HPX Documentation
1.3.0

The STE | |AR Group

May 23, 2019

User documentation

1 Whatis HPX? 3
2 What’s so special about HPX? 5
2.1 Why HPX? . . o e e e e e e e e e 5
2.2 Quick Start . . oL oL e e e e e e e e e e 11
2.3 Terminology o ot e e e e e e e e e e e e e e e 17
24 Examples L e e 18
2.5 Manual e e e e e e 40
2.6 Additional material L e 207
2.7 OVEIVIEW . . o v o v o e e e e e e e e e e e e e e e e e 207
2.8 Allmodules e e 208
2.9 APIreference e e e 209
2.10 Contributing to HPX e e e 546
2.11 Releases o e e 552
212 ADout HPX . . . o o e e e e 722
3 Index 731
Index 733

HPX Documentation, 1.3.0

If you’re new to HPX you can get started with the Quick start guide. Don’t forget to read the Terminology section
to learn about the most important concepts in HPX. The Examples give you a feel for how it is to write real HPX
applications and the Manual contains detailed information about everything from building HPX to debugging it. There
are links to blog posts and videos about HPX in Additional material.

If you can’t find what you’re looking for in the documentation, please:
* open an issue on GitHub';
« contact us on IRC, the HPX channel on the C++ Slack?, or on our mailing list*; or

» read or ask questions tagged with HPX on StackOverflow®.

! https://github.com/STEIIAR-GROUP/hpx/issues
2 https://cpplang.slack.com

3 hpx-users @stellar.cct.Isu.edu

4 https://stackoverflow.com/questions/tagged/hpx

User documentation 1

https://github.com/STEllAR-GROUP/hpx/issues
irc://irc.freenode.net:6667/#ste\T1\textbar {}\T1\textbar {}ar
https://cpplang.slack.com
mailto:hpx-users@stellar.cct.lsu.edu
https://stackoverflow.com/questions/tagged/hpx

HPX Documentation, 1.3.0

2 User documentation

CHAPTER 1

What is HPX?

HPX is a C++ Standard Library for Concurrency and Parallelism. It implements all of the corresponding facilities
as defined by the C++ Standard. Additionally, in HPX we implement functionalities proposed as part of the ongoing
C++ standardization process. We also extend the C++ Standard APIs to the distributed case. HPX is developed by the
STEIIAR group (see People).

The goal of HPX is to create a high quality, freely available, open source implementation of a new programming model
for conventional systems, such as classic Linux based Beowulf clusters or multi-socket highly parallel SMP nodes. At
the same time, we want to have a very modular and well designed runtime system architecture which would allow us
to port our implementation onto new computer system architectures. We want to use real-world applications to drive
the development of the runtime system, coining out required functionalities and converging onto a stable API which
will provide a smooth migration path for developers.

The API exposed by HPX is not only modeled after the interfaces defined by the C++11/14/17/20 ISO standard. It
also adheres to the programming guidelines used by the Boost collection of C++ libraries. We aim to improve the
scalability of today’s applications and to expose new levels of parallelism which are necessary to take advantage of
the exascale systems of the future.

HPX Documentation, 1.3.0

4 Chapter 1. What is HPX?

CHAPTER 2

What’s so special about HPX?

* HPX exposes a uniform, standards-oriented API for ease of programming parallel and distributed applications.
* It enables programmers to write fully asynchronous code using hundreds of millions of threads.

» HPX provides unified syntax and semantics for local and remote operations.

* HPX makes concurrency manageable with dataflow and future based synchronization.

* It implements a rich set of runtime services supporting a broad range of use cases.

* HPX exposes a uniform, flexible, and extendable performance counter framework which can enable runtime
adaptivity

* Itis designed to solve problems conventionally considered to be scaling-impaired.

e HPX has been designed and developed for systems of any scale, from hand-held devices to very large scale
systems.

e It is the first fully functional implementation of the ParalleX execution model.

» HPX is published under a liberal open-source license and has an open, active, and thriving developer community.

2.1 Why HPX?

Current advances in high performance computing (HPC) continue to suffer from the issues plaguing parallel compu-
tation. These issues include, but are not limited to, ease of programming, inability to handle dynamically changing
workloads, scalability, and efficient utilization of system resources. Emerging technological trends such as multi-
core processors further highlight limitations of existing parallel computation models. To mitigate the aforementioned
problems, it is necessary to rethink the approach to parallelization models. ParalleX contains mechanisms such as
multi-threading, parcels, global name space support, percolation and local control objects (LCO). By design, Par-
alleX overcomes limitations of current models of parallelism by alleviating contention, latency, overhead and starva-
tion. With ParalleX, it is further possible to increase performance by at least an order of magnitude on challenging
parallel algorithms, e.g., dynamic directed graph algorithms and adaptive mesh refinement methods for astrophysics.
An additional benefit of ParalleX is fine-grained control of power usage, enabling reductions in power consumption.

HPX Documentation, 1.3.0

2.1.1 ParalleX—a new execution model for future architectures

ParalleX is a new parallel execution model that offers an alternative to the conventional computation models, such as
message passing. ParalleX distinguishes itself by:

* Split-phase transaction model

* Message-driven

* Distributed shared memory (not cache coherent)

* Multi-threaded

* Futures synchronization

* Local Control Objects (LCOs)

* Synchronization for anonymous producer-consumer scenarios
¢ Percolation (pre-staging of task data)

The ParalleX model is intrinsically latency hiding, delivering an abundance of variable-grained parallelism within a
hierarchical namespace environment. The goal of this innovative strategy is to enable future systems delivering very
high efficiency, increased scalability and ease of programming. ParalleX can contribute to significant improvements
in the design of all levels of computing systems and their usage from application algorithms and their programming
languages to system architecture and hardware design together with their supporting compilers and operating system
software.

2.1.2 What is HPX?

High Performance ParalleX (HPX) is the first runtime system implementation of the ParalleX execution model. The
HPX runtime software package is a modular, feature-complete, and performance oriented representation of the Par-
alleX execution model targeted at conventional parallel computing architectures such as SMP nodes and commodity
clusters. It is academically developed and freely available under an open source license. We provide HPX to the
community for experimentation and application to achieve high efficiency and scalability for dynamic adaptive and ir-
regular computational problems. HPX is a C++ library that supports a set of critical mechanisms for dynamic adaptive
resource management and lightweight task scheduling within the context of a global address space. It is solidly based
on many years of experience in writing highly parallel applications for HPC systems.

The two-decade success of the communicating sequential processes (CSP) execution model and its message passing
interface (MPI) programming model has been seriously eroded by challenges of power, processor core complexity,
multi-core sockets, and heterogeneous structures of GPUs. Both efficiency and scalability for some current (strong
scaled) applications and future Exascale applications demand new techniques to expose new sources of algorithm
parallelism and exploit unused resources through adaptive use of runtime information.

The ParalleX execution model replaces CSP to provide a new computing paradigm embodying the governing principles
for organizing and conducting highly efficient scalable computations greatly exceeding the capabilities of today’s
problems. HPX is the first practical, reliable, and performance-oriented runtime system incorporating the principal
concepts of the ParalleX model publicly provided in open source release form.

HPX is designed by the STEIIAR® Group (Systems Technology, Emergent Parallelism, and Algorithm Research) at
Louisiana State University (LSU)®’s Center for Computation and Technology (CCT)’ to enable developers to exploit
the full processing power of many-core systems with an unprecedented degree of parallelism. STEIIAR® is a research
group focusing on system software solutions and scientific application development for hybrid and many-core hard-
ware architectures.

5 https://stellar- group.org
6 https://www.lsu.edu

7 https://www.cct.Isu.edu
8 https://stellar-group.org

6 Chapter 2. What’s so special about HPX?

https://stellar-group.org
https://www.lsu.edu
https://www.cct.lsu.edu
https://stellar-group.org

HPX Documentation, 1.3.0

For more information about the STEIIAR® Group, see People.

2.1.3 What makes our systems slow?

Estimates say that we currently run our computers at way below 100% efficiency. The theoretical peak performance
(usually measured in FLOPS'’—floating point operations per second) is much higher than any practical peak per-
formance reached by any application. This is particularly true for highly parallel hardware. The more hardware
parallelism we provide to an application, the better the application must scale in order to efficiently use all the re-
sources of the machine. Roughly speaking, we distinguish two forms of scalability: strong scaling (see Amdahl’s
Law'!) and weak scaling (see Gustafson’s Law'?). Strong scaling is defined as how the solution time varies with the
number of processors for a fixed total problem size. It gives an estimate of how much faster can we solve a particular
problem by throwing more resources at it. Weak scaling is defined as how the solution time varies with the number of
processors for a fixed problem size per processor. In other words, it defines how much more data can we process by
using more hardware resources.

In order to utilize as much hardware parallelism as possible an application must exhibit excellent strong and weak
scaling characteristics, which requires a high percentage of work executed in parallel, i.e. using multiple threads of
execution. Optimally, if you execute an application on a hardware resource with N processors it either runs N times
faster or it can handle N times more data. Both cases imply 100% of the work is executed on all available processors in
parallel. However, this is just a theoretical limit. Unfortunately, there are more things which limit scalability, mostly
inherent to the hardware architectures and the programming models we use. We break these limitations into four
fundamental factors which make our systems SLOW:

* Starvation occurs when there is insufficient concurrent work available to maintain high utilization of all re-
sources.

» Latencies are imposed by the time-distance delay intrinsic to accessing remote resources and services.

* Overhead is work required for the management of parallel actions and resources on the critical execution path
which is not necessary in a sequential variant.

» Waiting for contention resolution is the delay due to the lack of availability of oversubscribed shared resources.

Each of those four factors manifests itself in multiple and different ways; each of the hardware architectures and
programming models expose specific forms. However the interesting part is that all of them are limiting the scalability
of applications no matter what part of the hardware jungle we look at. Hand-helds, PCs, supercomputers, or the cloud,
all suffer from the reign of the 4 horsemen: Starvation, Latency, Overhead, and Contention. This realization is very
important as it allows us to derive the criteria for solutions to the scalability problem from first principles, it allows
us to focus our analysis on very concrete patterns and measurable metrics. Moreover, any derived results will be
applicable to a wide variety of targets.

2.1.4 Technology demands new response

Today’s computer systems are designed based on the initial ideas of John von Neumann'?, as published back in 1945,
and later extended by the Harvard architecture'*. These ideas form the foundation, the execution model of computer
systems we use currently. But apparently a new response is required in the light of the demands created by today’s
technology.

So, what are the overarching objectives for designing systems allowing for applications to scale as they should? In our
opinion, the main objectives are:

° https://stellar-group.org

10 http://en.wikipedia.org/wiki/FLOPS

1 http://en.wikipedia.org/wiki/Amdahl%27s_law

12 http://en.wikipedia.org/wiki/Gustafson%27s_law

13 http://gss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
14 hitp://en.wikipedia.org/wiki/Harvard_architecture

2.1. Why HPX? 7

https://stellar-group.org
http://en.wikipedia.org/wiki/FLOPS
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Gustafson%27s_law
http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
http://en.wikipedia.org/wiki/Harvard_architecture

HPX Documentation, 1.3.0

 Performance: as mentioned, scalability and efficiency are the main criteria people are interested in

* Fault tolerance: the low expected mean time between failures (MTBF'®) of future systems requires embracing
faults, not trying to avoid them

* Power: minimizing energy consumption is a must as it is one of the major cost factors today, even more so in
the future

* Generality: any system should be usable for a broad set of use cases

* Programmability: for me as a programmer this is a very important objective, ensuring long term platform
stability and portability

What needs to be done to meet those objectives, to make applications scale better on tomorrow’s architectures? Well,
the answer is almost obvious: we need to devise a new execution model—a set of governing principles for the holistic
design of future systems—targeted at minimizing the effect of the outlined SLOW factors. Everything we create for
future systems, every design decision we make, every criteria we apply, has to be validated against this single, uniform
metric. This includes changes in the hardware architecture we prevalently use today, and it certainly involves new
ways of writing software, starting from the operating system, runtime system, compilers, and at the application level.
However the key point is that all those layers have to be co-designed, they are interdependent and cannot be seen as
separate facets. The systems we have today have been evolving for over 50 years now. All layers function in a certain
way relying on the other layers to do so as well. However, we do not have the time to wait for a coherent system to
evolve for another 50 years. The new paradigms are needed now—therefore, co-design is the key.

2.1.5 Governing principles applied while developing HPX

As it turn out, we do not have to start from scratch. Not everything has to be invented and designed anew. Many of the
ideas needed to combat the 4 horsemen have already been had, often more than 30 years ago. All it takes is to gather
them into a coherent approach. We’ll highlight some of the derived principles we think to be crucial for defeating
SLOW. Some of those are focused on high-performance computing, others are more general.

2.1.6 Focus on latency hiding instead of latency avoidance

It is impossible to design a system exposing zero latencies. In an effort to come as close as possible to this goal
many optimizations are mainly targeted towards minimizing latencies. Examples for this can be seen everywhere, for
instance low latency network technologies like InfiniBand'®, caching memory hierarchies in all modern processors,
the constant optimization of existing MPI'” implementations to reduce related latencies, or the data transfer latencies
intrinsic to the way we use GPGPUs'® today. It is important to note, that existing latencies are often tightly related
to some resource having to wait for the operation to be completed. At the same time it would be perfectly fine to do
some other, unrelated work in the meantime, allowing the system to hide the latencies by filling the idle-time with
useful work. Modern systems already employ similar techniques (pipelined instruction execution in the processor
cores, asynchronous input/output operations, and many more). What we propose is to go beyond anything we know
today and to make latency hiding an intrinsic concept of the operation of the whole system stack.

2.1.7 Embrace fine-grained parallelism instead of heavyweight Threads

If we plan to hide latencies even for very short operations, such as fetching the contents of a memory cell from main
memory (if it is not already cached), we need to have very lightweight threads with extremely short context switching
times, optimally executable within one cycle. Granted, for mainstream architectures this is not possible today (even

15 http://en.wikipedia.org/wiki/Mean_time_between_failures
16 http://en.wikipedia.org/wiki/InfiniBand

17 https://en.wikipedia.org/wiki/Message_Passing_Interface
18 http://en.wikipedia.org/wiki/GPGPU

8 Chapter 2. What’s so special about HPX?

http://en.wikipedia.org/wiki/Mean_time_between_failures
http://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/GPGPU

HPX Documentation, 1.3.0

if we already have special machines supporting this mode of operation, such as the Cray XMT'?). For conventional
systems however, the smaller the overhead of a context switch and the finer the granularity of the threading system,
the better will be the overall system utilization and its efficiency. For today’s architectures we already see a flurry of
libraries providing exactly this type of functionality: non-pre-emptive, task-queue based parallelization solutions, such
as Intel Threading Building Blocks (TBB)?°, Microsoft Parallel Patterns Library (PPL)?!, Cilk++%2, and many others.
The possibility to suspend a current task if some preconditions for its execution are not met (such as waiting for I/O or
the result of a different task), seamlessly switching to any other task which can continue, and to reschedule the initial
task after the required result has been calculated, which makes the implementation of latency hiding almost trivial.

2.1.8 Rediscover constraint-based synchronization to replace global Barriers

The code we write today is riddled with implicit (and explicit) global barriers. By global barrier we mean the synchro-
nization of the control flow between several (very often all) threads (when using OpenMP??) or processes (MPI**). For
instance, an implicit global barrier is inserted after each loop parallelized using OpenMP?’ as the system synchronizes
the threads used to execute the different iterations in parallel. In MPI?® each of the communication steps imposes an
explicit barrier onto the execution flow as (often all) nodes have to be synchronized. Each of those barriers acts as an
eye of the needle the overall execution is forced to be squeezed through. Even minimal fluctuations in the execution
times of the parallel threads (jobs) causes them to wait. Additionally it is often only one of the threads executing doing
the actual reduce operation, which further impedes parallelism. A closer analysis of a couple of key algorithms used
in science applications reveals that these global barriers are not always necessary. In many cases it is sufficient to
synchronize a small subset of the threads. Any operation should proceed whenever the preconditions for its execution
are met, and only those. Usually there is no need to wait for iterations of a loop to finish before you could continue
calculating other things, all you need is to have those iterations done which were producing the required results for a
particular next operation. Good bye global barriers, hello constraint based synchronization! People have been trying
to build this type of computing (and even computers) already back in the 1970’s. The theory behind what they did is
based on ideas around static and dynamic dataflow. There are certain attempts today to get back to those ideas and
to incorporate them with modern architectures. For instance, a lot of work is being done in the area of constructing
dataflow oriented execution trees. Our results show that employing dataflow techniques in combination with the other
ideas, as outlined herein, considerably improves scalability for many problems.

2.1.9 Adaptive Locality Control instead of Static Data Distribution

While this principle seems to be a given for single desktop or laptop computers (the operating system is your friend),
it is everything but ubiquitous on modern supercomputers, which are usually built from a large number of separate
nodes (i.e. Beowulf clusters), tightly interconnected by a high bandwidth, low latency network. Today’s prevalent
programming model for those is MPI?” which does not directly help with proper data distribution, leaving it to the
programmer to decompose the data to all of the nodes the application is running on. There are a couple of special-
ized languages and programming environments based on PGAS?® (Partitioned Global Address Space) designed to
overcome this limitation, such as Chapel®’, X10°°, UPC?!, or Fortress®>. However all systems based on PGAS?? rely

19 http://en.wikipedia.org/wiki/Cray_XMT

20 https://www.threadingbuildingblocks.org/

21 https://msdn.microsoft.com/en-us/library/dd492418.aspx
22 https://software.intel.com/en-us/articles/intel-cilk-plus/
23 https://openmp.org/wp/

24 https://en.wikipedia.org/wiki/Message_Passing_Interface
25 https://openmp.org/wp/

26 https://en.wikipedia.org/wiki/Message_Passing_Interface
27 https://en.wikipedia.org/wiki/Message_Passing_Interface
28 https://www.pgas.org/

29 https://chapel.cray.com/

30 https://x10-lang.org/

31 https:/fupc.lbl.gov/

32 https://labs.oracle.com/projects/plrg/Publications/index.html
33 https://www.pgas.org/

2.1. Why HPX? 9

http://en.wikipedia.org/wiki/Cray_XMT
https://www.threadingbuildingblocks.org/
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://software.intel.com/en-us/articles/intel-cilk-plus/
https://openmp.org/wp/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://openmp.org/wp/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.pgas.org/
https://chapel.cray.com/
https://x10-lang.org/
https://upc.lbl.gov/
https://labs.oracle.com/projects/plrg/Publications/index.html
https://www.pgas.org/

HPX Documentation, 1.3.0

on static data distribution. This works fine as long as such a static data distribution does not result in homogeneous
workload distributions or other resource utilization imbalances. In a distributed system these imbalances can be miti-
gated by migrating part of the application data to different localities (nodes). The only framework supporting (limited)
migration today is Charm++*. The first attempts towards solving related problem go back decades as well, a good ex-
ample is the Linda coordination language®”. Nevertheless, none of the other mentioned systems support data migration
today, which forces the users to either rely on static data distribution and live with the related performance hits or to
implement everything themselves, which is very tedious and difficult. We believe that the only viable way to flexibly
support dynamic and adaptive /ocality control is to provide a global, uniform address space to the applications, even
on distributed systems.

2.1.10 Prefer moving work to the data over moving data to the work

For best performance it seems obvious to minimize the amount of bytes transferred from one part of the system to
another. This is true on all levels. At the lowest level we try to take advantage of processor memory caches, thus
minimizing memory latencies. Similarly, we try to amortize the data transfer time to and from GPGPUs*® as much
as possible. At high levels we try to minimize data transfer between different nodes of a cluster or between different
virtual machines on the cloud. Our experience (well, it’s almost common wisdom) show that the amount of bytes
necessary to encode a certain operation is very often much smaller than the amount of bytes encoding the data the
operation is performed upon. Nevertheless we still often transfer the data to a particular place where we execute the
operation just to bring the data back to where it came from afterwards. As an example let me look at the way we
usually write our applications for clusters using MPI*’. This programming model is all about data transfer between
nodes. MPI*® is the prevalent programming model for clusters, it is fairly straightforward to understand and to use.
Therefore, we often write the applications in a way accommodating this model, centered around data transfer. These
applications usually work well for smaller problem sizes and for regular data structures. The larger the amount of data
we have to churn and the more irregular the problem domain becomes, the worse are the overall machine utilization
and the (strong) scaling characteristics. While it is not impossible to implement more dynamic, data driven, and
asynchronous applications using MPI*°, it is overly difficult to so. At the same time, if we look at applications
preferring to execute the code close the locality where the data was placed, i.e. utilizing active messages (for instance
based on Charm++"), we see better asynchrony, simpler application codes, and improved scaling.

2.1.11 Favor message driven computation over message passing

Today’s prevalently used programming model on parallel (multi-node) systems is MPI*!. It is based on message pass-
ing (as the name implies), which means that the receiver has to be aware of a message about to come in. Both codes,
the sender and the receiver, have to synchronize in order to perform the communication step. Even the newer, asyn-
chronous interfaces require explicitly coding the algorithms around the required communication scheme. As a result,
any more than trivial MPI** application spends a considerable amount of time waiting for incoming messages, thus
causing starvation and latencies to impede full resource utilization. The more complex and more dynamic the data
structures and algorithms become, the larger are the adverse effects. The community has discovered message-driven
and (data-driven) methods of implementing algorithms a long time ago, and systems such as Charm++** already have
integrated active messages demonstrating the validity of the concept. Message driven computation allows sending mes-
sages without requiring the receiver to actively wait for them. Any incoming message is handled asynchronously and
triggers the encoded action by passing along arguments and—possibly—continuations. HPX combines this scheme

34 https://charm.cs.uiuc.edu/

35 http://en.wikipedia.org/wiki/Linda_(coordination_language)
36 http://en.wikipedia.org/wiki/GPGPU

37 https://en.wikipedia.org/wiki/Message_Passing_Interface

38 https://en.wikipedia.org/wiki/Message_Passing_Interface

39 https://en.wikipedia.org/wiki/Message_Passing_Interface

40 https://charm.cs.uiuc.edu/

41 https://en.wikipedia.org/wiki/Message_Passing_Interface
42 https://en.wikipedia.org/wiki/Message_Passing_Interface

43 https://charm.cs.uiuc.edu/

10 Chapter 2. What’s so special about HPX?

https://charm.cs.uiuc.edu/
http://en.wikipedia.org/wiki/Linda_(coordination_language)
http://en.wikipedia.org/wiki/GPGPU
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://charm.cs.uiuc.edu/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://charm.cs.uiuc.edu/

HPX Documentation, 1.3.0

with work queue-based scheduling as described above, which allows the system to overlap almost completely any
communication with useful work, thereby minimizing latencies.

2.2 Quick start

This section is intended to get you to the point of running a basic HPX program as quickly as possible. To that end we
skip many details but instead give you hints and links to more details along the way.

We assume that you are on a Unix system with access to reasonably recent packages. You should have cmake and
make available for the build system (pkg—config is also supported, see Using HPX with pkg-config).

2.2.1 Getting HPX

Download a tarball of the latest release from HPX Downloads** and unpack it or clone the repository directly using
git:

’git clone https://github.com/STE11AR-GROUP/hpx.git

It is also recommended that you check out the latest stable tag:

’git checkout 1.3.0

2.2.2 HPX dependencies

The minimum dependencies needed to use HPX are Boost* and Portable Hardware Locality (HWLOC)*. If these are
not available through your system package manager, see Installing Boost and Installing Hwloc for instructions on how
to build them yourself. In addition to Boost*’ and Portable Hardware Locality (HWLOC)*, it is recommended that
you don’t use the system allocator, but instead use either t cmalloc from google-perftools*® (default) or jemalloc™”
for better performance. If you would like to try HPX without a custom allocator at this point you can configure HPX

to use the system allocator in the next step.

A full list of required and optional dependencies, including recommended versions is available at Prerequisites.

2.2.3 Building HPX

Once you have the source code and the dependencies, set up a separate build directory and configure the project.
Assuming all your dependencies are in paths known to CMake, the following gets you started:

In the HPX source directory

mkdir build && cd build

cmake -DCMAKE_INSTALL_PREFIX=/install/path
make install

4 https://stellar-group.org/downloads/

4 https://www.boost.org/

46 https://www.open-mpi.org/projects/hwloc/
47 https://www.boost.org/

48 https://www.open-mpi.org/projects/hwloc/
49 https://code.google.com/p/gperftools

50 https://www.canonware.com/jemalloc

2.2. Quick start 11

https://stellar-group.org/downloads/
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://code.google.com/p/gperftools
https://www.canonware.com/jemalloc

HPX Documentation, 1.3.0

This will build the core HPX libraries and examples, and install them to your chosen location. If you want to install
HPX to system folders simply leave out the CMAKE_INSTALL_PREF IX option. This may take a while. To speed up
the process launch more jobs by passing the — N option to make.

Tip: Do not set only -7 (i.e. —j without an explicit number of jobs) unless you have a lot of memory available on
your machine.

Tip: If you want to change CMake’' variables for your build it is usually a good idea to start with a clean build
directory to avoid configuration problems. It is especially important that you use a clean build directory when changing
between Release and Debug modes.

If your dependencies are in custom locations you may need to tell CMake>> where to find them by passing one or more
of the following options to CMake??:

-DBOOST_ROOT=/path/to/boost
-DHWLOC_ROOT=/path/to/hwloc
-DTCMALLOC_ROOT=/path/to/tcmalloc
-DJEMALLOC_ROOT=/path/to/jemalloc

If you want to try HPX without using a custom allocator pass ~-DHPX_WITH_MALLOC=system to CMake>*.

Important: If you are building HPX for a system with more than 64 processing units you must change the CMake
variables HPX_WITH_MORE_THAN_64_THREADS (to On) and HPX_WITH_MAX_CPU_COUNT (to a value at least
as big as the number of (virtual) cores on your system).

To build the tests run make tests. To run the tests run either make test or use ctest for more control over
which tests to run. You can run single tests for example with ctest —-—-output-on-failure —-R tests.
unit.parallel.algorithms.for_loop ora whole group of tests with ctest —--output-on-failure
-R tests.unit.

If you did not run make install earlier do so now or build the hello_world_1 example by running:

make hello_world_ 1

HPX executables end up in the bin directory in your build directory. You can now run hello_world_1 and should
see the following output:

./bin/hello_world_1
Hello World!

You’ve just run an example which prints Hello World! from the HPX runtime. The source for the example
is in examples/quickstart/hello_world_1l.cpp. The hello_world_distributed example (also
available in the examples/quickstart directory) is a distributed hello world program which is described in
Remote execution with actions: Hello world. It provides a gentle introduction to the distributed aspects of HPX.

Tip: Most build targets in HPX have two names: a simple name and a hierarchical name corresponding to what
type of example or test the target is. If you are developing HPX it is often helpful to run make help to get a list of
available targets. For example, make help | grep hello_world outputs the following:

51 https://www.cmake.org
52 https://www.cmake.org
33 https://www.cmake.org
54 https://www.cmake.org

12 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org

HPX Documentation, 1.3.0

examples.quickstart.hello_world_2
hello_world 2
examples.quickstart.hello_world_1
hello_world_1
examples.quickstart.hello_world_distributed
hello_world_distributed

It is also possible to build e.g. all quickstart examples using make examples.quickstart.

2.2.4 Hello, World!

The following CMakeLists.txt is a minimal example of what you need in order to build an executable using
CMake> and HPX:

cmake_minimum_required (VERSION 3.3.2)
project (my_hpx_project CXX)
find_package (HPX REQUIRED)
add_hpx_executable (my_hpx_program
SOURCES main.cpp
COMPONENT_DEPENDENCIES iostreams)

Note: You will most likely have more than one main . cpp file in your project. See the section on Using HPX with
CMake-based projects for more details on how to use add_hpx_executable.

Note: COMPONENT_DEPENDENCIES iostreams is optional for a minimal project but lets us use the HPX
equivalent of std: : cout, i.e. the HPX The HPX I/O-streams component functionality in our application.

Create a new project directory and a CMakeLists.txt with the contents above. Also create a main.cpp with the
contents below.

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.

#include <hpx/hpx_main.hpp>

#include <hpx/include/iostreams.hpp>

int main ()

{
// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return 0O;

Then, in your project directory run the following:

mkdir build && cd build

cmake -DCMAKE_PREFIX_PATH=/path/to/hpx/installation
make all

. /my_hpx_program

55 https://www.cmake.org

2.2. Quick start 13

https://www.cmake.org

HPX Documentation, 1.3.0

The program looks almost like a regular C++ hello world with the exception of the two includes and hpx: : cout.
When you include hpx_main.hpp some things will be done behind the scenes to make sure that main actually
gets launched on the HPX runtime. So while it looks almost the same you can now use futures, async, parallel
algorithms and more which make use of the HPX runtime with lightweight threads. hpx : : cout is a replacement for
std: : cout to make sure printing never blocks a lightweight thread. You can read more about hpx: : cout in The
HPX 1/O-streams component. If you rebuild and run your program now you should see the familiar He11o World!:

./my_hpx_program
Hello World!

Note: You do not have to let HPX take over your main function like in the example. You can instead keep your
normal main function, and define a separate hpx_main function which acts as the entry point to the HPX runtime. In
that case you start the HPX runtime explicitly by calling hpx: : init:

// Copyright (c) 2007-2012 Hartmut Kaiser

//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

SIS S S SSS S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSS
// The purpose of this example is to initialize the HPX runtime explicitly and
// execute a HPX-thread printing "Hello World!" once. That's all.

//[hello_world 2 _getting_ started
#include <hpx/hpx_init.hpp>
#include <hpx/include/iostreams.hpp>

int hpx_main(int, charxx)

{
// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return hpx::finalize();

int main(int argc, charx argv[])
{

return hpx::init (argc, argv);
}
//1]

You can also use hpx::start and hpx::stop for a non-blocking alternative, or use hpx: :resume and
hpx: : suspend if you need to combine HPX with other runtimes.

See Starting the HPX runtime for more details on how to initialize and run the HPX runtime.

Caution: When including hpx_main.hpp the user-defined main gets renamed and the real main func-
tion is defined by HPX. This means that the user-defined main must include a return statement, unlike the real
main. If you do not include the return statement you may end up with confusing compile time errors mentioning
user_main or even runtime errors.

14 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

2.2.5 Writing task-based applications

So far we haven’t done anything that can’t be done using the C++ standard library. In this section we will give a short
overview of what you can do with HPX on a single node. The essence is to avoid global synchronization and break up

your

application into small, composable tasks whose dependencies control the flow of your application. Remember,

however, that HPX allows you to write distributed applications similarly to how you would write applications for a
single node (see Why HPX? and Writing distributed HPX applications).

If you are already familiar with async and futures from the C++ standard library, the same functionality is available
in HPX.

The following terminology is essential when talking about task-based C++ programs:

lightweight thread: Essential for good performance with task-based programs. Lightweight refers to smaller
stacks and faster context switching compared to OS-threads. Smaller overheads allow the program to be broken
up into smaller tasks, which in turns helps the runtime fully utilize all processing units.

async: The most basic way of launching tasks asynchronously. Returns a future<T>.

future<T>: Represents a value of type T that will be ready in the future. The value can be retrieved with get
(blocking) and one can check if the value is ready with is_ready (non-blocking).

shared_future<T>: Same as future<T> but can be copied (similar to std::unique_ptr vs
std: :shared_ptr).

continuation: A function that is to be run after a previous task has run (represented by a future). then is a
method of future<T> that takes a function to run next. Used to build up dataflow DAGs (directed acyclic
graphs). shared_futures help you split up nodes in the DAG and functions like when_all help you join
nodes in the DAG.

The following example is a collection of the most commonly used functionality in HPX:

#include <hpx/hpx_main.hpp>

#include <hpx/include/iostreams.hpp>
#include <hpx/include/lcos.hpp>

#include <hpx/include/parallel_generate.hpp>
#include <hpx/include/parallel_sort.hpp>

#include <random>
#include <vector>

void final_ task (hpx::future<hpx::util::tuple<hpx::future<double>, hpx::future<void>>>)

{

hpx::cout << "in final task" << hpx::endl;

// Avoid ABI incompatibilities between C++11/C++17 as std::rand has exception
// specification in libstdc++.

int

{

int

rand_wrapper ()

return std::rand();

main (int, charx*x*)

// A function can be launched asynchronously. The program will not block
// here until the result is available.

hpx::future<int> f = hpx::async([] () { return 42; });

hpx::cout << "Just launched a task!" << hpx::endl;

(continues on next page)

2.2,

Quick start 15

HPX Documentation, 1.3.0

(continued from previous page)

// Use get to retrieve the value from the future. This will block this task
// until the future is ready, but the HPX runtime will schedule other tasks
// 1f there are tasks available.

hpx::cout << "f contains " << f.get() << hpx::endl;

// Let's launch another task.
hpx::future<double> g = hpx::async([] () { return 3.14; });

// Tasks can be chained using the then method. The continuation takes the
// future as an argument.
hpx::future<double> result = g.then([] (hpx::future<double>&¢& gg)
{
// This function will be called once g is ready. gg is g moved
// into the continuation.
return gg.get () * 42.0 % 42.0;
1)

// You can check if a future is ready with the is_ready method.
hpx::cout << "Result is ready? " << result.is_ready() << hpx::endl;

// You can launch other work in the meantime. Let's sort a vector.
std::vector<int> v (1000000);

// We fill the vector synchronously and sequentially.
hpx::parallel::generate (hpx::parallel::execution: :seq,
std: :begin(v), std::end(v), &rand_wrapper);

// We can launch the sort in parallel and asynchronously.
hpx::future<void> done_sorting =
hpx::parallel::sort (
hpx::parallel::execution::par(// In parallel.
hpx::parallel::execution::task), // Asynchronously.
std: :begin (v),
std::end(v));

// We launch the final task when the vector has been sorted and result is
// ready using when_all.
auto all = hpx::when_all (result, done_sorting).then(&final_task);

// We can wait for all to be ready.
all.wait ();

// all must be ready at this point because we waited for it to be ready.
hpx::cout <<

(all.is_ready() ? "all is ready!"™ : "all is not ready...") << hpx::endl;

return hpx::finalize();

Try copying the contents to your main.cpp file and look at the output. It can be a good idea to go through the
program step by step with a debugger. You can also try changing the types or adding new arguments to functions to
make sure you can get the types to match. The type of the then method can be especially tricky to get right (the
continuation needs to take the future as an argument).

Note: HPX programs accept command line arguments. The most important one is ——hpx : t hreads=N to set the
number of OS-threads used by HPX. HPX uses one thread per core by default. Play around with the example above

16 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

and see what difference the number of threads makes on the sort function. See Launching and configuring HPX
applications for more details on how and what options you can pass to HPX.

Tip: The example above used the construction hpx: :when_all(...).then(...). For convenience and
performance it is a good idea to replace uses of hpx::when_all(...).then(...) with dataflow. See
Dataflow: Interest calculator for more details on dataflow.

Tip: If possible, prefer to use the provided parallel algorithms instead of writing your own implementation. This can
save you time and the resulting program is often faster.

2.2.6 Next steps

If you haven’t done so already, reading the Terminology section will help you get familiar with the terms used in HPX.

The Examples section contains small, self-contained walkthroughs of example HPX programs. The Local to remote:
1D stencil example is a thorough, realistic example starting from a single node implementation and going stepwise to
a distributed implementation.

The Manual contains detailed information on writing, building and running HPX applications.

2.3 Terminology

This section gives definitions for some of the terms used throughout the HPX documentation and source code.

Locality A locality in HPX describes a synchronous domain of execution, or the domain of bounded upper response
time. This normally is just a single node in a cluster or a NUMA domain in a SMP machine.

Active Global Address Space

AGAS HPX incorporates a global address space. Any executing thread can access any object within the domain
of the parallel application with the caveat that it must have appropriate access privileges. The model does
not assume that global addresses are cache coherent; all loads and stores will deal directly with the site of
the target object. All global addresses within a Synchronous Domain are assumed to be cache coherent for
those processor cores that incorporate transparent caches. The Active Global Address Space used by HPX
differs from research PGAS>® models. Partitioned Global Address Space is passive in their means of address
translation. Copy semantics, distributed compound operations, and affinity relationships are some of the global
functionality supported by AGAS.

Process The concept of the “process” in HPX is extended beyond that of either sequential execution or communicating
sequential processes. While the notion of process suggests action (as do “function” or “subroutine”) it has a
further responsibility of context, that is, the logical container of program state. It is this aspect of operation that
process is employed in HPX. Furthermore, referring to “parallel processes” in HPX designates the presence of
parallelism within the context of a given process, as well as the coarse grained parallelism achieved through
concurrency of multiple processes of an executing user job. HPX processes provide a hierarchical name space
within the framework of the active global address space and support multiple means of internal state access from
external sources.

Parcel The Parcel is a component in HPX that communicates data, invokes an action at a distance, and distributes
flow-control through the migration of continuations. Parcels bridge the gap of asynchrony between synchronous

36 https://www.pgas.org/

2.3. Terminology 17

https://www.pgas.org/

HPX Documentation, 1.3.0

domains while maintaining symmetry of semantics between local and global execution. Parcels enable message-
driven computation and may be seen as a form of “active messages”. Other important forms of message-driven
computation predating active messages include dataflow tokens®’, the J-machine’s*® support for remote method
instantiation, and at the coarse grained variations of Unix remote procedure calls, among others. This enables
work to be moved to the data as well as performing the more common action of bringing data to the work.
A parcel can cause actions to occur remotely and asynchronously, among which are the creation of threads at
different system nodes or synchronous domains.

Local Control Object
Lightweight Control Object

LCO A local control object (sometimes called a lightweight control object) is a general term for the synchronization
mechanisms used in HPX. Any object implementing a certain concept can be seen as an LCO. This concepts
encapsulates the ability to be triggered by one or more events which when taking the object into a predefined
state will cause a thread to be executed. This could either create a new thread or resume an existing thread.

The LCO is a family of synchronization functions potentially representing many classes of synchronization
constructs, each with many possible variations and multiple instances. The LCO is sufficiently general that it can
subsume the functionality of conventional synchronization primitives such as spinlocks, mutexes, semaphores,
and global barriers. However due to the rich concept an LCO can represent powerful synchronization and control
functionality not widely employed, such as dataflow and futures (among others), which open up enormous
opportunities for rich diversity of distributed control and operation.

See Using LCOs for more details on how to use LCOs in HPX.

Action An action is a function that can be invoked remotely. In HPX a plain function can be made into an action
using a macro. See Applying actions for details on how to use actions in HPX.

Component A component is a C++ object which can be accessed remotely. A component can also contain member
functions which can be invoked remotely. These are referred to as component actions. See Writing components
for details on how to use components in HPX.

2.4 Examples

The following sections analyze some examples to help you get familiar with the HPX style of programming. We start
off with simple examples that utilize basic HPX elements and then begin to expose the reader to the more complex
and powerful HPX concepts.

2.4.1 Asynchronous execution with hpx: : async: Fibonacci

The Fibonacci sequence is a sequence of numbers starting with 0 and 1 where every subsequent number is the sum of
the previous two numbers. In this example, we will use HPX to calculate the value of the n-th element of the Fibonacci
sequence. In order to compute this problem in parallel, we will use a facility known as a future.

As shown in the Fig. 2.1 below, a future encapsulates a delayed computation. It acts as a proxy for a result initially
not known, most of the time because the computation of the result has not completed yet. The future synchronizes the
access of this value by optionally suspending any HPX-threads requesting the result until the value is available. When
a future is created, it spawns a new HPX-thread (either remotely with a parcel or locally by placing it into the thread
queue) which, when run, will execute the function associated with the future. The arguments of the function are bound
when the future is created.

Once the function has finished executing, a write operation is performed on the future. The write operation marks the
future as completed, and optionally stores data returned by the function. When the result of the delayed computation

37 http://en.wikipedia.org/wiki/Dataflow_architecture
38 http://en.wikipedia.org/wiki/J%E2%80%93Machine

18 Chapter 2. What’s so special about HPX?

http://en.wikipedia.org/wiki/Dataflow_architecture
http://en.wikipedia.org/wiki/J%E2%80%93Machine

HPX Documentation,

1.3.0

Locality 1

Future object \

Suspend :
consumer =
thread

Execute
another /

thread

Resume
consumer
thread

L

Locality 2
=l Execute

' Future:

J—
Producer
e thread
\ Result is being
returned

Fig. 2.1: Schematic of a future execution.

is needed, a read operation is performed on the future. If the future’s function hasn’t completed when a read operation
is performed on it, the reader HPX-thread is suspended until the future is ready. The future facility allows HPX to
schedule work early in a program so that when the function value is needed it will already be calculated and available.
We use this property in our Fibonacci example below to enable its parallel execution.

Setup

The source code for this example can be found here: fibonacci_local.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

’make examples.quickstart.fibonacci_local

To run the program type:

’./bin/fibonacci_local

This should print (time should be approximate):

fibonacci (10) ==

55

elapsed time: 0.002430 [s]

This run used the default settings, which calculate the tenth element of the Fibonacci sequence. To declare which
Fibonacci value you want to calculate, use the ——n-value option. Additionally you can use the ——hpx:threads

option to declare how many OS-threads you wish to use when running the program. For instance, running:

./bin/fibonacci --n-value 20 --hpx:threads 4

Will yield:

2.4. Examples

19

HPX Documentation, 1.3.0

fibonacci (20) == 6765
elapsed time: 0.062854 [s]

Walkthrough

Now that you have compiled and run the code, let’s look at how the code works. Since this code is written in C++, we
will begin with the main () function. Here you can see that in HPX, main () is only used to initialize the runtime sys-
tem. It is important to note that application-specific command line options are defined here. HPX uses Boost.Program
Options®® for command line processing. You can see that our programs ——n-value option is set by calling the
add_options () method on an instance of boost: :program_options::options_description. The
default value of the variable is set to 10. This is why when we ran the program for the first time without using the
——n-value option the program returned the 10th value of the Fibonacci sequence. The constructor argument of the
description is the text that appears when a user uses the ——hpx : he 1p option to see what command line options are
available. HPX_APPLICATION_STRING is a macro that expands to a string constant containing the name of the
HPX application currently being compiled.

In HPX main () is used to initialize the runtime system and pass the command line arguments to the program. If
you wish to add command line options to your program you would add them here using the instance of the Boost
class options_description, and invoking the public member function .add_options () (see Boost Docu-
mentation® for more details). hpx: :init calls hpx_main () after setting up HPX, which is where the logic of our
program is encoded.

int main(int argc, charx argv[])
{
// Configure application-specific options
boost: :program_options: :options_description
desc_commandline ("Usage: " HPX_APPLICATION_STRING " [options]");

desc_commandline.add_options ()
("n-value",
boost: :program_options::value<std::uint64_t> () ->default_value(10),
"n value for the Fibonacci function")

// Initialize and run HPX
return hpx::init (desc_commandline, argc, argv);

The hpx::init function in main () starts the runtime system, and invokes hpx_main () as the first HPX-
thread. Below we can see that the basic program is simple. The command line option ——n-value is read in, a
timer (hpx::util::high_resolution_timer) is set up to record the time it takes to do the computation, the
fibonacci function is invoked synchronously, and the answer is printed out.

int hpx_main(boost::program_options::variables_mapé& vm)
{
// extract command line argument, i.e. fib(N)
std::uint64_t n = vm["n-value"].as<std::uint64_t> ();

// Keep track of the time required to execute.
hpx::util::high_resolution_timer t;

(continues on next page)

39 https://www.boost.org/doc/html/program_options.html
©0 https://www.boost.org/doc/

20 Chapter 2. What’s so special about HPX?

https://www.boost.org/doc/html/program_options.html
https://www.boost.org/doc/html/program_options.html
https://www.boost.org/doc/
https://www.boost.org/doc/

HPX Documentation, 1.3.0

(continued from previous page)

std::uint64_t r = fibonacci (n);

char const+ fmt = "fibonacci({1}) == {2}\nelapsed time: {3} [s]\n";
hpx::util::format_to(std::cout, fmt, n, r, t.elapsed());

return hpx::finalize(); // Handles HPX shutdown

The fibonacci function itself is synchronous as the work done inside is asynchronous. To understand what is
happening we have to look inside the fibonacci function:

std::uint64_t fibonacci (std::uint64_t n)
{
if (n < 2)
return n;

// Invoking the Fibonacci algorithm twice is inefficient.
// However, we intentionally demonstrate it this way to create some
// heavy workload.

hpx::future<std::uint64_t> nl = hpx::async(fibonacci, n - 1);
hpx::future<std::uint64_t> n2 = hpx::async(fibonacci, n - 2);
return nl.get () + n2.get(); // wait for the Futures to return their values

This block of code is looks similar to regular C++ code. First, if (n < 2), meaning n is O or 1, then we re-
turn O or 1 (recall the first element of the Fibonacci sequence is 0 and the second is 1). If n is larger than 1
we spawn two new tasks whose results are contained in nl and n2. This is done using hpx: :async which
takes as arguments a function (function pointer, object or lambda) and the arguments to the function. Instead of
returning a std::uint64_t like fibonacci does, hpx: :async returns a future of a std::uint64_t,
ie. hpx::future<std::uint64_t>. Each of these futures represents an asynchronous, recursive call to
fibonacci. After we’ve created the futures, we wait for both of them to finish computing, we add them together,
and return that value as our result. We get the values from the futures using the get method. The recursive call tree
will continue until n is equal to O or 1, at which point the value can be returned because it is implicitly known. When
this termination condition is reached, the futures can then be added up, producing the n-th value of the Fibonacci
sequence.

Note that calling get potentially blocks the calling HPX-thread, and lets other HPX-threads run in the meantime.
There are, however, more efficient ways of doing this. examples/quickstart/fibonacci_futures.cpp
contains many more variations of locally computing the Fibonacci numbers, where each method makes different
tradeoffs in where asynchrony and parallelism is applied. To get started, however, the method above is sufficient
and optimizations can be applied once you are more familiar with HPX. The example Dataflow: Interest calculator
presents dataflow, which is a way to more efficiently chain together multiple tasks.

2.4.2 Asynchronous execution with hpx: : async and actions: Fibonacci

This example extends the previous example by introducing actions: functions that can be run remotely. In this example,
however, we will still only run the action locally. The mechanism to execute actions stays the same: hpx: :async.
Later examples will demonstrate running actions on remote /ocalities (e.g. Remote execution with actions: Hello
world).

2.4. Examples 21

HPX Documentation, 1.3.0

Setup

The source code for this example can be found here: fibonacci. cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

’make examples.quickstart.fibonacci ‘

To run the program type:

’./bin/fibonacci ‘

This should print (time should be approximate):

fibonacci (10) == 55
elapsed time: 0.00186288 [s]

This run used the default settings, which calculate the tenth element of the Fibonacci sequence. To declare which
Fibonacci value you want to calculate, use the ——n-value option. Additionally you can use the ——hpx:threads
option to declare how many OS-threads you wish to use when running the program. For instance, running:

./bin/fibonacci --n-value 20 --hpx:threads 4

Will yield:

fibonacci (20) == 6765
elapsed time: 0.233827 [s]

Walkthrough

The code needed to initialize the HPX runtime is the same as in the previous example:

int main(int argc, charx argv[])
{
// Configure application-specific options
boost: :program_options: :options_description
desc_commandline ("Usage: " HPX_APPLICATION_STRING " [options]");

desc_commandline.add_options ()
("n-value",
boost: :program_options::value<std::uint64_t> () ->default_value(10),
"n value for the Fibonacci function")

// Initialize and run HPX
return hpx::init (desc_commandline, argc, argv);

The hpx: :init functionin main () starts the runtime system, and invokes hpx_main () as the first HPX-thread.
The command line option ——n-value isread in, a timer (hpx: :util::high_resolution_timer) is setup
to record the time it takes to do the computation, the fibonacci action is invoked synchronously, and the answer is
printed out.

22 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

int hpx_main (boost::program_options::variables_mapé& wvm)
{
// extract command line argument, i.e. fib(N)
std::uint64_t n = vm["n-value"].as<std::uint64_t> ();

// Keep track of the time required to execute.
hpx::util::high_resolution_timer t;

// Wait for fib () to return the value

fibonacci_action fib;

std::uint64_t r = fib (hpx::find_here(), n);

char constx fmt = "fibonacci ({1}) == {2}\nelapsed time: {3} [s]\n";

hpx::util::format_to(std::cout, fmt, n, r, t.elapsed());

return hpx::finalize(); // Handles HPX shutdown

Upon a closer look we see that we’ve created a std::uint64_t to store the result of invoking our
fibonacci_action fib. This action will launch synchronously (as the work done inside of the action will
be asynchronous itself) and return the result of the Fibonacci sequence. But wait, what is an action? And what is this
fibonacci_action? For starters, an action is a wrapper for a function. By wrapping functions, HPX can send
packets of work to different processing units. These vehicles allow users to calculate work now, later, or on certain
nodes. The first argument to our action is the location where the action should be run. In this case, we just want to
run the action on the machine that we are currently on, so we use hpx: : find_here that we wish to calculate. To
further understand this we turn to the code to find where fibonacci_action was defined:

// forward declaration of the Fibonacci function
std::uint64_t fibonacci (std::uint64_t n);

// This 1s to generate the required boilerplate we need for the remote
// invocation to work.
HPX_PLAIN_ACTION (fibonacci, fibonacci_action);

A plain action is the most basic form of action. Plain actions wrap simple global functions which are not associated
with any particular object (we will discuss other types of actions in Components and actions: Accumulator). In this
block of code the function fibonacci () is declared. After the declaration, the function is wrapped in an action
in the declaration HPX_PLATN_ACTION. This function takes two arguments: the name of the function that is to be
wrapped and the name of the action that you are creating.

This picture should now start making sense. The function fibonacci() is wrapped in an ac-
tion fibonacci_action, which was run synchronously but created asynchronous work, then returns a
std::uint64_t representing the result of the function fibonacci (). Now, let’s look at the function

fibonacci ():

std::uint64_t fibonacci (std::uint64_t n)
{
if (n < 2)
return n;

// We restrict ourselves to execute the Fibonacci function locally.
hpx::naming::id_type const locality_id = hpx::find_here();

// Invoking the Fibonacci algorithm twice is inefficient.

