hpx:print-counter, 152
--hpx:print-counter-at, 152
--hpx:print-counter-destination, 152
--hpx:print-counter-format, 152
--hpx:print-counter-interval, 152
--hpx:print-counter-reset, 152
--hpx:print-counters-locally, 152
--hpx:pu-offset, 150
--hpx:pu-step, 150
--hpx:queuing, 150
--hpx:reset-counters, 152
--hpx:run-agas-server, 149

1858 Index

HPX Documentation, master

--hpx:run-agas-server-only, 149
--hpx:run-hpx-main, 149
--hpx:threads, 150
--hpx:use-process-mask, 150
--hpx:version, 149
--hpx:worker, 149
Amplifier_ROOT:PATH, 68
Boost_ROOT:PATH, 67
Breathe_APIDOC_ROOT:PATH, 1548
Doxygen_ROOT:PATH, 1547
FETCHCONTENT_SOURCE_DIR_LCI, 270
Hdf5_ROOT:PATH, 68
HPX_ALLOCATOR_SUPPORT_WITH_CACHING:BOOL,

66
HPX_COMMAND_LINE_HANDLING_LOCAL_WITH_JSON_CONFIGURATION_FILES:BOOL,

66
HPX_COROUTINES_WITH_SWAP_CONTEXT_EMULATION:BOOL,

62
HPX_COROUTINES_WITH_THREAD_SCHEDULE_HINT_RUNS_AS_CHILD:BOOL,

62
HPX_DATASTRUCTURES_WITH_ADAPT_STD_TUPLE:BOOL,

67
HPX_DATASTRUCTURES_WITH_ADAPT_STD_VARIANT:BOOL,

67
HPX_FILESYSTEM_WITH_BOOST_FILESYSTEM_COMPATIBILITY:BOOL,

67
HPX_ITERATOR_SUPPORT_WITH_BOOST_ITERATOR_TRAVERSAL_TAG_COMPATIBILITY:BOOL,

67
HPX_LOGGING_WITH_SEPARATE_DESTINATIONS:BOOL,

67
HPX_SERIALIZATION_WITH_ALL_TYPES_ARE_BITWISE_SERIALIZABLE:BOOL,

67
HPX_SERIALIZATION_WITH_ALLOW_CONST_TUPLE_MEMBERS:BOOL,

67
HPX_SERIALIZATION_WITH_ALLOW_RAW_POINTER_SERIALIZATION:BOOL,

67
HPX_SERIALIZATION_WITH_BOOST_TYPES:BOOL,

67
HPX_SERIALIZATION_WITH_SUPPORTS_ENDIANESS:BOOL,

67
HPX_TOPOLOGY_WITH_ADDITIONAL_HWLOC_TESTING:BOOL,

67
HPX_WITH_AGAS_DUMP_REFCNT_ENTRIES:BOOL,

64
HPX_WITH_APEX, 48
HPX_WITH_APEX:BOOL, 65
HPX_WITH_ASIO_TAG:STRING, 60
HPX_WITH_ATTACH_DEBUGGER_ON_TEST_FAILURE:BOOL,

65
HPX_WITH_AUTOMATIC_SERIALIZATION_REGISTRATION:BOOL,

57
HPX_WITH_BENCHMARK_SCRIPTS_PATH:PATH, 57
HPX_WITH_BUILD_BINARY_PACKAGE:BOOL, 57
HPX_WITH_CHECK_MODULE_DEPENDENCIES:BOOL,

57
HPX_WITH_COMPILE_ONLY_TESTS:BOOL, 60
HPX_WITH_COMPILER_WARNINGS:BOOL, 57
HPX_WITH_COMPILER_WARNINGS_AS_ERRORS:BOOL,

57
HPX_WITH_COMPRESSION_BZIP2:BOOL, 57
HPX_WITH_COMPRESSION_SNAPPY:BOOL, 57
HPX_WITH_COMPRESSION_ZLIB:BOOL, 57
HPX_WITH_COROUTINE_COUNTERS:BOOL, 62
HPX_WITH_CUDA, 48
HPX_WITH_CUDA:BOOL, 57
HPX_WITH_CXX_STANDARD, 48
HPX_WITH_CXX_STANDARD:STRING, 57
HPX_WITH_DATAPAR:BOOL, 57
HPX_WITH_DATAPAR_BACKEND:STRING, 57
HPX_WITH_DATAPAR_VC_NO_LIBRARY:BOOL, 57
HPX_WITH_DEPRECATION_WARNINGS:BOOL, 57
HPX_WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS:BOOL,

57
HPX_WITH_DISTRIBUTED_RUNTIME:BOOL, 60
HPX_WITH_DOCUMENTATION:BOOL, 60
HPX_WITH_DOCUMENTATION_OUTPUT_FORMATS:STRING,

60
HPX_WITH_DYNAMIC_HPX_MAIN:BOOL, 58
HPX_WITH_EXAMPLES, 49
HPX_WITH_EXAMPLES:BOOL, 60
HPX_WITH_EXAMPLES_HDF5:BOOL, 60
HPX_WITH_EXAMPLES_OPENMP:BOOL, 60
HPX_WITH_EXAMPLES_QT4:BOOL, 60
HPX_WITH_EXAMPLES_QTHREADS:BOOL, 60
HPX_WITH_EXAMPLES_TBB:BOOL, 60
HPX_WITH_EXECUTABLE_PREFIX:STRING, 60
HPX_WITH_FAIL_COMPILE_TESTS:BOOL, 60
HPX_WITH_FAULT_TOLERANCE:BOOL, 58
HPX_WITH_FETCH_APEX:BOOL, 60
HPX_WITH_FETCH_ASIO:BOOL, 61
HPX_WITH_FETCH_BOOST:BOOL, 61
HPX_WITH_FETCH_GASNET:BOOL, 61
HPX_WITH_FETCH_HWLOC:BOOL, 61
HPX_WITH_FETCH_LCI, 270
HPX_WITH_FETCH_LCI:BOOL, 61
HPX_WITH_FULL_RPATH:BOOL, 58
HPX_WITH_GCC_VERSION_CHECK:BOOL, 58
HPX_WITH_GENERIC_CONTEXT_COROUTINES, 48
HPX_WITH_GENERIC_CONTEXT_COROUTINES:BOOL,

58
HPX_WITH_HIDDEN_VISIBILITY:BOOL, 58
HPX_WITH_HIP:BOOL, 58
HPX_WITH_HIPSYCL:BOOL, 58
HPX_WITH_IGNORE_COMPILER_COMPATIBILITY:BOOL,

58
HPX_WITH_IO_COUNTERS:BOOL, 61
HPX_WITH_IO_POOL:BOOL, 62
HPX_WITH_ITTNOTIFY:BOOL, 65

Index 1859

HPX Documentation, master

HPX_WITH_LCI_TAG, 270
HPX_WITH_LCI_TAG:STRING, 61
HPX_WITH_LOGGING:BOOL, 58
HPX_WITH_MALLOC, 48
HPX_WITH_MALLOC:STRING, 58
HPX_WITH_MAX_CPU_COUNT, 48
HPX_WITH_MAX_CPU_COUNT:STRING, 62
HPX_WITH_MAX_NUMA_DOMAIN_COUNT:STRING, 62
HPX_WITH_MODULES_AS_STATIC_LIBRARIES:BOOL,

58
HPX_WITH_NANOBENCH:BOOL, 61
HPX_WITH_NETWORKING:BOOL, 64
HPX_WITH_NICE_THREADLEVEL:BOOL, 58
HPX_WITH_PAPI:BOOL, 65
HPX_WITH_PARALLEL_LINK_JOBS:STRING, 61
HPX_WITH_PARALLEL_TESTS_BIND_NONE:BOOL,

65
HPX_WITH_PARCEL_COALESCING:BOOL, 58
HPX_WITH_PARCEL_PROFILING:BOOL, 64
HPX_WITH_PARCELPORT_ACTION_COUNTERS:BOOL,

64
HPX_WITH_PARCELPORT_COUNTERS:BOOL, 64
HPX_WITH_PARCELPORT_GASNET:BOOL, 64
HPX_WITH_PARCELPORT_LCI, 48, 270
HPX_WITH_PARCELPORT_LCI:BOOL, 64
HPX_WITH_PARCELPORT_LCI_LOG:STRING, 64
HPX_WITH_PARCELPORT_LCI_PCOUNTER:STRING,

64
HPX_WITH_PARCELPORT_LIBFABRIC:BOOL, 64
HPX_WITH_PARCELPORT_MPI, 48
HPX_WITH_PARCELPORT_MPI:BOOL, 64
HPX_WITH_PARCELPORT_TCP, 48
HPX_WITH_PARCELPORT_TCP:BOOL, 64
HPX_WITH_PKGCONFIG:BOOL, 58
HPX_WITH_POWER_COUNTER:BOOL, 67
HPX_WITH_PRECOMPILED_HEADERS:BOOL, 58
HPX_WITH_RUN_MAIN_EVERYWHERE:BOOL, 58
HPX_WITH_SANITIZERS:BOOL, 65
HPX_WITH_SCHEDULER_LOCAL_STORAGE:BOOL, 63
HPX_WITH_SPINLOCK_DEADLOCK_DETECTION:BOOL,

63
HPX_WITH_SPINLOCK_POOL_NUM:STRING, 63
HPX_WITH_STACKOVERFLOW_DETECTION:BOOL, 58
HPX_WITH_STACKTRACES:BOOL, 63
HPX_WITH_STACKTRACES_DEMANGLE_SYMBOLS:BOOL,

63
HPX_WITH_STACKTRACES_STATIC_SYMBOLS:BOOL,

63
HPX_WITH_STATIC_LINKING:BOOL, 58
HPX_WITH_SUPPORT_NO_UNIQUE_ADDRESS_ATTRIBUTE:BOOL,

59
HPX_WITH_SYCL:BOOL, 59
HPX_WITH_SYCL_FLAGS:STRING, 59
HPX_WITH_TESTS, 49

HPX_WITH_TESTS:BOOL, 61
HPX_WITH_TESTS_BENCHMARKS:BOOL, 61
HPX_WITH_TESTS_COMMAND_LINE:STRING, 65
HPX_WITH_TESTS_DEBUG_LOG:BOOL, 65
HPX_WITH_TESTS_DEBUG_LOG_DESTINATION:STRING,

66
HPX_WITH_TESTS_EXAMPLES:BOOL, 61
HPX_WITH_TESTS_EXTERNAL_BUILD:BOOL, 61
HPX_WITH_TESTS_HEADERS:BOOL, 61
HPX_WITH_TESTS_MAX_THREADS_PER_LOCALITY:STRING,

66
HPX_WITH_TESTS_REGRESSIONS:BOOL, 61
HPX_WITH_TESTS_UNIT:BOOL, 61
HPX_WITH_THREAD_BACKTRACE_DEPTH:STRING,

63
HPX_WITH_THREAD_BACKTRACE_ON_SUSPENSION:BOOL,

63
HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES:BOOL,

63
HPX_WITH_THREAD_CUMULATIVE_COUNTS:BOOL,

63
HPX_WITH_THREAD_DEBUG_INFO:BOOL, 66
HPX_WITH_THREAD_DESCRIPTION_FULL:BOOL, 66
HPX_WITH_THREAD_GUARD_PAGE:BOOL, 66
HPX_WITH_THREAD_IDLE_RATES:BOOL, 63
HPX_WITH_THREAD_LOCAL_STORAGE:BOOL, 63
HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF:BOOL,

63
HPX_WITH_THREAD_QUEUE_WAITTIME:BOOL, 63
HPX_WITH_THREAD_STACK_MMAP:BOOL, 63
HPX_WITH_THREAD_STEALING_COUNTS:BOOL, 63
HPX_WITH_THREAD_TARGET_ADDRESS:BOOL, 63
HPX_WITH_TIMER_POOL:BOOL, 63
HPX_WITH_TOOLS:BOOL, 61
HPX_WITH_UNITY_BUILD:BOOL, 59
HPX_WITH_VALGRIND:BOOL, 66
HPX_WITH_VERIFY_LOCKS:BOOL, 66
HPX_WITH_VERIFY_LOCKS_BACKTRACE:BOOL, 66
HPX_WITH_VIM_YCM:BOOL, 59
HPX_WITH_WORK_REQUESTING_SCHEDULERS:BOOL,

63
HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD:STRING,

59
Hwloc_ROOT:PATH, 68
Papi_ROOT:PATH, 68
Sphinx_ROOT:PATH, 1547

Component, 285
components (C++ type), 1496

D
Doxygen_ROOT:PATH

command line option, 1547

1860 Index

HPX Documentation, master

F
FETCHCONTENT_SOURCE_DIR_LCI

command line option, 270

H
Hdf5_ROOT:PATH

command line option, 68
hpx (C++ type), 347, 348, 353, 355, 359, 361, 365, 370,

373, 376, 378, 384, 389, 391, 403, 407, 417–
419, 421–427, 431, 433, 440, 443, 445, 448,
451, 454, 458, 464, 473, 474, 476, 478, 480,
487, 493, 495, 501, 504, 508, 515, 518, 521,
525, 528, 531, 534, 537, 538, 540, 542, 544,
546, 548, 550, 554, 557, 562, 569, 572, 574,
577, 580, 586, 589, 593, 598, 602, 611, 619,
625, 628, 632, 637, 642, 646, 666, 671, 681,
685, 690, 699, 706, 709, 716, 722, 727, 736,
747, 753, 756, 760, 764, 769, 782, 792, 799,
815, 821, 827, 837, 844, 850, 857, 864, 867,
870, 874, 877, 881, 885, 895, 902, 913, 927,
932, 936, 940, 945, 949, 957, 960–962, 964–
969, 972, 974, 976, 978, 980, 982, 984, 987,
989, 990, 997, 1002, 1004, 1006, 1007, 1009–
1011, 1013, 1017, 1019, 1022, 1029, 1038,
1046, 1050, 1053, 1060, 1063, 1068, 1069,
1071–1075, 1077, 1078, 1082–1085, 1087–
1090, 1097, 1100–1104, 1106, 1109–1111,
1113–1116, 1118, 1120–1123, 1125, 1127,
1128, 1130, 1132, 1134–1137, 1145, 1147,
1150, 1153, 1155–1157, 1162, 1165, 1168–
1173, 1179–1182, 1191, 1193–1195, 1197,
1198, 1201, 1202, 1205, 1206, 1220, 1225,
1226, 1230, 1236, 1237, 1239–1242, 1248,
1249, 1252, 1253, 1255, 1261, 1263, 1264,
1268, 1270, 1278, 1280, 1282, 1283, 1288,
1289, 1292–1294, 1296, 1303, 1305, 1306,
1308, 1309, 1312, 1313, 1329, 1335–1337,
1340, 1342–1344, 1347, 1348, 1350, 1351,
1356, 1364, 1365, 1368, 1370, 1373–1375,
1380, 1382, 1384, 1386, 1390, 1392, 1397,
1400, 1401, 1407, 1408, 1413, 1416–1418,
1422, 1425, 1428, 1429, 1431, 1434, 1435,
1437, 1439, 1441, 1443, 1446, 1448, 1450–
1452, 1455, 1458, 1459, 1463–1465, 1467,
1469, 1476, 1485, 1488, 1492, 1493, 1495–
1497, 1500, 1506, 1508, 1510–1512, 1514–
1517, 1520, 1522, 1528, 1531–1536, 1538,
1540, 1541

hpx::actions (C++ type), 1305, 1306, 1308, 1309,
1312

hpx::actions::basic_action (C++ struct), 1308
hpx::adjacent_difference (C++ function), 355–357
hpx::adjacent_find (C++ function), 359
hpx::agas (C++ type), 1313, 1329, 1425, 1520

hpx::agas::addressing_service (C++ struct),
1313

hpx::agas::addressing_service::~addressing_service
(C++ function), 1313

hpx::agas::addressing_service::action_priority_
(C++ member), 1327

hpx::agas::addressing_service::addressing_service
(C++ function), 1313

hpx::agas::addressing_service::adjust_local_cache_size
(C++ function), 1314

hpx::agas::addressing_service::begin_migration
(C++ function), 1326

hpx::agas::addressing_service::bind_async
(C++ function), 1318

hpx::agas::addressing_service::bind_local
(C++ function), 1318

hpx::agas::addressing_service::bind_postproc
(C++ function), 1328

hpx::agas::addressing_service::bind_range_async
(C++ function), 1319

hpx::agas::addressing_service::bind_range_local
(C++ function), 1318

hpx::agas::addressing_service::bootstrap
(C++ function), 1313

hpx::agas::addressing_service::caching_
(C++ member), 1327

hpx::agas::addressing_service::clear_cache
(C++ function), 1326

hpx::agas::addressing_service::component_id_type
(C++ type), 1313

hpx::agas::addressing_service::component_ns_
(C++ member), 1327

hpx::agas::addressing_service::console_cache_
(C++ member), 1327

hpx::agas::addressing_service::console_cache_mtx_
(C++ member), 1327

hpx::agas::addressing_service::decref (C++
function), 1323

hpx::agas::addressing_service::enable_refcnt_caching_
(C++ member), 1327

hpx::agas::addressing_service::end_migration
(C++ function), 1326

hpx::agas::addressing_service::garbage_collect
(C++ function), 1314

hpx::agas::addressing_service::garbage_collect_non_blocking
(C++ function), 1314

hpx::agas::addressing_service::get_cache_entries
(C++ function), 1314

hpx::agas::addressing_service::get_cache_entry
(C++ function), 1325

hpx::agas::addressing_service::get_cache_erase_entry_count
(C++ function), 1315

hpx::agas::addressing_service::get_cache_erase_entry_time
(C++ function), 1315

Index 1861

HPX Documentation, master

hpx::agas::addressing_service::get_cache_evictions
(C++ function), 1314

hpx::agas::addressing_service::get_cache_get_entry_count
(C++ function), 1314

hpx::agas::addressing_service::get_cache_get_entry_time
(C++ function), 1315

hpx::agas::addressing_service::get_cache_hits
(C++ function), 1314

hpx::agas::addressing_service::get_cache_insertion_entry_count
(C++ function), 1314

hpx::agas::addressing_service::get_cache_insertion_entry_time
(C++ function), 1315

hpx::agas::addressing_service::get_cache_insertions
(C++ function), 1314

hpx::agas::addressing_service::get_cache_misses
(C++ function), 1314

hpx::agas::addressing_service::get_cache_update_entry_count
(C++ function), 1314

hpx::agas::addressing_service::get_cache_update_entry_time
(C++ function), 1315

hpx::agas::addressing_service::get_colocation_id_async
(C++ function), 1322

hpx::agas::addressing_service::get_component_id
(C++ function), 1316

hpx::agas::addressing_service::get_component_type_name
(C++ function), 1317

hpx::agas::addressing_service::get_console_locality
(C++ function), 1315

hpx::agas::addressing_service::get_id_range
(C++ function), 1317

hpx::agas::addressing_service::get_local_component_namespace_service
(C++ function), 1314

hpx::agas::addressing_service::get_local_locality
(C++ function), 1314

hpx::agas::addressing_service::get_local_locality_namespace_service
(C++ function), 1314

hpx::agas::addressing_service::get_local_primary_namespace_service
(C++ function), 1314

hpx::agas::addressing_service::get_local_symbol_namespace_service
(C++ function), 1314

hpx::agas::addressing_service::get_localities
(C++ function), 1315, 1316

hpx::agas::addressing_service::get_num_localities
(C++ function), 1316

hpx::agas::addressing_service::get_num_localities_async
(C++ function), 1316

hpx::agas::addressing_service::get_num_overall_threads
(C++ function), 1316

hpx::agas::addressing_service::get_num_overall_threads_async
(C++ function), 1316

hpx::agas::addressing_service::get_num_threads
(C++ function), 1316

hpx::agas::addressing_service::get_num_threads_async
(C++ function), 1316

hpx::agas::addressing_service::get_primary_ns_lva
(C++ function), 1314

hpx::agas::addressing_service::get_runtime_support_lva
(C++ function), 1314

hpx::agas::addressing_service::get_status
(C++ function), 1314

hpx::agas::addressing_service::get_symbol_ns_lva
(C++ function), 1314

hpx::agas::addressing_service::gva_cache_
(C++ member), 1327

hpx::agas::addressing_service::gva_cache_mtx_
(C++ member), 1327

hpx::agas::addressing_service::gva_cache_type
(C++ type), 1313

hpx::agas::addressing_service::has_resolved_locality
(C++ function), 1315

hpx::agas::addressing_service::HPX_NON_COPYABLE
(C++ function), 1313

hpx::agas::addressing_service::incref (C++
function), 1323

hpx::agas::addressing_service::incref_async
(C++ function), 1323

hpx::agas::addressing_service::initialize
(C++ function), 1313

hpx::agas::addressing_service::is_bootstrap
(C++ function), 1314

hpx::agas::addressing_service::is_connecting
(C++ function), 1314

hpx::agas::addressing_service::is_console
(C++ function), 1314

hpx::agas::addressing_service::is_local_address_cached
(C++ function), 1321

hpx::agas::addressing_service::is_local_lva_encoded_address
(C++ function), 1322

hpx::agas::addressing_service::iterate_ids
(C++ function), 1323

hpx::agas::addressing_service::iterate_names_return_type
(C++ type), 1313

hpx::agas::addressing_service::iterate_types
(C++ function), 1317

hpx::agas::addressing_service::iterate_types_function_type
(C++ type), 1313

hpx::agas::addressing_service::launch_bootstrap
(C++ function), 1328

hpx::agas::addressing_service::locality_
(C++ member), 1328

hpx::agas::addressing_service::locality_ns_
(C++ member), 1327

hpx::agas::addressing_service::mark_as_migrated
(C++ function), 1326

hpx::agas::addressing_service::max_refcnt_requests_
(C++ member), 1327

hpx::agas::addressing_service::migrated_objects_mtx_
(C++ member), 1327

1862 Index

HPX Documentation, master

hpx::agas::addressing_service::migrated_objects_table_
(C++ member), 1327

hpx::agas::addressing_service::migrated_objects_table_type
(C++ type), 1313

hpx::agas::addressing_service::mutex_type
(C++ type), 1313

hpx::agas::addressing_service::on_symbol_namespace_event
(C++ function), 1325

hpx::agas::addressing_service::pre_cache_endpoints
(C++ function), 1326

hpx::agas::addressing_service::primary_ns_
(C++ member), 1327

hpx::agas::addressing_service::range_caching_
(C++ member), 1327

hpx::agas::addressing_service::refcnt_requests_
(C++ member), 1327

hpx::agas::addressing_service::refcnt_requests_count_
(C++ member), 1327

hpx::agas::addressing_service::refcnt_requests_mtx_
(C++ member), 1327

hpx::agas::addressing_service::refcnt_requests_type
(C++ type), 1313

hpx::agas::addressing_service::register_console
(C++ function), 1314

hpx::agas::addressing_service::register_factory
(C++ function), 1317

hpx::agas::addressing_service::register_locality
(C++ function), 1315

hpx::agas::addressing_service::register_name
(C++ function), 1324

hpx::agas::addressing_service::register_name_async
(C++ function), 1324

hpx::agas::addressing_service::register_server_instances
(C++ function), 1314

hpx::agas::addressing_service::remove_cache_entry
(C++ function), 1326

hpx::agas::addressing_service::remove_resolved_locality
(C++ function), 1315

hpx::agas::addressing_service::resolve_async
(C++ function), 1322

hpx::agas::addressing_service::resolve_cached
(C++ function), 1323

hpx::agas::addressing_service::resolve_full_async
(C++ function), 1322

hpx::agas::addressing_service::resolve_full_local
(C++ function), 1322, 1323

hpx::agas::addressing_service::resolve_full_postproc
(C++ function), 1328

hpx::agas::addressing_service::resolve_local
(C++ function), 1322, 1323

hpx::agas::addressing_service::resolve_locality
(C++ function), 1315

hpx::agas::addressing_service::resolve_locally_known_addresses
(C++ function), 1314

hpx::agas::addressing_service::resolve_name
(C++ function), 1325

hpx::agas::addressing_service::resolve_name_async
(C++ function), 1324

hpx::agas::addressing_service::resolved_localities_
(C++ member), 1328

hpx::agas::addressing_service::resolved_localities_mtx_
(C++ member), 1328

hpx::agas::addressing_service::resolved_localities_type
(C++ type), 1313

hpx::agas::addressing_service::rts_lva_
(C++ member), 1327

hpx::agas::addressing_service::runtime_type
(C++ member), 1327

hpx::agas::addressing_service::send_refcnt_requests
(C++ function), 1328

hpx::agas::addressing_service::send_refcnt_requests_async
(C++ function), 1328

hpx::agas::addressing_service::send_refcnt_requests_non_blocking
(C++ function), 1328

hpx::agas::addressing_service::send_refcnt_requests_sync
(C++ function), 1328

hpx::agas::addressing_service::service_type
(C++ member), 1327

hpx::agas::addressing_service::set_local_locality
(C++ function), 1314

hpx::agas::addressing_service::set_status
(C++ function), 1314

hpx::agas::addressing_service::start_shutdown
(C++ function), 1326

hpx::agas::addressing_service::state_ (C++
member), 1328

hpx::agas::addressing_service::symbol_ns_
(C++ member), 1327

hpx::agas::addressing_service::synchronize_with_async_incref
(C++ function), 1328

hpx::agas::addressing_service::unbind_local
(C++ function), 1319

hpx::agas::addressing_service::unbind_range_async
(C++ function), 1321

hpx::agas::addressing_service::unbind_range_local
(C++ function), 1320

hpx::agas::addressing_service::unmark_as_migrated
(C++ function), 1326

hpx::agas::addressing_service::unregister_locality
(C++ function), 1315

hpx::agas::addressing_service::unregister_name
(C++ function), 1324

hpx::agas::addressing_service::unregister_name_async
(C++ function), 1324

hpx::agas::addressing_service::update_cache_entry
(C++ function), 1325

hpx::agas::addressing_service::was_object_migrated
(C++ function), 1326

Index 1863

HPX Documentation, master

hpx::agas::addressing_service::was_object_migrated_locked
(C++ function), 1328

hpx::agas::agas_init (C++ function), 1428
hpx::agas::begin_migration (C++ function), 1427
hpx::agas::bind (C++ function), 1426
hpx::agas::bind_gid_local (C++ function), 1427
hpx::agas::bind_range_local (C++ function), 1427
hpx::agas::bootstrap_primary_namespace_gid

(C++ function), 1329
hpx::agas::bootstrap_primary_namespace_id

(C++ function), 1329
hpx::agas::decref (C++ function), 1427
hpx::agas::destroy_component (C++ function),

1428
hpx::agas::end_migration (C++ function), 1427
hpx::agas::find_symbols (C++ function), 1428
hpx::agas::garbage_collect (C++ function), 1427
hpx::agas::garbage_collect_non_blocking

(C++ function), 1427
hpx::agas::get_all_locality_ids (C++ function),

1426
hpx::agas::get_colocation_id (C++ function),

1427
hpx::agas::get_component_id (C++ function), 1428
hpx::agas::get_component_type_name (C++ func-

tion), 1425
hpx::agas::get_console_locality (C++ function),

1427
hpx::agas::get_locality (C++ function), 1425
hpx::agas::get_locality_id (C++ function), 1425
hpx::agas::get_next_id (C++ function), 1427
hpx::agas::get_num_localities (C++ function),

1425
hpx::agas::get_num_overall_threads (C++ func-

tion), 1425
hpx::agas::get_num_threads (C++ function), 1425
hpx::agas::get_primary_ns_lva (C++ function),

1428
hpx::agas::get_runtime_support_lva (C++ func-

tion), 1428
hpx::agas::get_symbol_ns_lva (C++ function),

1428
hpx::agas::incref (C++ function), 1427
hpx::agas::is_console (C++ function), 1425
hpx::agas::is_local_address_cached (C++ func-

tion), 1426
hpx::agas::is_local_lva_encoded_address

(C++ function), 1426
hpx::agas::mark_as_migrated (C++ function), 1427
hpx::agas::on_symbol_namespace_event (C++

function), 1427
hpx::agas::register_factory (C++ function), 1428
hpx::agas::register_name (C++ function), 1425
hpx::agas::replenish_credits (C++ function),

1427
hpx::agas::resolve (C++ function), 1426
hpx::agas::resolve_async (C++ function), 1426
hpx::agas::resolve_cached (C++ function), 1426
hpx::agas::resolve_local (C++ function), 1426
hpx::agas::resolve_name (C++ function), 1425
hpx::agas::runtime_components_init (C++ func-

tion), 1520
hpx::agas::server (C++ type), 1329
hpx::agas::server::primary_namespace (C++

struct), 1330
hpx::agas::server::primary_namespace::allocate

(C++ function), 1331
hpx::agas::server::primary_namespace::base_type

(C++ type), 1331
hpx::agas::server::primary_namespace::begin_migration

(C++ function), 1331
hpx::agas::server::primary_namespace::bind_gid

(C++ function), 1331
hpx::agas::server::primary_namespace::colocate

(C++ function), 1331
hpx::agas::server::primary_namespace::component_type

(C++ type), 1331
hpx::agas::server::primary_namespace::counter_data

(C++ struct), 1333
hpx::agas::server::primary_namespace::counter_data::allocate_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::api_counter_data

(C++ struct), 1334
hpx::agas::server::primary_namespace::counter_data::api_counter_data::api_counter_data

(C++ function), 1334
hpx::agas::server::primary_namespace::counter_data::api_counter_data::count_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::api_counter_data::enabled_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::api_counter_data::time_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::begin_migration_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::bind_gid_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::counter_data

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::decrement_credit_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::enable_all

(C++ function), 1334
hpx::agas::server::primary_namespace::counter_data::end_migration_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::get_allocate_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_allocate_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_begin_migration_count

1864 Index

HPX Documentation, master

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_begin_migration_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_bind_gid_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_bind_gid_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_decrement_credit_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_decrement_credit_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_end_migration_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_end_migration_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_increment_credit_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_increment_credit_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_overall_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_overall_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_resolve_gid_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_resolve_gid_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_unbind_gid_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::get_unbind_gid_time

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::HPX_NON_COPYABLE

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::increment_allocate_count

(C++ function), 1334
hpx::agas::server::primary_namespace::counter_data::increment_begin_migration_count

(C++ function), 1334
hpx::agas::server::primary_namespace::counter_data::increment_bind_gid_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::increment_credit_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::increment_decrement_credit_count

(C++ function), 1334
hpx::agas::server::primary_namespace::counter_data::increment_end_migration_count

(C++ function), 1334
hpx::agas::server::primary_namespace::counter_data::increment_increment_credit_count

(C++ function), 1334
hpx::agas::server::primary_namespace::counter_data::increment_resolve_gid_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::increment_unbind_gid_count

(C++ function), 1333
hpx::agas::server::primary_namespace::counter_data::resolve_gid_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data::unbind_gid_

(C++ member), 1334
hpx::agas::server::primary_namespace::counter_data_

(C++ member), 1332
hpx::agas::server::primary_namespace::decrement_credit

(C++ function), 1331
hpx::agas::server::primary_namespace::decrement_sweep

(C++ function), 1332
hpx::agas::server::primary_namespace::end_migration

(C++ function), 1331
hpx::agas::server::primary_namespace::finalize

(C++ function), 1331
hpx::agas::server::primary_namespace::free_components_sync

(C++ function), 1332
hpx::agas::server::primary_namespace::free_entry

(C++ struct), 1334
hpx::agas::server::primary_namespace::free_entry::free_entry

(C++ function), 1335
hpx::agas::server::primary_namespace::free_entry::gid_

(C++ member), 1335
hpx::agas::server::primary_namespace::free_entry::gva_

(C++ member), 1335
hpx::agas::server::primary_namespace::free_entry::locality_

(C++ member), 1335
hpx::agas::server::primary_namespace::free_entry_allocator_type

(C++ type), 1332
hpx::agas::server::primary_namespace::free_entry_list_type

(C++ type), 1332
hpx::agas::server::primary_namespace::gva_table_data_type

(C++ type), 1331
hpx::agas::server::primary_namespace::gva_table_type

(C++ type), 1331
hpx::agas::server::primary_namespace::gvas_

(C++ member), 1332
hpx::agas::server::primary_namespace::increment

(C++ function), 1332
hpx::agas::server::primary_namespace::increment_credit

(C++ function), 1331
hpx::agas::server::primary_namespace::instance_name_

(C++ member), 1332
hpx::agas::server::primary_namespace::locality_

(C++ member), 1333
hpx::agas::server::primary_namespace::migrating_objects_

(C++ member), 1333
hpx::agas::server::primary_namespace::migration_table_type

(C++ type), 1332
hpx::agas::server::primary_namespace::mutex

(C++ function), 1331
hpx::agas::server::primary_namespace::mutex_

(C++ member), 1332
hpx::agas::server::primary_namespace::mutex_type

(C++ type), 1331
hpx::agas::server::primary_namespace::next_id_

(C++ member), 1333
hpx::agas::server::primary_namespace::primary_namespace

Index 1865

HPX Documentation, master

(C++ function), 1331
hpx::agas::server::primary_namespace::refcnt_table_type

(C++ type), 1331
hpx::agas::server::primary_namespace::refcnts_

(C++ member), 1332
hpx::agas::server::primary_namespace::register_server_instance

(C++ function), 1331
hpx::agas::server::primary_namespace::resolve_free_list

(C++ function), 1332
hpx::agas::server::primary_namespace::resolve_gid

(C++ function), 1331
hpx::agas::server::primary_namespace::resolve_gid_locked

(C++ function), 1332
hpx::agas::server::primary_namespace::resolve_gid_locked_non_local

(C++ function), 1332
hpx::agas::server::primary_namespace::resolved_type

(C++ type), 1331
hpx::agas::server::primary_namespace::set_local_locality

(C++ function), 1331
hpx::agas::server::primary_namespace::unbind_gid

(C++ function), 1331
hpx::agas::server::primary_namespace::unregister_server_instance

(C++ function), 1331
hpx::agas::server::primary_namespace::wait_for_migration_locked

(C++ function), 1331
hpx::agas::server::primary_namespace_service_name

(C++ member), 1330
hpx::agas::unbind (C++ function), 1426, 1427
hpx::agas::unbind_gid_local (C++ function), 1427
hpx::agas::unbind_range_local (C++ function),

1427
hpx::agas::unmark_as_migrated (C++ function),

1428
hpx::agas::unregister_name (C++ function), 1425
hpx::agas::update_cache_entry (C++ function),

1426
hpx::agas::was_object_migrated (C++ function),

1427
hpx::all_of (C++ function), 364, 365
hpx::annotated_function (C++ function), 1261
hpx::any (C++ type), 1050
hpx::any_cast (C++ function), 1039
hpx::any_nonser (C++ type), 1038
hpx::any_of (C++ function), 362, 363
hpx::applier (C++ type), 1506, 1508
hpx::applier::applier (C++ class), 1506
hpx::applier::applier::~applier (C++ function),

1506
hpx::applier::applier::applier (C++ function),

1506
hpx::applier::applier::get_localities (C++

function), 1507
hpx::applier::applier::get_locality_id (C++

function), 1506

hpx::applier::applier::get_raw_localities
(C++ function), 1507

hpx::applier::applier::get_raw_locality
(C++ function), 1506

hpx::applier::applier::get_raw_remote_localities
(C++ function), 1506

hpx::applier::applier::get_remote_localities
(C++ function), 1507

hpx::applier::applier::get_runtime_support_gid
(C++ function), 1507

hpx::applier::applier::get_runtime_support_raw_gid
(C++ function), 1507

hpx::applier::applier::get_thread_manager
(C++ function), 1506

hpx::applier::applier::HPX_NON_COPYABLE
(C++ function), 1506

hpx::applier::applier::init (C++ function), 1506
hpx::applier::applier::initialize (C++ func-

tion), 1506
hpx::applier::applier::runtime_support_id_

(C++ member), 1508
hpx::applier::applier::thread_manager_ (C++

member), 1508
hpx::applier::get_applier (C++ function), 1508
hpx::applier::get_applier_ptr (C++ function),

1508
hpx::assertion (C++ type), 961, 964
hpx::assertion::assertion_handler (C++ type),

964
hpx::assertion::set_assertion_handler (C++

function), 964
hpx::assertion_failure (C++ member), 1058
hpx::async (C++ function), 964, 1336
hpx::bad_action_code (C++ member), 1057
hpx::bad_alloc_exception (C++ class), 1066
hpx::bad_alloc_exception::bad_alloc_exception

(C++ function), 1066
hpx::bad_alloc_exception::get_error (C++

function), 1066
hpx::bad_alloc_exception::get_error_code

(C++ function), 1066
hpx::bad_any_cast (C++ struct), 1039
hpx::bad_any_cast::bad_any_cast (C++ function),

1040
hpx::bad_any_cast::from (C++ member), 1040
hpx::bad_any_cast::to (C++ member), 1040
hpx::bad_any_cast::what (C++ function), 1040
hpx::bad_component_type (C++ member), 1057
hpx::bad_function_call (C++ member), 1059
hpx::bad_parameter (C++ member), 1058
hpx::bad_plugin_type (C++ member), 1059
hpx::bad_request (C++ member), 1058
hpx::bad_response_type (C++ member), 1058
hpx::barrier (C++ class), 1202

1866 Index

HPX Documentation, master

hpx::barrier::~barrier (C++ function), 1203
hpx::barrier::arrival_token (C++ type), 1203
hpx::barrier::arrive (C++ function), 1203
hpx::barrier::arrive_and_drop (C++ function),

1204
hpx::barrier::arrive_and_wait (C++ function),

1204
hpx::barrier::arrived_ (C++ member), 1204
hpx::barrier::barrier (C++ function), 1203
hpx::barrier::completion_ (C++ member), 1204
hpx::barrier::cond_ (C++ member), 1204
hpx::barrier::expected_ (C++ member), 1204
hpx::barrier::mtx_ (C++ member), 1204
hpx::barrier::mutex_type (C++ type), 1204
hpx::barrier::phase_ (C++ member), 1204
hpx::barrier::wait (C++ function), 1203
hpx::binary_semaphore (C++ class), 1205
hpx::binary_semaphore::~binary_semaphore

(C++ function), 1205
hpx::binary_semaphore::acquire (C++ function),

1205
hpx::binary_semaphore::binary_semaphore

(C++ function), 1205
hpx::binary_semaphore::max (C++ function), 1206
hpx::binary_semaphore::operator= (C++ func-

tion), 1205
hpx::binary_semaphore::release (C++ function),

1205
hpx::binary_semaphore::try_acquire (C++ func-

tion), 1205
hpx::binary_semaphore::try_acquire_for (C++

function), 1206
hpx::binary_semaphore::try_acquire_until

(C++ function), 1206
hpx::bind (C++ function), 1119
hpx::bind_back (C++ function), 1120
hpx::bind_front (C++ function), 1121
hpx::broken_promise (C++ member), 1059
hpx::broken_task (C++ member), 1059
hpx::call_once (C++ function), 1237
hpx::chrono (C++ type), 1294
hpx::chrono::high_resolution_clock (C++

struct), 1294
hpx::chrono::high_resolution_clock::now

(C++ function), 1294
hpx::chrono::high_resolution_timer (C++

class), 1294
hpx::chrono::high_resolution_timer::elapsed

(C++ function), 1295
hpx::chrono::high_resolution_timer::elapsed_max

(C++ function), 1295
hpx::chrono::high_resolution_timer::elapsed_microseconds

(C++ function), 1295
hpx::chrono::high_resolution_timer::elapsed_min

(C++ function), 1295
hpx::chrono::high_resolution_timer::elapsed_nanoseconds

(C++ function), 1295
hpx::chrono::high_resolution_timer::high_resolution_timer

(C++ function), 1295
hpx::chrono::high_resolution_timer::init

(C++ enum), 1295
hpx::chrono::high_resolution_timer::init::no_init

(C++ enumerator), 1295
hpx::chrono::high_resolution_timer::now

(C++ function), 1295
hpx::chrono::high_resolution_timer::restart

(C++ function), 1295
hpx::chrono::high_resolution_timer::start_time_

(C++ member), 1296
hpx::chrono::high_resolution_timer::take_time_stamp

(C++ function), 1295
hpx::collectives (C++ type), 1365, 1368, 1370,

1373, 1375, 1382, 1384, 1386, 1392, 1397,
1401, 1408

hpx::collectives::all_gather (C++ function),
1365–1367

hpx::collectives::all_reduce (C++ function),
1368, 1369

hpx::collectives::all_to_all (C++ function),
1371, 1372

hpx::collectives::arity_arg (C++ type), 1374
hpx::collectives::broadcast_from (C++ func-

tion), 1377, 1379
hpx::collectives::broadcast_to (C++ function),

1376, 1378
hpx::collectives::channel_communicator (C++

class), 1383
hpx::collectives::communicator (C++ struct),

1385
hpx::collectives::communicator::get_info

(C++ function), 1386
hpx::collectives::communicator::is_root

(C++ function), 1386
hpx::collectives::communicator::set_info

(C++ function), 1386
hpx::collectives::create_channel_communicator

(C++ function), 1382, 1383
hpx::collectives::create_communication_set

(C++ function), 1384
hpx::collectives::create_communicator (C++

function), 1385
hpx::collectives::create_local_communicator

(C++ function), 1385
hpx::collectives::exclusive_scan (C++ func-

tion), 1386–1388
hpx::collectives::gather_here (C++ function),

1392, 1394, 1395
hpx::collectives::gather_there (C++ function),

Index 1867

HPX Documentation, master

1393, 1394, 1396
hpx::collectives::generation_arg (C++ type),

1373
hpx::collectives::get (C++ function), 1383
hpx::collectives::inclusive_scan (C++ func-

tion), 1397–1399
hpx::collectives::num_sites_arg (C++ type),

1373
hpx::collectives::reduce_here (C++ function),

1402, 1404
hpx::collectives::reduce_there (C++ function),

1403, 1405, 1406
hpx::collectives::root_site_arg (C++ type),

1373
hpx::collectives::scatter_from (C++ function),

1408, 1410, 1411
hpx::collectives::scatter_to (C++ function),

1409, 1411, 1412
hpx::collectives::set (C++ function), 1383
hpx::collectives::tag_arg (C++ type), 1374
hpx::collectives::that_site_arg (C++ type),

1373
hpx::collectives::this_site_arg (C++ type),

1373
hpx::commandline_option_error (C++ member),

1058
hpx::components (C++ type), 1168–1170, 1172, 1340,

1417, 1418, 1428, 1429, 1431, 1434, 1435,
1437, 1439, 1441, 1443, 1446, 1448, 1450,
1495, 1496, 1508, 1516, 1520, 1522, 1528

hpx::components::abstract_component_base
(C++ class), 1434

hpx::components::abstract_managed_component_base
(C++ class), 1434

hpx::components::binpacked (C++ member), 1442
hpx::components::binpacking_distribution_policy

(C++ struct), 1442
hpx::components::binpacking_distribution_policy::binpacking_distribution_policy

(C++ function), 1442
hpx::components::binpacking_distribution_policy::bulk_create

(C++ function), 1443
hpx::components::binpacking_distribution_policy::create

(C++ function), 1442
hpx::components::binpacking_distribution_policy::get_counter_name

(C++ function), 1443
hpx::components::binpacking_distribution_policy::get_num_localities

(C++ function), 1443
hpx::components::binpacking_distribution_policy::operator()

(C++ function), 1442
hpx::components::client (C++ class), 1417
hpx::components::client::~client (C++ func-

tion), 1418
hpx::components::client::base_type (C++ type),

1418

hpx::components::client::client (C++ function),
1418

hpx::components::client::future_type (C++
type), 1418

hpx::components::client::operator= (C++ func-
tion), 1418

hpx::components::client_base (C++ class), 1419
hpx::components::client_base::~client_base

(C++ function), 1419
hpx::components::client_base::base_shared_state_type

(C++ type), 1421
hpx::components::client_base::client_base

(C++ function), 1419, 1421
hpx::components::client_base::connect_to

(C++ function), 1420
hpx::components::client_base::detach (C++

function), 1420
hpx::components::client_base::extra_data_type

(C++ type), 1421
hpx::components::client_base::free (C++ func-

tion), 1420
hpx::components::client_base::future_type

(C++ type), 1421
hpx::components::client_base::get (C++ func-

tion), 1420
hpx::components::client_base::get_exception_ptr

(C++ function), 1420
hpx::components::client_base::get_extra_data

(C++ function), 1421
hpx::components::client_base::get_id (C++

function), 1420
hpx::components::client_base::get_raw_gid

(C++ function), 1420
hpx::components::client_base::has_exception

(C++ function), 1420
hpx::components::client_base::has_value

(C++ function), 1420
hpx::components::client_base::is_client_tag

(C++ type), 1419
hpx::components::client_base::is_ready (C++

function), 1420
hpx::components::client_base::on_ready (C++

function), 1421
hpx::components::client_base::operator bool

(C++ function), 1420
hpx::components::client_base::operator=

(C++ function), 1419, 1420
hpx::components::client_base::register_as

(C++ function), 1420
hpx::components::client_base::register_as_helper

(C++ function), 1421
hpx::components::client_base::registered_name

(C++ function), 1421
hpx::components::client_base::reset (C++

1868 Index

HPX Documentation, master

function), 1420
hpx::components::client_base::server_component_type

(C++ type), 1419
hpx::components::client_base::share (C++

function), 1420
hpx::components::client_base::shared_state_

(C++ member), 1421
hpx::components::client_base::shared_state_type

(C++ type), 1421
hpx::components::client_base::stub_argument_type

(C++ type), 1419
hpx::components::client_base::stub_type

(C++ type), 1421
hpx::components::client_base::then (C++ func-

tion), 1420
hpx::components::client_base::try_get_extra_data

(C++ function), 1421
hpx::components::client_base::valid (C++

function), 1420
hpx::components::client_base::wait (C++ func-

tion), 1420
hpx::components::colocated (C++ member), 1443
hpx::components::colocating_distribution_policy

(C++ struct), 1443
hpx::components::colocating_distribution_policy::apply

(C++ function), 1444, 1445
hpx::components::colocating_distribution_policy::apply_cb

(C++ function), 1445
hpx::components::colocating_distribution_policy::async

(C++ function), 1444
hpx::components::colocating_distribution_policy::async_cb

(C++ function), 1444
hpx::components::colocating_distribution_policy::async_result

(C++ struct), 1445
hpx::components::colocating_distribution_policy::async_result::type

(C++ type), 1445
hpx::components::colocating_distribution_policy::bulk_create

(C++ function), 1444
hpx::components::colocating_distribution_policy::colocating_distribution_policy

(C++ function), 1444
hpx::components::colocating_distribution_policy::create

(C++ function), 1444
hpx::components::colocating_distribution_policy::get_next_target

(C++ function), 1445
hpx::components::colocating_distribution_policy::get_num_localities

(C++ function), 1445
hpx::components::colocating_distribution_policy::operator()

(C++ function), 1444
hpx::components::commandline_options_provider

(C++ type), 1429
hpx::components::commandline_options_provider::add_commandline_options

(C++ function), 1429
hpx::components::component (C++ class), 1434
hpx::components::component_agas_component_namespace

(C++ member), 1433
hpx::components::component_agas_locality_namespace

(C++ member), 1433
hpx::components::component_agas_primary_namespace

(C++ member), 1433
hpx::components::component_agas_symbol_namespace

(C++ member), 1433
hpx::components::component_barrier (C++ mem-

ber), 1433
hpx::components::component_base (C++ class),

1434
hpx::components::component_base_lco (C++

member), 1433
hpx::components::component_base_lco_with_value

(C++ member), 1433
hpx::components::component_base_lco_with_value_unmanaged

(C++ member), 1433
hpx::components::component_commandline (C++

struct), 1428
hpx::components::component_commandline::add_commandline_options

(C++ function), 1429
hpx::components::component_commandline_base

(C++ struct), 1168
hpx::components::component_commandline_base::~component_commandline_base

(C++ function), 1169
hpx::components::component_commandline_base::add_commandline_options

(C++ function), 1169
hpx::components::component_deleter_type

(C++ type), 1431
hpx::components::component_enum_type (C++

enum), 1431
hpx::components::component_enum_type::agas_component_namespace

(C++ enumerator), 1431
hpx::components::component_enum_type::agas_locality_namespace

(C++ enumerator), 1431
hpx::components::component_enum_type::agas_primary_namespace

(C++ enumerator), 1431
hpx::components::component_enum_type::agas_symbol_namespace

(C++ enumerator), 1431
hpx::components::component_enum_type::barrier

(C++ enumerator), 1431
hpx::components::component_enum_type::base_lco

(C++ enumerator), 1431
hpx::components::component_enum_type::base_lco_with_value

(C++ enumerator), 1431
hpx::components::component_enum_type::base_lco_with_value_unmanaged

(C++ enumerator), 1431
hpx::components::component_enum_type::first_dynamic

(C++ enumerator), 1432
hpx::components::component_enum_type::invalid

(C++ enumerator), 1431
hpx::components::component_enum_type::last

(C++ enumerator), 1432
hpx::components::component_enum_type::latch

Index 1869

HPX Documentation, master

(C++ enumerator), 1431
hpx::components::component_enum_type::plain_function

(C++ enumerator), 1431
hpx::components::component_enum_type::promise

(C++ enumerator), 1431
hpx::components::component_enum_type::runtime_support

(C++ enumerator), 1431
hpx::components::component_factory (C++

struct), 1496
hpx::components::component_first_dynamic

(C++ member), 1433
hpx::components::component_invalid (C++ mem-

ber), 1433
hpx::components::component_last (C++ member),

1433
hpx::components::component_latch (C++ mem-

ber), 1433
hpx::components::component_plain_function

(C++ member), 1433
hpx::components::component_promise (C++ mem-

ber), 1433
hpx::components::component_registry (C++

struct), 1495
hpx::components::component_registry::get_component_info

(C++ function), 1495
hpx::components::component_registry::register_component_type

(C++ function), 1495
hpx::components::component_registry_base

(C++ struct), 1170
hpx::components::component_registry_base::~component_registry_base

(C++ function), 1170
hpx::components::component_registry_base::get_component_info

(C++ function), 1170
hpx::components::component_registry_base::register_component_type

(C++ function), 1170
hpx::components::component_runtime_support

(C++ member), 1433
hpx::components::component_startup_shutdown

(C++ struct), 1430
hpx::components::component_startup_shutdown::get_shutdown_function

(C++ function), 1430
hpx::components::component_startup_shutdown::get_startup_function

(C++ function), 1430
hpx::components::component_startup_shutdown_base

(C++ struct), 1173
hpx::components::component_startup_shutdown_base::~component_startup_shutdown_base

(C++ function), 1173
hpx::components::component_startup_shutdown_base::get_shutdown_function

(C++ function), 1173
hpx::components::component_startup_shutdown_base::get_startup_function

(C++ function), 1173
hpx::components::copy (C++ function), 1509
hpx::components::counter_init (C++ function),

1520

hpx::components::default_binpacking_counter_name
(C++ member), 1442

hpx::components::default_distribution_policy
(C++ struct), 1446

hpx::components::default_distribution_policy::apply
(C++ function), 1447

hpx::components::default_distribution_policy::apply_cb
(C++ function), 1447

hpx::components::default_distribution_policy::async
(C++ function), 1447

hpx::components::default_distribution_policy::async_cb
(C++ function), 1447

hpx::components::default_distribution_policy::async_result
(C++ struct), 1447

hpx::components::default_distribution_policy::async_result::type
(C++ type), 1448

hpx::components::default_distribution_policy::bulk_create
(C++ function), 1446

hpx::components::default_distribution_policy::create
(C++ function), 1446

hpx::components::default_distribution_policy::default_distribution_policy
(C++ function), 1446

hpx::components::default_distribution_policy::get_next_target
(C++ function), 1447

hpx::components::default_distribution_policy::get_num_localities
(C++ function), 1447

hpx::components::default_distribution_policy::operator()
(C++ function), 1446

hpx::components::default_layout (C++ member),
1446

hpx::components::deleter (C++ function), 1432
hpx::components::derived_component_type

(C++ function), 1432
hpx::components::detail_adl_barrier (C++

type), 1438
hpx::components::detail_adl_barrier::destroy_backptr

(C++ struct), 1438
hpx::components::detail_adl_barrier::destroy_backptr<traits::managed_object_controls_lifetime>

(C++ struct), 1436
hpx::components::detail_adl_barrier::destroy_backptr<traits::managed_object_controls_lifetime>::call

(C++ function), 1437
hpx::components::detail_adl_barrier::destroy_backptr<traits::managed_object_is_lifetime_controlled>

(C++ struct), 1436
hpx::components::detail_adl_barrier::destroy_backptr<traits::managed_object_is_lifetime_controlled>::call

(C++ function), 1436
hpx::components::detail_adl_barrier::init

(C++ struct), 1438
hpx::components::detail_adl_barrier::init<traits::construct_with_back_ptr>

(C++ struct), 1436
hpx::components::detail_adl_barrier::init<traits::construct_with_back_ptr>::call

(C++ function), 1436
hpx::components::detail_adl_barrier::init<traits::construct_with_back_ptr>::call_new

(C++ function), 1436
hpx::components::detail_adl_barrier::init<traits::construct_without_back_ptr>

1870 Index

HPX Documentation, master

(C++ struct), 1436
hpx::components::detail_adl_barrier::init<traits::construct_without_back_ptr>::call

(C++ function), 1436
hpx::components::detail_adl_barrier::init<traits::construct_without_back_ptr>::call_new

(C++ function), 1436
hpx::components::detail_adl_barrier::manage_lifetime

(C++ struct), 1439
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_controls_lifetime>

(C++ struct), 1437
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_controls_lifetime>::addref

(C++ function), 1437
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_controls_lifetime>::call

(C++ function), 1437
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_controls_lifetime>::release

(C++ function), 1437
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_is_lifetime_controlled>

(C++ struct), 1437
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_is_lifetime_controlled>::addref

(C++ function), 1437
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_is_lifetime_controlled>::call

(C++ function), 1437
hpx::components::detail_adl_barrier::manage_lifetime<traits::managed_object_is_lifetime_controlled>::release

(C++ function), 1437
hpx::components::detail_adl_barrier::PhonyNameDueToError::addref

(C++ function), 1439
hpx::components::detail_adl_barrier::PhonyNameDueToError::call

(C++ function), 1438, 1439
hpx::components::detail_adl_barrier::PhonyNameDueToError::call_new

(C++ function), 1438, 1439
hpx::components::detail_adl_barrier::PhonyNameDueToError::release

(C++ function), 1439
hpx::components::enabled (C++ function), 1432
hpx::components::enumerate_instance_counts

(C++ function), 1432
hpx::components::factory_check (C++ member),

1434
hpx::components::factory_disabled (C++ mem-

ber), 1434
hpx::components::factory_enabled (C++ mem-

ber), 1433
hpx::components::factory_state (C++ enum),

1432
hpx::components::factory_state::check (C++

enumerator), 1432
hpx::components::factory_state::disabled

(C++ enumerator), 1432
hpx::components::factory_state::enabled

(C++ enumerator), 1432
hpx::components::fixed_component (C++ class),

1434, 1435
hpx::components::fixed_component_base (C++

class), 1434, 1435
hpx::components::get_base_type (C++ function),

1432

hpx::components::get_component_base_name
(C++ function), 1432

hpx::components::get_component_name (C++
function), 1432

hpx::components::get_component_type (C++
function), 1432

hpx::components::get_component_type_name
(C++ function), 1432

hpx::components::get_derived_type (C++ func-
tion), 1432

hpx::components::instance_count (C++ function),
1432

hpx::components::intrusive_ptr_add_ref (C++
function), 1437

hpx::components::intrusive_ptr_release (C++
function), 1437

hpx::components::managed_component (C++
class), 1434, 1437

hpx::components::managed_component_base
(C++ class), 1435, 1438

hpx::components::migrate (C++ function), 1516,
1517

hpx::components::migration_support (C++
struct), 1439

hpx::components::migration_support::~migration_support
(C++ function), 1440

hpx::components::migration_support::base_type
(C++ type), 1441

hpx::components::migration_support::data_
(C++ member), 1441

hpx::components::migration_support::decorate_action
(C++ function), 1440

hpx::components::migration_support::decorates_action
(C++ type), 1440

hpx::components::migration_support::get_base_gid
(C++ function), 1440

hpx::components::migration_support::mark_as_migrated
(C++ function), 1440

hpx::components::migration_support::migration_support
(C++ function), 1440

hpx::components::migration_support::on_migrated
(C++ function), 1440

hpx::components::migration_support::operator=
(C++ function), 1440

hpx::components::migration_support::pin
(C++ function), 1440

hpx::components::migration_support::pin_count
(C++ function), 1440

hpx::components::migration_support::started_migration_
(C++ member), 1441

hpx::components::migration_support::supports_migration
(C++ function), 1440

hpx::components::migration_support::this_component_type
(C++ type), 1441

Index 1871

HPX Documentation, master

hpx::components::migration_support::thread_function
(C++ function), 1441

hpx::components::migration_support::trigger_migration_
(C++ member), 1441

hpx::components::migration_support::unmark_as_migrated
(C++ function), 1440

hpx::components::migration_support::unpin
(C++ function), 1440

hpx::components::migration_support::was_marked_for_migration_
(C++ member), 1441

hpx::components::migration_support::was_object_migrated
(C++ function), 1440

hpx::components::operator== (C++ function), 1419
hpx::components::operator< (C++ function), 1419
hpx::components::runtime_support (C++ class),

1520
hpx::components::runtime_support::base_type

(C++ type), 1521
hpx::components::runtime_support::bulk_create_component

(C++ function), 1521
hpx::components::runtime_support::bulk_create_components_async

(C++ function), 1521
hpx::components::runtime_support::call_startup_functions

(C++ function), 1521
hpx::components::runtime_support::call_startup_functions_async

(C++ function), 1521
hpx::components::runtime_support::create_component

(C++ function), 1520
hpx::components::runtime_support::create_component_async

(C++ function), 1520
hpx::components::runtime_support::get_config

(C++ function), 1521
hpx::components::runtime_support::get_id

(C++ function), 1521
hpx::components::runtime_support::get_raw_gid

(C++ function), 1521
hpx::components::runtime_support::gid_ (C++

member), 1522
hpx::components::runtime_support::load_components

(C++ function), 1521
hpx::components::runtime_support::load_components_async

(C++ function), 1521
hpx::components::runtime_support::runtime_support

(C++ function), 1520
hpx::components::runtime_support::shutdown

(C++ function), 1521
hpx::components::runtime_support::shutdown_all

(C++ function), 1521
hpx::components::runtime_support::shutdown_async

(C++ function), 1521
hpx::components::runtime_support::terminate

(C++ function), 1521
hpx::components::runtime_support::terminate_all

(C++ function), 1521

hpx::components::runtime_support::terminate_async
(C++ function), 1521

hpx::components::server (C++ type), 1496, 1522
hpx::components::server::copy_component

(C++ function), 1522
hpx::components::server::copy_component_action

(C++ struct), 1522
hpx::components::server::copy_component_action_here

(C++ struct), 1522
hpx::components::server::copy_component_here

(C++ function), 1522
hpx::components::server::runtime_support

(C++ class), 1522
hpx::components::server::runtime_support::~runtime_support

(C++ function), 1523
hpx::components::server::runtime_support::add_pre_shutdown_function

(C++ function), 1524
hpx::components::server::runtime_support::add_pre_startup_function

(C++ function), 1524
hpx::components::server::runtime_support::add_shutdown_function

(C++ function), 1524
hpx::components::server::runtime_support::add_startup_function

(C++ function), 1524
hpx::components::server::runtime_support::bulk_create_component

(C++ function), 1523
hpx::components::server::runtime_support::bulk_create_component_with_count

(C++ function), 1523
hpx::components::server::runtime_support::call_shutdown_functions

(C++ function), 1524
hpx::components::server::runtime_support::call_startup_functions

(C++ function), 1523
hpx::components::server::runtime_support::copy_create_component

(C++ function), 1523
hpx::components::server::runtime_support::create_component

(C++ function), 1523
hpx::components::server::runtime_support::create_performance_counter

(C++ function), 1524
hpx::components::server::runtime_support::delete_function_lists

(C++ function), 1523
hpx::components::server::runtime_support::dijkstra_termination_detection

(C++ function), 1526
hpx::components::server::runtime_support::finalize

(C++ function), 1525
hpx::components::server::runtime_support::garbage_collect

(C++ function), 1524
hpx::components::server::runtime_support::get_component_type

(C++ function), 1525
hpx::components::server::runtime_support::get_config

(C++ function), 1523
hpx::components::server::runtime_support::globals_mtx_

(C++ member), 1527
hpx::components::server::runtime_support::is_target_valid

(C++ function), 1525
hpx::components::server::runtime_support::load_commandline_options

1872 Index

HPX Documentation, master

(C++ function), 1525
hpx::components::server::runtime_support::load_commandline_options_static

(C++ function), 1525
hpx::components::server::runtime_support::load_component

(C++ function), 1525
hpx::components::server::runtime_support::load_component_dynamic

(C++ function), 1525
hpx::components::server::runtime_support::load_component_static

(C++ function), 1525
hpx::components::server::runtime_support::load_components

(C++ function), 1523, 1525
hpx::components::server::runtime_support::load_plugin

(C++ function), 1526
hpx::components::server::runtime_support::load_plugin_dynamic

(C++ function), 1526
hpx::components::server::runtime_support::load_plugins

(C++ function), 1526
hpx::components::server::runtime_support::load_startup_shutdown_functions

(C++ function), 1525
hpx::components::server::runtime_support::load_startup_shutdown_functions_static

(C++ function), 1525
hpx::components::server::runtime_support::main_thread_id_

(C++ member), 1526
hpx::components::server::runtime_support::migrate_component_to_here

(C++ function), 1523
hpx::components::server::runtime_support::modules_

(C++ member), 1527
hpx::components::server::runtime_support::modules_map_type

(C++ type), 1526
hpx::components::server::runtime_support::mtx_

(C++ member), 1526
hpx::components::server::runtime_support::notify_waiting_main

(C++ function), 1524
hpx::components::server::runtime_support::p_mtx_

(C++ member), 1527
hpx::components::server::runtime_support::plugin_factory

(C++ struct), 1527
hpx::components::server::runtime_support::plugin_factory::first

(C++ member), 1527
hpx::components::server::runtime_support::plugin_factory::isenabled

(C++ member), 1527
hpx::components::server::runtime_support::plugin_factory::plugin_factory

(C++ function), 1527
hpx::components::server::runtime_support::plugin_factory::second

(C++ member), 1527
hpx::components::server::runtime_support::plugin_factory_type

(C++ type), 1526
hpx::components::server::runtime_support::plugin_map_mutex_type

(C++ type), 1526
hpx::components::server::runtime_support::plugin_map_type

(C++ type), 1526
hpx::components::server::runtime_support::plugins_

(C++ member), 1527
hpx::components::server::runtime_support::pre_shutdown_functions_

(C++ member), 1527
hpx::components::server::runtime_support::pre_startup_functions_

(C++ member), 1527
hpx::components::server::runtime_support::remove_from_connection_cache

(C++ function), 1524
hpx::components::server::runtime_support::remove_here_from_connection_cache

(C++ function), 1524
hpx::components::server::runtime_support::remove_here_from_console_connection_cache

(C++ function), 1524
hpx::components::server::runtime_support::runtime_support

(C++ function), 1523
hpx::components::server::runtime_support::set_component_type

(C++ function), 1525
hpx::components::server::runtime_support::shutdown

(C++ function), 1523
hpx::components::server::runtime_support::shutdown_all

(C++ function), 1523
hpx::components::server::runtime_support::shutdown_all_invoked_

(C++ member), 1527
hpx::components::server::runtime_support::shutdown_functions_

(C++ member), 1527
hpx::components::server::runtime_support::startup_functions_

(C++ member), 1527
hpx::components::server::runtime_support::static_modules_

(C++ member), 1527
hpx::components::server::runtime_support::static_modules_type

(C++ type), 1526
hpx::components::server::runtime_support::stop

(C++ function), 1524
hpx::components::server::runtime_support::stop_called_

(C++ member), 1526
hpx::components::server::runtime_support::stop_condition_

(C++ member), 1526
hpx::components::server::runtime_support::stop_done_

(C++ member), 1526
hpx::components::server::runtime_support::stopped

(C++ function), 1524
hpx::components::server::runtime_support::terminate

(C++ function), 1523
hpx::components::server::runtime_support::terminate_act

(C++ function), 1523
hpx::components::server::runtime_support::terminate_all

(C++ function), 1523
hpx::components::server::runtime_support::terminate_all_act

(C++ function), 1523
hpx::components::server::runtime_support::terminated_

(C++ member), 1526
hpx::components::server::runtime_support::tidy

(C++ function), 1523
hpx::components::server::runtime_support::type_holder

(C++ type), 1523
hpx::components::server::runtime_support::wait

(C++ function), 1524
hpx::components::server::runtime_support::wait_condition_

Index 1873

HPX Documentation, master

(C++ member), 1526
hpx::components::server::runtime_support::was_stopped

(C++ function), 1524
hpx::components::set_component_type (C++

function), 1433
hpx::components::stubs (C++ type), 1496, 1528
hpx::components::stubs::runtime_support

(C++ struct), 1528
hpx::components::stubs::runtime_support::bulk_create_component

(C++ function), 1529
hpx::components::stubs::runtime_support::bulk_create_component_async

(C++ function), 1528
hpx::components::stubs::runtime_support::bulk_create_component_colocated

(C++ function), 1528
hpx::components::stubs::runtime_support::bulk_create_component_colocated_async

(C++ function), 1528
hpx::components::stubs::runtime_support::call_startup_functions

(C++ function), 1530
hpx::components::stubs::runtime_support::call_startup_functions_async

(C++ function), 1530
hpx::components::stubs::runtime_support::copy_create_component

(C++ function), 1529
hpx::components::stubs::runtime_support::copy_create_component_async

(C++ function), 1529
hpx::components::stubs::runtime_support::create_component

(C++ function), 1528
hpx::components::stubs::runtime_support::create_component_async

(C++ function), 1528
hpx::components::stubs::runtime_support::create_component_colocated

(C++ function), 1529
hpx::components::stubs::runtime_support::create_component_colocated_async

(C++ function), 1529
hpx::components::stubs::runtime_support::create_performance_counter

(C++ function), 1530
hpx::components::stubs::runtime_support::create_performance_counter_async

(C++ function), 1530
hpx::components::stubs::runtime_support::garbage_collect

(C++ function), 1530
hpx::components::stubs::runtime_support::garbage_collect_async

(C++ function), 1530
hpx::components::stubs::runtime_support::garbage_collect_non_blocking

(C++ function), 1530
hpx::components::stubs::runtime_support::get_config

(C++ function), 1530
hpx::components::stubs::runtime_support::get_config_async

(C++ function), 1530
hpx::components::stubs::runtime_support::load_components

(C++ function), 1530
hpx::components::stubs::runtime_support::load_components_async

(C++ function), 1530
hpx::components::stubs::runtime_support::migrate_component

(C++ function), 1529
hpx::components::stubs::runtime_support::migrate_component_async

(C++ function), 1529

hpx::components::stubs::runtime_support::remove_from_connection_cache_async
(C++ function), 1530

hpx::components::stubs::runtime_support::shutdown
(C++ function), 1530

hpx::components::stubs::runtime_support::shutdown_all
(C++ function), 1530

hpx::components::stubs::runtime_support::shutdown_async
(C++ function), 1530

hpx::components::stubs::runtime_support::terminate
(C++ function), 1530

hpx::components::stubs::runtime_support::terminate_all
(C++ function), 1530

hpx::components::stubs::runtime_support::terminate_async
(C++ function), 1530

hpx::components::target (C++ member), 1448
hpx::components::target_distribution_policy

(C++ struct), 1448
hpx::components::target_distribution_policy::apply

(C++ function), 1449
hpx::components::target_distribution_policy::apply_cb

(C++ function), 1449
hpx::components::target_distribution_policy::async

(C++ function), 1449
hpx::components::target_distribution_policy::async_cb

(C++ function), 1449
hpx::components::target_distribution_policy::async_result

(C++ struct), 1449
hpx::components::target_distribution_policy::async_result::type

(C++ type), 1450
hpx::components::target_distribution_policy::bulk_create

(C++ function), 1448
hpx::components::target_distribution_policy::create

(C++ function), 1448
hpx::components::target_distribution_policy::get_next_target

(C++ function), 1449
hpx::components::target_distribution_policy::get_num_localities

(C++ function), 1449
hpx::components::target_distribution_policy::operator()

(C++ function), 1448
hpx::components::target_distribution_policy::target_distribution_policy

(C++ function), 1448
hpx::components::to_int (C++ function), 1432
hpx::components::types_are_compatible (C++

function), 1432
hpx::components::unwrapping_result_policy

(C++ struct), 1450
hpx::components::unwrapping_result_policy::apply

(C++ function), 1450
hpx::components::unwrapping_result_policy::apply_cb

(C++ function), 1450, 1451
hpx::components::unwrapping_result_policy::async

(C++ function), 1450
hpx::components::unwrapping_result_policy::async_cb

(C++ function), 1450

1874 Index

HPX Documentation, master

hpx::components::unwrapping_result_policy::async_result
(C++ struct), 1451

hpx::components::unwrapping_result_policy::async_result::type
(C++ type), 1451

hpx::components::unwrapping_result_policy::get_next_target
(C++ function), 1451

hpx::components::unwrapping_result_policy::unwrapping_result_policy
(C++ function), 1450

hpx::compute (C++ type), 1013, 1017
hpx::compute::host (C++ type), 1017
hpx::compute::host::block_executor (C++

struct), 1017
hpx::compute::host::block_executor::block_executor

(C++ function), 1017
hpx::compute::host::block_executor::bulk_async_execute_impl

(C++ function), 1018
hpx::compute::host::block_executor::bulk_sync_execute_impl

(C++ function), 1018
hpx::compute::host::block_executor::current_

(C++ member), 1018
hpx::compute::host::block_executor::executor_parameters_type

(C++ type), 1017
hpx::compute::host::block_executor::executors_

(C++ member), 1018
hpx::compute::host::block_executor::get_next_executor

(C++ function), 1018
hpx::compute::host::block_executor::init_executors

(C++ function), 1018
hpx::compute::host::block_executor::operator=

(C++ function), 1017, 1018
hpx::compute::host::block_executor::priority_

(C++ member), 1018
hpx::compute::host::block_executor::schedulehint_

(C++ member), 1019
hpx::compute::host::block_executor::stacksize_

(C++ member), 1018
hpx::compute::host::block_executor::tag_invoke

(C++ function), 1018
hpx::compute::host::block_executor::targets

(C++ function), 1018
hpx::compute::host::block_executor::targets_

(C++ member), 1018
hpx::compute::swap (C++ function), 1013
hpx::compute::vector (C++ class), 1013
hpx::compute::vector::~vector (C++ function),

1015
hpx::compute::vector::access_target (C++

type), 1014
hpx::compute::vector::alloc_ (C++ member),

1016
hpx::compute::vector::alloc_traits (C++ type),

1016
hpx::compute::vector::allocator_type (C++

type), 1014

hpx::compute::vector::begin (C++ function), 1015
hpx::compute::vector::capacity (C++ function),

1015
hpx::compute::vector::capacity_ (C++ member),

1016
hpx::compute::vector::cbegin (C++ function),

1015
hpx::compute::vector::cend (C++ function), 1015
hpx::compute::vector::clear (C++ function), 1015
hpx::compute::vector::const_iterator (C++

type), 1014
hpx::compute::vector::const_pointer (C++

type), 1014
hpx::compute::vector::const_reference (C++

type), 1014
hpx::compute::vector::const_reverse_iterator

(C++ type), 1014
hpx::compute::vector::data (C++ function), 1015
hpx::compute::vector::data_ (C++ member), 1016
hpx::compute::vector::device_data (C++ func-

tion), 1015
hpx::compute::vector::difference_type (C++

type), 1014
hpx::compute::vector::empty (C++ function), 1015
hpx::compute::vector::end (C++ function), 1015
hpx::compute::vector::get_allocator (C++

function), 1015
hpx::compute::vector::iterator (C++ type), 1014
hpx::compute::vector::operator= (C++ function),

1015
hpx::compute::vector::operator[] (C++ func-

tion), 1015
hpx::compute::vector::pointer (C++ type), 1014
hpx::compute::vector::reference (C++ type),

1014
hpx::compute::vector::resize (C++ function),

1015, 1016
hpx::compute::vector::reverse_iterator (C++

type), 1014
hpx::compute::vector::size (C++ function), 1015
hpx::compute::vector::size_ (C++ member), 1016
hpx::compute::vector::size_type (C++ type),

1014
hpx::compute::vector::swap (C++ function), 1015
hpx::compute::vector::value_type (C++ type),

1014
hpx::compute::vector::vector (C++ function),

1014, 1015
hpx::condition_variable (C++ class), 1207
hpx::condition_variable::~condition_variable

(C++ function), 1208
hpx::condition_variable::condition_variable

(C++ function), 1208
hpx::condition_variable::data_ (C++ member),

Index 1875

HPX Documentation, master

1212
hpx::condition_variable::data_type (C++ type),

1212
hpx::condition_variable::mutex_type (C++

type), 1212
hpx::condition_variable::notify_all (C++

function), 1208
hpx::condition_variable::notify_one (C++

function), 1208
hpx::condition_variable::operator= (C++ func-

tion), 1208
hpx::condition_variable::wait (C++ function),

1208, 1209
hpx::condition_variable::wait_for (C++ func-

tion), 1210, 1211
hpx::condition_variable::wait_until (C++

function), 1209, 1210
hpx::condition_variable_any (C++ class), 1212
hpx::condition_variable_any::~condition_variable_any

(C++ function), 1212
hpx::condition_variable_any::condition_variable_any

(C++ function), 1212
hpx::condition_variable_any::data_ (C++ mem-

ber), 1220
hpx::condition_variable_any::data_type (C++

type), 1219
hpx::condition_variable_any::mutex_type

(C++ type), 1219
hpx::condition_variable_any::notify_all

(C++ function), 1213
hpx::condition_variable_any::notify_one

(C++ function), 1213
hpx::condition_variable_any::operator= (C++

function), 1213
hpx::condition_variable_any::wait (C++ func-

tion), 1213, 1214, 1217
hpx::condition_variable_any::wait_for (C++

function), 1216, 1219
hpx::condition_variable_any::wait_until

(C++ function), 1215, 1218
hpx::copy (C++ function), 366
hpx::copy_if (C++ function), 368, 369
hpx::copy_n (C++ function), 367, 368
hpx::count (C++ function), 370, 371
hpx::count_if (C++ function), 371, 373
hpx::counting_semaphore (C++ class), 1220
hpx::counting_semaphore::~counting_semaphore

(C++ function), 1221
hpx::counting_semaphore::acquire (C++ func-

tion), 1221
hpx::counting_semaphore::counting_semaphore

(C++ function), 1221
hpx::counting_semaphore::max (C++ function),

1222

hpx::counting_semaphore::operator= (C++ func-
tion), 1221

hpx::counting_semaphore::release (C++ func-
tion), 1221

hpx::counting_semaphore::try_acquire (C++
function), 1221

hpx::counting_semaphore::try_acquire_for
(C++ function), 1222

hpx::counting_semaphore::try_acquire_until
(C++ function), 1222

hpx::counting_semaphore_var (C++ class), 1222
hpx::counting_semaphore_var::acquire (C++

function), 1224
hpx::counting_semaphore_var::counting_semaphore_var

(C++ function), 1223
hpx::counting_semaphore_var::max (C++ func-

tion), 1225
hpx::counting_semaphore_var::mutex_type

(C++ type), 1225
hpx::counting_semaphore_var::operator= (C++

function), 1223
hpx::counting_semaphore_var::release (C++

function), 1223
hpx::counting_semaphore_var::signal (C++

function), 1223
hpx::counting_semaphore_var::signal_all

(C++ function), 1223
hpx::counting_semaphore_var::try_acquire

(C++ function), 1224
hpx::counting_semaphore_var::try_acquire_for

(C++ function), 1224
hpx::counting_semaphore_var::try_acquire_until

(C++ function), 1224
hpx::counting_semaphore_var::try_wait (C++

function), 1223
hpx::counting_semaphore_var::wait (C++ func-

tion), 1223
hpx::create_binary_filter (C++ function), 1519
hpx::cref (C++ function), 1132
hpx::cuda (C++ type), 987
hpx::cuda::experimental (C++ type), 987
hpx::cuda::experimental::cuda_executor (C++

struct), 987
hpx::cuda::experimental::cuda_executor::~cuda_executor

(C++ function), 988
hpx::cuda::experimental::cuda_executor::async

(C++ function), 988
hpx::cuda::experimental::cuda_executor::cuda_executor

(C++ function), 988
hpx::cuda::experimental::cuda_executor::post

(C++ function), 988
hpx::cuda::experimental::cuda_executor::tag_invoke

(C++ function), 988
hpx::cuda::experimental::cuda_executor_base

1876 Index

HPX Documentation, master

(C++ struct), 988
hpx::cuda::experimental::cuda_executor_base::cuda_executor_base

(C++ function), 988
hpx::cuda::experimental::cuda_executor_base::device_

(C++ member), 988
hpx::cuda::experimental::cuda_executor_base::event_mode_

(C++ member), 988
hpx::cuda::experimental::cuda_executor_base::future_type

(C++ type), 988
hpx::cuda::experimental::cuda_executor_base::get_future

(C++ function), 988
hpx::cuda::experimental::cuda_executor_base::stream_

(C++ member), 988
hpx::cuda::experimental::cuda_executor_base::target_

(C++ member), 988
hpx::custom_exception_info_handler_type

(C++ type), 1063
hpx::cv_status (C++ enum), 1206
hpx::cv_status::error (C++ enumerator), 1207
hpx::cv_status::no_timeout (C++ enumerator),

1206
hpx::cv_status::timeout (C++ enumerator), 1207
hpx::dataflow (C++ function), 965, 1342
hpx::deadlock (C++ member), 1058
hpx::default_diagnostic_information (C++

function), 1174
hpx::destroy (C++ function), 374
hpx::destroy_n (C++ function), 374, 375
hpx::diagnostic_information (C++ function), 1174
hpx::disconnect (C++ function), 1453, 1454
hpx::distributed (C++ type), 1123, 1131, 1343,