(continues on next page)

2.4. Examples 23

HPX Documentation, 1.3.0

(continued from previous page)

// However, we intentionally demonstrate it this way to create some
// heavy workload.

fibonacci_action fib;

hpx::future<std::uint64_t> nl =
hpx::async (fib, locality_id, n - 1);

hpx::future<std::uint64_t> n2 =
hpx::async (fib, locality_id, n - 2);

return nl.get () + n2.get(); // wait for the Futures to return their values

This block of code is much more straightforward and should look familiar from the previous example. First, 1f (n
< 2),meaning nis 0 or 1, then we return O or 1 (recall the first element of the Fibonacci sequence is 0 and the second
is 1). If n is larger than 1 we spawn two tasks using hpx : : async. Each of these futures represents an asynchronous,
recursive call to fibonacci. As previously we wait for both futures to finish computing, get the results, add them
together, and return that value as our result. The recursive call tree will continue until n is equal to 0 or 1, at which
point the value can be returned because it is implicitly known. When this termination condition is reached, the futures
can then be added up, producing the n-th value of the Fibonacci sequence.

2.4.3 Remote execution with actions: Hello world

This program will print out a hello world message on every OS-thread on every locality. The output will look some-
thing like this:

hello world from OS-thread 1 on locality
hello world from OS-thread 1 on locality
hello world from OS-thread 0 on locality
hello world from OS-thread 0 on locality

= O O

Setup

The source code for this example can be found here: hello_world_distributed.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

’make examples.quickstart.hello_world_distributed

To run the program type:

’./bin/hello_world_distributed

This should print:

’hello world from OS-thread 0 on locality O

To use more OS-threads use the command line option ——hpx:threads and type the number of threads that you
wish to use. For example, typing:

’./bin/hello_world_distributed —-hpx:threads 2

will yield:

24 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

hello world from OS-thread 1 on locality O
hello world from OS-thread 0 on locality 0

Notice how the ordering of the two print statements will change with subsequent runs. To run this program on multiple
localities please see the section How fo use HPX applications with PBS.

Walkthrough

Now that you have compiled and run the code, let’s look at how the code works, beginning with main ():

//" Here is the main entry point. By using the include 'hpx/hpx_main.hpp' HPX
//" will invoke the plain old C-main() as its first HPX thread.
int main ()
{
// Get a list of all available localities.
std::vector<hpx::naming::id_type> localities =
hpx::find_all_localities();

// Reserve storage space for futures, one for each locality.
std: :vector<hpx::1lcos::future<void> > futures;
futures.reserve (localities.size());

for (hpx::naming::id_type const& node : localities)
{
// Asynchronously start a new task. The task 1is encapsulated in a
// future, which we can query to determine if the task has
// completed.
typedef hello_world_foreman_action action_type;
futures.push_back (hpx::async<action_type> (node)) ;

// The non-callback version of hpx::1lcos::wait_all takes a single parameter,
// a vector of futures to wait on. hpx::wait_all only returns when

// all of the futures have finished.

hpx::wait_all (futures);

return 0;

In this excerpt of the code we again see the use of futures. This time the futures are stored in a vector so that they
can easily be accessed. hpx: :wait_all is a family of functions that wait on for an std: : vect or<> of futures
to become ready. In this piece of code, we are using the synchronous version of hpx: :wait_all, which takes one
argument (the std: : vector<> of futures to wait on). This function will not return until all the futures in the vector
have been executed.

In Asynchronous execution with hpx::async and actions: Fibonacci we used hpx : : find_here to specify the tar-
get of our actions. Here, we instead use hpx: :find all localities, which returns an std: :vector<>
containing the identifiers of all the machines in the system, including the one that we are on.

As in Asynchronous execution with hpx::async and actions: Fibonacci our futures are set using hpx: :async<>.
The hello_world_foreman_action is declared here:

// Define the boilerplate code necessary for the function 'hello_world_ foreman'
// to be invoked as an HPX action.
HPX_PLAIN_ACTION (hello_world_foreman, hello_world_ foreman_action);

Another way of thinking about this wrapping technique is as follows: functions (the work to be done) are wrapped in
actions, and actions can be executed locally or remotely (e.g. on another machine participating in the computation).

2.4. Examples 25

HPX Documentation, 1.3.0

Now it is time to look at the hello_world_foreman () function which was wrapped in the action above:

void hello_world_foreman ()

{

// Get the number of worker OS-threads in use by this locality.
std::size_t const os_threads = hpx::get_os_thread_count();

// Find the global name of the current locality.
hpx::naming::id_type const here = hpx::find_here();

// Populate a set with the OS-thread numbers of all OS-threads on this

// locality. When the hello world message has been printed on a particular

// OS-thread, we will remove it from the set.

std::set<std::size_t> attendance;

for (std::size_t os_thread = 0; os_thread < os_threads; ++os_thread)
attendance.insert (os_thread);

// As long as there are still elements in the set, we must keep scheduling
// HPX-threads. Because HPX features work-stealing task schedulers, we have
// no way of enforcing which worker OS-thread will actually execute
// each HPX-thread.
while (!attendance.empty())
{

// Each iteration, we create a task for each element in the set of

// OS—threads that have not said "Hello world". Each of these tasks

// 1s encapsulated in a future.

std: :vector<hpx::1lcos::future<std::size_t> > futures;

futures.reserve (attendance.size());

for (std::size_t worker : attendance)
{
// Asynchronously start a new task. The task is encapsulated in a
// future, which we can query to determine if the task has
// completed.
typedef hello_world _worker_action action_type;
futures.push_back (hpx::async<action_type> (here, worker));

// Wait for all of the futures to finish. The callback version of the
// hpx::lcos::wait_each function takes two arguments: a vector of futures,
// and a binary callback. The callback takes two arguments; the first
// 1s the index of the future in the vector, and the second is the
// return value of the future. hpx::lcos::wait_each doesn't return until
// all the futures in the vector have returned.
hpx::1lcos::local::spinlock mtx;
hpx::lcos::wait_each(
hpx::util::unwrapping([&] (std::size_t t) {
if (std::size_t(-1) != t)
{
std: :lock_guard<hpx::1lcos::local::spinlock> 1k (mtx);
attendance.erase (t);

I

futures);

Now, before we discuss hello_world_foreman (), let’s talk about the hpx::wait_each function.
hpx::1cos::wait_each for each one. The version of hpx::1cos: :wait_each invokes a callback func-

26

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

tion provided by the user, supplying the callback function with the result of the future.

In hello_world_foreman (), an std: :set<> called attendance keeps track of which OS-threads have
printed out the hello world message. When the OS-thread prints out the statement, the future is marked as ready, and
hpx::1lcos::wait_each in hello_world_foreman (). If it is not executing on the correct OS-thread, it
returns a value of -1, which causes hello _world_foreman () to leave the OS-thread id in attendance.

std::size_t hello_world worker (std::size t desired)
{
// Returns the OS-thread number of the worker that is running this
// HPX-thread.
std::size_t current = hpx::get_worker_thread_num();
if (current == desired)
{
// The HPX-thread has been run on the desired OS-thread.
char const* msg = "hello world from OS-thread {1} on locality {2}\n";

hpx::util::format_to (hpx::cout, msg, desired, hpx::get_locality_id())
<< hpx::flush;

return desired;

// This HPX-thread has been run by the wrong OS-thread, make the foreman
// try again by rescheduling it.
return std::size_t(-1);

// Define the boilerplate code necessary for the function 'hello world worker'
// to be invoked as an HPX action (by a HPX future). This macro defines the
// type 'hello_world worker_action'.

HPX_PLAIN_ACTION (hello_world_worker, hello_world_worker_action);

Because HPX features work stealing task schedulers, there is no way to guarantee that an action will be scheduled on
a particular OS-thread. This is why we must use a guess-and-check approach.

2.4.4 Components and actions: Accumulator
The accumulator example demonstrates the use of components. Components are C++ classes that expose methods as
a type of HPX action. These actions are called component actions.

Components are globally named, meaning that a component action can be called remotely (e.g. from another machine).
There are two accumulator examples in HPX; accumulator.

In the Asynchronous execution with hpx::async and actions: Fibonacci and the Remote execution with actions: Hello
world, we introduced plain actions, which wrapped global functions. The target of a plain action is an identifier which
refers to a particular machine involved in the computation. For plain actions, the target is the machine where the action
will be executed.

Component actions, however, do not target machines. Instead, they target component instances. The instance may live
on the machine that we’ve invoked the component action from, or it may live on another machine.

The component in this example exposes three different functions:
e reset () - Resets the accumulator value to 0.
e add (arg) - Adds arg to the accumulators value.

e query () - Queries the value of the accumulator.

2.4. Examples 27

HPX Documentation, 1.3.0

This example creates an instance of the accumulator, and then allows the user to enter commands at a prompt, which
subsequently invoke actions on the accumulator instance.

Setup

The source code for this example can be found here: accumulator_client.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

’make examples.accumulators.accumulator

To run the program type:

’./bin/accumulator_client

Once the program starts running, it will print the following prompt and then wait for input. An example session is
given below:

commands: reset, add [amount], query, help, quit
> add 5

> add 10

> query

15

> add 2

> query

17

> reset

> add 1
> query
1

> quit

Walkthrough

Now, let’s take a look at the source code of the accumulator example. This example consists of two parts: an
HPX component library (a library that exposes an HPX component) and a client application which uses the library.
This walkthrough will cover the HPX component library. The code for the client application can be found here:
accumulator_client.cpp.

An HPX component is represented by two C++ classes:
* A server class - The implementation of the components functionality.
* A client class - A high-level interface that acts as a proxy for an instance of the component.

Typically, these two classes all have the same name, but the server class usually lives in different sub-namespaces
(server). For example, the full names of the two classes in accumulator are:

e examples: :server::accumulator (server class)

* examples: :accumulator (client class)

The server class

The following code is from: accumulator.hpp.

28 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

All HPX component server classes must inherit publicly from the HPX component base class:
hpx::components: :component_lbase

The accumulator component inherits from hpx: : components: : locking_hook. This allows the runtime sys-
tem to ensure that all action invocations are serialized. That means that the system ensures that no two actions are
invoked at the same time on a given component instance. This makes the component thread safe and no additional
locking has to be implemented by the user. Moreover, accumulator component is a component, because it also inherits
from hpx: : components: : component_base (the template argument passed to locking_hook is used as its base
class). The following snippet shows the corresponding code:

class accumulator
public hpx::components::locking_hook<
hpx::components: :component_base<accumulator> >

Our accumulator class will need a data member to store its value in, so let’s declare a data member:

’ argument_type value_;

The constructor for this class simply initializes value_ to O:

’ accumulator () : wvalue_(0) {}

Next, let’s look at the three methods of this component that we will be exposing as component actions:

/// Reset the components value to 0.
void reset ()
{

// set value_ to 0.

value_ = 0;

/// Add the given number to the accumulator.

void add(argument_type arg)

{
// add value_ to arg, and store the result in value_.
value_ += arg;

/// Return the current value to the caller.
argument_type query () const
{

// Get the value of value .

return value_;

Here are the action types. These types wrap the methods we’re exposing. The wrapping technique is very similar to
the one used in the Asynchronous execution with hpx::async and actions: Fibonacci and the Remote execution with
actions: Hello world:

HPX_DEFINE_COMPONENT_ACTION (accumulator, reset);
HPX_DEFINE_COMPONENT_ACTION (accumulator, add);
HPX_DEFINE_COMPONENT_ACTION (accumulator, query);

The last piece of code in the server class header is the declaration of the action type registration code:

HPX_REGISTER_ACTION_DECLARATION (
examples: :server::accumulator: :reset_action,

(continues on next page)

2.4. Examples 29

HPX Documentation, 1.3.0

(continued from previous page)

accumulator_reset_action);

HPX_REGISTER_ACTION_DECLARATION (
examples: :server::accumulator::add_action,
accumulator_add_action);

HPX_REGISTER_ACTION_DECLARATION (
examples: :server::accumulator: :query_action,
accumulator_query_action);

Note: The code above must be placed in the global namespace.

The rest of the registration code is in accumulator. cpp

LSS S S SS
// Add factory registration functionality.
HPX_REGISTER_COMPONENT_MODULE () ;

SIS S S S S S SS
typedef hpx::components::component<

examples: :server::accumulator
> accumulator_type;

HPX_REGISTER_COMPONENT (accumulator_type, accumulator);

SIS S S S S S S S S SSS
// Serialization support for accumulator actions.
HPX_REGISTER_ACTION (
accumulator_type: :wrapped_type::reset_action,
accumulator_reset_action);
HPX_REGISTER_ACTION (
accumulator_type: :wrapped_type::add_action,
accumulator_add_action);
HPX_REGISTER_ACTION (
accumulator_type: :wrapped_type::query_action,
accumulator_query_action);

Note: The code above must be placed in the global namespace.

The client class

The following code is from accumulator.hpp.

The client class is the primary interface to a component instance. Client classes are used to create components:

// Create a component on this locality.
examples::accumulator ¢ = hpx::new_<examples::accumulator> (hpx::find_here());

and to invoke component actions:

c.add (hpx::launch: :apply, 4);

30 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Clients, like servers, need to inherit from a base class, this time, hpx : : components: :client_base:

class accumulator
public hpx::components::client_base<
accumulator, server::accumulator

For readability, we typedef the base class like so:

typedef hpx::components::client_base<
accumulator, server::accumulator
> base_type;

Here are examples of how to expose actions through a client class:
There are a few different ways of invoking actions:

* Non-blocking: For actions which don’t have return types, or when we do not care about the result of an action,
we can invoke the action using fire-and-forget semantics. This means that once we have asked HPX to compute
the action, we forget about it completely and continue with our computation. We use hpx: : apply to invoke
an action in a non-blocking fashion.

void reset (hpx::launch::apply_policy)
{
HPX_ASSERT (this->get_id());

typedef server::accumulator::reset_action action_type;
hpx::apply<action_type> (this->get_id());

* Asynchronous: Futures, as demonstrated in Asynchronous execution with hpx::async: Fibonacci, Asynchronous
execution with hpx::async and actions: Fibonacci, and the Remote execution with actions: Hello world, enable
asynchronous action invocation. Here’s an example from the accumulator client class:

hpx::future<argument_type> query (hpx::launch::async_policy)
{
HPX_ASSERT (this->get_id());

typedef server::accumulator::query_action action_type;
return hpx::async<action_type> (hpx::launch::async, this->get_id());

¢ Synchronous: To invoke an action in a fully synchronous manner, we can simply call hpx: :async () .
get () (e.g., create a future and immediately wait on it to be ready). Here’s an example from the accumulator
client class:

void add (argument_type arg)

{
HPX_ASSERT (this->get_id());

typedef server::accumulator::add_action action_type;
action_type () (this->get_id(), arg);

Note that this—>get_1id () references a data member of the hpx: : components: :client_base base class
which identifies the server accumulator instance.

hpx::naming: :id_type is a type which represents a global identifier in HPX. This type specifies the target of
an action. This is the type that is returned by hpx : : find here in which case it represents the locality the code is

2.4. Examples 31

HPX Documentation, 1.3.0

running on.

2.4.5 Dataflow: Interest calculator

HPX provides its users with several different tools to simply express parallel concepts. One of these tools is a local
control object (LCO) called dataflow. An LCO is a type of component that can spawn a new thread when triggered.
They are also distinguished from other components by a standard interface which allow users to understand and use
them easily. Dataflows, being a LCO, is triggered when the values it depends on become available. For instance, if you
have a calculation X that depends on the result of three other calculations, you could set up a dataflow that would begin
the calculation X as soon as the other three calculations have returned their values. Dataflows are set up to depend
on other dataflows. It is this property that makes dataflow a powerful parallelization tool. If you understand the
dependencies of your calculation, you can devise a simple algorithm which sets up a dependency tree to be executed.
In this example, we calculate compound interest. To calculate compound interest, one must calculate the interest made
in each compound period, and then add that interest back to the principal before calculating the interest made in the
next period. A practical person would of course use the formula for compound interest:

F=P(1+i)"

where F'is the future value, P is the principal value, 7 is the interest rate, and n is the number of compound periods.

Nevertheless, we have chosen for the sake of example to manually calculate the future value by iterating:
I=Pi
and

P=P+:

Setup

The source code for this example can be found here: interest_calculator.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

’make examples.quickstart.interest_calculator

To run the program type:

’./bin/interest_calculator —-—principal 100 --rate 5 —--cp 6 —--time 36

This should print:

Final amount: 134.01
Amount made: 34.0096

Walkthrough

Let us begin with main, here we can see that we again are using Boost.Program Options to set our command line
variables (see Asynchronous execution with hpx::async and actions: Fibonacci for more details). These options set
the principal, rate, compound period, and time. It is important to note that the units of time for cp and t ime must be
the same.

32 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

int main(int argc, char ** argv)

{

options_description cmdline ("Usage: " HPX_APPLICATION_STRING " [options]");

cmdline.add_options ()

("principal", value<double> ()->default_value(1000), "The principal [$]")
("rate", value<double> () ->default_value(7), "The interest rate [%]")
("cp", value<int> () ->default_value(l12), "The compound period [months]")
("time", value<int> () ->default_value (12x30),

"The time money is invested [months]")

return hpx::init (cmdline, argc, argv);

Next we look at hpx_main.

int hpx_main(variables_map & wvm)

{

—rate);

using hpx::shared_future;

using hpx::make_ready_future;

using hpx::dataflow;

using hpx::util::unwrapping;
hpx::naming::id_type here = hpx::find_here();

double init_principal=vm["principal"].as<double>(); //Initial principal
double init_rate=vm["rate"].as<double>(); //Interest rate

int cp=vm["cp"].as<int>(); //Length of a compound period

int t=vm["time"].as<int>(); //Length of time money is invested

init_rate/=100; //Rate is a % and must be converted
t/=cp; //Determine how many times to iterate interest calculation:
//How many full compound periods can fit in the time invested

// In non-dataflow terms the implemented algorithm would look like:

/7

// int t = 5; // number of time periods to use
// double principal = init_principal;

// double rate = init_rate;

//

// for (int i = 0; 1 < t; ++1i)

/A

// double interest = calc(principal, rate);
// principal = add(principal, interest);

/7)

//

// Please note the similarity with the code below!

shared_future<double> principal = make_ready_future (init_principal);
shared_future<double> rate = make_ready_future (init_rate);

for (int 1 = 0; i < t; ++1i)

{
shared_future<double> interest = dataflow(unwrapping(calc), principal,
principal = dataflow (unwrapping(add), principal, interest);

(continues on next page)

2.4. Examples 33

HPX Documentation, 1.3.0

(continued from previous page)

}

// wait for the dataflow execution graph to be finished calculating our
// overall interest

double result = principal.get();

std::cout << "Final amount: " << result << std::endl;

std::cout << "Amount made: " << result-init_principal << std::endl;

return hpx::finalize();

Here we find our command line variables read in, the rate is converted from a percent to a decimal, the num-
ber of calculation iterations is determined, and then our shared_futures are set up. Notice that we first place
our principal and rate into shares futures by passing the variables init_principal and init_rate using
hpx::make_ready_future.

In this way hpx: :shared_future<double> principal and rate will be initialized to init_principal
and init_rate when hpx: :make_ready_future<double> returns a future containing those initial values.
These shared futures then enter the for loop and are passed to interest. Next principal and interest are
passed to the reassignment of principal using a hpx: :dataflow. A dataflow will first wait for its arguments to
be ready before launching any callbacks, so add in this case will not begin until both principal and interest
are ready. This loop continues for each compound period that must be calculated. To see how interest and
principal are calculated in the loop let us look at calc_action and add_action:

// Calculate interest for one period
double calc (double principal, double rate)
{

return principal % rate;

}

SIS S S S S S S S S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSS SSSSS SSS S
// Add the amount made to the principal

double add(double principal, double interest)

{

return principal + interest;

After the shared future dependencies have been defined in hpx_main, we see the following statement:

double result = principal.get();

This statement calls hpx: : future: : get on the shared future principal which had its value calculated by our for
loop. The program will wait here until the entire dataflow tree has been calculated and the value assigned to result.
The program then prints out the final value of the investment and the amount of interest made by subtracting the final
value of the investment from the initial value of the investment.

2.4.6 Local to remote: 1D stencil

When developers write code they typically begin with a simple serial code and build upon it until all of the required
functionality is present. The following set of examples were developed to demonstrate this iterative process of evolving
a simple serial program to an efficient, fully distributed HPX application. For this demonstration, we implemented a
1D heat distribution problem. This calculation simulates the diffusion of heat across a ring from an initialized state
to some user defined point in the future. It does this by breaking each portion of the ring into discrete segments and

34 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

using the current segment’s temperature and the temperature of the surrounding segments to calculate the temperature
of the current segment in the next timestep as shown by Fig. 2.2 below.

tl K x]—l K] X],l '”'I 3
b %
hﬂ

Fig. 2.2: Heat diffusion example program flow.

We parallelize this code over the following eight examples:
e Example 1
* Example
* Example
s Example
* Example
e Example

e Example

O~ o b W N

* Example

The first example is straight serial code. In this code we instantiate a vector U which contains two vectors of doubles
as seen in the structure stepper.

struct stepper

{
// Our partition type
typedef double partition;

// Our data for one time step
typedef std::vector<partition> space;

// Our operator
static double heat (double left, double middle, double right)

{
return middle + (kxdt/ (dxxdx)) * (left - 2+ middle + right);

// do all the work on 'nx' data points for 'nt' time steps
space do_work (std::size_t nx, std::size_t nt)
{
// U[t][i] is the state of position i at time t.
std: :vector<space> U(2);
for (space& s : U)
s.resize (nx);

// Initial conditions: £(0, i) = 1

(continues on next page)

2.4. Examples 35

HPX Documentation, 1.3.0

(continued from previous page)

for (std::size_ t i = 0; 1 != nx; ++1)
U[0][i] = double(i);

// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{
space const& current = U[t % 2];
space& next = U[(t + 1) % 2]

next [0] = heat (current[nx-1], current[0], current[l]);
for (std::size_t i = 1; 1 != nx-1; ++1i)

next [i1] = heat (current[i-1], current[i], current[i+1]);
next [nx-1] = heat (current [nx-2], current[nx-1], current[0]);

// Return the solution at time-step 'nt'.
return U[nt $ 2];

}i

Each element in the vector of doubles represents a single grid point. To calculate the change in heat distribution,
the temperature of each grid point, along with its neighbors, are passed to the function heat. In order to improve
readability, references named current and next are created which, depending on the time step, point to the first
and second vector of doubles. The first vector of doubles is initialized with a simple heat ramp. After calling the heat
function with the data in the current vector, the results are placed into the next vector.

In example 2 we employ a technique called futurization. Futurization is a method by which we can easily transform
a code which is serially executed into a code which creates asynchronous threads. In the simplest case this involves
replacing a variable with a future to a variable, a function with a future to a function, and adding a . get () at the point
where a value is actually needed. The code below shows how this technique was applied to the struct stepper.

struct stepper
{
// Our partition type
typedef hpx::shared_future<double> partition;

// Our data for one time step
typedef std::vector<partition> space;

// Our operator
static double heat (double left, double middle, double right)
{
return middle + (kxdt/(dx*dx)) * (left - 2xmiddle + right);

// do all the work on 'nx' data points for 'nt' time steps
hpx::future<space> do_work (std::size_t nx, std::size_t nt)
{

using hpx::dataflow;

using hpx::util::unwrapping;

// Ul[t][i] is the state of position 1 at time t.
std: :vector<space> U(2);
for (space& s : U)

(continues on next page)

36 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

s.resize (nx);

// Initial conditions: f(0, 1) = 1
for (std::size_t i = 0; 1 != nx; ++1)
U[0][1] = hpx::make_ready_future (double(i));

auto Op = unwrapping(&stepper: :heat);

// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{
space consté& current = U[t % 2];
space& next = U[(t + 1) % 2]

// WHEN U[t][i-1], U[t][i], and U[t][i+1] have been computed, THEN we
// can compute U[t+1][i]
for (std::size_t i = 0; i != nx; ++1i)
{
next [1] = dataflow(
hpx::launch: :async, Op,
current [idx (i, -1, nx)], current[i], current[idx (i, +1, nx)]

)i

// Now the asynchronous computation is running; the above for-loop does not

// wait on anything. There is no implicit waiting at the end of each timestep;
// the computation of each U[t][i] will begin when as soon as its dependencies
// are ready and hardware is available.

// Return the solution at time-step 'nt'.
return hpx::when_all (U[nt % 21);

}i

In example 2, we re-define our partition type as a shared_future and, in main, create the object result which
is a future to a vector of partitions. We use result to represent the last vector in a string of vectors created for
each timestep. In order to move to the next timestep, the values of a partition and its neighbors must be passed to
heat once the futures that contain them are ready. In HPX, we have an LCO (Local Control Object) named Dataflow
which assists the programmer in expressing this dependency. Dataflow allows us to pass the results of a set of futures
to a specified function when the futures are ready. Dataflow takes three types of arguments, one which instructs the
dataflow on how to perform the function call (async or sync), the function to call (in this case Op), and futures to the
arguments that will be passed to the function. When called, dataflow immediately returns a future to the result of the
specified function. This allows users to string dataflows together and construct an execution tree.

After the values of the futures in dataflow are ready, the values must be pulled out of the future container to be passed
to the function heat. In order to do this, we use the HPX facility unwrapped, which underneath calls . get () on
each of the futures so that the function heat will be passed doubles and not futures to doubles.

By setting up the algorithm this way, the program will be able to execute as quickly as the dependencies of each future
are met. Unfortunately, this example runs terribly slow. This increase in execution time is caused by the overheads
needed to create a future for each data point. Because the work done within each call to heat is very small, the overhead
of creating and scheduling each of the three futures is greater than that of the actual useful work! In order to amortize
the overheads of our synchronization techniques, we need to be able to control the amount of work that will be done
with each future. We call this amount of work per overhead grain size.

In example 3, we return to our serial code to figure out how to control the grain size of our program. The strategy

2.4. Examples 37

HPX Documentation, 1.3.0

that we employ is to create “partitions” of data points. The user can define how many partitions are created and how
many data points are contained in each partition. This is accomplished by creating the st ruct partition which
contains a member object data_, a vector of doubles which holds the data points assigned to a particular instance of
partition.

In example 4, we take advantage of the partition setup by redefining space to be a vector of shared_futures with each
future representing a partition. In this manner, each future represents several data points. Because the user can define
how many data points are contained in each partition (and therefore how many data points that are represented by one
future) a user can now control the grainsize of the simulation. The rest of the code was then futurized in the same
manner that was done in example 2. It should be noted how strikingly similar example 4 is to example 2.

Example 4 finally shows good results. This code scales equivalently to the OpenMP version. While these results are
promising, there are more opportunities to improve the application’s scalability. Currently this code only runs on one
locality, but to get the full benefit of HPX we need to be able to distribute the work to other machines in a cluster. We
begin to add this functionality in example 5.

In order to run on a distributed system, a large amount of boilerplate code must be added. Fortunately, HPX provides
us with the concept of a component which saves us from having to write quite as much code. A component is an
object which can be remotely accessed using its global address. Components are made of two parts: a server and a
client class. While the client class is not required, abstracting the server behind a client allows us to ensure type safety
instead of having to pass around pointers to global objects. Example 5 renames example 4’s st ruct partitionto
partition_data and adds serialization support. Next we add the server side representation of the data in the struc-
ture partition_server. Partition_server inherits from hpx: :components: :component_base
which contains a server side component boilerplate. The boilerplate code allows a component’s public members
to be accessible anywhere on the machine via its Global Identifier (GID). To encapsulate the component, we create
a client side helper class. This object allows us to create new instances of our component, and access its members
without having to know its GID. In addition, we are using the client class to assist us with managing our asynchrony.
For example, our client class partition’s member function get_data () returns a future to partition_data
get_data (). This struct inherits its boilerplate code from hpx: : components: :client_base.

In the structure stepper, we have also had to make some changes to accommodate a distributed environment.
In order to get the data from a neighboring partition, which could be remote, we must retrieve the data from the
neighboring partitions. These retrievals are asynchronous and the function heat_part_data, which amongst other
things calls heat, should not be called unless the data from the neighboring partitions have arrived. Therefore it should
come as no surprise that we synchronize this operation with another instance of dataflow (found in heat_part).
This dataflow is passed futures to the data in the current and surrounding partitions by calling get_data () on each
respective partition. When these futures are ready dataflow passes then to the unwrapped function, which extracts
the shared_array of doubles and passes them to the lambda. The lambda calls heat_part_data on the locality
which the middle partition is on.

Although this example could run in distributed, it only runs on one /ocality as it always uses hpx: : find_here ()
as the target for the functions to run on.

In example 6, we begin to distribute the partition data on different nodes. This is accomplished in
stepper: :do_work () by passing the GID of the /ocality where we wish to create the partition to the the par-
tition constructor.

for (std::size_t i = 0; 1 !'= np; ++1)
U[0][1i] = partition(localities[locidx (i, np, nl)], nx, double(i));

We distribute the partitions evenly based on the number of localities used, which is described in the function 1ocidx.
Because some of the data needed to update the partition in heat_part could now be on a new locality, we must
devise a way of moving data to the /ocality of the middle partition. We accomplished this by adding a switch in the
function get_data () which returns the end element of the buffer data_ if it is from the left partition or the
first element of the buffer if the data is from the right partition. In this way only the necessary elements, not the whole
buffer, are exchanged between nodes. The reader should be reminded that this exchange of end elements occurs in the
function get_data () and therefore is executed asynchronously.

38 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Now that we have the code running in distributed, it is time to make some optimizations. The function heat_part
spends most of its time on two tasks: retrieving remote data and working on the data in the middle partition. Because
we know that the data for the middle partition is local, we can overlap the work on the middle partition with that of
the possibly remote call of get_data () . This algorithmic change which was implemented in example 7 can be seen

below:

// The partitioned operator, it invokes the heat operator above on all elements
// of a partition.
static partition heat_part (partition consts left,

partition const& middle, partition consts& right)

using hpx::dataflow;
using hpx::util::unwrapping;

hpx::shared_future<partition_data> middle_data =
middle.get_data(partition_server::middle_partition);

hpx::future<partition_data> next_middle = middle_data.then (

unwrapping (
[middle] (partition_data const& m) —> partition_data

{

)i

HPX_UNUSED (middle) ;

// All local operations are performed once the middle data of
// the previous time step becomes available.

std::size_t size = m.size();

partition_data next (size);

for (std::size_t i = 1; 1 != size-1; ++1)
next[1] = heat (m[i-1], m[i], m[i+1]);

return next;

return dataflow (
hpx::launch: :async,

unwrapping (
[left, middle, right] (partition_data next, partition_data consts 1,

)I

partition_data const& m, partition_data consté& r) —-> partition

HPX_UNUSED (left) ;
HPX_UNUSED (right) ;

// Calculate the missing boundary elements once the
// corresponding data has become available.

std::size_t size = m.size();
next [0] = heat (l[size-1], m[0], m[1]);
next [size-1] = heat (m[size-2], m[size-1], r[0]);

// The new partition_data will be allocated on the same locality
// as 'middle'.
return partition(middle.get_id(), next);

std: :move (next_middle),
left.get_data(partition_server::left_partition),
middle_data,

right.get_data (partition_server::right_partition)

(continues on next page)

2.4. Examples

39

HPX Documentation, 1.3.0

(continued from previous page)

Example 8 completes the futurization process and utilizes the full potential of HPX by distributing the program flow
to multiple localities, usually defined as nodes in a cluster. It accomplishes this task by running an instance of HPX
main on each locality. In order to coordinate the execution of the program the st ruct stepper is wrapped into a
component. In this way, each locality contains an instance of stepper which executes its own instance of the function
do_work (). This scheme does create an interesting synchronization problem that must be solved. When the program
flow was being coordinated on the head node the, GID of each component was known. However, when we distribute
the program flow, each partition has no notion of the GID of its neighbor if the next partition is on another locality. In
order to make the GIDs of neighboring partitions visible to each other, we created two buffers to store the GIDs of the
remote neighboring partitions on the left and right respectively. These buffers are filled by sending the GID of a newly
created edge partitions to the right and left buffers of the neighboring localities.

In order to finish the simulation the solution vectors named result are then gathered together on locality 0 and added
into a vector of spaces overall_result using the HPX functions gather_id and gather_here.

Example 8 completes this example series which takes the serial code of example 1 and incrementally morphs it into
a fully distributed parallel code. This evolution was guided by the simple principles of futurization, the knowledge
of grainsize, and utilization of components. Applying these techniques easily facilitates the scalable parallelization of
most applications.

2.5 Manual

The manual is your comprehensive guide to HPX. It contains detailed information on how to build and use HPX in
different scenarios.

2.5.1 Getting HPX

There are HPX packages available for a few Linux distributions. The easiest way to get started with HPX is to use
those packages. We keep an up-to-date list with instructions on the HPX Downloads®' page. If you use one of the
available packages you can skip the next section, HPX build system, but we still recommend that you look through it
as it contains useful information on how you can customize HPX at compile-time.

If there isn’t a package available for your platform you should either clone our repository:

or download a package with the source files from HPX Downloads®.

2.5.2 HPX build system

The build system for HPX is based on CMake®. CMake is a cross-platform build-generator tool. CMake does not
build the project, it generates the files needed by your build tool (GNU make, Visual Studio, etc.) for building HPX.

This section gives an introduction on how to use our build system to build HPX and how to use HPX in your own
projects.

61 https://stellar-group.org/downloads/
62 https://stellar- group.org/downloads/
63 https://www.cmake.org

40 Chapter 2. What’s so special about HPX?

https://stellar-group.org/downloads/
https://stellar-group.org/downloads/
https://www.cmake.org

HPX Documentation, 1.3.0

CMake basics

CMake® is a cross-platform build-generator tool. cmake does not build the project, it generates the files needed by
your build tool (gnu make, visual studio, etc.) for building HPX.

65

in general, the hpx CMake® scripts try to adhere to the general cmake policies on how to write CMake®® based

projects.

Basic CMake usage

This section explains basic aspects of CMake, mostly for explaining those options which you may need on your
day-to-day usage.

CMake comes with extensive documentation in the form of html files and on the cmake executable itself. Execute
cmake --help for further help options.

CMake requires to know for which build tool it shall generate files (GNU make, Visual Studio, Xcode, etc.). If not
specified on the command line, it tries to guess it based on you environment. Once identified the build tool, CMake
uses the corresponding Generator for creating files for your build tool. You can explicitly specify the generator with the
command line option -G "Name of the generator". For knowing the available generators on your platform,
execute:

cmake --help

This will list the generator names at the end of the help text. Generator names are case-sensitive. Example:

cmake -G "Visual Studio 9 2008" path/to/hpx

For a given development platform there can be more than one adequate generator. If you use Visual Studio "NMake
Makefiles" is a generator you can use for building with NMake. By default, CMake chooses the more specific
generator supported by your development environment. If you want an alternative generator, you must tell this to
CMake with the —G option.

Quick start

67

We use here the command-line, non-interactive CMake®’ interface.

1. Download and install CMake here: CMake Downloads®®. Version 3.3.2 is the minimally required version for
HPX.

2. Open a shell. Your development tools must be reachable from this shell through the PATH environment variable.

3. Create a directory for containing the build. It is not supported to build HPX on the source directory. cd to this
directory:

mkdir mybuilddir
cd mybuilddir

4. Execute this command on the shell replacing path/to/hpx/ with the path to the root of your HPX source
tree:

64 https://www.cmake.org
65 https://www.cmake.org
% https://www.cmake.org
67 https://www.cmake.org
68 https://www.cmake.org/cmake/resources/software.html

2.5. Manual 41

https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://www.cmake.org/cmake/resources/software.html

HPX Documentation, 1.3.0

cmake path/to/hpx

CMake will detect your development environment, perform a series of tests and will generate the files required for
building HPX. CMake will use default values for all build parameters. See the CMake variables used to configure
HPX section for fine-tuning your build.

This can fail if CMake can’t detect your toolset, or if it thinks that the environment is not sane enough. In this case
make sure that the toolset that you intend to use is the only one reachable from the shell and that the shell itself is the
correct one for you development environment. CMake will refuse to build MinGW makefiles if you have a POSIX
shell reachable through the PATH environment variable, for instance. You can force CMake to use various compilers
and tools. Please visit CMake Useful Variables® for a detailed overview of specific CMake’" variables.

Options and variables

Variables customize how the build will be generated. Options are boolean variables, with possible values ON/OFF.
Options and variables are defined on the CMake command line like this:

cmake -DVARIABLE=value path/to/hpx

You can set a variable after the initial CMake invocation for changing its value. You can also undefine a variable:

cmake -UVARIABLE path/to/hpx

Variables are stored on the CMake cache. This is a file named CMakeCache . txt on the root of the build directory.
Do not hand-edit it.

Variables are listed here appending its type after a colon. It is correct to write the variable and the type on the CMake
command line:

cmake —-DVARIABLE:TYPE=value path/to/llvm/source

CMake supports the following variable types: BOOL (options), STRING (arbitrary string), PATH (directory name),
FILEPATH (file name).

Prerequisites

Supported platforms

At this time, HPX supports the following platforms. Other platforms may work, but we do not test HPX with other
platforms, so please be warned.

Table 2.1: Supported Platforms for HPX

Name Recommended Version | Minimum Version Architectures

Linux 3.2 2.6 x86-32, x86-64, klom
BlueGeneQ | VIR2MO V1R2MO PowerPC A2
Windows 7, Server 2008 R2 Any Windows system | x86-32, x86-64

Mac OSX Any OSX system x86-64

%9 https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/Useful- Variables#Compilers-and-Tools
70 https://www.cmake.org

42 Chapter 2. What’s so special about HPX?

https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/Useful-Variables#Compilers-and-Tools
https://www.cmake.org

HPX Documentation, 1.3.0

Software and libraries

In the simplest case, HPX depends on Boost’' and Portable Hardware Locality (HWLOC)’?. So, before you read
further, please make sure you have a recent version of Boost’? installed on your target machine. HPX currently
requires at least Boost V1.61.0 to work properly. It may build and run with older versions, but we do not test HPX
with those versions, so please be warned.

Installing the Boost libraries is described in detail in Boost’s own Getting Started document. It is often possible
to download the Boost libraries using the package manager of your distribution. Please refer to the corresponding
documentation for your system for more information.

The installation of Boost is described in detail in Boost’s own Getting Started document. However, if you’ve never
used the Boost libraries (or even if you have), here’s a quick primer: Installing Boost.

In addition, we require a recent version of hwloc in order to support thread pinning and NUMA awareness. See
Installing Hwloc for instructions on building Portable Hardware Locality (HWLOC).

HPX is written in 99.99% Standard C++ (the remaining 0.01% is platform specific assembly code). As such HPX is
compilable with almost any standards compliant C++ compiler. A compiler supporting the C++11 Standard is highly
recommended. The code base takes advantage of C++11 language features when available (move semantics, rvalue
references, magic statics, etc.). This may speed up the execution of your code significantly. We currently support the
following C++ compilers: GCC, MSVC, ICPC and clang. For the status of your favorite compiler with HPX visit
HPX Buildbot Website™.

Table 2.2: Software prerequisites for HPX on Linux systems.

Name Recommended ver- | Minimum version | Notes
sion
Compilers
GNU Compiler Collection (g++)" 4.9 or newer 4.9
Intel Composer XE Suites’® 2014 or newer 2014
clang: a C language family frontend for | 3.8 or newer 3.8
LLVM"
Build System
CMake™® 3.9.0 332 Cuda support
3.9
Required Libraries
Boost C++ Libraries” 1.67.0 or newer 1.61.0
Portable Hardware Locality (HWLOC)®0 1.11 1.2 (Xeon Phi:
1.6)

Note: When compiling with the Intel Compiler on Linux systems, we only support C++ Standard Libraries provided
by gcc 4.8 and upwards. If the g++ in your path is older than 4.8, please specify the path of a newer g++ by setting
CMAKE_CXX_FLAGS='-gxx-name=/path/to/g++" via CMake®'.

71 https://www.boost.org/

72 https://www.open-mpi.org/projects/hwloc/
73 https://www.boost.org/

74 https://rostam.cct.Isu.edu/

75 https://gce.gnu.org

76 https://software.intel.com/en-us/intel-composer-xe/
77 https://clang.llvm.org/

78 https://www.cmake.org

79 https://www.boost.org/

80 https://www.open-mpi.org/projects/hwloc/
81 https://www.cmake.org

2.5. Manual

43

https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://www.boost.org/
https://rostam.cct.lsu.edu/
https://gcc.gnu.org
https://software.intel.com/en-us/intel-composer-xe/
https://clang.llvm.org/
https://clang.llvm.org/
https://www.cmake.org
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://www.cmake.org

HPX Documentation, 1.3.0

Note: When building Boost using gcc please note that it is always a good idea to specify a
cxxflags=-std=c++11 command line argument to b2 (bjam). Note however, that this is absolutely necessary
when using gcc V5.2 and above.

Table 2.3: Software prerequisites for HPX on Windows systems

Name Recommended version | Minimum version | Notes
Compilers

Visual C++%7 (x64) 2015 2015

Build System

CMake® 3.9.0 3.3.2

Required Libraries

Boost™ 1.67.0 or newer 1.61.0

Portable Hardware Locality (HWLOC)® | 1.11 1.5

Note: You need to build the following Boost libraries for HPX: Boost.Filesystem, Boost.ProgramOptions,
Boost.Regex, and Boost.System. The following are not needed by default, but are required in certain configurations:
Boost.Chrono, Boost.DateTime, Boost.Log, Boost.LogSetup, and Boost.Thread.

Depending on the options you chose while building and installing HPX, you will find that HPX may depend on several
other libraries such as those listed below.

Note: In order to use a high speed parcelport, we currently recommend configuring HPX to use MPI so that MPI
can be used for communication between different localities. Please set the CMake variable MPI_CXX_COMPILER to
your MPI C++ compiler wrapper if not detected automatically.

Table 2.4: Highly recommended optional software prerequisites for HPX
on Linux systems

Name Recommended Minimum Notes
version version

google- 1.7.1 1.71 Used as a replacement for the system allocator, and for allo-

perftools®® cation diagnostics.

libunwind®’ 0.99 0.97 Dependency of google-perftools on x86-64, used for stack
unwinding.

Open MPI® 1.10.1 1.8.0 Can be used as a highspeed communication library backend
for the parcelport.

Note: When using OpenMPI please note that Ubuntu (notably 18.04 LTS) and older Debian ship an OpenMPI 2.x
built with ——enable-heterogeneous which may cause communication failures at runtime and should not be
used.

82 https://msdn.microsoft.com/en-us/visualc/default.aspx
83 https://www.cmake.org

84 https://www.boost.org/

85 https://www.open-mpi.org/projects/hwloc/

86 https://code.google.com/p/gperftools

87 https://www.nongnu.org/libunwind

88 https://www.open-mpi.org

44 Chapter 2. What’s so special about HPX?

https://msdn.microsoft.com/en-us/visualc/default.aspx
https://www.cmake.org
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://code.google.com/p/gperftools
https://code.google.com/p/gperftools
https://www.nongnu.org/libunwind
https://www.open-mpi.org

HPX Documentation, 1.3.0

Table 2.5: Optional software prerequisites for HPX on Linux systems

Name Recommended version Mini- Notes
mum
version
Performance Application Pro- | Used for accessing hard-
gramming Interface (PAPI) ware performance data.
jemalloc® 2.1.2 2.1.0 Used as a replacement for the system al-
locator.
Hierarchical Data Format V5 | 1.8.7 1.6.7 Used for data I/O in some example ap-
(HDF5)*° plications. See important note below.

Table 2.6: Optional software prerequisites for HPX on Windows systems

Name Recommended | Minimum Notes

version version
Hierarchical Data Format | 1.8.7 1.6.7 Used for data I/O in some example applications.
V5 (HDF5)"! See important note below.

Important: The C++ HDFS5 libraries must be compiled with enabled thread safety support. This has to be explicitly
specified while configuring the HDFS5 libraries as it is not the default. Additionally, you must set the following
environment variables before configuring the HDFS5 libraries (this part only needs to be done on Linux):

export CFLAGS='-DHDatexit="""'
export CPPFLAGS='-DHDatexit="""

Documentation

To build the HPX documentation you need recent versions of the following packages:
* python (2 or 3)
* sphinx (Python package)
e sphinx_rtd_theme (Python package)
* breathe (Python package)
e doxygen

If the Python®” dependencies are not available through your system package manager you can install them using the
Python” package manager pip:

pip install —--user sphinx sphinx_rtd_theme breathe

You may need to set the following CMake®* variables to make sure CMake” can find the required dependencies.

89 https://www.canonware.com/jemalloc
90 https://www.hdfgroup.org/HDF5

1 https://www.hdfgroup.org/HDF5

92 https://www.python.org

93 https://www.python.org

94 https://www.cmake.org

95 https://www.cmake.org

2.5. Manual 45

https://www.canonware.com/jemalloc
https://www.hdfgroup.org/HDF5
https://www.hdfgroup.org/HDF5
https://www.hdfgroup.org/HDF5
https://www.hdfgroup.org/HDF5
https://www.python.org
https://www.python.org
https://www.cmake.org
https://www.cmake.org

HPX Documentation, 1.3.0

DOXYGEN_ROOT : PATH
Specifies where to look for the installation of the Doxygen®® tool.

SPHINX_ROOT:PATH
Specifies where to look for the installation of the Sphinx”’ tool.

BREATHE_APIDOC_ROOT:PATH
Specifies where to look for the installation of the Breathe”® tool.

Installing Boost

Important: When building Boost using gcc please note that it is always a good idea to specify a
cxxflags=-std=c++11 command line argument to b2 (bjam). Note however, that this is absolutely necessary
when using gcc V5.2 and above.

Important: On Windows, depending on the installed versions of Visual Studio, you might also want to pass the
correct toolset to the b2 command depending on which version of the IDE you want to use. In addition, pass-
ing address-model=64 is highly recommended. It might be also necessary to add command line argument
——build-type=complete to the b2 command on the Windows platform.

The easiest way to create a working Boost installation is to compile Boost from sources yourself. This is particularly
important as many high performance resources, even if they have Boost installed, usually only provide you with an
older version of Boost. We suggest you download the most recent release of the Boost libraries from here: Boost
Downloads”. Unpack the downloaded archive into a directory of your choosing. We will refer to this directory a
$BOOST.

Building and installing the Boost binaries is simple, regardless what platform you are on the basic instructions are as
follows (with possible additional platform-dependent command line arguments):

cd S OST
bootstrap —--prefix=<where to install boost>
/b2 —j<N>

./b2 install

where: <where to install boost> is the directory the built binaries will be installed to, and <N> is the
number of cores to use to build the Boost binaries.

After the above sequence of commands has been executed (this may take a while!) you will need to specify the
directory where Boost was installed as BOOST_ROOT (<where to install boost>) while executing cmake
for HPX as explained in detail in the sections How to install HPX on Unix variants and How to install HPX on
Windows.

Installing Hwloc

Note: These instructions are for everything except Windows. On Windows there is no need to build hwloc. Instead
download the latest release, extract the files, and set HWLOC_ROOT during cmake configuration to the directory in

9 https://www.doxygen.org

97 http://www.sphinx-doc.org

98 https://breathe.readthedocs.io/en/latest
9 https://www.boost.org/users/download/

46 Chapter 2. What’s so special about HPX?

https://www.doxygen.org
http://www.sphinx-doc.org
https://breathe.readthedocs.io/en/latest
https://www.boost.org/users/download/
https://www.boost.org/users/download/

HPX Documentation, 1.3.0

which you extracted the files.

We suggest you download the most recent release of hwloc from here: Hwloc Downloads'”. Unpack the downloaded
archive into a directory of your choosing. We will refer to this directory as SHWLOC.

To build hwloc run:

cd S$SHWLOC
./configure --prefix=<where to install hwloc>
make —j<N> install

where: <where to install hwloc> is the directory the built binaries will be installed to, and <N> is the
number of cores to use to build hwloc.

After the above sequence of commands has been executed you will need to specify the directory where Hwloc was
installed as HWLOC_ROOT (<where to install hwloc>) while executing cmake for HPX as explained in
detail in the sections How to install HPX on Unix variants and How to install HPX on Windows.

Please see Hwloc Documentation'®! for more information about Hwloc.

Building HPX

Basic information

Once CMake has been run, the build process can be started. The HPX build process is highly configurable through
CMake and various CMake variables influence the build process. The build process consists of the following parts:

e The HPX core libraries (target core): This forms the basic set of HPX libraries. The generated targets are:
— hpx: The core HPX library (always enabled).

— hpx_init: The HPX initialization library that applications need to link against to define the HPX entry
points (disabled for static builds).

— hpx_wrap: The HPX static library used to determine the runtime behavior of HPX code and respective
entry points for hpx_main.h

— iostreams_component: The component used for (distributed) IO (always enabled).

— component_storage_component: The component needed for migration to persistent storage.
— unordered_component: The component needed for a distributed (partitioned) hash table.

— partioned_vector_component: The component needed for a distributed (partitioned) vector.

— memory_component: A dynamically loaded plugin that exposed memory based performance counters
(only available on Linux).

— io_counter_component: A dynamically loaded plugin plugin that exposes I/O performance counters
(only available on Linux).

— papi_component: A dynamically loaded plugin that exposes PAPI performance counters (enabled with
HPX WITH PAPT:BOOL, defaultis Of f).

* HPX Examples (target examples): This target is enabled by default and builds all HPX examples (disable by
setting HPX_WITH_ EXAMPLES:BOOL=0ff). HPX examples are part of the all target and are included in
the installation if enabled.