1348, 1374, 1400
hpx::distributed::barrier (C++ function), 1374,

1375
hpx::distributed::function (C++ type), 1123
hpx::distributed::latch (C++ class), 1400
hpx::distributed::latch::arrive_and_wait

(C++ function), 1401
hpx::distributed::latch::base_type (C++ type),

1401
hpx::distributed::latch::count_down (C++

function), 1401
hpx::distributed::latch::count_down_and_wait

(C++ function), 1400
hpx::distributed::latch::is_ready (C++ func-

tion), 1401
hpx::distributed::latch::latch (C++ function),

1400
hpx::distributed::latch::try_wait (C++ func-

tion), 1401
hpx::distributed::latch::wait (C++ function),

1401
hpx::distributed::move_only_function (C++

type), 1131

hpx::distributed::PhonyNameDueToError::~promise
(C++ function), 1349

hpx::distributed::PhonyNameDueToError::base_type
(C++ type), 1350

hpx::distributed::PhonyNameDueToError::operator=
(C++ function), 1349

hpx::distributed::PhonyNameDueToError::promise
(C++ function), 1349

hpx::distributed::PhonyNameDueToError::set_value
(C++ function), 1349

hpx::distributed::PhonyNameDueToError::swap
(C++ function), 1349

hpx::distributed::promise (C++ class), 1343,
1349

hpx::distributed::promise<void,
hpx::util::unused_type> (C++ class),
1347

hpx::distributed::promise<void,
hpx::util::unused_type>::~promise
(C++ function), 1348

hpx::distributed::promise<void,
hpx::util::unused_type>::base_type
(C++ type), 1348

hpx::distributed::promise<void,
hpx::util::unused_type>::operator=
(C++ function), 1348

hpx::distributed::promise<void,
hpx::util::unused_type>::promise
(C++ function), 1348

hpx::distributed::promise<void,
hpx::util::unused_type>::set_value
(C++ function), 1348

hpx::distributed::promise<void,
hpx::util::unused_type>::swap (C++
function), 1348

hpx::distributed::swap (C++ function), 1349
hpx::distributed::synchronize (C++ function),

1375
hpx::distributed::wait (C++ function), 1375
hpx::duplicate_component_address (C++ mem-

ber), 1057
hpx::duplicate_component_id (C++ member), 1059
hpx::duplicate_console (C++ member), 1058
hpx::dynamic_link_failure (C++ member), 1058
hpx::ends_with (C++ function), 376
hpx::enumerate_os_threads (C++ function), 1191
hpx::equal (C++ function), 378–383
hpx::error (C++ enum), 1053
hpx::error::assertion_failure (C++ enumera-

tor), 1054
hpx::error::bad_action_code (C++ enumerator),

1053
hpx::error::bad_component_type (C++ enumera-

tor), 1053

Index 1877

HPX Documentation, master

hpx::error::bad_function_call (C++ enumera-
tor), 1056

hpx::error::bad_parameter (C++ enumerator),
1054

hpx::error::bad_plugin_type (C++ enumerator),
1056

hpx::error::bad_request (C++ enumerator), 1054
hpx::error::bad_response_type (C++ enumera-

tor), 1054
hpx::error::broken_promise (C++ enumerator),

1056
hpx::error::broken_task (C++ enumerator), 1055
hpx::error::commandline_option_error (C++

enumerator), 1055
hpx::error::deadlock (C++ enumerator), 1054
hpx::error::duplicate_component_address

(C++ enumerator), 1054
hpx::error::duplicate_component_id (C++ enu-

merator), 1056
hpx::error::duplicate_console (C++ enumera-

tor), 1054
hpx::error::dynamic_link_failure (C++ enumer-

ator), 1055
hpx::error::filesystem_error (C++ enumerator),

1056
hpx::error::future_already_retrieved (C++

enumerator), 1055
hpx::error::future_can_not_be_cancelled

(C++ enumerator), 1055
hpx::error::future_cancelled (C++ enumerator),

1056
hpx::error::future_does_not_support_cancellation

(C++ enumerator), 1055
hpx::error::internal_server_error (C++ enu-

merator), 1054
hpx::error::invalid_data (C++ enumerator), 1055
hpx::error::invalid_status (C++ enumerator),

1054
hpx::error::kernel_error (C++ enumerator), 1055
hpx::error::length_error (C++ enumerator), 1056
hpx::error::lock_error (C++ enumerator), 1054
hpx::error::migration_needs_retry (C++ enu-

merator), 1056
hpx::error::network_error (C++ enumerator),

1053
hpx::error::no_registered_console (C++ enu-

merator), 1054
hpx::error::no_state (C++ enumerator), 1055
hpx::error::no_success (C++ enumerator), 1053
hpx::error::not_implemented (C++ enumerator),

1053
hpx::error::null_thread_id (C++ enumerator),

1055
hpx::error::out_of_memory (C++ enumerator),

1053
hpx::error::out_of_range (C++ enumerator), 1056
hpx::error::promise_already_satisfied (C++

enumerator), 1055
hpx::error::repeated_request (C++ enumerator),

1054
hpx::error::serialization_error (C++ enumera-

tor), 1055
hpx::error::service_unavailable (C++ enumera-

tor), 1054
hpx::error::startup_timed_out (C++ enumera-

tor), 1054
hpx::error::success (C++ enumerator), 1053
hpx::error::task_already_started (C++ enumer-

ator), 1055
hpx::error::task_block_not_active (C++ enu-

merator), 1056
hpx::error::task_canceled_exception (C++ enu-

merator), 1056
hpx::error::task_moved (C++ enumerator), 1055
hpx::error::thread_cancelled (C++ enumerator),

1056
hpx::error::thread_not_interruptable (C++

enumerator), 1056
hpx::error::thread_resource_error (C++ enu-

merator), 1056
hpx::error::unhandled_exception (C++ enumera-

tor), 1055
hpx::error::uninitialized_value (C++ enumera-

tor), 1054
hpx::error::unknown_component_address (C++

enumerator), 1054
hpx::error::unknown_error (C++ enumerator),

1056
hpx::error::version_too_new (C++ enumerator),

1053
hpx::error::version_too_old (C++ enumerator),

1054
hpx::error::version_unknown (C++ enumerator),

1054
hpx::error::yield_aborted (C++ enumerator),

1055
hpx::error_code (C++ class), 1060
hpx::error_code::clear (C++ function), 1062
hpx::error_code::error_code (C++ function),

1061–1063
hpx::error_code::exception_ (C++ member), 1063
hpx::error_code::get_message (C++ function),

1062
hpx::error_code::make_error_code (C++ func-

tion), 1063
hpx::error_code::operator= (C++ function), 1062
hpx::evaluate_active_counters (C++ function),

1519

1878 Index

HPX Documentation, master

hpx::exception (C++ class), 1066
hpx::exception::~exception (C++ function), 1067
hpx::exception::exception (C++ function), 1066,

1067
hpx::exception::get_error (C++ function), 1067
hpx::exception::get_error_code (C++ function),

1067
hpx::exception_list (C++ class), 1069
hpx::exception_list::begin (C++ function), 1070
hpx::exception_list::end (C++ function), 1070
hpx::exception_list::iterator (C++ type), 1070
hpx::exception_list::size (C++ function), 1070
hpx::exclusive_scan (C++ function), 385–387
hpx::execution (C++ type), 353, 988, 1019, 1072–

1075, 1077, 1078, 1082–1085, 1087, 1088,
1090, 1097, 1100, 1101, 1104, 1106, 1109–
1111, 1114–1116, 1162, 1165, 1193, 1292,
1451

hpx::execution::experimental (C++ type), 353,
988, 1019, 1072–1075, 1077, 1078, 1082–1085,
1087, 1088, 1097, 1100, 1101, 1105, 1106,
1109, 1110, 1113–1116, 1163, 1165, 1193,
1292, 1451

hpx::execution::experimental::adaptive_static_chunk_size
(C++ struct), 1072

hpx::execution::experimental::adaptive_static_chunk_size::adaptive_static_chunk_size
(C++ function), 1072

hpx::execution::experimental::annotating_executor
(C++ struct), 1102

hpx::execution::experimental::annotating_executor::annotating_executor
(C++ function), 1102

hpx::execution::experimental::auto_chunk_size
(C++ struct), 1073

hpx::execution::experimental::auto_chunk_size::auto_chunk_size
(C++ function), 1073

hpx::execution::experimental::block_fork_join_executor
(C++ class), 1019

hpx::execution::experimental::block_fork_join_executor::block_execs_
(C++ member), 1021

hpx::execution::experimental::block_fork_join_executor::block_fork_join_executor
(C++ function), 1020

hpx::execution::experimental::block_fork_join_executor::bulk_sync_execute_helper
(C++ function), 1020

hpx::execution::experimental::block_fork_join_executor::cores_for_targets
(C++ function), 1021

hpx::execution::experimental::block_fork_join_executor::exec_
(C++ member), 1021

hpx::execution::experimental::block_fork_join_executor::sync_invoke_helper
(C++ function), 1021

hpx::execution::experimental::block_fork_join_executor::tag_invoke
(C++ function), 1021

hpx::execution::experimental::create_rebound_policy
(C++ member), 1087

hpx::execution::experimental::create_rebound_policy_t

(C++ struct), 1087
hpx::execution::experimental::create_rebound_policy_t::operator()

(C++ function), 1087
hpx::execution::experimental::default_parameters

(C++ struct), 1074
hpx::execution::experimental::default_parameters::default_parameters

(C++ function), 1074
hpx::execution::experimental::distribution_policy_executor

(C++ class), 1451
hpx::execution::experimental::distribution_policy_executor

(C++ function), 1451
hpx::execution::experimental::dynamic_chunk_size

(C++ struct), 1074
hpx::execution::experimental::dynamic_chunk_size::dynamic_chunk_size

(C++ function), 1075
hpx::execution::experimental::executor_execution_category<compute::host::block_executor<Executor>>

(C++ struct), 1016
hpx::execution::experimental::executor_execution_category<compute::host::block_executor<Executor>>::type

(C++ type), 1017
hpx::execution::experimental::executor_parameters_join

(C++ struct), 1077
hpx::execution::experimental::executor_parameters_join::type

(C++ type), 1077
hpx::execution::experimental::executor_parameters_join<Param>

(C++ struct), 1077
hpx::execution::experimental::executor_parameters_join<Param>::type

(C++ type), 1078
hpx::execution::experimental::explicit_scheduler_executor

(C++ function), 1110
hpx::execution::experimental::explicit_scheduler_executor

(C++ struct), 1110
hpx::execution::experimental::extract_executor_parameters

(C++ struct), 1100
hpx::execution::experimental::extract_executor_parameters::type

(C++ type), 1100
hpx::execution::experimental::extract_executor_parameters_t

(C++ type), 1100
hpx::execution::experimental::extract_executor_parameters<Executor,

std::void_t<typename
Executor::executor_parameters_type>>
(C++ struct), 1099

hpx::execution::experimental::extract_executor_parameters<Executor,
std::void_t<typename
Executor::executor_parameters_type>>::type
(C++ type), 1099

hpx::execution::experimental::extract_has_variable_chunk_size
(C++ struct), 1101

hpx::execution::experimental::extract_has_variable_chunk_size_v
(C++ member), 1100

hpx::execution::experimental::extract_has_variable_chunk_size<::std::reference_wrapper<Parameters>>
(C++ struct), 1099

hpx::execution::experimental::extract_has_variable_chunk_size<Parameters,
std::void_t<typename
Parameters::has_variable_chunk_size>>

Index 1879

HPX Documentation, master

(C++ struct), 1099
hpx::execution::experimental::extract_invokes_testing_function

(C++ struct), 1101
hpx::execution::experimental::extract_invokes_testing_function_v

(C++ member), 1100
hpx::execution::experimental::extract_invokes_testing_function<::std::reference_wrapper<Parameters>>

(C++ struct), 1099
hpx::execution::experimental::get_chunk_size

(C++ member), 1078
hpx::execution::experimental::get_chunk_size_t

(C++ struct), 1078
hpx::execution::experimental::get_chunk_size_t::tag_fallback_invoke

(C++ function), 1079
hpx::execution::experimental::get_pu_mask

(C++ member), 1075
hpx::execution::experimental::get_pu_mask_t

(C++ struct), 1075
hpx::execution::experimental::get_pu_mask_t::tag_fallback_invoke

(C++ function), 1076
hpx::execution::experimental::get_pu_mask_t::tag_invoke

(C++ function), 1076
hpx::execution::experimental::guided_chunk_size

(C++ struct), 1082
hpx::execution::experimental::guided_chunk_size::guided_chunk_size

(C++ function), 1083
hpx::execution::experimental::has_pending_closures

(C++ member), 1075
hpx::execution::experimental::has_pending_closures_t

(C++ struct), 1076
hpx::execution::experimental::has_pending_closures_t::tag_fallback_invoke

(C++ function), 1076
hpx::execution::experimental::has_pending_closures_t::tag_invoke

(C++ function), 1076
hpx::execution::experimental::instead (C++

type), 353
hpx::execution::experimental::io_pool_executor

(C++ struct), 1193
hpx::execution::experimental::io_pool_executor::io_pool_executor

(C++ function), 1193
hpx::execution::experimental::is_bulk_one_way_executor<compute::host::block_executor<Executor>>

(C++ struct), 1017
hpx::execution::experimental::is_bulk_two_way_executor<compute::host::block_executor<Executor>>

(C++ struct), 1017
hpx::execution::experimental::is_bulk_two_way_executor<hpx::resiliency::experimental::replay_executor<BaseExecutor,

Validator>> (C++ struct), 1162
hpx::execution::experimental::is_bulk_two_way_executor<hpx::resiliency::experimental::replicate_executor<BaseExecutor,

Voter, Validator>> (C++ struct), 1165
hpx::execution::experimental::is_execution_policy_mapping

(C++ struct), 1107
hpx::execution::experimental::is_execution_policy_mapping_v

(C++ member), 1106
hpx::execution::experimental::is_execution_policy_mapping<non_task_policy_tag>

(C++ struct), 1105
hpx::execution::experimental::is_execution_policy_mapping<task_policy_tag>

(C++ struct), 1105
hpx::execution::experimental::is_execution_policy_mapping<to_non_par_t>

(C++ struct), 1107
hpx::execution::experimental::is_execution_policy_mapping<to_non_task_t>

(C++ struct), 1107
hpx::execution::experimental::is_execution_policy_mapping<to_non_unseq_t>

(C++ struct), 1107
hpx::execution::experimental::is_execution_policy_mapping<to_par_t>

(C++ struct), 1107
hpx::execution::experimental::is_execution_policy_mapping<to_task_t>

(C++ struct), 1107
hpx::execution::experimental::is_execution_policy_mapping<to_unseq_t>

(C++ struct), 1107
hpx::execution::experimental::is_executor_parameters

(C++ struct), 1101
hpx::execution::experimental::is_executor_parameters_v

(C++ member), 1100
hpx::execution::experimental::is_nothrow_receiver_of

(C++ struct), 1098
hpx::execution::experimental::is_nothrow_receiver_of_v

(C++ member), 1098
hpx::execution::experimental::is_one_way_executor<compute::host::block_executor<Executor>>

(C++ struct), 1017
hpx::execution::experimental::is_receiver

(C++ struct), 1098
hpx::execution::experimental::is_receiver_of

(C++ struct), 1098
hpx::execution::experimental::is_receiver_of_v

(C++ member), 1098
hpx::execution::experimental::is_receiver_v

(C++ member), 1098
hpx::execution::experimental::is_scheduling_property<with_processing_units_count_t>

(C++ struct), 1079
hpx::execution::experimental::is_two_way_executor<compute::host::block_executor<Executor>>

(C++ struct), 1017
hpx::execution::experimental::is_two_way_executor<hpx::resiliency::experimental::replay_executor<BaseExecutor,

Validator>> (C++ struct), 1162
hpx::execution::experimental::is_two_way_executor<hpx::resiliency::experimental::replicate_executor<BaseExecutor,

Voter, Validator>> (C++ struct), 1165
hpx::execution::experimental::join_executor_parameters

(C++ function), 1077
hpx::execution::experimental::main_pool_executor

(C++ struct), 1193
hpx::execution::experimental::main_pool_executor::main_pool_executor

(C++ function), 1194
hpx::execution::experimental::mark_begin_execution

(C++ member), 1078
hpx::execution::experimental::mark_begin_execution_t

(C++ struct), 1079
hpx::execution::experimental::mark_begin_execution_t::tag_fallback_invoke

(C++ function), 1079
hpx::execution::experimental::mark_end_execution

(C++ member), 1078
hpx::execution::experimental::mark_end_execution_t

1880 Index

HPX Documentation, master

(C++ struct), 1079
hpx::execution::experimental::mark_end_execution_t::tag_fallback_invoke

(C++ function), 1080
hpx::execution::experimental::mark_end_of_scheduling

(C++ member), 1078
hpx::execution::experimental::mark_end_of_scheduling_t

(C++ struct), 1080
hpx::execution::experimental::mark_end_of_scheduling_t::tag_fallback_invoke

(C++ function), 1080
hpx::execution::experimental::maximal_number_of_chunks

(C++ member), 1078
hpx::execution::experimental::maximal_number_of_chunks_t

(C++ struct), 1080
hpx::execution::experimental::maximal_number_of_chunks_t::tag_fallback_invoke

(C++ function), 1080
hpx::execution::experimental::measure_iteration

(C++ member), 1078
hpx::execution::experimental::measure_iteration_t

(C++ struct), 1080
hpx::execution::experimental::measure_iteration_t::tag_fallback_invoke

(C++ function), 1081
hpx::execution::experimental::null_parameters

(C++ member), 1078
hpx::execution::experimental::null_parameters_t

(C++ struct), 1081
hpx::execution::experimental::num_cores

(C++ struct), 1083
hpx::execution::experimental::num_cores::num_cores

(C++ function), 1083
hpx::execution::experimental::parcel_pool_executor

(C++ struct), 1194
hpx::execution::experimental::parcel_pool_executor::parcel_pool_executor

(C++ function), 1194
hpx::execution::experimental::persistent_auto_chunk_size

(C++ struct), 1084
hpx::execution::experimental::persistent_auto_chunk_size::persistent_auto_chunk_size

(C++ function), 1084
hpx::execution::experimental::PhonyNameDueToError::type

(C++ type), 1019, 1101
hpx::execution::experimental::processing_units_count

(C++ member), 1078
hpx::execution::experimental::processing_units_count_t

(C++ struct), 1081
hpx::execution::experimental::processing_units_count_t::tag_fallback_invoke

(C++ function), 1081
hpx::execution::experimental::rebind_executor

(C++ struct), 1087
hpx::execution::experimental::rebind_executor::type

(C++ type), 1088
hpx::execution::experimental::rebind_executor_t

(C++ type), 1087
hpx::execution::experimental::reset_thread_distribution

(C++ member), 1078
hpx::execution::experimental::reset_thread_distribution_t

(C++ struct), 1082
hpx::execution::experimental::reset_thread_distribution_t::tag_fallback_invoke

(C++ function), 1082
hpx::execution::experimental::restricted_policy_executor

(C++ class), 1114
hpx::execution::experimental::restricted_policy_executor::embedded_executor

(C++ type), 1115
hpx::execution::experimental::restricted_policy_executor::exec_

(C++ member), 1115
hpx::execution::experimental::restricted_policy_executor::execution_category

(C++ type), 1114
hpx::execution::experimental::restricted_policy_executor::executor_parameters_type

(C++ type), 1114
hpx::execution::experimental::restricted_policy_executor::first_thread_

(C++ member), 1115
hpx::execution::experimental::restricted_policy_executor::hierarchical_threshold_default_

(C++ member), 1115
hpx::execution::experimental::restricted_policy_executor::operator=

(C++ function), 1114
hpx::execution::experimental::restricted_policy_executor::os_thread_

(C++ member), 1115
hpx::execution::experimental::restricted_policy_executor::restricted_policy_executor

(C++ function), 1114
hpx::execution::experimental::restricted_thread_pool_executor

(C++ type), 1114
hpx::execution::experimental::scheduler_executor

(C++ function), 1115
hpx::execution::experimental::scheduler_executor

(C++ struct), 1115
hpx::execution::experimental::sequential_executor_parameters

(C++ struct), 1101
hpx::execution::experimental::service_executor

(C++ struct), 1194
hpx::execution::experimental::service_executor::service_executor

(C++ function), 1194
hpx::execution::experimental::service_executor_type

(C++ enum), 1193
hpx::execution::experimental::service_executor_type::io_thread_pool

(C++ enumerator), 1193
hpx::execution::experimental::service_executor_type::main_thread

(C++ enumerator), 1193
hpx::execution::experimental::service_executor_type::parcel_thread_pool

(C++ enumerator), 1193
hpx::execution::experimental::service_executor_type::timer_thread_pool

(C++ enumerator), 1193
hpx::execution::experimental::set_error

(C++ function), 1097
hpx::execution::experimental::set_error

(C++ member), 1098
hpx::execution::experimental::set_error_t

(C++ struct), 1099
hpx::execution::experimental::set_scheduler_mode

(C++ member), 1075
hpx::execution::experimental::set_scheduler_mode_t

Index 1881

HPX Documentation, master

(C++ struct), 1076
hpx::execution::experimental::set_scheduler_mode_t::tag_fallback_invoke

(C++ function), 1077
hpx::execution::experimental::set_scheduler_mode_t::tag_invoke

(C++ function), 1077
hpx::execution::experimental::set_stopped

(C++ function), 1097
hpx::execution::experimental::set_stopped

(C++ member), 1098
hpx::execution::experimental::set_stopped_t

(C++ struct), 1099
hpx::execution::experimental::set_value

(C++ function), 1097
hpx::execution::experimental::set_value

(C++ member), 1098
hpx::execution::experimental::set_value_t

(C++ struct), 1099
hpx::execution::experimental::static_chunk_size

(C++ struct), 1088
hpx::execution::experimental::static_chunk_size::static_chunk_size

(C++ function), 1088
hpx::execution::experimental::tag_fallback_invoke

(C++ function), 1102, 1109
hpx::execution::experimental::tag_invoke

(C++ function), 1102, 1106, 1109, 1110, 1115,
1117

hpx::execution::experimental::thread_pool_policy_scheduler
(C++ struct), 1117

hpx::execution::experimental::thread_pool_policy_scheduler::execution_category
(C++ type), 1117

hpx::execution::experimental::thread_pool_policy_scheduler::thread_pool_policy_scheduler
(C++ function), 1117

hpx::execution::experimental::thread_pool_scheduler
(C++ type), 1117

hpx::execution::experimental::timer_pool_executor
(C++ struct), 1194

hpx::execution::experimental::timer_pool_executor::timer_pool_executor
(C++ function), 1194

hpx::execution::experimental::to_non_par
(C++ member), 1106

hpx::execution::experimental::to_non_par_t
(C++ struct), 1107

hpx::execution::experimental::to_non_par_t::tag_fallback_invoke
(C++ function), 1107

hpx::execution::experimental::to_non_task
(C++ member), 1106

hpx::execution::experimental::to_non_task_t
(C++ struct), 1107

hpx::execution::experimental::to_non_task_t::tag_fallback_invoke
(C++ function), 1108

hpx::execution::experimental::to_non_unseq
(C++ member), 1107

hpx::execution::experimental::to_non_unseq_t
(C++ struct), 1108

hpx::execution::experimental::to_non_unseq_t::tag_fallback_invoke
(C++ function), 1108

hpx::execution::experimental::to_par (C++
member), 1106

hpx::execution::experimental::to_par_t (C++
struct), 1108

hpx::execution::experimental::to_par_t::tag_fallback_invoke
(C++ function), 1108

hpx::execution::experimental::to_task (C++
member), 1107

hpx::execution::experimental::to_task_t
(C++ struct), 1108

hpx::execution::experimental::to_task_t::tag_fallback_invoke
(C++ function), 1108

hpx::execution::experimental::to_unseq (C++
member), 1107

hpx::execution::experimental::to_unseq_t
(C++ struct), 1108

hpx::execution::experimental::to_unseq_t::tag_fallback_invoke
(C++ function), 1108

hpx::execution::experimental::with_processing_units_count
(C++ member), 1078

hpx::execution::experimental::with_processing_units_count_t
(C++ struct), 1082

hpx::execution::instead (C++ type), 1072
hpx::execution::non_task (C++ member), 1105
hpx::execution::non_task_policy_tag (C++

struct), 1105
hpx::execution::par (C++ member), 1105
hpx::execution::par_unseq (C++ member), 1105
hpx::execution::parallel_execution_tag (C++

struct), 1090
hpx::execution::parallel_executor (C++ type),

1111
hpx::execution::parallel_policy (C++ type),

1104
hpx::execution::parallel_policy_executor

(C++ struct), 1111
hpx::execution::parallel_policy_executor::execution_category

(C++ type), 1111
hpx::execution::parallel_policy_executor::executor_parameters_type

(C++ type), 1111
hpx::execution::parallel_policy_executor::parallel_policy_executor

(C++ function), 1112
hpx::execution::parallel_policy_executor::processing_units_count

(C++ function), 1112
hpx::execution::parallel_policy_executor::set_hierarchical_threshold

(C++ function), 1112
hpx::execution::parallel_policy_executor::tag_invoke

(C++ function), 1113
hpx::execution::parallel_task_policy (C++

type), 1104
hpx::execution::parallel_unsequenced_policy

(C++ type), 1105

1882 Index

HPX Documentation, master

hpx::execution::parallel_unsequenced_task_policy
(C++ type), 1104

hpx::execution::seq (C++ member), 1105
hpx::execution::sequenced_execution_tag

(C++ struct), 1090
hpx::execution::sequenced_executor (C++

struct), 1116
hpx::execution::sequenced_policy (C++ type),

1104
hpx::execution::sequenced_task_policy (C++

type), 1104
hpx::execution::tag_invoke (C++ function), 1111
hpx::execution::task (C++ member), 1105
hpx::execution::task_policy_tag (C++ struct),

1105
hpx::execution::unseq (C++ member), 1105
hpx::execution::unsequenced_execution_tag

(C++ struct), 1091
hpx::execution::unsequenced_policy (C++ type),

1105
hpx::execution::unsequenced_task_policy

(C++ type), 1105
hpx::experimental (C++ type), 347, 348, 353, 407,

417–419, 421–426, 493, 542, 1134, 1135, 1245
hpx::experimental::define_task_block (C++

function), 348
hpx::experimental::define_task_block_restore_thread

(C++ function), 349
hpx::experimental::for_loop (C++ function), 407
hpx::experimental::for_loop_n (C++ function),

412
hpx::experimental::for_loop_n_strided (C++

function), 415
hpx::experimental::for_loop_strided (C++

function), 410
hpx::experimental::induction (C++ function), 418
hpx::experimental::reduce_by_key (C++ func-

tion), 493
hpx::experimental::reduction (C++ function),

418, 419
hpx::experimental::reduction_bit_and (C++

function), 420
hpx::experimental::reduction_bit_or (C++

function), 421
hpx::experimental::reduction_bit_xor (C++

function), 422, 423
hpx::experimental::reduction_max (C++ func-

tion), 423, 424
hpx::experimental::reduction_min (C++ func-

tion), 424, 425
hpx::experimental::reduction_multiplies

(C++ function), 425, 426
hpx::experimental::reduction_plus (C++ func-

tion), 427

hpx::experimental::run_on_all (C++ function),
347

hpx::experimental::scope_exit (C++ function),
1135

hpx::experimental::scope_fail (C++ function),
1135

hpx::experimental::scope_success (C++ func-
tion), 1136

hpx::experimental::sort_by_key (C++ function),
542

hpx::experimental::task_block (C++ class), 349
hpx::experimental::task_block::execution_policy

(C++ type), 350
hpx::experimental::task_block::get_execution_policy

(C++ function), 350
hpx::experimental::task_block::id_ (C++ mem-

ber), 352
hpx::experimental::task_block::policy (C++

function), 352
hpx::experimental::task_block::policy_ (C++

member), 352
hpx::experimental::task_block::run (C++ func-

tion), 350, 351
hpx::experimental::task_block::tasks_ (C++

member), 352
hpx::experimental::task_block::wait (C++

function), 351
hpx::experimental::task_canceled_exception

(C++ class), 352
hpx::experimental::task_canceled_exception::task_canceled_exception

(C++ function), 352
hpx::experimental::task_group (C++ class), 353
hpx::experimental::task_group::~task_group

(C++ function), 354
hpx::experimental::task_group::add_exception

(C++ function), 354
hpx::experimental::task_group::errors_ (C++

member), 355
hpx::experimental::task_group::has_arrived_

(C++ member), 355
hpx::experimental::task_group::latch_ (C++

member), 355
hpx::experimental::task_group::operator=

(C++ function), 354
hpx::experimental::task_group::run (C++ func-

tion), 354
hpx::experimental::task_group::serialize

(C++ function), 355
hpx::experimental::task_group::shared_state_type

(C++ type), 354
hpx::experimental::task_group::state_ (C++

member), 355
hpx::experimental::task_group::task_group

(C++ function), 354

Index 1883

HPX Documentation, master

hpx::experimental::task_group::wait (C++
function), 354

hpx::filesystem (C++ type), 1118
hpx::filesystem::basename (C++ function), 1118
hpx::filesystem::canonical (C++ function), 1118
hpx::filesystem::initial_path (C++ function),

1118
hpx::filesystem_error (C++ member), 1059
hpx::fill (C++ function), 389, 390
hpx::fill_n (C++ function), 390, 391
hpx::finalize (C++ function), 1452, 1453
hpx::find (C++ function), 392
hpx::find_all_from_basename (C++ function),

1413, 1414
hpx::find_all_localities (C++ function), 1510,

1512
hpx::find_end (C++ function), 396–399
hpx::find_first_of (C++ function), 399, 401–403
hpx::find_from_basename (C++ function), 1414,

1415
hpx::find_here (C++ function), 1512
hpx::find_if (C++ function), 393, 394
hpx::find_if_not (C++ function), 394, 395
hpx::find_locality (C++ function), 1514
hpx::find_remote_localities (C++ function),

1511, 1513
hpx::find_root_locality (C++ function), 1510
hpx::for_each (C++ function), 404
hpx::for_each_n (C++ function), 405, 406
hpx::forward_as_tuple (C++ function), 1047
hpx::function (C++ class), 1122
hpx::function_ref (C++ class), 1123
hpx::function_ref<R(Ts...)> (C++ class), 1124
hpx::function_ref<R(Ts...)>::assign (C++

function), 1124
hpx::function_ref<R(Ts...)>::function_ref

(C++ function), 1124
hpx::function_ref<R(Ts...)>::get_function_address

(C++ function), 1124
hpx::function_ref<R(Ts...)>::get_function_annotation

(C++ function), 1124
hpx::function_ref<R(Ts...)>::get_function_annotation_itt

(C++ function), 1124
hpx::function_ref<R(Ts...)>::get_vtable

(C++ function), 1125
hpx::function_ref<R(Ts...)>::object (C++

member), 1124
hpx::function_ref<R(Ts...)>::operator()

(C++ function), 1124
hpx::function_ref<R(Ts...)>::operator= (C++

function), 1124
hpx::function_ref<R(Ts...)>::swap (C++ func-

tion), 1124

hpx::function_ref<R(Ts...)>::vptr (C++ mem-
ber), 1124

hpx::function_ref<R(Ts...)>::VTable (C++
type), 1125

hpx::function<R(Ts...), Serializable> (C++
class), 1122

hpx::function<R(Ts...),
Serializable>::~function (C++ func-
tion), 1122

hpx::function<R(Ts...),
Serializable>::base_type (C++ type),
1123

hpx::function<R(Ts...),
Serializable>::function (C++ func-
tion), 1122

hpx::function<R(Ts...),
Serializable>::operator= (C++ func-
tion), 1122, 1123

hpx::function<R(Ts...),
Serializable>::result_type (C++
type), 1122

hpx::functional (C++ type), 1126, 1159
hpx::functional::invoke (C++ struct), 1126
hpx::functional::invoke::operator() (C++

function), 1126
hpx::functional::invoke_r (C++ struct), 1126
hpx::functional::invoke_r::operator() (C++

function), 1126
hpx::functional::unwrap (C++ struct), 1159
hpx::functional::unwrap_all (C++ struct), 1159
hpx::functional::unwrap_n (C++ struct), 1159
hpx::future (C++ class), 1139, 1145
hpx::future::~future (C++ function), 1140
hpx::future::base_type (C++ type), 1142
hpx::future::future (C++ function), 1140, 1142
hpx::future::get (C++ function), 1140
hpx::future::operator= (C++ function), 1140
hpx::future::result_type (C++ type), 1140
hpx::future::share (C++ function), 1140
hpx::future::shared_state_type (C++ type), 1140
hpx::future::then (C++ function), 1140, 1141
hpx::future::then_alloc (C++ function), 1141
hpx::future_already_retrieved (C++ member),

1059
hpx::future_can_not_be_cancelled (C++ mem-

ber), 1059
hpx::future_cancelled (C++ member), 1059
hpx::future_does_not_support_cancellation

(C++ member), 1059
hpx::generate (C++ function), 428
hpx::generate_n (C++ function), 429, 430
hpx::get (C++ function), 1047
hpx::get_colocation_id (C++ function), 1335
hpx::get_error (C++ function), 1064

1884 Index

HPX Documentation, master

hpx::get_error_backtrace (C++ function), 1176
hpx::get_error_config (C++ function), 1178
hpx::get_error_env (C++ function), 1175
hpx::get_error_file_name (C++ function), 1065
hpx::get_error_function_name (C++ function),

1064
hpx::get_error_host_name (C++ function), 1174
hpx::get_error_line_number (C++ function), 1065
hpx::get_error_locality_id (C++ function), 1174
hpx::get_error_name (C++ function), 1057
hpx::get_error_os_thread (C++ function), 1176
hpx::get_error_process_id (C++ function), 1175
hpx::get_error_state (C++ function), 1178
hpx::get_error_thread_description (C++ func-

tion), 1177
hpx::get_error_thread_id (C++ function), 1177
hpx::get_error_what (C++ function), 1063
hpx::get_hpx_category (C++ function), 1060
hpx::get_hpx_rethrow_category (C++ function),

1060
hpx::get_initial_num_localities (C++ function),

1180
hpx::get_local_worker_thread_num (C++ func-

tion), 1278, 1279
hpx::get_locality (C++ function), 1518
hpx::get_locality_id (C++ function), 1179
hpx::get_locality_name (C++ function), 1179, 1515
hpx::get_lva (C++ struct), 1435
hpx::get_lva::call (C++ function), 1435
hpx::get_lva<hpx::lcos::base_lco const>

(C++ struct), 1337
hpx::get_lva<hpx::lcos::base_lco

const>::call (C++ function), 1337
hpx::get_lva<hpx::lcos::base_lco> (C++ struct),

1337
hpx::get_lva<hpx::lcos::base_lco>::call

(C++ function), 1337
hpx::get_num_localities (C++ function), 1180,

1515
hpx::get_num_worker_threads (C++ function), 1192
hpx::get_os_thread_count (C++ function), 1181
hpx::get_os_thread_data (C++ function), 1191
hpx::get_ptr (C++ function), 1422–1424
hpx::get_runtime_distributed (C++ function),

1518
hpx::get_runtime_distributed_ptr (C++ func-

tion), 1518
hpx::get_runtime_instance_number (C++ func-

tion), 1191
hpx::get_runtime_mode_from_name (C++ function),

1172
hpx::get_runtime_mode_name (C++ function), 1172
hpx::get_runtime_support_ptr (C++ function),

1496

hpx::get_system_uptime (C++ function), 1192
hpx::get_thread_name (C++ function), 1182
hpx::get_thread_on_error_func (C++ function),

1197
hpx::get_thread_on_start_func (C++ function),

1197
hpx::get_thread_on_stop_func (C++ function),

1197
hpx::get_thread_pool_num (C++ function), 1279
hpx::get_worker_thread_num (C++ function), 1278
hpx::ignore (C++ member), 1047
hpx::includes (C++ function), 431, 432
hpx::inclusive_scan (C++ function), 433–438
hpx::init (C++ function), 1455–1458
hpx::init_params (C++ struct), 1458
hpx::init_params::cfg (C++ member), 1459
hpx::init_params::desc_cmdline (C++ member),

1459
hpx::init_params::init_params (C++ function),

1459
hpx::init_params::mode (C++ member), 1459
hpx::init_params::rp_callback (C++ member),

1459
hpx::init_params::rp_mode (C++ member), 1459
hpx::init_params::shutdown (C++ member), 1459
hpx::init_params::startup (C++ member), 1459
hpx::inplace_merge (C++ function), 456, 457
hpx::internal_server_error (C++ member), 1058
hpx::invalid_data (C++ member), 1058
hpx::invalid_status (C++ member), 1057
hpx::invoke (C++ function), 1125
hpx::invoke_fused (C++ function), 1127
hpx::invoke_fused_r (C++ function), 1127
hpx::invoke_r (C++ function), 1125
hpx::is_async_execution_policy (C++ struct),

1089
hpx::is_async_execution_policy_v (C++ mem-

ber), 1089
hpx::is_bind_expression (C++ struct), 1136
hpx::is_bind_expression_v (C++ member), 1136
hpx::is_bind_expression<T const> (C++ struct),

1136
hpx::is_execution_policy (C++ struct), 1089
hpx::is_execution_policy_v (C++ member), 1089
hpx::is_heap (C++ function), 440, 441
hpx::is_heap_until (C++ function), 441, 442
hpx::is_invocable (C++ struct), 1248
hpx::is_invocable_r (C++ struct), 1248
hpx::is_invocable_r_v (C++ member), 1248
hpx::is_invocable_v (C++ member), 1248
hpx::is_nothrow_invocable (C++ struct), 1249
hpx::is_nothrow_invocable_v (C++ member), 1248
hpx::is_parallel_execution_policy (C++ struct),

1089

Index 1885

HPX Documentation, master

hpx::is_parallel_execution_policy_v (C++
member), 1089

hpx::is_partitioned (C++ function), 443
hpx::is_placeholder (C++ struct), 1137
hpx::is_running (C++ function), 1192
hpx::is_sequenced_execution_policy (C++

struct), 1090
hpx::is_sequenced_execution_policy_v (C++

member), 1089
hpx::is_sorted (C++ function), 445
hpx::is_sorted_until (C++ function), 446, 447
hpx::is_starting (C++ function), 1191
hpx::is_stopped (C++ function), 1192
hpx::is_stopped_or_shutting_down (C++ func-

tion), 1192
hpx::jthread (C++ class), 1253
hpx::jthread::~jthread (C++ function), 1254
hpx::jthread::detach (C++ function), 1254
hpx::jthread::get_id (C++ function), 1254
hpx::jthread::get_stop_source (C++ function),

1254
hpx::jthread::get_stop_token (C++ function),

1254
hpx::jthread::hardware_concurrency (C++ func-

tion), 1254
hpx::jthread::id (C++ type), 1253
hpx::jthread::invoke (C++ function), 1255
hpx::jthread::join (C++ function), 1254
hpx::jthread::joinable (C++ function), 1254
hpx::jthread::jthread (C++ function), 1254
hpx::jthread::native_handle (C++ function), 1254
hpx::jthread::native_handle_type (C++ type),

1253
hpx::jthread::operator= (C++ function), 1254
hpx::jthread::request_stop (C++ function), 1254
hpx::jthread::ssource_ (C++ member), 1255
hpx::jthread::swap (C++ function), 1254
hpx::jthread::thread_ (C++ member), 1255
hpx::kernel_error (C++ member), 1058
hpx::latch (C++ class), 1226
hpx::latch::~latch (C++ function), 1227
hpx::latch::arrive_and_wait (C++ function), 1227
hpx::latch::cond_ (C++ member), 1228
hpx::latch::count_down (C++ function), 1227
hpx::latch::counter_ (C++ member), 1228
hpx::latch::latch (C++ function), 1227
hpx::latch::mtx_ (C++ member), 1228
hpx::latch::mutex_type (C++ type), 1228
hpx::latch::notified_ (C++ member), 1228
hpx::latch::operator= (C++ function), 1227
hpx::latch::try_wait (C++ function), 1227
hpx::latch::wait (C++ function), 1227
hpx::launch (C++ struct), 966
hpx::launch::apply (C++ member), 967

hpx::launch::async (C++ member), 966
hpx::launch::deferred (C++ member), 967
hpx::launch::fork (C++ member), 966
hpx::launch::launch (C++ function), 966
hpx::launch::select (C++ member), 967
hpx::launch::sync (C++ member), 966
hpx::launch::tag_invoke (C++ function), 967
hpx::lcos (C++ type), 1144, 1145, 1153, 1225, 1228,

1337, 1340, 1344, 1380, 1390, 1407, 1421
hpx::lcos::base_lco (C++ class), 1337
hpx::lcos::base_lco::~base_lco (C++ function),

1338
hpx::lcos::base_lco::base_type_holder (C++

type), 1338
hpx::lcos::base_lco::connect (C++ function),

1338
hpx::lcos::base_lco::connect_nonvirt (C++

function), 1338
hpx::lcos::base_lco::disconnect (C++ function),

1338
hpx::lcos::base_lco::disconnect_nonvirt

(C++ function), 1338
hpx::lcos::base_lco::disconnect_nonvirt

(C++ member), 1339
hpx::lcos::base_lco::get_component_type

(C++ function), 1339
hpx::lcos::base_lco::set_component_type

(C++ function), 1339
hpx::lcos::base_lco::set_event (C++ function),

1338
hpx::lcos::base_lco::set_event_nonvirt (C++

function), 1338
hpx::lcos::base_lco::set_exception (C++ func-

tion), 1338
hpx::lcos::base_lco::set_exception_nonvirt

(C++ function), 1338
hpx::lcos::base_lco::wrapping_type (C++ type),

1338
hpx::lcos::base_lco_with_value (C++ class),

1340, 1344
hpx::lcos::base_lco_with_value::~base_lco_with_value

(C++ function), 1341
hpx::lcos::base_lco_with_value::base_type_holder

(C++ type), 1340
hpx::lcos::base_lco_with_value::get_component_type

(C++ function), 1341
hpx::lcos::base_lco_with_value::get_value

(C++ function), 1341
hpx::lcos::base_lco_with_value::get_value_nonvirt

(C++ function), 1340
hpx::lcos::base_lco_with_value::result_type

(C++ type), 1341
hpx::lcos::base_lco_with_value::set_component_type

(C++ function), 1341

1886 Index

HPX Documentation, master

hpx::lcos::base_lco_with_value::set_event
(C++ function), 1341

hpx::lcos::base_lco_with_value::set_value
(C++ function), 1341

hpx::lcos::base_lco_with_value::set_value_nonvirt
(C++ function), 1340

hpx::lcos::base_lco_with_value::wrapping_type
(C++ type), 1340

hpx::lcos::base_lco_with_value<void, void,
ComponentTag> (C++ class), 1341

hpx::lcos::base_lco_with_value<void, void,
ComponentTag>::~base_lco_with_value
(C++ function), 1342

hpx::lcos::base_lco_with_value<void, void,
ComponentTag>::base_type_holder (C++
type), 1342

hpx::lcos::base_lco_with_value<void, void,
ComponentTag>::get_value (C++ func-
tion), 1342

hpx::lcos::base_lco_with_value<void, void,
ComponentTag>::set_value_action (C++
type), 1342

hpx::lcos::base_lco_with_value<void, void,
ComponentTag>::wrapping_type (C++
type), 1342

hpx::lcos::local (C++ type), 1153, 1225, 1228
hpx::lcos::local::base_trigger (C++ struct),

1153
hpx::lcos::local::base_trigger::base_trigger

(C++ function), 1153
hpx::lcos::local::base_trigger::condition_list_entry

(C++ struct), 1154
hpx::lcos::local::base_trigger::condition_list_entry::condition_list_entry

(C++ function), 1154
hpx::lcos::local::base_trigger::condition_list_entry::next

(C++ member), 1154
hpx::lcos::local::base_trigger::condition_list_entry::prev

(C++ member), 1154
hpx::lcos::local::base_trigger::condition_list_type

(C++ type), 1154
hpx::lcos::local::base_trigger::conditions_

(C++ member), 1154
hpx::lcos::local::base_trigger::generation

(C++ function), 1153
hpx::lcos::local::base_trigger::generation_

(C++ member), 1154
hpx::lcos::local::base_trigger::get_future

(C++ function), 1153
hpx::lcos::local::base_trigger::manage_condition

(C++ struct), 1154
hpx::lcos::local::base_trigger::manage_condition::~manage_condition

(C++ function), 1155
hpx::lcos::local::base_trigger::manage_condition::e_

(C++ member), 1155

hpx::lcos::local::base_trigger::manage_condition::get_future
(C++ function), 1155

hpx::lcos::local::base_trigger::manage_condition::manage_condition
(C++ function), 1155

hpx::lcos::local::base_trigger::manage_condition::this_
(C++ member), 1155

hpx::lcos::local::base_trigger::mtx_ (C++
member), 1154

hpx::lcos::local::base_trigger::mutex_type
(C++ type), 1153

hpx::lcos::local::base_trigger::next_generation
(C++ function), 1153

hpx::lcos::local::base_trigger::operator=
(C++ function), 1153

hpx::lcos::local::base_trigger::promise_
(C++ member), 1154

hpx::lcos::local::base_trigger::set (C++
function), 1153

hpx::lcos::local::base_trigger::synchronize
(C++ function), 1153, 1154

hpx::lcos::local::base_trigger::test_condition
(C++ function), 1154

hpx::lcos::local::base_trigger::trigger_conditions
(C++ function), 1154

hpx::lcos::local::event (C++ class), 1225
hpx::lcos::local::event::cond_ (C++ member),

1226
hpx::lcos::local::event::event (C++ function),

1225
hpx::lcos::local::event::event_ (C++ member),

1226
hpx::lcos::local::event::mtx_ (C++ member),

1226
hpx::lcos::local::event::mutex_type (C++

type), 1226
hpx::lcos::local::event::occurred (C++ func-

tion), 1225
hpx::lcos::local::event::reset (C++ function),

1225
hpx::lcos::local::event::set (C++ function),

1225
hpx::lcos::local::event::set_locked (C++

function), 1226
hpx::lcos::local::event::wait (C++ function),

1225
hpx::lcos::local::event::wait_locked (C++

function), 1226
hpx::lcos::local::latch (C++ class), 1228
hpx::lcos::local::latch::~latch (C++ function),

1228
hpx::lcos::local::latch::abort_all (C++ func-

tion), 1229
hpx::lcos::local::latch::count_down_and_wait

(C++ function), 1229

Index 1887

HPX Documentation, master

hpx::lcos::local::latch::count_up (C++ func-
tion), 1229

hpx::lcos::local::latch::HPX_NON_COPYABLE
(C++ function), 1228

hpx::lcos::local::latch::is_ready (C++ func-
tion), 1229

hpx::lcos::local::latch::latch (C++ function),
1228

hpx::lcos::local::latch::reset (C++ function),
1229

hpx::lcos::local::latch::reset_if_needed_and_count_up
(C++ function), 1229

hpx::lcos::local::trigger (C++ struct), 1155
hpx::lcos::local::trigger::base_type (C++

type), 1155
hpx::lcos::local::trigger::operator= (C++

function), 1155
hpx::lcos::local::trigger::synchronize (C++

function), 1155
hpx::lcos::local::trigger::trigger (C++ func-

tion), 1155
hpx::lcos::packaged_action (C++ class), 1344
hpx::lcos::packaged_action<Action, Result,

false> (C++ class), 1344
hpx::lcos::packaged_action<Action, Result,

false>::action_type (C++ type), 1346
hpx::lcos::packaged_action<Action, Result,

false>::base_type (C++ type), 1346
hpx::lcos::packaged_action<Action, Result,

false>::do_post (C++ function), 1346
hpx::lcos::packaged_action<Action, Result,

false>::do_post_cb (C++ function), 1346
hpx::lcos::packaged_action<Action, Result,

false>::packaged_action (C++ function),
1345

hpx::lcos::packaged_action<Action, Result,
false>::post (C++ function), 1345

hpx::lcos::packaged_action<Action, Result,
false>::post_cb (C++ function), 1345

hpx::lcos::packaged_action<Action, Result,
false>::post_deferred (C++ function),
1345

hpx::lcos::packaged_action<Action, Result,
false>::post_deferred_cb (C++ func-
tion), 1345

hpx::lcos::packaged_action<Action, Result,
false>::post_p (C++ function), 1345

hpx::lcos::packaged_action<Action, Result,
false>::post_p_cb (C++ function), 1345

hpx::lcos::packaged_action<Action, Result,
false>::remote_result_type (C++ type),
1346

hpx::lcos::packaged_action<Action, Result,
true> (C++ class), 1346

hpx::lcos::packaged_action<Action, Result,
true>::action_type (C++ type), 1347

hpx::lcos::packaged_action<Action, Result,
true>::packaged_action (C++ function),
1346

hpx::lcos::packaged_action<Action, Result,
true>::post (C++ function), 1346

hpx::lcos::packaged_action<Action, Result,
true>::post_cb (C++ function), 1346

hpx::length_error (C++ member), 1060
hpx::lexicographical_compare (C++ function),

449, 450
hpx::local_new (C++ function), 1497
hpx::lock_error (C++ member), 1058
hpx::make_any (C++ function), 1050
hpx::make_any_nonser (C++ function), 1039
hpx::make_error_code (C++ function), 1060
hpx::make_exceptional_future (C++ function),

1139
hpx::make_future (C++ function), 1138
hpx::make_heap (C++ function), 451–454
hpx::make_ready_future (C++ function), 1138, 1139
hpx::make_ready_future_after (C++ function),

1139
hpx::make_ready_future_alloc (C++ function),

1138, 1139
hpx::make_ready_future_at (C++ function), 1139
hpx::make_shared_future (C++ function), 1138
hpx::make_success_code (C++ function), 1060
hpx::make_tuple (C++ function), 1047
hpx::make_unique_any_nonser (C++ function), 1039
hpx::max_element (C++ function), 460, 461
hpx::mem_fn (C++ function), 1128, 1129
hpx::merge (C++ function), 454, 455
hpx::migration_needs_retry (C++ member), 1060
hpx::min_element (C++ function), 458, 459
hpx::minmax_element (C++ function), 461, 462
hpx::mismatch (C++ function), 464–466, 468–472
hpx::move (C++ function), 473
hpx::move_only_function (C++ class), 1130
hpx::move_only_function<R(Ts...),

Serializable> (C++ class), 1130
hpx::move_only_function<R(Ts...),

Serializable>::~move_only_function
(C++ function), 1130

hpx::move_only_function<R(Ts...),
Serializable>::base_type (C++ type),
1131

hpx::move_only_function<R(Ts...),
Serializable>::move_only_function
(C++ function), 1130

hpx::move_only_function<R(Ts...),
Serializable>::operator= (C++ func-
tion), 1130, 1131

1888 Index

HPX Documentation, master

hpx::move_only_function<R(Ts...),
Serializable>::result_type (C++
type), 1130

hpx::mpi (C++ type), 989, 990
hpx::mpi::experimental (C++ type), 989, 990
hpx::mpi::experimental::executor (C++ struct),

989
hpx::mpi::experimental::executor::communicator_

(C++ member), 989
hpx::mpi::experimental::executor::execution_category

(C++ type), 989
hpx::mpi::experimental::executor::executor

(C++ function), 989
hpx::mpi::experimental::executor::executor_parameters_type

(C++ type), 989
hpx::mpi::experimental::executor::in_flight_estimate

(C++ function), 989
hpx::mpi::experimental::executor::tag_invoke

(C++ function), 989
hpx::mpi::experimental::transform_mpi (C++

member), 990
hpx::mpi::experimental::transform_mpi_t

(C++ struct), 990
hpx::mutex (C++ class), 1230
hpx::mutex::~mutex (C++ function), 1230
hpx::mutex::HPX_NON_COPYABLE (C++ function),

1230
hpx::mutex::lock (C++ function), 1230, 1231
hpx::mutex::mutex (C++ function), 1230
hpx::mutex::try_lock (C++ function), 1231
hpx::mutex::unlock (C++ function), 1232
hpx::naming (C++ type), 1464
hpx::network_error (C++ member), 1057
hpx::new_ (C++ function), 1497–1499
hpx::no_mutex (C++ struct), 1236
hpx::no_mutex::lock (C++ function), 1236
hpx::no_mutex::try_lock (C++ function), 1236
hpx::no_mutex::unlock (C++ function), 1236
hpx::no_registered_console (C++ member), 1058
hpx::no_state (C++ member), 1059
hpx::no_success (C++ member), 1057
hpx::none_of (C++ function), 361, 362
hpx::nostopstate (C++ member), 1242
hpx::nostopstate_t (C++ struct), 1242
hpx::nostopstate_t::nostopstate_t (C++ func-

tion), 1243
hpx::not_implemented (C++ member), 1057
hpx::nth_element (C++ function), 474, 475
hpx::null_thread_id (C++ member), 1058
hpx::once_flag (C++ struct), 1237
hpx::once_flag::call_once (C++ function), 1238
hpx::once_flag::event_ (C++ member), 1238
hpx::once_flag::HPX_NON_COPYABLE (C++ func-

tion), 1238

hpx::once_flag::once_flag (C++ function), 1238
hpx::once_flag::status_ (C++ member), 1238
hpx::operator!= (C++ function), 1057, 1255
hpx::operator== (C++ function), 1057, 1255
hpx::operator& (C++ function), 1057, 1069
hpx::operator|= (C++ function), 1057
hpx::operator> (C++ function), 1255
hpx::operator>= (C++ function), 1057, 1256
hpx::operator< (C++ function), 1057, 1255
hpx::operator<= (C++ function), 1256
hpx::operator<< (C++ function), 962, 1256
hpx::out_of_memory (C++ member), 1057
hpx::out_of_range (C++ member), 1059
hpx::p2300_stop_token (C++ type), 1245
hpx::p2300_stop_token::in_place_stop_callback

(C++ class), 1245
hpx::p2300_stop_token::in_place_stop_callback

(C++ function), 1245
hpx::p2300_stop_token::in_place_stop_source

(C++ class), 1245
hpx::p2300_stop_token::in_place_stop_source::~in_place_stop_source

(C++ function), 1245
hpx::p2300_stop_token::in_place_stop_source::get_token

(C++ function), 1245
hpx::p2300_stop_token::in_place_stop_source::in_place_stop_source

(C++ function), 1245
hpx::p2300_stop_token::in_place_stop_source::operator=

(C++ function), 1245
hpx::p2300_stop_token::in_place_stop_source::register_callback

(C++ function), 1246
hpx::p2300_stop_token::in_place_stop_source::remove_callback

(C++ function), 1246
hpx::p2300_stop_token::in_place_stop_source::request_stop

(C++ function), 1246
hpx::p2300_stop_token::in_place_stop_source::state_

(C++ member), 1246
hpx::p2300_stop_token::in_place_stop_source::stop_possible

(C++ function), 1246
hpx::p2300_stop_token::in_place_stop_source::stop_requested

(C++ function), 1246
hpx::p2300_stop_token::in_place_stop_token

(C++ class), 1246
hpx::p2300_stop_token::in_place_stop_token::~in_place_stop_token

(C++ function), 1246
hpx::p2300_stop_token::in_place_stop_token::callback_type

(C++ type), 1246
hpx::p2300_stop_token::in_place_stop_token::in_place_stop_token

(C++ function), 1246, 1247
hpx::p2300_stop_token::in_place_stop_token::operator=

(C++ function), 1246
hpx::p2300_stop_token::in_place_stop_token::source_

(C++ member), 1247
hpx::p2300_stop_token::in_place_stop_token::stop_possible

(C++ function), 1246

Index 1889

HPX Documentation, master

hpx::p2300_stop_token::in_place_stop_token::stop_requested
(C++ function), 1246

hpx::p2300_stop_token::in_place_stop_token::swap
(C++ function), 1246, 1247

hpx::p2300_stop_token::never_stop_token
(C++ struct), 1247

hpx::p2300_stop_token::never_stop_token::callback_impl
(C++ struct), 1247

hpx::p2300_stop_token::never_stop_token::callback_impl::callback_impl
(C++ function), 1248

hpx::p2300_stop_token::never_stop_token::callback_type
(C++ type), 1247

hpx::p2300_stop_token::never_stop_token::stop_possible
(C++ function), 1247

hpx::p2300_stop_token::never_stop_token::stop_requested
(C++ function), 1247

hpx::packaged_task (C++ class), 1145
hpx::packaged_task<R(Ts...)> (C++ class), 1145
hpx::packaged_task<R(Ts...)>::function_

(C++ member), 1146
hpx::packaged_task<R(Ts...)>::function_type

(C++ type), 1146
hpx::packaged_task<R(Ts...)>::get_future

(C++ function), 1146
hpx::packaged_task<R(Ts...)>::operator()

(C++ function), 1146
hpx::packaged_task<R(Ts...)>::operator=

(C++ function), 1146
hpx::packaged_task<R(Ts...)>::packaged_task

(C++ function), 1146
hpx::packaged_task<R(Ts...)>::promise_ (C++

member), 1146
hpx::packaged_task<R(Ts...)>::reset (C++

function), 1146
hpx::packaged_task<R(Ts...)>::set_exception

(C++ function), 1146
hpx::packaged_task<R(Ts...)>::swap (C++ func-

tion), 1146
hpx::packaged_task<R(Ts...)>::valid (C++

function), 1146
hpx::parallel (C++ type), 352, 957, 1075, 1085, 1091,

1102, 1103, 1113, 1116, 1288, 1289, 1292,
1293, 1531–1536, 1538, 1541

hpx::parallel::execution (C++ type), 1075, 1085,
1091, 1102, 1113, 1116, 1288, 1289, 1292,
1293

hpx::parallel::execution::async_execute
(C++ member), 1091

hpx::parallel::execution::async_execute_after
(C++ member), 1289

hpx::parallel::execution::async_execute_after_t
(C++ struct), 1289

hpx::parallel::execution::async_execute_after_t::tag_fallback_invoke
(C++ function), 1290

hpx::parallel::execution::async_execute_at
(C++ member), 1289

hpx::parallel::execution::async_execute_at_t
(C++ struct), 1290

hpx::parallel::execution::async_execute_at_t::tag_fallback_invoke
(C++ function), 1290

hpx::parallel::execution::async_execute_t
(C++ struct), 1091

hpx::parallel::execution::async_execute_t::tag_fallback_invoke
(C++ function), 1092

hpx::parallel::execution::async_invoke (C++
member), 1091

hpx::parallel::execution::async_invoke_t
(C++ struct), 1092

hpx::parallel::execution::async_invoke_t::tag_fallback_invoke
(C++ function), 1092

hpx::parallel::execution::bulk_async_execute
(C++ member), 1091

hpx::parallel::execution::bulk_async_execute_t
(C++ struct), 1092

hpx::parallel::execution::bulk_async_execute_t::tag_fallback_invoke
(C++ function), 1093

hpx::parallel::execution::bulk_sync_execute
(C++ member), 1091

hpx::parallel::execution::bulk_sync_execute_t
(C++ struct), 1093

hpx::parallel::execution::bulk_sync_execute_t::tag_fallback_invoke
(C++ function), 1094

hpx::parallel::execution::bulk_then_execute
(C++ member), 1091

hpx::parallel::execution::bulk_then_execute_t
(C++ struct), 1094

hpx::parallel::execution::bulk_then_execute_t::tag_fallback_invoke
(C++ function), 1095

hpx::parallel::execution::instead (C++ type),
1103

hpx::parallel::execution::is_timed_executor
(C++ struct), 1293

hpx::parallel::execution::is_timed_executor_t
(C++ type), 1293

hpx::parallel::execution::is_timed_executor_v
(C++ member), 1293

hpx::parallel::execution::parallel_timed_executor
(C++ type), 1293

hpx::parallel::execution::polymorphic_executor
(C++ class), 1085

hpx::parallel::execution::polymorphic_executor<R(Ts...)>
(C++ class), 1085

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::assign
(C++ function), 1086

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::base_type
(C++ type), 1086

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::future_type
(C++ type), 1085

1890 Index

HPX Documentation, master

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::get_empty_vtable
(C++ function), 1086

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::get_vtable
(C++ function), 1086

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::operator=
(C++ function), 1085

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::polymorphic_executor
(C++ function), 1085

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::reset
(C++ function), 1085

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::tag_invoke
(C++ function), 1086

hpx::parallel::execution::polymorphic_executor<R(Ts...)>::vtable
(C++ type), 1086

hpx::parallel::execution::post (C++ member),
1091

hpx::parallel::execution::post_after (C++
member), 1289

hpx::parallel::execution::post_after_t (C++
struct), 1290

hpx::parallel::execution::post_after_t::tag_fallback_invoke
(C++ function), 1291

hpx::parallel::execution::post_at (C++ mem-
ber), 1289

hpx::parallel::execution::post_at_t (C++
struct), 1291

hpx::parallel::execution::post_at_t::tag_fallback_invoke
(C++ function), 1291

hpx::parallel::execution::post_t (C++ struct),
1095

hpx::parallel::execution::post_t::tag_fallback_invoke
(C++ function), 1095

hpx::parallel::execution::sequenced_timed_executor
(C++ type), 1293

hpx::parallel::execution::sync_execute (C++
member), 1091

hpx::parallel::execution::sync_execute_after
(C++ member), 1289

hpx::parallel::execution::sync_execute_after_t
(C++ struct), 1291

hpx::parallel::execution::sync_execute_after_t::tag_fallback_invoke
(C++ function), 1292

hpx::parallel::execution::sync_execute_at
(C++ member), 1289

hpx::parallel::execution::sync_execute_at_t
(C++ struct), 1292

hpx::parallel::execution::sync_execute_at_t::tag_fallback_invoke
(C++ function), 1292

hpx::parallel::execution::sync_execute_t
(C++ struct), 1095

hpx::parallel::execution::sync_execute_t::tag_fallback_invoke
(C++ function), 1096

hpx::parallel::execution::sync_invoke (C++
member), 1091

hpx::parallel::execution::sync_invoke_t
(C++ struct), 1096

hpx::parallel::execution::sync_invoke_t::tag_fallback_invoke
(C++ function), 1096

hpx::parallel::execution::then_execute (C++
member), 1091

hpx::parallel::execution::then_execute_t
(C++ struct), 1096

hpx::parallel::execution::then_execute_t::tag_fallback_invoke
(C++ function), 1097

hpx::parallel::execution::timed_executor
(C++ struct), 1292, 1293

hpx::parallel::instead (C++ type), 352
hpx::parallel::minmax_element_result (C++

type), 1536
hpx::parallel::util (C++ type), 957
hpx::parallel::util::concat (C++ function), 958
hpx::parallel::util::destroy_range (C++ func-

tion), 958
hpx::parallel::util::full_merge (C++ function),

958
hpx::parallel::util::half_merge (C++ function),

959
hpx::parallel::util::in_place_merge (C++

function), 960
hpx::parallel::util::in_place_merge_uncontiguous

(C++ function), 959
hpx::parallel::util::init (C++ function), 958
hpx::parallel::util::init_move (C++ function),

958
hpx::parallel::util::is_mergeable (C++ func-

tion), 958
hpx::parallel::util::merge_flow (C++ function),

960
hpx::parallel::util::range (C++ type), 957
hpx::parallel::util::uninit_full_merge (C++

function), 959
hpx::parallel::util::uninit_move (C++ func-

tion), 958
hpx::parcelset (C++ type), 1465
hpx::parcelset::empty_parcel (C++ member),

1466
hpx::parcelset::get_parcelport_background_mode_name

(C++ function), 1466
hpx::parcelset::operator& (C++ function), 1466
hpx::parcelset::parcel_write_handler_type

(C++ type), 1466
hpx::parcelset::parcelport_background_mode

(C++ enum), 1466
hpx::parcelset::parcelport_background_mode::all

(C++ enumerator), 1466
hpx::parcelset::parcelport_background_mode::flush_buffers

(C++ enumerator), 1466
hpx::parcelset::parcelport_background_mode::receive

Index 1891

HPX Documentation, master

(C++ enumerator), 1466
hpx::parcelset::parcelport_background_mode::send

(C++ enumerator), 1466
hpx::parcelset::parcelport_background_mode_all

(C++ member), 1467
hpx::parcelset::parcelport_background_mode_flush_buffers

(C++ member), 1466
hpx::parcelset::parcelport_background_mode_receive

(C++ member), 1466
hpx::parcelset::parcelport_background_mode_send

(C++ member), 1466
hpx::partial_sort (C++ function), 476, 477
hpx::partial_sort_copy (C++ function), 478, 479
hpx::partition (C++ function), 480, 481
hpx::partition_copy (C++ function), 484, 485
hpx::performance_counters (C++ type), 1467, 1469,

1476, 1485, 1488
hpx::performance_counters::add_counter_type

(C++ function), 1473, 1481
hpx::performance_counters::agas_counter_discoverer

(C++ function), 1468
hpx::performance_counters::agas_raw_counter_creator

(C++ function), 1468
hpx::performance_counters::complement_counter_info

(C++ function), 1480, 1481
hpx::performance_counters::counter_aggregating

(C++ member), 1482
hpx::performance_counters::counter_average_base

(C++ member), 1482
hpx::performance_counters::counter_average_count

(C++ member), 1482
hpx::performance_counters::counter_average_timer

(C++ member), 1482
hpx::performance_counters::counter_elapsed_time

(C++ member), 1482
hpx::performance_counters::counter_histogram

(C++ member), 1482
hpx::performance_counters::counter_info

(C++ struct), 1473
hpx::performance_counters::counter_info::counter_info

(C++ function), 1473
hpx::performance_counters::counter_info::fullname_

(C++ member), 1473
hpx::performance_counters::counter_info::helptext_

(C++ member), 1473
hpx::performance_counters::counter_info::serialize

(C++ function), 1474
hpx::performance_counters::counter_info::status_

(C++ member), 1473
hpx::performance_counters::counter_info::type_

(C++ member), 1473
hpx::performance_counters::counter_info::unit_of_measure_

(C++ member), 1473
hpx::performance_counters::counter_info::version_

(C++ member), 1473
hpx::performance_counters::counter_monotonically_increasing

(C++ member), 1482
hpx::performance_counters::counter_path_elements

(C++ struct), 1474
hpx::performance_counters::counter_path_elements::base_type

(C++ type), 1474
hpx::performance_counters::counter_path_elements::counter_path_elements

(C++ function), 1474
hpx::performance_counters::counter_path_elements::instanceindex_

(C++ member), 1475
hpx::performance_counters::counter_path_elements::instancename_

(C++ member), 1474
hpx::performance_counters::counter_path_elements::parentinstance_is_basename_

(C++ member), 1475
hpx::performance_counters::counter_path_elements::parentinstanceindex_

(C++ member), 1475
hpx::performance_counters::counter_path_elements::parentinstancename_

(C++ member), 1474
hpx::performance_counters::counter_path_elements::serialize

(C++ function), 1475
hpx::performance_counters::counter_path_elements::subinstanceindex_

(C++ member), 1475
hpx::performance_counters::counter_path_elements::subinstancename_

(C++ member), 1474
hpx::performance_counters::counter_prefix

(C++ member), 1473
hpx::performance_counters::counter_prefix_len

(C++ member), 1473
hpx::performance_counters::counter_raw (C++

member), 1482
hpx::performance_counters::counter_raw_values

(C++ member), 1482
hpx::performance_counters::counter_status

(C++ enum), 1471, 1479
hpx::performance_counters::counter_status::already_defined

(C++ enumerator), 1472, 1479
hpx::performance_counters::counter_status::counter_type_unknown

(C++ enumerator), 1472, 1479
hpx::performance_counters::counter_status::counter_unknown

(C++ enumerator), 1472, 1479
hpx::performance_counters::counter_status::generic_error

(C++ enumerator), 1472, 1479
hpx::performance_counters::counter_status::invalid_data

(C++ enumerator), 1472, 1479
hpx::performance_counters::counter_status::new_data

(C++ enumerator), 1472, 1479
hpx::performance_counters::counter_status::valid_data

(C++ enumerator), 1471, 1472, 1479
hpx::performance_counters::counter_text

(C++ member), 1482
hpx::performance_counters::counter_type

(C++ enum), 1469, 1477
hpx::performance_counters::counter_type::aggregating

1892 Index

HPX Documentation, master

(C++ enumerator), 1470, 1471, 1477, 1478
hpx::performance_counters::counter_type::average_base

(C++ enumerator), 1470, 1471, 1477, 1478
hpx::performance_counters::counter_type::average_count

(C++ enumerator), 1470, 1471, 1477, 1478
hpx::performance_counters::counter_type::average_timer

(C++ enumerator), 1470, 1471, 1477, 1478
hpx::performance_counters::counter_type::elapsed_time

(C++ enumerator), 1470, 1471, 1478
hpx::performance_counters::counter_type::histogram

(C++ enumerator), 1471, 1478
hpx::performance_counters::counter_type::monotonically_increasing

(C++ enumerator), 1470, 1471, 1477, 1478
hpx::performance_counters::counter_type::raw

(C++ enumerator), 1469, 1471, 1477, 1478
hpx::performance_counters::counter_type::raw_values

(C++ enumerator), 1471, 1478
hpx::performance_counters::counter_type::text

(C++ enumerator), 1469, 1471, 1477, 1478
hpx::performance_counters::counter_type_path_elements

(C++ struct), 1475
hpx::performance_counters::counter_type_path_elements::counter_type_path_elements

(C++ function), 1475
hpx::performance_counters::counter_type_path_elements::countername_

(C++ member), 1476
hpx::performance_counters::counter_type_path_elements::objectname_

(C++ member), 1476
hpx::performance_counters::counter_type_path_elements::parameters_

(C++ member), 1476
hpx::performance_counters::counter_type_path_elements::serialize

(C++ function), 1476
hpx::performance_counters::counter_value

(C++ struct), 1483
hpx::performance_counters::counter_value::count_

(C++ member), 1483
hpx::performance_counters::counter_value::counter_value

(C++ function), 1483
hpx::performance_counters::counter_value::get_value

(C++ function), 1483
hpx::performance_counters::counter_value::scale_inverse_

(C++ member), 1483
hpx::performance_counters::counter_value::scaling_

(C++ member), 1483
hpx::performance_counters::counter_value::serialize

(C++ function), 1484
hpx::performance_counters::counter_value::status_

(C++ member), 1483
hpx::performance_counters::counter_value::time_

(C++ member), 1483
hpx::performance_counters::counter_value::value_

(C++ member), 1483
hpx::performance_counters::counter_values_array

(C++ struct), 1484
hpx::performance_counters::counter_values_array::count_

(C++ member), 1484
hpx::performance_counters::counter_values_array::counter_values_array

(C++ function), 1484
hpx::performance_counters::counter_values_array::get_value

(C++ function), 1484
hpx::performance_counters::counter_values_array::scale_inverse_

(C++ member), 1484
hpx::performance_counters::counter_values_array::scaling_

(C++ member), 1484
hpx::performance_counters::counter_values_array::serialize

(C++ function), 1485
hpx::performance_counters::counter_values_array::status_

(C++ member), 1484
hpx::performance_counters::counter_values_array::time_

(C++ member), 1484
hpx::performance_counters::counter_values_array::values_

(C++ member), 1484
hpx::performance_counters::create_counter_func

(C++ type), 1469
hpx::performance_counters::default_counter_discoverer

(C++ function), 1467
hpx::performance_counters::discover_counter_func

(C++ type), 1469
hpx::performance_counters::discover_counter_type

(C++ function), 1481
hpx::performance_counters::discover_counter_types

(C++ function), 1481
hpx::performance_counters::discover_counters_func

(C++ type), 1469
hpx::performance_counters::discover_counters_mode

(C++ enum), 1479
hpx::performance_counters::discover_counters_mode::full

(C++ enumerator), 1480
hpx::performance_counters::discover_counters_mode::minimal

(C++ enumerator), 1480
hpx::performance_counters::ensure_counter_prefix

(C++ function), 1472
hpx::performance_counters::expand_counter_info

(C++ function), 1481
hpx::performance_counters::get_counter (C++

function), 1473
hpx::performance_counters::get_counter_async

(C++ function), 1482
hpx::performance_counters::get_counter_infos

(C++ function), 1482
hpx::performance_counters::get_counter_instance_name

(C++ function), 1480
hpx::performance_counters::get_counter_name

(C++ function), 1480
hpx::performance_counters::get_counter_path_elements

(C++ function), 1480
hpx::performance_counters::get_counter_type

(C++ function), 1481
hpx::performance_counters::get_counter_type_name

Index 1893

HPX Documentation, master

(C++ function), 1472, 1480
hpx::performance_counters::get_counter_type_path_elements

(C++ function), 1480
hpx::performance_counters::get_full_counter_type_name

(C++ function), 1480
hpx::performance_counters::install_counter_type

(C++ function), 1485–1487
hpx::performance_counters::local_action_invocation_counter_creator

(C++ function), 1469
hpx::performance_counters::local_action_invocation_counter_discoverer

(C++ function), 1469
hpx::performance_counters::locality0_counter_discoverer

(C++ function), 1467
hpx::performance_counters::locality_counter_discoverer

(C++ function), 1467
hpx::performance_counters::locality_numa_counter_discoverer

(C++ function), 1468
hpx::performance_counters::locality_pool_counter_discoverer

(C++ function), 1467
hpx::performance_counters::locality_pool_thread_counter_discoverer

(C++ function), 1468
hpx::performance_counters::locality_pool_thread_no_total_counter_discoverer

(C++ function), 1468
hpx::performance_counters::locality_raw_counter_creator

(C++ function), 1468
hpx::performance_counters::locality_raw_values_counter_creator

(C++ function), 1468
hpx::performance_counters::locality_thread_counter_discoverer

(C++ function), 1468
hpx::performance_counters::operator> (C++

function), 1480
hpx::performance_counters::operator< (C++

function), 1480
hpx::performance_counters::operator<< (C++

function), 1480
hpx::performance_counters::registry (C++

class), 1488
hpx::performance_counters::registry::add_counter

(C++ function), 1490
hpx::performance_counters::registry::add_counter_type

(C++ function), 1489
hpx::performance_counters::registry::clear

(C++ function), 1489
hpx::performance_counters::registry::counter_data

(C++ struct), 1491
hpx::performance_counters::registry::counter_data::counter_data

(C++ function), 1491
hpx::performance_counters::registry::counter_data::create_counter_

(C++ member), 1491
hpx::performance_counters::registry::counter_data::discover_counters_

(C++ member), 1491
hpx::performance_counters::registry::counter_data::info_

(C++ member), 1491
hpx::performance_counters::registry::counter_type_map_type

(C++ type), 1491
hpx::performance_counters::registry::countertypes_

(C++ member), 1491
hpx::performance_counters::registry::create_arithmetics_counter

(C++ function), 1490
hpx::performance_counters::registry::create_arithmetics_counter_extended

(C++ function), 1490
hpx::performance_counters::registry::create_counter

(C++ function), 1490
hpx::performance_counters::registry::create_raw_counter

(C++ function), 1489, 1490
hpx::performance_counters::registry::create_raw_counter_value

(C++ function), 1489
hpx::performance_counters::registry::create_statistics_counter

(C++ function), 1490
hpx::performance_counters::registry::discover_counter_type

(C++ function), 1489
hpx::performance_counters::registry::discover_counter_types

(C++ function), 1489
hpx::performance_counters::registry::get_counter_create_function

(C++ function), 1489
hpx::performance_counters::registry::get_counter_discovery_function

(C++ function), 1489
hpx::performance_counters::registry::get_counter_type

(C++ function), 1490
hpx::performance_counters::registry::instance

(C++ function), 1491
hpx::performance_counters::registry::locate_counter_type

(C++ function), 1491
hpx::performance_counters::registry::registry

(C++ function), 1489
hpx::performance_counters::registry::remove_counter

(C++ function), 1490
hpx::performance_counters::registry::remove_counter_type

(C++ function), 1489
hpx::performance_counters::remove_counter_prefix

(C++ function), 1472
hpx::performance_counters::remove_counter_type

(C++ function), 1481
hpx::performance_counters::status_already_defined

(C++ member), 1483
hpx::performance_counters::status_counter_type_unknown

(C++ member), 1483
hpx::performance_counters::status_counter_unknown

(C++ member), 1483
hpx::performance_counters::status_generic_error

(C++ member), 1483
hpx::performance_counters::status_invalid_data

(C++ member), 1482
hpx::performance_counters::status_is_valid

(C++ function), 1473
hpx::performance_counters::status_new_data

(C++ member), 1482
hpx::performance_counters::status_valid_data

1894 Index

HPX Documentation, master

(C++ member), 1482
hpx::PhonyNameDueToError::call (C++ function),

1337
hpx::PhonyNameDueToError::get (C++ function),

1133
hpx::PhonyNameDueToError::operator type

(C++ function), 1133
hpx::PhonyNameDueToError::operator= (C++

function), 1133
hpx::PhonyNameDueToError::ptr (C++ member),

1133
hpx::PhonyNameDueToError::reference_wrapper

(C++ function), 1133
hpx::PhonyNameDueToError::type (C++ type), 1133
hpx::placeholders (C++ type), 1119
hpx::placeholders::_1 (C++ member), 1119
hpx::placeholders::_2 (C++ member), 1119
hpx::placeholders::_3 (C++ member), 1119
hpx::placeholders::_4 (C++ member), 1119
hpx::placeholders::_5 (C++ member), 1119
hpx::placeholders::_6 (C++ member), 1119
hpx::placeholders::_7 (C++ member), 1119
hpx::placeholders::_8 (C++ member), 1120
hpx::placeholders::_9 (C++ member), 1120
hpx::plugins (C++ type), 1171, 1492, 1493
hpx::plugins::binary_filter_factory (C++

struct), 1492
hpx::plugins::binary_filter_factory::~binary_filter_factory

(C++ function), 1492
hpx::plugins::binary_filter_factory::binary_filter_factory

(C++ function), 1492
hpx::plugins::binary_filter_factory::create

(C++ function), 1492
hpx::plugins::binary_filter_factory::global_settings_

(C++ member), 1493
hpx::plugins::binary_filter_factory::isenabled_

(C++ member), 1493
hpx::plugins::binary_filter_factory::local_settings_

(C++ member), 1493
hpx::plugins::plugin_registry (C++ struct),

1493
hpx::plugins::plugin_registry::get_plugin_info

(C++ function), 1494
hpx::plugins::plugin_registry_base (C++

struct), 1171
hpx::plugins::plugin_registry_base::~plugin_registry_base

(C++ function), 1171
hpx::plugins::plugin_registry_base::get_plugin_info

(C++ function), 1171
hpx::plugins::plugin_registry_base::init

(C++ function), 1171
hpx::post (C++ function), 968, 1347
hpx::pre_exception_handler_type (C++ type),