100 https://www.open-mpi.org/software/hwloc/v1.11
101 https://www.open-mpi.org/projects/hwloc/doc/

2.5. Manual 47

https://www.open-mpi.org/software/hwloc/v1.11
https://www.open-mpi.org/projects/hwloc/doc/

HPX Documentation, 1.3.0

e HPX Tests (target tests): This target builds the HPX test suite and is enabled by default (disable by setting
HPX _WITH_TESTS:BOOL =0ff). They are not built by the a1l target and have to be built separately.

* HPX Documentation (target docs): This target builds the documentation, this is not enabled by default (enable
by setting HPX_WITH_DOCUMENTATION : BOOL=0n. For more information see Documentation.

For a complete list of available CMake variables that influence the build of HPX see CMake variables used to configure
HPX.

The variables can be used to refine the recipes that can be found Platform specific build recipes which show some
basic steps on how to build HPX for a specific platform.

In order to use HPX, only the core libraries are required (the ones marked as optional above are truly optional). When
building against HPX, the CMake'"? variable HPX_LIBRARIES will contain hpx and hpx_init (for pkgconfig,
those are added to the Libs sections). In order to use the optional libraries, you need to specify them as link depen-
dencies in your build (See Creating HPX projects).

As HPX is a modern C++ Library we require a certain minimal set of features from the C++11 standard. In addition,
we make use of certain C++14 features if the used compiler supports them. This means that the HPX build system
will try to determine the highest support C++ standard flavor and check for availability of those features. That is, the
default will be the highest C++ standard version available. If you want to force HPX to use a specific C++ standard
version you can use the following CMake'%* variables:

e HPX_WITH_CXXO0X: Enables Pre-C++11 support (This is the minimal required mode on older gcc versions).
e HPX_WITH_CXX11: Enables C++11 support
* HPX_WITH_CXX14: Enables C++14 support
* HPX_WITH_CXX17: Enables C++17 support

e HPX_WITH_CXX2A: Enables (experimental) C++20 support

Build types

CMake can be configured to generate project files suitable for builds that have enabled debugging support or for an
optimized build (without debugging support). The CMake variable used to set the build type is CMAKE_BUILD_TYPE
(for more information see the CMake Documentation'?*). Available build types are:

* Debug: Full debug symbols available and additional assertions to help debugging. To enable the debug build
type for the HPX API, the C++ Macro HPX_DEBUG is defined.

* RelWithDebInfo: Release build with debugging symbols. This is most useful for profiling applications
* Release: Release build. This disables assertions and enables default compiler optimizations.

* RelMinSize: Release build with optimizations for small binary sizes.

Important: We currently don’t guarantee ABI compatibility between Debug and Release builds. Please make sure
that applications built against HPX use the same build type as you used to build HPX. For CMake'% builds, this means
that the CMAKE_BUILD_TYPE variables have to match and for projects not using CMake'’®, the HPX_DEBUG macro
has to be set in debug mode.

102 https://www.cmake.org
103 https://www.cmake.org
104 https://cmake.org/cmake/help/latest/variable/ CMAKE_BUILD_TYPE.html
105 hitps://www.cmake.org
106 https://www.cmake.org

48 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://www.cmake.org
https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
https://www.cmake.org
https://www.cmake.org

HPX Documentation, 1.3.0

Platform specific notes

Some platforms require to have special link and/or compiler flags specified to build HPX. This is handled via
CMake!?”’s support for different toolchains (see cmake-toolchains(7)'%® for more information). This is also used
for cross compilation.

HPX ships with a set of toolchains that can be used for compilation of HPX itself and applications depending on HPX.
Please see CMake toolchains shipped with HPX for more information.

In order to enable full static linking with the libraries, the CMake'"’ variable HPX WITH STATIC LINKING:BOOL
has to be set to On.

Debugging applications using core files

For HPX to generate useful core files, HPX has to be compiled without signal and exception handlers
HPX_WITH DISABLED_SIGNAIL EXCEPTION_HANDLERS :BOOL. If this option is not specified, the signal han-
dlers change the application state. For example, after a segmentation fault the stack trace will show the signal handler.
Similarly, unhandled exceptions are also caught by the these handlers and the stack trace will not point to the location
where the unhandled exception was thrown.

In general, core files are a helpful tool to inspect the state of the application at the moment of the crash (post-mortem
debugging), without the need of attaching a debugger beforehand. This approach to debugging is especially useful if
the error cannot be reliably reproduced, as only a single crashed application run is required to gain potentially helpful
information like a stacktrace.

To debug with core files, the operating system first has to be told to actually write them. On most unix systems this
can be done by calling:

’ulimit -c unlimited

in the shell. Now the debugger can be started up with:

’gdb <application> <core file name>

The debugger should now display the last state of the application. The default file name for core files is core.

Platform specific build recipes

Note: The following build recipes are mostly user-contributed and may be outdated. We always welcome updated
and new build recipes.

How to install HPX on Unix variants

¢ Create a build directory. HPX requires an out-of-tree build. This means you will be unable to run CMake in the
HPX source tree.

cd hpx
mkdir my_hpx_build
cd my_hpx_build

107 https://www.cmake.org
108 https://cmake.org/cmake/help/latest/manual/cmake- toolchains.7.html
109 hitps://www.cmake.org

2.5. Manual 49

https://www.cmake.org
https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
https://www.cmake.org

HPX Documentation, 1.3.0

¢ Invoke CMake from your build directory, pointing the CMake driver to the root of your HPX source tree.

cmake —-DBOOST_ROOT=/root/of/boost/installation \
—-DHWLOC_ROOT=/root/of/hwloc/installation
[other CMake variable definitions] \
/path/to/source/tree

for instance:

cmake -DBOOST_ROOT=~/packages/boost -DHWLOC_ROOT=/packages/hwloc -DCMAKE_INSTALL_
—PREFIX=~/packages/hpx ~/downloads/hpx_0.9.10

* Invoke GNU make. If you are on a machine with multiple cores, add the -jN flag to your make invocation, where
N is the number of parallel processes HPX gets compiled with.

gmake -7j4

Caution: Compiling and linking HPX needs a considerable amount of memory. It is advisable that at least
2 GB of memory per parallel process is available.

Note: Many Linux distributions use make as an alias for gmake.

* To complete the build and install HPX:

gmake install

Important: These commands will build and install the essential core components of HPX only. In order to
build and run the tests, please invoke:

’gmake tests && gmake test

and in order to build (and install) all examples invoke:

cmake -DHPX_WITH_EXAMPLES=0n
gmake examples
gmake install

For more detailed information about using CMake please refer its documentation and also the section Building HPX.
Please pay special attention to the section about HPX_WITH MALLOC:STRING as this is crucial for getting decent
performance.

How to install HPX on OS X (Mac)

This section describes how to build HPX for OS X (Mac).

Build (and install) a recent version of Boost, using Clang and libc++

To build Boost with Clang and make it link to libc++ as standard library, you’ll need to set up either of the following
in your ~/user-config. jam file:

50 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

user—-config.jam (put this file into your home directory)

#
using clang
"/usr/bin/clang++"

<cxxflags>"-std=c++11 -fcolor-diagnostics"
<linkflags>"-stdlib=1libc++ -L/path/to/libcxx/1ib"

(Again, remember to replace /path/to with whatever you used earlier.)

You can then use as build command either:

’b2 —-build-dir=/tmp/build-boost --layout=versioned toolset=clang install -7j4

or:

’b2 —--build-dir=/tmp/build-boost --layout=versioned toolset=clang install -j4

We verified this using Boost V1.53. If you use a different version, just remember to replace /usr/local/
include/boost-1_53 with whatever include prefix you had in your installation.

Build HPX, finally

cd /path/to
git clone https://github.com/STE11AR-GROUP/hpx.git
mkdir build-hpx && cd build-hpx

To build with Clang 3.2, execute:

cmake ../hpx \
—DCMAKE_CXX_COMPILER=clang++ \
-DBOOST_INCLUDE_DIR=/usr/local/include/boost-1_53 \
-DBOOST_LIBRARY _DIR=/usr/local/lib \
-DBOOST_SUFFIX=-clang-darwin32-mt-1_53 \

make

To build with Clang 3.3 (trunk), execute:

cmake ../hpx \
-DCMAKE_CXX_COMPILER=clang++ \
—-DBOOST_INCLUDE_DIR=/usr/local/include/boost-1_53 \
-DBOOST_LIBRARY_DIR=/usr/local/lib \
-DBOOST_SUFFIX=-clang-darwin33-mt-1_53 \

make

For more detailed information about using CMake please refer its documentation and to the section Building HPX for.

Alternative installation method of HPX on OS X (Mac)

Alternatively, you can install a recent version of gcc as well as all required libraries via MacPorts:
1. Install MacPorts
2. Install CMake, gcc 4.8, and hwloc:

2.5. Manual 51

HPX Documentation, 1.3.0

sudo port install gcc48
sudo port install hwloc

You may also want:

sudo port install cmake
sudo port install git-core

3. Make this version of gcc your default compiler:

sudo port install gcc_select
sudo port select gcc mp-gcc48

4. Build Boost manually (the Boost package of MacPorts is built with Clang, and unfortunately doesn’t work with
a GCC-build version of HPX):

wget https://dl.bintray.com/boostorg/release/1.69.0/source/boost_1_69_0.tar.bz2
tar xjf boost_1_69_0.tar.bz2
pushd boost_1_69_0
export BOOST ROOT=SHOME/boost_1_69_0
./bootstrap.sh ——prefix=5B _DIR
./b2 -38
./b2 -j8 install
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:$BOOST_ROOT/lib
popd
5. Build HPX:

git clone https://github.com/STE11AR-GROUP/hpx.git

mkdir hpx-build

pushd hpx-build

export HPX_ ROOT=$HOME/hpx

cmake —-DCMAKE_C_COMPILER=gcc \
-DCMAKE_CXX_COMPILER=g++ \
-DCMAKE_FORTRAN_COMPILER=gfortran \
-DCMAKE_C_FLAGS="-Wno-unused-local-typedefs" \
-DCMAKE_CXX_FLAGS="-Wno-unused-local-typedefs" \
—-DBOOST_ROOT=$BOOST_ROOT \
—-DHWLOC_ROOT=/opt/local \
-DCMAKE_INSTALL_PREFIX=SHOME/hpx \

$(pwd) /../hpx

make -78

make —-7j8 install

export DYLD_LIBRARY_PATH=$DYLD_LIBR

popd

Y_PATH:SHPX_ROOT/1ib/hpx

6. Note that you need to set BOOST_ROOT, HPX_ROOT and DYLD_LIBRARY_PATH (for both BOOST_ROOT
and HPX_ROOT every time you configure, build, or run an HPX application.

7. If you want to use HPX with MPI, you need to enable the MPI parcelport, and also specify the location of the
MPI wrapper scripts. This can be done e.g. with the following command:

cmake -DHPX_WITH PARCELPORT_MPI=ON \
-DCMAKE_C_COMPILER=gcc \
~DCMAKE_CXX_COMPILER=g++ \
~DCMAKE_FORTRAN_COMPILER=gfortran \
-DMPI_C_COMPILER=openmpicc \

(continues on next page)

52 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

-DMPI_CXX_COMPILER=openmpic++ \
-DMPI_FORTRAN_COMPILER=0openmpif90 \
-DCMAKE_C_FLAGS="-Wno-unused-local-typedefs" \
-DCMAKE_CXX_FLAGS="-Wno—-unused-local-typedefs" \
-DBOOST_ROOT=SBOOST_DIR \
-DHWLOC_ROOT=/opt/local \
—-DCMAKE_INSTALL_PREFIX=5HOME/hpx

$(pwd) /. ./hpx

How to install HPX on Windows
Installation of required prerequisites

» Download the Boost c++ libraries from Boost Downloads''?

Install the boost library as explained in the section Installing Boost

Install the hwloc library as explained in the section /nstalling Hwloc

* Download the latest version of CMake binaries, which are located under the platform section of the downloads
page at CMake Downloads'!!,

« Download the latest version of HPX from the STEIIAR website: HPX Downloads!!2.

Installation of the HPX library

* Create a build folder. HPX requires an out-of-tree-build. This means that you will be unable to run CMake in
the HPX source folder.

* Open up the CMake GUIL. In the input box labelled “Where is the source code:”, enter the full path to the source
folder. The source directory is one where the sources were checked out. CMakeLists.txt files in the source
directory as well as the subdirectories describe the build to CMake. In addition to this, there are CMake scripts
(usually ending in .cmake) stored in a special CMake directory. CMake does not alter any file in the source
directory and doesn’t add new ones either. In the input box labelled “Where to build the binaries:”, enter the
full path to the build folder you created before. The build directory is one where all compiler outputs are stored,
which includes object files and final executables.

* Add CMake variable definitions (if any) by clicking the “Add Entry” button. There are two required variables
you need to define: BOOST_ROOT and HWLOC_ROOT These (PATH) variables need to be set to point to the
root folder of your Boost''® and Portable Hardware Locality (HWLOC)''* installations. It is recommended to
set the variable CMAKE_INSTALL_PREFIX as well. This determines where the HPX libraries will be built
and installed. If this (PATH) variable is set, it has to refer to the directory where the built HPX files should be
installed to.

* Press the “Configure” button. A window will pop up asking you which compilers to use. Select the Visual
Studio 10 (64Bit) compiler (it usually is the default if available). The Visual Studio 2012 (64Bit) and Visual
Studio 2013 (64Bit) compilers are supported as well. Note that while it is possible to build HPX for x86, we
don’t recommend doing so as 32 bit runs are severely restricted by a 32 bit Windows system limitation affecting
the number of HPX threads you can create.

110 hitps://www.boost.org/users/download/

1T https://www.cmake.org/cmake/resources/software.html
112 https://stellar-group.org/downloads/

113 https://www.boost.org/

114 https://www.open-mpi.org/projects/hwloc/

2.5. Manual 53

https://www.boost.org/users/download/
https://www.cmake.org/cmake/resources/software.html
https://stellar-group.org/downloads/
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/

HPX Documentation, 1.3.0

* Press “Configure” again. Repeat this step until the “Generate” button becomes clickable (and until no variable
definitions are marked red anymore).

* Press “Generate”.
¢ Open up the build folder, and double-click hpx.sln.
* Build the INSTALL target.

For more detailed information about using CMake!"”

HPX.

please refer its documentation and also the section Building

How to build HPX under Windows 10 x64 with Visual Studio 2015

» Download the CMake''® V3.4.3 installer (or latest version) from here'!’
» Download the Portable Hardware Locality (HWLOC)! 18 V1.11.0 (or latest version) from here!'” and unpack it.

+ Download the latest Boost'?? libraries from here'?! and unpack them.

Build the boost DLLs and LIBs by using these commands from Command Line (or PowerShell). Open
CMD/PowerShell inside the Boost dir and type in:

bootstrap.bat

This batch file will set up everything needed to create a successful build. Now execute:

b2.exe link=shared variant=release,debug architecture=x86 address-model=64_
—threading=multi --build-type=complete install

This command will start a (very long) build of all available Boost libraries. Please, be patient.

* Open CMake-GUI.exe and set up your source directory (input field ‘Where is the source code’) to the base
directory of the source code you downloaded from HPX’s GitHub pages. Here’s an example of my CMake path
settings which point to my Documents/GitHub/hpx folder:

Inside the “Where is the source-code’ enter the base directory of your HPX source directory (do not enter the
“src” sub-directory!) Inside ‘“Where to build the binaries’ you should put in the path where all the building
process will happen. This is important because the building machinery will do an “out-of-tree” build. CMake
is not touching or changing in any way the original source files. Instead, it will generate Visual Studio Solution
Files which will build HPX packages out of the HPX source tree.

* Set three new environment variables (in CMake, not in Windows environment, by the way): BOOST_ROOT,
HWLOC_ROOT, CMAKE_INSTALL_PREFIX. The meaning of these variables is as follows:

— BOOST_ROOT the root directory of the unpacked Boost headers/cpp files.
— HWLOC_ROOT the root directory of the unpacked Portable Hardware Locality files.

— CMAKE_INSTALL_PREFIX the “root directory” where the future builds of HPX should be installed to.

115 https://www.cmake.org

116 hitps://www.cmake.org

117 https://blog kitware.com/cmake-3-4-3-available-for-download/

118 https://www.open-mpi.org/projects/hwloc/

119 http://www.open-mpi.org/software/hwloc/v1.11/downloads/hwloc-win64-build-1.11.0.zip
120 https://www.boost.org/

121 hitps://www.boost.org/users/download/

54 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://www.cmake.org
https://blog.kitware.com/cmake-3-4-3-available-for-download/
https://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/software/hwloc/v1.11/downloads/hwloc-win64-build-1.11.0.zip
https://www.boost.org/
https://www.boost.org/users/download/

HPX Documentation,

1.3.0

A CMake 3.3.0 - C:/Users/Harris/Documents/GitHub/hpx/... ™ — O d ‘
File Tools Options Help

Where is the source code: | C:/Users/Harris/Documents/GitHuby hpx Browse Source...

Where to build the binaries: IC:IUS&rﬁfH!niafDDmnmntﬂ'Giﬂubfhpﬂbuild 3 Browse Build... |
Search: | [Grouped M Advanced b add Entry | # Remaove Entry |

MName Value ,;‘
HGCOMMAND C:/Program Files/TortoiseHg/hg.exe
HPX_PLATFORM native

HPX_WITH_AGAS_DUMP_REFCNT_E...
HPX_WITH_APEX
HPX_WITH_AUTOMATIC_SERIALIZAT...
HPX_WITH_AWAIT

HPX_WITH_BENCHMARK_SCRIPTS_P... C:.fUsers,'HarristocumenE,fGitHub.f..._I

omOoO

HPX_WITH_BOOST_ALL_DYNAMIC_LI...

HPX_WITH_COLOCATED_BACKWARD...

HPX_WITH_COMPILER_WARNINGS

HPX_WITH_COMPILE_ONLY_TESTS

HPX_WITH_COMPONENT _GET_GID_C...

HPX_WITH_COMPRESSION _BZIP2 a

HPX_WITH_COMPRESSION_SNAPPY (] ﬂ

BAMLS BEIITED SR ARPTE e ISR T m

Press Configure to update and display new values in red, then press Generate to generate selected
build files.

Configre | Generate | current Generator: Visual Studio 14 2015 Win64 |

OTR WIil D INSCEIITS o . fDInyoarn

Configuring done

Generating done -
| | »

Fig. 2.3: Example CMake path settings.

2.5. Manual

55

HPX Documentation, 1.3.0

Note: HPX is a BIG software collection and I really don’t recommend using the default C: \Program
Files\hpx. I prefer simpler paths without white space, like C: \bin\hpx or D: \bin\hpx etc.

To insert new env-vars click on “Add Entry” and then insert the name inside “Name”, select PATH as Type and
put the path-name in “Path” text field. Repeat this for the first three variables.

This is how variable insertion looks like:

A "—|:|><|

Where is the source code: [c:jUsrers‘.'Hurria{Documenrs.fG'rtHubfhpx Browse Source...

Where to build the binaries: IC:sters."Hama-’Document&fGrtHub.-’hpvhmld j Browse Build...
Search: [~ Grouped ¥ Advanced &k Add Entry | Remave Entry |

Name Value w
PKG_CONF NOTF...
PYTHON E] A Add Cache Entry ? X L
QTHREADS OTF...
OTHREADS Name: |Bo0ST_ROOT OUND
QT_QMAKE
- Type: PATH =
SCPCOMMI 0 | -
SITE Value: [C:/lib/boost_1_58_0] =
SLURM_SB Description: | 2-NOT...
SLURM_SR NOTF...
SVNCOMM I/bin/s...
SWARM_IN | oK | Cancel FOUND
SWARM_LI ND
TEB_INCLUDEZIMR TBB_INCLUDE_DIR-NOTFOUND
TEB_PROXY_LIBRARY TBB_PROXY_LIBRARY-NOTFOUND E‘
Press Configure to update and display new values in red, then press Generate to generate selected
build files.
Configure | Generate Current Generator: Visual Studio 14 2015 Wing4
Configuring done
Generating done j
’ | 2

Fig. 2.4: Example CMake adding entry.

Alternatively you could provide BOOST_LIBRARYDIR instead of BOOST_ROOT with a difference that
BOOST_LIBRARYDIR should point to the subdirectory inside Boost root where all the compiled DLLs/LIBs
are. I myself have used BOOST_LIBRARYDIR which pointed to the bin.v2 subdirectory under the Boost
rootdir. Important is to keep the meanings of these two variables separated from each other: BOOST_DIR
points to the ROOT folder of the boost library. BOOST_LIBRARYDIR points to the subdir inside Boost root
folder where the compiled binaries are.

Click the ‘Configure’ button of CMake-GUI. You will be immediately presented a small window where you can
select the C++ compiler to be used within Visual Studio. In my case I have used the latest v14 (a.k.a C++ 2015)
but older versions should be sufficient too. Make sure to select the 64Bit compiler

After the generate process has finished successfully click the ‘Generate’ button. Now, CMake will put new VS
Solution files into the BUILD folder you selected at the beginning.

Open Visual Studio and load the HPX . s 1n from your build folder.

Go to CMakePredefinedTargets and build the INSTALL project:

56

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Solution Explorer

Fig. 2.5: Visual Studio INSTALL target.
It will take some time to compile everything and in the end you should see an output similar to this one:

How to Install HPX on BlueGene/Q

So far we only support BGClang for compiling HPX on the BlueGene/Q.

* Check if BGClang is available on your installation. If not obtain and install a copy from the BGClang trac
122
page'“”.

+ Build (and install) a recent version of Hwloc Downloads'??. With the following commands:

./configure \
——host=powerpc64-bgg-linux \
——prefix=SHOME/install/hwloc \
—-disable-shared \
——enable-static \
CPPFLAGS="'-1/bgsys/drivers/ppcfloor -I/bgsys/drivers/ppcfloor/spi/include/
—kernel/cnk/'
make
make install

* Build (and install) a recent version of Boost, using BGClang. To build Boost with BGClang, you’ll need to set
up the following in your Boost ~/user—config. jam file:

user—config.jam (put this file into your home directory)
using clang

(continues on next page)

122 https://trac.alcf.anl.gov/projects/llvm-bgq
123 https://www.open-mpi.org/software/hwloc/v1.11

2.5. Manual 57

https://trac.alcf.anl.gov/projects/llvm-bgq
https://trac.alcf.anl.gov/projects/llvm-bgq
https://www.open-mpi.org/software/hwloc/v1.11

HPX Documentation, 1.3.0

Qutput
out from: Build
Installing: in/HPX/bin/1d_stencil 2.
Installing: i
Installing:
Installing:
Installing:
Installing:
Installing: . €)
Installing: /bi d_st _8.exe
Installing:) X/bin/1d_ il 1 omp.
Installing: in/ in/1d il 3 omp.
Installing: i i tral tuplespa lient.exe
Installi 1 ib/h simp central_tuplespa .1ib
Installing: P ib/hpx_simp central tup vaced.dll
Installing: 'bi
Installing:
Installing:
Installing:
Installing:
Installing:

Fig. 2.6: Visual Studio build output.

(continued from previous page)

bgclang++11

You can then use this as your build command

./bootstrap.sh
./b2 —--build-dir=/tmp/build-boost --layout=versioned toolset=clang -3jl2

* Clone the master HPX git repository (or a stable tag):

git clone git://github.com/STE11AR-GROUP/hpx.git

* Generate the HPX buildfiles using cmake:

cmake -DHPX_ PLATFORM=BlueGeneQ \
-DCMAKE_TOOLCHAIN_FILE=/path/to/hpx/cmake/toolchains/BGQ.cmake \
-DCMAKE_CXX_COMPILER=bgclang++11 \
~DMPI_CXX_COMPILER=mpiclang++11 \
-DHWLOC_ROOT=/path/to/hwloc/installation \
-DBOOST_ROOT=/path/to/boost \
—-DHPX_WITH_MALLOC=system \
/path/to/hpx

* To complete the build and install HPX:

58 Chapter 2. What’s so special about HPX?

HPX Documentation,

1.3.0

make -7j24
make install

This will build and install the essential core components of HPX only. Use:

make —-7j24 examples
make —-j24 install

to build and install the examples.

How to Install HPX on the Xeon Phi
Installation of the Boost Libraries

+ Download Boost Downloads'?* for Linux and unpack the retrieved tarball.

* Adapt your ~/user-config. jam to contain the following lines:

Toolset to be used for compiling for the host
using intel
host

<cxxflags>"-std=c++0x"
Toolset to be used for compiling for the Xeon Phi
using intel

mic

<cxxflags>"-std=c++0x -mmic"
<linkflags>"-std=c++0x -mmic"

» Change to the directory you unpacked boost in (from now on referred to as $BOOST_ROOT) and execute the

following commands:

./bootstrap.sh
./b2 toolset=intel-mic —j<N>

You should now have all the required boost libraries.

Installation of the Hwloc library

« Download Hwloc Downloads'??

* Run the configure-make-install procedure as follows:

, unpack the retrieved tarball and change to the newly created directory.

CC=icc CFLAGS=-mmic CXX=icpc (
—64-klom-linux —--prefix=SHWLOC
make

make install

;S=-mmic LDFLAGS=-mmic ./configure —--host=x86_

124 https://www.boost.org/users/download/
125 https://www.open-mpi.org/software/hwloc/v1.11

2.5. Manual

59

https://www.boost.org/users/download/
https://www.open-mpi.org/software/hwloc/v1.11

HPX Documentation, 1.3.0

Important: The minimally required version of the Portable Hardware Locality (HWLOC) library on the Intel Xeon
Phiis V1.6.

You now have a working hwloc installation in SHWLOC_ROOT.

Building HPX

After all the prerequisites have been successfully installed, we can now start building and installing HPX. The build
procedure is almost the same as for How to install HPX on Unix variants with the sole difference that you have to
enable the Xeon Phi in the CMake Build system. This is achieved by invoking CMake in the following way:

cmake \
-DCMAKE_TOOLCHAIN_FILE=/path/to/hpx/cmake/toolchains/XeonPhi.cmake \
—~DBOOST_ROOT=5BOOST_ROOT \

—DHWLOC_ROOT=¢
/path/to/hpx

LOC_ROOT \

For more detailed information about using CMake please refer to its documentation and to the section Building HPX.
Please pay special attention to the section about HPX_WITH MALLOC:STRING as this is crucial for getting decent
performance on the Xeon Phi.

How to install HPX on Fedora distributions

Important: There are official HPX packages for Fedora. Unless you want to customize your build you may want to

start off with the official packages. Instructions can be found on the HPX Downloads'?® page.

Note: This section of the manual is based off of our collaborators Patrick Diehl’s blog post Installing HPX on Fedora
220?

* Install all packages for minimal installation:

sudo dnf install gcc-c++ cmake boost-build boost boost-devel hwloc—-devel \
hwloc gcc-gfortran papi-devel gperftools—devel docbook-dtds \
docbook-style-xsl libsodium-devel doxygen boost-doc hdf5-devel \
fop boost-devel boost-openmpi-devel boost-mpich-devel

* Get the development branch of HPX:

git clone https://github.com/STE11AR-GROUP/hpx.git

* Configure it with CMake:

cd hpx

mkdir build

cd build

cmake —-DCMAKE_INSTALI_PREFIX=/opt/hpx

(continues on next page)

126 https://stellar-group.org/downloads/
127 http://diehlpk.github.i0/2015/08/04/hpx-fedora.html

60 Chapter 2. What’s so special about HPX?

https://stellar-group.org/downloads/
http://diehlpk.github.io/2015/08/04/hpx-fedora.html
http://diehlpk.github.io/2015/08/04/hpx-fedora.html

HPX Documentation, 1.3.0

(continued from previous page)

make -7
make install

Note: To build HPX without examples use:

cmake —-DCMAKE_INSTALL_PREFIX=/opt/hpx -DHPX WITH EXAMPLES=0ff

* Add the library path of HPX to ldconfig:

sudo echo /opt/hpx/lib > /etc/ld.so.conf.d/hpx.conf
sudo ldconfig

How to install HPX on Arch distributions

Important: There are HPX packages for Arch in the AUR. Unless you want to customize your build you may want
to start off with those. Instructions can be found on the #PX Downloads'”® page.

* Install all packages for a minimal installation:

sudo pacman -S gcc clang cmake boost hwloc gperftools

* For building the documentation you will need to further install the following:

sudo pacman -S doxygen python-pip

pip install --user sphinx sphinx_rtd_theme breathe

The rest of the installation steps are same as provided with Fedora or Unix variants.

How to install HPX on Debian-based distributions

* Install all packages for a minimal installation:

sudo apt install cmake libboost-all-dev hwloc libgoogle-perftools-dev

¢ For building the documentation you will need to further install the following:

sudo apt install doxygen python-pip

pip install --user sphinx sphinx_rtd_theme breathe

or the following if you prefer to get Python packages from the Debian repositories:

sudo apt install doxygen python-sphinx python-sphinx-rtd-theme python-breathe

The rest of the installation steps are same as provided with Fedora or Unix variants.

128 https://stellar-group.org/downloads/

2.5. Manual 61

https://stellar-group.org/downloads/

HPX Documentation, 1.3.0

CMake toolchains shipped with HPX
In order to compile HPX for various platforms, we provide a variety of toolchain files that take care of setting up
various CMake variables like compilers etc. They are located in the cmake/toolchains directory:
* ARM-gcc
* BGION-gcc
* BGQ
* Cray
* CrayKNL
CrayKNLStatic

* CrayStatic
* XeonPhi

To use them pass the -DCMAKE_TOOLCHAIN_FILE=<toolchain> argument to the cmake invocation.

ARM-gcc

Copyright (c) 2015 Thomas Heller

#

Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

set (CMAKE_SYSTEM_NAME Linux)

set (CMAKE_CROSSCOMPILING ON)

Set the gcc Compiler

set (CMAKE_CXX_COMPILER arm-linux—-gnueabihf-g++-4.8)

set (CMAKE_C_COMPILER arm-linux—-gnueabihf-gcc-4.8)

set (HPX_WITH_GENERIC_CONTEXT_COROUTINES ON CACHE BOOL "enable generic coroutines")
set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)

set (CMAKE_FIND_ROOT_PATH MODE_LIBRARY ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

BGION-gcc

Copyright (c) 2014 John Biddiscombe

Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

This 1s the default toolchain file to be used with CNK on a BlueGene/Q. It sets
the appropriate compile flags and compiler such that HPX will compile.

Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.

H o H R W R R R R R

Usage : cmake —-DCMAKE_TOOLCHAIN FILE=~/src/hpx/cmake/toolchains/BGION-gcc.cmake ~/
—src/hpx

#

set (CMAKE_SYSTEM_NAME Linux)

Set the gcc Compiler

set (CMAKE_CXX_COMPILER g++)

(continues on next page)

62 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

set (CMAKE_C_COMPILER gcc)
#set (CMAKE_Fortran_COMPILER)
Add flags we need for BGAS compilation
set (CMAKE_CXX_FLAGS_INIT
"-D_ powerpc__ -D_ _bgion__ -I/gpfs/bbp.cscs.ch/home/biddisco/src/bgas/rdmahelper "
CACHE STRING "Initial compiler flags used to compile for BGAS"
)
the VIR2MZ2 includes are necessary for some hardware specific features
#-DHPX_SMALI STACK_SIZE=0x200000 -DHPX MEDIUM STACK_SIZE=0x200000 -DHPX_ LARGE_STACK_
—SIZE=0x200000 -DHPX HUGE_STACK _SIZE=0x200000
set (CMAKE_EXE_LINKER_FLAGS_INIT "-L/gpfs/bbp.cscs.ch/apps/bgas/tools/gcc/gcc-4.8.2/
—install/lib64 -latomic —-lrt" CACHE STRING "BGAS flags")
set (CMAKE_C_FLAGS_INIT "-D_ powerpc__ —-1/gpfs/bbp.cscs.ch/home/biddisco/src/bgas/
—rdmahelper" CACHE STRING "BGAS flags")
We do not perform cross compilation here
set (CMAKE_CROSSCOMPILING OFF)
Set our platform name
set (HPX_PLATFORM "native")
Disable generic coroutines (and use posix version)
set (HPX_WITH_GENERIC_CONTEXT_COROUTINES OFF CACHE BOOL "disable generic coroutines")
BGAS nodes support ibverbs
set (HPX_WITH_PARCELPORT_IBVERBS ON CACHE BOOL "")
Always disable the tcp parcelport as it is non-functional on the BGO.
set (HPX_WITH_PARCELPORT_TCP ON CACHE BOOL "")
Always enable the tcp parcelport as it is currently the only way to communicate on_,
—~the BGQ.
set (HPX_WITH_PARCELPORT_MPI ON CACHE BOOL "")
We have a bunch of cores on the A2 processor
set (HPX_WITH_MAX_CPU_COUNT "64" CACHE STRING "")
We have no custom malloc yet
if (NOT DEFINED HPX_WITH_ MALLOC)
set (HPX_WITH_MALLOC "system" CACHE STRING "")

endif ()

set (HPX_HIDDEN_VISIBILITY OFF CACHE BOOL "")
#

Convenience setup for jb @ bbpbgZ.cscs.ch
#

set (BOOST_ROOT "/gpfs/bbp.cscs.ch/home/biddisco/apps/gcc—4.8.2/boost_1_56_0")
set (HWLOC_ROOT "/gpfs/bbp.cscs.ch/home/biddisco/apps/gcc-4.8.2/hwloc-1.8.1")
set (CMAKE_BUILD_TYPE "Debug" CACHE STRING "Default build")

#

Testing flags

#

set (BUILD_TESTING ON CACHE BOOL "Testing enabled by default")
set (HPX_WITH_TESTS ON CACHE BOOL "Testing enabled by default")
set (HPX_WITH_TESTS_BENCHMARKS ON CACHE BOOL "Testing enabled by default")
set (HPX_WITH_TESTS_REGRESSIONS ON CACHE BOOL "Testing enabled by default")
set (HPX_WITH_TESTS_UNIT ON CACHE BOOL "Testing enabled by default")
set (HPX_WITH_TESTS_EXAMPLES ON CACHE BOOL "Testing enabled by default")

set (HPX_WITH_TESTS_EXTERNAL_BUILD OFF CACHE BOOL "Turn off build of cmake build tests
:_>")

set (DART_TESTING_TIMEOUT 45 CACHE STRING "Life is too short")

HPX WITH STATIC LINKING

2.5. Manual 63

HPX Documentation, 1.3.0

BGQ

Copyright (c) 2014 Thomas Heller

#

Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#

This 1s the default toolchain file to be used with CNK on a BlueGene/Q. It sets
the appropriate compile flags and compiler such that HPX will compile.

Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.

#

set (CMAKE_SYSTEM_NAME Linux)

Set the Intel Compiler

set (CMAKE_CXX_COMPILER bgclang++11)

set (CMAKE_C_COMPILER bgclang)

#set (CMAKE_Fortran COMPILER)

set (MPI_CXX_COMPILER mpiclang++11)

set (MPI_C_COMPILER mpiclang)

#set (MPI_Fortran_ COMPILER)

set (CMAKE_C_FLAGS_INIT "" CACHE STRING "")

set (CMAKE_C_COMPILE_OBJECT "<CMAKE_C_COMPILER> —-fPIC <DEFINES> <FLAGS> -o <OBJECT> -c
—<SOURCE>" CACHE STRING "")

set (CMAKE_C_LINK_EXECUTABLE "<CMAKE_C_COMPILER> —-fPIC -dynamic <FLAGS> <CMAKE_C_LINK_
—FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>" CACHE STRING "")

set (CMAKE_C_CREATE_SHARED_LIBRARY "<CMAKE_C_COMPILER> —-fPIC -shared <CMAKE_SHARED_
—LIBRARY_CXX_FLAGS> <LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_
—CREATE_CXX_FLAGS> <SONAME_FLAG><TARGET_SONAME> -0 <TARGET> <OBJECTS> <LINK_
—LIBRARIES> " CACHE STRING "")

set (CMAKE_CXX_FLAGS_INIT "" CACHE STRING "")

set (CMAKE_CXX_COMPILE_OBJECT "<CMAKE_CXX_COMPILER> —-fPIC <DEFINES> <FLAGS> -0 <OBJECT>
— —Cc <SOURCE>" CACHE STRING "")

set (CMAKE_CXX_LINK_EXECUTABLE "<CMAKE_CXX_COMPILER> —-fPIC -dynamic <FLAGS> <CMAKE_CXX__
—LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -0 <TARGET> <LINK_LIBRARIES>" CACHE STRING "")
set (CMAKE_CXX_CREATE_SHARED_LIBRARY "<CMAKE_CXX_ _COMPILER> —-fPIC -shared <CMAKE_SHARED_
—LIBRARY_CXX_FLAGS> <LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_
—CREATE_CXX_FLAGS> <SONAME_FLAG><TARGET_SONAME> -0 <TARGET> <OBJECTS> <LINK_
—LIBRARIES>" CACHE STRING "")

set (CMAKE_Fortran_ FLAGS_INIT "" CACHE STRING "")

set (CMAKE_Fortran_COMPILE_OBJECT "<CMAKE_Fortran COMPILER> -fPIC <DEFINES> <FLAGS> -0
—<OBJECT> —-c <SOURCE>" CACHE STRING "")

set (CMAKE_Fortran_LINK_EXECUTABLE "<CMAKE_Fortran COMPILER> —-fPIC -dynamic <FLAGS>
—<CMAKE_Fortran_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -0 <TARGET> <LINK_LIBRARIES>")
set (CMAKE_Fortran_CREATE_SHARED_LIBRARY "<CMAKE_Fortran_COMPILER> —-fPIC -shared
—<CMAKE_SHARED_LIBRARY_Fortran_ FLAGS> <LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_
—SHARED_LIBRARY_CREATE_Fortran_ FLAGS> <SONAME_FLAG><TARGET_SONAME> -o <TARGET>
—<OBJECTS> <LINK_LIBRARIES> " CACHE STRING "")

Disable searches in the default system paths. We are cross compiling after all

and cmake might pick up wrong libraries that way

set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)

set (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)

set (CMAKE_FIND_ROOT_PATH MODE_INCLUDE ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

We do a cross compilation here

set (CMAKE_CROSSCOMPILING ON)

Set our platform name

set (HPX_PLATFORM "BlueGeneQ")

(continues on next page)

64 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

Always disable the ibverbs parcelport as it is non-functional on the BGQ.
set (HPX_WITH_IBVERBS_PARCELPORT OFF)
Always disable the tcp parcelport as it is non-functional on the BGQ.
set (HPX_WITH_TCP_PARCELPORT OFF)
Always enable the tcp parcelport as it is currently the only way to communicate on_,
—the BGQ.
set (HPX_WITH_MPI_PARCELPORT ON)
We have a bunch of cores on the BGQ
set (HPX_WITH_MAX_CPU_COUNT "64")
We default to tbbmalloc as our allocator on the MIC
if (NOT DEFINED HPX_WITH_MALLOC)
set (HPX_WITH_MALLOC "system" CACHE STRING "")
endif ()

Cray

Copyright (c) 2014 Thomas Heller

Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#
#
#
#
#
This is the default toolchain file to be used with Intel Xeon PHIs. It sets
the appropriate compile flags and compiler such that HPX will compile.
Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.
#
#set (CMAKE_SYSTEM _NAME Cray—-CNK-Intel)
if (HPX_WITH_ STATIC_LINKING)

set_property (GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)
else ()
endif ()
Set the Cray Compiler Wrapper
set (CMAKE_CXX_COMPILER CC)
set (CMAKE_C_COMPILER cc)
set (CMAKE_Fortran_COMPILER ftn)
if (CMAKE_VERSION VERSION_GREATER 3.3.9)

set (__includes "<INCLUDES>")
endif ()
set (CMAKE_C_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_C_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "—-fPIC -shared" CACHE STRING "")
set (CMAKE_C_COMPILE_OBJECT "<CMAKE_C_COMPILER> -shared -fPIC <DEFINES> ${__includes}
—<FLAGS> -0 <OBJECT> -c <SOURCE>" CACHE STRING "")
set (CMAKE_C_LINK_EXECUTABLE "<CMAKE_C_COMPILER> —-fPIC -dynamic <FLAGS> <CMAKE_C_LINK_
—FLAGS> <LINK_FLAGS> <OBJECTS> -0 <TARGET> <LINK_LIBRARIES>" CACHE STRING "")
set (CMAKE_C_CREATE_SHARED_LIBRARY "<CMAKE_C_COMPILER> —-fPIC -shared <CMAKE_SHARED__
—LIBRARY_CXX_FLAGS> <LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_
—CREATE_CXX_FLAGS> <SONAME_FLAG><TARGET_SONAME> -0 <TARGET> <OBJECTS> <LINK_
—LIBRARIES> " CACHE STRING "")
set (CMAKE_CXX_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_CXX_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_CXX_COMPILE_OBJECT "<CMAKE_CXX_COMPILER> -shared —-fPIC <DEFINES> S${_
—includes} <FLAGS> -o <OBJECT> -c <SOURCE>" CACHE STRING "")

(continues on next page)

2.5. Manual 65

HPX Documentation, 1.3.0

(continued from previous page)

set (CMAKE_CXX_LINK_EXECUTABLE "<CMAKE_CXX_ COMPILER> —-fPIC -dynamic <FLAGS> <CMAKE_CXX_
—LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>" CACHE STRING "")
set (CMAKE_CXX_CREATE_SHARED_ LIBRARY "<CMAKE_ CXX_ COMPILER> -fPIC -shared <CMAKE_SHARED
—LIBRARY_CXX_FLAGS> <LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_
—CREATE_CXX_FLAGS> <SONAME_FLAG><TARGET_SONAME> —-o <TARGET> <OBJECTS> <LINK_
—LIBRARIES>" CACHE STRING "")
set (CMAKE_Fortran_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_Fortran_FLAGS "-fPIC" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY CREATE_Fortran_ FLAGS "-shared" CACHE STRING "")
set (CMAKE_Fortran_COMPILE_OBJECT "<CMAKE_Fortran_ COMPILER> -shared —fPIC <DEFINES> ${_
—_includes} <FLAGS> -o <OBJECT> -c <SOURCE>" CACHE STRING "")
set (CMAKE_Fortran_LINK_EXECUTABLE "<CMAKE_Fortran_COMPILER> -fPIC -dynamic <FLAGS>
—<CMAKE_Fortran_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
set (CMAKE_Fortran_CREATE_SHARED_LIBRARY "<CMAKE_Fortran_COMPILER> —-fPIC -shared
<+<CMAKE_SHARED LIBRARY Fortran FLAGS> <LANGUAGE COMPILE FLAGS> <LINK_FLAGS> <CMAKE_
—~SHARED_LIBRARY_CREATE_Fortran_FLAGS> <SONAME_FLAG><TARGET_SONAME> -o <TARGET>
—<OBJECTS> <LINK_LIBRARIES> " CACHE STRING "")
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set (HPX_WITH_PARCELPORT_TCP ON CACHE BOOL "")

(

(

(

set (HPX_WITH_PARCELPORT_MPI ON CACHE BOOL "")
set (HPX_WITH PARCELPORT_MPI_MULTITHREADED OFF CACHE BOOL "")
set (HPX_WITH_PARCELPORT_LIBFABRIC ON CACHE BOOL "")

set (HPX_PARCELPORT_LIBFABRIC_PROVIDER "gni" CACHE STRING
"See libfabric docs for details, gni,verbs,psm2 etc etc")

set (HPX_PARCELPORT_LIBFABRIC_THROTTLE_SENDS "256" CACHE STRING
"Max number of messages in flight at once")

set (HPX_PARCELPORT_LIBFABRIC_WITH_DEV_MODE OFF CACHE BOOL
"Custom libfabric logging flag")

set (HPX_PARCELPORT_LIBFABRIC_WITH_LOGGING OFF CACHE BOOL
"Libfabric parcelport logging on/off flag")

set (HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD "4096" CACHE STRING
"The threshhold in bytes to when perform zero copy optimizations (default: 128)")

We do a cross compilation here

set (CMAKE_CROSSCOMPILING ON CACHE BOOL "")

Copyright (c) 2014 Thomas Heller

Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

This is the default toolchain file to be used with Intel Xeon PHIs. It sets
the appropriate compile flags and compiler such that HPX will compile.

Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.

if (HPX_WITH_STATIC_LINKING)
set_property (GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)

(continues on next page)

66 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

else ()
endif ()
Set the Cray Compiler Wrapper
set (CMAKE_CXX_COMPILER CC)
set (CMAKE_C_COMPILER cc)
set (CMAKE_Fortran_COMPILER ftn)
if (CMAKE_VERSION VERSION_GREATER 3.3.9)
set (__includes "<INCLUDES>")
endif ()
set (CMAKE_C_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_C_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY CREATE_C_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_C_COMPILE_OBJECT "<CMAKE_C_COMPILER> -shared —-fPIC <DEFINES> ${__includes}
—<FLAGS> -0 <OBJECT> —-c <SOURCE>" CACHE STRING "")
set (CMAKE_C_LINK_EXECUTABLE "<CMAKE_C_COMPILER> -fPIC <FLAGS> <CMAKE_C_LINK_FLAGS>
—<LINK_FLAGS> <OBJECTS> -0 <TARGET> <LINK_LIBRARIES>" CACHE STRING "")
set (CMAKE_C_CREATE_SHARED_LIBRARY "<CMAKE_C_COMPILER> —-fPIC -shared <CMAKE_SHARED_
< LIBRARY CXX_FLAGS> <LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY
—CREATE_CXX_FLAGS> <SONAME_FLAG><TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_
—LIBRARIES> " CACHE STRING "")
#
set (CMAKE_CXX_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_CXX_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS "-fPIC -shared" CACHE STRING "")
set (CMAKE_CXX_COMPILE_OBJECT "<CMAKE_CXX_COMPILER> -shared —-fPIC <DEFINES> ${___
—includes} <FLAGS> —-o <OBJECT> —-c <SOURCE>" CACHE STRING "")
set (CMAKE_CXX_LINK_EXECUTABLE "<CMAKE_CXX_COMPILER> —-fPIC —-dynamic <FLAGS> <CMAKE_CXX__
—LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -0 <TARGET> <LINK_LIBRARIES>" CACHE STRING "")
set (CMAKE_CXX_CREATE_SHARED_LIBRARY "<CMAKE_CXX_COMPILER> —-fPIC -shared <CMAKE_SHARED_
—~LIBRARY_CXX_FLAGS> <LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_
—CREATE_CXX_FLAGS> <SONAME_FLAG><TARGET_SONAME> —-o <TARGET> <OBJECTS> <LINK_
—LIBRARIES>" CACHE STRING "")
#
set (CMAKE_Fortran_ FLAGS_INIT "" CACHE STRING "")
set (CMAKE_SHARED_LIBRARY_Fortran_FLAGS "-fPIC" CACHE STRING "")
set (CMAKE_SHARED_ LIBRARY CREATE_Fortran FLAGS "-shared" CACHE STRING "")
set (CMAKE_Fortran_COMPILE_OBJECT "<CMAKE_Fortran_COMPILER> -shared -fPIC <DEFINES> ${_
—_includes} <FLAGS> -o <OBJECT> -c <SOURCE>" CACHE STRING "")
set (CMAKE_Fortran_LINK_EXECUTABLE "<CMAKE_Fortran_COMPILER> —-fPIC <FLAGS> <CMAKE_
—Fortran_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
set (CMAKE_Fortran_CREATE_SHARED_LIBRARY "<CMAKE_Fortran_COMPILER> —-fPIC -shared
—<CMAKE_SHARED_LIBRARY_Fortran_FLAGS> <LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_
—SHARED_LIBRARY_CREATE_Fortran_FLAGS> <SONAME_FLAG><TARGET_SONAME> -o <TARGET>
—<OBJECTS> <LINK_LIBRARIES> " CACHE STRING "")
#
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set (HPX_WITH_PARCELPORT_TCP ON CACHE BOOL "")
set (HPX_WITH_PARCELPORT_MPI ON CACHE BOOL "")
set (HPX_WITH_PARCELPORT_MPI_MULTITHREADED OFF CACHE BOOL "")
set (HPX_WITH_PARCELPORT_LIBFABRIC ON CACHE BOOL "")
set (HPX_PARCELPORT_LIBFABRIC_PROVIDER "gni" CACHE STRING

(continues on next page)

2.5. Manual 67

HPX Documentation, 1.3.0

(continued from previous page)

"See libfabric docs for details, gni,verbs,psm2 etc etc")
set (HPX_PARCELPORT_LIBFABRIC_THROTTLE_SENDS "256" CACHE STRING
"Max number of messages in flight at once")
set (HPX_PARCELPORT_LIBFABRIC_WITH_DEV_MODE OFF CACHE BOOL
"Custom libfabric logging flag")
set (HPX_PARCELPORT_LIBFABRIC_WITH_LOGGING OFF CACHE BOOL
"Libfabric parcelport logging on/off flag")
set (HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD "4096" CACHE STRING
"The threshhold in bytes to when perform zero copy optimizations (default: 128)")
Set the TBBMALLOC_PLATFORM correctly so that find_package (TBBMalloc) sets the
right hints
set (TBBMALLOC_PLATFORM "mic-knl" CACHE STRING "")
We have a bunch of cores on the MIC ... increase the default
set (HPX_WITH_MAX_CPU_COUNT "512" CACHE STRING "")
We do a cross compilation here
set (CMAKE_CROSSCOMPILING ON CACHE BOOL "")
RDTSCP is available on Xeon/Phis
set (HPX_WITH_RDTSCP ON CACHE BOOL "")

CrayKNLStatic

Copyright (c) 2014-2017 Thomas Heller
Copyright (c) 2017 Bryce Adelstein Lelbach
#
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
set (HPX_WITH_STATIC_LINKING ON CACHE BOOL "")
set (HPX_WITH_STATIC_EXE_LINKING ON CACHE BOOL "")
set_property (GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)
Set the Cray Compiler Wrapper
set (CMAKE_CXX_COMPILER CC)
set (CMAKE_C_COMPILER cc)
set (CMAKE_Fortran_COMPILER ftn)
if (CMAKE_VERSION VERSION_GREATER 3.3.9)
set (__includes "<INCLUDES>")
endif ()
set (CMAKE_C_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_C_COMPILE_OBJECT "<CMAKE_C_COMPILER> -static —-fPIC <DEFINES> ${__includes}
—<FLAGS> -0 <OBJECT> —-c <SOURCE>" CACHE STRING "")
set (CMAKE_C_LINK_EXECUTABLE "<CMAKE_C_COMPILER> -fPIC <FLAGS> <CMAKE_C_LINK_FLAGS>
—<LINK_FLAGS> <OBJECTS> -0 <TARGET> <LINK_LIBRARIES>" CACHE STRING "")
set (CMAKE_CXX_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_CXX_COMPILE_OBJECT "<CMAKE_CXX_COMPILER> -static —fPIC <DEFINES> S${_
—includes} <FLAGS> -o <OBJECT> -c <SOURCE>" CACHE STRING "")
set (CMAKE_CXX_LINK_EXECUTABLE "<CMAKE_CXX_COMPILER> —-fPIC <FLAGS> <CMAKE_CXX_LINK__
—FLAGS> <LINK_FLAGS> <OBJECTS> -0 <TARGET> <LINK_LIBRARIES>" CACHE STRING "")
set (CMAKE_Fortran_ FLAGS_INIT "" CACHE STRING "")
set (CMAKE_Fortran_COMPILE_OBJECT "<CMAKE_Fortran_COMPILER> —-static —-fPIC <DEFINES> S${_
—_includes} <FLAGS> -0 <OBJECT> -c <SOURCE>" CACHE STRING "")
set (CMAKE_Fortran_ LINK_EXECUTABLE "<CMAKE_Fortran COMPILER> -fPIC <FLAGS> <CMAKE_
—Fortran_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)

(continues on next page)

68 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

set (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

set (CMAKE_FIND_ROOT_PATH MODE_PACKAGE ONLY)

set (HPX_WITH_PARCELPORT_TCP ON CACHE BOOL "")

set (HPX_WITH_PARCELPORT_MPI ON CACHE BOOL "")

set (HPX_WITH_PARCELPORT_MPI_MULTITHREADED ON CACHE BOOL "")

set (HPX_WITH_PARCELPORT_LIBFABRIC ON CACHE BOOL "")

set (HPX_PARCELPORT_LIBFABRIC_PROVIDER "gni" CACHE STRING
"See libfabric docs for details, gni,verbs,psm2 etc etc")

set (HPX_PARCELPORT_LIBFABRIC_THROTTLE_SENDS "256" CACHE STRING
"Max number of messages in flight at once")

set (HPX_PARCELPORT_LIBFABRIC_WITH_ DEV_MODE OFF CACHE BOOL
"Custom libfabric logging flag")

set (HPX_PARCELPORT_LIBFABRIC_WITH_LOGGING OFF CACHE BOOL
"Libfabric parcelport logging on/off flag")

set (HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD "4096" CACHE STRING
"The threshhold in bytes to when perform zero copy optimizations (default: 128)")

Set the TBBMALLOC_PLATFORM correctly so that find package (TBBMalloc) sets the

right hints

set (TBBMALLOC_PLATFORM "mic-knl" CACHE STRING "")

We have a bunch of cores on the MIC ... increase the default

set (HPX_WITH_MAX_CPU_COUNT "512" CACHE STRING "")

We do a cross compilation here

set (CMAKE_CROSSCOMPILING ON CACHE BOOL "")

RDTSCP is available on Xeon/Phis

set (HPX_WITH_RDTSCP ON CACHE BOOL "")

CrayStatic

Copyright (c) 2014-2017 Thomas Heller
Copyright (c) 2017 Bryce Adelstein Lelbach
#
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
set (HPX_WITH_STATIC_LINKING ON CACHE BOOL "")
set (HPX_WITH_STATIC_EXE_LINKING ON CACHE BOOL "")
set_property (GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)
Set the Cray Compiler Wrapper
set (CMAKE_CXX_COMPILER CC)
set (CMAKE_C_COMPILER cc)
set (CMAKE_Fortran_COMPILER ftn)
if (CMAKE_VERSION VERSION_GREATER 3.3.9)
set (__includes "<INCLUDES>")
endif ()
set (CMAKE_C_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_C_COMPILE_OBJECT "<CMAKE_C_COMPILER> -static —-fPIC <DEFINES> ${__includes}
—<FLAGS> -0 <OBJECT> -c <SOURCE>" CACHE STRING "")
set (CMAKE_C_LINK_EXECUTABLE "<CMAKE_C_COMPILER> —-fPIC <FLAGS> <CMAKE_C_LINK_FLAGS>
—<LINK_FLAGS> <OBJECTS> -0 <TARGET> <LINK_LIBRARIES>" CACHE STRING "")
set (CMAKE_CXX_FLAGS_INIT "" CACHE STRING "")
set (CMAKE_CXX_COMPILE_OBJECT "<CMAKE_CXX_COMPILER> -static —fPIC <DEFINES> S${___
—includes} <FLAGS> -o <OBJECT> -c <SOURCE>" CACHE STRING "")
set (CMAKE_CXX_LINK_EXECUTABLE "<CMAKE_CXX_ COMPILER> -fPIC <FLAGS> <CMAKE_CXX_LINK_
—FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>" CACHE STRING "")

(continues on next page)

2.5. Manual 69

HPX Documentation, 1.3.0

(continued from previous page)

set (CMAKE_Fortran_FLAGS_INIT "" CACHE STRING "")

set (CMAKE_Fortran_COMPILE_OBJECT "<CMAKE_Fortran_COMPILER> -static —-fPIC <DEFINES> ${_
—_includes} <FLAGS> -o <OBJECT> -c <SOURCE>" CACHE STRING "")

set (CMAKE_Fortran_LINK_EXECUTABLE "<CMAKE_Fortran COMPILER> —fPIC <FLAGS> <CMAKE_
—Fortran_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")

Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way

set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)

set (CMAKE_FIND_ ROOT_PATH MODE_LIBRARY ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

set (CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

We do a cross compilation here

set (CMAKE_CROSSCOMPILING ON CACHE BOOL "")

RDTSCP is available on Xeon/Phis

set (HPX_WITH RDTSCP ON CACHE BOOL "")

set (HPX_WITH_PARCELPORT_TCP ON CACHE BOOL "")

set (HPX_WITH PARCELPORT_MPI ON CACHE BOOL "")

set (HPX_WITH_PARCELPORT_MPI_MULTITHREADED ON CACHE BOOL "")
set (HPX_WITH_PARCELPORT_LIBFABRIC ON CACHE BOOL "")

set (HPX_PARCELPORT_LIBFABRIC_PROVIDER "gni" CACHE STRING
"See libfabric docs for details, gni,verbs,psm2 etc etc")
set (HPX_PARCELPORT_LIBFABRIC_THROTTLE_SENDS "256" CACHE STRING
"Max number of messages in flight at once")
set (HPX_PARCELPORT_LIBFABRIC_WITH_DEV_MODE OFF CACHE BOOL
"Custom libfabric logging flag")
set (HPX_PARCELPORT_LIBFABRIC_WITH_LOGGING OFF CACHE BOOL
"Libfabric parcelport logging on/off flag")
set (HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD "4096" CACHE STRING
"The threshhold in bytes to when perform zero copy optimizations (default: 128)")

XeonPhi

Copyright (c) 2014 Thomas Heller

Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#
#
#
#
#
This is the default toolchain file to be used with Intel Xeon PHIs. It sets

the appropriate compile flags and compiler such that HPX will compile.

Note that you still need to provide Boost, hwloc and other utility libraries

like a custom allocator yourself.

#

set (CMAKE_SYSTEM_NAME Linux)

Set the Intel Compiler

set (CMAKE_CXX_COMPILER icpc)

set (CMAKE_C_COMPILER icc)

set (CMAKE_Fortran_COMPILER ifort)

Add the -mmic compile flag such that everything will be compiled for the correct

platform

set (CMAKE_CXX_FLAGS_INIT "-mmic" CACHE STRING "Initial compiler flags used to compile
—~for the Xeon Phi")

set (CMAKE_C_FLAGS_INIT "-mmic" CACHE STRING "Initial compiler flags used to compile_
—~for the Xeon Phi")

set (CMAKE_Fortran_FLAGS_INIT "-mmic" CACHE STRING "Initial compiler flags used to_
—compile for the Xeon Phi")

(continues on next page)

70 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set (CMAKE_FIND_ROOT_PATH_ MODE_LIBRARY ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
We do a cross compilation here
set (CMAKE_CROSSCOMPILING ON)
Set our platform name
set (HPX_PLATFORM "XeonPhi™)
Always disable the ibverbs parcelport as it is non-functional on the BGOQO.
set (HPX_WITH_PARCELPORT_IBVERBS OFF CACHE BOOL "Enable the ibverbs based parcelport.
—This is currently an experimental feature")
We have a bunch of cores on the MIC ... increase the default
set (HPX_WITH_MAX_CPU_COUNT "256"™ CACHE STRING "")
We default to tbbmalloc as our allocator on the MIC
if (NOT DEFINED HPX_WITH_MALLOC)
set (HPX_WITH_MALLOC "tbbmalloc" CACHE STRING "")
endif ()
Set the TBBMALLOC _PLATFORM correctly so that find package (TBBMalloc) sets the
right hints
set (TBBMALLOC_PLATFORM "mic" CACHE STRING "")
set (HPX_HIDDEN_VISIBILITY OFF CACHE BOOL "Use -fvisibility=hidden for builds on
—platforms which support it")
RDTSC is available on Xeon/Phis
set (HPX_WITH_RDTSC ON CACHE BOOL "")

CMake variables used to configure HPX

In order to configure HPX, you can set a variety of options to allow cmake to generate your specific makefiles/project
files.

Variables that influence how HPX is built

The options are split into these categories:
* Generic options
* Build Targets options
» Thread Manager options
* AGAS options
e Parcelport options
* Profiling options
* Debugging options

* Modules options

Generic options

* APX WITH AUTOMATIC SERIALIZATION_REGISTRATION:BOOL

2.5. Manual 71

HPX Documentation, 1.3.0

HPX WITH BENCHMARK_SCRIPTS_ PATH:PATH

HPX WITH BUILD_BINARY PACKAGE :BOOL

HPX WITH COMPILER WARNINGS :BOOL

HPX WITH COMPILER_WARNINGS_AS_ERRORS :BOOL
HPX WITH COMPRESSION_BZIPZ:BOOL

HPX WITH COMPRESSION_SNAPPY :BOOL

HPX WITH COMPRESSION_ZLIB:BOOL

HPX WITH CUDA:BOOL

HPX WITH _CUDA_CLANG:BOOL

HPX WITH CXX14 RETURN_TYPE DEDUCTION:BOOL
HPX WITH DATAPAR BOOST_SIMD:BOOL

HPX WITH _DATAPAR VC:BOOL

HPX WITH DEPRECATION_WARNINGS :BOOL

HPX WITH DISABLED SIGNAL_EXCEPTION_HANDLERS :BOOL
HPX WITH DYNAMIC HPX MAIN:BOOL

HPX WITH FAULT_TOLERANCE :BOOL

HPX WITH FORTRAN:BOOL

HPX WITH FULL RPATH:BOOL

HPX WITH GCC_VERSION_CHECK:BOOL

HPX WITH GENERIC_CONTEXT COROUTINES:BOOL
HPX WITH HCC:BOOL

HPX WITH HIDDEN_VISIBILITY:BOOL

HPX WITH INCLUSIVE_SCAN_COMPATIBILITY:BOOL
HPX WITH LOGGING:BOOL

HPX WITH MALLOC:STRING

HPX WITH NATIVE_TLS:BOOL

HPX WITH NICE _THREADLEVEL:BOOL

HPX WITH PARCEL COALESCING:BOOL

HPX WITH RUN_MAIN EVERYWHERE :BOOL

HPX WITH STACKOVERFLOW_DETECTION:BOOL

HPX WITH STATIC _LINKING:BOOL

HPX WITH SYCL:BOOL

HPX WITH THREAD_ COMPATIBILITY:BOOL

HPX WITH UNWRAPPED_ COMPATIBILITY:BOOL
HPX WITH VIM YCM:BOOL

HPX WITH ZERO_COPY SERIALIZATION_THRESHOLD:STRING

72

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

HPX WITH_AUTOMATIC_SERIALIZATION_REGISTRATION:BOOL
Use automatic serialization registration for actions and functions. This affects compatibility between HPX
applications compiled with different compilers (default ON)

HPX WITH_BENCHMARK_SCRIPTS_PATH:PATH
Directory to place batch scripts in

HPX WITH BUILD_BINARY PACKAGE:BOOL
Build HPX on the build infrastructure on any LINUX distribution (default: OFF).

HPX WITH_COMPILER_ WARNINGS :BOOL
Enable compiler warnings (default: ON)

HPX WITH_COMPILER WARNINGS_AS_ERRORS:BOOL
Turn compiler warnings into errors (default: OFF)

HPX WITH_COMPRESSION_BZIP2:BOOL
Enable bzip2 compression for parcel data (default: OFF).

HPX WITH_COMPRESSION_SNAPPY :BOOL
Enable snappy compression for parcel data (default: OFF).

HPX WITH COMPRESSION_ZLIB:BOOL
Enable zlib compression for parcel data (default: OFF).

HPX WITH_CUDA:BOOL
Enable CUDA support (default: OFF)

HPX WITH CUDA_CLANG:BOOL
Use clang to compile CUDA code (default: OFF)

HPX WITH_CXX14_RETURN_TYPE_DEDUCTION :BOOL
Enable the use of auto as a return value in some places. Overriding this flag is only necessary if the C++ compiler
is not standard compliant, e.g. nvcc.

HPX WITH_DATAPAR BOOST_SIMD:BOOL
Enable data parallel algorithm support using the external Boost.SIMD library (default: OFF)

HPX WITH_DATAPAR_ VC:BOOL
Enable data parallel algorithm support using the external V¢ library (default: OFF)

HPX WITH DEPRECATION_WARNINGS :BOOL
Enable warnings for deprecated facilities. (default: ON)

HPX WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS :BOOL
Disables the mechanism that produces debug output for caught signals and unhandled exceptions (default: OFF)

HPX WITH DYNAMIC HPX MAIN:BOOL
Enable dynamic overload of system main () (Linux only, default: ON)

HPX WITH FAULT TOLERANCE :BOOL
Build HPX to tolerate failures of nodes, i.e. ignore errors in active communication channels (default: OFF)

HPX_ WITH FORTRAN:BOOL
Enable or disable the compilation of Fortran examples using HPX

HPX WITH FULL_RPATH:BOOL
Build and link HPX libraries and executables with full RPATHs (default: ON)

HPX WITH_GCC_VERSION_CHECK:BOOL
Don’t ignore version reported by gcc (default: ON)

HPX WITH_GENERIC_CONTEXT COROUTINES :BOOL
Use Boost.Context as the underlying coroutines context switch implementation.

2.5. Manual 73

HPX Documentation, 1.3.0

HPX WITH_HCC:BOOL
Enable hce support (default: OFF)

HPX WITH_HIDDEN_VISIBILITY:BOOL
Use -fvisibility=hidden for builds on platforms which support it (default OFF)

HPX WITH_INCLUSIVE_SCAN_COMPATIBILITY:BOOL
Enable old overloads for inclusive_scan (default: OFF)

HPX WITH LOGGING:BOOL
Build HPX with logging enabled (default: ON).

HPX WITH MALLOC:STRING
Define which allocator should be linked in. Options are: system, tcmalloc, jemalloc, tbbmalloc, and custom
(default is: tcmalloc)

HPX WITH_NATIVE_TLS:BOOL
Use native TLS support if available (default: ON)

HPX WITH NICE_THREADLEVEL:BOOL
Set HPX worker threads to have high NICE level (may impact performance) (default: OFF)

HPX WITH PARCEL_COALESCING:BOOL
Enable the parcel coalescing plugin (default: ON).

HPX WITH_RUN_MAIN_ EVERYWHERE :BOOL
Run hpx_main by default on all localities (default: OFF).

HPX WITH STACKOVERFLOW_DETECTION :BOOL
Enable stackoverflow detection for HPX threads/coroutines. (default: OFF, debug: ON)

HPX WITH_STATIC_LINKING:BOOL
Compile HPX statically linked libraries (Default: OFF)

HPX_ WITH SYCL:BOOL
Enable sycl support (default: OFF)

HPX WITH_THREAD_COMPATIBILITY :BOOL
Use a compatibility implementation of std::thread, i.e. fall back to Boost.Thread (default: OFF)

HPX WITH UNWRAPPED_ COMPATIBILITY:BOOL
Enable the deprecated unwrapped function (default: OFF)

HPX WITH_VIM_ YCM:BOOL
Generate HPX completion file for VIM YouCompleteMe plugin

HPX WITH_ZERO_COPY_SERIALIZATION_THRESHOLD :STRING
The threshhold in bytes to when perform zero copy optimizations (default: 128)

Build Targets options

e HPX WITH COMPILE_ONLY TESTS:BOOL

e HPX WITH DEFAULT_ TARGETS:BOOL

* HPX WITH DOCUMENTATION:BOOL

* HPX WITH DOCUMENTATION_OUTPUT_FORMATS:STRING
* HPX WITH EXAMPLES:BOOL

* HPX WITH EXAMPLES_HDF5:BOOL

74 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

e HPX WITH EXAMPLES_OPENMP :BOOL

* HPX WITH EXAMPLES QT4 :BOOL

* HPX WITH EXAMPLES QTHREADS:BOOL

* HPX WITH EXAMPLES_ TBB:BOOL

* HPX WITH EXECUTABLE _PREFIX:STRING
* HPX WITH FAIL COMPILE TESTS:BOOL
e HPX WITH IO_COUNTERS:BOOL

* HPX WITH PSEUDO_DEPENDENCIES :BOOL
* HPX WITH TESTS:BOOL

* HPX WITH TESTS BENCHMARKS :BOOL

e HPX WITH TESTS EXAMPLES:BOOL

* HPX WITH TESTS_EXTERNAL BUILD:BOOL
* HPX WITH TESTS_ HEADERS :BOOL

* HPX WITH TESTS REGRESSIONS:BOOL

e HPX WITH TESTS UNIT:BOOL

* HPX WITH TOOLS :BOOL

HPX WITH_COMPILE_ONLY_ TESTS:BOOL
Create build system support for compile time only HPX tests (default ON)

HPX WITH_DEFAULT_TARGETS :BOOL
Associate the core HPX library with the default build target (default: ON).

HPX WITH DOCUMENTATION :BOOL
Build the HPX documentation (default OFF).

HPX WITH_DOCUMENTATION_OUTPUT_FORMATS: STRING
List of documentation output formats to generate. Valid options are html;singlehtml;latexpdf;man. Multiple
values can be separated with semicolons. (default html).

HPX WITH EXAMPLES :BOOL
Build the HPX examples (default ON)

HPX_WITH_ EXAMPLES_HDFS5 :BOOL
Enable examples requiring HDFS support (default: OFF).

HPX WITH EXAMPLES_ OPENMP : BOOL
Enable examples requiring OpenMP support (default: OFF).

HPX_WITH_ EXAMPLES_QT4:BOOL
Enable examples requiring Qt4 support (default: OFF).

HPX WITH EXAMPLES QTHREADS :BOOL
Enable examples requiring QThreads support (default: OFF).

HPX WITH_EXAMPLES_TBB:BOOL
Enable examples requiring TBB support (default: OFF).

HPX WITH EXECUTABLE_ PREFIX:STRING
Executable prefix (default none), ‘hpx_’ useful for system install.

2.5. Manual 75

HPX Documentation, 1.3.0

HPX WITH_FAIL COMPILE_TESTS:BOOL
Create build system support for fail compile HPX tests (default ON)

HPX WITH_ IO_COUNTERS:BOOL
Build HPX runtime (default: ON)

HPX WITH_PSEUDO_DEPENDENCIES :BOOL
Force creating pseudo targets and pseudo dependencies (default ON).

HPX WITH TESTS:BOOL
Build the HPX tests (default ON)

HPX WITH_ TESTS_BENCHMARKS :BOOL
Build HPX benchmark tests (default: ON)

HPX WITH TESTS_ EXAMPLES :BOOL
Add HPX examples as tests (default: ON)

HPX WITH TESTS_EXTERNAL BUILD:BOOL
Build external cmake build tests (default: ON)

HPX WITH TESTS_HEADERS :BOOL
Build HPX header tests (default: OFF)

HPX WITH_TESTS_ REGRESSIONS:BOOL
Build HPX regression tests (default: ON)

HPX WITH_TESTS_UNIT:BOOL
Build HPX unit tests (default: ON)

HPX WITH TOOLS :BOOL
Build HPX tools (default: OFF)

Thread Manager options

HPX SCHEDULER _MAX TERMINATED THREADS:STRING

e HPX WITH I0O_POOL:BOOL

e HPX WITH MAX CPU_COUNT:STRING

e HPX WITH MAX NUMA DOMAIN_COUNT:STRING

* HPX WITH MORE_THAN_64 THREADS:BOOL

* HPX WITH SCHEDULER_LOCAI_STORAGE:BOOL

* HPX WITH SPINLOCK_ DEADLOCK_DETECTION:BOOL

* HPX WITH SPINLOCK_ POOL_NUM:STRING

* HPX WITH STACKTRACES:BOOL

* HPX WITH SWAP_CONTEXT EMULATION:BOOL

e HPX WITH THREAD BACKTRACE_DEPTH:STRING

e HPX WITH THREAD BACKTRACE_ON_SUSPENSION:BOOL
* HPX WITH THREAD CREATION_AND_CLEANUP_RATES :BOOL
* HPX WITH THREAD CUMULATIVE_COUNTS :BOOL

e HPX WITH THREAD IDLE_RATES:BOOL

76 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

* HPX WITH THREAD LOCAL STORAGE :BOOL

* HPX WITH THREAD MANAGER_IDLE_BACKOFF :BOOL
* HPX WITH THREAD QUEUE_WAITTIME:BOOL

e HPX WITH THREAD SCHEDULERS:STRING

* HPX WITH THREAD STACK_MMAP :BOOL

* HPX WITH THREAD STEALING _COUNTS :BOOL

e HPX WITH THREAD TARGET ADDRESS:BOOL

* HPX WITH TIMER POOL:BOOL

HPX SCHEDULER MAX TERMINATED THREADS:STRING
Maximum number of terminated threads collected before those are cleaned up (default: 100)

HPX WITH_IO_POOL:BOOL
Disable internal 1O thread pool, do not change if not absolutely necessary (default: ON)

HPX WITH_MAX CPU_COUNT:STRING
HPX applications will not use more that this number of OS-Threads (empty string means dynamic) (default: 64)

HPX WITH_MAX NUMA DOMAIN_COUNT:STRING
HPX applications will not run on machines with more NUMA domains (default: 8)

HPX_WITH MORE_THAN_64_THREADS:BOOL
HPX applications will be able to run on more than 64 cores (default: OFF)

HPX WITH SCHEDULER_ LOCAL_STORAGE :BOOL
Enable scheduler local storage for all HPX schedulers (default: OFF)

HPX WITH_SPINLOCK DEADLOCK DETECTION:BOOL
Enable spinlock deadlock detection (default: OFF)

HPX WITH_SPINLOCK_ POOL_NUM:STRING
Number of elements a spinlock pool manages (default: 128)

HPX WITH_STACKTRACES:BOOL
Attach backtraces to HPX exceptions (default: ON)

HPX WITH_ SWAP_CONTEXT_ EMULATION:BOOL
Emulate SwapContext API for coroutines (default: OFF)

HPX WITH_THREAD_BACKTRACE_DEPTH:STRING
Thread stack back trace depth being captured (default: 5)

HPX WITH THREAD BACKTRACE_ON_SUSPENSION:BOOL
Enable thread stack back trace being captured on suspension (default: OFF)

HPX WITH_THREAD_CREATION_AND_CLEANUP_RATES :BOOL
Enable measuring thread creation and cleanup times (default: OFF)

HPX WITH THREAD CUMULATIVE_COUNTS :BOOL
Enable keeping track of cumulative thread counts in the schedulers (default: ON)

HPX WITH_THREAD_IDLE_RATES:BOOL
Enable measuring the percentage of overhead times spent in the scheduler (default: OFF)

HPX WITH THREAD_LOCAL_STORAGE :BOOL
Enable thread local storage for all HPX threads (default: OFF)

HPX WITH_THREAD_MANAGER_IDLE_BACKOFF :BOOL
HPX scheduler threads do exponential backoff on idle queues (default: ON)

2.5. Manual 77

HPX Documentation, 1.3.0

HPX WITH_THREAD_ QUEUE_WAITTIME :BOOL
Enable collecting queue wait times for threads (default: OFF)

HPX WITH THREAD SCHEDULERS:STRING
Which thread schedulers are built. Options are: all, abp-priority, local, static-priority, static, shared-priority. For
multiple enabled schedulers, separate with a semicolon (default: all)

HPX WITH_THREAD STACK_ MMAP :BOOL
Use mmap for stack allocation on appropriate platforms

HPX WITH_THREAD_STEALING_COUNTS :BOOL
Enable keeping track of counts of thread stealing incidents in the schedulers (default: OFF)

HPX WITH_THREAD_TARGET_ADDRESS:BOOL
Enable storing target address in thread for NUMA awareness (default: OFF)

HPX WITH_TIMER POOL:BOOL
Disable internal timer thread pool, do not change if not absolutely necessary (default: ON)

AGAS options

e HPX WITH AGAS_DUMP_REFCNT _ENTRIES:BOOL

HPX WITH_ AGAS_DUMP_REFCNT_ ENTRIES:BOOL
Enable dumps of the AGAS refent tables to logs (default: OFF)

Parcelport options

* HPX WITH NETWORKING:BOOL

* HPX WITH PARCELPORT ACTION_COUNTERS :BOOL

e HPX WITH PARCELPORT _LIBFABRIC:BOOL

* HPX WITH PARCELPORT_MPI :BOOL

* HPX WITH PARCELPORT_MPI_ENV:STRING

e HPX WITH PARCELPORT _MPI_MULTITHREADED :BOOL
e HPX WITH PARCELPORT_TCP:BOOL

* HPX WITH PARCELPORT_VERBS:BOOL

e HPX WITH PARCEL PROFILING:BOOL

HPX WITH_NETWORKING:BOOL
Enable support for networking and multi-node runs (default: ON)

HPX WITH_ PARCELPORT_ACTION_COUNTERS :BOOL
Enable performance counters reporting parcelport statistics on a per-action basis.

HPX WITH_PARCELPORT_LIBFABRIC:BOOL
Enable the libfabric based parcelport. This is currently an experimental feature

HPX WITH_PARCELPORT_MPI:BOOL
Enable the MPI based parcelport.

HPX WITH PARCELPORT MPI ENV:STRING
List of environment variables checked to detect MPI (default: MV2_COMM_WORLD_RANK;PMI_RANK;OMPI_COMM_WO

78 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

HPX WITH_PARCELPORT_MPI_ MULTITHREADED : BOOL
Turn on MPI multithreading support (default: ON).

HPX WITH PARCELPORT_TCP :BOOL
Enable the TCP based parcelport.

HPX WITH_PARCELPORT_VERBS :BOOL
Enable the ibverbs based parcelport. This is currently an experimental feature

HPX WITH PARCEL_PROFILING:BOOL
Enable profiling data for parcels

Profiling options

e HPX WITH APEX:BOOL

* HPX WITH GOOGLE_PERFTOOLS :BOOL
* HPX WITH ITTNOTIFY:BOOL

* HPX WITH PAPI:BOOL

HPX WITH_APEX:BOOL
Enable APEX instrumentation support.

HPX WITH_GOOGLE_PERFTOOLS : BOOL
Enable Google Perftools instrumentation support.

HPX WITH_ITTNOTIFY :BOOL
Enable Amplifier (ITT) instrumentation support.

HPX WITH_PAPI:BOOL
Enable the PAPI based performance counter.

Debugging options

* HPX WITH ATTACH DEBUGGER _ON_TEST FAILURE:BOOL
* HPX WITH SANITIZERS:BOOL

e HPX WITH TESTS_DEBUG_LOG:BOOL

* HPX WITH TESTS_DEBUG_LOG_DESTINATION:STRING
* HPX WITH THREAD DEBUG_INFO:BOOL

e HPX WITH THREAD DESCRIPTION_FULL:BOOL

* HPX WITH THREAD GUARD_PAGE:BOOL

* HPX WITH VALGRIND:BOOL

* HPX WITH VERIFY LOCKS:BOOL

e HPX WITH VERIFY LOCKS_ BACKTRACE :BOOL

* HPX WITH VERIFY LOCKS_GLOBALLY:BOOL

HPX WITH ATTACH DEBUGGER _ON_TEST FAILURE:BOOL
Break the debugger if a test has failed (default: OFF)

HPX WITH_SANITIZERS:BOOL
Configure with sanitizer instrumentation support.

2.5. Manual 79

HPX Documentation, 1.3.0

HPX WITH_TESTS_DEBUG_LOG:BOOL
Turn on debug logs (-hpx:debug-hpx-log) for tests (default: OFF)

HPX WITH_TESTS_DEBUG_LOG_DESTINATION:STRING
Destination for test debug logs (default: cout)

HPX WITH_THREAD_DEBUG_INFO:BOOL
Enable thread debugging information (default: OFF, implicitly enabled in debug builds)

HPX WITH THREAD DESCRIPTION_FULL:BOOL
Use function address for thread description (default: OFF)

HPX WITH_THREAD_GUARD_PAGE :BOOL
Enable thread guard page (default: ON)

HPX WITH VALGRIND :BOOL
Enable Valgrind instrumentation support.

HPX WITH_VERIFY_LOCKS :BOOL
Enable lock verification code (default: OFF, implicitly enabled in debug builds)

HPX WITH VERIFY LOCKS_BACKTRACE :BOOL
Enable thread stack back trace being captured on lock registration (to be used in combination with
HPX_WITH_VERIFY_LOCKS=O0N, default: OFF)

HPX WITH_VERIFY_ LOCKS_GLOBALLY:BOOL
Enable global lock verification code (default: OFF, implicitly enabled in debug builds)

Modules options

* HPX PREPROCESSOR_WITH COMPATIBILITY HEADERS:BOOL
* HPX PREPROCESSOR_WITH DEPRECATION_WARNINGS :BOOL
¢ HPX PREPROCESSOR_WITH TESTS:BOOL

HPX PREPROCESSOR_WITH_COMPATIBILITY_ HEADERS:BOOL
Enable compatibility headers for old headers

HPX_ PREPROCESSOR WITH_ DEPRECATION_ WARNINGS : BOOL
Enable warnings for deprecated facilities. (default: Off)

HPX PREPROCESSOR_WITH_TESTS:BOOL
Build HPX preprocessor module tests. (default: ON)

Additional tools and libraries used by HPX

Here is a list of additional libraries and tools which are either optionally supported by the build system or are optionally
required for certain examples or tests. These libraries and tools can be detected by the HPX build system.

Each of the tools or libraries listed here will be automatically detected if they are installed in some standard location.
If a tool or library is installed in a different location you can specify its base directory by appending _ROOT to the
variable name as listed below. For instance, to configure a custom directory for BOOST, specify BOOST_ROOT=/
custom/boost/root.

BOOST_ROOT :PATH
Specifies where to look for the Boost'?’ installation to be used for compiling HPX Set this if CMake is not able

129 https://www.boost.org/

80 Chapter 2. What’s so special about HPX?

https://www.boost.org/

HPX Documentation, 1.3.0

to locate a suitable version of Boost'*’ The directory specified here can be either the root of a installed Boost

distribution or the directory where you unpacked and built Boost'?! without installing it (with staged libraries).

HWLOC_ROOT : PATH
Specifies where to look for the Portable Hardware Locality (HWLOC)'?? library. Set this if CMake is not able to
locate a suitable version of Portable Hardware Locality (HWLOC)'3? Portable Hardware Locality (HWLOC)'3*
provides platform independent support for extracting information about the used hardware architecture (number
of cores, number of NUMA domains, hyperthreading, etc.). HPX utilizes this information if available.

PAPI_ROOT:PATH
Specifies where to look for the Performance Application Programming Interface (PAPI)'? library. The PAPI
library is necessary to compile a special component exposing PAPI hardware events and counters as HPX per-
formance counters. This is not available on the Windows platform.

AMPLIFIER_ROOT:PATH
Specifies where to look for one of the tools of the Intel Parallel Studio(tm) product, either Intel Amplifier(tm)
or Intel Inspector(tm). This should be set if the CMake variable HPX_USE_ITT_NOTIFY is set to ON. En-
abling ITT support in HPX will integrate any application with the mentioned Intel tools, which customizes the
generated information for your application and improves the generated diagnostics.

In addition, some of the examples may need the following variables:

HDF5_ROOT :PATH
Specifies where to look for the Hierarchical Data Format V5 (HDF5) include files and libraries.

2.5.3 Creating HPX projects
Using HPX with pkg-config
How to build HPX applications with pkg-config

After you are done installing HPX, you should be able to build the following program. It prints Hello World! on
the locality you run it on.

// Copyright (c) 2007-2012 Hartmut Kaiser

//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_I1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

LSS LSS S S S S SSS
// The purpose of this example is to execute a HPX-thread printing
// "Hello World!" once. That's all.

//[hello_world 1_getting_started

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.

#include <hpx/hpx_main.hpp>

#include <hpx/include/iostreams.hpp>

int main ()

(continues on next page)

130 https://www.boost.org/

131 https://www.boost.org/

132 https://www.open-mpi.org/projects/hwloc/
133 https://www.open-mpi.org/projects/hwloc/
134 https://www.open-mpi.org/projects/hwloc/
135 https://icl.cs.utk.edu/papi/

2.5. Manual 81

https://www.boost.org/
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
https://icl.cs.utk.edu/papi/

HPX Documentation, 1.3.0

(continued from previous page)

// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return 0O;

}

//]

Copy the text of this program into a file called hello_world.cpp.

Now, in the directory where you put hello_world.cpp, issue the following commands (where SHPX_TLOCATION is the
build directory or CMAKE_INSTALL_PREFIX you used while building HPX):

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HPX_LOCATION/lib/pkgconfig
c++ —o hello_world hello_world.cpp \

"pkg-config --cflags --libs hpx_application\

—lhpx_iostreams -DHPX_APPLICATION_NAME=hello_world

Important: When using pkg-config with HPX, the pkg-config flags must go after the —o flag.

Note: HPX libraries have different names in debug and release mode. If you want to link against a debug HPX
library, you need to use the _debug suffix for the pkg-config name. That means instead of hpx_application or
hpx_component you will have to use hpx_application_debug or hpx_component_debug Moreover, all
referenced HPX components need to have a appended d suffix, e.g. instead of —1hpx_iostreams you will need to
specify ~1hpx_iostreamsd.

Important: If the HPX libraries are in a path that is not found by the dynamic linker. You need to add the path
SHPX_LOCATION/1ib to your linker search path (for example LD_LIBRARY_PATH on Linux).

To test the program, type:

./hello_world

which should print Hello World! and exit.

How to build HPX components with pkg-config

Let’s try a more complex example involving an HPX component. An HPX component is a class which exposes HPX
actions. HPX components are compiled into dynamically loaded modules called component libraries. Here’s the
source code:

hello_world_component.cpp

#include "hello_world component.hpp"
#include <hpx/include/iostreams.hpp>

#include <iostream>
namespace examples { namespace server

{

void hello_world: :invoke ()

(continues on next page)

82 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

hpx::cout << "Hello HPX World!" << std::endl;
}}
HPX_REGISTER_COMPONENT_MODULE () ;
typedef hpx::components::component<
examples::server::hello_world
> hello_world_type;

HPX_REGISTER_COMPONENT (hello_world_type, hello_world);

HPX_REGISTER_ACTION (
examples: :server::hello_world::invoke_action, hello_world_invoke_action);

hello_world_component.hpp

#if !defined (HELLO_WORLD_COMPONENT_HPP)
#define HELLO_WORLD_COMPONENT _HPP

#include <hpx/hpx.hpp>

#include <hpx/include/actions.hpp>
#include <hpx/include/lcos.hpp>

#include <hpx/include/components.hpp>
#include <hpx/include/serialization.hpp>

#include <utility>

namespace examples { namespace server
{
struct HPX_COMPONENT_EXPORT hello_world
hpx::components: :component_base<hello_world>

void invoke () ;
HPX_DEFINE_COMPONENT_ACTION (hello_world, invoke);
}i
}}

HPX_REGISTER_ACTION_DECLARATION (
examples: :server::hello_world::invoke_action, hello_world_invoke_action);

namespace examples
{
struct hello_world
hpx::components::client_base<hello_world, server::hello_world>

typedef hpx::components::client_base<hello_world, server::hello_world>
base_type;

hello_world (hpx::future<hpx::naming::id_type> && f)
base_type (std: :move (f))
{}

hello_world (hpx::naming::id_type && f)
base_type (std: :move (f))
{}

(continues on next page)

2.5. Manual 83

HPX Documentation, 1.3.0

(continued from previous page)

void invoke ()
{

hpx::async<server::hello_world::invoke_action> (this->get_id()) .get ();

}i

#endif // HELLO_WORLD_COMPONENT_HPP

hello_world_client.cpp

// Copyright (c) 2012 Bryce Lelbach
//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

//[hello_world client_getting started
#include "hello _world_component.hpp"
#include <hpx/hpx_init.hpp>

int hpx_main (boost::program_options::variables_mapé&)

{

// Create a single instance of the component on this locality.
examples::hello_world client =
hpx::new_<examples::hello_world> (hpx::find_here());

// Invoke the component's action, which will print "Hello World!".
client.invoke();

return hpx::finalize(); // Initiate shutdown of the runtime system.

int main(int argc, charx argv[])
{
return hpx::init (argc, argv); // Initialize and run HPX.
}
//]

Copy the three source files above into three files (called hello_world_component.cpp,
hello_world_component.hppand hello_world_client.cpp respectively).

Now, in the directory where you put the files, run the following command to build the component library. (where
SHPX_LOCATION is the build directory or CMAKE_INSTALL_PREFIX you used while building HPX):

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HPX_LOCATION/lib/pkgconfig
c++ —o libhpx_hello_world.so hello_world_component.cpp \
‘pkg-config —--cflags —-libs hpx_component \
—lhpx_iostreams —-DHPX_COMPONENT_NAME=hpx_hello_world

Now pick a directory in which to install your HPX component libraries. For this example, we’ll choose a directory
named my_hpx_1libs:

mkdir ~/my_hpx_1libs
mv libhpx_hello_world.so ~/my_hpx_libs

84 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Note: HPX libraries have different names in debug and release mode. If you want to link against a debug HPX
library, you need to use the _debug suffix for the pkg-config name. That means instead of hpx_application or
hpx_component you will have to use hpx_application_debug or hpx_component_debug. Moreover,
all referenced HPX components need to have a appended d suffix, e.g. instead of ~1hpx_iostreams you will need
to specify —1hpx_iostreamsd.

Important: If the HPX libraries are in a path that is not found by the dynamic linker. You need to add the path
SHPX_LOCATION/1ib to your linker search path (for example LD_LIBRARY_PATH on Linux).

Now, to build the application that uses this component (hello_world_client.cpp), we do:

export PKG_CONEF IG_PATH=SPKG_CONFIG_PATH:$HPX_ LOCATION/ lib/pkgconfig
c++ -0 hello_world_client hello_world_client.cpp \

" "pkg-config --cflags --libs hpx_application” "\

~L5{HOME }/my_hpx_1libs —-lhpx_hello_world —-lhpx_iostreams

Important: When using pkg-config with HPX, the pkg-config flags must go after the —o flag.

Finally, you’ll need to set your LD_LIBRARY_PATH before you can run the program. To run the program, type:

export LD_LIBRARY_PATH="$SLD_LIBRARY_PATH:$HOME /myihpxil ibs"
./hello_world_client

which should print Hello HPX World! and exit.

Using HPX with CMake-based projects

In Addition to the pkg-config support discussed on the previous pages, HPX comes with full CMake support. In order
to integrate HPX into your existing, or new CMakeLists.txt you can leverage the find_package'3® command integrated
into CMake. Following is a Hello World component example using CMake.

Let’s revisit what we have. We have three files which compose our example application:
* hello_world_component.hpp
* hello_world_component.cpp
* hello_world_client.hpp

The basic structure to include HPX into your CMakeLists.txt is shown here:

Require a recent version of cmake
cmake_minimum_required (VERSION 3.3.2 FATAL_ERROR)

This project is C++ based.
project (your_app CXX)

Instruct cmake to find the HPX settings
find_package (HPX)

136 https://www.cmake.org/cmake/help/latest/command/find_package.html

2.5. Manual 85

https://www.cmake.org/cmake/help/latest/command/find_package.html

HPX Documentation, 1.3.0

In order to have CMake find HPX, it needs to be told where to look for the HPXConfig.cmake file that is generated
when HPX is built or installed, it is used by find_package (HPX) to set up all the necessary macros needed to use
HPX in your project. The ways to achieve this are:

* set the HPX_DIR cmake variable to point to the directory containing the HPXConfig.cmake script on the
command line when you invoke cmake:

cmake —-DHPX_DIR=SHPX LOCATION/lib/cmake/HPX

where $HPX_LOCATION is the build directory or CMAKE_INSTALL_PREFIX you used when build-
ing/configuring HPX.

* set the CMAKE_PREFIX_PATH variable to the root directory of your HPX build or install location on the
command line when you invoke cmake:

cmake —-DCMAKE_PREFIX_ PATH=$HPX LOCATION

the difference between CMAKE_PREFIX_PATH and HPX_DIR is that cmake will add common postfixes such
as 1ib/cmake/<project tothe MAKE_PREFIX_PATH and search in these locations too. Note that if your
project uses HPX as well as other cmake managed projects, the paths to the locations of these multiple projects
may be concatenated in the CMAKE_PREFIX_PATH.

* The variables above may be set in the CMake GUI or curses ccmake interface instead of the command line.

Additionally, if you wish to require HPX for your project, replace the find_ package (HPX) line with
find_package (HPX REQUIRED).

You can check if HPX was successfully found with the HPX_FOUND CMake variable.

The simplest way to add the HPX component is to use the add_hpx_component macro and add it to the
CMakeLists.txt file:

build your application using HPX
add_hpx_component (hello_world
SOURCES hello_world_component.cpp
HEADERS hello_world_component.hpp
COMPONENT_DEPENDENCIES iostreams)

Note: add_hpx_component adds a _component suffix to the target name. In the example above a
hello_world_component target will be created.

The available options to add_hpx_component are:
* SOURCES: The source files for that component
e HEADERS: The header files for that component
* DEPENDENCIES: Other libraries or targets this component depends on
* COMPONENT_DEPENDENCIES: The components this component depends on
* PLUGIN: Treat this component as a plugin-able library
* COMPILE_FLAGS: Additional compiler flags
e LINK_FLAGS: Additional linker flags
* FOLDER: Add the headers and source files to this Source Group folder
* EXCLUDE_FROM_ALL: Do not build this component as part of the a1l target

After adding the component, the way you add the executable is as follows:

86 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

build your application using HPX
add_hpx_executable (hello_world
ESSENTIAL
SOURCES hello_world_client.cpp
COMPONENT_DEPENDENCIES hello_world)

Note: add_hpx_executable automatically adds a _component suffix to dependencies specified in
COMPONENT_DEPENDENCIES, meaning you can directly use the name given when adding a component using
add_hpx_component.

When you configure your application, all you need to do is set the HPX_DIR variable to point to the installation of
HPX!

Note: All library targets built with HPX are exported and readily available to be used as arguments to tar-
gel_link_librariesl37 in your targets. The HPX include directories are available with the HPX_INCLUDE_DIRS
CMake variable.

CMake macros to integrate HPX into existing applications

In addition to the add_hpx_component and add_hpx_executable you can use the hpx_setup_target
macro to have an already existing target to be used with the HPX libraries:

hpx_setup_target (target)

Optional parameters are:
e EXPORT: Adds it to the CMake export list HPXTargets

e INSTALL: Generates a install rule for the target

PLUGIN: Treat this component as a plugin-able library
* TYPE: The type can be: EXECUTABLE, LIBRARY or COMPONENT

DEPENDENCIES: Other libraries or targets this component depends on

e COMPONENT_DEPENDENCIES: The components this component depends on
e COMPILE_FLAGS: Additional compiler flags

e LINK_FLAGS: Additional linker flags

If you do not use CMake, you can still build against HPX but you should refer to the section on How fo build HPX
components with pkg-config.

Note: Since HPX relies on dynamic libraries, the dynamic linker needs to know where to look for them. If HPX
isn’t installed into a path which is configured as a linker search path, external projects need to either set RPATH
or adapt LD_LIBRARY_PATH to point to where the hpx libraries reside. In order to set RPATHs, you can include
HPX_SetFullRPATH in your project after all libraries you want to link against have been added. Please also consult
the CMake documentation here'*%.

137 https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html
138 https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/RPATH-handling

2.5. Manual 87

https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html
https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html
https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/RPATH-handling

HPX Documentation, 1.3.0

Using HPX with Makefile

A basic project building with HPX is through creating makefiles. The process of creating one can get complex de-
pending upon the use of cmake parameter HPX_WITH_HPX_MAIN (which defaults to ON).

How to build HPX applications with makefile

If HPX is installed correctly, you should be able to build and run a simple hello world program. It prints Hello
World! on the locality you run it on.

// Copyright (c) 2007-2012 Hartmut Kaiser

//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_I1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

LSS LSS S S S S SSS SS
// The purpose of this example is to execute a HPX-thread printing

// "Hello World!" once. That's all.

//[hello world 1_getting started

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.

#include <hpx/hpx_main.hpp>

#include <hpx/include/iostreams.hpp>

int main ()

{
// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return 0O;

}

//1]

Copy the content of this program into a file called hello_world.cpp.

Now in the directory where you put hello_world.cpp, create a Makefile. Add the following code:

CXX=(CXX) # Add your favourite compiler here or let makefile choose default.
CXXFLAGS=-03 -std=c++17

BOOST_ROOT=/path/to/boost
HWLOC_ROOT=/path/to/hwloc
TCMALLOC_ROOT=/path/to/tcmalloc
HPX_ ROOT=/path/to/hpx

INCLUDE DIRECTIVES=$ (HPX_ROOT) /include $ (BOOST_ROOT)/include $ (HWLOC_ROOT) /include

LIBRARY_DIRECTIVES=-L$ (HPX_ROOT) /lib $ (HPX_ROOT)/lib/libhpx_init.a $ (HPX_ROOT)/lib/
—1libhpx.so $(BOOST_ROOT) /lib/libboost_atomic-mt.so $(BOOST_ROOT)/lib/libboost_
—filesystem-mt.so $(BOOST_ROOT)/lib/libboost_program_options-mt.so $(BOOST_ROOT)/lib/
—libboost_regex-mt.so $(BOOST_ROOT)/lib/libboost_system-mt.so —-lpthread $ (TCMALLOC_
—ROOT) /libtcmalloc_minimal.so $ (HWLOC_ROOT)/libhwloc.so —-1dl -1rt

LINK_FLAGS=$ (HPX_ROOT) /1lib/libhpx_wrap.a -Wl,-wrap=main # should be left empty for,
< HPX WITH HPX MAIN=OFF

(continues on next page)

88 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

hello_world: hello_world.o
$(CXX) $(CXXFLAGS) -o hello_world hello_world.o $(LIBRARY_DIRECTIVES) $(LINK_FLAGS)

hello_world.o:
$(CXX) $(CXXFLAGS) -c -o hello_world.o hello_world.cpp $(INCLUDE_DIRECTIVES)

Important: LINK_FLAGS should be left empty if HPX_WITH_HPX_MAIN is set to OFF. Boost in the above
example is build with ——layout=tagged. Actual boost flags may vary on your build of boost.