1063

hpx::promise (C++ class), 1147
hpx::promise::~promise (C++ function), 1148
hpx::promise::base_type (C++ type), 1148
hpx::promise::operator= (C++ function), 1148
hpx::promise::promise (C++ function), 1148
hpx::promise::set_value (C++ function), 1148
hpx::promise::swap (C++ function), 1148
hpx::promise_already_satisfied (C++ member),

1059
hpx::promise<R&> (C++ class), 1148
hpx::promise<R&>::~promise (C++ function), 1148
hpx::promise<R&>::base_type (C++ type), 1149
hpx::promise<R&>::operator= (C++ function), 1148
hpx::promise<R&>::promise (C++ function), 1148
hpx::promise<R&>::set_value (C++ function), 1148
hpx::promise<R&>::swap (C++ function), 1148
hpx::promise<void> (C++ class), 1149
hpx::promise<void>::~promise (C++ function),

1149
hpx::promise<void>::base_type (C++ type), 1149
hpx::promise<void>::operator= (C++ function),

1149
hpx::promise<void>::promise (C++ function), 1149
hpx::promise<void>::set_value (C++ function),

1149
hpx::promise<void>::swap (C++ function), 1149
hpx::ranges (C++ type), 593, 598, 602, 611, 619, 625,

628, 632, 637, 642, 646, 666, 671, 681, 685,
690, 699, 706, 709, 716, 722, 727, 736, 747,
753, 756, 760, 764, 769, 782, 792, 799, 815,
821, 827, 837, 844, 850, 857, 864, 867, 870,
874, 877, 881, 885, 895, 902, 927, 932, 936,
940, 945, 949

hpx::ranges::adjacent_difference (C++ func-
tion), 593–597

hpx::ranges::adjacent_find (C++ function), 599–
601

hpx::ranges::all_of (C++ function), 608–610
hpx::ranges::any_of (C++ function), 605–607
hpx::ranges::copy (C++ function), 611–613
hpx::ranges::copy_if (C++ function), 615–618
hpx::ranges::copy_n (C++ function), 614
hpx::ranges::count (C++ function), 619–621
hpx::ranges::count_if (C++ function), 622–625
hpx::ranges::destroy (C++ function), 626, 627
hpx::ranges::destroy_n (C++ function), 627, 628
hpx::ranges::ends_with (C++ function), 629, 631
hpx::ranges::equal (C++ function), 633–636
hpx::ranges::exclusive_scan (C++ function), 637–

640
hpx::ranges::experimental (C++ type), 671
hpx::ranges::experimental::for_loop (C++

function), 672–675

Index 1895

HPX Documentation, master

hpx::ranges::experimental::for_loop_strided
(C++ function), 676, 678–680

hpx::ranges::fill (C++ function), 642–644
hpx::ranges::fill_n (C++ function), 644–646
hpx::ranges::find (C++ function), 647–649
hpx::ranges::find_end (C++ function), 656, 657,

659, 660
hpx::ranges::find_first_of (C++ function), 661,

662, 664
hpx::ranges::find_if (C++ function), 649–652
hpx::ranges::find_if_not (C++ function), 652–655
hpx::ranges::for_each (C++ function), 666–668
hpx::ranges::for_each_n (C++ function), 669, 670
hpx::ranges::generate (C++ function), 682–684
hpx::ranges::generate_n (C++ function), 684, 685
hpx::ranges::includes (C++ function), 686–689
hpx::ranges::inclusive_scan (C++ function), 690–

693, 695–698
hpx::ranges::inplace_merge (C++ function), 733–

735
hpx::ranges::is_heap (C++ function), 700–702
hpx::ranges::is_heap_until (C++ function), 702–

705
hpx::ranges::is_partitioned (C++ function), 706–

708
hpx::ranges::is_sorted (C++ function), 709–711
hpx::ranges::is_sorted_until (C++ function),

712–715
hpx::ranges::lexicographical_compare (C++

function), 716, 717, 719, 720
hpx::ranges::make_heap (C++ function), 722–726
hpx::ranges::max_element (C++ function), 740–742
hpx::ranges::merge (C++ function), 727, 728, 730,

732
hpx::ranges::min_element (C++ function), 737–739
hpx::ranges::minmax_element (C++ function), 743–

746
hpx::ranges::mismatch (C++ function), 748, 749,

751, 752
hpx::ranges::move (C++ function), 753–755
hpx::ranges::none_of (C++ function), 602–604
hpx::ranges::nth_element (C++ function), 756–759
hpx::ranges::partial_sort (C++ function), 760–

762
hpx::ranges::partial_sort_copy (C++ function),

764–766, 768
hpx::ranges::partition (C++ function), 769–772
hpx::ranges::partition_copy (C++ function), 777–

780
hpx::ranges::reduce (C++ function), 782–791
hpx::ranges::remove (C++ function), 796–798
hpx::ranges::remove_if (C++ function), 792–795
hpx::ranges::replace (C++ function), 803–805

hpx::ranges::replace_copy (C++ function), 811–
814

hpx::ranges::replace_copy_if (C++ function),
806–808, 810

hpx::ranges::replace_if (C++ function), 800–802
hpx::ranges::reverse (C++ function), 816, 817
hpx::ranges::reverse_copy (C++ function), 817–

819
hpx::ranges::rotate (C++ function), 821–823
hpx::ranges::rotate_copy (C++ function), 824–826
hpx::ranges::search (C++ function), 827–830
hpx::ranges::search_n (C++ function), 832–835
hpx::ranges::set_difference (C++ function), 838,

839, 841, 842
hpx::ranges::set_intersection (C++ function),

844, 846, 847, 849
hpx::ranges::set_symmetric_difference (C++

function), 850, 852, 854, 856
hpx::ranges::set_union (C++ function), 858, 859,

862
hpx::ranges::shift_left (C++ function), 864–866
hpx::ranges::shift_right (C++ function), 867–869
hpx::ranges::sort (C++ function), 870–872
hpx::ranges::stable_partition (C++ function),

773, 775
hpx::ranges::stable_sort (C++ function), 874–876
hpx::ranges::starts_with (C++ function), 878, 880
hpx::ranges::swap_ranges (C++ function), 882–884
hpx::ranges::tag_fallback_invoke (C++ func-

tion), 861
hpx::ranges::transform (C++ function), 885–887,

891–894
hpx::ranges::transform_exclusive_scan (C++

function), 896–898, 900
hpx::ranges::transform_inclusive_scan (C++

function), 902, 903, 905–907, 909, 910, 912
hpx::ranges::transform_t (C++ function), 889
hpx::ranges::uninitialized_copy (C++ function),

927–929
hpx::ranges::uninitialized_copy_n (C++ func-

tion), 930, 931
hpx::ranges::uninitialized_default_construct

(C++ function), 932–934
hpx::ranges::uninitialized_default_construct_n

(C++ function), 934, 935
hpx::ranges::uninitialized_fill (C++ function),

936–938
hpx::ranges::uninitialized_fill_n (C++ func-

tion), 938, 939
hpx::ranges::uninitialized_move (C++ function),

940–942
hpx::ranges::uninitialized_move_n (C++ func-

tion), 943, 944
hpx::ranges::uninitialized_value_construct

1896 Index

HPX Documentation, master

(C++ function), 945, 946
hpx::ranges::uninitialized_value_construct_n

(C++ function), 947, 948
hpx::ranges::unique (C++ function), 949–952
hpx::ranges::unique_copy (C++ function), 953–956
hpx::recursive_mutex (C++ type), 1239
hpx::reduce (C++ function), 487–492
hpx::reduce_deterministic (C++ function), 495–

500
hpx::ref (C++ function), 1132, 1133
hpx::reference_wrapper (C++ function), 1132
hpx::reference_wrapper (C++ struct), 1133
hpx::reference_wrapper::reference_wrapper

(C++ function), 1133
hpx::reference_wrapper<T,

std::enable_if_t<traits::needs_reference_semantics_v<T>>>
(C++ struct), 1131

hpx::reference_wrapper<T,
std::enable_if_t<traits::needs_reference_semantics_v<T>>>::get
(C++ function), 1132

hpx::reference_wrapper<T,
std::enable_if_t<traits::needs_reference_semantics_v<T>>>::operator
type (C++ function), 1132

hpx::reference_wrapper<T,
std::enable_if_t<traits::needs_reference_semantics_v<T>>>::operator=
(C++ function), 1131

hpx::reference_wrapper<T,
std::enable_if_t<traits::needs_reference_semantics_v<T>>>::ptr
(C++ member), 1132

hpx::reference_wrapper<T,
std::enable_if_t<traits::needs_reference_semantics_v<T>>>::reference_wrapper
(C++ function), 1131

hpx::reference_wrapper<T,
std::enable_if_t<traits::needs_reference_semantics_v<T>>>::type
(C++ type), 1131

hpx::register_on_exit (C++ function), 1191
hpx::register_pre_shutdown_function (C++

function), 1195
hpx::register_pre_startup_function (C++ func-

tion), 1196
hpx::register_shutdown_function (C++ function),

1195
hpx::register_startup_function (C++ function),

1196
hpx::register_thread (C++ function), 1191
hpx::register_thread_on_error_func (C++ func-

tion), 1198
hpx::register_thread_on_start_func (C++ func-

tion), 1197
hpx::register_thread_on_stop_func (C++ func-

tion), 1198
hpx::register_with_basename (C++ function),

1415–1417
hpx::reinit_active_counters (C++ function), 1518

hpx::remove (C++ function), 501
hpx::remove_copy (C++ function), 504, 505
hpx::remove_copy_if (C++ function), 506
hpx::remove_if (C++ function), 502, 503
hpx::repeated_request (C++ member), 1058
hpx::replace (C++ function), 508
hpx::replace_copy (C++ function), 511, 512
hpx::replace_copy_if (C++ function), 513, 514
hpx::replace_if (C++ function), 509, 510
hpx::report_error (C++ function), 1182
hpx::reset_active_counters (C++ function), 1518
hpx::resiliency (C++ type), 1163, 1165
hpx::resiliency::experimental (C++ type), 1163,

1165
hpx::resiliency::experimental::make_replay_executor

(C++ function), 1163
hpx::resiliency::experimental::make_replicate_executor

(C++ function), 1166
hpx::resiliency::experimental::replay_executor

(C++ class), 1163
hpx::resiliency::experimental::replay_executor::context

(C++ function), 1164
hpx::resiliency::experimental::replay_executor::exec_

(C++ member), 1165
hpx::resiliency::experimental::replay_executor::execution_category

(C++ type), 1164
hpx::resiliency::experimental::replay_executor::executor_parameters_type

(C++ type), 1164
hpx::resiliency::experimental::replay_executor::future_type

(C++ type), 1164
hpx::resiliency::experimental::replay_executor::get_executor

(C++ function), 1164
hpx::resiliency::experimental::replay_executor::get_replay_count

(C++ function), 1164
hpx::resiliency::experimental::replay_executor::get_validator

(C++ function), 1164
hpx::resiliency::experimental::replay_executor::num_spread

(C++ member), 1164
hpx::resiliency::experimental::replay_executor::num_tasks

(C++ member), 1164
hpx::resiliency::experimental::replay_executor::operator!=

(C++ function), 1164
hpx::resiliency::experimental::replay_executor::operator==

(C++ function), 1164
hpx::resiliency::experimental::replay_executor::replay_count_

(C++ member), 1165
hpx::resiliency::experimental::replay_executor::replay_executor

(C++ function), 1164
hpx::resiliency::experimental::replay_executor::tag_invoke

(C++ function), 1164
hpx::resiliency::experimental::replay_executor::validator_

(C++ member), 1165
hpx::resiliency::experimental::replicate_executor

(C++ class), 1166

Index 1897

HPX Documentation, master

hpx::resiliency::experimental::replicate_executor::context
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::exec_
(C++ member), 1168

hpx::resiliency::experimental::replicate_executor::execution_category
(C++ type), 1167

hpx::resiliency::experimental::replicate_executor::executor_parameters_type
(C++ type), 1167

hpx::resiliency::experimental::replicate_executor::future_type
(C++ type), 1167

hpx::resiliency::experimental::replicate_executor::get_executor
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::get_replicate_count
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::get_validator
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::get_voter
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::num_spread
(C++ member), 1167

hpx::resiliency::experimental::replicate_executor::num_tasks
(C++ member), 1167

hpx::resiliency::experimental::replicate_executor::operator!=
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::operator==
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::replicate_count_
(C++ member), 1168

hpx::resiliency::experimental::replicate_executor::replicate_executor
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::tag_invoke
(C++ function), 1167

hpx::resiliency::experimental::replicate_executor::validator_
(C++ member), 1168

hpx::resiliency::experimental::replicate_executor::voter_
(C++ member), 1168

hpx::resiliency::experimental::tag_invoke
(C++ function), 1163, 1166

hpx::resource (C++ type), 1198
hpx::resource::get_num_thread_pools (C++

function), 1199
hpx::resource::get_num_threads (C++ function),

1199
hpx::resource::get_pool_index (C++ function),

1199
hpx::resource::get_pool_name (C++ function),

1199
hpx::resource::get_thread_pool (C++ function),

1199
hpx::resource::pool_exists (C++ function), 1199
hpx::resume (C++ function), 1463
hpx::reverse (C++ function), 515, 516
hpx::reverse_copy (C++ function), 516, 517
hpx::rotate (C++ function), 518

hpx::rotate_copy (C++ function), 519, 520
hpx::runtime (C++ class), 1182
hpx::runtime::~runtime (C++ function), 1183
hpx::runtime::add_pre_shutdown_function

(C++ function), 1185
hpx::runtime::add_pre_startup_function (C++

function), 1185
hpx::runtime::add_shutdown_function (C++

function), 1186
hpx::runtime::add_startup_function (C++ func-

tion), 1185
hpx::runtime::app_options_ (C++ member), 1190
hpx::runtime::assign_cores (C++ function), 1187
hpx::runtime::call_startup_functions (C++

function), 1189
hpx::runtime::deinit_global_data (C++ func-

tion), 1189
hpx::runtime::deinit_tss_helper (C++ function),

1189
hpx::runtime::enumerate_os_threads (C++ func-

tion), 1187
hpx::runtime::exception_ (C++ member), 1188
hpx::runtime::finalize (C++ function), 1185
hpx::runtime::get_app_options (C++ function),

1187
hpx::runtime::get_config (C++ function), 1183
hpx::runtime::get_initial_num_localities

(C++ function), 1187
hpx::runtime::get_instance_number (C++ func-

tion), 1183
hpx::runtime::get_locality_id (C++ function),

1187
hpx::runtime::get_locality_name (C++ function),

1187
hpx::runtime::get_notification_policy (C++

function), 1183
hpx::runtime::get_num_localities (C++ func-

tion), 1187
hpx::runtime::get_num_worker_threads (C++

function), 1187
hpx::runtime::get_os_thread_data (C++ func-

tion), 1187
hpx::runtime::get_state (C++ function), 1183
hpx::runtime::get_system_uptime (C++ function),

1187
hpx::runtime::get_thread_manager (C++ func-

tion), 1185
hpx::runtime::get_thread_mapper (C++ function),

1183
hpx::runtime::get_thread_pool (C++ function),

1186
hpx::runtime::get_topology (C++ function), 1183
hpx::runtime::here (C++ function), 1185
hpx::runtime::hpx_errorsink_function_type

1898 Index

HPX Documentation, master

(C++ type), 1183
hpx::runtime::hpx_main_function_type (C++

type), 1183
hpx::runtime::init (C++ function), 1188
hpx::runtime::init_global_data (C++ function),

1188
hpx::runtime::init_tss_ex (C++ function), 1189
hpx::runtime::init_tss_helper (C++ function),

1189
hpx::runtime::instance_number_ (C++ member),

1188
hpx::runtime::instance_number_counter_ (C++

member), 1189
hpx::runtime::is_networking_enabled (C++

function), 1185
hpx::runtime::main_pool_ (C++ member), 1189
hpx::runtime::main_pool_notifier_ (C++ mem-

ber), 1189
hpx::runtime::mtx_ (C++ member), 1188
hpx::runtime::notification_policy_type (C++

type), 1183
hpx::runtime::notifier_ (C++ member), 1189
hpx::runtime::notify_finalize (C++ function),

1189
hpx::runtime::on_error_func (C++ function), 1187
hpx::runtime::on_error_func_ (C++ member),

1188
hpx::runtime::on_exit (C++ function), 1183
hpx::runtime::on_exit_functions_ (C++ mem-

ber), 1188
hpx::runtime::on_exit_type (C++ type), 1188
hpx::runtime::on_start_func (C++ function), 1187
hpx::runtime::on_start_func_ (C++ member),

1188
hpx::runtime::on_stop_func (C++ function), 1187
hpx::runtime::on_stop_func_ (C++ member), 1188
hpx::runtime::pre_shutdown_functions_ (C++

member), 1190
hpx::runtime::pre_startup_functions_ (C++

member), 1190
hpx::runtime::register_thread (C++ function),

1186
hpx::runtime::report_error (C++ function), 1185
hpx::runtime::result_ (C++ member), 1188
hpx::runtime::resume (C++ function), 1185
hpx::runtime::rethrow_exception (C++ function),

1184
hpx::runtime::rtcfg_ (C++ member), 1188
hpx::runtime::run (C++ function), 1183, 1184
hpx::runtime::run_helper (C++ function), 1188
hpx::runtime::runtime (C++ function), 1183, 1188
hpx::runtime::set_app_options (C++ function),

1187
hpx::runtime::set_notification_policies

(C++ function), 1188
hpx::runtime::set_state (C++ function), 1183
hpx::runtime::shutdown_functions_ (C++ mem-

ber), 1190
hpx::runtime::start (C++ function), 1184
hpx::runtime::starting (C++ function), 1183
hpx::runtime::startup_functions_ (C++ mem-

ber), 1190
hpx::runtime::state_ (C++ member), 1188
hpx::runtime::stop (C++ function), 1184
hpx::runtime::stop_called_ (C++ member), 1190
hpx::runtime::stop_done_ (C++ member), 1190
hpx::runtime::stop_helper (C++ function), 1189
hpx::runtime::stopped (C++ function), 1183
hpx::runtime::stopping (C++ function), 1183
hpx::runtime::suspend (C++ function), 1184
hpx::runtime::thread_manager_ (C++ member),

1189
hpx::runtime::thread_support_ (C++ member),

1188
hpx::runtime::topology_ (C++ member), 1188
hpx::runtime::unregister_thread (C++ function),

1186
hpx::runtime::wait (C++ function), 1184
hpx::runtime::wait_condition_ (C++ member),

1190
hpx::runtime::wait_finalize (C++ function), 1189
hpx::runtime::wait_helper (C++ function), 1188
hpx::runtime_distributed (C++ class), 1500
hpx::runtime_distributed::~runtime_distributed

(C++ function), 1501
hpx::runtime_distributed::active_counters_

(C++ member), 1505
hpx::runtime_distributed::add_pre_shutdown_function

(C++ function), 1504
hpx::runtime_distributed::add_pre_startup_function

(C++ function), 1503
hpx::runtime_distributed::add_shutdown_function

(C++ function), 1504
hpx::runtime_distributed::add_startup_function

(C++ function), 1503
hpx::runtime_distributed::agas_client_ (C++

member), 1505
hpx::runtime_distributed::applier_ (C++ mem-

ber), 1505
hpx::runtime_distributed::assign_cores (C++

function), 1504
hpx::runtime_distributed::default_errorsink

(C++ function), 1506
hpx::runtime_distributed::deinit_global_data

(C++ function), 1505
hpx::runtime_distributed::deinit_tss_helper

(C++ function), 1505
hpx::runtime_distributed::evaluate_active_counters

Index 1899

HPX Documentation, master

(C++ function), 1503
hpx::runtime_distributed::finalize (C++ func-

tion), 1501
hpx::runtime_distributed::get_agas_client

(C++ function), 1503
hpx::runtime_distributed::get_applier (C++

function), 1503
hpx::runtime_distributed::get_counter_registry

(C++ function), 1503
hpx::runtime_distributed::get_id_pool (C++

function), 1503
hpx::runtime_distributed::get_initial_num_localities

(C++ function), 1504
hpx::runtime_distributed::get_locality_id

(C++ function), 1504
hpx::runtime_distributed::get_locality_name

(C++ function), 1504
hpx::runtime_distributed::get_next_id (C++

function), 1503
hpx::runtime_distributed::get_notification_policy

(C++ function), 1504
hpx::runtime_distributed::get_num_localities

(C++ function), 1504
hpx::runtime_distributed::get_num_worker_threads

(C++ function), 1504
hpx::runtime_distributed::get_runtime_support_lva

(C++ function), 1503
hpx::runtime_distributed::get_thread_manager

(C++ function), 1503
hpx::runtime_distributed::get_thread_pool

(C++ function), 1504
hpx::runtime_distributed::here (C++ function),

1503
hpx::runtime_distributed::id_pool_ (C++ mem-

ber), 1505
hpx::runtime_distributed::init_global_data

(C++ function), 1505
hpx::runtime_distributed::init_id_pool_range

(C++ function), 1503
hpx::runtime_distributed::init_tss_ex (C++

function), 1505
hpx::runtime_distributed::init_tss_helper

(C++ function), 1505
hpx::runtime_distributed::initialize_agas

(C++ function), 1503
hpx::runtime_distributed::is_networking_enabled

(C++ function), 1502
hpx::runtime_distributed::mode_ (C++ member),

1505
hpx::runtime_distributed::post_main_ (C++

member), 1506
hpx::runtime_distributed::pre_main_ (C++

member), 1505
hpx::runtime_distributed::register_counter_types

(C++ function), 1505
hpx::runtime_distributed::register_query_counters

(C++ function), 1503
hpx::runtime_distributed::register_thread

(C++ function), 1504
hpx::runtime_distributed::reinit_active_counters

(C++ function), 1503
hpx::runtime_distributed::report_error (C++

function), 1502
hpx::runtime_distributed::reset_active_counters

(C++ function), 1503
hpx::runtime_distributed::resume (C++ func-

tion), 1502
hpx::runtime_distributed::run (C++ function),

1502
hpx::runtime_distributed::run_helper (C++

function), 1505
hpx::runtime_distributed::runtime_distributed

(C++ function), 1501
hpx::runtime_distributed::runtime_support_

(C++ member), 1505
hpx::runtime_distributed::set_error_sink

(C++ function), 1502
hpx::runtime_distributed::start (C++ function),

1501
hpx::runtime_distributed::start_active_counters

(C++ function), 1503
hpx::runtime_distributed::stop (C++ function),

1501
hpx::runtime_distributed::stop_active_counters

(C++ function), 1503
hpx::runtime_distributed::stop_evaluating_counters

(C++ function), 1503
hpx::runtime_distributed::stop_helper (C++

function), 1501
hpx::runtime_distributed::suspend (C++ func-

tion), 1502
hpx::runtime_distributed::used_cores_map_

(C++ member), 1505
hpx::runtime_distributed::used_cores_map_type

(C++ type), 1505
hpx::runtime_distributed::wait (C++ function),

1501
hpx::runtime_distributed::wait_helper (C++

function), 1505
hpx::runtime_mode (C++ enum), 1171
hpx::runtime_mode::connect (C++ enumerator),

1171
hpx::runtime_mode::console (C++ enumerator),

1171
hpx::runtime_mode::default_ (C++ enumerator),

1172
hpx::runtime_mode::invalid (C++ enumerator),

1171

1900 Index

HPX Documentation, master

hpx::runtime_mode::last (C++ enumerator), 1172
hpx::runtime_mode::local (C++ enumerator), 1172
hpx::runtime_mode::worker (C++ enumerator),

1171
hpx::scoped_annotation (C++ struct), 1263
hpx::scoped_annotation::~scoped_annotation

(C++ function), 1263
hpx::scoped_annotation::HPX_NON_COPYABLE

(C++ function), 1263
hpx::scoped_annotation::scoped_annotation

(C++ function), 1263
hpx::search (C++ function), 521, 522
hpx::search_n (C++ function), 523, 524
hpx::segmented (C++ type), 1531–1536, 1538, 1540,

1541
hpx::segmented::minmax_element_result (C++

type), 1537
hpx::segmented::tag_invoke (C++ function), 1531–

1542
hpx::serialization (C++ type), 1120, 1121, 1144,

1201, 1421
hpx::serialization::base_object (C++ function),

1201
hpx::serialization::base_object_type (C++

struct), 1201
hpx::serialization::base_object_type::base_object_type

(C++ function), 1201
hpx::serialization::base_object_type::d_

(C++ member), 1201
hpx::serialization::base_object_type::serialize

(C++ function), 1201
hpx::serialization::base_object_type<Derived,

Base, std::enable_if_t<hpx::traits::is_intrusive_polymorphic_v<Derived>>>
(C++ struct), 1200

hpx::serialization::base_object_type<Derived,
Base, std::enable_if_t<hpx::traits::is_intrusive_polymorphic_v<Derived>>>::base_object_type
(C++ function), 1200

hpx::serialization::base_object_type<Derived,
Base, std::enable_if_t<hpx::traits::is_intrusive_polymorphic_v<Derived>>>::d_
(C++ member), 1201

hpx::serialization::base_object_type<Derived,
Base, std::enable_if_t<hpx::traits::is_intrusive_polymorphic_v<Derived>>>::HPX_SERIALIZATION_SPLIT_MEMBER
(C++ function), 1200

hpx::serialization::base_object_type<Derived,
Base, std::enable_if_t<hpx::traits::is_intrusive_polymorphic_v<Derived>>>::load
(C++ function), 1200

hpx::serialization::base_object_type<Derived,
Base, std::enable_if_t<hpx::traits::is_intrusive_polymorphic_v<Derived>>>::save
(C++ function), 1200

hpx::serialization::operator& (C++ function),
1201

hpx::serialization::operator>> (C++ function),
1201

hpx::serialization::operator<< (C++ function),

1201
hpx::serialization::PhonyNameDueToError::base_object_type

(C++ function), 1202
hpx::serialization::PhonyNameDueToError::d_

(C++ member), 1202
hpx::serialization::PhonyNameDueToError::HPX_SERIALIZATION_SPLIT_MEMBER

(C++ function), 1202
hpx::serialization::PhonyNameDueToError::load

(C++ function), 1202
hpx::serialization::PhonyNameDueToError::save

(C++ function), 1202
hpx::serialization::serialize (C++ function),

1120, 1121, 1144, 1422
hpx::serialization_error (C++ member), 1058
hpx::service_unavailable (C++ member), 1058
hpx::set_custom_exception_info_handler (C++

function), 1063
hpx::set_difference (C++ function), 525, 527
hpx::set_error_handlers (C++ function), 1182
hpx::set_intersection (C++ function), 528, 529
hpx::set_lco_error (C++ function), 1354, 1355
hpx::set_lco_value (C++ function), 1352, 1353
hpx::set_lco_value_unmanaged (C++ function),

1352, 1353
hpx::set_pre_exception_handler (C++ function),

1063
hpx::set_symmetric_difference (C++ function),

531, 532
hpx::set_thread_termination_handler (C++

function), 1255
hpx::set_union (C++ function), 534, 535
hpx::shared_future (C++ class), 1142, 1145
hpx::shared_future::~shared_future (C++ func-

tion), 1142
hpx::shared_future::base_type (C++ type), 1144
hpx::shared_future::get (C++ function), 1143
hpx::shared_future::operator= (C++ function),

1142, 1143
hpx::shared_future::result_type (C++ type),

1142
hpx::shared_future::shared_future (C++ func-

tion), 1142, 1144
hpx::shared_future::shared_state_type (C++

type), 1142
hpx::shared_future::then (C++ function), 1143
hpx::shared_future::then_alloc (C++ function),

1144
hpx::shared_mutex (C++ type), 1239
hpx::shift_left (C++ function), 537
hpx::shift_right (C++ function), 539
hpx::shutdown_function_type (C++ type), 1194
hpx::sliding_semaphore (C++ type), 1240
hpx::sliding_semaphore_var (C++ class), 1240

Index 1901

HPX Documentation, master

hpx::sliding_semaphore_var::data_ (C++ mem-
ber), 1241

hpx::sliding_semaphore_var::data_type (C++
type), 1241

hpx::sliding_semaphore_var::mutex_type (C++
type), 1241

hpx::sliding_semaphore_var::operator= (C++
function), 1240

hpx::sliding_semaphore_var::set_max_difference
(C++ function), 1240

hpx::sliding_semaphore_var::signal (C++ func-
tion), 1241

hpx::sliding_semaphore_var::signal_all (C++
function), 1241

hpx::sliding_semaphore_var::sliding_semaphore_var
(C++ function), 1240

hpx::sliding_semaphore_var::try_wait (C++
function), 1241

hpx::sliding_semaphore_var::wait (C++ func-
tion), 1241

hpx::sort (C++ function), 540, 541
hpx::source_location (C++ struct), 962
hpx::source_location::column (C++ function), 963
hpx::source_location::file_name (C++ function),

963
hpx::source_location::filename (C++ member),

963
hpx::source_location::function_name (C++

function), 963
hpx::source_location::functionname (C++ mem-

ber), 963
hpx::source_location::line (C++ function), 963
hpx::source_location::line_number (C++ mem-

ber), 963
hpx::spinlock (C++ type), 1242
hpx::spinlock_no_backoff (C++ type), 1242
hpx::split_future (C++ function), 969
hpx::stable_partition (C++ function), 482, 483
hpx::stable_sort (C++ function), 544, 545
hpx::start (C++ function), 1460–1462
hpx::start_active_counters (C++ function), 1518
hpx::starts_with (C++ function), 546, 547
hpx::startup_function_type (C++ type), 1196
hpx::startup_timed_out (C++ member), 1058
hpx::stop (C++ function), 1455
hpx::stop_active_counters (C++ function), 1519
hpx::stop_callback (C++ class), 1243
hpx::stop_callback (C++ function), 1242
hpx::stop_source (C++ class), 1243
hpx::stop_source::~stop_source (C++ function),

1243
hpx::stop_source::get_token (C++ function), 1243
hpx::stop_source::operator!= (C++ function),

1244

hpx::stop_source::operator= (C++ function), 1243
hpx::stop_source::operator== (C++ function),

1244
hpx::stop_source::request_stop (C++ function),

1243
hpx::stop_source::state_ (C++ member), 1244
hpx::stop_source::stop_possible (C++ function),

1243
hpx::stop_source::stop_requested (C++ func-

tion), 1243
hpx::stop_source::stop_source (C++ function),

1243
hpx::stop_source::swap (C++ function), 1243
hpx::stop_token (C++ class), 1244
hpx::stop_token::~stop_token (C++ function),

1244
hpx::stop_token::callback_type (C++ type), 1244
hpx::stop_token::operator= (C++ function), 1244
hpx::stop_token::state_ (C++ member), 1245
hpx::stop_token::stop_possible (C++ function),

1244
hpx::stop_token::stop_requested (C++ function),

1244
hpx::stop_token::stop_token (C++ function),

1244, 1245
hpx::stop_token::swap (C++ function), 1244
hpx::success (C++ member), 1057
hpx::suspend (C++ function), 1463
hpx::swap (C++ function), 1242, 1253, 1255
hpx::swap_ranges (C++ function), 548, 549
hpx::sync (C++ function), 968, 1350
hpx::task_already_started (C++ member), 1059
hpx::task_block_not_active (C++ member), 1059
hpx::task_canceled_exception (C++ member),

1059
hpx::task_moved (C++ member), 1059
hpx::terminate (C++ function), 1453
hpx::this_thread (C++ type), 1103, 1258, 1270
hpx::this_thread::disable_interruption (C++

class), 1259
hpx::this_thread::disable_interruption::~disable_interruption

(C++ function), 1260
hpx::this_thread::disable_interruption::disable_interruption

(C++ function), 1260
hpx::this_thread::disable_interruption::interruption_was_enabled_

(C++ member), 1260
hpx::this_thread::disable_interruption::operator=

(C++ function), 1260
hpx::this_thread::get_executor (C++ function),

1103
hpx::this_thread::get_id (C++ function), 1259
hpx::this_thread::get_pool (C++ function), 1273
hpx::this_thread::get_priority (C++ function),

1259

1902 Index

HPX Documentation, master

hpx::this_thread::get_stack_size (C++ func-
tion), 1259

hpx::this_thread::get_thread_data (C++ func-
tion), 1259

hpx::this_thread::interrupt (C++ function), 1259
hpx::this_thread::interruption_enabled (C++

function), 1259
hpx::this_thread::interruption_point (C++

function), 1259
hpx::this_thread::interruption_requested

(C++ function), 1259
hpx::this_thread::restore_interruption (C++

class), 1260
hpx::this_thread::restore_interruption::~restore_interruption

(C++ function), 1260
hpx::this_thread::restore_interruption::interruption_was_enabled_

(C++ member), 1260
hpx::this_thread::restore_interruption::operator=

(C++ function), 1260
hpx::this_thread::restore_interruption::restore_interruption

(C++ function), 1260
hpx::this_thread::set_thread_data (C++ func-

tion), 1259
hpx::this_thread::sleep_for (C++ function), 1259
hpx::this_thread::sleep_until (C++ function),

1259
hpx::this_thread::suspend (C++ function), 1271,

1272
hpx::this_thread::yield (C++ function), 1259
hpx::this_thread::yield_to (C++ function), 1259
hpx::thread (C++ class), 1256
hpx::thread::~thread (C++ function), 1256
hpx::thread::detach (C++ function), 1257
hpx::thread::detach_locked (C++ function), 1257
hpx::thread::get_future (C++ function), 1257
hpx::thread::get_id (C++ function), 1257
hpx::thread::get_thread_data (C++ function),

1257
hpx::thread::hardware_concurrency (C++ func-

tion), 1257
hpx::thread::id (C++ class), 1258
hpx::thread::id::id (C++ function), 1258
hpx::thread::id::id_ (C++ member), 1258
hpx::thread::id::native_handle (C++ function),

1258
hpx::thread::id::operator!= (C++ function), 1258
hpx::thread::id::operator== (C++ function), 1258
hpx::thread::id::operator> (C++ function), 1258
hpx::thread::id::operator>= (C++ function), 1258
hpx::thread::id::operator< (C++ function), 1258
hpx::thread::id::operator<= (C++ function), 1258
hpx::thread::id::operator<< (C++ function), 1258
hpx::thread::id_ (C++ member), 1258
hpx::thread::interrupt (C++ function), 1257

hpx::thread::interruption_requested (C++
function), 1257

hpx::thread::join (C++ function), 1257
hpx::thread::joinable (C++ function), 1256
hpx::thread::joinable_locked (C++ function),

1257
hpx::thread::mtx_ (C++ member), 1258
hpx::thread::mutex_type (C++ type), 1257
hpx::thread::native_handle (C++ function), 1257
hpx::thread::native_handle_type (C++ type),

1256
hpx::thread::operator= (C++ function), 1256
hpx::thread::set_thread_data (C++ function),

1257
hpx::thread::start_thread (C++ function), 1257
hpx::thread::swap (C++ function), 1256
hpx::thread::terminate (C++ function), 1257
hpx::thread::thread (C++ function), 1256
hpx::thread::thread_function_nullary (C++

function), 1258
hpx::thread_cancelled (C++ member), 1059
hpx::thread_interrupted (C++ struct), 1067
hpx::thread_not_interruptable (C++ member),

1059
hpx::thread_resource_error (C++ member), 1059
hpx::thread_termination_handler_type (C++

type), 1255
hpx::threads (C++ type), 1022, 1029, 1103, 1181,

1190, 1192, 1199, 1235, 1249, 1261, 1264,
1268, 1273, 1279, 1280, 1282, 1283, 1296

hpx::threads::as_string (C++ function), 1269
hpx::threads::create_topology (C++ function),

1297
hpx::threads::default_runs_as_child_hint

(C++ member), 1027
hpx::threads::do_not_combine_tasks (C++ func-

tion), 1027
hpx::threads::do_not_share_function (C++

function), 1027
hpx::threads::enumerate_threads (C++ function),

1200
hpx::threads::get_ctx_ptr (C++ function), 1282
hpx::threads::get_default_stack_size (C++

function), 1190
hpx::threads::get_executor (C++ function), 1103
hpx::threads::get_idle_core_count (C++ func-

tion), 1200
hpx::threads::get_idle_core_mask (C++ func-

tion), 1200
hpx::threads::get_memory_page_size (C++ func-

tion), 1297
hpx::threads::get_outer_self_id (C++ function),

1282
hpx::threads::get_parent_id (C++ function), 1282

Index 1903

HPX Documentation, master

hpx::threads::get_parent_locality_id (C++
function), 1283

hpx::threads::get_parent_phase (C++ function),
1282

hpx::threads::get_pool (C++ function), 1277
hpx::threads::get_self (C++ function), 1282
hpx::threads::get_self_component_id (C++

function), 1283
hpx::threads::get_self_id (C++ function), 1236,

1282
hpx::threads::get_self_id_data (C++ function),

1282
hpx::threads::get_self_ptr (C++ function), 1236,

1282
hpx::threads::get_self_ptr_checked (C++ func-

tion), 1282
hpx::threads::get_self_stacksize (C++ func-

tion), 1283
hpx::threads::get_self_stacksize_enum (C++

function), 1283
hpx::threads::get_stack_size (C++ function),

1190, 1277
hpx::threads::get_stack_size_enum_name (C++

function), 1027
hpx::threads::get_stack_size_name (C++ func-

tion), 1190
hpx::threads::get_thread_count (C++ function),

1199
hpx::threads::get_thread_description (C++

function), 1269
hpx::threads::get_thread_id_data (C++ func-

tion), 1264
hpx::threads::get_thread_interruption_enabled

(C++ function), 1276
hpx::threads::get_thread_interruption_requested

(C++ function), 1276
hpx::threads::get_thread_lco_description

(C++ function), 1269
hpx::threads::get_thread_phase (C++ function),

1275
hpx::threads::get_thread_priority (C++ func-

tion), 1277
hpx::threads::get_thread_priority_name (C++

function), 1026
hpx::threads::get_thread_state (C++ function),

1275
hpx::threads::get_thread_state_ex_name (C++

function), 1027
hpx::threads::get_thread_state_name (C++

function), 1026, 1027
hpx::threads::hpx_hwloc_bitmap_wrapper (C++

struct), 1297
hpx::threads::hpx_hwloc_bitmap_wrapper::~hpx_hwloc_bitmap_wrapper

(C++ function), 1297

hpx::threads::hpx_hwloc_bitmap_wrapper::bmp_
(C++ member), 1297

hpx::threads::hpx_hwloc_bitmap_wrapper::get_bmp
(C++ function), 1297

hpx::threads::hpx_hwloc_bitmap_wrapper::hpx_hwloc_bitmap_wrapper
(C++ function), 1297

hpx::threads::hpx_hwloc_bitmap_wrapper::HPX_NON_COPYABLE
(C++ function), 1297

hpx::threads::hpx_hwloc_bitmap_wrapper::operator
bool (C++ function), 1297

hpx::threads::hpx_hwloc_bitmap_wrapper::operator<<
(C++ function), 1297

hpx::threads::hpx_hwloc_bitmap_wrapper::reset
(C++ function), 1297

hpx::threads::hpx_hwloc_membind_policy (C++
enum), 1296

hpx::threads::hpx_hwloc_membind_policy::membind_bind
(C++ enumerator), 1296

hpx::threads::hpx_hwloc_membind_policy::membind_default
(C++ enumerator), 1296

hpx::threads::hpx_hwloc_membind_policy::membind_firsttouch
(C++ enumerator), 1296

hpx::threads::hpx_hwloc_membind_policy::membind_interleave
(C++ enumerator), 1296

hpx::threads::hpx_hwloc_membind_policy::membind_mixed
(C++ enumerator), 1297

hpx::threads::hpx_hwloc_membind_policy::membind_nexttouch
(C++ enumerator), 1297

hpx::threads::hpx_hwloc_membind_policy::membind_replicate
(C++ enumerator), 1297

hpx::threads::hpx_hwloc_membind_policy::membind_user
(C++ enumerator), 1297

hpx::threads::hwloc_bitmap_ptr (C++ type), 1296
hpx::threads::interrupt_thread (C++ function),

1276, 1277
hpx::threads::interruption_point (C++ func-

tion), 1277
hpx::threads::invalid_thread_id (C++ member),

1029
hpx::threads::make_thread_function (C++ func-

tion), 1262
hpx::threads::make_thread_function_nullary

(C++ function), 1262
hpx::threads::operator| (C++ function), 1027
hpx::threads::operator<< (C++ function), 1026,

1027, 1269, 1280
hpx::threads::policies (C++ type), 1283
hpx::threads::register_thread (C++ function),

1262
hpx::threads::register_work (C++ function),

1262, 1263
hpx::threads::resume_pool (C++ function), 1250
hpx::threads::resume_pool_cb (C++ function),

1251

1904 Index

HPX Documentation, master

hpx::threads::resume_processing_unit (C++
function), 1249

hpx::threads::resume_processing_unit_cb
(C++ function), 1249

hpx::threads::run_as_child (C++ function), 1027
hpx::threads::set_thread_description (C++

function), 1269
hpx::threads::set_thread_interruption_enabled

(C++ function), 1276
hpx::threads::set_thread_lco_description

(C++ function), 1269
hpx::threads::set_thread_state (C++ function),

1273, 1274
hpx::threads::suspend_pool (C++ function), 1251
hpx::threads::suspend_pool_cb (C++ function),

1251
hpx::threads::suspend_processing_unit (C++

function), 1250
hpx::threads::suspend_processing_unit_cb

(C++ function), 1250
hpx::threads::thread_data (C++ class), 1264
hpx::threads::thread_data::~thread_data

(C++ function), 1266
hpx::threads::thread_data::add_thread_exit_callback

(C++ function), 1266
hpx::threads::thread_data::current_state_

(C++ member), 1268
hpx::threads::thread_data::destroy (C++ func-

tion), 1266
hpx::threads::thread_data::destroy_thread

(C++ function), 1266
hpx::threads::thread_data::enabled_interrupt_

(C++ member), 1268
hpx::threads::thread_data::exit_funcs_ (C++

member), 1268
hpx::threads::thread_data::free_thread_exit_callbacks

(C++ function), 1266
hpx::threads::thread_data::get_backtrace

(C++ function), 1267
hpx::threads::thread_data::get_component_id

(C++ function), 1267
hpx::threads::thread_data::get_description

(C++ function), 1267
hpx::threads::thread_data::get_last_worker_thread_num

(C++ function), 1266
hpx::threads::thread_data::get_lco_description

(C++ function), 1267
hpx::threads::thread_data::get_parent_locality_id

(C++ function), 1267
hpx::threads::thread_data::get_parent_thread_id

(C++ function), 1267
hpx::threads::thread_data::get_parent_thread_phase

(C++ function), 1267
hpx::threads::thread_data::get_priority

(C++ function), 1265
hpx::threads::thread_data::get_queue (C++

function), 1266
hpx::threads::thread_data::get_scheduler_base

(C++ function), 1266
hpx::threads::thread_data::get_stack_size

(C++ function), 1266
hpx::threads::thread_data::get_stack_size_enum

(C++ function), 1266
hpx::threads::thread_data::get_state (C++

function), 1264
hpx::threads::thread_data::get_thread_data

(C++ function), 1266
hpx::threads::thread_data::get_thread_id

(C++ function), 1266
hpx::threads::thread_data::get_thread_phase

(C++ function), 1266
hpx::threads::thread_data::init (C++ function),

1266
hpx::threads::thread_data::interrupt (C++

function), 1266
hpx::threads::thread_data::interruption_enabled

(C++ function), 1265
hpx::threads::thread_data::interruption_point

(C++ function), 1266
hpx::threads::thread_data::interruption_requested

(C++ function), 1265
hpx::threads::thread_data::invoke_directly

(C++ function), 1266
hpx::threads::thread_data::is_stackless

(C++ function), 1266
hpx::threads::thread_data::is_stackless_

(C++ member), 1268
hpx::threads::thread_data::last_worker_thread_num_

(C++ member), 1268
hpx::threads::thread_data::operator() (C++

function), 1266
hpx::threads::thread_data::operator= (C++

function), 1264
hpx::threads::thread_data::priority_ (C++

member), 1268
hpx::threads::thread_data::queue_ (C++ mem-

ber), 1268
hpx::threads::thread_data::ran_exit_funcs_

(C++ member), 1268
hpx::threads::thread_data::rebind (C++ func-

tion), 1266
hpx::threads::thread_data::rebind_base (C++

function), 1267
hpx::threads::thread_data::requested_interrupt_

(C++ member), 1268
hpx::threads::thread_data::restore_state

(C++ function), 1265
hpx::threads::thread_data::run_thread_exit_callbacks

Index 1905

HPX Documentation, master

(C++ function), 1266
hpx::threads::thread_data::runs_as_child

(C++ function), 1266
hpx::threads::thread_data::runs_as_child_

(C++ member), 1268
hpx::threads::thread_data::scheduler_base_

(C++ member), 1268
hpx::threads::thread_data::set_backtrace

(C++ function), 1267
hpx::threads::thread_data::set_description

(C++ function), 1267
hpx::threads::thread_data::set_interruption_enabled

(C++ function), 1266
hpx::threads::thread_data::set_last_worker_thread_num

(C++ function), 1266
hpx::threads::thread_data::set_lco_description

(C++ function), 1267
hpx::threads::thread_data::set_priority

(C++ function), 1265
hpx::threads::thread_data::set_state (C++

function), 1265
hpx::threads::thread_data::set_state_ex

(C++ function), 1267
hpx::threads::thread_data::set_state_tagged

(C++ function), 1265
hpx::threads::thread_data::set_thread_data

(C++ function), 1266
hpx::threads::thread_data::spinlock_pool

(C++ type), 1264
hpx::threads::thread_data::stacksize_ (C++

member), 1268
hpx::threads::thread_data::stacksize_enum_

(C++ member), 1268
hpx::threads::thread_data::thread_data (C++

function), 1264, 1266
hpx::threads::thread_description (C++ struct),

1269
hpx::threads::thread_description::data_type

(C++ enum), 1269
hpx::threads::thread_description::data_type::address

(C++ enumerator), 1269
hpx::threads::thread_description::data_type::description

(C++ enumerator), 1269
hpx::threads::thread_description::get_address

(C++ function), 1270
hpx::threads::thread_description::get_description

(C++ function), 1270
hpx::threads::thread_description::init_from_alternative_name

(C++ function), 1270
hpx::threads::thread_description::kind (C++

function), 1270
hpx::threads::thread_description::operator

bool (C++ function), 1270
hpx::threads::thread_description::thread_description

(C++ function), 1270
hpx::threads::thread_description::valid

(C++ function), 1270
hpx::threads::thread_execution_hint (C++

enum), 1026
hpx::threads::thread_execution_hint::none

(C++ enumerator), 1026
hpx::threads::thread_execution_hint::run_as_child

(C++ enumerator), 1026
hpx::threads::thread_id (C++ struct), 1029
hpx::threads::thread_id::~thread_id (C++

function), 1029
hpx::threads::thread_id::format_value (C++

function), 1031
hpx::threads::thread_id::get (C++ function),

1030
hpx::threads::thread_id::operator bool (C++

function), 1030
hpx::threads::thread_id::operator= (C++ func-

tion), 1029
hpx::threads::thread_id::operator<< (C++

function), 1031
hpx::threads::thread_id::reset (C++ function),

1030
hpx::threads::thread_id::thrd_ (C++ member),

1030
hpx::threads::thread_id::thread_id (C++ func-

tion), 1029
hpx::threads::thread_id::thread_id_repr

(C++ type), 1030
hpx::threads::thread_id_addref (C++ enum),

1029
hpx::threads::thread_id_addref::no (C++ enu-

merator), 1029
hpx::threads::thread_id_addref::yes (C++ enu-

merator), 1029
hpx::threads::thread_id_ref (C++ struct), 1031
hpx::threads::thread_id_ref::~thread_id_ref

(C++ function), 1031
hpx::threads::thread_id_ref::detach (C++

function), 1032
hpx::threads::thread_id_ref::format_value

(C++ function), 1033
hpx::threads::thread_id_ref::get (C++ func-

tion), 1031
hpx::threads::thread_id_ref::noref (C++ func-

tion), 1031
hpx::threads::thread_id_ref::operator bool

(C++ function), 1031
hpx::threads::thread_id_ref::operator= (C++

function), 1031
hpx::threads::thread_id_ref::operator<<

(C++ function), 1033
hpx::threads::thread_id_ref::reset (C++ func-

1906 Index

HPX Documentation, master

tion), 1032
hpx::threads::thread_id_ref::thrd_ (C++ mem-

ber), 1032
hpx::threads::thread_id_ref::thread_id_ref

(C++ function), 1031
hpx::threads::thread_id_ref::thread_id_repr

(C++ type), 1032
hpx::threads::thread_id_ref::thread_repr

(C++ type), 1031
hpx::threads::thread_id_ref_type (C++ type),

1235
hpx::threads::thread_placement_hint (C++

enum), 1025
hpx::threads::thread_placement_hint::breadth_first

(C++ enumerator), 1025
hpx::threads::thread_placement_hint::breadth_first_reverse

(C++ enumerator), 1026
hpx::threads::thread_placement_hint::depth_first

(C++ enumerator), 1025
hpx::threads::thread_placement_hint::depth_first_reverse

(C++ enumerator), 1025
hpx::threads::thread_placement_hint::none

(C++ enumerator), 1025
hpx::threads::thread_pool_base (C++ class),

1280
hpx::threads::thread_pool_base::resume_direct

(C++ function), 1280
hpx::threads::thread_pool_base::resume_processing_unit_direct

(C++ function), 1280
hpx::threads::thread_pool_base::suspend_direct

(C++ function), 1280
hpx::threads::thread_pool_base::suspend_processing_unit_direct

(C++ function), 1280
hpx::threads::thread_pool_init_parameters

(C++ struct), 1281
hpx::threads::thread_pool_init_parameters::affinity_data_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::index_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::max_background_threads_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::max_busy_loop_count_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::max_idle_loop_count_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::mode_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::name_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::network_background_callback_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::notifier_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::num_threads_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::shutdown_check_count_

(C++ member), 1282
hpx::threads::thread_pool_init_parameters::thread_offset_

(C++ member), 1281
hpx::threads::thread_pool_init_parameters::thread_pool_init_parameters

(C++ function), 1281
hpx::threads::thread_priority (C++ enum), 1023
hpx::threads::thread_priority::boost (C++

enumerator), 1023
hpx::threads::thread_priority::bound (C++

enumerator), 1024
hpx::threads::thread_priority::default_

(C++ enumerator), 1023
hpx::threads::thread_priority::high (C++ enu-

merator), 1023
hpx::threads::thread_priority::high_recursive

(C++ enumerator), 1023
hpx::threads::thread_priority::low (C++ enu-

merator), 1023
hpx::threads::thread_priority::normal (C++

enumerator), 1023
hpx::threads::thread_priority::unknown (C++

enumerator), 1023
hpx::threads::thread_restart_state (C++

enum), 1024
hpx::threads::thread_restart_state::abort

(C++ enumerator), 1024
hpx::threads::thread_restart_state::signaled

(C++ enumerator), 1024
hpx::threads::thread_restart_state::terminate

(C++ enumerator), 1024
hpx::threads::thread_restart_state::timeout

(C++ enumerator), 1024
hpx::threads::thread_restart_state::unknown

(C++ enumerator), 1024
hpx::threads::thread_schedule_hint (C++

struct), 1027
hpx::threads::thread_schedule_hint::hint

(C++ member), 1028
hpx::threads::thread_schedule_hint::mode

(C++ member), 1028
hpx::threads::thread_schedule_hint::placement_mode

(C++ function), 1028
hpx::threads::thread_schedule_hint::placement_mode_bits

(C++ member), 1028
hpx::threads::thread_schedule_hint::runs_as_child_mode

(C++ function), 1028
hpx::threads::thread_schedule_hint::runs_as_child_mode_bits

(C++ member), 1028
hpx::threads::thread_schedule_hint::sharing_mode

(C++ function), 1028
hpx::threads::thread_schedule_hint::sharing_mode_bits

(C++ member), 1028

Index 1907

HPX Documentation, master

hpx::threads::thread_schedule_hint::thread_schedule_hint
(C++ function), 1027

hpx::threads::thread_schedule_hint_mode
(C++ enum), 1025

hpx::threads::thread_schedule_hint_mode::none
(C++ enumerator), 1025

hpx::threads::thread_schedule_hint_mode::numa
(C++ enumerator), 1025

hpx::threads::thread_schedule_hint_mode::thread
(C++ enumerator), 1025

hpx::threads::thread_schedule_state (C++
enum), 1022

hpx::threads::thread_schedule_state::active
(C++ enumerator), 1022

hpx::threads::thread_schedule_state::deleted
(C++ enumerator), 1023

hpx::threads::thread_schedule_state::depleted
(C++ enumerator), 1022

hpx::threads::thread_schedule_state::pending
(C++ enumerator), 1022

hpx::threads::thread_schedule_state::pending_boost
(C++ enumerator), 1023

hpx::threads::thread_schedule_state::pending_do_not_schedule
(C++ enumerator), 1023

hpx::threads::thread_schedule_state::staged
(C++ enumerator), 1023

hpx::threads::thread_schedule_state::suspended
(C++ enumerator), 1022

hpx::threads::thread_schedule_state::terminated
(C++ enumerator), 1022

hpx::threads::thread_schedule_state::unknown
(C++ enumerator), 1022

hpx::threads::thread_self (C++ type), 1235
hpx::threads::thread_sharing_hint (C++ enum),

1026
hpx::threads::thread_sharing_hint::do_not_combine_tasks

(C++ enumerator), 1026
hpx::threads::thread_sharing_hint::do_not_share_function

(C++ enumerator), 1026
hpx::threads::thread_sharing_hint::none

(C++ enumerator), 1026
hpx::threads::thread_stacksize (C++ enum),

1024
hpx::threads::thread_stacksize::current

(C++ enumerator), 1024
hpx::threads::thread_stacksize::default_

(C++ enumerator), 1024
hpx::threads::thread_stacksize::huge (C++

enumerator), 1024
hpx::threads::thread_stacksize::large (C++

enumerator), 1024
hpx::threads::thread_stacksize::maximal

(C++ enumerator), 1025
hpx::threads::thread_stacksize::medium (C++

enumerator), 1024
hpx::threads::thread_stacksize::minimal

(C++ enumerator), 1025
hpx::threads::thread_stacksize::nostack

(C++ enumerator), 1024
hpx::threads::thread_stacksize::small_ (C++

enumerator), 1024
hpx::threads::thread_stacksize::unknown

(C++ enumerator), 1024
hpx::threads::threadmanager (C++ class), 1283
hpx::threads::threadmanager::~threadmanager

(C++ function), 1284
hpx::threads::threadmanager::abort_all_suspended_threads

(C++ function), 1285
hpx::threads::threadmanager::add_remove_scheduler_mode

(C++ function), 1286
hpx::threads::threadmanager::add_scheduler_mode

(C++ function), 1286
hpx::threads::threadmanager::cleanup_terminated

(C++ function), 1286
hpx::threads::threadmanager::create_pools

(C++ function), 1284
hpx::threads::threadmanager::create_scheduler_abp_priority_fifo

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_abp_priority_lifo

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_local

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_local_priority_fifo

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_local_priority_lifo

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_local_workrequesting_fifo

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_local_workrequesting_lifo

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_local_workrequesting_mc

(C++ function), 1288
hpx::threads::threadmanager::create_scheduler_shared_priority

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_static

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_static_priority

(C++ function), 1287
hpx::threads::threadmanager::create_scheduler_user_defined

(C++ function), 1287
hpx::threads::threadmanager::default_pool

(C++ function), 1284
hpx::threads::threadmanager::deinit_tss

(C++ function), 1287
hpx::threads::threadmanager::enumerate_threads

(C++ function), 1285
hpx::threads::threadmanager::get_background_thread_count

(C++ function), 1285

1908 Index

HPX Documentation, master

hpx::threads::threadmanager::get_cumulative_duration
(C++ function), 1286

hpx::threads::threadmanager::get_idle_core_count
(C++ function), 1285

hpx::threads::threadmanager::get_idle_core_mask
(C++ function), 1285

hpx::threads::threadmanager::get_init_parameters
(C++ function), 1287

hpx::threads::threadmanager::get_os_thread_count
(C++ function), 1286

hpx::threads::threadmanager::get_os_thread_handle
(C++ function), 1286

hpx::threads::threadmanager::get_pool (C++
function), 1284

hpx::threads::threadmanager::get_pool_numa_bitmap
(C++ function), 1286

hpx::threads::threadmanager::get_queue_length
(C++ function), 1286

hpx::threads::threadmanager::get_thread_count
(C++ function), 1285

hpx::threads::threadmanager::get_thread_count_active
(C++ function), 1286

hpx::threads::threadmanager::get_thread_count_pending
(C++ function), 1286

hpx::threads::threadmanager::get_thread_count_staged
(C++ function), 1286

hpx::threads::threadmanager::get_thread_count_suspended
(C++ function), 1286

hpx::threads::threadmanager::get_thread_count_terminated
(C++ function), 1286

hpx::threads::threadmanager::get_thread_count_unknown
(C++ function), 1286

hpx::threads::threadmanager::get_used_processing_units
(C++ function), 1286

hpx::threads::threadmanager::init (C++ func-
tion), 1284

hpx::threads::threadmanager::init_tss (C++
function), 1287

hpx::threads::threadmanager::is_busy (C++
function), 1285

hpx::threads::threadmanager::is_idle (C++
function), 1285

hpx::threads::threadmanager::mtx_ (C++ mem-
ber), 1288

hpx::threads::threadmanager::mutex_type
(C++ type), 1287

hpx::threads::threadmanager::network_background_callback_
(C++ member), 1288

hpx::threads::threadmanager::notification_policy_type
(C++ type), 1284

hpx::threads::threadmanager::notifier_ (C++
member), 1288

hpx::threads::threadmanager::operator= (C++
function), 1284

hpx::threads::threadmanager::pool_exists
(C++ function), 1284

hpx::threads::threadmanager::pool_type (C++
type), 1284

hpx::threads::threadmanager::pool_vector
(C++ type), 1284

hpx::threads::threadmanager::pools_ (C++
member), 1288

hpx::threads::threadmanager::print_pools
(C++ function), 1284

hpx::threads::threadmanager::register_thread
(C++ function), 1284

hpx::threads::threadmanager::register_work
(C++ function), 1284

hpx::threads::threadmanager::remove_scheduler_mode
(C++ function), 1286

hpx::threads::threadmanager::report_error
(C++ function), 1286

hpx::threads::threadmanager::reset_thread_distribution
(C++ function), 1286

hpx::threads::threadmanager::resume (C++
function), 1285

hpx::threads::threadmanager::rtcfg_ (C++
member), 1288

hpx::threads::threadmanager::run (C++ func-
tion), 1285

hpx::threads::threadmanager::set_scheduler_mode
(C++ function), 1286

hpx::threads::threadmanager::status (C++
function), 1285

hpx::threads::threadmanager::stop (C++ func-
tion), 1285

hpx::threads::threadmanager::suspend (C++
function), 1285

hpx::threads::threadmanager::threadmanager
(C++ function), 1284

hpx::threads::threadmanager::threads_lookup_
(C++ member), 1288

hpx::threads::threadmanager::wait (C++ func-
tion), 1285

hpx::threads::threadmanager::wait_for (C++
function), 1285

hpx::threads::topology (C++ struct), 1297
hpx::threads::topology::~topology (C++ func-

tion), 1298
hpx::threads::topology::allocate (C++ func-

tion), 1300
hpx::threads::topology::allocate_membind

(C++ function), 1300
hpx::threads::topology::bitmap_to_mask (C++

function), 1301
hpx::threads::topology::core_affinity_masks_

(C++ member), 1302
hpx::threads::topology::core_numbers_ (C++

Index 1909

HPX Documentation, master

member), 1302
hpx::threads::topology::core_offset (C++

member), 1302
hpx::threads::topology::cpuset_to_nodeset

(C++ function), 1300
hpx::threads::topology::deallocate (C++ func-

tion), 1300
hpx::threads::topology::empty_mask (C++ mem-

ber), 1302
hpx::threads::topology::extract_node_count

(C++ function), 1301
hpx::threads::topology::extract_node_count_locked

(C++ function), 1301
hpx::threads::topology::extract_node_mask

(C++ function), 1301
hpx::threads::topology::get_area_membind_nodeset

(C++ function), 1300
hpx::threads::topology::get_cache_size (C++

function), 1300
hpx::threads::topology::get_core_affinity_mask

(C++ function), 1299
hpx::threads::topology::get_core_number

(C++ function), 1300
hpx::threads::topology::get_cpubind_mask

(C++ function), 1300
hpx::threads::topology::get_machine_affinity_mask

(C++ function), 1298
hpx::threads::topology::get_memory_page_size

(C++ function), 1303
hpx::threads::topology::get_numa_domain

(C++ function), 1300
hpx::threads::topology::get_numa_node_affinity_mask

(C++ function), 1298
hpx::threads::topology::get_numa_node_number

(C++ function), 1298
hpx::threads::topology::get_number_of_core_pus

(C++ function), 1300
hpx::threads::topology::get_number_of_core_pus_locked

(C++ function), 1301
hpx::threads::topology::get_number_of_cores

(C++ function), 1300
hpx::threads::topology::get_number_of_numa_node_cores

(C++ function), 1300
hpx::threads::topology::get_number_of_numa_node_pus

(C++ function), 1300
hpx::threads::topology::get_number_of_numa_nodes

(C++ function), 1300
hpx::threads::topology::get_number_of_pus

(C++ function), 1300
hpx::threads::topology::get_number_of_socket_cores

(C++ function), 1300
hpx::threads::topology::get_number_of_socket_pus

(C++ function), 1300
hpx::threads::topology::get_number_of_sockets

(C++ function), 1299
hpx::threads::topology::get_pu_number (C++

function), 1300
hpx::threads::topology::get_pu_obj (C++ func-

tion), 1302
hpx::threads::topology::get_service_affinity_mask

(C++ function), 1298
hpx::threads::topology::get_socket_affinity_mask

(C++ function), 1298
hpx::threads::topology::get_socket_number

(C++ function), 1298
hpx::threads::topology::get_thread_affinity_mask

(C++ function), 1299
hpx::threads::topology::get_thread_affinity_mask_from_lva

(C++ function), 1299
hpx::threads::topology::init_core_affinity_mask

(C++ function), 1302
hpx::threads::topology::init_core_affinity_mask_from_core

(C++ function), 1301
hpx::threads::topology::init_core_number

(C++ function), 1301
hpx::threads::topology::init_machine_affinity_mask

(C++ function), 1301
hpx::threads::topology::init_node_number

(C++ function), 1301
hpx::threads::topology::init_num_of_pus

(C++ function), 1302
hpx::threads::topology::init_numa_node_affinity_mask

(C++ function), 1301
hpx::threads::topology::init_numa_node_affinity_mask_from_numa_node

(C++ function), 1301
hpx::threads::topology::init_numa_node_number

(C++ function), 1301
hpx::threads::topology::init_socket_affinity_mask

(C++ function), 1301
hpx::threads::topology::init_socket_affinity_mask_from_socket

(C++ function), 1301
hpx::threads::topology::init_socket_number

(C++ function), 1301
hpx::threads::topology::init_thread_affinity_mask

(C++ function), 1301
hpx::threads::topology::machine_affinity_mask_

(C++ member), 1302
hpx::threads::topology::mask_to_bitmap (C++

function), 1301
hpx::threads::topology::memory_page_size_

(C++ member), 1302
hpx::threads::topology::mutex_type (C++ type),

1301
hpx::threads::topology::num_of_pus_ (C++

member), 1302
hpx::threads::topology::numa_node_affinity_masks_

(C++ member), 1302
hpx::threads::topology::numa_node_numbers_

1910 Index

HPX Documentation, master

(C++ member), 1302
hpx::threads::topology::operator= (C++ func-

tion), 1298
hpx::threads::topology::print_affinity_mask

(C++ function), 1299
hpx::threads::topology::print_hwloc (C++

function), 1301
hpx::threads::topology::print_mask_vector

(C++ function), 1301
hpx::threads::topology::print_vector (C++

function), 1301
hpx::threads::topology::pu_offset (C++ mem-

ber), 1302
hpx::threads::topology::reduce_thread_priority

(C++ function), 1299
hpx::threads::topology::set_area_membind_nodeset

(C++ function), 1300
hpx::threads::topology::set_thread_affinity_mask

(C++ function), 1299
hpx::threads::topology::socket_affinity_masks_

(C++ member), 1302
hpx::threads::topology::socket_numbers_

(C++ member), 1302
hpx::threads::topology::thread_affinity_masks_

(C++ member), 1302
hpx::threads::topology::topo (C++ member),

1302
hpx::threads::topology::topo_mtx (C++ mem-

ber), 1302
hpx::threads::topology::topology (C++ func-

tion), 1298
hpx::threads::topology::use_pus_as_cores_

(C++ member), 1302
hpx::threads::topology::write_to_log (C++

function), 1300
hpx::throwmode (C++ enum), 1069
hpx::throwmode::lightweight (C++ enumerator),

1069
hpx::throwmode::plain (C++ enumerator), 1069
hpx::throwmode::rethrow (C++ enumerator), 1069
hpx::throws (C++ member), 1069
hpx::tie (C++ function), 1047
hpx::timed_mutex (C++ class), 1232
hpx::timed_mutex::~timed_mutex (C++ function),

1232
hpx::timed_mutex::HPX_NON_COPYABLE (C++ func-

tion), 1232
hpx::timed_mutex::lock (C++ function), 1234
hpx::timed_mutex::timed_mutex (C++ function),

1232
hpx::timed_mutex::try_lock (C++ function), 1234,

1235
hpx::timed_mutex::try_lock_for (C++ function),

1233

hpx::timed_mutex::try_lock_until (C++ func-
tion), 1232, 1233

hpx::timed_mutex::unlock (C++ function), 1235
hpx::tolerate_node_faults (C++ function), 1191
hpx::traits (C++ type), 1101, 1133, 1293, 1312, 1342,

1422
hpx::traits::action_remote_result (C++ struct),

1312
hpx::traits::action_remote_result_t (C++

type), 1312
hpx::traits::is_client<Derived,

std::void_t<typename
Derived::is_client_tag>> (C++ struct),
1418

hpx::traits::is_executor_parameters (C++
struct), 1101

hpx::traits::is_executor_parameters_v (C++
member), 1101

hpx::traits::is_timed_executor (C++ struct),
1293

hpx::traits::needs_reference_semantics (C++
struct), 1134

hpx::traits::needs_reference_semantics_v
(C++ member), 1134

hpx::traits::needs_reference_semantics<T
const> (C++ struct), 1134

hpx::transform (C++ function), 550–552
hpx::transform_exclusive_scan (C++ function),

554, 555
hpx::transform_inclusive_scan (C++ function),

557–560
hpx::transform_reduce (C++ function), 562, 563,

565–567, 914–918, 920–926
hpx::trigger_lco_event (C++ function), 1351, 1352
hpx::tuple (C++ class), 1047
hpx::tuple_cat (C++ function), 1047
hpx::tuple_element (C++ struct), 1048
hpx::tuple_size (C++ struct), 1048
hpx::unhandled_exception (C++ member), 1058
hpx::uninitialized_copy (C++ function), 569
hpx::uninitialized_copy_n (C++ function), 570,

571
hpx::uninitialized_default_construct (C++

function), 572
hpx::uninitialized_default_construct_n (C++

function), 573
hpx::uninitialized_fill (C++ function), 575
hpx::uninitialized_fill_n (C++ function), 576
hpx::uninitialized_move (C++ function), 577, 578
hpx::uninitialized_move_n (C++ function), 579
hpx::uninitialized_relocate (C++ function), 581
hpx::uninitialized_relocate_backward (C++

function), 582, 583
hpx::uninitialized_relocate_n (C++ function),

Index 1911

HPX Documentation, master

584, 585
hpx::uninitialized_value (C++ member), 1058
hpx::uninitialized_value_construct (C++ func-

tion), 587
hpx::uninitialized_value_construct_n (C++

function), 588
hpx::unique (C++ function), 589, 590
hpx::unique_any_nonser (C++ type), 1038
hpx::unique_copy (C++ function), 591, 592
hpx::unknown_component_address (C++ member),

1057
hpx::unknown_error (C++ member), 1059
hpx::unlock_guard (C++ class), 1252
hpx::unlock_guard::~unlock_guard (C++ func-

tion), 1252
hpx::unlock_guard::HPX_NON_COPYABLE (C++

function), 1252
hpx::unlock_guard::m_ (C++ member), 1252
hpx::unlock_guard::mutex_type (C++ type), 1252
hpx::unlock_guard::unlock_guard (C++ function),

1252
hpx::unmanaged (C++ function), 1464
hpx::unregister_thread (C++ function), 1191
hpx::unregister_with_basename (C++ function),

1416
hpx::unwrap (C++ function), 1158
hpx::unwrap_all (C++ function), 1158
hpx::unwrap_n (C++ function), 1158
hpx::unwrapping (C++ function), 1159
hpx::unwrapping_all (C++ function), 1159
hpx::unwrapping_n (C++ function), 1159
hpx::util (C++ type), 960, 990, 997, 1002, 1004, 1006,

1007, 1009–1011, 1040, 1050, 1125, 1134,
1150, 1155, 1156, 1190, 1252, 1270, 1303,
1356, 1364

hpx::util::accept_begin (C++ function), 961
hpx::util::accept_end (C++ function), 961
hpx::util::basic_any (C++ class), 1041
hpx::util::basic_any<IArch, OArch, Char,

std::true_type> (C++ class), 1048
hpx::util::basic_any<IArch, OArch, Char,

std::true_type>::~basic_any (C++
function), 1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::assign (C++ function),
1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::basic_any (C++
function), 1048

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::cast (C++ function),
1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::equal_to (C++ func-

tion), 1049
hpx::util::basic_any<IArch, OArch, Char,

std::true_type>::has_value (C++
function), 1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::load (C++ function),
1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::new_object (C++
function), 1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::object (C++ member),
1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::operator= (C++
function), 1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::reset (C++ function),
1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::save (C++ function),
1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::swap (C++ function),
1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::table (C++ member),
1049

hpx::util::basic_any<IArch, OArch, Char,
std::true_type>::type (C++ function),
1049

hpx::util::basic_any<void, void, Char,
std::false_type> (C++ class), 1037

hpx::util::basic_any<void, void, Char,
std::false_type>::~basic_any (C++
function), 1038

hpx::util::basic_any<void, void, Char,
std::false_type>::basic_any (C++
function), 1037

hpx::util::basic_any<void, void, Char,
std::false_type>::cast (C++ function),
1038

hpx::util::basic_any<void, void, Char,
std::false_type>::has_value (C++
function), 1038

hpx::util::basic_any<void, void, Char,
std::false_type>::new_object (C++
function), 1038

hpx::util::basic_any<void, void, Char,
std::false_type>::object (C++ mem-
ber), 1038

hpx::util::basic_any<void, void, Char,
std::false_type>::operator= (C++
function), 1037, 1038

1912 Index

HPX Documentation, master

hpx::util::basic_any<void, void, Char,
std::false_type>::reset (C++ func-
tion), 1038

hpx::util::basic_any<void, void, Char,
std::false_type>::swap (C++ function),
1038

hpx::util::basic_any<void, void, Char,
std::false_type>::table (C++ mem-
ber), 1038

hpx::util::basic_any<void, void, Char,
std::false_type>::type (C++ function),
1038

hpx::util::basic_any<void, void, Char,
std::true_type> (C++ class), 1035

hpx::util::basic_any<void, void, Char,
std::true_type>::~basic_any (C++
function), 1035

hpx::util::basic_any<void, void, Char,
std::true_type>::assign (C++ func-
tion), 1036

hpx::util::basic_any<void, void, Char,
std::true_type>::basic_any (C++
function), 1035

hpx::util::basic_any<void, void, Char,
std::true_type>::cast (C++ function),
1035

hpx::util::basic_any<void, void, Char,
std::true_type>::has_value (C++
function), 1035

hpx::util::basic_any<void, void, Char,
std::true_type>::new_object (C++
function), 1036

hpx::util::basic_any<void, void, Char,
std::true_type>::object (C++ mem-
ber), 1036

hpx::util::basic_any<void, void, Char,
std::true_type>::operator= (C++
function), 1035

hpx::util::basic_any<void, void, Char,
std::true_type>::reset (C++ function),
1035

hpx::util::basic_any<void, void, Char,
std::true_type>::swap (C++ function),
1035

hpx::util::basic_any<void, void, Char,
std::true_type>::table (C++ mem-
ber), 1036

hpx::util::basic_any<void, void, Char,
std::true_type>::type (C++ function),
1035

hpx::util::basic_any<void, void, void,
std::false_type> (C++ class), 1036

hpx::util::basic_any<void, void, void,
std::false_type>::~basic_any (C++

function), 1036
hpx::util::basic_any<void, void, void,

std::false_type>::basic_any (C++
function), 1036

hpx::util::basic_any<void, void, void,
std::false_type>::cast (C++ function),
1037

hpx::util::basic_any<void, void, void,
std::false_type>::has_value (C++
function), 1037

hpx::util::basic_any<void, void, void,
std::false_type>::new_object (C++
function), 1037

hpx::util::basic_any<void, void, void,
std::false_type>::object (C++ mem-
ber), 1037

hpx::util::basic_any<void, void, void,
std::false_type>::operator= (C++
function), 1036

hpx::util::basic_any<void, void, void,
std::false_type>::reset (C++ func-
tion), 1037

hpx::util::basic_any<void, void, void,
std::false_type>::swap (C++ function),
1037

hpx::util::basic_any<void, void, void,
std::false_type>::table (C++ mem-
ber), 1037

hpx::util::basic_any<void, void, void,
std::false_type>::type (C++ function),
1037

hpx::util::basic_any<void, void, void,
std::true_type> (C++ class), 1033

hpx::util::basic_any<void, void, void,
std::true_type>::~basic_any (C++
function), 1034

hpx::util::basic_any<void, void, void,
std::true_type>::assign (C++ func-
tion), 1034

hpx::util::basic_any<void, void, void,
std::true_type>::basic_any (C++
function), 1033, 1034

hpx::util::basic_any<void, void, void,
std::true_type>::cast (C++ function),
1034

hpx::util::basic_any<void, void, void,
std::true_type>::has_value (C++
function), 1034

hpx::util::basic_any<void, void, void,
std::true_type>::new_object (C++
function), 1035

hpx::util::basic_any<void, void, void,
std::true_type>::object (C++ mem-
ber), 1034

Index 1913

HPX Documentation, master

hpx::util::basic_any<void, void, void,
std::true_type>::operator= (C++
function), 1034

hpx::util::basic_any<void, void, void,
std::true_type>::reset (C++ function),
1034

hpx::util::basic_any<void, void, void,
std::true_type>::swap (C++ function),
1034

hpx::util::basic_any<void, void, void,
std::true_type>::table (C++ mem-
ber), 1034

hpx::util::basic_any<void, void, void,
std::true_type>::type (C++ function),
1034

hpx::util::cache (C++ type), 990, 997, 1002, 1004,
1006, 1007, 1009–1011

hpx::util::cache::entries (C++ type), 1002, 1004,
1006, 1007, 1009

hpx::util::cache::entries::entry (C++ class),
1002

hpx::util::cache::entries::entry::entry
(C++ function), 1003

hpx::util::cache::entries::entry::get (C++
function), 1003

hpx::util::cache::entries::entry::get_size
(C++ function), 1004

hpx::util::cache::entries::entry::insert
(C++ function), 1003

hpx::util::cache::entries::entry::operator<
(C++ function), 1004

hpx::util::cache::entries::entry::remove
(C++ function), 1003

hpx::util::cache::entries::entry::touch
(C++ function), 1003

hpx::util::cache::entries::entry::value_
(C++ member), 1004

hpx::util::cache::entries::entry::value_type
(C++ type), 1002

hpx::util::cache::entries::fifo_entry (C++
class), 1004

hpx::util::cache::entries::fifo_entry::base_type
(C++ type), 1005

hpx::util::cache::entries::fifo_entry::fifo_entry
(C++ function), 1005

hpx::util::cache::entries::fifo_entry::get_creation_time
(C++ function), 1005

hpx::util::cache::entries::fifo_entry::insert
(C++ function), 1005

hpx::util::cache::entries::fifo_entry::insertion_time_
(C++ member), 1005

hpx::util::cache::entries::fifo_entry::operator<
(C++ function), 1005

hpx::util::cache::entries::fifo_entry::time_point

(C++ type), 1005
hpx::util::cache::entries::lfu_entry (C++

class), 1006
hpx::util::cache::entries::lfu_entry::base_type

(C++ type), 1007
hpx::util::cache::entries::lfu_entry::get_access_count

(C++ function), 1007
hpx::util::cache::entries::lfu_entry::lfu_entry

(C++ function), 1006
hpx::util::cache::entries::lfu_entry::operator<

(C++ function), 1007
hpx::util::cache::entries::lfu_entry::ref_count_

(C++ member), 1007
hpx::util::cache::entries::lfu_entry::touch

(C++ function), 1006
hpx::util::cache::entries::lru_entry (C++

class), 1007
hpx::util::cache::entries::lru_entry::access_time_

(C++ member), 1008
hpx::util::cache::entries::lru_entry::base_type

(C++ type), 1008
hpx::util::cache::entries::lru_entry::get_access_time

(C++ function), 1008
hpx::util::cache::entries::lru_entry::lru_entry

(C++ function), 1008
hpx::util::cache::entries::lru_entry::operator<

(C++ function), 1008
hpx::util::cache::entries::lru_entry::time_point

(C++ type), 1008
hpx::util::cache::entries::lru_entry::touch

(C++ function), 1008
hpx::util::cache::entries::size_entry (C++

class), 1009
hpx::util::cache::entries::size_entry::base_type

(C++ type), 1010
hpx::util::cache::entries::size_entry::derived_type

(C++ type), 1010
hpx::util::cache::entries::size_entry::get_size

(C++ function), 1009
hpx::util::cache::entries::size_entry::size_

(C++ member), 1010
hpx::util::cache::entries::size_entry::size_entry

(C++ function), 1009
hpx::util::cache::local_cache (C++ class), 990
hpx::util::cache::local_cache::~local_cache