To build the program, type:

’make

A successfull build should result in hello_world binary. To test, type:

’./hello_world

How to build HPX components with makefile

Let’s try a more complex example involving an HPX component. An HPX component is a class which exposes HPX
actions. HPX components are compiled into dynamically loaded modules called component libraries. Here’s the
source code:

hello_world_component.cpp

#include "hello_world component.hpp"
#include <hpx/include/iostreams.hpp>

#include <iostream>
namespace examples { namespace server

{

void hello_world: :invoke ()

{
hpx::cout << "Hello HPX World!" << std::endl;

b}

HPX_REGISTER_COMPONENT_MODULE () ;

typedef hpx::components::component<
examples::server::hello_world

> hello_world_type;

HPX_REGISTER_COMPONENT (hello_world_type, hello_world);

HPX_REGISTER_ACTION (
examples: :server::hello_world::invoke_action, hello_world_invoke_action);

hello_world_component.hpp

#1f !defined (HELLO_WORLD_COMPONENT HPP)
#define HELLO_WORLD_COMPONENT HPP

(continues on next page)

2.5. Manual 89

HPX Documentation, 1.3.0

(continued from previous page)

#include <hpx/hpx.hpp>

#include <hpx/include/actions.hpp>
#include <hpx/include/lcos.hpp>

#include <hpx/include/components.hpp>
#include <hpx/include/serialization.hpp>

#include <utility>

namespace examples { namespace server

{
struct HPX_COMPONENT_EXPORT hello_world
hpx::components: :component_base<hello_world>

void invoke () ;
HPX_DEFINE_COMPONENT_ACTION (hello_world, invoke);
}i
b}

HPX_REGISTER_ACTION_DECLARATION (
examples: :server: :hello_world::invoke_action, hello_world_invoke_action);

namespace examples
{
struct hello_world
hpx::components::client_base<hello_world, server::hello_world>

typedef hpx::components::client_base<hello_world, server::hello_world>
base_type;

hello_world (hpx::future<hpx::naming::id_type> && f)
base_type (std: :move (f))
{}

hello_world (hpx::naming::id_type && f)
base_type (std: ::move (f))

{}

void invoke ()

{

hpx::async<server::hello_world::invoke_action> (this->get_1id()) .get ();

}i

#endif // HELLO_WORLD_COMPONENT_HPP

hello_world_client.cpp

// Copyright (c) 2012 Bryce Lelbach

//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

//[hello _world client_getting started
#include "hello_world component.hpp"
#include <hpx/hpx_init.hpp>

(continues on next page)

920 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

int hpx_main (boost::program_options::variables_mapé)

{

// Create a single instance of the component on this locality.
examples::hello_world client =
hpx::new_<examples::hello_world> (hpx::find_here());

// Invoke the component's action, which will print "Hello World!".
client.invoke () ;

return hpx::finalize(); // Initiate shutdown of the runtime system.

int main(int argc, charx argv[])
{
return hpx::init (argc, argv); // Initialize and run HPX.
}
//1]

Now in the directory, create a Makefile. Add the following code:

CXX= (CXX) # Add your favourite compiler here or let makefile choose default.
CXXFLAGS=-03 —-std=c++17

BOOST_ROOT=/path/to/boost
HWLOC_ROOT=/path/to/hwloc
TCMALLOC_ROOT=/path/to/tcmalloc
HPX_ROOT=/path/to/hpx

INCLUDE _DIRECTIVES=$ (HPX_ROOT) /include $ (BOOST_ROOT)/include $ (HWLOC_ROOT) /include

LIBRARY DIRECTIVES=-L$ (HPX_ROOT)/1lib $ (HPX_ROOT)/lib/libhpx_init.a $ (HPX_ROOT)/lib/
—1libhpx.so $(BOOST_ROOT)/lib/libboost_atomic-mt.so $(BOOST_ROOT)/lib/libboost_
—filesystem-mt.so $(BOOST_ROOT)/lib/libboost_program_options—-mt.so $(BOOST_ROOT)/lib/
—libboost_regex-mt.so $(BOOST_ROOT)/lib/libboost_system-mt.so —-lpthread $ (TCMALLOC_
<ROOT) /libtcmalloc_minimal.so $ (HWLOC_ROOT)/libhwloc.so —-1dl -1rt

LINK _FLAGS=$ (HPX_ROOT) /1lib/libhpx_wrap.a -Wl,-wrap=main # should be left empty for,
HPX WITH HPX MAIN=OFF

hello_world_client: libhpx_hello_world hello_world_client.o
$(CXX) $(CXXFLAGS) -o hello_world_client $(LIBRARY_DIRECTIVES) libhpx_hello_world
8 (LINK_FLAGS)

hello_world_client.o: hello_world_client.cpp
$(CXX) $(CXXFLAGS) -o hello_world_client.o hello_world_client.cpp $(INCLUDE_
—~DIRECTIVES)

libhpx_hello_world: hello_world_component.o
$(CXX) $(CXXFLAGS) -o libhpx_hello_world hello_world_component.o $(LIBRARY__
—DIRECTIVES)

hello_world_component.o: hello_world_component.cpp
$(CXX) $(CXXFLAGS) -c -o hello_world_component.o hello_world_component.cpp

—$ (INCLUDE_DIRECTIVES) (continues on next page)

2.5. Manual 91

HPX Documentation, 1.3.0

(continued from previous page)

|

To build the program, type:

’make

A successfull build should result in hello_world binary. To test, type:

’./hello_world

Note: Due to high variations in CMake flags and library dependencies, it is recommended to build HPX applications
and components with pkg-config or CMakeLists.txt. Writing Makefile may result in broken builds if due care is not
taken. pkg-config files and CMake systems are configured with CMake build of HPX. Hence, they are stable and
provides with better support overall.

2.5.4 Starting the HPX runtime

In order to write an application which uses services from the HPX runtime system you need to initialize the HPX
library by inserting certain calls into the code of your application. Depending on your use case, this can be done in 3
different ways:

e Minimally invasive: Re-use the main () function as the main HPX entry point.
* Balanced use case: Supply your own main HPX entry point while blocking the main thread.
* Most flexibility: Supply your own main HPX entry point while avoiding to block the main thread.

* Suspend and resume: As above but suspend and resume the HPX runtime to allow for other runtimes to be used.
Re-use the main () function as the main HPX entry point
This method is the least intrusive to your code. It however provides you with the smallest flexibility in terms of

initializing the HPX runtime system. The following code snippet shows what a minimal HPX application using this
technique looks like:

#include <hpx/hpx _main.hpp>

int main(int argc, charx argv[])
{

return 0O;

}

The only change to your code you have to make is to include the file hpx/hpx_main.hpp. In this case the function
main () will be invoked as the first HPX thread of the application. The runtime system will be initialized behind the
scenes before the function main () is executed and will automatically stop after main () has returned. All HPX API
functions can be used from within this function now.

Note: The function main () does not need to expect receiving argc argv as shown above, but could expose the
signature int main (). This is consistent with the usually allowed prototypes for the function main () in C++
applications.

92 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

All command line arguments specific to HPX will still be processed by the HPX runtime system as usual. However,
those command line options will be removed from the list of values passed to argc/argv of the function main ().
The list of values passed to main () will hold only the commandline options which are not recognized by the HPX
runtime system (see the section HPX Command Line Options for more details on what options are recognized by
HPX).

Note: In this mode all one-letter-shortcuts are disabled which are normally available on the HPX command line
(such as -t or -1 see HPX Command Line Options). This is done to minimize any possible interaction between
the command line options recognized by the HPX runtime system and any command line options defined by the
application.

The value returned from the function main () as shown above will be returned to the operating system as usual.

Important: To achieve this seamless integration, the header file hpx/hpx_main.hpp defines a macro:

#define main hpx_startup::user_main

which could result in unexpected behavior.

Important: To achieve this seamless integration, we use different implementations for different Operating Systems.
In case of Linux or Mac OSX, the code present in hpx_wrap.cpp is put into action. We hook into the system
function in case of Linux and provide alternate entry point in case of Mac OSX. For other Operating Systems we rely
on a macro:

#define main hpx_ startup::user_main

provided in the header file hpx /hpx_main.hpp. This implementation can result in unexpected behavior.

Caution: We make use of an override variable include_1libhpx_wrap in the header file hpx/hpx_main.
hpp to swiftly choose the function call stack at runtime. Therefore, the header file should only be included in the
main executable. Including it in the components will result in multiple definition of the variable.

Supply your own main HPX entry point while blocking the main thread

With this method you need to provide an explicit main thread function named hpx_main at global scope. This
function will be invoked as the main entry point of your HPX application on the console /ocality only (this function
will be invoked as the first HPX thread of your application). All HPX API functions can be used from within this
function.

The thread executing the function hpx : : init will block waiting for the runtime system to exit. The value returned
from hpx_main will be returned from hpx: : init after the runtime system has stopped.

The function hpx: : finalize has to be called on one of the HPX localities in order to signal that all work has been
scheduled and the runtime system should be stopped after the scheduled work has been executed.

This method of invoking HPX has the advantage of you being able to decide which version of hpx: :init to call.
This allows to pass additional configuration parameters while initializing the HPX runtime system.

2.5. Manual 93

HPX Documentation, 1.3.0

#include <hpx/hpx_init.hpp>

int hpx_main(int argc, charx argvl[])

{
// Any HPX application logic goes here...
return hpx::finalize();

int main(int argc, charx argv[])

{
// Initialize HPX, run hpx _main as the first HPX thread, and
// wait for hpx::finalize being called.
return hpx::init (argc, argv);

Note: The function hpx_main does not need to expect receiving argc/argv as shown above, but could expose
one of the following signatures:

int hpx_main();
int hpx_main(int argc, charx argvl]);
int hpx_main (boost::program_options::variables_mapé& vm);

This is consistent with (and extends) the usually allowed prototypes for the function main () in C++ applications.

The header file to include for this method of using HPX is hpx/hpx_init.hpp.

There are many additional overloads of hpx: : init available, such as for instance to provide your own entry point
function instead of hpx_main. Please refer to the function documentation for more details (see: hpx/hpx_init.

hpp).

Supply your own main HPX entry point while avoiding to block the main thread

With this method you need to provide an explicit main thread function named hpx_main at global scope. This
function will be invoked as the main entry point of your HPX application on the console locality only (this function
will be invoked as the first HPX thread of your application). All HPX API functions can be used from within this
function.

The thread executing the function hpx : : st art will not block waiting for the runtime system to exit, but will return
immediately.

Important: You cannot use any of the HPX API functions other that hpx: : st op from inside your main ()
function.

The function hpx: : finalize has to be called on one of the HPX localities in order to signal that all work has been
scheduled and the runtime system should be stopped after the scheduled work has been executed.

This method of invoking HPX is useful for applications where the main thread is used for special operations, such a
GUIs. The function hpx : : st op can be used to wait for the HPX runtime system to exit and should be at least used
as the last function called in main (). The value returned from hpx_main will be returned from hpx : : st op after
the runtime system has stopped.

#include <hpx/hpx_start.hpp>

(continues on next page)

94 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

int hpx_main(int argc, charx argvl])

{
// Any HPX application logic goes here...
return hpx::finalize();

int main(int argc, charx argv[])

{
// Initialize HPX, run hpx_main.
hpx::start (argc, argv);

// ...Execute other code here...

// Wait for hpx::finalize being called.
return hpx::stop();

Note: The function hpx_main does not need to expect receiving argc/argv as shown above, but could expose
one of the following signatures:

int hpx_main();
int hpx_main(int argc, charx argvl[]);
int hpx_main (boost::program_options::variables_mapé& vm);

This is consistent with (and extends) the usually allowed prototypes for the function main () in C++ applications.

The header file to include for this method of using HPX is hpx/hpx_start . hpp.

There are many additional overloads of hpx : : start available, such as for instance to provide your own entry point
function instead of hpx_main. Please refer to the function documentation for more details (see: hpx/hpx_start.

hpp).

Suspending and resuming the HPX runtime

In some applications it is required to combine HPX with other runtimes. To support this use case HPX provides
two functions: hpx: :suspend and hpx: :resume. hpx: :suspend is a blocking call which will wait for all
scheduled tasks to finish executing and then put the thread pool OS threads to sleep. hpx : : resume simply wakes up
the sleeping threads so that they are ready to accept new work. hpx: : suspend and hpx: : resume can be found
in the header hpx/hpx_suspend. hpp.

#include <hpx/hpx start.hpp>
#include <hpx/hpx_suspend.hpp>

int main (int argc, charx argvl[])

{

// Initialize HPX, don't run hpx_main
hpx::start (nullptr, argc, argv);

// Schedule a function on the HPX runtime
hpx::apply (émy_function, ...);

// Wait for all tasks to finish, and suspend the HPX runtime

(continues on next page)

2.5. Manual 95

HPX Documentation, 1.3.0

(continued from previous page)

hpx::suspend();
// Execute non-HPX code here

// Resume the HPX runtime
hpx::resume () ;

// Schedule more work on the HPX runtime
// hpx::finalize has to be called from the HPX runtime before hpx::stop

hpx::apply ([]1() { hpx::finalize(); });
return hpx::stop();

Note: hpx: :suspend does not wait for hpx: : finalize to be called. Only call hpx: : finalize when you
wish to fully stop the HPX runtime.

HPX also supports suspending individual thread pools and threads. For details on how to do that see the documentation
for hpx::threads::thread _pool_base.

Automatically suspending worker threads

The previous method guarantees that the worker threads are suspended when you ask for it and that they stay sus-
pended. An alternative way to achieve the same effect is to tweak how quickly HPX suspends its worker threads when
they run out of work. The following configuration values make sure that HPX idles very quickly:

hpx.max_1idle_backoff_time 1000

hpx.max_idle_loop_count = 0

They can be set on the command line using ——hpx:ini=hpx.max_idle_backoff_time=1000 and
——hpx:ini=hpx.max_idle_loop_count=0. See Launching and configuring HPX applications for more de-
tails on how to set configuration parameters.

After setting idling parameters the previous example could now be written like this instead:

#include <hpx/hpx_start.hpp>

int main(int argc, charx argv[])

{

// Initialize HPX, don't run hpx_main
hpx::start (nullptr, argc, argv);

// Schedule some functions on the HPX runtime

// NOTE: run_as_hpx_thread blocks until completion.
hpx::run_as_hpx_thread (&émy_function, ...);
hpx::run_as_hpx_thread (&émy_other_function, ...);

// hpx::finalize has to be called from the HPX runtime before hpx::stop
hpx::apply ([]1() { hpx::finalize(); });
return hpx::stop();

In this example each call to hpx: : run_as_hpx_thread acts as a “parallel region”.

96 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Working of hpx_main.hpp

In order to initialize HPX from main (), we make use of linker tricks.

It is implemented differently for different Operating Systems. Method of implementation is as follows:
* Linux: Using linker ——wrap option.
* Mac OSX: Using the linker —e option.

* Windows: Using #define main hpx_startup::user_main

Linux implementation

We make use of the Linux linker 1d’s ——wrap option to wrap the main () function. This way any call to main ()
are redirected to our own implementation of main. It is here that we check for the existence of hpx_main.hpp by
making use of a shadow variable include_libhpx_wrap. The value of this variable determines the function stack
at runtime.

The implementation can be found in 1ibhpx_wrap.a.

Important: It is necessary that hpx_main . hpp be not included more than once. Multiple inclusions can result in
multiple definition of include_libhpx_wrap.

Mac OSX implementation

Here we make use of yet another linker option —e to change the entry point to our custom entry function
initialize_main. Weinitialize the HPX runtime system from this function and call main from the initialized sys-
tem. We determine the function stack at runtime by making use of the shadow variable include_libhpx_wrap.

The implementation can be found in 1ibhpx_wrap.a.

Important: It is necessary that hpx_main.hpp be not included more than once. Multiple inclusions can result in
multiple definition of include_libhpx_wrap.

Windows implementation

We make use of a macro #define main hpx_startup::user_main to take care of the initializations.

This implementation could result in unexpected behaviors.

2.5.5 Launching and configuring HPX applications

Configuring HPX applications

All HPX applications can be configured using special command line options and/or using special configuration files.
This section describes the available options, the configuration file format, and the algorithm used to locate possible
predefined configuration files. Additionally this section describes the defaults assumed if no external configuration
information is supplied.

2.5. Manual 97

HPX Documentation, 1.3.0

During startup any HPX application applies a predefined search pattern to locate one or more configuration files.
All found files will be read and merged in the sequence they are found into one single internal database holding all
configuration properties. This database is used during the execution of the application to configure different aspects of
the runtime system.

In addition to the ini files, any application can supply its own configuration files, which will be merged with the
configuration database as well. Moreover, the user can specify additional configuration parameters on the command
line when executing an application. The HPX runtime system will merge all command line configuration options (see
the description of the ——hpx:ini, ——hpx:config,and ——hpx:app-config command line options).

The HPX INI File Format

All HPX applications can be configured using a special file format which is similar to the well-known Windows INI
file format'?°. This is a structured text format allowing to group key/value pairs (properties) into sections. The basic
element contained in an ini file is the property. Every property has a name and a value, delimited by an equals sign
'=". The name appears to the left of the equals sign:

name=value

The value may contain equal signs as only the first '=" character is interpreted as the delimiter between name and
value Whitespace before the name, after the value and immediately before and after the delimiting equal sign is
ignored. Whitespace inside the value is retained.

Properties may be grouped into arbitrarily named sections. The section name appears on a line by itself, in square
brackets [and]. All properties after the section declaration are associated with that section. There is no explicit “end
of section” delimiter; sections end at the next section declaration, or the end of the file:

’[section]

In HPX sections can be nested. A nested section has a name composed of all section names it is embedded in. The
section names are concatenated usingadot ' . ':

’[outerfsection.innerfsection]

Here inner_section is logically nested within outer_section.

It is possible to use the full section name concatenated with the property name to refer to a particular property. For
example in:

[a.b.c]
d = e

the property value of d can be referred to as a . b.c.d=e.

In HPX ini files can contain comments. Hash signs ' # ' at the beginning of a line indicate a comment. All characters
starting with the ' # ' until the end of line are ignored.

If a property with the same name is reused inside a section, the second occurrence of this property name will override
the first occurrence (discard the first value). Duplicate sections simply merge their properties together, as if they
occurred contiguously.

In HPX ini files, a property value ${FOO:default} will use the environmental variable FOO to extract the actual
value if it is set and de fault otherwise. No default has to be specified. Therefore $ {FOO} refers to the environmen-
tal variable FOO. If FOO is not set or empty the overall expression will evaluate to an empty string. A property value
$[section.key:default] refers to the value held by the property section.key if it exists and default

139 https://en.wikipedia.org/wiki/INI_file

98 Chapter 2. What’s so special about HPX?

https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file

HPX Documentation, 1.3.0

otherwise. No default has to be specified. Therefore $ [section.key] refers to the property section.key. If
the property section.key is not set or empty, the overall expression will evaluate to an empty string.

Note: Any property $ [section.key:default] is evaluated whenever it is queried and not when the configu-
ration data is initialized. This allows for lazy evaluation and relaxes initialization order of different sections. The only
exception are recursive property values, e.g. values referring to the very key they are associated with. Those property
values are evaluated at initialization time to avoid infinite recursion.

Built-in Default Configuration Settings

During startup any HPX application applies a predefined search pattern to locate one or more configuration files. All
found files will be read and merged in the sequence they are found into one single internal data structure holding all
configuration properties.

As a first step the internal configuration database is filled with a set of default configuration properties. Those settings
are described on a section by section basis below.

Note: You can print the default configuration settings used for an executable by specifying the command line option
——hpx :dump-config.

The system configuration section

[system]

pid = <process-—-id>

prefix = <current prefix path of core HPX library>

executable = <current prefix path of executable>
Property Description
system.pid This is initialized to store the current OS-process id of the application instance.
system.prefix This is initialized to the base directory HPX has been loaded from.
system. This is initialized to the base directory the current executable has been loaded
executable_prefix from.

The hpx configuration section

[hpx]

location = ${HPX_LOCATION:S$[system.prefix]}

component_path = $[hpx.location]/lib/hpx:$[system.executable_prefix]/lib/hpx:$[system.
—executable_prefix]/../lib/hpx

master_ini_path = $[hpx.location]/share/hpx-<version>:$[system.executable_prefix]/
—share/hpx—<version>:$[system.executable_prefix]/../share/hpx-<version>

ini_path = $[hpx.master_ini_path]/ini

os_threads =1

localities = 1

program_name =

cmd_line =

lock_detection = ${HPX_LOCK_DETECTION:0}

(continues on next page)

2.5. Manual 99

HPX Documentation, 1.3.0

(continued from previous page)

throw_on_held_lock = ${HPX_THROW_ON_HELD_LOCK:1}

minimal_deadlock_detection = <debug>

spinlock_deadlock_detection = <debug>

spinlock_deadlock_detection_limit = S{HPX_SPINLOCK_DEADLOCK_DETECTION_LIMIT:1000000}
max_background_threads = ${HPX_MAX_ BACKGROUND_THREADS:$ [hpx.os_threads]}
max_idle_loop_count ${HPX_MAX_TDLE_LOOP_COUNT:<hpx_idle_loop_count_max>}
max_busy_loop_count = ${HPX_MAX_ BUSY_LOOP_COUNT:<hpx_busy_loop_count_max>}
max_idle_backoff_time = ${HPX_MAX_ IDLE_BACKOFF_TIME:<hpx_idle_backoff_time_max>}

[hpx.stacks]

small_size = ${HPX_SMALL_STACK_SIZE:<hpx_small_stack_size>}
medium_size = ${HPX_MEDIUM_STACK_SIZE:<hpx_medium_stack_size>}
large_size = ${HPX_LARGE_STACK_SIZE:<hpx_large_stack_size>}
huge_size = ${HPX_HUGE_STACK_SIZE:<hpx_huge_stack_size>}
use_guard_pages = ${HPX_THREAD_GUARD_PAGE:1}

100 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

2.5. Manual 101

HPX Documentation, 1.3.0

Property Description

hpx. This is initialized to the id of the /ocality this application instance is running on.

location

hpx. Duplicates are discarded. This property can refer to a list of directories separated by ' : ' (Linux,

component| Aadtoid, and MacOS) or using '; ' (Windows).

hpx. This is initialized to the list of default paths of the main hpx.ini configuration files. This property

master_injicamateffer to a list of directories separated by ':' (Linux, Android, and MacOS) or using '; '
(Windows).

hpx. This is initialized to the default path where HPX will look for more ini configuration files. This

ini_path | property can refer to a list of directories separated by ' : ' (Linux, Android, and MacOS) or using
'; ' (Windows).

hpx. This setting reflects the number of OS-threads used for running HPX-threads. Defaults to number

os_threadsof detected cores (not hyperthreads/PUs).

hpx. This setting reflects the number of localities the application is running on. Defaults to 1.

localitiels

hpx. This setting reflects the program name of the application instance. Initialized from the command

program_nahme argv [0].

hpx. This setting reflects the actual command line used to launch this application instance.

cmd_line

hpx. This setting verifies that no locks are being held while a HPX thread is suspended. This setting is

lock_detelcappbicable only if HPX_WITH_VERIFY_LOCKS is set during configuration in CMake.

hpx. This setting causes an exception if during lock detection at least one lock is being held while a HPX

throw_on_|

hthiehdlis skspended. This setting is applicable only if HPX_WITH_VERIFY_LOCKS is set during
configuration in CMake. This setting has no effect if hpx . lock_detection=0.

hpx.
minimal_d

This setting enables support for minimal deadlock detection for HPX-threads. By default this is

esefl 1o & K fatddebug builds) or to 0 (for Release, RelWithDeblnfo, RelMinSize builds), this setting
is effective only if HPX_WITH_THREAD_DEADLOCK_DETECTION is set during configuration in
CMake.

hpx. This setting verifies that spinlocks don’t spin longer than specified using the hpx.

spinlock_|dspdhdokkddeadtidok_detection_limit. This setting is applicable only if
HPX_WITH_SPINLOCK_DEADLOCK_DETECTION is set during configuration in CMake.
By default this is set to 1 (for Debug builds) or to 0 (for Release, RelWithDebInfo, RelMinSize
builds).

hpx. This setting specifies the upper limit of allowed number of spins that spinlocks are allowed to per-

spinlock_|dfewn] dhks sdttingds applichble only if HPX_WITH_SPINLOCK_DEADLOCK_DETECTION is set
during configuration in CMake. By default this is set to 27000000.

hpx. This setting defines the number of threads in the scheduler which are used to execute background

max_backgrworkd Byrdefadisthis is the same as the number of cores used for the scheduler.

hpx. By default this is defined by the preprocessor constant HPX_IDLE_LOOP_COUNT_MAX. This is

max_idle_|lawmternalsetting which you should change only if you know exactly what you are doing.

hpx. This setting defines the maximum value of the busy-loop counter in the scheduler. By default this is

max_busy_|

ldefmed dwyrthe preprocessor constant HPX_BUSY_LOOP_COUNT_MAX. This is an internal setting
which you should change only if you know exactly what you are doing.

hpx.
max_idle_|

This setting defines the maximum time (in milliseconds) for the scheduler to sleep after be-

bimgk adtef forimepx.max_idle_loop_count iterations. This setting is applicable only if
HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF is set during configuration in CMake. By de-
fault this is defined by the preprocessor constant HPX_IDLE_BACKOFF_TIME_MAX. This is an
internal setting which you should change only if you know exactly what you are doing.

hpx.
stacks.
small_siz

This is initialized to the small stack size to be used by HPX-threads. Set by default to the value of
the compile time preprocessor constant HPX_SMALL_STACK_SIZE (defaults to 0x8000). This

evalue is used for all HPX threads by default, except for the thread running hpx_main (which runs
on a large stack).

hpx. This is initialized to the medium stack size to be used by HPX-threads. Set by default to the value
stacks. of the compile time preprocessor constant HPX_MEDIUM_STACK_SIZE (defaults to 0x20000).
1H1§d1um_51ze Ch] , . ’
PX. This is initialized to the large stack size to be used Byl ?ﬁji —threaas. §et EylgeEault to tﬁe vaiue
stacks. of the compile time preprocessor constant HPX_LARGE_STACK_SIZE (defaults to 0x200000).

large_siz

eThis setting is used by default for the thread running hpx_main only.

hox

Thic 1< initialized to the huoe <stack <i7e to be u<sed bv HPYX -thread<s Set bv default to the value of

HPX Documentation, 1.3.0
The hpx.threadpools configuration section
[hpx.threadpools]
io_pool_size = ${HPX_NUM_TIO_POOL_SIZE:2}
parcel_pool_size = ${HPX_NUM_PARCEL_POOL_SIZE:2}
timer_pool_size = ${HPX_NUM_TIMER_POOL_SIZE:2}
Property Description
hpx.threadpools. The value of this property defines the number of OS-threads created for the
io_pool_size internal I/O thread pool.

hpx.threadpools.
parcel_pool_size

The value of this property defines the number of OS-threads created for the
internal parcel thread pool.

hpx.threadpools.
timer_pool_size

The value of this property defines the number of OS-threads created for the
internal timer thread pool.

The hpx.thread_queue configuration section

Important:

These setting control internal values used by the thread scheduling queues in the HPX scheduler. You

should not modify these settings except if you know exactly what you are doing]

[hpx.thread_ queue]

min_tasks_to_steal_pe
min_tasks_to_steal_ st
min_add_new_count = $
max_add_new_count S
max_delete_count S

nding = ${HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_PENDING:O0}
aged = ${HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_ STAGED:10}
{HPX_THREAD_QUEUE_MIN_ADD_NEW_COUNT:10}

{HPX_THREAD_ QUEUE_MAX_ADD_NEW_COUNT:10}
HPX_THREAD_QUEUE_MAX_DELETE_COUNT:1000}

Property

Description

hpx.
thread_queue.
min_tasks_to_steal

The value of this property defines the number of pending HPX threads which have to
be available before neighboring cores are allowed to steal work. The default is to allow
_speatingrabways.

hpx.
thread_queue.
min_tasks_to_steal

The value of this property defines the number of staged HPX tasks have which to be
available before neighboring cores are allowed to steal work. The default is to allow
_st¢adipg dnly if there are more tan 10 tasks available.

hpx.
thread_queue.
min_add_new_count

The value of this property defines the minimal number tasks to be converted into HPX
threads whenever the thread queues for a core have run empty.

hpx.
thread_queue.
max_add_new_count

The value of this property defines the maximal number tasks to be converted into HPX
threads whenever the thread queues for a core have run empty.

hpx.
thread_queue.
max_delete_count

The value of this property defines the number number of terminated HPX threads to
discard during each invocation of the corresponding function.

The hpx . components configuration section

[hpx.components]
load_external

${HPX_

LOAD_EXTERNAL_COMPONENTS:1}

2.5. Manual

103

HPX Documentation, 1.3.0

Property Description

hpx. This entry defines whether external components will be loaded on this locality. This entry
components. | normallyissetto 1 and usually there is no need to directly change this value. It is automatically
load_external setto 0 for a dedicated AGAS server locality.

Additionally, the section hpx . component s will be populated with the information gathered from all found compo-
nents. The information loaded for each of the components will contain at least the following properties:

[hpx.components . <component_instance_name>]

name = <component7name>

path = <full_path_of_the_component_module>

enabled = $[hpx.components.load_external]
Property Description
hpx. This is the name of a component, usually the same as the second argument to the macro
components. used while registering the component with HPX REGISTER_COMPONENT. Set by the
<component_instaneenpomestfactory.
name
hpx. This is either the full path file name of the component module or the directory the compo-
components. nent module is located in. In this case, the component module name will be derived from

<component_instgnthe preperty hpx . components.<component_instance_name>.name. Set by
path the component factory.

hpx. This setting explicitly enables or disables the component. This is an optional property,
components. HPX assumed that the component is enabled if it is not defined.
<component_instgnce_name>.

enabled

The value for <component_instance_name> is usually the same as for the corresponding name property. How-
ever generally it can be defined to any arbitrary instance name. It is used to distinguish between different ini sections,
one for each component.

The hpx . parcel configuration section

[hpx.parcel]

address = ${HPX_PARCEL_SERVER_ADDRESS:<hpx_initial_ip_address>}

port = ${HPX_PARCEL_SERVER_PORT:<hpx_initial_ip_port>}

bootstrap = ${HPX_PARCEL_BOOTSTRAP:<hpx_parcel_bootstrap>}

max_connections = ${HPX_PARCEL_MAX_CONNECTIONS:<hpx_parcel_max_connections>}
max_connections_per_locality = ${HPX_PARCEL_MAX_CONNECTIONS_PER_LOCALITY:<hpx_parcel_
—max_connections_per_locality>}

max_message_size = ${HPX_PARCEL_MAX_MESSAGE_SIZE:<hpx_parcel_max_message_size>}
max_outbound_message_size = ${HPX_PARCEL_MAX_OUTBOUND_MESSAGE_SIZE:<hpx_parcel_max_
—outbound_message_size>}

array_optimization = ${HPX_PARCEL_ARRAY_OPTIMIZATION:1}

zero_copy_optimization = ${HPX_PARCEL_ZERO_COPY_OPTIMIZATION:S [hpx.parcel.array_
—optimization]}

async_serialization = ${HPX_PARCEL_ASYNC_SERIALIZATION:1}

message_handlers = ${HPX_PARCEL_MESSAGE_HANDLERS:0}

104 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Property Description

hpx. This property defines the default IP address to be used for the parcel layer to listen to. This IP

parcel. address will be used as long as no other values are specified (for instance using the ——hpx : hpx

address command line option). The expected format is any valid IP address or domain name format which
can be resolved into an IP address. The default depends on the compile time preprocessor constant
HPX_INITIAL_IP_ADDRESS ("127.0.0.1"M).

hpx. This property defines the default IP port to be used for the parcel layer to listen to. This IP

parcel. port will be used as long as no other values are specified (for instance using the ——hpx: hpx

port command line option). The default depends on the compile time preprocessor constant
HPX_INITIAL_IP_PORT (7910).

hpx. This property defines which parcelport type should be used during application bootstrap. The de-

parcel. fault depends on the compile time preprocessor constant HPX_PARCEL_BOOTSTRAP ("tcp").

bootstrap

hpx. This property defines how many network connections between different localities are overall

parcel. kept alive by each of locality. The default depends on the compile time preprocessor constant

max_connedtHPXsPARCEL_MAX_CONNECTIONS (512).

hpx. This property defines the maximum number of network connections that one locality will

parcel. open to another locality. The default depends on the compile time preprocessor constant

max_connegtHRX sPARGETL ddAX IEGNNECTIONS_PER_LOCALITY (4).

hpx. This property defines the maximum allowed message size which will be transferrable

parcel. through the parcel layer. The default depends on the compile time preprocessor constant

max_messagelRX zeARCEL_MAX_ MESSAGE_SIZE (1000000000 bytes).

hpx. This property defines the maximum allowed outbound coalesced message size which will be trans-

parcel. ferrable through the parcel layer. The default depends on the compile time preprocessor constant

max_outboyndP XieR&RCGRL sM2&% OUTBOUND_MESSAGE_SIZE (1000000 bytes).

hpx. This property defines whether this /ocality is allowed to utilize array optimizations during serial-

parcel. ization of parcel data. The defaultis 1.

array_optimization

hpx. This property defines whether this /ocality is allowed to utilize zero copy optimizations dur-

parcel. ing serialization of parcel data. The default is the same value as set for hpx.parcel.

zero_copy_|loptray zewtiomi zation

hpx. This property defines whether this /ocality is allowed to spawn a new thread for serialization (this

parcel. is both for encoding and decoding parcels). The default is 1.

async_serialization

hpx. This property defines whether message handlers are loaded. The default is 0.

parcel.

message_hg

ndlers

The following settings relate to the TCP/IP parcelport.

[hpx.parcel.
enable S{H
array_optimi

—optimizati
Zero_Ccopy_op
—copy_optim
async_serial
—serializat
parcel_pool_
—size]}
max_connecti
max_connecti
—parcel.max

tep]
PX_HAVE_PARCELPORT_TCP:$ [hpx.parcel.enabled]}
S {HPX_PARCEL_TCP_ARRAY_OPTIMIZATION: S [hpx.parcel.array_

zation =
on]}
timization
ization]}
ization
ion]}
size

${HPX_PARCEL_TCP_ZERO_COPY_OPTIMIZATION:S [hpx.parcel.zero_

S {HPX_PARCEL_TCP_ASYNC_SERIALIZATION:S [hpx.parcel.async_

${HPX_PARCEL_TCP_PARCEL_POOL_SIZE:$[hpx.threadpools.parcel_pool_
ons = ${HPX_PARCEL_TCP_MAX_CONNECTIONS:S$ [hpx.parcel.max_connections]}
ons_per_locality ${HPX_PARCEL_TCP_MAX_CONNECTIONS_PER_LOCALITY:S$ [hpx.
_connections_per_locality]}

(continues on next page)

2.5. Manual

105

HPX Documentation, 1.3.0

(continued from previous page)

max_message_size = ${HPX_PARCEL_TCP_MAX MESSAGE_SIZE:$[hpx.parcel.max_message_size]}
max_outbound_message_size = ${HPX_PARCEL_TCP_MAX_OUTBOUND_MESSAGE_SIZE:$[hpx.parcel.
—max_outbound_message_size]}

Property Description

hpx.parcel. Enable the use of the default TCP parcelport. Note that the initial bootstrap of the overall

tcp.enable HPX application will be performed using the default TCP connections. This parcelport is
enabled by default. This will be disabled only if MPI is enabled (see below).

hpx. This property defines whether this /ocality is allowed to utilize array optimizations in the

parcel.tcp. TCP/IP parcelport during serialization of parcel data. The default is the same value as set

array_optimizatilofor hpx.parcel.array_optimization.

hpx. This property defines whether this locality is allowed to utilize zero copy optimizations

parcel.tcp. in the TCP/IP parcelport during serialization of parcel data. The default is the same value

zero_copy_optimijzatsedfor hpx.parcel.zero_copy_optimization.

hpx. This property defines whether this /ocality is allowed to spawn a new thread for serial-

parcel.tcp. ization in the TCP/IP parcelport (this is both for encoding and decoding parcels). The

async_serializat|idefault is the same value as set for hpx .parcel.async_serialization.

hpx. The value of this property defines the number of OS-threads created for the internal parcel

parcel.tcp. thread pool of the TCP parcel port. The default is taken from hpx.threadpools.

parcel_pool_size parcel_pool_size.

hpx. This property defines how many network connections between different localities are

parcel.tcp. overall kept alive by each of locality. The default is taken from hpx.parcel.

max_connections | max_connections.

hpx. This property defines the maximum number of network connections that one lo-

parcel.tcp. cality will open to another locality. The default is taken from hpx.parcel.

max_connections_|pmaxlooahétyions_per_locality.

hpx. This property defines the maximum allowed message size which will be trans-

parcel.tcp. ferrable through the parcel layer. The default is taken from hpx.parcel.

max_message_size max_message_size.

hpx. This property defines the maximum allowed outbound coalesced message size which will

parcel.tcp. be transferrable through the parcel layer. The default is taken from hpx.parcel.

max_outbound_mes|smgg_osukzbound_connections.

The following settings relate to the MPI parcelport. These settings take effect only if the compile time constant
HPX_HAVE_PARCELPORT_MPT is set (the equivalent cmake variable is HPX_WITH_PARCELPORT_MPT and has
to be set to ON.

[hpx.parcel .mpi]

enable = ${HPX_HAVE_PARCELPORT_MPI:$ [hpx.parcel.enabled]}

env = ${HPX_HAVE_PARCELPORT_MPI_ENV:MV2_COMM_WORLD_RANK, PMI_RANK,OMPI_COMM_WORLD_SIZE,
—ALPS_APP_PE}

multithreaded = ${HPX_ HAVE_PARCELPORT_MPI_MULTITHREADED:0}

rank = <MPI_rank>

processor_name = <MPI_processor_name>

array_optimization = ${HPX_HAVE_PARCEL_MPI_ARRAY_OPTIMIZATION:S$ [hpx.parcel.array_
—optimization]}

zero_copy_optimization = ${HPX_HAVE_PARCEL_MPI_ZERO_COPY_OPTIMIZATION:S [hpx.parcel.
—zero_copy_optimization]}

use_io_pool S{HPX_HAVE_PARCEL_MPI USE_IO POOL:S$1}

async_serialization = ${HPX_HAVE_PARCEL_MPI_ASYNC_SERIALIZATION: S [hpx.parcel.async_
—serialization]}

parcel_pool_size = ${HPX_HAVE_PARCEL_MPI_PARCEL_POOL_SIZE:$ [hpx.threadpools.parcel_
—pool_size]}

(continues on next page)

106 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

max_connections
—connections]}

max_connections_]

S {HPX_HAVE_PARCEL_MPI_MAX_CONNECTIONS:S$ [hpx.parcel.max_

per_locality S {HPX_HAVE_PARCEL_MPI_MAX_CONNECTIONS_PER_LOCALITY:

—S [hpx.parcel.max_connections_per_locality]}

max_message_size

—sizel}

max_outbound_message_size

${HPX_HAVE_PARCEL_MPI_MAX MESSAGE_SIZE:$[hpx.parcel.max_message_

${HPX_HAVE_PARCEL_MPI_MAX_ OUTBOUND_MESSAGE_SIZE:$ [hpx.

—parcel.max_outbound_message_size]}

Property Description

hpx.parcel. Enable the use of the MPI parcelport. HPX tries to detect if the application was started within

mpi.enable a parallel MPI environment. If the detection was succesful, the MPI parcelport is enabled by
default. To explicitly disable the MPI parcelport, set to 0. Note that the initial bootstrap of the
overall HPX application will be performed using MPI as well.

hpx.parcel. This property influences which environment variables (comma separated) will be analyzed to

mpi.env find out whether the application was invoked by MPI.

hpx. This property is used to determine what threading mode to use when initializing MPI. If this

parcel.mpi. setting is 0 HPX will initialize MPI with MPT_THREAD_ SINGLE if the value is not equal to

multithreaded 0 HPX will initialize MPI with MPI_THREAD_MULTI.

hpx.parcel. This property will be initialized to the MPI rank of the locality.

mpi.rank

hpx. This property will be initialized to the MPI processor name of the locality.

parcel.mpi.
processor_nar

e

hpx.
parcel.mpi.
array_optimiz

This property defines whether this locality is allowed to utilize array optimizations in the MPI
parcelport during serialization of parcel data. The default is the same value as set for hpx .
apdoeel .array_optimization.

hpx.
parcel .mpi.
Zero_Ccopy_opt

This property defines whether this /ocality is allowed to utilize zero copy optimizations in the
MPI parcelport during serialization of parcel data. The default is the same value as set for
ihpzapdooel . zero_copy_optimization.

hpx.
parcel.mpi.
use_io_pool

This property can be set to run the progress thread inside of HPX threads instead of a separate
thread pool. The default is 1.

hpx.
parcel.mpi.
async_serialil

This property defines whether this locality is allowed to spawn a new thread for serialization
in the MPI parcelport (this is both for encoding and decoding parcels). The default is the same
zedtueoas set for hpx .parcel.async_serialization.

hpx.
parcel . .mpi.

parcel_pool_s

The value of this property defines the number of OS-threads created for the internal par-
cel thread pool of the MPI parcel port. The default is taken from hpx.threadpools.
ipercel_pool_size.

hpx.
parcel . .mpi.
max_connectiqg

This property defines how many network connections between different localities are
overall kept alive by each of locality. The default is taken from hpx.parcel.
nsax_connections.

hpx.
parcel.mpi.
max_connectiqg

This property defines the maximum number of network connections that one /o-
cality will open to another locality. The default is taken from hpx.parcel.
nsayeroiomeatlicys_per_locality.

hpx.
parcel.mpi.

max_message_g

3

This property defines the maximum allowed message size which will be transferrable through
the parcel layer. The default is taken from hpx.parcel .max_message_size.
ize

hpx.
parcel.mpi.
max_outbound |

This property defines the maximum allowed outbound coalesced message size which will
be transferrable through the parcel layer. The default is taken from hpx.parcel.
Imess agetlsdurd__connections.

2.5. Manual

107

HPX Documentation,

1.3.0

The hpx . agas configuration section

[hpx.agas]
address

S

port

{HPX_AGAS_SERVER_ADDRESS:<hpx_initial_ip_address>}

${HPX_AGAS_SERVER_PORT:<hpx_initial_ip_port>}
service_mode
dedicated_server
max_pending_refcnt_requests

hosted
0

${HPX_AGAS_MAX_PENDING_REFCNT_REQUESTS:<hpx_initial_

—agas_max_pending_refcnt_requests>}

use_caching

use_range_caching

S {HPX_AGAS_USE_CACHING:1}
$S{HPX_AGAS_USE_RANGE_CACHING:1}

local_cache_size = ${HPX_AGAS_LOCAL_CACHE_SIZE:<hpx_agas_local_cache_size>}

Property Description

hpx. This property defines the default IP address to be used for the AGAS root server. This IP address

agas. will be used as long as no other values are specified (for instance using the ——hpx:agas com-

address mand line option). The expected format is any valid IP address or domain name format which can
be resolved into an IP address. The default depends on the compile time preprocessor constant
HPX_INITIAL_IP_ADDRESS ("127.0.0.1").

hpx. This property defines the default IP port to be used for the AGAS root server. This IP port will be

agas. used as long as no other values are specified (for instance using the ——hpx : agas command line op-

port tion). The default depends on the compile time preprocessor constant HPX_INITIAL_IP_PORT
(7009).

hpx. This property specifies what type of AGAS service is running on this /ocality. Currently, two modes

agas. exist. The locality that acts as the AGAS server runs in boot st rap mode. All other localities are

service_moiiehosted mode.

hpx. This property specifies whether the AGAS server is exclusively running AGAS services

agas. and not hosting any application components. It is a boolean value. Set to 1 if

dedicated| sehwperrun-agas—server-only is present.

hpx. This property defines the number of reference counting requests (increments or decre-

agas. ments) to buffer. The default depends on the compile time preprocessor constant

max_pendingPXe INATIARGAGABSMAX_PENDING_REFCNT_REQUESTS (4096).

hpx. This property specifies whether a software address translation cache is used. It is a boolean value.

agas. Defaults to 1.

use_caching

hpx. This property specifies whether range-based caching is used by the software address translation

agas. cache. This property is ignored if hpx.agas.use_caching is false. It is a boolean value. Defaults to

use_range| daching

hpx. This property defines the size of the software address translation cache for AGAS services.

agas. This property is ignored if hpx.agas.use_caching is false. Note that if hpx.agas.

local_cad

hessirange_caching is true, this size will refer to the maximum number of ranges stored in
the cache, not the number of entries spanned by the cache. The default depends on the compile time
preprocessor constant HPX_AGAS_LOCAL_CACHE_SIZE (4096).

The hpx . commandline configuration section

The following table lists the definition of all pre-defined command line option shortcuts. For more information about
commandline options see the section HPX Command Line Options.

[hpx.commandline]

aliasing

allow_unknown

${HPX_COMMANDLINE_ALIASING:1}
${HPX_COMMANDLINE_ALLOW_UNKNOWN: 0}

(continues on next page)

108

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

[hpx.commandline.aliases]

-a =

e
-h
-I
-1

——hpx:
—-—hpx:
:help
——hpx:ini
——hpx:
——hpx:
—-—hpx:
—-—hpx:
:threads
:version

——hpx

——hpx
——hpx
——hpx
—-—hpx

agas
console

ini
localities
app-config
queuing
run-agas-server

:worker
:hpx

——hpx:
——hpx:
—-—hpx:
——hpx:
——hpx:
——hpx:
——hpx:
——hpx:
——hpx:
——hpx:

node=0
node=1
node=2
node=3
node=4
node=5
node=6
node=7
node=8
node=9

2.5. Manual

109

HPX Documentation, 1.3.0

110 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Property Description
hpx.commandline. Enable command line aliases as defined in the section hpx . commandline.
aliasing aliases (see below). Defaults to 1.

hpx.commandline.
allow_unknown

Allow for unknown command line options to be passed through to
hpx_main () Defaults to 0.

hpx.commandline.
aliases.-a

On the commandline, —a expands to: ——hpx:agas.

hpx.commandline.
aliases.-c

On the commandline, —c expands to: ——hpx:console.

hpx.commandline.
aliases.-h

On the commandline, —h expands to: ——hpx:help.

hpx.commandline.
aliases.——help

On the commandline, ——help expands to: ——hpx:help.

hpx.commandline.
aliases.-I

On the commandline, —I expands to: ——hpx:ini.

hpx.commandline.
aliases.-1

On the commandline, —1 expands to: ——hpx:localities.

hpx.commandline.
aliases.-p

On the commandline, —p expands to: ——hpx:app-config

hpx.commandline.
aliases.—-q

On the commandline, —g expands to: ——hpx: queuing.

hpx.commandline.
aliases.-r

On the commandline, —r expands to: ——hpx:run-agas-server.

hpx.commandline.
aliases.-t

On the commandline, —t expands to: ——hpx:threads.

hpx.commandline.
aliases.-v

On the commandline, —v expands to: ——hpx:version

hpx.commandline.
aliases.—--version

On the commandline, ——version expands to: ——hpx:version

hpx.commandline.
aliases.-w

On the commandline, —w expands to: ——hpx:worker.

hpx.commandline.
aliases.—x

On the commandline, —x expands to: ——hpx : hpx.

hpx.commandline.
aliases.-0

On the commandline, —0 expands to: ——hpx : node=0.

hpx.commandline.
aliases.-1

On the commandline, —1 expands to: ——hpx :node=1.

hpx.commandline.
aliases.-2

On the commandline, —2 expands to: ——hpx:node=2.

hpx.commandline.
aliases.-3

On the commandline, —3 expands to: ——hpx:node=3.

hpx.commandline.
aliases.-4

On the commandline, —4 expands to: ——hpx :node=4.

hpx.commandline.
aliases.-5

On the commandline, —5 expands to: ——hpx :node=5.

hpx.commandline.
aliases.-6

On the commandline, —6 expands to: ——hpx:node=6.

hpx.commandline.
aliases.-7

On the commandline, —7 expands to: ——hpx :node=7.

hpx.commandline.
aliases.-8

On the commandline, —8 expands to: ——hpx : node=8.

hpx.commandline.
aliases.-9

On the commandline, —9 expands to: ——hpx:node=9.

2.5. Manual

111

HPX Documentation, 1.3.0

Loading INI files

During startup and after the internal database has been initialized as described in the section Built-in Default Configu-
ration Settings, HPX will try to locate and load additional ini files to be used as a source for configuration properties.
This allows for a wide spectrum of additional customization possibilities by the user and system administrators. The
sequence of locations where HPX will try loading the ini files is well defined and documented in this section. All ini
files found are merged into the internal configuration database. The merge operation itself conforms to the rules as
described in the section The HPX INI File Format.

1.

10.

11.

Load all component shared libraries found in the directories specified by the property hpx . component_path
and retrieve their default configuration information (see section Loading components for more details). This
property can refer to a list of directories separated by ' : ' (Linux, Android, and MacOS) or using '; ' (Win-
dows).

Load all files named hpx . ini in the directories referenced by the property hpx .master_ini_path This
property can refer to a list of directories separated by ' : ' (Linux, Android, and MacOS) or using '; ' (Win-
dows).

Load a file named . hpx.ini in the current working directory, e.g. the directory the application was invoked
from.

Load a file referenced by the environment variable HPX_INTI. This variable is expected to provide the full path
name of the ini configuration file (if any).

Load a file named /etc/hpx.ini. This lookup is done on non-Windows systems only.

Load a file named .hpx.ini in the home directory of the current user, e.g. the directory referenced by the
environment variable HOME.

Load a file named . hpx. ini in the directory referenced by the environment variable PWD.
Load the file specified on the command line using the option ——hpx:config.

Load all properties specified on the command line using the option ——hpx : ini. The properties will be added
to the database in the same sequence as they are specified on the command line. The format for those options
is for instance ——hpx:ini=hpx.default_stack_size=0x4000. In addition to the explicit command
line options, this will set the following properties as implied from other settings:

* hpx.parcel.address and hpx.parcel.port assetby ——hpx:hpx
* hpx.agas.address, hpx.agas.port and hpx.agas.service_mode as setby ——hpx:agas
* hpx.program_name and hpx.cmd_1ine will be derived from the actual command line

* hpx.os_threads and hpx.localities assetby ——hpx:threads and
—-—hpx:localities

* hpx.runtime_mode will be derived from any explicit ——hpx:console, ——hpx:worker, or
——hpx:connect, or it will be derived from other settings, such as ——hpx:node =0 which implies
——hpx:console

Load files based on the pattern % . ini in all directories listed by the property hpx.ini_path. All files found
during this search will be merged. The property hpx.ini_path can hold a list of directories separated by
':' (on Linux or Mac) or '; ' (on Windows).

Load the file specified on the command line using the option ——hpx : app—-config. Note that this file will be
merged as the content for a top level section [application].

Note: Any changes made to the configuration database caused by one of the steps will influence the loading process
for all subsequent steps. For instance, if one of the ini files loaded changes the property hpx.ini_path this will

112

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

influence the directories searched in step 9 as described above.

Important: The HPX core library will verify that all configuration settings specified on the command line (using the
——hpx:ini option) will be checked for validity. That means that the library will accept only known configuration
settings. This is to protect the user from unintentional typos while specifying those settings. This behavior can be
overwritten by appending a ' ! ' to the configuration key, thus forcing the setting to be entered into the configuration
database, for instance: ——hpx:ini=hpx.foo! = 1

If any of the environment variables or files listed above is not found the corresponding loading step will be silently
skipped.

Loading components

HPX relies on loading application specific components during the runtime of an application. Moreover, HPX comes
with a set of preinstalled components supporting basic functionalities useful for almost every application. Any com-
ponent in HPX is loaded from a shared library, where any of the shared libraries can contain more than one component
type. During startup, HPX tries to locate all available components (e.g. their corresponding shared libraries) and
creates an internal component registry for later use. This section describes the algorithm used by HPX to locate all
relevant shared libraries on a system. As described, this algorithm is customizable by the configuration properties
loaded from the ini files (see section Loading INI files).

Loading components is a two stage process. First HPX tries to locate all component shared libraries, loads those,
and generates default configuration section in the internal configuration database for each component found. For each
found component the following information is generated:

[hpx.components.<component_instance_name>]
name = <name_of_shared_library>

path = $[component_path]

enabled = $[hpx.components.load_external]
default = 1

The values in this section correspond to the expected configuration information for a component as described in the
section Built-in Default Configuration Settings.