(C++ function), 992
hpx::util::cache::local_cache::adapt (C++

struct), 997
hpx::util::cache::local_cache::adapt::adapt

(C++ function), 997
hpx::util::cache::local_cache::adapt::f_

(C++ member), 997
hpx::util::cache::local_cache::adapt::operator()

(C++ function), 997

1914 Index

HPX Documentation, master

hpx::util::cache::local_cache::adapted_update_policy_type
(C++ type), 996

hpx::util::cache::local_cache::capacity
(C++ function), 992

hpx::util::cache::local_cache::clear (C++
function), 996

hpx::util::cache::local_cache::const_iterator
(C++ type), 996

hpx::util::cache::local_cache::current_size_
(C++ member), 997

hpx::util::cache::local_cache::entry_heap_
(C++ member), 997

hpx::util::cache::local_cache::entry_type
(C++ type), 991

hpx::util::cache::local_cache::erase (C++
function), 995, 996

hpx::util::cache::local_cache::free_space
(C++ function), 996

hpx::util::cache::local_cache::get_entry
(C++ function), 993

hpx::util::cache::local_cache::get_statistics
(C++ function), 996

hpx::util::cache::local_cache::heap_iterator
(C++ type), 996

hpx::util::cache::local_cache::heap_type
(C++ type), 996

hpx::util::cache::local_cache::holds_key
(C++ function), 992

hpx::util::cache::local_cache::insert (C++
function), 993, 994

hpx::util::cache::local_cache::insert_policy_
(C++ member), 997

hpx::util::cache::local_cache::insert_policy_type
(C++ type), 991

hpx::util::cache::local_cache::iterator
(C++ type), 996

hpx::util::cache::local_cache::key_type
(C++ type), 991

hpx::util::cache::local_cache::local_cache
(C++ function), 992

hpx::util::cache::local_cache::max_size_
(C++ member), 997

hpx::util::cache::local_cache::operator=
(C++ function), 992

hpx::util::cache::local_cache::reserve (C++
function), 992

hpx::util::cache::local_cache::size (C++
function), 992

hpx::util::cache::local_cache::size_type
(C++ type), 991

hpx::util::cache::local_cache::statistics_
(C++ member), 997

hpx::util::cache::local_cache::statistics_type
(C++ type), 991

hpx::util::cache::local_cache::storage_type
(C++ type), 991

hpx::util::cache::local_cache::storage_value_type
(C++ type), 991

hpx::util::cache::local_cache::store_ (C++
member), 997

hpx::util::cache::local_cache::update (C++
function), 994, 995

hpx::util::cache::local_cache::update_if
(C++ function), 994

hpx::util::cache::local_cache::update_on_exit
(C++ type), 996

hpx::util::cache::local_cache::update_policy_
(C++ member), 997

hpx::util::cache::local_cache::update_policy_type
(C++ type), 991

hpx::util::cache::local_cache::value_type
(C++ type), 991

hpx::util::cache::lru_cache (C++ class), 997
hpx::util::cache::lru_cache::~lru_cache

(C++ function), 998
hpx::util::cache::lru_cache::capacity (C++

function), 998
hpx::util::cache::lru_cache::clear (C++ func-

tion), 1001
hpx::util::cache::lru_cache::current_size_

(C++ member), 1002
hpx::util::cache::lru_cache::entry_pair

(C++ type), 998
hpx::util::cache::lru_cache::entry_type

(C++ type), 998
hpx::util::cache::lru_cache::erase (C++ func-

tion), 1001
hpx::util::cache::lru_cache::evict (C++ func-

tion), 1001
hpx::util::cache::lru_cache::get_entry (C++

function), 999
hpx::util::cache::lru_cache::get_statistics

(C++ function), 1001
hpx::util::cache::lru_cache::holds_key (C++

function), 999
hpx::util::cache::lru_cache::insert (C++

function), 999
hpx::util::cache::lru_cache::insert_nonexist

(C++ function), 1001
hpx::util::cache::lru_cache::key_type (C++

type), 998
hpx::util::cache::lru_cache::lru_cache (C++

function), 998
hpx::util::cache::lru_cache::map_ (C++ mem-

ber), 1002
hpx::util::cache::lru_cache::map_type (C++

type), 998
hpx::util::cache::lru_cache::max_size_ (C++

Index 1915

HPX Documentation, master

member), 1002
hpx::util::cache::lru_cache::operator= (C++

function), 998
hpx::util::cache::lru_cache::reserve (C++

function), 999
hpx::util::cache::lru_cache::size (C++ func-

tion), 998
hpx::util::cache::lru_cache::size_type (C++

type), 998
hpx::util::cache::lru_cache::statistics_

(C++ member), 1002
hpx::util::cache::lru_cache::statistics_type

(C++ type), 998
hpx::util::cache::lru_cache::storage_ (C++

member), 1002
hpx::util::cache::lru_cache::storage_type

(C++ type), 998
hpx::util::cache::lru_cache::touch (C++ func-

tion), 1001
hpx::util::cache::lru_cache::update (C++

function), 1000
hpx::util::cache::lru_cache::update_if (C++

function), 1000
hpx::util::cache::lru_cache::update_on_exit

(C++ type), 1001
hpx::util::cache::statistics (C++ type), 1010,

1011
hpx::util::cache::statistics::local_statistics

(C++ class), 1010
hpx::util::cache::statistics::local_statistics::clear

(C++ function), 1011
hpx::util::cache::statistics::local_statistics::evictions

(C++ function), 1010, 1011
hpx::util::cache::statistics::local_statistics::evictions_

(C++ member), 1011
hpx::util::cache::statistics::local_statistics::get_and_reset

(C++ function), 1011
hpx::util::cache::statistics::local_statistics::got_eviction

(C++ function), 1011
hpx::util::cache::statistics::local_statistics::got_hit

(C++ function), 1011
hpx::util::cache::statistics::local_statistics::got_insertion

(C++ function), 1011
hpx::util::cache::statistics::local_statistics::got_miss

(C++ function), 1011
hpx::util::cache::statistics::local_statistics::hits

(C++ function), 1010
hpx::util::cache::statistics::local_statistics::hits_

(C++ member), 1011
hpx::util::cache::statistics::local_statistics::insertions

(C++ function), 1010, 1011
hpx::util::cache::statistics::local_statistics::insertions_

(C++ member), 1011
hpx::util::cache::statistics::local_statistics::local_statistics

(C++ function), 1010
hpx::util::cache::statistics::local_statistics::misses

(C++ function), 1010
hpx::util::cache::statistics::local_statistics::misses_

(C++ member), 1011
hpx::util::cache::statistics::method (C++

enum), 1012
hpx::util::cache::statistics::method::erase_entry

(C++ enumerator), 1012
hpx::util::cache::statistics::method::get_entry

(C++ enumerator), 1012
hpx::util::cache::statistics::method::insert_entry

(C++ enumerator), 1012
hpx::util::cache::statistics::method::update_entry

(C++ enumerator), 1012
hpx::util::cache::statistics::no_statistics

(C++ class), 1012
hpx::util::cache::statistics::no_statistics::clear

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::get_erase_entry_count

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::get_erase_entry_time

(C++ function), 1013
hpx::util::cache::statistics::no_statistics::get_get_entry_count

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::get_get_entry_time

(C++ function), 1013
hpx::util::cache::statistics::no_statistics::get_insert_entry_count

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::get_insert_entry_time

(C++ function), 1013
hpx::util::cache::statistics::no_statistics::get_update_entry_count

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::get_update_entry_time

(C++ function), 1013
hpx::util::cache::statistics::no_statistics::got_eviction

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::got_hit

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::got_insertion

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::got_miss

(C++ function), 1012
hpx::util::cache::statistics::no_statistics::update_on_exit

(C++ struct), 1013
hpx::util::cache::statistics::no_statistics::update_on_exit::update_on_exit

(C++ function), 1013
hpx::util::checkpoint (C++ class), 1361
hpx::util::checkpoint::~checkpoint (C++ func-

tion), 1362
hpx::util::checkpoint::begin (C++ function),

1362
hpx::util::checkpoint::checkpoint (C++ func-

tion), 1362

1916 Index

HPX Documentation, master

hpx::util::checkpoint::const_iterator (C++
type), 1362

hpx::util::checkpoint::data (C++ function), 1362
hpx::util::checkpoint::data_ (C++ member),

1362
hpx::util::checkpoint::end (C++ function), 1362
hpx::util::checkpoint::operator!= (C++ func-

tion), 1363
hpx::util::checkpoint::operator= (C++ func-

tion), 1362
hpx::util::checkpoint::operator== (C++ func-

tion), 1363
hpx::util::checkpoint::operator>> (C++ func-

tion), 1363
hpx::util::checkpoint::operator<< (C++ func-

tion), 1362
hpx::util::checkpoint::restore_checkpoint

(C++ function), 1363
hpx::util::checkpoint::serialize (C++ func-

tion), 1362
hpx::util::checkpoint::size (C++ function), 1362
hpx::util::checkpointing_tag (C++ struct), 1365
hpx::util::cleanup_ip_address (C++ function),

961
hpx::util::connect_begin (C++ function), 961
hpx::util::connect_end (C++ function), 961
hpx::util::endpoint_iterator_type (C++ type),

961
hpx::util::extra_data_helper<checkpointing_tag>

(C++ struct), 1365
hpx::util::extra_data_helper<checkpointing_tag>::id

(C++ function), 1365
hpx::util::extra_data_helper<checkpointing_tag>::reset

(C++ function), 1365
hpx::util::get_endpoint (C++ function), 961
hpx::util::get_endpoint_name (C++ function), 961
hpx::util::hash_any (C++ struct), 1052
hpx::util::hash_any::operator() (C++ function),

1052
hpx::util::insert_checked (C++ function), 1303
hpx::util::instead (C++ type), 1253, 1270
hpx::util::io_service_pool (C++ class), 1150
hpx::util::io_service_pool::~io_service_pool

(C++ function), 1150
hpx::util::io_service_pool::clear (C++ func-

tion), 1151
hpx::util::io_service_pool::clear_locked

(C++ function), 1151
hpx::util::io_service_pool::continue_barrier_

(C++ member), 1152
hpx::util::io_service_pool::get_io_service

(C++ function), 1151
hpx::util::io_service_pool::get_name (C++

function), 1151

hpx::util::io_service_pool::get_os_thread_handle
(C++ function), 1151

hpx::util::io_service_pool::init (C++ func-
tion), 1151

hpx::util::io_service_pool::initialize_work
(C++ function), 1152

hpx::util::io_service_pool::io_service_pool
(C++ function), 1150

hpx::util::io_service_pool::io_service_ptr
(C++ type), 1151

hpx::util::io_service_pool::io_services_
(C++ member), 1152

hpx::util::io_service_pool::join (C++ func-
tion), 1151

hpx::util::io_service_pool::join_locked
(C++ function), 1151

hpx::util::io_service_pool::mtx_ (C++ mem-
ber), 1152

hpx::util::io_service_pool::next_io_service_
(C++ member), 1152

hpx::util::io_service_pool::notifier_ (C++
member), 1152

hpx::util::io_service_pool::operator= (C++
function), 1150

hpx::util::io_service_pool::pool_name_ (C++
member), 1152

hpx::util::io_service_pool::pool_name_postfix_
(C++ member), 1152

hpx::util::io_service_pool::pool_size_ (C++
member), 1152

hpx::util::io_service_pool::raw_work_type
(C++ type), 1151

hpx::util::io_service_pool::run (C++ function),
1150

hpx::util::io_service_pool::run_locked (C++
function), 1151

hpx::util::io_service_pool::size (C++ func-
tion), 1151

hpx::util::io_service_pool::stop (C++ func-
tion), 1151

hpx::util::io_service_pool::stop_locked
(C++ function), 1151

hpx::util::io_service_pool::stopped (C++
function), 1151

hpx::util::io_service_pool::stopped_ (C++
member), 1152

hpx::util::io_service_pool::thread_run (C++
function), 1151

hpx::util::io_service_pool::threads_ (C++
member), 1152

hpx::util::io_service_pool::wait (C++ func-
tion), 1151

hpx::util::io_service_pool::wait_barrier_
(C++ member), 1152

Index 1917

HPX Documentation, master

hpx::util::io_service_pool::wait_locked
(C++ function), 1151

hpx::util::io_service_pool::waiting_ (C++
member), 1152

hpx::util::io_service_pool::work_ (C++ mem-
ber), 1152

hpx::util::io_service_pool::work_type (C++
type), 1151

hpx::util::make_any (C++ function), 1050
hpx::util::make_streamable_any_nonser (C++

function), 1041
hpx::util::make_streamable_unique_any_nonser

(C++ function), 1041
hpx::util::operator>> (C++ function), 1041, 1356
hpx::util::operator<< (C++ function), 1041, 1356
hpx::util::parse_sed_expression (C++ function),

1304
hpx::util::PhonyNameDueToError::~basic_any

(C++ function), 1042–1045, 1051
hpx::util::PhonyNameDueToError::assign (C++

function), 1043, 1046, 1051
hpx::util::PhonyNameDueToError::basic_any

(C++ function), 1041–1045, 1051
hpx::util::PhonyNameDueToError::cast (C++

function), 1042, 1043, 1045, 1046, 1051
hpx::util::PhonyNameDueToError::equal_to

(C++ function), 1051
hpx::util::PhonyNameDueToError::has_value

(C++ function), 1042, 1043, 1045, 1046, 1051
hpx::util::PhonyNameDueToError::load (C++

function), 1051
hpx::util::PhonyNameDueToError::new_object

(C++ function), 1042, 1044–1046, 1052
hpx::util::PhonyNameDueToError::object (C++

member), 1042, 1044–1046, 1052
hpx::util::PhonyNameDueToError::operator=

(C++ function), 1042–1046, 1051
hpx::util::PhonyNameDueToError::reset (C++

function), 1042, 1043, 1045, 1046, 1051
hpx::util::PhonyNameDueToError::save (C++

function), 1051
hpx::util::PhonyNameDueToError::swap (C++

function), 1042–1044, 1046, 1051
hpx::util::PhonyNameDueToError::table (C++

member), 1042, 1044–1046, 1052
hpx::util::PhonyNameDueToError::type (C++

function), 1042–1044, 1046, 1051
hpx::util::PhonyNameDueToError::type (C++

type), 1134
hpx::util::prepare_checkpoint (C++ function),

1359, 1360
hpx::util::prepare_checkpoint_data (C++ func-

tion), 1364
hpx::util::resolve_hostname (C++ function), 961

hpx::util::resolve_public_ip_address (C++
function), 961

hpx::util::restore_checkpoint (C++ function),
1361

hpx::util::restore_checkpoint_data (C++ func-
tion), 1364

hpx::util::retrieve_commandline_arguments
(C++ function), 1191

hpx::util::save_checkpoint (C++ function), 1356–
1359

hpx::util::save_checkpoint_data (C++ function),
1364

hpx::util::sed_transform (C++ struct), 1304
hpx::util::sed_transform::command_ (C++ mem-

ber), 1304
hpx::util::sed_transform::operator bool

(C++ function), 1304
hpx::util::sed_transform::operator! (C++

function), 1304
hpx::util::sed_transform::operator() (C++

function), 1304
hpx::util::sed_transform::sed_transform

(C++ function), 1304
hpx::util::split_ip_address (C++ function), 961
hpx::util::streamable_any_nonser (C++ type),

1040
hpx::util::streamable_unique_any_nonser

(C++ type), 1040
hpx::util::streamable_unique_wany_nonser

(C++ type), 1040
hpx::util::streamable_wany_nonser (C++ type),

1040
hpx::util::swap (C++ function), 1041
hpx::util::traverse_pack_async (C++ function),

1156
hpx::util::unwrap_reference<::hpx::reference_wrapper<T>

const> (C++ struct), 1132
hpx::util::unwrap_reference<::hpx::reference_wrapper<T>

const>::type (C++ type), 1132
hpx::util::unwrap_reference<::hpx::reference_wrapper<T>>

(C++ struct), 1132
hpx::util::unwrap_reference<::hpx::reference_wrapper<T>>::type

(C++ type), 1132
hpx::util::wany (C++ type), 1050
hpx::version_too_new (C++ member), 1057
hpx::version_too_old (C++ member), 1057
hpx::version_unknown (C++ member), 1057
hpx::wait_all (C++ function), 970, 971
hpx::wait_all_n (C++ function), 971
hpx::wait_any (C++ function), 972, 973
hpx::wait_any_n (C++ function), 973
hpx::wait_each (C++ function), 974, 975
hpx::wait_each_n (C++ function), 975
hpx::wait_some (C++ function), 976, 977

1918 Index

HPX Documentation, master

hpx::wait_some_n (C++ function), 977
hpx::when_all (C++ function), 978, 979
hpx::when_all_n (C++ function), 979
hpx::when_any (C++ function), 980, 981
hpx::when_any_n (C++ function), 981
hpx::when_any_result (C++ struct), 982
hpx::when_any_result::futures (C++ member),

982
hpx::when_any_result::index (C++ member), 982
hpx::when_each (C++ function), 982, 983
hpx::when_each_n (C++ function), 984
hpx::when_some (C++ function), 984, 985
hpx::when_some_n (C++ function), 986
hpx::when_some_result (C++ struct), 987
hpx::when_some_result::futures (C++ member),

987
hpx::when_some_result::indices (C++ member),

987
hpx::yield_aborted (C++ member), 1058
HPX_ALLOCATOR_SUPPORT_WITH_CACHING:BOOL

command line option, 66
HPX_ASSERT (C macro), 963
HPX_ASSERT_MSG (C macro), 963
HPX_COMMAND_LINE_HANDLING_LOCAL_WITH_JSON_CONFIGURATION_FILES:BOOL

command line option, 66
HPX_COMPONENT_ENUM_TYPE_ENUM_DEPRECATION_MSG

(C macro), 1430
HPX_COROUTINES_WITH_SWAP_CONTEXT_EMULATION:BOOL

command line option, 62
HPX_COROUTINES_WITH_THREAD_SCHEDULE_HINT_RUNS_AS_CHILD:BOOL

command line option, 62
HPX_COUNTER_STATUS_UNSCOPED_ENUM_DEPRECATION_MSG

(C macro), 1476
HPX_COUNTER_TYPE_UNSCOPED_ENUM_DEPRECATION_MSG

(C macro), 1476
HPX_CURRENT_SOURCE_LOCATION (C macro), 962
HPX_DATASTRUCTURES_WITH_ADAPT_STD_TUPLE:BOOL

command line option, 67
HPX_DATASTRUCTURES_WITH_ADAPT_STD_VARIANT:BOOL

command line option, 67
HPX_DECLARE_PLAIN_ACTION (C macro), 1310
HPX_DEFINE_COMPONENT_ACTION (C macro), 1308
HPX_DEFINE_COMPONENT_COMMANDLINE_OPTIONS (C

macro), 1428
HPX_DEFINE_COMPONENT_NAME (C macro), 1430
HPX_DEFINE_COMPONENT_NAME_ (C macro), 1430
HPX_DEFINE_COMPONENT_NAME_2 (C macro), 1431
HPX_DEFINE_COMPONENT_NAME_3 (C macro), 1431
HPX_DEFINE_COMPONENT_STARTUP_SHUTDOWN (C

macro), 1429
HPX_DEFINE_GET_COMPONENT_TYPE (C macro), 1430
HPX_DEFINE_GET_COMPONENT_TYPE_STATIC (C

macro), 1430

HPX_DEFINE_GET_COMPONENT_TYPE_TEMPLATE (C
macro), 1430

HPX_DEFINE_PLAIN_ACTION (C macro), 1310
HPX_DISCOVER_COUNTERS_MODE_UNSCOPED_ENUM_DEPRECATION_MSG

(C macro), 1476
HPX_DP_LAZY (C macro), 1052
HPX_ERROR_UNSCOPED_ENUM_DEPRECATION_MSG (C

macro), 1053
HPX_FACTORY_STATE_ENUM_DEPRECATION_MSG (C

macro), 1430
HPX_FILESYSTEM_WITH_BOOST_FILESYSTEM_COMPATIBILITY:BOOL

command line option, 67
HPX_INVOKE_R (C macro), 1125
HPX_ITERATOR_SUPPORT_WITH_BOOST_ITERATOR_TRAVERSAL_TAG_COMPATIBILITY:BOOL

command line option, 67
HPX_LOGGING_WITH_SEPARATE_DESTINATIONS:BOOL

command line option, 67
HPX_MAKE_EXCEPTIONAL_FUTURE (C macro), 1137
HPX_ONCE_INIT (C macro), 1237
HPX_PARCELPORT_BACKGROUND_MODE_ENUM_DEPRECATION_MSG

(C macro), 1465
HPX_PERFORMANCE_COUNTER_V1 (C macro), 1476
HPX_PLAIN_ACTION (C macro), 1310
HPX_PLAIN_ACTION_ID (C macro), 1311
HPX_PP_CAT (C macro), 1160
HPX_PP_EXPAND (C macro), 1160
HPX_PP_NARGS (C macro), 1161
HPX_PP_STRINGIZE (C macro), 1161
HPX_PP_STRIP_PARENS (C macro), 1162
HPX_REGISTER_ACTION (C macro), 1307
HPX_REGISTER_ACTION_DECLARATION (C macro), 1306
HPX_REGISTER_ACTION_DECLARATION_ (C macro),

1307
HPX_REGISTER_ACTION_DECLARATION_1 (C macro),

1307
HPX_REGISTER_ACTION_ID (C macro), 1307
HPX_REGISTER_BASE_LCO_WITH_VALUE (C macro),

1339
HPX_REGISTER_BASE_LCO_WITH_VALUE_ (C macro),

1339
HPX_REGISTER_BASE_LCO_WITH_VALUE_1 (C macro),

1339
HPX_REGISTER_BASE_LCO_WITH_VALUE_2 (C macro),

1339
HPX_REGISTER_BASE_LCO_WITH_VALUE_3 (C macro),

1339
HPX_REGISTER_BASE_LCO_WITH_VALUE_4 (C macro),

1339
HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION

(C macro), 1339
HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION2

(C macro), 1339
HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_

(C macro), 1339

Index 1919

HPX Documentation, master

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_1
(C macro), 1339

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_2
(C macro), 1339

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_3
(C macro), 1339

HPX_REGISTER_BASE_LCO_WITH_VALUE_DECLARATION_4
(C macro), 1339

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID (C macro),
1339

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID2 (C
macro), 1340

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID_ (C
macro), 1340

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID_4 (C
macro), 1340

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID_5 (C
macro), 1340

HPX_REGISTER_BASE_LCO_WITH_VALUE_ID_6 (C
macro), 1340

HPX_REGISTER_BINARY_FILTER_FACTORY (C macro),
1492

HPX_REGISTER_COMMANDLINE_MODULE (C macro), 1428
HPX_REGISTER_COMMANDLINE_MODULE_DYNAMIC (C

macro), 1428
HPX_REGISTER_COMMANDLINE_OPTIONS (C macro),

1168
HPX_REGISTER_COMMANDLINE_OPTIONS_DYNAMIC (C

macro), 1168
HPX_REGISTER_COMMANDLINE_REGISTRY (C macro),

1168
HPX_REGISTER_COMMANDLINE_REGISTRY_DYNAMIC (C

macro), 1168
HPX_REGISTER_COMPONENT (C macro), 1494
HPX_REGISTER_COMPONENT_FACTORY (C macro), 1169
HPX_REGISTER_COMPONENT_MODULE (C macro), 1169
HPX_REGISTER_COMPONENT_MODULE_DYNAMIC (C

macro), 1169
HPX_REGISTER_COMPONENT_REGISTRY (C macro), 1169
HPX_REGISTER_COMPONENT_REGISTRY_DYNAMIC (C

macro), 1169
HPX_REGISTER_DERIVED_COMPONENT_FACTORY (C

macro), 1496
HPX_REGISTER_DERIVED_COMPONENT_FACTORY_ (C

macro), 1496
HPX_REGISTER_DERIVED_COMPONENT_FACTORY_3 (C

macro), 1496
HPX_REGISTER_DERIVED_COMPONENT_FACTORY_4 (C

macro), 1496
HPX_REGISTER_DERIVED_COMPONENT_FACTORY_DYNAMIC

(C macro), 1496
HPX_REGISTER_DERIVED_COMPONENT_FACTORY_DYNAMIC_

(C macro), 1496
HPX_REGISTER_DERIVED_COMPONENT_FACTORY_DYNAMIC_3

(C macro), 1496
HPX_REGISTER_DERIVED_COMPONENT_FACTORY_DYNAMIC_4

(C macro), 1496
HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY (C

macro), 1495
HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_ (C

macro), 1495
HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_2 (C

macro), 1495
HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_3 (C

macro), 1495
HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_DYNAMIC

(C macro), 1495
HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_DYNAMIC_

(C macro), 1495
HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_DYNAMIC_2

(C macro), 1495
HPX_REGISTER_MINIMAL_COMPONENT_REGISTRY_DYNAMIC_3

(C macro), 1495
HPX_REGISTER_PLUGIN_BASE_REGISTRY (C macro),

1170
HPX_REGISTER_PLUGIN_REGISTRY (C macro), 1493
HPX_REGISTER_PLUGIN_REGISTRY_ (C macro), 1493
HPX_REGISTER_PLUGIN_REGISTRY_2 (C macro), 1493
HPX_REGISTER_PLUGIN_REGISTRY_4 (C macro), 1493
HPX_REGISTER_PLUGIN_REGISTRY_5 (C macro), 1493
HPX_REGISTER_PLUGIN_REGISTRY_MODULE (C macro),

1170
HPX_REGISTER_PLUGIN_REGISTRY_MODULE_DYNAMIC

(C macro), 1170
HPX_REGISTER_REGISTRY_MODULE (C macro), 1169
HPX_REGISTER_REGISTRY_MODULE_DYNAMIC (C

macro), 1170
HPX_REGISTER_SHUTDOWN_MODULE (C macro), 1429
HPX_REGISTER_SHUTDOWN_MODULE_DYNAMIC (C

macro), 1429
HPX_REGISTER_STARTUP_MODULE (C macro), 1429
HPX_REGISTER_STARTUP_MODULE_DYNAMIC (C macro),

1429
HPX_REGISTER_STARTUP_SHUTDOWN_FUNCTIONS (C

macro), 1172
HPX_REGISTER_STARTUP_SHUTDOWN_FUNCTIONS_DYNAMIC

(C macro), 1172
HPX_REGISTER_STARTUP_SHUTDOWN_MODULE (C

macro), 1429
HPX_REGISTER_STARTUP_SHUTDOWN_MODULE_ (C

macro), 1429
HPX_REGISTER_STARTUP_SHUTDOWN_MODULE_DYNAMIC

(C macro), 1429
HPX_REGISTER_STARTUP_SHUTDOWN_REGISTRY (C

macro), 1172
HPX_REGISTER_STARTUP_SHUTDOWN_REGISTRY_DYNAMIC

(C macro), 1172
HPX_SERIALIZATION_WITH_ALL_TYPES_ARE_BITWISE_SERIALIZABLE:BOOL

1920 Index

HPX Documentation, master

command line option, 67
HPX_SERIALIZATION_WITH_ALLOW_CONST_TUPLE_MEMBERS:BOOL

command line option, 67
HPX_SERIALIZATION_WITH_ALLOW_RAW_POINTER_SERIALIZATION:BOOL

command line option, 67
HPX_SERIALIZATION_WITH_BOOST_TYPES:BOOL

command line option, 67
HPX_SERIALIZATION_WITH_SUPPORTS_ENDIANESS:BOOL

command line option, 67
hpx_startup (C++ type), 1455, 1459
hpx_startup::get_main_func (C++ member), 1455
HPX_THROW_BAD_ALLOC (C macro), 1071
HPX_THROW_EXCEPTION (C macro), 1070
HPX_THROWS_BAD_ALLOC_IF (C macro), 1071
HPX_THROWS_IF (C macro), 1071
HPX_TOPOLOGY_WITH_ADDITIONAL_HWLOC_TESTING:BOOL

command line option, 67
HPX_UTIL_REGISTER_FUNCTION (C macro), 1122
HPX_UTIL_REGISTER_FUNCTION_DECLARATION (C

macro), 1122
HPX_UTIL_REGISTER_UNIQUE_FUNCTION (C macro),

1130
HPX_UTIL_REGISTER_UNIQUE_FUNCTION_DECLARATION

(C macro), 1130
HPX_WITH_AGAS_DUMP_REFCNT_ENTRIES:BOOL

command line option, 64
HPX_WITH_APEX

command line option, 48
HPX_WITH_APEX:BOOL

command line option, 65
HPX_WITH_ASIO_TAG:STRING

command line option, 60
HPX_WITH_ATTACH_DEBUGGER_ON_TEST_FAILURE:BOOL

command line option, 65
HPX_WITH_AUTOMATIC_SERIALIZATION_REGISTRATION:BOOL

command line option, 57
HPX_WITH_BENCHMARK_SCRIPTS_PATH:PATH

command line option, 57
HPX_WITH_BUILD_BINARY_PACKAGE:BOOL

command line option, 57
HPX_WITH_CHECK_MODULE_DEPENDENCIES:BOOL

command line option, 57
HPX_WITH_COMPILE_ONLY_TESTS:BOOL

command line option, 60
HPX_WITH_COMPILER_WARNINGS:BOOL

command line option, 57
HPX_WITH_COMPILER_WARNINGS_AS_ERRORS:BOOL

command line option, 57
HPX_WITH_COMPRESSION_BZIP2:BOOL

command line option, 57
HPX_WITH_COMPRESSION_SNAPPY:BOOL

command line option, 57
HPX_WITH_COMPRESSION_ZLIB:BOOL

command line option, 57

HPX_WITH_COROUTINE_COUNTERS:BOOL
command line option, 62

HPX_WITH_CUDA
command line option, 48

HPX_WITH_CUDA:BOOL
command line option, 57

HPX_WITH_CXX_STANDARD
command line option, 48

HPX_WITH_CXX_STANDARD:STRING
command line option, 57

HPX_WITH_DATAPAR:BOOL
command line option, 57

HPX_WITH_DATAPAR_BACKEND:STRING
command line option, 57

HPX_WITH_DATAPAR_VC_NO_LIBRARY:BOOL
command line option, 57

HPX_WITH_DEPRECATION_WARNINGS:BOOL
command line option, 57

HPX_WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS:BOOL
command line option, 57

HPX_WITH_DISTRIBUTED_RUNTIME:BOOL
command line option, 60

HPX_WITH_DOCUMENTATION:BOOL
command line option, 60

HPX_WITH_DOCUMENTATION_OUTPUT_FORMATS:STRING
command line option, 60

HPX_WITH_DYNAMIC_HPX_MAIN:BOOL
command line option, 58

HPX_WITH_EXAMPLES
command line option, 49

HPX_WITH_EXAMPLES:BOOL
command line option, 60

HPX_WITH_EXAMPLES_HDF5:BOOL
command line option, 60

HPX_WITH_EXAMPLES_OPENMP:BOOL
command line option, 60

HPX_WITH_EXAMPLES_QT4:BOOL
command line option, 60

HPX_WITH_EXAMPLES_QTHREADS:BOOL
command line option, 60

HPX_WITH_EXAMPLES_TBB:BOOL
command line option, 60

HPX_WITH_EXECUTABLE_PREFIX:STRING
command line option, 60

HPX_WITH_FAIL_COMPILE_TESTS:BOOL
command line option, 60

HPX_WITH_FAULT_TOLERANCE:BOOL
command line option, 58

HPX_WITH_FETCH_APEX:BOOL
command line option, 60

HPX_WITH_FETCH_ASIO:BOOL
command line option, 61

HPX_WITH_FETCH_BOOST:BOOL
command line option, 61

Index 1921

HPX Documentation, master

HPX_WITH_FETCH_GASNET:BOOL
command line option, 61

HPX_WITH_FETCH_HWLOC:BOOL
command line option, 61

HPX_WITH_FETCH_LCI
command line option, 270

HPX_WITH_FETCH_LCI:BOOL
command line option, 61

HPX_WITH_FULL_RPATH:BOOL
command line option, 58

HPX_WITH_GCC_VERSION_CHECK:BOOL
command line option, 58

HPX_WITH_GENERIC_CONTEXT_COROUTINES
command line option, 48

HPX_WITH_GENERIC_CONTEXT_COROUTINES:BOOL
command line option, 58

HPX_WITH_HIDDEN_VISIBILITY:BOOL
command line option, 58

HPX_WITH_HIP:BOOL
command line option, 58

HPX_WITH_HIPSYCL:BOOL
command line option, 58

HPX_WITH_IGNORE_COMPILER_COMPATIBILITY:BOOL
command line option, 58

HPX_WITH_IO_COUNTERS:BOOL
command line option, 61

HPX_WITH_IO_POOL:BOOL
command line option, 62

HPX_WITH_ITTNOTIFY:BOOL
command line option, 65

HPX_WITH_LCI_TAG
command line option, 270

HPX_WITH_LCI_TAG:STRING
command line option, 61

HPX_WITH_LOGGING:BOOL
command line option, 58

HPX_WITH_MALLOC
command line option, 48

HPX_WITH_MALLOC:STRING
command line option, 58

HPX_WITH_MAX_CPU_COUNT
command line option, 48

HPX_WITH_MAX_CPU_COUNT:STRING
command line option, 62

HPX_WITH_MAX_NUMA_DOMAIN_COUNT:STRING
command line option, 62

HPX_WITH_MODULES_AS_STATIC_LIBRARIES:BOOL
command line option, 58

HPX_WITH_NANOBENCH:BOOL
command line option, 61

HPX_WITH_NETWORKING:BOOL
command line option, 64

HPX_WITH_NICE_THREADLEVEL:BOOL
command line option, 58

HPX_WITH_PAPI:BOOL
command line option, 65

HPX_WITH_PARALLEL_LINK_JOBS:STRING
command line option, 61

HPX_WITH_PARALLEL_TESTS_BIND_NONE:BOOL
command line option, 65

HPX_WITH_PARCEL_COALESCING:BOOL
command line option, 58

HPX_WITH_PARCEL_PROFILING:BOOL
command line option, 64

HPX_WITH_PARCELPORT_ACTION_COUNTERS:BOOL
command line option, 64

HPX_WITH_PARCELPORT_COUNTERS:BOOL
command line option, 64

HPX_WITH_PARCELPORT_GASNET:BOOL
command line option, 64

HPX_WITH_PARCELPORT_LCI
command line option, 48, 270

HPX_WITH_PARCELPORT_LCI:BOOL
command line option, 64

HPX_WITH_PARCELPORT_LCI_LOG:STRING
command line option, 64

HPX_WITH_PARCELPORT_LCI_PCOUNTER:STRING
command line option, 64

HPX_WITH_PARCELPORT_LIBFABRIC:BOOL
command line option, 64

HPX_WITH_PARCELPORT_MPI
command line option, 48

HPX_WITH_PARCELPORT_MPI:BOOL
command line option, 64

HPX_WITH_PARCELPORT_TCP
command line option, 48

HPX_WITH_PARCELPORT_TCP:BOOL
command line option, 64

HPX_WITH_PKGCONFIG:BOOL
command line option, 58

HPX_WITH_POWER_COUNTER:BOOL
command line option, 67

HPX_WITH_PRECOMPILED_HEADERS:BOOL
command line option, 58

HPX_WITH_RUN_MAIN_EVERYWHERE:BOOL
command line option, 58

HPX_WITH_SANITIZERS:BOOL
command line option, 65

HPX_WITH_SCHEDULER_LOCAL_STORAGE:BOOL
command line option, 63

HPX_WITH_SPINLOCK_DEADLOCK_DETECTION:BOOL
command line option, 63

HPX_WITH_SPINLOCK_POOL_NUM:STRING
command line option, 63

HPX_WITH_STACKOVERFLOW_DETECTION:BOOL
command line option, 58

HPX_WITH_STACKTRACES:BOOL
command line option, 63

1922 Index

HPX Documentation, master

HPX_WITH_STACKTRACES_DEMANGLE_SYMBOLS:BOOL
command line option, 63

HPX_WITH_STACKTRACES_STATIC_SYMBOLS:BOOL
command line option, 63

HPX_WITH_STATIC_LINKING:BOOL
command line option, 58

HPX_WITH_SUPPORT_NO_UNIQUE_ADDRESS_ATTRIBUTE:BOOL
command line option, 59

HPX_WITH_SYCL:BOOL
command line option, 59

HPX_WITH_SYCL_FLAGS:STRING
command line option, 59

HPX_WITH_TESTS
command line option, 49

HPX_WITH_TESTS:BOOL
command line option, 61

HPX_WITH_TESTS_BENCHMARKS:BOOL
command line option, 61

HPX_WITH_TESTS_COMMAND_LINE:STRING
command line option, 65

HPX_WITH_TESTS_DEBUG_LOG:BOOL
command line option, 65

HPX_WITH_TESTS_DEBUG_LOG_DESTINATION:STRING
command line option, 66

HPX_WITH_TESTS_EXAMPLES:BOOL
command line option, 61

HPX_WITH_TESTS_EXTERNAL_BUILD:BOOL
command line option, 61

HPX_WITH_TESTS_HEADERS:BOOL
command line option, 61

HPX_WITH_TESTS_MAX_THREADS_PER_LOCALITY:STRING
command line option, 66

HPX_WITH_TESTS_REGRESSIONS:BOOL
command line option, 61

HPX_WITH_TESTS_UNIT:BOOL
command line option, 61

HPX_WITH_THREAD_BACKTRACE_DEPTH:STRING
command line option, 63

HPX_WITH_THREAD_BACKTRACE_ON_SUSPENSION:BOOL
command line option, 63

HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES:BOOL
command line option, 63

HPX_WITH_THREAD_CUMULATIVE_COUNTS:BOOL
command line option, 63

HPX_WITH_THREAD_DEBUG_INFO:BOOL
command line option, 66

HPX_WITH_THREAD_DESCRIPTION_FULL:BOOL
command line option, 66

HPX_WITH_THREAD_GUARD_PAGE:BOOL
command line option, 66

HPX_WITH_THREAD_IDLE_RATES:BOOL
command line option, 63

HPX_WITH_THREAD_LOCAL_STORAGE:BOOL
command line option, 63

HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF:BOOL
command line option, 63

HPX_WITH_THREAD_QUEUE_WAITTIME:BOOL
command line option, 63

HPX_WITH_THREAD_STACK_MMAP:BOOL
command line option, 63

HPX_WITH_THREAD_STEALING_COUNTS:BOOL
command line option, 63

HPX_WITH_THREAD_TARGET_ADDRESS:BOOL
command line option, 63

HPX_WITH_TIMER_POOL:BOOL
command line option, 63

HPX_WITH_TOOLS:BOOL
command line option, 61

HPX_WITH_UNITY_BUILD:BOOL
command line option, 59

HPX_WITH_VALGRIND:BOOL
command line option, 66

HPX_WITH_VERIFY_LOCKS:BOOL
command line option, 66

HPX_WITH_VERIFY_LOCKS_BACKTRACE:BOOL
command line option, 66

HPX_WITH_VIM_YCM:BOOL
command line option, 59

HPX_WITH_WORK_REQUESTING_SCHEDULERS:BOOL
command line option, 63

HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD:STRING
command line option, 59

Hwloc_ROOT:PATH
command line option, 68

L
LCO, 284
lcos (C++ type), 1145, 1344
Lightweight Control Object, 284
Local Control Object, 284
Locality, 284

P
Papi_ROOT:PATH

command line option, 68
Parcel, 284
Process, 284

S
Sphinx_ROOT:PATH

command line option, 1547
std (C++ type), 1033, 1146, 1149, 1260, 1350
std::filesystem (C++ type), 1118
std::hash<::hpx::thread::id> (C++ struct), 1255
std::hash<::hpx::thread::id>::operator()

(C++ function), 1255
std::hash<::hpx::threads::thread_id_ref>

(C++ struct), 1029

Index 1923

HPX Documentation, master

std::hash<::hpx::threads::thread_id_ref>::operator()
(C++ function), 1029

std::hash<::hpx::threads::thread_id> (C++
struct), 1028

std::hash<::hpx::threads::thread_id>::operator()
(C++ function), 1029

std::PhonyNameDueToError::operator() (C++
function), 1033, 1261

std::swap (C++ function), 1147, 1149
std::uses_allocator<hpx::distributed::promise<R>,

Allocator> (C++ struct), 1348
std::uses_allocator<hpx::packaged_task<Sig>,

Allocator> (C++ struct), 1145
std::uses_allocator<hpx::promise<R>,

Allocator> (C++ struct), 1147

1924 Index

	What is HPX?
	What’s so special about HPX?
	Quick start
	Installing HPX
	Hello, World!
	Writing task-based applications
	Next steps

	Examples
	Asynchronous execution
	Setup
	Walkthrough

	Parallel algorithms
	Setup
	Walkthrough

	Asynchronous execution with actions
	Setup
	Walkthrough

	Remote execution with actions
	Setup
	Walkthrough

	Components and actions
	Accumulator
	Setup
	Walkthrough
	The server class
	The client class

	Template accumulator
	Walkthrough
	The server class
	The client class

	Template function accumulator
	Walkthrough
	The server class
	The client class

	Dataflow
	Setup
	Walkthrough

	Local to remote
	Serializing user-defined types
	Setup
	Serialization Requirements
	Member function serialization
	Free function serialization
	Serializing non default constructable classes
	Bitwise serialization for bitwise copyable data

	Manual
	Prerequisites
	Supported platforms
	Supported compilers
	Software and libraries

	Getting HPX
	Building HPX
	Basic information
	Most important CMake options
	Build types
	Platform specific build recipes
	Unix variants
	Windows

	CMake options
	Variables that influence how HPX is built
	Generic options
	Build Targets options
	Thread Manager options
	AGAS options
	Parcelport options
	Profiling options
	Debugging options
	Modules options
	Additional tools and libraries used by HPX

	Migration guide
	OpenMP
	OpenMP parallel for loop
	Parallel for loop
	Private variables
	Shared variables
	Number of threads
	Reduction
	Schedule

	OpenMP single thread
	OpenMP tasks
	Simple tasks
	Task wait
	Multiple tasks synchronization
	Dependencies
	Nested tasks
	Task yield
	Task group

	OpenMP sections

	Intel Threading Building Blocks (TBB)
	parallel_for
	parallel_for_each
	parallel_invoke
	parallel_pipeline
	parallel_reduce
	Reduction
	Transformation & Reduction

	parallel_scan
	parallel_sort
	task_group

	MPI
	List of MPI-HPX functions
	MPI_Send & MPI_Recv
	MPI_Gather
	MPI_Scatter
	MPI_Allgather
	MPI_Allreduce
	MPI_Alltoall
	MPI_Barrier
	MPI_Bcast
	MPI_Exscan
	MPI_Scan
	MPI_Reduce

	Building tests and examples
	Tests
	Examples

	Creating HPX projects
	Using HPX with pkg-config
	How to build HPX applications with pkg-config
	How to build HPX components with pkg-config

	Using HPX with CMake-based projects
	Using CMake targets
	Using macros to create new targets
	Using the HPX compiler wrapper hpxcxx
	Optional FLAGS

	Using macros to set up existing targets to use HPX

	Using HPX with Makefile
	How to build HPX applications with makefile
	How to build HPX components with makefile

	Starting the HPX runtime
	Re-use the main() function as the main HPX entry point
	Supply your own main HPX entry point while blocking the main thread
	Supply your own main HPX entry point while avoiding blocking the main thread
	Supply your own explicit startup function as the main HPX entry point
	Suspending and resuming the HPX runtime
	Automatically suspending worker threads

	Working of hpx_main.hpp
	Linux implementation
	Mac OSX implementation
	Windows implementation

	Launching and configuring HPX applications
	Configuring HPX applications
	The HPX ini file format
	Built-in default configuration settings
	The system configuration section
	The HPX configuration section
	The hpx.threadpools configuration section
	The hpx.thread_queue configuration section
	The hpx.components configuration section
	The hpx.parcel configuration section
	The hpx.agas configuration section
	The hpx.commandline configuration section

	Loading INI files

	Loading components
	Application specific component example

	Logging
	Default logging
	Customizing logging
	Levels
	Configuration

	HPX Command Line Options
	HPX options (allowed on command line only)
	HPX options (additionally allowed in an options file)
	HPX configuration options
	HPX debugging options
	HPX options related to performance counters
	Command line argument shortcuts
	Specifying options for single localities only
	More details about HPX command line options
	The command line option --hpx:bind

	Writing single-node applications
	Synchronization objects
	Barrier
	Condition variable
	Latch
	Mutex
	Shared mutex
	Semaphore
	Composable guards

	Execution control
	Futures
	Extended facilities for futures

	Channels
	Task blocks
	Extensions for task blocks
	Using execution policies with task blocks
	Using executors to run tasks

	Task groups
	Threads

	High level parallel facilities
	Using parallel algorithms
	Parallel exceptions
	Parallel algorithms
	Executor parameters and executor parameter traits

	Writing distributed applications
	Global names
	Posting actions
	Action type definition
	Action invocation
	Posting an action asynchronously without any synchronization
	Posting an action asynchronously with synchronization
	Posting an action synchronously
	Posting an action with a continuation but without any synchronization
	Posting an action with a continuation and with synchronization
	Action error handling

	Writing components
	Defining components
	Defining client side representation classes
	Creating component instances
	Using component instances

	Segmented containers
	Using segmented containers
	Segmented containers

	Segmented iterators and segmented iterator traits
	Using views
	Preface: Why SPMD?
	SPMD multidimensional views
	Subscript-based operations
	Iterator-based operations
	Instantiating sub-views

	C++ co-arrays
	Preface: co-array, a segmented container tied to a SPMD multidimensional views
	Using co-arrays

	Running on batch systems
	How to use HPX applications with PBS
	How to use HPX applications with SLURM
	Interactive shells
	Scheduling batch jobs

	Debugging HPX applications
	Using a debugger with HPX applications
	Using sanitizers with HPX applications
	Debugging applications using core files

	Optimizing HPX applications
	Performance counters
	Performance counter names
	Two counter name examples
	Performance counter types
	Performance counter instances
	Using wildcards in performance counter names
	Consuming performance counter data
	Consuming performance counter data from the command line
	A simple example
	Consuming performance counter data using the HPX API
	Discover existing performance counters
	Retrieve the current value of any performance counter
	Providing performance counter data
	Exposing performance counter data using a simple function
	Implementing a full performance counter
	Existing HPX performance counters

	APEX integration
	References

	Using the LCI parcelport
	Basic information
	Build HPX with the LCI parcelport
	Run HPX with the LCI parcelport
	Performance tuning of the LCI parcelport

	HPX runtime and resources
	HPX thread scheduling policies
	Priority local scheduling policy (default policy)
	Static priority scheduling policy
	Local scheduling policy
	Static scheduling policy
	Priority ABP scheduling policy
	Work requesting scheduling policies

	The HPX resource partitioner
	Using the resource partitioner
	Difference between the old and new version
	Advanced usage

	Miscellaneous
	Error handling
	Working with exceptions
	Working with error codes
	Lightweight error codes

	Utilities in HPX
	Checkpoint

	The HPX I/O-streams component

	Troubleshooting
	Common issues
	HPX::iostreams_component" target not found
	Undefined reference to hpx::cout
	Fail compiling for examples with hpx::future and co_await
	Build fails with ASIO error
	Build fails with TCMalloc error

	Useful suggestions
	Reducing compilation time
	Linking HPX to your application
	HPX-application build type conformance

	Terminology
	Why HPX?
	ParalleX—a new execution model for future architectures
	What is HPX?
	What makes our systems slow?
	Technology demands new response
	Governing principles applied while developing HPX
	Focus on latency hiding instead of latency avoidance
	Embrace fine-grained parallelism instead of heavyweight threads
	Rediscover constraint-based synchronization to replace global barriers
	Adaptive locality control instead of static data distribution
	Prefer moving work to the data over moving data to the work
	Favor message driven computation over message passing

	Additional material
	Overview
	Core modules
	affinity
	algorithms
	allocator_support
	asio
	assertion
	async_base
	async_combinators
	async_cuda
	async_local
	async_mpi
	async_sycl
	batch_environments
	cache
	concepts
	concurrency
	config
	config_registry
	coroutines
	datastructures
	debugging
	errors
	execution
	execution_base
	executors
	filesystem
	format
	functional
	futures
	hardware
	hashing
	include_local
	io_service
	iterator_support
	itt_notify
	lci_base
	lcos_local
	lock_registration
	logging
	memory
	mpi_base
	pack_traversal
	plugin
	prefix
	preprocessor
	program_options
	properties
	resiliency
	resource_partitioner
	runtime_configuration
	schedulers
	serialization
	static_reinit
	string_util
	synchronization
	testing
	thread_pool_util
	thread_pools
	thread_support
	threading
	threading_base
	thread_manager
	timed_execution
	timing
	topology
	type_support
	util
	version

	Main HPX modules
	actions
	actions_base
	agas
	agas_base
	async_colocated
	async_distributed
	checkpoint
	Checkpointing components

	checkpoint_base
	collectives
	command_line_handling
	components
	components_base
	compute
	distribution_policies
	executors_distributed
	include
	init_runtime
	lcos_distributed
	naming
	naming_base
	parcelport_lci
	parcelport_mpi
	parcelport_tcp
	parcelset
	parcelset_base
	performance_counters
	plugin_factories
	resiliency_distributed
	runtime_components
	runtime_distributed
	segmented_algorithms
	statistics

	API reference
	Public API
	hpx/algorithm.hpp
	Classes
	Functions

	hpx/any.hpp
	Classes
	Functions

	hpx/assert.hpp
	Macros

	hpx/barrier.hpp
	Classes

	hpx/channel.hpp
	Classes

	hpx/chrono.hpp
	Classes

	hpx/condition_variable.hpp
	Classes

	hpx/exception.hpp
	Macros
	Classes

	hpx/execution.hpp
	Constants
	Classes

	hpx/functional.hpp
	Constants
	Classes
	Functions

	hpx/future.hpp
	Classes
	Functions

	hpx/init.hpp
	Classes
	Functions

	hpx/latch.hpp
	Classes

	hpx/mutex.hpp
	Classes
	Functions

	hpx/memory.hpp
	Functions

	hpx/numeric.hpp
	Functions

	hpx/optional.hpp
	Constants
	Classes

	hpx/runtime.hpp
	Typedefs
	Functions

	hpx/experimental/scope.hpp
	Classes

	hpx/semaphore.hpp
	Classes

	hpx/shared_mutex.hpp
	Classes

	hpx/source_location.hpp
	Classes

	hpx/stop_token.hpp
	Constants
	Classes

	hpx/system_error.hpp
	Classes

	hpx/task_block.hpp
	Classes
	Functions

	hpx/experimental/task_group.hpp
	Classes

	hpx/thread.hpp
	Classes
	Functions

	hpx/tuple.hpp
	Constants
	Classes
	Functions

	hpx/type_traits.hpp
	Classes

	hpx/unwrap.hpp
	Classes
	Functions

	hpx/version.hpp
	Macros
	Functions

	hpx/wrap_main.hpp

	Public distributed API
	hpx/barrier.hpp
	Classes
	Functions

	hpx/collectives.hpp
	Classes
	Functions

	hpx/latch.hpp
	Classes
	Member functions

	hpx/async.hpp
	Functions

	hpx/components.hpp
	Macros
	Classes
	Functions

	Full API
	algorithms
	hpx::experimental::run_on_all
	hpx::experimental::task_canceled_exception, hpx::experimental::task_block, hpx::experimental::define_task_block, hpx::experimental::define_task_block_restore_thread
	hpx::experimental::task_group
	hpx::adjacent_difference
	hpx::adjacent_find
	hpx::all_of, hpx::any_of, hpx::none_of
	hpx::copy, hpx::copy_n, hpx::copy_if
	hpx::count, hpx::count_if
	hpx::destroy, hpx::destroy_n
	hpx::ends_with
	hpx::equal
	hpx::exclusive_scan
	hpx::fill, hpx::fill_n
	hpx::find, hpx::find_if, hpx::find_if_not, hpx::find_end, hpx::find_first_of
	hpx::for_each, hpx::for_each_n
	hpx::experimental::for_loop, hpx::experimental::for_loop_strided, hpx::experimental::for_loop_n, hpx::experimental::for_loop_n_strided
	hpx::experimental::induction
	hpx::experimental::reduction
	hpx::experimental::reduction_bit_and
	hpx::experimental::reduction_bit_or
	hpx::experimental::reduction_bit_xor
	hpx::experimental::reduction_max
	hpx::experimental::reduction_min
	hpx::experimental::reduction_multiplies
	hpx::experimental::reduction_plus
	hpx::generate, hpx::generate_n
	hpx::includes
	hpx::inclusive_scan
	hpx::is_heap, hpx::is_heap_until
	hpx::is_partitioned
	hpx::is_sorted, hpx::is_sorted_until
	hpx::lexicographical_compare
	hpx::make_heap
	hpx::merge, hpx::inplace_merge
	hpx::min_element, hpx::max_element, hpx::minmax_element
	hpx::mismatch
	hpx::move
	hpx::nth_element
	hpx::partial_sort
	hpx::partial_sort_copy
	hpx::partition, hpx::stable_partition, hpx::partition_copy
	hpx::reduce
	hpx::reduce_by_key
	hpx::reduce_deterministic
	hpx::remove, hpx::remove_if
	hpx::remove_copy, hpx::remove_copy_if
	hpx::replace, hpx::replace_if, hpx::replace_copy, hpx::replace_copy_if
	hpx::reverse, hpx::reverse_copy
	hpx::rotate, hpx::rotate_copy
	hpx::search, hpx::search_n
	hpx::set_difference
	hpx::set_intersection
	hpx::set_symmetric_difference
	hpx::set_union
	hpx::shift_left
	hpx::shift_right
	hpx::sort
	hpx::experimental::sort_by_key
	hpx::stable_sort
	hpx::starts_with
	hpx::swap_ranges
	hpx::transform
	hpx::transform_exclusive_scan
	hpx::transform_inclusive_scan
	hpx::transform_reduce
	hpx/parallel/algorithms/transform_reduce_binary.hpp
	hpx::uninitialized_copy, hpx::uninitialized_copy_n
	hpx::uninitialized_default_construct, hpx::uninitialized_default_construct_n
	hpx::uninitialized_fill, hpx::uninitialized_fill_n
	hpx::uninitialized_move, hpx::uninitialized_move_n
	hpx::uninitialized_relocate, hpx::uninitialized_relocate_n
	hpx::uninitialized_value_construct, hpx::uninitialized_value_construct_n
	hpx::unique, hpx::unique_copy
	hpx::ranges::adjacent_difference
	hpx::ranges::adjacent_find
	hpx::ranges::all_of, hpx::ranges::any_of, hpx::ranges::none_of
	hpx::ranges::copy, hpx::ranges::copy_n, hpx::ranges::copy_if
	hpx::ranges::count, hpx::ranges::count_if
	hpx::ranges::destroy, hpx::ranges::destroy_n
	hpx::ranges::ends_with
	hpx::ranges::equal
	hpx::ranges::exclusive_scan
	hpx::ranges::fill, hpx::ranges::fill_n
	hpx::ranges::find, hpx::ranges::find_if, hpx::ranges::find_if_not, hpx::ranges::find_end, hpx::ranges::find_first_of
	hpx::ranges::for_each, hpx::ranges::for_each_n
	hpx::ranges::experimental::for_loop, hpx::ranges::experimental::for_loop_strided, hpx::ranges::experimental::for_loop_n, hpx::ranges::experimental::for_loop_n_strided
	hpx::ranges::generate, hpx::ranges::generate_n
	hpx::ranges::includes
	hpx::ranges::inclusive_scan
	hpx::ranges::is_heap, hpx::ranges::is_heap_until
	hpx::ranges::is_partitioned
	hpx::ranges::is_sorted, hpx::ranges::is_sorted_until
	hpx::ranges::lexicographical_compare
	hpx::ranges::make_heap
	hpx::ranges::merge, hpx::ranges::inplace_merge
	hpx::ranges::min_element, hpx::ranges::max_element, hpx::ranges::minmax_element
	hpx::ranges::mismatch
	hpx::ranges::move
	hpx::ranges::nth_element
	hpx::ranges::partial_sort
	hpx::ranges::partial_sort_copy
	hpx::ranges::partition, hpx::ranges::stable_partition, hpx::ranges::partition_copy
	hpx::ranges::reduce
	hpx::ranges::remove, hpx::ranges::remove_if
	hpx::ranges::remove_copy, hpx::ranges::remove_copy_if
	hpx::ranges::replace, hpx::ranges::replace_if, hpx::ranges::replace_copy, hpx::ranges::replace_copy_if
	hpx::ranges::reverse, hpx::ranges::reverse_copy
	hpx::ranges::rotate, hpx::ranges::rotate_copy
	hpx::ranges::search, hpx::ranges::search_n
	hpx::ranges::set_difference
	hpx::ranges::set_intersection
	hpx::ranges::set_symmetric_difference
	hpx::ranges::set_union
	hpx::ranges::shift_left
	hpx::ranges::shift_right
	hpx::ranges::sort
	hpx::ranges::stable_sort
	hpx::ranges::starts_with
	hpx::ranges::swap_ranges
	hpx::ranges::transform
	hpx::ranges::transform_exclusive_scan
	hpx::ranges::transform_inclusive_scan
	hpx::ranges::transform_reduce
	hpx::ranges::uninitialized_copy, hpx::ranges::uninitialized_copy_n
	hpx::ranges::uninitialized_default_construct, hpx::ranges::uninitialized_default_construct_n
	hpx::ranges::uninitialized_fill, hpx::ranges::uninitialized_fill_n
	hpx::ranges::uninitialized_move, hpx::ranges::uninitialized_move_n
	hpx::ranges::uninitialized_value_construct, hpx::ranges::uninitialized_value_construct_n
	hpx::ranges::unique, hpx::ranges::unique_copy
	hpx/parallel/util/range.hpp

	asio
	hpx/asio/asio_util.hpp

	assertion
	hpx/assertion/evaluate_assert.hpp
	HPX_CURRENT_SOURCE_LOCATION, hpx::source_location
	HPX_ASSERT, HPX_ASSERT_MSG

	async_base
	hpx::async
	hpx::dataflow
	hpx::launch
	hpx::post
	hpx::sync

	async_combinators
	hpx/async_combinators/split_future.hpp
	hpx::wait_all
	hpx::wait_any
	hpx::wait_each
	hpx::wait_some
	hpx::when_all
	hpx::when_any
	hpx::when_each
	hpx::when_some

	async_cuda
	hpx/async_cuda/cublas_executor.hpp
	hpx/async_cuda/cuda_executor.hpp

	async_mpi
	hpx/async_mpi/mpi_executor.hpp
	hpx/async_mpi/transform_mpi.hpp

	cache
	hpx/cache/local_cache.hpp
	hpx/cache/lru_cache.hpp
	hpx/cache/entries/entry.hpp
	hpx/cache/entries/fifo_entry.hpp
	hpx/cache/entries/lfu_entry.hpp
	hpx/cache/entries/lru_entry.hpp
	hpx/cache/entries/size_entry.hpp
	hpx/cache/statistics/local_statistics.hpp
	hpx/cache/statistics/no_statistics.hpp

	compute_local
	hpx/compute_local/vector.hpp
	hpx/compute_local/host/block_executor.hpp
	hpx/compute_local/host/block_fork_join_executor.hpp

	config
	hpx/config/endian.hpp

	coroutines
	hpx/coroutines/thread_enums.hpp
	hpx/coroutines/thread_id_type.hpp

	datastructures
	hpx::any_nonser. hpx::bad_any_cast, hpx::unique_any_nonser, hpx::any_cast, hpx::make_any_nonser, hpx::make_unique_any_nonser
	hpx::ignore, hpx::tuple, hpx::tuple_size, hpx::tuple_element, hpx::make_tuple, hpx::tie, hpx::forward_as_tuple, hpx::tuple_cat, hpx::get
	hpx::any, hpx::make_any

	debugging
	hpx/debugging/print.hpp

	errors
	hpx/errors/error.hpp
	hpx::error_code
	hpx::exception
	hpx/errors/exception_fwd.hpp
	hpx/errors/exception_list.hpp
	HPX_THROW_EXCEPTION, HPX_THROW_BAD_ALLOC, HPX_THROWS_IF

	execution
	hpx/execution/executors/adaptive_static_chunk_size.hpp
	hpx::execution::experimental::auto_chunk_size
	hpx/execution/executors/default_parameters.hpp
	hpx::execution::experimental::dynamic_chunk_size
	hpx/execution/executors/execution.hpp
	hpx/execution/executors/execution_information.hpp
	hpx/execution/executors/execution_parameters.hpp
	hpx/execution/executors/execution_parameters_fwd.hpp
	hpx::execution::experimental::guided_chunk_size
	hpx::execution::experimental::num_cores
	hpx::execution::experimental::persistent_auto_chunk_size
	hpx/execution/executors/polymorphic_executor.hpp
	hpx/execution/executors/rebind_executor.hpp
	hpx::execution::experimental::static_chunk_size
	hpx/execution/traits/is_execution_policy.hpp

	execution_base
	hpx/execution_base/execution.hpp
	hpx/execution_base/receiver.hpp
	hpx/execution_base/traits/is_executor_parameters.hpp

	executors
	hpx/executors/annotating_executor.hpp
	hpx/executors/current_executor.hpp
	hpx/executors/exception_list.hpp
	hpx::execution::seq, hpx::execution::par, hpx::execution::par_unseq, hpx::execution::task, hpx::execution::sequenced_policy, hpx::execution::parallel_policy, hpx::execution::parallel_unsequenced_policy, hpx::execution::sequenced_task_policy, hpx::execution::parallel_task_policy
	hpx/executors/execution_policy_annotation.hpp
	hpx/executors/execution_policy_mappings.hpp
	hpx/executors/execution_policy_parameters.hpp
	hpx/executors/execution_policy_scheduling_property.hpp
	hpx/executors/explicit_scheduler_executor.hpp
	hpx/executors/fork_join_executor.hpp
	hpx/executors/parallel_executor.hpp
	hpx/executors/parallel_executor_aggregated.hpp
	hpx/executors/restricted_thread_pool_executor.hpp
	hpx/executors/scheduler_executor.hpp
	hpx/executors/sequenced_executor.hpp
	hpx/executors/service_executors.hpp
	hpx/executors/std_execution_policy.hpp
	hpx/executors/thread_pool_scheduler.hpp
	hpx/executors/datapar/execution_policy.hpp
	hpx/executors/datapar/execution_policy_mappings.hpp

	filesystem
	hpx/modules/filesystem.hpp

	functional
	hpx::bind, hpx::placeholders::_1, hpx::placeholders::_2, …, hpx::placeholders::_9
	hpx::bind_back
	hpx::bind_front
	hpx::function
	hpx::function_ref
	hpx::invoke
	hpx::invoke_fused, hpx::invoke_fused_r
	hpx::mem_fn
	hpx::move_only_function
	hpx::reference_wrapper, hpx::ref, hpx::cref
	hpx::experimental::scope_exit
	hpx::experimental::scope_fail
	hpx::experimental::scope_success
	hpx::is_bind_expression
	hpx::is_placeholder

	futures
	hpx::future, hpx::shared_future, hpx::make_future, hpx::make_shared_future, hpx::make_ready_future, hpx::make_ready_future_alloc, hpx::make_ready_future_at, hpx::make_ready_future_after, hpx::make_exceptional_future
	hpx/futures/future_fwd.hpp
	hpx::packaged_task
	hpx::promise

	io_service
	hpx/io_service/io_service_pool.hpp

	lcos_local
	hpx/lcos_local/trigger.hpp

	pack_traversal
	hpx/pack_traversal/pack_traversal.hpp
	hpx/pack_traversal/pack_traversal_async.hpp
	hpx::functional::unwrap, hpx::functional::unwrap_n, hpx::functional::unwrap_all, hpx::unwrap, hpx::unwrap_n, hpx::unwrap_all, hpx::unwrapping, hpx::unwrapping_n, hpx::unwrapping_all

	preprocessor
	hpx/preprocessor/cat.hpp
	hpx/preprocessor/expand.hpp
	hpx/preprocessor/nargs.hpp
	hpx/preprocessor/stringize.hpp
	hpx/preprocessor/strip_parens.hpp

	resiliency
	hpx/resiliency/replay_executor.hpp
	hpx/resiliency/replicate_executor.hpp

	runtime_configuration
	hpx::components::component_commandline_base
	HPX_REGISTER_COMPONENT_MODULE
	hpx/runtime_configuration/component_registry_base.hpp
	hpx/runtime_configuration/plugin_registry_base.hpp
	hpx::runtime_mode

	runtime_local
	hpx/runtime_local/component_startup_shutdown_base.hpp
	hpx/runtime_local/custom_exception_info.hpp
	hpx::get_locality_id
	hpx::get_locality_name
	hpx::get_initial_num_localities, hpx::get_num_localities
	hpx/runtime_local/get_os_thread_count.hpp
	hpx::get_thread_name
	hpx/runtime_local/get_worker_thread_num.hpp
	hpx/runtime_local/report_error.hpp
	hpx/runtime_local/runtime_local.hpp
	hpx::register_thread, hpx::unregister_thread, hpx::get_os_thread_data, hpx::enumerate_os_threads, hpx::get_runtime_instance_number, hpx::register_on_exit, hpx::is_starting, hpx::tolerate_node_faults, hpx::is_running, hpx::is_stopped, hpx::is_stopped_or_shutting_down, hpx::get_num_worker_threads, hpx::get_system_uptime
	hpx/runtime_local/service_executors.hpp
	hpx::shutdown_function_type, hpx::register_pre_shutdown_function, hpx::register_shutdown_function
	hpx::startup_function_type, hpx::register_pre_startup_function, hpx::register_startup_function
	hpx/runtime_local/thread_hooks.hpp
	hpx/runtime_local/thread_pool_helpers.hpp

	serialization
	hpx/serialization/base_object.hpp

	synchronization
	hpx::barrier
	hpx::binary_semaphore
	hpx::condition_variable, hpx::condition_variable_any, hpx::cv_status
	hpx::counting_semaphore
	hpx/synchronization/event.hpp
	hpx::latch
	hpx::mutex, hpx::timed_mutex
	hpx::no_mutex
	hpx::once_flag, hpx::call_once
	hpx::recursive_mutex
	hpx::shared_mutex
	hpx/synchronization/sliding_semaphore.hpp
	hpx::spinlock
	hpx::nostopstate, hpx::stop_callback, hpx::stop_source, hpx::stop_token, hpx::nostopstate_t

	tag_invoke
	hpx::is_invocable, hpx::is_invocable_r

	thread_pool_util
	hpx/thread_pool_util/thread_pool_suspension_helpers.hpp

	thread_support
	hpx::unlock_guard

	threading
	hpx::jthread
	hpx::thread, hpx::this_thread::yield, hpx::this_thread::get_id, hpx::this_thread::sleep_for, hpx::this_thread::sleep_until

	threading_base
	hpx::annotated_function
	hpx/threading_base/print.hpp
	hpx/threading_base/register_thread.hpp
	hpx::scoped_annotation
	hpx/threading_base/thread_data.hpp
	hpx/threading_base/thread_description.hpp
	hpx/threading_base/thread_helpers.hpp
	hpx::get_worker_thread_num, hpx::get_local_worker_thread_num, hpx::get_local_worker_thread_num, hpx::get_thread_pool_num, hpx::get_thread_pool_num
	hpx/threading_base/thread_pool_base.hpp
	hpx/threading_base/threading_base_fwd.hpp

	threadmanager
	hpx/modules/threadmanager.hpp

	timed_execution
	hpx/timed_execution/timed_execution.hpp
	hpx/timed_execution/timed_execution_fwd.hpp
	hpx/timed_execution/timed_executors.hpp
	hpx/timed_execution/traits/is_timed_executor.hpp

	timing
	hpx::chrono::high_resolution_clock
	hpx::chrono::high_resolution_timer

	topology
	hpx/topology/cpu_mask.hpp
	hpx/topology/topology.hpp

	util
	hpx/util/insert_checked.hpp
	hpx/util/sed_transform.hpp

	actions
	hpx/actions/action_support.hpp
	hpx/actions/actions_fwd.hpp
	hpx/actions/base_action.hpp
	hpx/actions/transfer_action.hpp
	hpx/actions/transfer_base_action.hpp

	actions_base
	hpx/actions_base/actions_base_fwd.hpp
	hpx/actions_base/actions_base_support.hpp
	HPX_REGISTER_ACTION_DECLARATION, HPX_REGISTER_ACTION
	hpx/actions_base/basic_action_fwd.hpp
	HPX_DEFINE_COMPONENT_ACTION
	hpx/actions_base/lambda_to_action.hpp
	hpx/actions_base/plain_action.hpp
	hpx/actions_base/preassigned_action_id.hpp
	hpx/actions_base/traits/action_remote_result.hpp

	agas
	hpx/agas/addressing_service.hpp

	agas_base
	hpx/agas_base/server/primary_namespace.hpp

	async_colocated
	hpx::get_colocation_id

	async_distributed
	hpx::async (distributed)
	hpx/async_distributed/base_lco.hpp
	hpx/async_distributed/base_lco_with_value.hpp
	hpx::dataflow (distributed)
	hpx::distributed::promise
	hpx/async_distributed/packaged_action.hpp
	hpx::post (distributed)
	hpx/async_distributed/promise.hpp
	hpx::sync (distributed)
	hpx/async_distributed/transfer_continuation_action.hpp
	hpx/async_distributed/trigger_lco.hpp
	hpx/async_distributed/trigger_lco_fwd.hpp

	checkpoint
	hpx/checkpoint/checkpoint.hpp

	checkpoint_base
	hpx/checkpoint_base/checkpoint_data.hpp

	collectives
	hpx/collectives/all_gather.hpp
	hpx/collectives/all_reduce.hpp
	hpx/collectives/all_to_all.hpp
	hpx/collectives/argument_types.hpp
	hpx::distributed::barrier
	hpx/collectives/broadcast.hpp
	hpx/collectives/broadcast_direct.hpp
	hpx/collectives/channel_communicator.hpp
	hpx/collectives/communication_set.hpp
	hpx/collectives/create_communicator.hpp
	hpx/collectives/exclusive_scan.hpp
	hpx/collectives/fold.hpp
	hpx/collectives/gather.hpp
	hpx/collectives/inclusive_scan.hpp
	hpx::distributed::latch
	hpx/collectives/reduce.hpp
	hpx/collectives/reduce_direct.hpp
	hpx/collectives/scatter.hpp

	components
	hpx/components/basename_registration.hpp
	hpx/components/basename_registration_fwd.hpp
	hpx::components::client
	hpx::components::client_base
	hpx/components/get_ptr.hpp

	components_base
	hpx/components_base/agas_interface.hpp
	HPX_REGISTER_COMMANDLINE_MODULE
	HPX_REGISTER_STARTUP_MODULE
	hpx/components_base/component_type.hpp
	hpx::components::component, hpx::components::component_base
	hpx/components_base/get_lva.hpp
	hpx/components_base/server/fixed_component_base.hpp
	hpx/components_base/server/managed_component_base.hpp
	hpx/components_base/server/migration_support.hpp

	compute
	hpx/compute/host/target_distribution_policy.hpp

	distribution_policies
	hpx/distribution_policies/binpacking_distribution_policy.hpp
	hpx/distribution_policies/colocating_distribution_policy.hpp
	hpx/distribution_policies/default_distribution_policy.hpp
	hpx/distribution_policies/target_distribution_policy.hpp
	hpx/distribution_policies/unwrapping_result_policy.hpp

	executors_distributed
	hpx/executors_distributed/distribution_policy_executor.hpp

	init_runtime
	hpx::finalize, hpx::disconnect
	hpx/hpx_init.hpp
	hpx::init
	hpx::init_params
	hpx/hpx_start.hpp
	hpx::start
	hpx::suspend, hpx::resume

	naming_base
	hpx/naming_base/unmanaged.hpp

	parcelset
	hpx/parcelset/connection_cache.hpp
	hpx/parcelset/message_handler_fwd.hpp
	hpx/parcelset/parcelhandler.hpp
	hpx/parcelset/parcelset_fwd.hpp

	parcelset_base
	hpx/parcelset_base/parcelport.hpp
	hpx/parcelset_base/parcelset_base_fwd.hpp
	hpx/parcelset_base/set_parcel_write_handler.hpp

	performance_counters
	hpx/performance_counters/counter_creators.hpp
	hpx/performance_counters/counters.hpp
	hpx/performance_counters/counters_fwd.hpp
	hpx/performance_counters/manage_counter_type.hpp
	hpx/performance_counters/registry.hpp

	plugin_factories
	hpx/plugin_factories/binary_filter_factory.hpp
	hpx/plugin_factories/message_handler_factory.hpp
	hpx/plugin_factories/parcelport_factory.hpp
	hpx/plugin_factories/plugin_registry.hpp

	runtime_components
	HPX_REGISTER_COMPONENT
	hpx/runtime_components/component_registry.hpp
	hpx/runtime_components/components_fwd.hpp
	hpx/runtime_components/derived_component_factory.hpp
	hpx::rednew_

	runtime_distributed
	hpx/runtime_distributed.hpp
	hpx/runtime_distributed/applier.hpp
	hpx/runtime_distributed/applier_fwd.hpp
	hpx/runtime_distributed/copy_component.hpp
	hpx::find_root_locality, hpx::find_all_localities, hpx::find_remote_localities
	hpx/runtime_distributed/find_here.hpp
	hpx::find_locality
	hpx/runtime_distributed/get_locality_name.hpp
	hpx/runtime_distributed/get_num_localities.hpp
	hpx/runtime_distributed/migrate_component.hpp
	hpx/runtime_distributed/runtime_fwd.hpp
	hpx/runtime_distributed/runtime_support.hpp
	hpx/runtime_distributed/server/copy_component.hpp
	hpx/runtime_distributed/server/runtime_support.hpp
	hpx/runtime_distributed/stubs/runtime_support.hpp

	segmented_algorithms
	hpx/parallel/segmented_algorithms/adjacent_difference.hpp
	hpx/parallel/segmented_algorithms/adjacent_find.hpp
	hpx/parallel/segmented_algorithms/all_any_none.hpp
	hpx/parallel/segmented_algorithms/count.hpp
	hpx/parallel/segmented_algorithms/exclusive_scan.hpp
	hpx/parallel/segmented_algorithms/fill.hpp
	hpx/parallel/segmented_algorithms/for_each.hpp
	hpx/parallel/segmented_algorithms/generate.hpp
	hpx/parallel/segmented_algorithms/inclusive_scan.hpp
	hpx/parallel/segmented_algorithms/minmax.hpp
	hpx/parallel/segmented_algorithms/reduce.hpp
	hpx/parallel/segmented_algorithms/transform.hpp
	hpx/parallel/segmented_algorithms/transform_exclusive_scan.hpp
	hpx/parallel/segmented_algorithms/transform_inclusive_scan.hpp
	hpx/parallel/segmented_algorithms/transform_reduce.hpp

	Contributing to HPX
	Contributing to HPX
	HPX governance model
	Release procedure for HPX
	Testing HPX
	Running tests manually
	Running performance tests
	Adding new performance tests
	Issue tracker
	Continuous testing

	Using docker for development
	Documentation
	Prerequisites
	Building documentation
	Style guide
	API documentation

	Module structure
	Finding circular dependencies

	Releases
	List of supported releases
	HPX V2.0.0 (TBD)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.11.0 (Jun 30, 2025)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	List of older releases
	HPX V1.10.0 (May 29, 2024)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.9.1 (August 4, 2023)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.9.0 (May 2, 2023)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.8.1 (Aug 5, 2022)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.8.0 (May 18, 2022)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.7.1 (Aug 12, 2021)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.7.0 (Jul 14, 2021)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.6.0 (Feb 17, 2021)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.5.1 (Sep 30, 2020)
	General changes
	Closed issues
	Closed pull requests

	HPX V1.5.0 (Sep 02, 2020)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.4.1 (Feb 12, 2020)
	General changes
	Closed issues
	Closed pull requests

	HPX V1.4.0 (January 15, 2020)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.3.0 (May 23, 2019)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.2.1 (Feb 19, 2019)
	General changes
	Closed issues
	Closed pull requests

	HPX V1.2.0 (Nov 12, 2018)
	General changes
	Breaking changes
	Closed issues
	Closed pull requests

	HPX V1.1.0 (Mar 24, 2018)
	General changes
	Breaking changes
	Bug fixes (closed tickets)

	HPX V1.0.0 (Apr 24, 2017)
	General changes
	Breaking changes
	Bug fixes (closed tickets)

	HPX V0.9.99 (Jul 15, 2016)
	General changes
	Breaking changes
	Bug fixes (closed tickets)

	HPX V0.9.11 (Nov 11, 2015)
	General changes
	Breaking changes
	Bug fixes (closed tickets)

	HPX V0.9.10 (Mar 24, 2015)
	General changes
	Breaking changes
	Bug fixes (closed tickets)

	HPX V0.9.9 (Oct 31, 2014, codename Spooky)
	General changes
	Bug fixes (closed tickets)

	HPX V0.9.8 (Mar 24, 2014)
	General changes
	Bug fixes (closed tickets)

	HPX V0.9.7 (Nov 13, 2013)
	General changes
	Bug fixes (closed tickets)

	HPX V0.9.6 (Jul 30, 2013)
	General changes
	Bug fixes (closed tickets)

	HPX V0.9.5 (Jan 16, 2013)
	General changes
	Bug fixes (closed tickets)

	HPX V0.9.0 (Jul 5, 2012)
	General changes
	Bug fixes (closed tickets)

	HPX V0.8.1 (Apr 21, 2012)
	General changes
	Bug fixes (closed tickets)
	Bug fixes (commits)

	HPX V0.8.0 (Mar 23, 2012)
	General changes
	Example applications
	API changes
	Bug fixes (closed tickets)

	HPX V0.7.0 (Dec 12, 2011)
	General changes
	Example applications
	API changes
	Bug fixes (closed tickets)

	Namespace changes
	HPX V1.9.0 Namespace changes

	Citing HPX
	HPX users
	About HPX
	History
	People
	HPX contributors
	Contributors to this document
	Acknowledgements

	Index