In order to locate component shared libraries, HPX will try loading all shared libraries (files with the platform specific
extension of a shared library, Linux: . so, Windows: ».d11, MacOS: *.dylib found in the directory referenced
by the ini property hpx . component_path).

This first step corresponds to step 1) during the process of filling the internal configuration database with default
information as described in section Loading INI files.

After all of the configuration information has been loaded, HPX performs the second step in terms of
loading components. During this step, HPX scans all existing configuration sections [hpx.component.
<some_component_instance_name>] and instantiates a special factory object for each of the successfully
located and loaded components. During the application’s life time, these factory objects will be responsible to create
new and discard old instances of the component they are associated with. This step is performed after step 11) of the
process of filling the internal configuration database with default information as described in section Loading INI files.

Application specific component example

In this section we assume to have a simple application component which exposes one member function as a component
action. The header file app_server.hpp declares the C++ type to be exposed as a component. This type has a

2.5. Manual 113

HPX Documentation, 1.3.0

member function print_greeting () which is exposed as an action print_greeting_action. We assume
the source files for this example are located in a directory referenced by $SAPP_ROOT:

// file: $APP_ROOT/app_server.hpp
#include <hpx/hpx.hpp>
#include <hpx/include/iostreams.hpp>

namespace app
{
// Define a simple component exposing one action 'print_greeting'
class HPX COMPONENT EXPORT server
: public hpx::components::component_base<server>
{
void print_greeting ()
{

hpx::cout << "Hey, how are you?\n" << hpx::flush;

// Component actions need to be declared, this also defines the

// type 'print_greeting_action' representing the action.

HPX_DEFINE_COMPONENT_ACTION (server, print_greeting, print_greeting_action);
}i

// Declare boilerplate code required for each of the component actions.
HPX_REGISTER_ACTION_DECLARATION (app: :server: :print_greeting_action);

The corresponding source file contains mainly macro invocations which define boilerplate code needed for HPX to
function properly:

// file: SAPP_ROOT/app_server.cpp
#include "app_server.hpp"

// Define boilerplate required once per component module.
HPX_REGISTER_COMPONENT_MODULE () ;

// Define factory object associated with our component of type 'app::server'.
HPX_REGISTER_COMPONENT (app: : server, app_server);

// Define boilerplate code required for each of the component actions. Use the
// same argument as used for HPX _REGISTER ACTION_DECLARATION above.
HPX_REGISTER_ACTION (app: :server: :print_greeting_action);

The following gives an example of how the component can be used. We create one instance of the app: : server
component on the current /ocality and invoke the exposed action print_greeting_action using the global id
of the newly created instance. Note, that no special code is required to delete the component instance after it is not
needed anymore. It will be deleted automatically when its last reference goes out of scope, here at the closing brace
of the block surrounding the code:

// file: SAPP_ROOT/use_app_server_example.cpp
#include <hpx/hpx_init.hpp>
#include "app_server.hpp"

int hpx_main ()

{

// Create an instance of the app_server component on the current locality.

(continues on next page)

114 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

hpx::naming:id_type app_server_instance =
hpx::create_component<app::server> (hpx::find_here());

// Create an instance of the action 'print_greeting_action'.

app::server: :print_greeting_action print_greeting;

// Invoke the action 'print_greeting' on the newly created component.
print_greeting (app_server_instance);

}

return hpx::finalize();

int main(int argc, charx argv[])
{

return hpx::init (argc, argv);

In order to make sure that the application will be able to use the component app: : server, special configuration
information must be passed to HPX. The simples way to allow HPX to ‘find’ the component is to provide special ini
configuration files, which add the necessary information to the internal configuration database. The component should
have a special ini file containing the information specific to the component app_server.

file: SAPP_ROOT/app_server.ini
[hpx.components.app_server]

name = app_server

path = $APP_LOCATION/

Here $SAPP_LOCATION is the directory where the (binary) component shared library is located. HPX will at-
tempt to load the shared library from there. The section name hpx.components.app_server reflects the
instance name of the component (app_server is an arbitrary, but unique name). The property value for
hpx.components.app_server.name should be the same as used for the second argument to the macro
HPX_REGISTER_COMPONENT above.

Additionally a file . hpx.ini which could be located in the current working directory (see step 3 as described in the
section Loading INI files) can be used to add to the ini search path for components:

file: SPWD/.hpx.ini
[hpx]
ini_path = $[hpx.ini_path]:$APP_ROOT/

This assumes that the above ini file specific to the component is located in the directory SAPP_ROOT.

Note: It is possible to reference the defined property from inside its value. HPX will gracefully use the previous
value of hpx.ini_path for the reference on the right hand side and assign the overall (now expanded) value to the

property.

Logging

HPX uses a sophisticated logging framework allowing to follow in detail what operations have been performed inside
the HPX library in what sequence. This information proves to be very useful for diagnosing problems or just for
improving the understanding what is happening in HPX as a consequence of invoking HPX API functionality.

2.5. Manual 115

HPX Documentation, 1.3.0

Default logging

Enabling default logging is a simple process. The detailed description in the remainder of this section explains different
ways to customize the defaults. Default logging can be enabled by using one of the following:

e a command line switch ——hpx : debug—hpx—1o0g, which will enable logging to the console terminal

* the command line switch ——hpx:debug-hpx—-1og=<filename>, which enables logging to a given file
<filename>, or

* setting an environment variable HPX_LOGLEVEL=<loglevel> while running the HPX application. In this
case <loglevel> should be a number between (or equal to) 1 and 5 where 1 means minimal logging and
5 causes to log all available messages. When setting the environment variable the logs will be written to a
file named hpx.<PID>. lo in the current working directory, where <PID> is the process id of the console
instance of the application.

Customizing logging

Generally, logging can be customized either using environment variable settings or using by an ini configuration
file. Logging is generated in several categories, each of which can be customized independently. All customizable
configuration parameters have reasonable defaults, allowing to use logging without any additional configuration effort.
The following table lists the available categories.

Table 2.7: Logging categories

Cate- Category Information to be generated Environment

gory shortcut variable

Gen- None Logging information generated by different subsystems of HPX, such | HPX_LOGLEVEIL

eral as thread-manager, parcel layer, LCOs, etc.

AGAS | AGAS Logging output generated by the AGAS subsystem HPX_AGAS_LOGLEVEL
Appli- | APP Logging generated by applications. HPX_APP_LOGLEVEL
cation

By default, all logging output is redirected to the console instance of an application, where it is collected and written
to a file, one file for each logging category.

Each logging category can be customized at two levels, the parameters for each are stored in the ini configuration sec-
tions hpx.logging.CATEGORY and hpx.logging.console.CATEGORY (where CATEGORY is the category
shortcut as listed in the table above). The former influences logging at the source /ocality and the latter modifies the
logging behaviour for each of the categories at the console instance of an application.

Levels

All HPX logging output have seven different logging levels. These levels can be set explicitly or through environmental
variables in the main HPX ini file as shown below. The logging levels and their associated integral values are shown
in the table below, ordered from most verbose to least verbose. By default, all HPX logs are set to 0, e.g. all logging
output is disabled by default.

116 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Table 2.8: Logging levels
Logging level | Integral value
<debug>
<info>
<warning>
<error>
<fatal>
No logging

Ol |IN|fW| |

Tip: The easiest way to enable logging output is to set the environment variable corresponding to the logging category
to an integral value as described in the table above. For instance, setting HPX_LOGLEVEL=5 will enable full logging
output for the general category. Please note that the syntax and means of setting environment variables varies between
operating systems.

Configuration

Logs will be saved to destinations as configured by the user. By default, logging output is saved on the console
instance of an application to hpx . <CATEGORY>.<PID>.lo (where CATEGORY and PID> are placeholders for
the category shortcut and the OS process id). The output for the general logging category is saved to hpx . <PID>.
log. The default settings for the general logging category are shown here (the syntax is described in the section The
HPX INI File Format):

[hpx.logging]

level = ${HPX_LOGLEVEL:0}

destination = ${HPX_LOGDESTINATION:console}

format = ${HPX_LOGFORMAT: (T$locality%/%hpxthread%.%hpxphase%/%hpxcomponent%) P
—%parentloc%/S%hpxparent%.%hpxparentphase% $time% (Shh:Smm.$ss.Smili) [%$1dx%][\\n}

The logging level is taken from the environment variable HPX_TLOGLEVEL and defaults to zero, e.g. no logging. The
default logging destination is read from the environment variable HPX_LOGDESTINATION On any of the localities
it defaults to console which redirects all generated logging output to the console instance of an application. The
following table lists the possible destinations for any logging output. It is possible to specify more than one destination
separated by whitespace.

Table 2.9: Logging destinations

Logging desti- | Description

nation

file(<filename Direct all output to a file with the given <filename>.

cout Direct all output to the local standard output of the application instance on this locality.

cerr Direct all output to the local standard error output of the application instance on this locality.

console Direct all output to the console instance of the application. The console instance has its logging
destinations configured separately.

android_log Direct all output to the (Android) system log (available on Android systems only).

The logging format is read from the environment variable HPX_LOGFORMAT and it defaults to a complex format
description. This format consists of several placeholder fields (for instance $1ocality$% which will be replaced by
concrete values when the logging output is generated. All other information is transferred verbatim to the output. The
table below describes the available field placeholders. The separator character | separates the logging message prefix
formatted as shown and the actual log message which will replace the separator.

2.5. Manual 117

HPX Documentation, 1.3.0

Table 2.10: Available field placeholders

Name Description

locality The id of the locality on which the logging message was generated.

hpxthread | The id of the HPX-thread generating this logging output.

hpxphase | The phase'*” of the HPX-thread generating this logging output.

hpxcom- The local virtual address of the component which the current HPX-thread is accessing.
ponent
parentloc | The id of the [ocality where the HPX thread was running which initiated the current HPX-thread. The
current HPX-thread is generating this logging output.

hpxparent | The id of the HPX-thread which initiated the current HPX-thread. The current HPX-thread is gener-
ating this logging output.

hpxpar- The phase of the HPX-thread when it initiated the current HPX-thread. The current HPX-thread is
entphase generating this logging output.

time The time stamp for this logging outputline as generated by the source locality.

idx The sequence number of the logging output line as generated on the source locality.

osthread The sequence number of the OS-thread which executes the current HPX-thread.

Note: Not all of the field placeholder may be expanded for all generated logging output. If no value is available for a
particular field it is replaced with a sequence of '—"' characters.]

Here is an example line from a logging output generated by one of the HPX examples (please note that this is generated
on a single line, without line break):

(TO0000000/0000000002d46£90.01/00000000009€bcl10) P-——————- /0000000002d46£80.02 17:49.
—37.320 [000000000000004d]

<info> [RT] successfully created component {0000000100££0001, 0000000000030002}
—of type: component_barrier[7(3)]

The default settings for the general logging category on the console is shown here:

[hpx.logging.console]

level = ${HPX_LOGLEVEL:$[hpx.logging.level]}

destination = ${HPX_CONSOLE_LOGDESTINATION:file (hpx.$[system.pid].loqg) }
format = ${HPX_CONSOLE_LOGFORMAT: |}

These settings define how the logging is customized once the logging output is received by the console instance of
an application. The logging level is read from the environment variable HPX_LOGLEVEL (as set for the console
instance of the application). The level defaults to the same values as the corresponding settings in the general logging
configuration shown before. The destination on the console instance is set to be a file which name is generated based
from its OS process id. Setting the environment variable HPX_CONSOLE_LOGDESTINATION allows customization
of the naming scheme for the output file. The logging format is set to leave the original logging output unchanged, as
received from one of the localities the application runs on.

HPX Command Line Options

The predefined command line options for any application using hpx: : init are described in the following subsec-
tions.

140 The phase of a HPX-thread counts how often this thread has been activated.

118 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

HPX options (allowed on command line only)

——hpx:help
print out program usage (default: this message), possible values: full (additionally prints options from com-
ponents)

—-hpx:version
print out HPX version and copyright information

——hpx:info
print out HPX configuration information

—-hpx:options—-file arg
specify a file containing command line options (alternatively: @filepath)

HPX options (additionally allowed in an options file)

—-hpx:worker
run this instance in worker mode

——hpx:console
run this instance in console mode

—-hpx:connect
run this instance in worker mode, but connecting late

—-hpx:run-agas-server
run AGAS server as part of this runtime instance

—-hpx:run-hpx-main
run the hpx_main function, regardless of /ocality mode

——hpx:hpx arg
the IP address the HPX parcelport is listening on, expected format: address:port (default: 127.0.0.
1:7910)

--hpx:agas arg
the IP address the AGAS root server is running on, expected format: address:port (default: 127.0.0.
1:7910)

—--hpx:run-agas—server-only
run only the AGAS server

—--hpx:nodefile arg
the file name of a node file to use (list of nodes, one node name per line and core)

—-hpx:nodes arg
the (space separated) list of the nodes to use (usually this is extracted from a node file)

—-hpx:endnodes
this can be used to end the list of nodes specified using the option ——hpx :nodes

—-hpx:ifsuffix arg
suffix to append to host names in order to resolve them to the proper network interconnect

—-hpx:ifprefix arg
prefix to prepend to host names in order to resolve them to the proper network interconnect
——hpx:iftransform arg

sed-style search and replace (s/search/replace/) used to transform host names to the proper network
interconnect

2.5. Manual 119

HPX Documentation, 1.3.0

——hpx:localities arg
the number of localities to wait for at application startup (default: 1)

—--hpx:node arg
number of the node this /ocality is run on (must be unique)

——hpx:ignore-batch-env
ignore batch environment variables

—-hpx:expect-connecting-localities
this locality expects other localities to dynamically connect (this is implied if the number of initial localities is
larger than 1)

—-hpx:pu-offset
the first processing unit this instance of HPX should be run on (default: 0)

—-hpx:pu-step
the step between used processing unit numbers for this instance of HPX (default: 1)

——hpx:threads arg
the number of operating system threads to spawn for this HPX locality. Possible values are: numeric values 1,
2, 3 and so on, all (which spawns one thread per processing unit, includes hyperthreads), or cores (which
spawns one thread per core) (default: cores).

——hpx:cores arg
the number of cores to utilize for this HPX locality (default: all, i.e. the number of cores is based on the
number of threads ——hpx : threads assuming ——hpx : bind=compact

—-hpx:affinity arg
the affinity domain the OS threads will be confined to, possible values: pu, core, numa, machine (default:
pu)

—-hpx:bind arg
the detailed affinity description for the OS threads, see More details about HPX command line options for
a detailed description of possible values. Do not use with ——hpx:pu-step, ——hpx:pu-offset or
——hpx:affinity options. Implies ——hpx:numa-sensitive (-—hpx:bind=none) disables defining
thread affinities).

—-hpx:print-bind
print to the console the bit masks calculated from the arguments specified to all ——hpx : bind options.

—--hpx:queuing arg
the queue scheduling policy to use, options are local, local-priority-fifo,
local-priority-1lifo, static, static-priority, abp-priority-fifo and
abp-priority-1ifo (default: local-priority—-fifo)

—-hpx:high-priority-threads arg
the number of operating system threads maintaining a high priority queue (default: number of OS
threads), valid for ——hpx:queuing=abp-priority, —--hpx:queuing=static-priority and
——hpx:queuing=local-priority only

—-hpx:numa-sensitive
makes the scheduler NUMA sensitive

HPX configuraton options

—-hpx:app-config arg
load the specified application configuration (ini) file

120 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

——hpx:config arg
load the specified hpx configuration (ini) file

—-hpx:ini arg
add a configuration definition to the default runtime configuration

——hpx:exit
exit after configuring the runtime

HPX debugging options

—-hpx:list-symbolic—names
list all registered symbolic names after startup

—-hpx:list—-component-types
list all dynamic component types after startup

——hpx:dump—-config-initial
print the initial runtime configuration

—-hpx:dump-config
print the final runtime configuration

——hpx:debug-hpx-log [arg]
enable all messages on the HPX log channel and send all HPX logs to the target destination (default: cout)

—--hpx:debug-agas—-log [arg]
enable all messages on the AGAS log channel and send all AGAS logs to the target destination (default: cout)

——hpx:debug-parcel-log [arg]
enable all messages on the parcel transport log channel and send all parcel transport logs to the target destination
(default: cout)

—-hpx:debug-timing-log [arg]
enable all messages on the timing log channel and send all timing logs to the target destination (default: cout)

——hpx:debug—-app-log [arg]
enable all messages on the application log channel and send all application logs to the target destination (default:
cout)

—-hpx:debug-clp
debug command line processing

—-hpx:attach—-debugger arg
wait for a debugger to be attached, possible arg values: startup or exception (default: startup)

HPX options related to performance counters

—-hpx:print-counter
print the specified performance counter either repeatedly and/or at the times specified by
——hpx:print—-counter—at (see also option ——hpx:print—-counter—interval)

——hpx:print—-counter—-reset
print the specified performance counter either repeatedly and/or at the times specified by
——hpx:print—-counter—at reset the counter after the value is queried. (see also option
—-hpx:print-counter—-interval)

2.5. Manual 121

HPX Documentation, 1.3.0

——hpx:print—-counter-interval
print the performance counter(s) specified with ——hpx:print—-counter repeatedly after the time interval
(specified in milliseconds), (default: 0, which means print once at shutdown)

—-hpx:print—-counter-destination
print the performance counter(s) specified with ——hpx:print-counter to the given file (default:
console)

—-hpx:list-counters
list the names of all registered performance counters, possible values: minimal (prints counter name skele-
tons), full (prints all available counter names)

——hpx:list—-counter-infos
list the description of all registered performance counters, possible values: minimal (prints info for counter
name skeletons), full (prints all available counter infos)

—-hpx:print-counter-format
print the performance counter(s) specified with ——hpx:print—-counter possible formats in csv format
with header or without any header (see option ——hpx:no-csv-header, possible values: csv (prints
counter values in CSV format with full names as header), csv—short (prints counter values in CSV for-
mat with shortnames provided with ——hpx:print-counteras ——hpx:print—-counter shortname,
full-countername

——hpx:no-csv-header
print the performance counter(s) specified with ——hpx:print—-counter and csv or csv-short format
specified with ——hpx:print—-counter—rformat without header

—-hpx:print-counter-at arg
print the performance counter(s) specified with -—hpx:print—counter (or
——hpx:print-counter-reset at the given point in time, possible argument values: startup,
shutdown (default), noshutdown

—-hpx:reset-counters
reset all performance counter(s) specified with ——hpx : print-counter after they have been evaluated.

——hpx:print—-counters-locally
Each locality prints only its own local counters. If this is used with
——hpx:print—-counter—-destination=<file>, the code will append a ".<locality_id>"
to the file name in order to avoid clashes between localities.

Command line argument shortcuts

Additionally, the following shortcuts are available from every HPX application.

122 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Table 2.11: Predefined command line option shortcuts

Shortcut option | Equivalent long option
-a —-—hpx:agas

-C ——hpx:console

-h ——hpx:help

-I ——hpx:ini

-1 ——hpx:localities
-p ——hpx:app-config
-q ——hpx:queuing

-r —-—-hpx:run-agas-server
-t ——hpx:threads

-V ——hpx:version

-W ——hpx:worker

-x ——hpx:hpx

-0 ——hpx:node=0

-1 ——hpx:node=1

-2 ——hpx:node=2

-3 ——hpx:node=3

-4 ——hpx:node=4

-5 ——hpx:node=5

-6 ——hpx:node=6

-7 ——hpx:node="7

-8 ——hpx:node=8

-9 ——hpx:node=9

It is possible to define your own shortcut options. In fact, all of the shortcuts listed above are pre-defined using the
technique described here. Also, it is possible to redefine any of the pre-defined shortcuts to expand differently as well.

Shortcut options are obtained from the internal configuration database. They are stored as key-value properties in
a special properties section named hpx .commandline. You can define your own shortcuts by adding the corre-
sponding definitions to one of the ini configuration files as described in the section Configuring HPX applications.
For instance, in order to define a command line shortcut ——p which should expand to ~hpx :print-counter, the
following configuration information needs to be added to one of the ini configuration files:

[hpx.commandline.aliases]
-—-pc = —-hpx:print-counter

Note: Any arguments for shortcut options passed on the command line are retained and passed as arguments to the
corresponding expanded option. For instance, given the definition above, the command line option:

—--pc=/threads{locality#0/total}/count/cumulative

would be expanded to:

——-hpx:print-counter=/threads{locality#0/total}/count/cumulative

Important: Any shortcut option should either start with a single '—' or with two '—-" characters. Shortcuts
starting with a single ' —' are interpreted as short options (i.e. everything after the first character following the ' - "' is
treated as the argument). Shortcuts starting with '——"' are interpreted as long options. No other shortcut formats are
supported.

2.5. Manual 123

HPX Documentation, 1.3.0

Specifying options for single localities only

For runs involving more than one /ocality it is sometimes desirable to supply specific command line options to single
localities only. When the HPX application is launched using a scheduler (like PBS, for more details see section How
to use HPX applications with PBS), specifying dedicated command line options for single localities may be desirable.
For this reason all of the command line options which have the general format ——hpx : <some_key> can be used
in a more general form: ——hpx: <N>:<some_key>, where <N> is the number of the /ocality this command line
options will be applied to, all other localities will simply ignore the option. For instance, the following PBS script
passes the option ——hpx : pu—-offset=4 to the locality '1"' only.

#!/bin/bash
#
#PBS -1 nodes=2:ppn=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh —-u SAPP_PATH SAPP_OPTIONS —-hpx:l:pu-offset=4 —--hpx:nodes= cat SPBS_NODEFILE"

Caution: If the first application specific argument (inside SAPP_OPTIONS is a non-option (i.e. does not start
with a — or a ——, then it must be placed before the option ——hpx : nodes, which, in this case, should be the last
option on the command line.

Alternatively, use the option ——hpx : endnodes to explicitly mark the end of the list of node names:

pbsdsh -u SAPP PATH —-hpx:l:pu-offset=4 --hpx:nodes= cat S$PBS _NODEFILE —-
—hpx:endnodes SAPP_OPTIONS

More details about HPX command line options

This section documents the following list of the command line options in more detail:

* The command line option —hpx:bind

The command line option ——hpx :bind

This command line option allows one to specify the required affinity of the HPX worker threads to the underlying
processing units. As a result the worker threads will run only on the processing units identified by the corresponding
bind specification. The affinity settings are to be specified using ——hpx : bind=<BINDINGS>, where <BINDINGS>
have to be formatted as described below.

In addition to the syntax described below one can use ——hpx :bind=none to disable all binding of any threads to a
particular core. This is mostly supported for debugging purposes.

The specified affinities refer to specific regions within a machine hardware topology. In order to understand the
hardware topology of a particular machine it may be useful to run the Istopo tool which is part of Portable Hardware
Locality (HWLOC) to see the reported topology tree. Seeing and understanding a topology tree will definitely help in
understanding the concepts that are discussed below.

Affinities can be specified using HWLOC (Portable Hardware Locality (HWLOC)) tuples. Tuples of HWLOC
objects and associated indexes can be specified in the form object:index, object:index-index or
object:index, ..., index. HWLOC objects represent types of mapped items in a topology tree. Possible

124 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

values for objects are socket, numanode, core and pu (processing unit). Indexes are non-negative integers that
specify a unique physical object in a topology tree using its logical sequence number.

Chaining multiple tuples together in the more general form objectl:indexl[.object2:index2[...]] is
permissible. While the first tuple’s object may appear anywhere in the topology, the Nth tuple’s object must have a
shallower topology depth than the (N+1)th tuple’s object. Put simply: as you move right in a tuple chain, objects must
go deeper in the topology tree. Indexes specified in chained tuples are relative to the scope of the parent object. For
example, socket : 0.core: 1 refers to the second core in the first socket (all indices are zero based).

Multiple affinities can be specified using several ——hpx : bind command line options or by appending several affini-
ties separated by a ' ; ' By default, if multiple affinities are specified, they are added.

"all" is a special affinity consisting in the entire current topology.

Note: All ‘names’ in an affinity specification, such as thread, socket, numanode, pu or all can be abbreviated.
Thus the affinity specification threads: 0-3=socket:0.core:1.pu:1 is fully equivalent to its shortened form
t:0-3=s:0.c:1.p:1.

Here is a full grammar describing the possible format of mappings:

mappings n= distribution | mapping (";" mapping) x

distribution = "compact" | "scatter" | "balanced" | "numa-balanced"
mapping = thread _spec "=" pu_specs

thread_spec = "thread:" range_specs

pu_specs = pu_spec ("." pu_spec)*

pu_spec = type ":" range specs | "~" pu_spec

range_specs = range_spec ("," range_spec) *

range_spec = int | int "-" int | "all"

type = "socket" | "numanode" | "core" | "pu"

The following example assumes a system with at least 4 cores, where each core has more than 1 processing unit
(hardware threads). Running hello_world_distributed with 4 OS-threads (on 4 processing units), where
each of those threads is bound to the first processing unit of each of the cores, can be achieved by invoking:

hello_world_distributed -t4 --hpx:bind=thread:0-3=core:0-3.pu:0

Here thread: 0-3 specifies the OS threads for which to define affinity bindings, and core: 0-3.pu: defines that
for each of the cores (core: 0—3) only their first processing unit pu : 0 should be used.

Note: The command line option ——hpx : print—bind can be used to print the bitmasks generated from the affinity
mappings as specified with ——hpx : bind. For instance, on a system with hyperthreading enabled (i.e. 2 processing
units per core), the command line:

hello_world_distributed -t4 --hpx:bind=thread:0-3=core:0-3.pu:0 —--hpx:print-bind

will cause this output to be printed:

PU L#0
PU L#2
PU L#4
PU L#6

P#0
P#0
P#0
P#0

P#0), Core L#0, Socket L#0, Node L#0
P#2), Core L#1, Socket L#0, Node L#0
P#4), Core L#2, Socket L#0, Node L#0

)

(
(
(
(P#6), Core L#3, Socket L#0, Node L#0

()
()
()
()

w N = O

where each bit in the bitmasks corresponds to a processing unit the listed worker thread will be bound to run on.

2.5. Manual 125

HPX Documentation, 1.3.0

The difference between the four possible predefined distribution schemes (compact, scatter, balanced and
numa-balanced) is best explained with an example. Imagine that we have a system with 4 cores and 4 hard-
ware threads per core on 2 sockets. If we place 8 threads the assignments produced by the compact, scatter,
balanced and numa-balanced types are shown in the figure below. Notice that compact does not fully uti-
lize all the cores in the system. For this reason it is recommended that applications are run using the scatter or
balanced/numa-balanced options in most cases.

numa 0 numal
compact \ \
3 4 5 6 7
numa 0 numal
scatter
numa 0
balanced

15

numa0 numal

numa-balanced
0 4 2 6

Fig. 2.7: Schematic of thread affinity type distributions.

2.5.6 Writing single-node HPX applications

HPX is a C++ Standard Library for Concurrency and Parallelism. This means that it implements all of the correspond-
ing facilities as defined by the C++ Standard. Additionally, in HPX we implement functionalities proposed as part
of the ongoing C++ standardization process. This section focuses on the features available in HPX for parallel and
concurrent computation on a single node, although many of the features presented here are also implemented to work
in the distributed case.

126 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Using LCOs
Lightweight Control Objects provide synchronization for HPX applications. Most of them are familiar from other
frameworks, but a few of them work in slightly special different ways adapted to HPX.
1. future
2. queue
3. object_semaphore
4

. barrier

Channels

Channels combine communication (the exchange of a value) with synchronization (guaranteeing that two calculations
(tasks) are in a known state). A channel can transport any number of values of a given type from a sender to a receiver:

hpx::1lcos::local::channel<int> c;
c.set (42);
cout << c.get(); // will print '42'

Channels can be handed to another thread (or in case of channel components, to other localities), thus establishing a
communication channel between two independent places in the program:

void do_something(
hpx::1lcos::local::receive_channel<int> c,
hpx::1cos::local::send_channel<> done)

cout << c.get(); // prints 42
done.set () ; // signal back

hpx::1lcos::1local::channel<int> c;
hpx::1lcos::1local::channel<> done;

hpx::apply (&do_something, ¢, done);

c.set (42); // send some value
done.get () ; // wait for thread to be done

A channel component is created on one locality and can be send to another /ocality using an action. This example also
demonstrates how a channel can be used as a range of values:

// channel components need to be registered for each used type (not needed
// for hpx::1lcos::local::channel)
HPX_REGISTER_CHANNEL (double) ;

void some_action (hpx::1lcos::channel<double> c)
{
for (double d : c¢)
hpx::cout << d << std::endl;
}
HPX_REGISTER_ACTION (some_action) ;

(continues on next page)

2.5. Manual 127

HPX Documentation, 1.3.0

(continued from previous page)

// create the channel on this locality
hpx::1lcos::channel<double> c (hpx::find_here());

// pass the channel to a (possibly remote invoked) action
hpx::apply (some_action (), hpx::find_here(), c);

// send some values to the receiver
std: :vector<double> v = { 1.2, 3.4, 5.0 };
for (double d : v)

c.set (d);

// explicitly close the communication channel (implicit at destruction)
c.close();

Composable guards

Composable guards operate in a manner similar to locks, but are applied only to asynchronous functions. The guard
(or guards) is automatically locked at the beginning of a specified task and automatically unlocked at the end. Because
guards are never added to an existing task’s execution context, the calling of guards is freely composable and can never
deadlock.

To call an application with a single guard, simply declare the guard and call run_guarded() with a function (task):

hpx::1cos::1local::guard gu;
run_guarded (gu, task) ;

If a single method needs to run with multiple guards, use a guard set:

boost::shared<hpx::1lcos::local::guard> gul (new hpx::lcos::local::guard());
boost::shared<hpx::1lcos::local::guard> gu2 (new hpx::1lcos::local::guard());
gs.add (xgul) ;

gs.add (xgu2) ;

run_guarded(gs, task) ;

Guards use two atomic operations (which are not called repeatedly) to manage what they do, so overhead should be
extremely low.

1. conditional_trigger
counting_semaphore
dataflow

event

mutex

once
recursive_mutex

spinlock

© ® 2Nk wN

spinlock_no_backoff

._.
e

trigger

128 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Extended facilities for futures

Concurrency is about both decomposing and composing the program from the parts that work well individually and
together. It is in the composition of connected and multicore components where today’s C++ libraries are still lacking.

The functionality of std: : future offers a partial solution. It allows for the separation of the initiation of an
operation and the act of waiting for its result; however the act of waiting is synchronous. In communication-intensive
code this act of waiting can be unpredictable, inefficient and simply frustrating. The example below illustrates a
possible synchronous wait using futures:

#include <future>

using namespace std;

int main()

{
future<int> £ = async([] () { return 123; });
int result = f.get(); // might block

For this reason, HPX implements a set of extensions to std: : future (as proposed by _ cppll_n4107__). This
proposal introduces the following key asynchronous operations to hpx: : future, hpx: : shared_future and
hpx: :async, which enhance and enrich these facilities.

Table 2.13: Facilities extending std: : future

Facility | Description

hpx: : futdnmsynchieawous programming, it is very common for one asynchronous operation, on completion, to
invoke a second operation and pass data to it. The current C++ standard does not allow one to register
a continuation to a future. With*‘then*‘ instead of waiting for the result, a continuation is “attached” to
the asynchronous operation, which is invoked when the result is ready. Continuations registered using
then function will help to avoid blocking waits or wasting threads on polling, greatly improving the
responsiveness and scalability of an application.

un- In some scenarios, you might want to create a future that returns another future, resulting in nested
wrap- futures. Although it is possible to write code to unwrap the outer future and retrieve the nested future
ping and its result, such code is not easy to write because you must handle exceptions and it may cause
con- a blocking call. Unwrapping can allow us to mitigate this problem by doing an asynchronous call to
structor | unwrap the outermost future.

for

hpx::fyuture

hpx: : futhhese: aresoftenasitypations where a get () call on a future may not be a blocking call, or is only a
blocking call under certain circumstances. This function gives the ability to test for early completion
and allows us to avoid associating a continuation, which needs to be scheduled with some non-trivial
overhead and near-certain loss of cache efficiency.

hpx : : makSomefadetions mayeknow the value at the point of construction. In these cases the value is immediately
available, but needs to be returned as a future. By using‘‘hpx::make_ready_future‘‘a future can be
created which holds a pre-computed result in its shared state. In the current standard it is non-trivial to
create a future directly from a value. First a promise must be created, then the promise is set, and lastly
the future is retrieved from the promise. This can now be done with one operation.

The standard also omits the ability to compose multiple futures. This is a common pattern that is ubiquitous in other
asynchronous frameworks and is absolutely necessary in order to make C++ a powerful asynchronous programming
language. Not including these functions is synonymous to Boolean algebra without AND/OR.

In addition to the extensions proposed by N4313'%! HPX adds functions allowing to compose several futures in a
more flexible way.

141 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html

2.5. Manual 129

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html

HPX Documentation,

1.3.0

Table 2.14: Facilities for composing hpx: : futures

Facility Description Comment
hpx::when_any, | Asynchronously wait for at least one of multiple future or | N4313'% ... n
hpx::when_any_r shared_future objects to finish. versions are HPX
only
hpx::wait_any, | Synchronously wait for at least one of multiple future or | HPX only
hpx::wait_any_r shared_future objects to finish.
hpx::when_all, | Asynchronously wait for all future and shared_future objects to fin- N4313™, ... n
hpx::when_all_n ish. versions are HPX
only

hpx::wait_all, | Synchronously wait for all future and shared_future objects to finish. | HPX only
hpx::wait_all_n
hpx::when_some,| Asynchronously wait for multiple future and shared_future objects to | HPX only
hpx: :when_some_|nfinish.
hpx::wait_some,| Synchronously wait for multiple future and shared_future objects to | HPX only
hpx: :wait_some_|nfinish.
hpx::when_each | Asynchronously wait for multiple future and shared_future objects to | HPX only

finish and call a function for each of the future objects as soon as it

becomes ready.
hpx::wait_each,| Synchronously wait for multiple future and shared_future objects to | HPX only
hpx::wait_each_ |nfinish and call a function for each of the future objects as soon as it

becomes ready.

High level parallel facilities

In preparation for the upcoming C++ Standards we currently see several proposals targeting different facilities sup-
porting parallel programming. HPX implements (and extends) some of those proposals. This is well aligned with our
strategy to align the APIs exposed from HPX with current and future C++ Standards.

At this point, HPX implements several of the C++ Standardization working papers, most notably N4409'** (Working
Draft, Technical Specification for C++ Extensions for Parallelism), N4411'% (Task Blocks), and N4406'%° (Parallel
Algorithms Need Executors).

Using parallel algorithms

A parallel algorithm is a function template described by this document which is declared in the (inline) namespace
hpx::parallel::vl.

Note: For compilers which do not support inline namespaces, all of the namespace vl is imported into the
namespace hpx: :parallel. The effect is similar to what inline namespaces would do, namely all names defined
in hpx::parallel: :v1 are accessible from the namespace hpx: :parallel as well.

All parallel algorithms are very similar in semantics to their sequential counterparts (as defined in the namespace
std with an additional formal template parameter named ExecutionPolicy. The execution policy is generally

142 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313 html
143 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
144 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4409.pdf
195 http://www.open-std.org/jtc 1/sc22/wg2 1/docs/papers/2015/n4411.pdf
146 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf

130 Chapter 2. What’s so special about HPX?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4409.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf

HPX Documentation, 1.3.0

passed as the first argument to any of the parallel algorithms and describes the manner in which the execution of these
algorithms may be parallelized and the manner in which they apply user-provided function objects.

The applications of function objects in parallel algorithms invoked with an execu-
tion policy object of type hpx::parallel::execution: :sequenced_policy or
hpx::parallel::execution: :sequenced_task_policy execute in sequential order. For
hpx::parallel::execution: :sequenced_policy the execution happens in the calling thread.

The applications of function objects in parallel algorithms invoked with an execu-
tion policy object of type hpx::parallel: :execution: :parallel policy or
hpx::parallel::execution: :parallel_ task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Important: It is the caller’s responsibility to ensure correctness, for example that the invocation does not introduce
data races or deadlocks.

The applications of function objects in parallel algorithms invoked with an execution policy of type
hpx::parallel: :execution: :parallel_unsequenced_policy isin HPX equivalent to the use of the
execution policy hpx: :parallel: :execution: :parallel policy.

Algorithms invoked with an execution policy object of type hpx::parallel::vl::execution_policy

execute internally as if invoked with the contained execution policy object. No excep-
tion is thrown when an hpx::parallel::vl::execution_policy contains an ex-
ecution policy of type hpx::parallel::execution: :sequenced_task_policy or
hpx::parallel::execution::parallel task policy (which normally turn the al-
gorithm into its asynchronous version). In this case the execution 1is semantically equiv-
alent to the case of passing a hpx::parallel::execution::sequenced _policy
or hpx::parallel::execution::parallel_policy contained in the

hpx::parallel::vl::execution_policy object respectively.

Parallel exceptions

During the execution of a standard parallel algorithm, if temporary memory resources are required by any of the
algorithms and no memory are available, the algorithm throws a std: :bad_alloc exception.

During the execution of any of the parallel algorithms, if the application of a function object terminates with an
uncaught exception, the behavior of the program is determined by the type of execution policy used to invoke the
algorithm:

* Ifthe execution policy objectis of type hpx: :parallel: :execution: :parallel_unsequenced_policy,
hpx::terminate shall be called.

e If the execution policy object is of type hpx::parallel::execution::sequenced_policy,
hpx::parallel::execution: :sequenced_task policy,hpx::parallel::execution: :parallel_pol
or hpx::parallel::execution::parallel_task_policy the execution of the algorithm termi-
nates with an hpx: :exception_11ist exception. All uncaught exceptions thrown during the application of
user-provided function objects shall be contained in the hpx: :exception 1ist

For example, the number of invocations of the user-provided function object in for_each is unspecified. When
hpx::parallel::vl::for_each is executed sequentially, only one exception will be contained in the
hpx::exception_11ist object.

These guarantees imply that, unless the algorithm has failed to allocate memory and terminated with
std: :bad_alloc all exceptions thrown during the execution of the algorithm are communicated to the caller.
It is unspecified whether an algorithm implementation will “forge ahead” after encountering and capturing a user
exception.

2.5. Manual 131

HPX Documentation, 1.3.0

The algorithm may terminate with the std: :bad_alloc exception even if one or more user-provided function
objects have terminated with an exception. For example, this can happen when an algorithm fails to allocate memory
while creating or adding elements to the hpx: :exception 1ist object.

Parallel algorithms

HPX provides implementations of the following parallel algorithms:

132 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0
Table 2.15: Non-modifying parallel algorithms (in header: <hpx/
include/parallel_algorithm.hpp>)

Name Description In header Algorithm
page at cppref-
erence.com

hpx::parallel: :vl:| &omputest thel rdifferences be- | <hpx/include/ adja-

tween adjacent elements in a | parallel_adjacent_find cent_ find'¥’
range. hpp>

hpx::parallel: :vl:| &heécksif a predicate is t rue for | <hpx/include/ all_any_none_of

all of the elements in a range. parallel_all_any_none
hpp>

hpx::parallel: : vl :| &hecksff a predicate is t rue for | <hpx/include/ all_any_none_of

any of the elements in a range. parallel_all_any_none
hpp>

hpx::parallel: :vl:|: Returns the number of elements | <hpx/include/ count™

equal to a given value. parallel_count.hpp>
hpx::parallel::vl:|: Retmrns the number of elements | <hpx/include/ count_if™!

satisfying a specific criteria. parallel_ count.hpp>
hpx::parallel: :vl:|: Oeterhines if two sets of ele- | <hpx/include/ equal152

ments are the same. parallel_equal.hpp>
hpx::parallel: :vl:| Poed aniexelusiverparallel scan | <hpx/include/ exclu-

over a range of elements. parallel_scan.hpp> sive_scan'?
hpx::parallel: :vl:| Findd the first element equal to a | <hpx/include/ find™*

given value. parallel_find.hpp>

hpx::parallel: :vl:| Findd thedast sequence of ele- | <hpx/include/ find_end™

ments in a certain range. parallel_find.hpp>

hpx::parallel: :vl:|: SéarcheSifos any dne of a set of | <hpx/include/ find_first_of°

elements. parallel_find.hpp>

hpx::parallel: :v1:|: Finds thefirst element satisfying | <hpx/include/ find"™’

a specific criteria. parallel_find.hpp>

hpx::parallel: :vli:|: Finds the firsbelement not satis- | <hpx/include/ find_if_not"®

fying a specific criteria. parallel_ find.hpp>

hpx::parallel: :vl:| Appliessafunction to a range of | <hpx/include/ for_each™

elements. parallel_for_each.
hpp>

hpx::parallel: :vl:| Appliesafunction to a number of | <hpx/include/ for_each_n'®

elements. parallel_ for_each.
hpp>
hpx::parallel: :vl:| Doed animelusiverparallel scan | <hpx/include/ inclu-
over a range of elements. parallel_scan.hpp> sive_scan'®!
hpx::parallel: :vi:| Chedksdafjarange ofvaluesiplexe | <hpx/include/ lexicographi-
icographically less than another | parallel_lexicographi¢ahl compancd?
range of values. hpp>
hpx::parallel: :vl :| Findsdhefirst position where two | <hpx/include/ mismatch!®
ranges differ. parallel_mismatch.
hpp>

hpx::parallel: :vl:| Gheeksdfa predicate is t rue for | <hpx/include/ all_any_none_of|

none of the elements in a range. parallel_all_any_none
hpp>

hpx::parallel: :vl:| Searches for a range of elements. | <hpx/include/ search’®

parallel_search.hpp>
hpx::parallel: :vl:| Searchés for a number consec- | <hpx/include/ search_n'%®
utive copies of an element in a | parallel_search.hpp>
range.
2.5. Manual 133

148

149

164

http://en.cppreference.com/w/cpp/algorithm/adjacent_find
http://en.cppreference.com/w/cpp/algorithm/adjacent_find
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/count
http://en.cppreference.com/w/cpp/algorithm/count_if
http://en.cppreference.com/w/cpp/algorithm/equal
http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find_end
http://en.cppreference.com/w/cpp/algorithm/find_first_of
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find_if_not
http://en.cppreference.com/w/cpp/algorithm/for_each
http://en.cppreference.com/w/cpp/algorithm/for_each_n
http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
http://en.cppreference.com/w/cpp/algorithm/mismatch
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/search
http://en.cppreference.com/w/cpp/algorithm/search_n

HPX Documentation, 1.3.0

147 http://en.cppreference.com/w/cpp/algorithm/adjacent_find

148 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
149 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
150 hitp://en.cppreference.com/w/cpp/algorithm/count

151 http://en.cppreference.com/w/cpp/algorithm/count_if

152 http://en.cppreference.com/w/cpp/algorithm/equal

153 http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
154 http://en.cppreference.com/w/cpp/algorithm/find

155 http://en.cppreference.com/w/cpp/algorithm/find_end

156 http://en.cppreference.com/w/cpp/algorithm/find_first_of

157 http://en.cppreference.com/w/cpp/algorithm/find

158 http://en.cppreference.com/w/cpp/algorithm/find_if_not

159 http://en.cppreference.com/w/cpp/algorithm/for_each

160 http://en.cppreference.com/w/cpp/algorithm/for_each_n

161 http://en.cppreference.com/w/cpp/algorithm/inclusive_scan

162 http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare

163 http://en.cppreference.com/w/cpp/algorithm/mismatch

164 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
165 http://en.cppreference.com/w/cpp/algorithm/search

166 hitp://en.cppreference.com/w/cpp/algorithm/search_n

134

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0
Table 2.16: Modifying Parallel Algorithms (In Header:
<hpx/include/parallel_algorithm.hpp>)

Name Description In header Algorithm
page at cppref-
erence.com

hpx::parallel: :yvXCopiescayrange of elements to a new loca- | <hpx/include/ exclu-

tion. parallel_copy. sive_scan'®’
hpp>

hpx: :parallel: : v Copiesaynumber of elements to a new loca- | <hpx/include/ copy_n'®®

tion. parallel_copy.
hpp>

hpx::parallel : : v Copiestthe é¢léments from a range to a new | <hpx/include/ copy'®

location for which the given predicate is | parallel_copy.
true hpp>
hpx::parallel: : v Moveswerange of elements to a new loca- | <hpx/include/ move! 70
tion. parallel_fill.
hpp>
hpx::parallel : :vIAssighs 4 range of elements a certain value. | <hpx/include/ fill'”!
parallel_fill.
hpp>
hpx::parallel : :vIAssighs 4 value to a number of elements. <hpx/include/ fill_n'"?
parallel_fill.
hpp>

hpx::parallel: :ySavesthe result of a function in a range. <hpx/include/ generate! >

parallel_generate|.
hpp>

hpx::parallel: :vSavestheresult ofiN applications of a func- | <hpx/include/ generate_n'/*

tion. parallel_generate|
hpp>

hpx::parallel: : v Remevesthe elements from a range that are | <hpx/include/ remove'

equal to the given value. parallel_remove.
hpp>

hpx::parallel: :vRemoevesthe efefnents from a range that are | <hpx/include/ remove' ’°

equal to the given predicate is false parallel_remove.
hpp>
hpx::parallel: : v Copiesitherelements from a range to a new | <hpx/include/ re-
location that are not equal to the given | parallel_remove_cpmywyve_copy'’’
value. hpp>
hpx::parallel: : v Copiesitherelements fiom a range to a new | <hpx/include/ re-
location for which the given predicate is | parallel_remove_cpmywve_copy'’®
false hpp>

hpx::parallel : : v Replaces albvalues satisfying specific crite- | <hpx/include/ replace!””

ria with another value. parallel_replace.
hpp>
hpx::parallel: : v Replaees albvalues satisfying specific crite- | <hpx/include/ replace™™?
ria with another value. parallel_replace.
hpp>
hpx::parallel: :yvCopiesalrange, aeplacing elements satisfy- | <hpx/include/ re-
ing specific criteria with another value. parallel_replace.| place_copy'®!
hpp>
hpx::parallel: :yvCopiesalrange, aeplacing elements satisfy- | <hpx/include/ re-
ing specific criteria with another value. parallel_replace.| place_copy!'®?
hpp>

hpx::parallel: :yReversesthe®rder elements in a range. <hpx/include/ reverse '3

2.5. Manual parallel_reverse. 135
hpp>

hpx::parallel: : v Createsacopy ofamange that is reversed. <hpx/include/ re-

parallel_reverse.
hrar S

verse_copy '3

http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/copy_n
http://en.cppreference.com/w/cpp/algorithm/copy
http://en.cppreference.com/w/cpp/algorithm/move
http://en.cppreference.com/w/cpp/algorithm/fill
http://en.cppreference.com/w/cpp/algorithm/fill_n
http://en.cppreference.com/w/cpp/algorithm/generate
http://en.cppreference.com/w/cpp/algorithm/generate_n
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/replace
http://en.cppreference.com/w/cpp/algorithm/replace
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/reverse
http://en.cppreference.com/w/cpp/algorithm/reverse_copy
http://en.cppreference.com/w/cpp/algorithm/reverse_copy
http://en.cppreference.com/w/cpp/algorithm/rotate
http://en.cppreference.com/w/cpp/algorithm/rotate_copy
http://en.cppreference.com/w/cpp/algorithm/swap_ranges
http://en.cppreference.com/w/cpp/algorithm/transform
http://en.cppreference.com/w/cpp/algorithm/unique
http://en.cppreference.com/w/cpp/algorithm/unique_copy

crence

HPX Documentation, 1.3.0
Table 2.17: Set operations on sorted sequences (In Header:
<hpx/include/parallel_algorithm.hpp>)

Name Description In header Algorithm page
at cpprefer-
ence.com

hpx::parallel: :vl: :mexfgMerges two sorted ranges. | <hpx/include/ merge™!

parallel merge.hpp>
hpx::parallel::vl::inglMergeser¢wo ordered | <hpx/include/ inplace_merge™?
ranges in-place. parallel_merge.hpp>
hpx::parallel::vl::indIlRetams true if one setisa | <hpx/include/ includes'?
subset of another. parallel_set_operatigns.
hpp>
hpx::parallel::vl::set Qompuatesthe difference | <hpx/include/ set_difference™*
between two sets. parallel_set_operations.
hpp>
hpx::parallel::vl::set Computestheintersection | <hpx/include/ set_intersection'™
of two sets. parallel_set_operations.
hpp>

hpx::parallel::vl::set] CGomputes the symmetrien cechpx/include/ set_symmetric_diff

difference between two | parallel_set_operatigns.
sets. hpp>

hpx::parallel::vl::set] Qomputes the union of | <hpx/include/ set_union™’

two sets. parallel set_operations.
hpp>

167 http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
168 http://en.cppreference.com/w/cpp/algorithm/copy_n

169 http://en.cppreference.com/w/cpp/algorithm/copy

170 http://en.cppreference.com/w/cpp/algorithm/move

171 http://en.cppreference.com/w/cpp/algorithm/fill

172 http://en.cppreference.com/w/cpp/algorithm/fill_n

173 http://en.cppreference.com/w/cpp/algorithm/generate

174 http://en.cppreference.com/w/cpp/algorithm/generate_n

175 http://en.cppreference.com/w/cpp/algorithm/remove

176 http://en.cppreference.com/w/cpp/algorithm/remove

177 http://en.cppreference.com/w/cpp/algorithm/remove_copy
178 http://en.cppreference.com/w/cpp/algorithm/remove_copy
179 http://en.cppreference.com/w/cpp/algorithm/replace

180 http://en.cppreference.com/w/cpp/algorithm/replace

181 http://en.cppreference.com/w/cpp/algorithm/replace_copy
182 http://en.cppreference.com/w/cpp/algorithm/replace_copy
183 http://en.cppreference.com/w/cpp/algorithm/reverse

184 http://en.cppreference.com/w/cpp/algorithm/reverse_copy
185 http://en.cppreference.com/w/cpp/algorithm/rotate

186 http://en.cppreference.com/w/cpp/algorithm/rotate_copy
187 http://en.cppreference.com/w/cpp/algorithm/swap_ranges
188 http://en.cppreference.com/w/cpp/algorithm/transform

189 http://en.cppreference.com/w/cpp/algorithm/unique

190 hitp://en.cppreference.com/w/cpp/algorithm/unique_copy
191 http://en.cppreference.com/w/cpp/algorithm/merge

192 http://en.cppreference.com/w/cpp/algorithm/inplace_merge
193 http://en.cppreference.com/w/cpp/algorithm/includes

194 http://en.cppreference.com/w/cpp/algorithm/set_difference
195 hitp://en.cppreference.com/w/cpp/algorithm/set_intersection
196 http://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
197 http://en.cppreference.com/w/cpp/algorithm/set_union

136

Chapter 2. What’s so special about HPX?

196

http://en.cppreference.com/w/cpp/algorithm/merge
http://en.cppreference.com/w/cpp/algorithm/inplace_merge
http://en.cppreference.com/w/cpp/algorithm/includes
http://en.cppreference.com/w/cpp/algorithm/set_difference
http://en.cppreference.com/w/cpp/algorithm/set_intersection
http://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
http://en.cppreference.com/w/cpp/algorithm/set_union

HPX Documentation, 1.3.0

Table 2.18: Heap operations (In Header:
<hpx/include/parallel_algorithm.hpp>)

Name Description In header Algorithm page at cp-

preference.com
hpx::parallel::vl::1is Retams true if the range is | <hpx/include/ is_heap™®
max heap. is_heap.hpp>
hpx::parallel::vl::ig Retamsithe fist element that | <hpx/include/ is_heap_until™
breaks a max heap. is_heap.hpp>
Table 2.19: Minimum/maximum operations (In Header:
<hpx/include/parallel_algortithm.hpp>)
Name Description In header Algorithm page at
cppreference.com
hpx::parallel: :vl: :mReturistheddrgest element in | <hpx/include/ max_element>"
arange. parallel minmax.
hpp>
hpx::parallel: :vi: :mRetwrsthensgmallest element | <hpx/include/ min_element”!
in a range. parallel_minmax.
hpp>
hpx::parallel: :vl::mRetwans theesmallest and the | <hpx/include/ minmax_element*??
largest element in a range. parallel_minmax.
hpp>
Table 2.20: Partitioning Operations (In Header:
<hpx/include/parallel_algorithm.hpp>)

Name Description In header Algorithm page
at cpprefer-
ence.com

hpx::parallel: :v] Refuunpt ruétifi eachdrue element for | <hpx/include/ is_partitioned203

a predicate precedes the false elements | parallel_is_partitijoned.
in a range hpp>
hpx::parallel: :v] Dipides i¢eléments into two groups | <hpx/include/ partition”™
while don’t preserve their relative or- | parallel_partition.
der hpp>
hpx::parallel: :v] Copiesta tahge dividing the elements | <hpx/include/ parti-
into two groups parallel_partition.| tion_copy?®
hpp>
hpx::parallel: :v] Divided Ielements i intontwo groups | <hpx/include/ sta-
while preserving their relative order parallel_partition.| ble_partition?"
hpp>

198 http://en.cppreference.com/w/cpp/algorithm/is_heap

199 http://en.cppreference.com/w/cpp/algorithm/is_heap_until

200 http://en.cppreference.com/w/cpp/algorithm/max_element

201 http://en.cppreference.com/w/cpp/algorithm/min_element

202 http://en.cppreference.com/w/cpp/algorithm/minmax_element
203 http://en.cppreference.com/w/cpp/algorithm/is_partitioned
204 hitp://en.cppreference.com/w/cpp/algorithm/partition

205 http://en.cppreference.com/w/cpp/algorithm/partition_copy
206 http://en.cppreference.com/w/cpp/algorithm/stable_partition

2.5. Manual 137

http://en.cppreference.com/w/cpp/algorithm/is_heap
http://en.cppreference.com/w/cpp/algorithm/is_heap_until
http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm/minmax_element
http://en.cppreference.com/w/cpp/algorithm/is_partitioned
http://en.cppreference.com/w/cpp/algorithm/partition
http://en.cppreference.com/w/cpp/algorithm/partition_copy
http://en.cppreference.com/w/cpp/algorithm/partition_copy
http://en.cppreference.com/w/cpp/algorithm/stable_partition
http://en.cppreference.com/w/cpp/algorithm/stable_partition

HPX Documentation, 1.3.0

Table 2.21: Sorting Operations (In Header:
<hpx/include/parallel_algorithm.hpp>)
Name Description In header Algorithm page at
cppreference.com
hpx::parallel: :vl: jiRetamstanie if each element | <hpx/include/ is_sorted?"’
in a range is sorted parallel_is_sorted.
hpp>
hpx::parallel: :vl: {iRetumstthel fissttunsorted ele- | <hpx/include/ is_sorted_until>®®
ment parallel_is_sorted.
hpp>
hpx::parallel::vl:]sSorts the elements in a range <hpx/include/ sort?%?
parallel_sort.hpp>
hpx::parallel::vl: {sSorts éne fange of data using | <hpx/include/
keys supplied in another range | parallel_sort.hpp>
Table 2.22: Numeric Parallel Algorithms (In Header:
<hpx/include/parallel_numeric.hpp>)
Name Description In header Algo-
rithm
page
at cp-
prefer-
ence.com
hpx: :parallclalculdtes the differencelbefweereach element in an input range | <hpx/ adja-
and the preceding element. include/ cent_diffgrence?!”
parallel_adfacent_difference.
hpp>
hpx: :paral]Sumsuip: a range ofelements. <hpx/ re-
include/ duce?!!
parallel_reduce.
hpp>
hpx: :paral]Performs amadélusivelsearkery consecutive elements with matching | <hpx/
keys, with a reduction to output only the final sum for each key. | include/
The key sequence {1,1,1,2,3,3,3,3,1} and value sequence | parallel_reduce.
{2,3,4,5,6,7,8,9,10} would be reduced to keys={1,2, | hpp>
3,1},values={9,5,30,10}
hpx : : paral]Sumsnip: a range of elements dfterzapplying a function. Also, accu- | <hpx/ trans-
mulates the inner products of two input ranges. include/ form_redpce?'?
parallel_ transform |reduce.
hpp>
hpx: :paral]dlaeswah:in¢lusive paratleliscan overvaerange: of elements after ap- | <hpx/ trans-
plying a function. include/ form_inclusive_scan?!?
parallel_ scan.
hpp>
hpx: :paralldlaeswan extlusive parallekscan wververange of elements after ap- | <hpx/ trans-
plying a function. include/ form_exclusive_scan?!*
parallel_scan.
hpp>

207 http://en.cppreference.com/w/cpp/algorithm/is_sorted
208 http://en.cppreference.com/w/cpp/algorithm/is_sorted_until
209 hitp://en.cppreference.com/w/cpp/algorithm/sort

138

Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/is_sorted
http://en.cppreference.com/w/cpp/algorithm/is_sorted_until
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
http://en.cppreference.com/w/cpp/algorithm/reduce
http://en.cppreference.com/w/cpp/algorithm/reduce
http://en.cppreference.com/w/cpp/algorithm/transform_reduce
http://en.cppreference.com/w/cpp/algorithm/transform_reduce
http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan

HPX Documentation, 1.3.0
Table 2.23: Dynamic Memory Management (In Header:
<hpx/include/parallel_memory.hpp>)
Name Description In header Algorithm
page at
cpprefer-
ence.com
hpx::parallel::vl::degtDestroys a range of ob- | <hpx/include/ destroy?™
jects. parallel_destroy.hpp>
hpx::parallel::vl::degtDesyroys a range of ob- | <hpx/include/ destroy_n?T®
jects. parallel_destroy.hpp>
hpx::parallel: :vl::unjrCdpieslairapge afgbjects | <hpx/include/ uninitial-
to an uninitialized area of | parallel_uninitialized_clopgd_copy’!’
memory. hpp>
hpx::parallel: :vl::unirCdpiesla nanmbeppf/ob- | <hpx/include/ uninitial-
jects to an uninitialized | parallel_uninitialized_clopgd_copy_n’'®
area of memory. hpp>
hpx::parallel: :vl: :unir(dpieslairange ofcobjects: | cdvpxt/rimal ude/ uninitial-
to an uninitialized area of | parallel_uninitialized_deadldefadnsamstatt?”
memory. hpp>
hpx::parallel: :vl::unir(dpiesla nanbeeot ob- | cdpxt/incl ude / uninitial-
jects to an uninitialized | parallel_uninitialized_dleiadldefmdnstpstratt. n>>
area of memory. hpp>
hpx::parallel: :vl::uniropies] ameobject té an | <hpx/include/ uninitial-
uninitialized area of | parallel_uninitialized_fliizd_fill*?!
memory. hpp>
hpx::parallel: :vl::unir(Gdpies] aweobject té_an | <hpx/include/ uninitial-
uninitialized area of | parallel_uninitialized_fli ized_fill_n222
memory. hpp>
hpx::parallel: :vl::unirMoveshairange afobjects | <hpx/include/ uninitial-
to an uninitialized areaof | parallel_uninitializ ed_moized _move???
memory. hpp>
hpx::parallel: :vl::unirNovesla nembeotobr | <hpx/include/ uninitial-
jects to an uninitialized | parallel_uninitiali zed_moized move n?**
area of memory. hpp>
hpx::parallel: :vl::unirQenstridts e dbjeetsueinc pxhipx/dmclude/ uninitial-
an uninitialized area of | parallel_uninitialized_vjaizé \abmstanstruct’
memory. hpp>
hpx::parallel: :vl: :unirQenstridts e dbjeetsueinc p xhipx/dmalude / uninitial-
an uninitialized area of | uninitialized_value_consitzadtvalue congtruct n’2°
memory. hpp>

210 http://en.cppreference.com/w/cpp/algorithm/adjacent_difference

211 hitp://en.cppreference.com/w/cpp/algorithm/reduce

212 hitp://en.cppreference.com/w/cpp/algorithm/transform_reduce

213 http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
214 hitp://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan

2.5. Manual

139

http://en.cppreference.com/w/cpp/memory/destroy
http://en.cppreference.com/w/cpp/memory/destroy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_copy
http://en.cppreference.com/w/cpp/memory/uninitialized_copy
http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_fill
http://en.cppreference.com/w/cpp/memory/uninitialized_fill
http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
http://en.cppreference.com/w/cpp/memory/uninitialized_move
http://en.cppreference.com/w/cpp/memory/uninitialized_move
http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n

HPX Documentation, 1.3.0

Table 2.24: Index-based for-loops (In Header:
<hpx/include/parallel_algorithm.hpp>)
Name Description In header
hpx::parallel::v2::for lmplements loop functionality over a range | <hpx/include/
specified by integral or iterator bounds. parallel_for_loop.
hpp>
hpx::parallel::v2::for| Implementsildep functionality over a range | <hpx/include/
specified by integral or iterator bounds. parallel_for_loop.
hpp>
hpx::parallel::v2::for| Implemants loop functionality over a range | <hpx/include/
specified by integral or iterator bounds. parallel_for_loop.
hpp>
hpx::parallel::v2:: for| Implementstloopefnctionality over a range | <hpx/include/
specified by integral or iterator bounds. parallel_for_loop.
hpp>

Executor parameters and executor parameter traits

In HPX we introduce the notion of execution parameters and execution parameter traits. At this point, the only
parameter which can be customized is the size of the chunks of work executed on a single HPX-thread (such as the
number of loop iterations combined to run as a single task).

An executor parameter object is responsible for exposing the calculation of the size of the chunks scheduled. It
abstracts the (potential platform-specific) algorithms of determining those chunks sizes.

The way executor parameters are implemented is aligned with the way executors are implemented. All
functionalities of concrete executor parameter types are exposed and accessible through a corresponding
hpx::parallel::executor_parameter_traits type.

With executor_parameter_traits clients access all types of executor parameters uniformly:

std::size_t chunk_size =
executor_parameter_traits<my_parameter_t>::get_chunk_size (my_parameter,
my_executor, [](){ return 0; }, num_tasks);

This call synchronously retrieves the size of a single chunk of loop iterations (or similar) to combine for execution on
a single HPX-thread if the overall number of tasks to schedule is given by num_tasks. The lambda function exposes
a means of test-probing the execution of a single iteration for performance measurement purposes (the execution
parameter type might dynamically determine the execution time of one or more tasks in order to calculate the chunk
size, see hpx: :parallel::execution: :auto_chunk_size for an example of such a executor parameter

type).

Other functions in the interface exist to discover whether a executor parameter type should be invoked once
(i.e. returns a static chunk size, see hpx: :parallel: :execution::static_chunk_size) or whether it

215 http://en.cppreference.com/w/cpp/memory/destroy

216 http://en.cppreference.com/w/cpp/memory/destroy_n

217 http://en.cppreference.com/w/cpp/memory/uninitialized_copy

218 http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n

219 hitp://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
220 http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
221 http://en.cppreference.com/w/cpp/memory/uninitialized_fill

222 http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n

223 hitp://en.cppreference.com/w/cpp/memory/uninitialized_move

224 hitp://en.cppreference.com/w/cpp/memory/uninitialized_move_n

225 http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
226 hitp://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n

140 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

should be invoked for each scheduled chunk of work (i.e. it returns a variable chunk size, for an example, see
hpx::parallel::execution::guided_chunk_size).

Though this interface appears to require executor parameter type authors to implement all different basic operations,
there is really none required. In practice, all operations have sensible defaults. However, some executor parameter
types will naturally specialize all operations for maximum efficiency.

In HPX we have implemented the following executor parameter types:

* hpx::parallel::execution::auto_chunk_size: Loop iterations are divided into pieces and then
assigned to threads. The number of loop iterations combined is determined based on measurements of how long
the execution of 1% of the overall number of iterations takes. This executor parameters type makes sure that as
many loop iterations are combined as necessary to run for the amount of time specified.

* hpx::parallel::execution::static_chunk_size: Loop iterations are divided into pieces of a
given size and then assigned to threads. If the size is not specified, the iterations are evenly (if possible) divided
contiguously among the threads. This executor parameters type is equivalent to OpenMP’s STATIC scheduling
directive.

* hpx::parallel::execution::dynamic_chunk_size: Loop iterations are divided into pieces of a
given size and then dynamically scheduled among the cores; when an core finishes one chunk, it is dynamically
assigned another If the size is not specified, the default chunk size is 1. This executor parameters type is
equivalent to OpenMP’s DYNAMIC scheduling directive.

* hpx::parallel::execution: :guided_chunk_size: Iterations are dynamically assigned to cores
in blocks as cores request them until no blocks remain to be assigned. Similar to dynamic_chunk_size ex-
cept that the block size decreases each time a number of loop iterations is given to a thread. The size of the initial
block is proportional to number_of_iterations / number_of_cores. Subsequent blocks are pro-
portional to number_of_iterations_remaining / number_of_cores. The optional chunk size
parameter defines the minimum block size. The default minimal chunk size is 1. This executor parameters type
is equivalent to OpenMP’s GUIDED scheduling directive.

Using task blocks

The define_task_block, run and the wait functions implemented based on N441 1227 are based on the
task_block concept that is a part of the common subset of the Microsoft Parallel Patterns Library (PPL)**® and the

Intel Threading Building Blocks (TBB)?* libraries.

This implementations adopts a simpler syntax than exposed by those libraries— one that is influenced by language-
based concepts such as spawn and sync from Cilk++>* and async and finish from X10%3'. It improves on existing
practice in the following ways:

* The exception handling model is simplified and more consistent with normal C++ exceptions.

* Most violations of strict fork-join parallelism can be enforced at compile time (with compiler assistance, in
some cases).

* The syntax allows scheduling approaches other than child stealing.

Consider an example of a parallel traversal of a tree, where a user-provided function compute is applied to each node
of the tree, returning the sum of the results:

227 http://www.open-std.org/jtc1/sc22/wg2 1/docs/papers/2015/n4411.pdf
228 hitps://msdn.microsoft.com/en-us/library/dd492418.aspx

229 https://www.threadingbuildingblocks.org/

230 https://software.intel.com/en-us/articles/intel-cilk-plus/

231 https://x10-lang.org/

2.5. Manual 141

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://www.threadingbuildingblocks.org/
https://software.intel.com/en-us/articles/intel-cilk-plus/
https://x10-lang.org/

HPX Documentation, 1.3.0

template <typename Func>
int traverse(node& n, Func && compute)
{
int left = 0, right = 0;
define_task_block (
[&] (task_Dblock<>s tr) |
if (n.left)
tr.run([&] { left = traverse(xn.left, compute); });
if (n.right)
tr.run([&] { right = traverse(*n.right, compute); });
1) i

return compute (n) + left + right;

The example above demonstrates the use of two of the functions, hpx: :parallel::define_task_block and
the hpx: :parallel: :task_block: : run member function of a hpx: :parallel::task_block.

The task_block function delineates a region in a program code potentially containing invocations of threads
spawned by the run member function of the task_block class. The run function spawns an HPX thread, a
unit of work that is allowed to execute in parallel with respect to the caller. Any parallel tasks spawned by run within
the task block are joined back to a single thread of execution at the end of the define_task_block. run takes a
user-provided function object £ and starts it asynchronously—i.e. it may return before the execution of £ completes.
The HPX scheduler may choose to run £ immediately or delay running £ until compute resources become available.

A task_Dblock can be constructed only by define_task_block because it has no public constructors. Thus,
run can be invoked (directly or indirectly) only from a user-provided function passed to define_task_block:

void g();

void f (task_block<>& tr)

{
tr.run(qg); // OK, invoked from within task_block in h

void h{()

{
define_task_block (f);

int main ()

{
task_block<> tr; // Error: no public constructor
tr.run(qg); // No way to call run outside of a define_task_block
return O;

Extensions for task blocks
Using execution policies with task blocks

In HPX we implemented some extensions for task_block beyond the actual standards proposal N4411%%?. The
main addition is that a task_block can be invoked with a execution policy as its first argument, very similar to the
parallel algorithms.

232 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf

142 Chapter 2. What’s so special about HPX?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf

HPX Documentation, 1.3.0

An execution policy is an object that expresses the requirements on the ordering of functions invoked as a consequence
of the invocation of a task block. Enabling passing an execution policy to define_task_block gives the user
control over the amount of parallelism employed by the created task_block. In the following example the use of
an explicit par execution policy makes the user’s intent explicit:

template <typename Func>
int traverse(node *n, Funcé&& compute)
{

int left = 0, right = 0;

define_task_block(
execution: :par, // execution::parallel policy
[&] (task_block<>& tb) {
if (n—>left)

tb.run([&] { left = traverse(n->left, compute); 1});
if (n->right)
tbhb.run([&] { right = traverse(n->right, compute); });

1)

return compute (n) + left + right;

This also causes the hpx: :parallel::v2::task_block object to be a template in our implementation. The
template argument is the type of the execution policy used to create the task block. The template argument defaults to
hpx::parallel::execution: :parallel_policy.

HPX still supports calling hpx: :parallel: :v2::define_task_block without an explicit execution policy.
In this case the task block will run using the hpx: :parallel: :execution: :parallel_policy.

HPX also adds the ability to access the execution policy which was used to create a given task_block.

Using executors to run tasks

Often, we want to be able to not only define an execution policy to use by default for all spawned tasks inside the
task block, but in addition to customize the execution context for one of the tasks executed by task_block: : run.
Adding an optionally passed executor instance to that function enables this use case:

template <typename Func>
int traverse(node *n, Funcé&& compute)
{

int left = 0, right = 0;

define_task_block(
execution: :par, // execution::parallel_policy
[&] (autos tb) |
if (n—>left)
{
// use explicitly specified executor to run this task
tb.run (my_executor (), [&] { left = traverse(n->left, compute); 1});

if (n—>right)

// use the executor associated with the par execution policy
tb.run([&] { right = traverse(n->right, compute); });

(continues on next page)

2.5. Manual 143

HPX Documentation, 1.3.0

(continued from previous page)

return compute (n) + left + right;

HPX still supports calling hpx: :parallel::v2::task_block::run without an explicit executor object.
In this case the task will be run using the executor associated with the execution policy which was used to call
hpx::parallel::v2::define_task_block.

2.5.7 Writing distributed HPX applications

This section focuses on the features of HPX needed to write distributed applications, namely the Active Global Address
Space (AGAS), remotely executable functions (i.e. actions), and distributed objects (i.e. components).

Global names

HPX implements an Active Global Address Space (AGAS) which is exposing a single uniform address space spanning
all localities an application runs on. AGAS is a fundamental component of the ParalleX execution model. Conceptually,
there is no rigid demarcation of local or global memory in AGAS; all available memory is a part of the same address
space. AGAS enables named objects to be moved (migrated) across localities without having to change the object’s
name, i.e., no references to migrated objects have to be ever updated. This feature has significance for dynamic load
balancing and in applications where the workflow is highly dynamic, allowing work to be migrated from heavily
loaded nodes to less loaded nodes. In addition, immutability of names ensures that AGAS does not have to keep extra
indirections (“bread crumbs”) when objects move, hence minimizing complexity of code management for system
developers as well as minimizing overheads in maintaining and managing aliases.

The AGAS implementation in HPX does not automatically expose every local address to the global address space. It
is the responsibility of the programmer to explicitly define which of the objects have to be globally visible and which
of the objects are purely local.

In HPX global addresses (global names) are represented using the hpx: : id_type data type. This data type is
conceptually very similar to void~* pointers as it does not expose any type information of the object it is referring to.

The only predefined global addresses are assigned to all localities. The following HPX API functions allow one to
retrieve the global addresses of localities:

* hpx::find_here: retrieve the global address of the locality this function is called on.

e hpx::find all localities: retrieve the global addresses of all localities available to this application
(including the /ocality the function is being called on).

* hpx::find remote_ localities: retrieve the global addresses of all remote localities available to this
application (not including the locality the function is being called on)

* hpx::get_num_localities: retrieve the number of localities available to this application.
* hpx::find_locality: retrieve the global address of any locality supporting the given component type.

* hpx::get_colocation_id: retrieve the global address of the locality currently hosting the object with the
given global address.

Additionally, the global addresses of localities can be used to create new instances of components using the following
HPX API function:

* hpx::components: :new_: Create a new instance of the given Component type on the specified locality.

144 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Note: HPX does not expose any functionality to delete component instances. All global addresses (as represented us-
ing hpx: :id_type) are automatically garbage collected. When the last (global) reference to a particular component
instance goes out of scope the corresponding component instance is automatically deleted.

Applying actions
Action type definition

Actions are special types we use to describe possibly remote operations. For every global function and every member
function which has to be invoked distantly, a special type must be defined. For any global function the special macro
HPX_PLAIN_ACTION can be used to define the action type. Here is an example demonstrating this:

namespace app
{
void some_global_function (double d)

{

cout << d;

// This will define the action type 'some_global_action' which represents
// the function 'app::some_global_function'.
HPX_PLAIN_ACTION (app: :some_global_function, some_global_action);

Important: The macro HPX_PLATIN_ACTION has to be placed in global namespace, even if the wrapped function
is located in some other namespace. The newly defined action type is placed in the global namespace as well.

If the action type should be defined somewhere not in global namespace, the action type definition has to be split into
two macro invocations (HPX_ DEFINE_PLAIN _ACTION and HPX REGISTER ACTION) as shown in the next
example:

namespace app

{
void some_global_function (double d)

{

cout << d;

// On conforming compilers the following macro expands to:

//

// typedef hpx::actions::make_action<

// decltype (&some_global_function), &some_global_function
// >::type some_global_action;

//

// This will define the action type 'some_global_action' which represents
// the function 'some_global_function'.
HPX_DEFINE_PLAIN_ACTION (some_global_function, some_global_action);

// The following macro expands to a series of definitions of global objects
// which are needed for proper serialization and initialization support

(continues on next page)

2.5. Manual 145

HPX Documentation, 1.3.0

(continued from previous page)

// enabling the remote invocation of the function' some_global_function' '
HPX_REGISTER_ACTION (app: :some_global_action, app_some_global_action);

The shown code defines an action type some_global_action inside the namespace app.

Important: If the action type definition is split between two macros as shown above, the name of the action type to
create has to be the same for both macro invocations (here some_global_action).

Important: The second argument passed to FPX_REGISTER _ACTION (app_some_global_action) has to
comprise a globally unique C++ identifier representing the action. This is used for serialization purposes.

For member functions of objects which have been registered with AGAS (e.g. ‘components’) a different registration
macro HPX_DEFINE_COMPONENT_ ACTION has to be utilized. Any component needs to be declared in a header
file and have some special support macros defined in a source file. Here is an example demonstrating this. The first
snippet has to go into the header file:

namespace app
{
struct some_component
: hpx::components::component_base<some_component>

int some_member_ function(std::string s)

{

return boost::lexical_cast<int> (s);

// This will define the action type 'some_member_action' which

// represents the member function 'some_member_function' of the

// object type 'some_ component'.

HPX_DEFINE_COMPONENT_ACTION (some_component, some_member_function,
some_member_action);

}i

// Note: The second argument to the macro below has to be systemwide-unique

// C++ identifiers
HPX_REGISTER_ACTION_DECLARATION (app: :some_component: :some_member_action, some_
—component_some_action);

The next snippet belongs into a source file (e.g. the main application source file) in the simplest case:

typedef hpx::components: :component<app: :some_component> component_type;
typedef app::some_component some_component;

HPX_REGISTER_COMPONENT (component_type, some_component);

// The parameters for this macro have to be the same as used in the corresponding
// HPX REGISTER ACTION_DECLARATION() macro invocation above

typedef some_component::some_member_action some_component_some_action;
HPX_REGISTER_ACTION (some_component_some_action);

Granted, these macro invocations are a bit more complex than for simple global functions, however we believe they
are still manageable.

146 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

The most important macro invocation is the HPX_DEFINE_COMPONENT_ACTION in the header file as this defines
the action type we need to invoke the member function. For a complete example of a simple component action see
[hpx_link examples/quickstart/component_in_executable.cpp..component_in_executable.cpp]

Action invocation

The process of invoking a global function (or a member function of an object) with the help of the associated action
is called ‘applying the action’. Actions can have arguments, which will be supplied while the action is applied. At
the minimum, one parameter is required to apply any action - the id of the /ocality the associated function should
be invoked on (for global functions), or the id of the component instance (for member functions). Generally, HPX
provides several ways to apply an action, all of which are described in the following sections.

Generally, HPX actions are very similar to ‘normal’ C++ functions except that actions can be invoked remotely. Fig.
2.8 below shows an overview of the main API exposed by HPX. This shows the function invocation syntax as defined
by the C++ language (dark gray), the additional invocation syntax as provided through C++ Standard Library features
(medium gray), and the extensions added by HPX (light gray) where:

* f function to invoke,
* p..: (optional) arguments,
* R:return type of £,

* action: action type defined by, HPX_DEFINE_PLAIN_ACTION or
HPX_DEFINE_COMPONENT_ACTION encapsulating f,

* a: an instance of the type “action,

e id: the global address the action is applied to.

R £(p) Synchronous Execution Asynchronous Execution Fire & Forget Execution
{(returns R) (returns future<R>) (retums void)
Functions fip...) async(f, p...) apply(f, p...)
{direct invo-
cation) Crt
Functions bind(f, p...)(--.) async (bind (£, p--.)}, .-.) apply {bind{f, p...}, ...)
{lazy invoca-
tion) C++ Standard Library
Actions HPX_ACTION(f, action) HPX_ACTION (f, action) HPX ACTION(f, action)
{direct invo- || a(id, p...) async(a, id, p...) applyl(a, id, p...)
cation)
Actions HPX_ACTION(f, action) | HPX_ACTICN(f, action) HPX_ACTION(f,
(lazy invoca- || bind({a, id, p...) async{bind{a, id, p...), apply (bind(a,).
tion) loo ol cool cool HPX

Fig. 2.8: Overview of the main API exposed by HPX.

This figure shows that HPX allows the user to apply actions with a syntax similar to the C++ standard. In fact, all action
types have an overloaded function operator allowing to synchronously apply the action. Further, HPX implements
hpx: :async which semantically works similar to the way std: : async works for plain C++ function.

Note: The similarity of applying an action to conventional function invocations extends even further. HPX im-
plements hpx: :bind and hpx: : function two facilities which are semantically equivalent to the std: :bind

2.5. Manual 147

HPX Documentation, 1.3.0

and std::function types as defined by the C++11 Standard. While hpx: : async extends beyond the con-
ventional semantics by supporting actions and conventional C++ functions, the HPX facilities hpx: :bind and
hpx: : function extend beyond the conventional standard facilities too. The HPX facilities not only support con-
ventional functions, but can be used for actions as well.

Additionally, HPX exposes hpx: :apply and hpx: :async_continue both of which refine and extend the stan-
dard C++ facilities.

The different ways to invoke a function in HPX will be explained in more detail in the following sections.

Applying an action asynchronously without any synchronization

This method (‘fire and forget’) will make sure the function associated with the action is scheduled to run on the
target locality. Applying the action does not wait for the function to start running, instead it is a fully asynchronous
operation. The following example shows how to apply the action as defined in the previous section on the local locality
(the locality this code runs on):

some_global_action act; // define an instance of some_global_action
hpx::apply(act, hpx::find_here(), 2.0);

(the function hpx: : find_here () returns the id of the local locality, i.e. the locality this code executes on).

Any component member function can be invoked using the same syntactic construct. Given that id is the global
address for a component instance created earlier, this invocation looks like:

some_component_action act; // define an instance of some_component_action
hpx::apply(act, id, "42");

In this case any value returned from this action (e.g. in this case the integer 42 is ignored. Please look at Action type
definition for the code defining the component action some_ component_action used.

Applying an action asynchronously with synchronization

This method will make sure the action is scheduled to run on the target locality. Applying the action itself does not
wait for the function to start running or to complete, instead this is a fully asynchronous operation similar to using
hpx: :apply as described above. The difference is that this method will return an instance of a hpx: : future<>
encapsulating the result of the (possibly remote) execution. The future can be used to synchronize with the asyn-
chronous operation. The following example shows how to apply the action from above on the local locality:

some_global_action act; // define an instance of some_global_action
hpx::future<void> f = hpx::async(act, hpx::find_here(), 2.0);

//

// ... other code can be executed here

//

f.get (); // this will possibly wait for the asynchronous operation to 'return'

(as before, the function hpx: : find_here () returns the id of the local locality (the locality this code is executed
on).

Note: The use of a hpx: : future<void> allows the current thread to synchronize with any remote operation not
returning any value.

148 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Note: Any std::future<> returned from std: :async () is required to block in its destructor if the value has
not been set for this future yet. This is not true for hpx: : future<> which will never block in its destructor, even
if the value has not been returned to the future yet. We believe that consistency in the behavior of futures is more
important than standards conformance in this case.

Any component member function can be invoked using the same syntactic construct. Given that id is the global
address for a component instance created earlier, this invocation looks like:

some_component_action act; // define an instance of some_component_action
hpx::future<int> f = hpx::async(act, id, "42");

//

// ... other code can be executed here

//

cout << f.get(); // this will possibly wait for the asynchronous operation to

— 'return' 42

Note: The invocation of f£.get () will return the result immediately (without suspending the calling thread) if
the result from the asynchronous operation has already been returned. Otherwise, the invocation of £.get () will
suspend the execution of the calling thread until the asynchronous operation returns its result.

Applying an action synchronously

This method will schedule the function wrapped in the specified action on the target locality. While the invocation
appears to be synchronous (as we will see), the calling thread will be suspended while waiting for the function to
return. Invoking a plain action (e.g. a global function) synchronously is straightforward:

some_global_action act; // define an instance of some_global_action
act (hpx::find_here(), 2.0);

While this call looks just like a normal synchronous function invocation, the function wrapped by the action will be
scheduled to run on a new thread and the calling thread will be suspended. After the new thread has executed the
wrapped global function, the waiting thread will resume and return from the synchronous call.

Equivalently, any action wrapping a component member function can be invoked synchronously as follows:

some_component_action act; // define an instance of some_component_action
int result = act(id, "42");

The action invocation will either schedule a new thread locally to execute the wrapped member function (as before, 1 d
is the global address of the component instance the member function should be invoked on), or it will send a parcel to
the remote locality of the component causing a new thread to be scheduled there. The calling thread will be suspended
until the function returns its result. This result will be returned from the synchronous action invocation.

It is very important to understand that this ‘synchronous’ invocation syntax in fact conceals an asynchronous function
call. This is beneficial as the calling thread is suspended while waiting for the outcome of a potentially remote
operation. The HPX thread scheduler will schedule other work in the mean time, allowing the application to make
further progress while the remote result is computed. This helps overlapping computation with communication and
hiding communication latencies.

Note: The syntax of applying an action is always the same, regardless whether the target locality is remote to the
invocation locality or not. This is a very important feature of HPX as it frees the user from the task of keeping track

2.5. Manual 149

HPX Documentation, 1.3.0

what actions have to be applied locally and which actions are remote. If the target for applying an action is local, a
new thread is automatically created and scheduled. Once this thread is scheduled and run, it will execute the function
encapsulated by that action. If the target is remote, HPX will send a parcel to the remote /ocality which encapsulates
the action and its parameters. Once the parcel is received on the remote locality HPX will create and schedule a new
thread there. Once this thread runs on the remote /ocality, it will execute the function encapsulated by the action.

Applying an action with a continuation but without any synchronization

This method is very similar to the method described in section Applying an action asynchronously without any syn-
chronization. The difference is that it allows the user to chain a sequence of asynchronous operations, while handing
the (intermediate) results from one step to the next step in the chain. Where hpx : : apply invokes a single function
using ‘fire and forget’ semantics, hpx: :apply_continue asynchronously triggers a chain of functions without
the need for the execution flow ‘to come back’ to the invocation site. Each of the asynchronous functions can be
executed on a different locality.

Applying an action with a continuation and with synchronization

This method is very similar to the method described in section Applying an action asynchronously with synchroniza-
tion. In addition to what hpx : : async can do, the functions hpx : : async_cont inue takes an additional function
argument. This function will be called as the continuation of the executed action. It is expected to perform additional
operations and to make sure that a result is returned to the original invocation site. This method chains operations asyn-
chronously by providing a continuation operation which is automatically executed once the first action has finished
executing.

As an example we chain two actions, where the result of the first action is forwarded to the second action and the result
of the second action is sent back to the original invocation site:

// first action
std::int32_t actionl (std::int32_t 1)
{

return i+1;

}
HPX_PLAIN_ACTION (actionl); // defines actionl_type

// second action
std::int32_t action2(std::int32_t 1i)
{
return i«2;
}
HPX_PLAIN_ACTION (action2); // defines action2_type

// this code invokes 'actionl' above and passes along a continuation
// function which will forward the result returned from 'actionl' to
// 'action2'.
actionl_type actl; // define an instance of 'actionl_type'
action2_type act2; // define an instance of 'actionZ_ type'
hpx::future<int> f =

hpx::async_continue (actl, hpx::make_continuation (act2),

hpx::find_here (), 42);

hpx::cout << f.get () << "\n"; // will print: 86 ((42 + 1) * 2)

By default, the continuation is executed on the same locality as hpx: :async_continue is invoked from. If you
want to specify the /ocality where the continuation should be executed, the code above has to be written as:

150 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

// this code invokes 'actionl' above and passes along a continuation
// function which will forward the result returned from 'actionl' to
// 'action2'.

actionl_type actl; // define an instance of 'actionl_type'
action2_type act2; // define an instance of 'actionZ_type'
hpx::future<int> £ =

hpx::async_continue (actl, hpx::make_continuation(act2, hpx::find_here()),

hpx::find_here (), 42);
hpx::cout << f.get () << "\n"; // will print: 86 ((42 + 1) =* 2)

Similarly, it is possible to chain more than 2 operations:

actionl_type actl; // define an instance of 'actionl_type'
action2_type act2; // define an instance of 'actionZ_ type'
hpx::future<int> f =
hpx::async_continue (actl,
hpx::make_continuation(act2, hpx::make_continuation(actl)),
hpx::find_here (), 42);
hpx::cout << f.get() << "\n"; // will print: 87 ((42 + 1) % 2 + 1)

The function hpx : :make_continuation creates a special function object which exposes the following prototype:

struct continuation

{
template <typename Result>
void operator () (hpx::id_type id, Result&s result) const
{

}i

where the parameters passed to the overloaded function operator operator () () are:

* the id is the global id where the final result of the asynchronous chain of operations should be sent to (in most
cases this is the id of the hpx: : future returned from the initial call to hpx: :async_continue. Any
custom continuation function should make sure this id is forwarded to the last operation in the chain.

 the result is the result value of the current operation in the asynchronous execution chain. This value needs
to be forwarded to the next operation.

Note: All of those operations are implemented by the predefined continuation function object which is returned from
hpx: :make_continuation. Any (custom) function object used as a continuation should conform to the same
interface.

Action error handling

Like in any other asynchronous invocation scheme it is important to be able to handle error conditions occurring while
the asynchronous (and possibly remote) operation is executed. In HPX all error handling is based on standard C++
exception handling. Any exception thrown during the execution of an asynchronous operation will be transferred back
to the original invocation [ocality, where it is rethrown during synchronization with the calling thread.

Important: Exceptions thrown during asynchronous execution can be transferred back to the invoking thread only
for the synchronous and the asynchronous case with synchronization. Like with any other unhandled exception,

2.5. Manual 151

HPX Documentation, 1.3.0

any exception thrown during the execution of an asynchronous action without synchronization will result in calling
hpx: :terminate causing the running application to exit immediately.

Note: Even if error handling internally relies on exceptions, most of the API functions exposed by HPX can be used
without throwing an exception. Please see Working with exceptions for more information.

As an example, we will assume that the following remote function will be executed:

namespace app
{
void some_function_with_error (int arg)
{
if (arg < 0) |
HPX_THROW_EXCEPTION (bad_parameter, "some_ function with error",
"some really bad error happened");
}
// do something else...

// This will define the action type 'some_error_action' which represents
// the function 'app::some_function with error'.

HPX_PLAIN_ACTION (app: :some_function_with_error, some_error_action);

The use of HPX_THROW_EXCEPTION to report the error encapsulates the creation of a hpx : : except ion which
is initialized with the error code hpx: :bad_parameter. Additionally it carries the passed strings, the information
about the file name, line number, and call stack of the point the exception was thrown from.

We invoke this action using the synchronous syntax as described before:

// note: wrapped function will throw hpx::exception
some_error_action act; // define an instance of some_error_action
try {
act (hpx::find_here (), -3); // exception will be rethrown from here
}
catch (hpx::exception consts e)
// prints: 'some really bad error happened: HPX(bad parameter)'
cout << e.what();

If this action is invoked asynchronously with synchronization, the exception is propagated to the waiting thread as
well and is re-thrown from the future’s function get () :

// note: wrapped function will throw hpx::exception

some_error_action act; // define an instance of some_error_action
hpx::future<void> f = hpx::async(act, hpx::find_here(), -3);
try {

f.get(); // exception will be rethrown from here

}

catch (hpx::exception consté& e)
// prints: 'some really bad error happened: HPX (bad parameter)'
cout << e.what();

For more information about error handling please refer to the section Working with exceptions. There we also explain
how to handle error conditions without having to rely on exception.

152 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Writing components

A component in HPX is a C++ class which can be created remotely and for which its member functions can be invoked
remotely as well. The following sections highlight how components can be defined, created, and used.

Defining components

In order for a C++ class type to be managed remotely in HPX, the type must be derived from the
hpx: :components: :component_base template type. We call such C++ class types ‘components’.

Note that the component type itself is passed as a template argument to the base class:

// header file some_component.hpp
#include <hpx/include/components.hpp>

namespace app
{
// Define a new component type 'some_ component'
struct some_component
: hpx::components: :component_base<some_component>

// This member function is has to be invoked remotely
int some_member_function(std::string consté& s)

{

return boost::lexical_cast<int> (s);

// This will define the action type 'some_member._action' which

// represents the member function 'some_member_function' of the

// object type 'some_ component'.

HPX_DEFINE_COMPONENT_ACTION (some_component, some_member_function, some_member_
—action);

}i

// This will generate the necessary boiler-plate code for the action allowing
// it to be invoked remotely. This declaration macro has to be placed in the
// header file defining the component itself.

//

// Note: The second argument to the macro below has to be systemwide-unique

// C++ identifiers

//

HPX_REGISTER_ACTION_DECLARATION (app: :some_component: :some_member_action, some_
—component_some_action);

There is more boiler plate code which has to be placed into a source file in order for the component to be usable. Every
component type is required to have macros placed into its source file, one for each component type and one macro for
each of the actions defined by the component type.

For instance:

// source file some_component.cpp
#include "some_component.hpp"

// The following code generates all necessary boiler plate to enable the

(continues on next page)

2.5. Manual 153

HPX Documentation, 1.3.0

(continued from previous page)

// remote creation of 'app::some_component' instances with 'hpx::new_<>()'
//

using some_component = app::some_component;

using some_component_type = hpx::components::component<some_component>;

// Please note that the second argument to this macro must be a

// (system-wide) unique C++-style identifier (without any namespaces)
//

HPX_REGISTER_COMPONENT (some_component_type, some_component);

// The parameters for this macro have to be the same as used in the corresponding
// HPX_REGISTER_ACTION_DECLARATION() macro invocation in the corresponding

// header file.

//

// Please note that the second argument to this macro must be a

// (system-wide) unique C++-style identifier (without any namespaces)

//

HPX_REGISTER_ACTION (app: :some_component: :some_member_action, some_component_some_
—action);

Defining client side representation classes

Often it is very convenient to define a separate type for a component which can be used on the client side (from
where the component is instantiated and used). This step might seem as unnecessary duplicating code, however it
significantly increases the type safety of the code.

A possible implementation of such a client side representation for the component described in the previous section
could look like:

#include <hpx/include/components.hpp>

namespace app
{
// Define a client side representation type for the component type
// '"some_component' defined in the previous section.
//
struct some_component_client
hpx::components::client_base<some_component_client, some_component>

using base_type = hpx::components::client_base<
some_component_client, some_component>;

some_component_client (hpx::future<hpx::id_type> && 1id)
base_type (std: :move (id))
{}

hpx::future<int> some_member_function(std::string consts s)
{

some_component : : some_member_action act;

return hpx::async(act, get_id(), s);

A client side object stores the global id of the component instance it represents. This global id is accessible by calling
the function client_base<>::get_1id (). The special constructor which is provided in the example allows to

154 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

create this client side object directly using the API function hpx: : new_.

Creating component instances

Instances of defined component types can be created in two different ways. If the component to create has a defined
client side representation type, then this can be used, otherwise use the server type.

The following examples assume that some_component_type is the type of the server side implementation of the
component to create. All additional arguments (see , ... notation below) are passed through to the corresponding
constructor calls of those objects:

// create one instance on the given locality

hpx::id_type here = hpx::find_here();

hpx::future<hpx::id_type> f =
hpx::new_<some_component_type> (here, ...);

// create one instance using the given distribution
// policy (here: hpx::colocating_distribution policy)
hpx::id_type here = hpx::find_here();
hpx::future<hpx::id_type> f =

hpx::new_<some_component_type> (hpx::colocated(here), ...);

// create multiple instances on the given locality

hpx::id_type here = find_here();

hpx::future<std::vector<hpx::id_type>> f =
hpx::new_<some_component_typel[]> (here, num, ...);

// create multiple instances using the given distribution

// policy (here: hpx::binpacking distribution _policy)

hpx::future<std::vector<hpx::id_type>> f = hpx::new_<some_component_type[]>(
hpx::binpacking (hpx::find_all_localities()), num, ...);

The examples below demonstrate the use of the same API functions for creating client side representation objects
(instead of just plain ids). These examples assume that c1ient_type is the type of the client side representation of
the component type to create. As above, all additional arguments (see , ... notation below) are passed through to
the corresponding constructor calls of the server side implementation objects corresponding to the client_type:

// create one instance on the given locality
hpx::id_type here = hpx::find_here();
client_type c = hpx::new_<client_type> (here, ...);

// create one instance using the given distribution

// policy (here: hpx::colocating distribution _policy)

hpx::id_type here = hpx::find _here();

client_type ¢ = hpx::new_<client_type> (hpx::colocated (here), ...);

// create multiple instances on the given locality

hpx::id_type here = hpx::find_here();

hpx::future<std::vector<client_type>> f =
hpx::new_<client_type[]> (here, num, ...);

// create multiple instances using the given distribution

// policy (here: hpx::binpacking distribution_policy)

hpx::future<std::vector<client_type>> f = hpx::new_<client_typel]>(
hpx::binpacking (hpx::find_all_localities()), num, ...);

2.5. Manual 155

HPX Documentation, 1.3.0

Using component instances

Segmented containers

In parallel programming, there is now a plethora of solutions aimed at implementing “partially contiguous” or seg-
mented data structures, whether on shared memory systems or distributed memory systems. HPX implements such
structures by drawing inspiration from Standard C++ containers.

Using segmented containers

A segmented container is a template class that is described in the namespace hpx. All segmented containers are very
similar semantically to their sequential counterpart (defined in namespace std but with an additional template
parameter named DistPolicy). The distribution policy is an optional parameter that is passed last to the segmented
container constructor (after the container size when no default value is given, after the default value if not). The
distribution policy describes the manner in which a container is segmented and the placement of each segment among
the available runtime localities.

However, only a part of the st d container member functions were reimplemented:
* (constructor), (destructor), operator=
* operator/|[]
* begin, cbegin, end, cend
* size

An example of how to use the partitioned_vector container would be:

#include <hpx/include/partitioned _vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments

/)

HPX_REGISTER_PARTITIONED_VECTOR (double) ;

// By default, the number of segments is equal to the current number of
// localities

//

hpx::partitioned_vector<double> va (50);

hpx::partitioned_vector<double> vb (50, 0.0);

An example of how to use the partitioned_vector container with distribution policies would be:

#include <hpx/include/partitioned_vector.hpp>
#include <hpx/runtime/find_localities.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments

/)

HPX_REGISTER_PARTITIONED_VECTOR (double) ;

std::size_t num_segments = 10;
std: :vector<hpx::id_type> locs = hpx::find_all_ localities|()

auto layout =
hpx::container_layout (num_segments, locs);

(continues on next page)

156 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

// The number of segments is 10 and those segments are spread across the
// localities collected in the variable locs in a Round-Robin manner

//

hpx::partitioned_vector<double> va (50, layout);
hpx::partitioned_vector<double> vb (50, 0.0, layout);

By definition, a segmented container must be accessible from any thread although its construction is synchronous only
for the thread who has called its constructor. To overcome this problem, it is possible to assign a symbolic name to the
segmented container:

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments

//

HPX_REGISTER_PARTITIONED_VECTOR (double) ;

hpx::future<void> fserver = hpx::async(

[10{

hpx::partitioned_vector<double> v (50);

// Register the 'partitioned vector' with the name "some_name"

/7

v.register_as ("some_name");

/+ Do some code */

)i

hpx::future<void> fclient =
hpx::async(
[10{
// Naked 'partitioned_ vector'
//

hpx::partitioned_vector<double> v;

// Now the variable v points to the same 'partitioned vector' that has
// been registered with the name "some name"
/7

v.connect_to ("some_name") ;

/* Do some code */

)i

Segmented containers

HPX provides the following segmented containers:

Table 2.25: Sequence containers

Name Description In header Class page at cppref-
erence.com
hpx: :partitioned| Bymamic segmented con- | <hpx/include/ vector?>>
tiguous array. partitioned_vector.hpp>

2.5. Manual 157

http://en.cppreference.com/w/cpp/container/vector

HPX Documentation, 1.3.0

Table 2.26: Unordered associative containers

Name Description In header Class page at cp-
preference.com
hpx: :unordeteSegmented collection of key-value pairs, | <hpx/include/ unordered_map>*
hashed by keys, keys are unique. unordered_map.hpp>

Segmented iterators and segmented iterator traits

The basic iterator used in the STL library is only suitable for one-dimensional structures. The iterators we use in
HPX must adapt to the segmented format of our containers. Our iterators are then able to know when incrementing
themselves if the next element of type T is in the same data segment or in another segment. In this second case, the
iterator will automatically point to the beginning of the next segment.

Note: Note that the dereference operation operator = does not directly return a reference of type T& but an
intermediate object wrapping this reference. When this object is used as an l-value, a remote write operation is
performed; When this object is used as an r-value, implicit conversion to T type will take care of performing remote
read operation.

It is sometimes useful not only to iterate element by element, but also segment by segment, or simply get a local
iterator in order to avoid additional construction costs at each deferencing operations. To mitigate this need, the
hpx::traits::segmented_iterator_traits are used.

With segmented_iterator_traits users can uniformly get the iterators which specifically iterates over seg-
ments (by providing a segmented iterator as a parameter), or get the local begin/end iterators of the nearest local
segment (by providing a per-segment iterator as a parameter):

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_ vector' segments

//

HPX_REGISTER_PARTITIONED_VECTOR (double) ;

using iterator = hpx::partitioned_vector<T>::iterator;
using traits = hpx::traits::segmented_iterator_traits<iterator>;

hpx::partitioned_vector<T> v;

std::size_t count = 0;
auto seg_begin = traits::segment (v.begin());
auto seg_end = traits::segment (v.end());

// Iterate over segments

for (auto seg_it = seg_begin; seg_it != seg_end; ++seg_it)
{

auto loc_begin = traits::begin(seg_it)

auto loc_end = traits::end(seg_it);

// Iterate over elements inside segments
for (auto 1lit = loc_begin; 1lit != loc_end; ++1it, ++count)

(continues on next page)

233 http://en.cppreference.com/w/cpp/container/vector
234 hitp://en.cppreference.com/w/cpp/container/unordered_map

158 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/container/unordered_map

HPX Documentation, 1.3.0

(continued from previous page)

«1it = count;

Which is equivalent to:

hpx::partitioned_vector<T> v;

std::size_t count = 0;
auto begin = v.begin();
auto end = v.end();
for (auto it = begin; it != end; ++it, ++count)
{
1t = count;
}
Using views

The use of multidimensional arrays is quite common in the numerical field whether to perform dense matrix op-
erations or to process images. It exist many libraries which implement such object classes overloading their basic
operators (e.g.*‘+‘“, —, *, (), etc.). However, such operation becomes more delicate when the underlying data layout
is segmented or when it is mandatory to use optimized linear algebra subroutines (i.e. BLAS subroutines).

Our solution is thus to relax the level of abstraction by allowing the user to work not directly on n-dimensionnal data,
but on “n-dimensionnal collections of 1-D arrays”. The use of well-accepted techniques on contiguous data is thus
preserved at the segment level, and the composability of the segments is made possible thanks to multidimensional
array-inspired access mode.

Preface: Why SPMD?

Although HPX refutes by design this programming model, the /ocality plays a dominant role when it comes to im-
plement vectorized code. To maximize local computations and avoid unneeded data transfers, a parallel section (or
Single Programming Multiple Data section) is required. Because the use of global variables is prohibited, this parallel
section is created via the RAII idiom.

To define a parallel section, simply write an action taking a spmd_block variable as a first parameter:

#include <hpx/lcos/spmd_block.hpp>

void bulk_function (hpx::1lcos::spmd_block block /% , arg0, argl, ... */)
{
// Parallel section

/* Do some code */

}
HPX_PLAIN_ACTION (bulk_function, bulk_action);

Note: In the following paragraphs, we will use the term “image” several times. An image is defined as a lightweight
process whose entry point is a function provided by the user. It’s an “image of the function”.

2.5. Manual 159

HPX Documentation, 1.3.0

The spmd_block class contains the following methods:
¢ [def Team information] get_num_images, this_image, images_per_locality
¢ [def Control statements] sync_all, sync_images

Here is a sample code summarizing the features offered by the spmd_block class:

#include <hpx/lcos/spmd_block.hpp>

void bulk_function (hpx::1lcos::spmd_block block /* , arg0, argl, ... */)
{

std::size_t num_images = block.get_num_images () ;

std::size_t this_image = block.this_image () ;

std::size_t images_per_locality = block.images_per_locality();

/* Do some code */

// Synchronize all images in the team
block.sync_all();

/* Do some code */

// Synchronize image 0 and image 1
block.sync_images (0, 1);

/* Do some code */
std::vector<std::size_t> vec_images = {2,3,4};

// Synchronize images 2, 3 and 4
block.sync_images (vec_images) ;

// Alternative call to synchronize images 2, 3 and 4
block.sync_images (vec_images.begin (), vec_images.end());

/* Do some code */

// Non-blocking version of sync_all/()
hpx::future<void> event =
block.sync_all (hpx::launch::async);

// Callback waiting for 'event' to be ready before being scheduled
hpx::future<void> cb =
event .then (
[] (hpx::future<void>)

{

/+ Do some code */

1)

// Finally wait for the execution tree to be finished
cb.get ();

}
HPX_PLAIN_ACTION (bulk_test_function, bulk_test_action);

Then, in order to invoke the parallel section, call the function define_spmd_block specifying an arbitrary sym-
bolic name and indicating the number of images per locality to create:

160 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

void bulk_function (hpx::1lcos::spmd_block block, /x , arg0, argl, ... #/)
{

}
HPX_PLAIN_ACTION (bulk_test_function, bulk_test_action);

int main ()
{
/#* std::size_t arg0, argl, ...; */

bulk_action act;
std::size_t images_per_locality = 4;

// Instanciate the parallel section
hpx::1lcos::define_spmd_block (

"some_name", images_per_locality, std::move(act) /x, arg0, argl, ... */);

return O;

Note: In principle, the user should never call the spmd_block constructor. The define_spmd_block function
is responsible of instantiating spmd_block objects and broadcasting them to each created image.

SPMD multidimensional views

Some classes are defined as “container views” when the purpose is to observe and/or modify the values of a container
using another perspective than the one that characterizes the container. For example, the values of an std: : vector
object can be accessed via the expression [i]. Container views can be used, for example, when it is desired for
those values to be “viewed” as a 2D matrix that would have been flattened in a std: : vector. The values would be
possibly accessible via the expression vv (i, 7) which would call internally the expression v [k].

By default, the partitioned_vector class integrates 1-D views of its segments:

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_ vector' segments

//

HPX_REGISTER_PARTITIONED_VECTOR (double) ;

using iterator = hpx::partitioned_vector<double>::iterator;
using traits = hpx::traits::segmented_iterator_traits<iterator>;

hpx::partitioned_vector<double> v;

// Create a 1-D view of the vector of segments
auto vv = traits::segment (v.begin());

// Access segment 1
std: :vector<double> v = vv[i];

Our views are called “multidimensional” in the sense that they generalize to N dimensions the purpose of
segmented_iterator_traits::segment () in the 1-D case. Note that in a parallel section, the 2-D ex-
pression a (i, j) = b (i, J) is quite confusing because without convention, each of the images invoked will race

2.5. Manual 161

HPX Documentation, 1.3.0

to execute the statement. For this reason, our views are not only multidimensional but also “spmd-aware”.

Note: SPMD-awareness: The convention is simple. If an assignment statement contains a view subscript as an 1-
value, it is only and only the image holding the r-value who is evaluating the statement. (In MPI sense, it is called a
Put operation).

Subscript-based operations

Here are some examples of using subscripts in the 2-D view case:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned vector' segments

7/
HPX_REGISTER_PARTITIONED_VECTOR (double) ;

using Vec = hpx::partitioned_vector<double>;
using View_2D = hpx::partitioned_vector_view<double, 2>;

/+ Do some code */
Vec v;

// Parallel section (suppose 'block' an spmd_block instance)
{
std::size_t height, width;

// Instanciate the view
View_2D vv(block, v.begin(), v.end(), {height,width});

// The 1l-value is a view subscript, the image that owns vv(1,0)
// evaluates the assignment.
vv(0,1) = vv(1,0);

// The 1l-value is a view subscript, the image that owns the r-value
// (result of expression 'std::vector<double>(4,1.0)"') evaluates the
// assignment : oops! race between all participating images.

vv(2,3) = std::vector<double> (4,1.0);

Iterator-based operations

Here are some examples of using iterators in the 3-D view case:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned _vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned vector' segments

//

HPX_REGISTER_PARTITIONED_VECTOR (int) ;

(continues on next page)

162 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

using Vec = hpx::partitioned_vector<int>;
using View_3D = hpx::partitioned_vector_view<int, 3>;

/% Do some code */
Vec vl1, v2;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t sixe_x, size_y, size_z;

// Instanciate the views
View_3D vvl (block, vl.begin(), vl.end(), {sixe_x,size_y,size_z});
View_3D vv2 (block, v2.begin(), v2.end(), {sixe_x,size_y,size_z});

// Save previous segments covered by vvl into segments covered by vv2
auto vv2_it = vv2.begin();
auto vvl_it vvl.cbegin () ;

for (; vv2_it != vv2.end(); vv2_it++, vvi_it++)
{

// It's a Put operation

*vv2_1t = xvv1l_it;

// Ensure that all images have performed their Put operations
block.sync_all();

// Ensure that only one image 1is putting updated data into the different
// segments covered by vvl

if (block.this_image () == 0)

{

int idx = 0;

// Update all the segments covered by vvl
for(auto i = vvl.begin(); i != vvl.end(); i++)
{

// It's a Put operation

1 = std::vector<float> (elt_size, idx++);

Here is an example that shows how to iterate only over segments owned by the current image:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/components/containers/partitioned_vector/partitioned_vector_local_view.
—hpp>

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_ vector' segments

//
HPX_REGISTER_PARTITIONED_VECTOR (float) ;

using Vec = hpx::partitioned_vector<float>;

(continues on next page)

2.5. Manual 163

HPX Documentation, 1.3.0

(continued from previous page)

using View_1D = hpx::partitioned_vector_view<float, 1>;

/+ Do some code #/

Vec v;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t num_segments;

// Instanciate the view
View_1D vv(block, v.begin(), v.end(), {num_segments});

// Instanciate the local view from the view

auto local_vv = hpx::local_view(vv);
for (auto i = localvv.begin(); i != localvv.end(); 1i++)
{

std: :vector<float> & segment = xi;

/* Do some code */

Instanciating sub-views

It is possible to construct views from other views: we call it sub-views. The constraint nevertheless for the subviews
is to retain the dimension and the value type of the input view. Here is an example showing how to create a sub-view:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments

//

HPX_REGISTER_PARTITIONED_VECTOR (float) ;

using Vec = hpx::partitioned_vector<float>;
using View_2D = hpx::partitioned_vector_view<float,2>;

/+ Do some code */
Vec v;
// Parallel section (suppose 'block' an spmd_block instance)
{
std::size_t N = 20;

std::size_t tilesize = 5;

// Instanciate the view
View_2D vv(block, v.begin(), v.end(), {N,N});

// Instanciate the subview
View_2D svv (

(continues on next page)

164 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

block, &vv(tilesize,0),&vv(2+tilesize-1,tilesize-1), {tilesize,tilesize}, {N,N});

if (block.this_image () == 0)

{
// Equivalent to 'vv(tilesize,0) = 2.0f'
svv(0,0) = 2.0f;

// Equivalent to 'vv(2x*tilesize-1,tilesize-1) = 3.0f'
svv(tilesize-1,tilesize-1) = 3.0f;

Note: The last parameter of the subview constructor is the size of the original view. If one would like to create a
subview of the subview and so on, this parameter should stay unchanged. {N, N} for the above example).

C++ co-arrays

Fortran has extended its scalar element indexing approach to reference each segment of a distributed array. In this
extension, a segment is attributed a ?co-index? and lives in a specific locality. A co-index provides the application
with enough information to retrieve the corresponding data reference. In C++, containers present themselves as a
?smarter? alternative of Fortran arrays but there are still no corresponding standardized features similar to the Fortran
co-indexing approach. We present here an implementation of such features in HPX.

Preface: co-array, a segmented container tied to a SPMD multidimensional views

As mentioned before, a co-array is a distributed array whose segments are accessible through an array-inspired access
mode. We have previously seen that it is possible to reproduce such access mode using the concept of views. Nev-
ertheless, the user must pre-create a segmented container to instanciate this view. We illustrate below how a single
constructor call can perform those two operations:

#include <hpx/components/containers/coarray/coarray.hpp>
#include <hpx/lcos/spmd_block.hpp>

// The following code generates all necessary boiler plate to enable the
// co-creation of 'coarray'
//
HPX_REGISTER_COARRAY (double) ;
// Parallel section (suppose 'block' an spmd_block instance)
{
using hpx::container::placeholders::_;
std::size_t height=32, width=4, segment_size=10;

hpx::coarray<double, 3> a(block, "a", {height,width,_}, segment_size);

/* Do some code */

Unlike segmented containers, a co-array object can only be instantiated within a parallel section. Here is the description
of the parameters to provide to the coarray constructor:

2.5. Manual 165

HPX Documentation, 1.3.0

Table 2.27: Parameters of coarray constructor

Parameter Description

block Reference to a spmd_block object

"a" Symbolic name of type std: :string

{height,width, Dimensions of the coarray object

_}

segment_size Size of a co-indexed element (i.e. size of the object referenced by the expression a (i,
i k)

Note that the “last dimension size” cannot be set by the user. It only accepts the constexpr variable
hpx::container: :placeholders: :_. This size, which is considered private, is equal to the number of cur-
rent images (value returned by block.get_num_images ()).

Note: Animportant constraint to remember about coarray objects is that all segments sharing the same “last dimension
index” are located in the same image.

Using co-arrays

The member functions owned by the coarray objects are exactly the same as those of spmd multidimensional views.
These are:

* Subscript-based operations
x Iterator-based operations

However, one additional functionality is provided. Knowing that the element a (i, j, k) is in the memory of the kth
image, the use of local subscripts is possible.

Note: For spmd multidimensional views, subscripts are only global as it still involves potential remote data transfers.

Here is an example of using local subscripts:

#include <hpx/components/containers/coarray/coarray.hpp>
#include <hpx/lcos/spmd_block.hpp>

// The following code generates all necessary boiler plate to enable the
// co-creation of 'coarray'
//
HPX_REGISTER_COARRAY (double) ;
// Parallel section (suppose 'block' an spmd_block instance)
{
using hpx::container::placeholders::_;
std::size_t height=32, width=4, segment_size=10;
hpx::coarray<double, 3> a(block, "a", {height,width,_}, segment_size);

double idx = block.this_image () xrheight*width;

for (std::size_t j = 0; j<width; j++)
for (std::size_t i = 0; i<height; i++)

(continues on next page)

166 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

// Local write operation performed via the use of local subscript
a(i,j,_) = std::vector<double> (elt_size,idx);
idx++;

block.sync_all();

Note: When the “last dimension index” of a subscript is equal to hpx : : container: :placeholders: :_,local
subscript (and not global subscript) is used. It is equivalent to a global subscript used with a “last dimension index”
equal to the value returned by block.this_image ().

2.5.8 Running on batch systems

This section walks you through launching HPX applications on various batch systems.

How to use HPX applications with PBS

Most HPX applications are executed on parallel computers. These platforms typically provide integrated job manage-
ment services that facilitate the allocation of computing resources for each parallel program. HPX includes out of the
box support for one of the most common job management systems, the Portable Batch System (PBS).

All PBS jobs require a script to specify the resource requirements and other parameters associated with a parallel job.
The PBS script is basically a shell script with PBS directives placed within commented sections at the beginning of the
file. The remaining (not commented-out) portions of the file executes just like any other regular shell script. While the
description of all available PBS options is outside the scope of this tutorial (the interested reader may refer to in-depth
documentation®® for more information), below is a minimal example to illustrate the approach. As a test application
we will use the multithreaded hello_world_distributed program, explained in the section Remote execution
with actions: Hello world.

#!/bin/bash
#
#PBS -1 nodes=2:ppn=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u SAPP_PATH S$SAPP_OPTIONS —--hpx:nodes= cat S$PBS_NODEFILE®

Caution: If the first application specific argument (inside SAPP_OPTIONS) is a non-option (i.e. does not start
with a — or a ——), then those have to be placed before the option ——hpx : nodes, which in this case should be the
last option on the command line.

Alternatively, use the option ——hpx : endnodes to explicitly mark the end of the list of node names:

pbsdsh -u SAPP_PATH —--hpx:nodes cat S$PBS _NODEFILE S -—-hpx:endnodes SAPP_OPTIONS

235 http://www.clusterresources.com/torquedocs21/

2.5. Manual 167

http://www.clusterresources.com/torquedocs21/

HPX Documentation, 1.3.0

The #PBS -1 nodes=2:ppn=4 directive will cause two compute nodes to be allocated for the application, as
specified in the option nodes. Each of the nodes will dedicate four cores to the program, as per the option ppn, short
for “processors per node” (PBS does not distinguish between processors and cores). Note that requesting more cores
per node than physically available is pointless and may prevent PBS from accepting the script.

On newer PBS versions the PBS command syntax might be different. For instance, the PBS script above would look
like:

#!/bin/bash
#
#PBS -1 select=2:ncpus=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u SAPP_PATH SAPP OPTIONS —--hpx:nodes= cat S$PBS_NODEFILE®

APP_PATH and APP_OPTIONS are shell variables that respectively specify the correct path to the ex-
ecutable (hello_world_distributed in this case) and the command line options. Since the
hello_world_distributed application doesn’t need any command line options, APP_OPTIONS has been left
empty. Unlike in other execution environments, there is no need to use the ——hpx : t hreads option to indicate the
required number of OS threads per node; the HPX library will derive this parameter automatically from PBS.

Finally, pbsdsh is a PBS command that starts tasks to the resources allocated to the current job. It is recommended to
leave this line as shown and modify only the PBS options and shell variables as needed for a specific application.

Important: A script invoked by pbsdsh starts in a very basic environment: the user’s $HOME directory is defined and
is the current directory, the LANG variable is set to C and the PATH is set to the basic /usr/local/bin:/usr/
bin:/bin as defined in a system-wide file pbs_environment. Nothing that would normally be set up by a system
shell profile or user shell profile is defined, unlike the environment for the main job script.

Another choice is for the pbsdsh command in your main job script to invoke your program via a shell, like sh or
bash so that it gives an initialized environment for each instance. We create a small script runme . sh which is used
to invoke the program:

#!/bin/bash

Small script which invokes the program based on what was passed on its
command line.

#

This script is executed by the bash shell which will initialize all

environment variables as usual.
‘ (a

Now, we invoke this script using the pbsdsh tool:

#!/bin/bash

#

#PBS —1 nodes=2:ppn=4
APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u runme.sh S$SAPP_PATH SAPP_OPTIONS —--hpx:nodes= cat S$SPBS_NODEFILE®

All that remains now is submitting the job to the queuing system. Assuming that the contents of the PBS script were
saved in file pbs_hello_world. sh in the current directory, this is accomplished by typing:

168 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

’qsub ./pbs_hello_world_pbs.sh

If the job is accepted, gsub will print out the assigned job ID, which may look like:

’$ 42 .supercomputer.some.university.edu

To check the status of your job, issue the following command:

’qstat 42 .supercomputer.some.university.edu

and look for a single-letter job status symbol. The common cases include:
e (- signifies that the job is queued and awaiting its turn to be executed.
* R - indicates that the job is currently running.
* C - means that the job has completed.

The example gstat output below shows a job waiting for execution resources to become available:

Job id Name User Time Use S Queue

42 .supercomputer ...ello_world.sh joe_user 0 Q batch

After the job completes, PBS will place two files, pbs_hello_world.sh.o042 and pbs_hello_world.sh.
e42, in the directory where the job was submitted. The first contains the standard output and the second contains the
standard error from all the nodes on which the application executed. In our example, the error output file should be
empty and standard output file should contain something similar to:

hello world from OS-thread
hello world from OS-thread
hello world from OS-thread
hello world from OS-thread
hello world from OS-thread
hello world from OS-thread
hello world from OS-thread
hello world from OS-thread

on locality
on locality
on locality
on locality
on locality
on locality
on locality
on locality

O RPN WORFRDNW
P oOoORr P OoORFr oo

Congratulations! You have just run your first distributed HPX application!

How to use HPX applications with SLURM

Just like PBS (described in section How to use HPX applications with PBS), SLURM is a job management system
which is widely used on large supercomputing systems. Any HPX application can easily be run using SLURM. This
section describes how this can be done.

The easiest way to run an HPX application using SLURM is to utilize the command line tool srun which interacts with
the SLURM batch scheduling system:

srun -p <partition> -N <number-of-nodes> hpx-application <application-arguments>

Here, <partition> is one of the node partitions existing on the target machine (consult the machines documentation
to get a list of existing partitions) and <number—of-nodes> is the number of compute nodes you want to use. By
default, the HPX application is started with one /ocality per node and uses all available cores on a node. You can
change the number of localities started per node (for example to account for NUMA effects) by specifying the —n
option of srun. The number of cores per /locality can be set by —c. The <application-arguments> are any
application specific arguments which need to be passed on to the application.

2.5. Manual 169

HPX Documentation, 1.3.0

Note: There is no need to use any of the HPX command line options related to the number of localities, num-
ber of threads, or related to networking ports. All of this information is automatically extracted from the SLURM
environment by the HPX startup code.

Important: The srun documentation explicitly states: “If —c is specified without —n as many tasks will be allocated
per node as possible while satisfying the —c restriction. For instance on a cluster with 8 CPUs per node, a job request
for 4 nodes and 3 CPUs per task may be allocated 3 or 6 CPUs per node (1 or 2 tasks per node) depending upon resource
consumption by other jobs.” For this reason, we suggest to always specify —-n <number-of-instances>, even
if <number-of-instances> is equal to one (1).

Interactive shells

To get an interactive development shell on one of the nodes you can issue the following command:

srun -p <node-type> -N <number-of-nodes> —--pty /bin/bash -1

After the shell has been opened, you can run your HPX application. By default, it uses all available cores. Note that if
you requested one node, you don’t need to do srun again. However, if you requested more than one node, and want
to run your distributed application, you can use srun again to start up the distributed HPX application. It will use the
resources that have been requested for the interactive shell.

Scheduling batch jobs

The above mentioned method of running HPX applications is fine for development purposes. The disadvantage that
comes with srun is that it only returns once the application is finished. This might not be appropriate for longer
running applications (for example benchmarks or larger scale simulations). In order to cope with that limitation you
can use the sbatch command.

The sbat ch command expects a script that it can run once the requested resources are available. In order to request
resources you need to add #SBATCH comments in your script or provide the necessary parameters to sbatc directly.
The parameters are the same as with run. The commands you need to execute are the same you would need to start
your application as if you were in an interactive shell.

2.5.9 Debugging HPX applications

Using a debugger with HPX applications

Using a debugger such as gdb with HPX applications is no problem. However, there are some things to keep in mind
to make the experience somewhat more productive.

Call stacks in HPX can often be quite unwieldy as the library is heavily templated and the call stacks can be very
deep. For this reason it is sometimes a good idea compile HPX in RelWithDebInfo mode which applies some
optimizations but keeps debugging symbols. This can often compress call stacks significantly. On the other hand,
stepping through the code can also be more difficult because of statements being reordered and variables being opti-
mized away. Also note that because HPX implements user-space threads and context switching, call stacks may not
always be complete in a debugger.

HPX launches not only worker threads but also a few helper threads. The first thread is the main thread which typically
does no work in an HPX application, except at startup and shutdown. If using the default settings, HPX will spawn six

170 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

additional threads (used for service thread pools). The first worker thread is usually the eighth thread, and most user
code will be run on these worker threads. The last thread is a helper thread used for HPX shutdown.

Finally, since HPX is a multi-threaded runtime, the following gdb options can be helpful:

set pagination off
set non-stop on

Non-stop mode allows you to have a single thread stop on a breakpoint without stopping all other threads as well.

Using sanitizers with HPX applications

Warning: Not all parts of HPX are sanitizer-clean. This means that you may end up with false positives from
HPX itself when using sanitizers for your application.

To wuse sanitizers with HPX you should turn on HPX_WITH_SANITIZERS and turn off
HPX_WITH_STACK_OVERFLOW_DETECTION during CMake configuration. It’s recommended to also build
Boost with the same sanitizers that you will be using for HPX. The appropriate sanitizers can then be enabled using
CMake by appending —fsanitize=address -fno-omit-frame-pointer to CMAKE_CXX_FLAGS and
-fsanitize=address to CMAKE_EXE_LINKER_FLAGS. Replace address with the sanitizer that you want
to use.

2.5.10 Optimizing HPX applications

Performance counters

Performance Counters in HPX are used to provide information as to how well the runtime system or an application
is performing. The counter data can help determine system bottlenecks and fine-tune system and application per-
formance. The HPX runtime system, its networking, and other layers provide counter data that an application can
consume to provide users with information of how well the application is performing.

Applications can also use counter data to determine how much system resources to consume. For example, an appli-
cation that transfers data over the network could consume counter data from a network switch to determine how much
data to transfer without competing for network bandwidth with other network traffic. The application could use the
counter data to adjust its transfer rate as the bandwidth usage from other network traffic increases or decreases.

Performance Counters are HPX parallel processes which expose a predefined interface. HPX exposes special API
functions that allow one to create, manage, read the counter data, and release instances of Performance Counters.
Performance Counter instances are accessed by name, and these names have a predefined structure which is described
in the section Performance counter names. The advantage of this is that any Performance Counter can be accessed
remotely (from a different locality) or locally (from the same locality). Moreover, since all counters expose their data
using the same API, any code consuming counter data can be utilized to access arbitrary system information with
minimal effort.

Counter data may be accessed in real time. More information about how to consume counter data can be found in the
section Consuming performance counter data.

All HPX applications provide command line options related to performance counters, such as the ability to list available
counter types, or periodically query specific counters to be printed to the screen or save them in a file. For more
information, please refer to the section HPX Command Line Options.

2.5. Manual 171

HPX Documentation, 1.3.0

Performance counter names

All Performance Counter instances have a name uniquely identifying this instance. This name can be used to access
the counter, retrieve all related meta data, and to query the counter data (as described in the section Consuming
performance counter data). Counter names are strings with a predefined structure. The general form of a countername
is:

’/objectname{full_instancename}/countername@parameters

where full_instancename could be either another (full) counter name or a string formatted as:

’parentinstancename#parentindex/instancename#instanceindex

Each separate part of a countername (e.g. objectname, countername parentinstancename,
instancename, and parameters) should start with a letter (*a'...'z"', "A"'..."'Z") or an underscore char-
acter (' _"), optionally followed by letters, digits ('0"'... ' 9 "), hyphen (' -"), or underscore characters. Whitespace
is not allowed inside a counter name. The characters ' /', "{', '} ', "#' and 'Q@"' have a special meaning and are

used to delimit the different parts of the counter name.

The parts parentinstanceindex and instanceindex are integers. If an index is not specified HPX will
assume a default of —1.

Two simple examples

An instance for a well formed (and meaningful) simple counter name would be:

/threads{locality#0/total}/count/cumulative

This counter returns the current cumulative number of executed (retired) HPX-threads for the locality 0. The counter
type of this counter is /threads/count/cumulative and the full instance name is locality#0/total.
This counter type does not require an instanceindex or parameters to be specified.

In this case, the parentindex (the '0') designates the /ocality for which the counter instance is created. The
counter will return the number of HPX-threads retired on that particular locality.

Another example for a well formed (aggregate) counter name is:

/statistics{/threads{locality#0/total}/count/cumulative}/average@500

This counter takes the simple counter from the first example, samples its values every 500 milliseconds, and returns the
average of the value samples whenever it is queried. The counter type of this counter is /statistics/average
and the instance name is the full name of the counter for which the values have to be averaged. In this case, the
parameters (the '500") specify the sampling interval for the averaging to take place (in milliseconds).

Performance counter types

Every Performance Counter belongs to a specific Performance Counter type which classifies the counters into groups
of common semantics. The type of a counter is identified by the objectname and the countername parts of the
name.

/objectname/countername

At application start, HPX will register all available counter types on each of the localities. These counter types are
held in a special Performance Counter registration database which can be later used to retrieve the meta data related to
a counter type and to create counter instances based on a given counter instance name.

172 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Performance counter instances

The full_instancename distinguishes different counter instances of the same counter type. The formatting of
the full_instancename depends on the counter type. There are two types of counters: simple counters which
usually generate the counter values based on direct measurements, and aggregate counters which take another counter
and transform its values before generating their own counter values. An example for a simple counter is given above:
counting retired HPX-threads. An aggregate counter is shown as an example above as well: calculating the average of
the underlying counter values sampled at constant time intervals.

While simple counters use instance names formatted as parentinstancename#parentindex/
instancenamef#instanceindex, most aggregate counters have the full counter name of the embedded
counter as its instance name.

Not all simple counter types require specifying all 4 elements of a full counter instance name, some of the parts
parentinstancename, parentindex, instancename, and instanceindex) are optional for specific
counters. Please refer to the documentation of a particular counter for more information about the formatting re-
quirements for the name of this counter (see Existing HPX performance counters).

The parameters are used to pass additional information to a counter at creation time. They are optional and they
fully depend on the concrete counter. Even if a specific counter type allows additional parameters to be given, those
usually are not required as sensible defaults will be chosen. Please refer to the documentation of a particular counter
for more information about what parameters are supported, how to specify them, and what default values are assumed
(see also Existing HPX performance counters).

Every locality of an application exposes its own set of Performance Counter types and Performance Counter instances.
The set of exposed counters is determined dynamically at application start based on the execution environment of the
application. For instance, this set is influenced by the current hardware environment for the /ocality (such as whether
the locality has access to accelerators), and the software environment of the application (such as the number of OS-
threads used to execute HPX-threads).

Using wildcards in performance counter names

It is possible to use wildcard characters when specifying performance counter names. Performance counter names can
contain 2 types of wildcard characters:

* Wildcard characters in the performance counter type
* Wildcard characters in the performance counter instance name

Wildcard character have a meaning which is very close to usual file name wildcard matching rules implemented by
common shells (like bash).

Table 2.28: Wildcard characters in the performance counter type

Wild- Description

card

* This wildcard character matches any number (zero or more) of arbitrary characters.

? This wildcard character matches any single arbitrary character.

[...] This wildcard character matches any single character from the list of specified within the square brack-
ets.

2.5. Manual 173

HPX Documentation, 1.3.0

Table 2.29: Wildcard characters in the performance counter instance
name

card

Wild- | Description

* This wildcard character matches any locality or any thread, depending on whether it is used for
locality#+ or worker-thread#*. No other wildcards are allowed in counter instance names.

Consuming performance counter data

You can consume performance data using either the command line interface or via the HPX application or the HPX
API. The command line interface is easier to use, but it is less flexible and does not allow one to adjust the behaviour of
your application at runtime. The command line interface provides a convenience abstraction but simplified abstraction
for querying and logging performance counter data for a set of performance counters.

Consuming performance counter data from the command line

HPX provides a set of predefined command line options for every application which uses hpx: : init for its initial-
ization. While there are much more command line options available (see HPX Command Line Options), the set of
options related to Performance Counters allow one to list existing counters, query existing counters once at application
termination or repeatedly after a constant time interval.

The following table summarizes the available command line options:

Table 2.30: HPX Command Line Options Related to Performance Coun-

ters

Com- Description

mand line

option

——hpx: priprintcthentspecified performance counter either repeatedly and/or at the times specified by
——hpx:print-counter—at (see also option ——hpx:print—-counter—-interval).

——hpx : pripintc thenspecifieels gerformance counter either repeatedly and/or at the times specified by
——hpx:print-counter—at reset the counter after the value is queried. (see also option
——hpx:print-counter—-interval).

——hpx : pyipinttheipgréormancescouater(s) specified with ——hpx : print-counter repeatedly after the time
interval (specified in milliseconds) (default:0 which means print once at shutdown).

——hpx : priprint¢heiparformdseetconatei(shspecified with ——hpx : print-counter to the given file (default:
console)).

——hpx: 1ilslist¢hemanesof all registered performance counters.

——hpx: 1ijslist¢heidesenptionfafall registered performance counters.

——hpx : pripristcthe pesforfanceacounter(s) specified with ——hpx:print-counter possible formats in
csv format with header or without any header (see option ——hpx:no-csv-header), possi-
ble values: csv (prints counter values in CSV format with full names as header) csv-short
(prints counter values in CSV format with shortnames provided with ——hpx:print-counter
as ——hpx:print—-counter shortname, full-countername)

——hpx : ng—prnt-thepedtformance counter(s) specified with ——hpx :print-counterand csvor csv-short
format specified with ——hpx:print-counter-format without header.

——hpx:pripistcothd erperformance counter(s) specified with —-hpx:print-counter (or

arg -—hpx:print-counter-reset) at the given point in time, possible argument values:
startup, shutdown (default), noshutdown.

——hpx : resresetatlypetformance counter(s) specified with ——hpx : print—counter after they have been eval-
uated)

174 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

While the options ——hpx:list-countersand ——hpx:list—-counter—infos give a short listing of all avail-
able counters, the full documentation for those can be found in the section Existing HPX performance counters.

A simple example

All of the commandline options mentioned above can be for instance tested wusing the
hello_world_distributed example.

Listing all available counters hello_world_distributed --hpx:list-counters yields:

List of available counter instances (replace * below with the appropriate
sequence number)

/agas/count/allocate /agas/count/bind /agas/count/bind_gid
/agas/count/bind_name ... /threads{locality#=*/allocator#x}/count/objects
/threads{locality#=*/total}/count/stack-recycles
/threads{locality#«*/total}/idle-rate
/threads{locality#*/worker—-thread#x}/idle-rate

Providing more information about all available counters hello_world_distributed
——hpx:list-counter—infos yields:

Information about available counter instances (replace * below with the
appropriate sequence number)

fullname: /agas/count/allocate helptext: returns the number of invocations of
the AGAS service 'allocate' type: counter_raw version: 1.0.0

fullname: /agas/count/bind helptext: returns the number of invocations of the
AGAS service 'bind' type: counter_raw version: 1.0.0

fullname: /agas/count/bind_gid helptext: returns the number of invocations of
the AGAS service 'bind_gid' type: counter_raw version: 1.0.0

This command will not only list the counter names but also a short description of the data exposed by this counter.

Note: The list of available counters may differ depending on the concrete execution environment (hardware or
software) of your application.

Requesting the counter data for one or more performance counters can be achieved by invoking
hello_world_distributed with a list of counter names:

hello_world_distributed \
——hpx:print-counter=/threads{locality#0/total}/count/cumulative \
—-hpx:print-counter=/agas{locality#0/total}/count/bind

which yields for instance:

2.5. Manual 175

HPX Documentation, 1.3.0

hello world from OS-thread 0 on locality O
/threads{locality#0/total}/count/cumulative,1,0.212527, [s],33
/agas{locality#0/total}/count/bind,1,0.212790, [s],11

The first line is the normal output generated by hello_world_distributed and has no relation to the counter
data listed. The last two lines contain the counter data as gathered at application shutdown. These lines have 6 fields,
the counter name, the sequence number of the counter invocation, the time stamp at which this information has been
sampled, the unit of measure for the time stamp, the actual counter value, and an optional unit of measure for the
counter value.

The actual counter value can be represented by a single number (for counters returning singular values) or a list of
numbers separated by ' : ' (for counters returning an array of values, like for instance a histogram).

Note: The name of the performance counter will be enclosed in double quotes ' " ' if it contains one or more commas

Al |l
r .

Requesting to query the counter data once after a constant time interval with this command line:

hello_world_distributed \
——hpx:print-counter=/threads{locality#0/total}/count/cumulative \
—-hpx:print-counter=/agas{locality#0/total}/count/bind \
——hpx:print-counter-interval=20

yields for instance (leaving off the actual console output of the hello_world_distributed example for brevity):

threads{locality#0/total}/count/cumulative,1,0.002409, [s],22
agas{locality#0/total}/count/bind,1,0.002542, [s],9
threads{locality#0/total}/count/cumulative,2,0.023002, [s],41
agas{locality#0/total}/count/bind, 2,0.023557, [s], 10
threads{locality#0/total}/count/cumulative,3,0.037514, [s], 46
agas{locality#0/total}/count/bind, 3,0.038679, [s], 10

The command ——hpx:print-counter-destination=<file> will redirect all counter data gathered to the
specified file name, which avoids cluttering the console output of your application.

The command line option ——hpx : print—-counter supports using a limited set of wildcards for a (very limited) set
of use cases. In particular, all occurrences of #+ asin locality#* and in worker—thread# will be automati-
cally expanded to the proper set of performance counter names representing the actual environment for the executed
program. For instance, if your program is utilizing 4 worker threads for the execution of HPX threads (see command
line option ——hpx : t hreads) the following command line

hello_world_distributed \
——hpx:threads=4 \
—-hpx:print-counter=/threads{locality#0/worker-thread#x}/count/cumulative

will print the value of the performance counters monitoring each of the worker threads:

hello world from OS-thread 1 on locality O

hello world from OS-thread 0 on locality O

hello world from OS-thread 3 on locality 0

hello world from OS-thread 2 on locality 0

/threads{locality#0/worker—-thread#0}/count/cumulative,1,0.0025214, [

/threads{locality#0/worker—thread#1l}/count/cumulative,1,0.0025453, [

/threads{locality#0/worker—-thread#2}/count/cumulative,1,0.0025683, [
[

1,27
1,33
1,29
/threads{locality#0/worker-thread#3}/count/cumulative,1,0.0025904, [s], 33

n n n n

176 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

The command ——hpx:print-counter-format takes values csv and csv—short to generate CSV formatted
counter values with header.

With format as csv:

hello_world_distributed \
——hpx:threads=2 \
—-hpx:print-counter-format csv \
——hpx:print-counter /threads{locality#x/total}/count/cumulative \
——hpx:print-counter /threads{locality#x/total}/count/cumulative-phases

will print the values of performance counters in CSV format with full countername as header:

hello world from OS-thread 1 on locality O

hello world from OS-thread 0 on locality 0
/threads{locality#=*/total}/count/cumulative, /threads{locality#=*/total}/count/
—cumulative-phases

39,93

With format csv-short:

hello_world_distributed \
——hpx:threads 2 \
—-hpx:print-counter-format csv-short \
——hpx:print-counter cumulative,/threads{locality#*/total}/count/cumulative \
——hpx:print-counter phases,/threads{locality#=*/total}/count/cumulative-phases

will print the values of performance counters in CSV format with short countername as header:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality O
cumulative, phases

39,93

With format csv and csv-short when used with ——hpx:print-counter—-interval:

hello_world_distributed \
——hpx:threads 2 \
—-hpx:print-counter-format csv-short \
——hpx:print-counter cumulative,/threads{locality#*/total}/count/cumulative \
—-hpx:print—-counter phases, /threads{locality#+/total}/count/cumulative—-phases \
—-hpx:print-counter-interval 5

will print the header only once repeating the performance counter value(s) repeatedly:

cum, phases

25,42

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality O
44,95

The command —-hpx:no-csv-header to be used with ——hpx:print-counter-format to print perfor-
mance counter values in CSV format without any header:

hello_world_distributed \

——hpx:threads 2 \

——hpx:print-counter-format csv-short \

——hpx:print-counter cumulative,/threads{locality#x/total}/count/cumulative \

(continues on next page)

2.5. Manual 177

HPX Documentation, 1.3.0

(continued from previous page)

——hpx:print-counter phases,/threads{locality#+/total}/count/cumulative-phases \
——hpx:no-csv-header

will print:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality O
37,91

Consuming performance counter data using the HPX API

HPX provides an API allowing to discover performance counters and to retrieve the current value of any existing
performance counter from any application.

Discover existing performance counters
Retrieve the current value of any performance counter

Performance counters are specialized HPX components. In order to retrieve a counter value, the performance counter
needs to be instantiated. HPX exposes a client component object for this purpose:

hpx::performance_counters: :performance_counter counter (std::string consts& name);

Instantiating an instance of this type will create the performance counter identified by the given name. Only the first
invocation for any given counter name will create a new instance of that counter, all following invocations for a given
counter name will reference the initially created instance. This ensures, that at any point in time there is always not
more than one active instance of any of the existing performance counters.

In order to access the counter value (or invoking any of the other functionality related to a performance counter, like
start, stop or reset) member functions of the created client component instance should be called:

// print the current number of threads created on locality 0

hpx::performance_counters: :performance_counter count (
"/threads{locality#0/total}/count/cumulative");

hpx::cout << count.get_value<int>().get () << hpx::endl;

For more information about the client component type see [classref hpx::performance_counters::performance_counter].

Note: In the above example count .get_value () returns a future. In order to print the result we must append
.get () to retrieve the value. You could write the above example like this for more clarity:

// print the current number of threads created on locality 0

hpx::performance_counters: :performance_counter count (
"/threads{locality#0/total}/count/cumulative");

hpx::future<int> result = count.get_value<int>();

hpx::cout << result.get() << hpx::endl;

178 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Providing performance counter data

HPX offers several ways by which you may provide your own data as a performance counter. This has the benefit
of exposing additional, possibly application specific information using the existing Performance Counter framework,
unifying the process of gathering data about your application.

An application that wants to provide counter data can implement a Performance Counter to provide the data. When
a consumer queries performance data, the HPX runtime system calls the provider to collect the data. The runtime
system uses an internal registry to determine which provider to call.

Generally, there two ways of exposing your own Performance Counter data: a simple, function based way and a more
complex, but more powerful way of implementing a full Performance Counter. Both alternatives are described in the
following sections.

Exposing performance counter data using a simple function

The simplest way to expose arbitrary numeric data is to write a function which will then be called whenever a consumer
queries this counter. Currently, this type of Performance Counter can only be used to expose integer values. The
expected signature of this function is:

std: :int64_t some_performance_data (bool reset);

The argument bool reset (which is supplied by the runtime system when the function is invoked) specifies whether
the counter value should be reset after evaluating the current value (if applicable).

For instance, here is such a function returning how often it was invoked:

// The atomic variable 'counter' ensures the thread safety of the counter.
boost::atomic<std::int64_t> counter (0);

std: :int64_t some_performance_data (bool reset)

{

std::int64_t result = ++counter;
if (reset)
counter = 0;

return result;

This example function exposes a linearly increasing value as our performance data. The value is incremented on each
invocation, e.g. each time a consumer requests the counter data of this Performance Counter.

The next step in exposing this counter to the runtime system is to register the function as a new raw counter type
using the HPX API function hpx: :performance_counters::install_counter_type. A counter type
represents certain common characteristics of counters, like their counter type name, and any associated description
information. The following snippet shows an example of how to register the function some_performance_data
which is shown above for a counter type named " /test/data". This registration has to be executed before any
consumer instantiates and queries an instance of this counter type:

#include <hpx/include/performance_counters.hpp>

void register_counter_type ()
{
// Call the HPX API function to register the counter type.
hpx::performance_counters::install_counter_type (
"/test/data", // counter type name
&some_performance_data, // function providing counter,

(continues on next page)

2.5. Manual 179

HPX Documentation, 1.3.0

(continued from previous page)

"returns a linearly increasing counter value" // description text (optional)
" // unit of measure (optional)

Now it is possible to instantiate a new counter instance based on the naming scheme "/test{locality#x/
total}/data™ where « is a zero based integer index identifying the /ocality for which the counter instance should
be accessed. The function hpx: : performance_counters::install_counter type enables to instanti-
ate exactly one counter instance for each /ocality. Repeated requests to instantiate such a counter will return the same
instance, e.g. the instance created for the first request.

If this counter needs to be accessed using the standard HPX command line options, the registration has to be performed
during application startup, before hpx_main is executed. The best way to achieve this is to register an HPX startup
function using the API function hpx: : register._startup_function before calling hpx: :init to initialize
the runtime system:

int main(int argc, charx argv[])
{
// By registering the counter type we make it available to any consumer
// who creates and queries an instance of the type "/test/data'.
//
// This registration should be performed during startup. The
// function 'register_counter_type' should be executed as an HPX thread right
// before hpx main is executed.
hpx::register_startup_function (®ister_counter_type);

// Initialize and run HPX.
return hpx::init (argc, argv);

Please see the code in [hpx_link examples/performance_counters/simplest_performance_counter.cpp..simplest_performance_counter.cp,
for a full example demonstrating this functionality.

Implementing a full performance counter

Sometimes, the simple way of exposing a single value as a Performance Counter is not sufficient. For that reason,
HPX provides a means of implementing full Performance Counters which support:

* Retrieving the descriptive information about the Performance Counter
* Retrieving the current counter value

* Resetting the Performance Counter (value)

* Starting the Performance Counter

* Stopping the Performance Counter

* Setting the (initial) value of the Performance Counter

Every full Performance Counter will implement a predefined interface:

// Copyright (c) 2007-2018 Hartmut Kaiser

//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

(continues on next page)

180 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

#1f !defined (HPX_PERFORMANCE_COUNTERS_PERFORMANCE COUNTER_JAN_18_ 2013 _0939AM)
#define HPX_ PERFORMANCE_COUNTERS_PERFORMANCE_COUNTER_JAN_18 2013 0939AM

#include <hpx/config.hpp>

#include <hpx/lcos/future.hpp>

#include <hpx/runtime/components/client_base.hpp>
#include <hpx/runtime/launch_policy.hpp>

#include <hpx/util/bind_front.hpp>

#include <hpx/performance_counters/counters_fwd.hpp>
#include <hpx/performance_counters/stubs/performance_counter.hpp>

#include <string>
#include <utility>
#include <vector>

SSSSSS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSS SSS
namespace hpx { namespace performance_counters
{
SSSLSS LSS S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
struct HPX_EXPORT performance_counter
components::client_base<performance_counter, stubs::performance_counter>

typedef components::client_base<
performance_counter, stubs::performance_counter
> base_type;

performance_counter () {}
performance_counter (std: :string consté& name);
performance_counter (std::string const& name, hpx::id_type consts& locality);

performance_counter (future<id_type> && id)
base_type (std: :move (id))
{}

performance_counter (hpx: :future<performance_counter> && c)
base_type (std: :move (c))
{}

SIS SSSSSSSSSSSSSSSSSSSS SS S
future<counter_info> get_info () const;
counter_info get_info(launch::sync_policy,

error_code& ec = throws) const;

future<counter_value> get_counter_value (bool reset = false);
counter_value get_counter_value (launch::sync_policy,
bool reset = false, error_code& ec = throws);

future<counter_value> get_counter_value() const;
counter_value get_counter_value (launch: :sync_policy,
error_code& ec = throws) const;

future<counter_values_array> get_counter_values_array (bool reset = false);
counter_values_array get_counter_values_array (launch::sync_policy,
bool reset = false, error_code& ec = throws);

(continues on next page)

2.5. Manual 181

HPX Documentation, 1.3.0

(continued from previous page)

future<counter_values_array> get_counter_values_array () const;
counter_values_array get_counter_values_array (launch::sync_policy,
error_code& ec = throws) const;

SIS LSS S S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
future<bool> start();
bool start (launch::sync_policy, error_code& ec = throws);

future<bool> stop();
bool stop(launch::sync_policy, error_code& ec = throws);

future<void> reset ();
void reset (launch::sync_policy, error_code& ec = throws);

future<void> reinit (bool reset = true);
void reinit (
launch: :sync_policy, bool reset = true, error_code& ec = throws);

SIS LSS LSS LSS S S S S S S SSSSSSSSSSS
future<std::string> get_name () const;
std::string get_name (launch::sync_policy, error_code& ec = throws) const;

private:

template <typename T>
static T extract_value (future<counter_value> && value)

{

return value.get () .get_value<T>();

public:

template <typename T>
future<T> get_value (bool reset = false)
{
return get_counter_value (reset) .then(
hpx::launch: :sync,
util::bind_front (
&performance_counter: :extract_value<T>));
}
template <typename T>
T get_value (launch::sync_policy, bool reset = false,
error_code& ec = throws)

return get_counter_value (launch::sync, reset) .get_value<T>(ec);

template <typename T>
future<T> get_value () const
{
return get_counter_value () .then(
hpx::launch: :sync,
util::bind_front (
&performance_counter: :extract_value<T>));

}
template <typename T>
T get_value (launch::sync_policy, error_code& ec = throws) const

{

(continues on next page)

182

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

return get_counter_value (launch::sync) .get_value<T> (ec);
}i

/// Return all counters matching the given name (with optional wildcards).
HPX_API_EXPORT std::vector<performance_counter> discover_counters (
std::string const& name, error_code& ec = throws);

H)

#endif

In order to implement a full Performance Counter you have to create an HPX component exposing this interface. To
simplify this task, HPX provides a ready made base class which handles all the boiler plate of creating a component
for you. The remainder of this section will explain the process of creating a full Performance Counter based on the
Sine example which you can find in the directory examples/performance_counters/sine/.

The base class is defined in the header file [hpx_link hpx/performance_counters/base_performance_counter.hpp..hpx/performance_count
as:

// Copyright (c) 2007-2018 Hartmut Kaiser

//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#if !defined (HPX_PERFORMANCE_COUNTERS_BASE_PERFORMANCE_COUNTER_JAN_18 2013 _1036AM)
#define HPX_ PERFORMANCE_COUNTERS_BASE_PERFORMANCE COUNTER _JAN_18 2013 1036AM

#include <hpx/config.hpp>

#include <hpx/performance_counters/counters.hpp>

#include <hpx/performance_counters/server/base_performance_counter.hpp>
#include <hpx/runtime/actions/component_action.hpp>

#include <hpx/runtime/components/component_type.hpp>

#include <hpx/runtime/components/server/component_base.hpp>

SILLLSLSS LSS S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
//[performance_counter_base_class
namespace hpx { namespace performance_counters
{
template <typename Derived>
class base_performance_counter;
H}
//]

LSS S S SS
namespace hpx { namespace performance_counters
{
template <typename Derived>
class base_performance_counter
public hpx::performance_counters::server: :base_performance_counter,
public hpx::components::component_base<Derived>
{
private:
typedef hpx::components::component_base<Derived> base_type;

public:
typedef Derived type_holder;
typedef hpx::performance_counters::server: :base_performance_counter

(continues on next page)

2.5. Manual 183

HPX Documentation, 1.3.0

(continued from previous page)

base_type_holder;

base_performance_counter ()

{}

base_performance_counter (hpx: :performance_counters: :counter_info consté& info)
base_type_holder (info)
{}

// Disambiguate finalize() which is implemented in both base classes
void finalize ()
{

base_type_holder::finalize();

base_type::finalize();

}i
}}

#endif

The single template parameter is expected to receive the type of the derived class implementing the Performance
Counter. In the Sine example this looks like:

// Copyright (c) 2007-2012 Hartmut Kaiser

//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#1if !defined (PERFORMANCE _COUNTERS_SINE_SEP_20_2011_0112PM)
#define PERFORMANCE_COUNTERS_SINE_SEP_20_2011_0112PM

#include <hpx/hpx.hpp>

#include <hpx/util/interval_timer.hpp>

#include <hpx/lcos/local/spinlock.hpp>

#include <hpx/performance_counters/base_performance_counter.hpp>

#include <cstdint>

namespace performance_counters { namespace sine { namespace server
{
SIS S S S SS
//[sine_counter definition
class sine_counter
public hpx::performance_counters: :base_performance_counter<sine_counter>
/7]
{
public:
sine_counter () : current_value_ (0) {}
sine_counter (hpx: :performance_counters::counter_info const& info);

/// This function will be called in order to query the current value of
/// this performance counter
hpx::performance_counters::counter_value get_counter_value (bool reset);

/// The functions below will be called to start and stop collecting
/// counter values from this counter.

(continues on next page)

184 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

bool start ();
bool stop();

/// finalize() will be called just before the instance gets destructed
void finalize();

protected:
bool evaluate();

private:
typedef hpx::1lcos::local::spinlock mutex_type;

mutable mutex_type mtx_;
double current_value_;
std::uint64_t evaluated_at_;

hpx::util::interval_timer timer_;
}i
b}

#endif

i.e. the type sine_counter is derived from the base class passing the type as a template argument (please
see [hpx_link examples/performance_counters/sine/server/sine.hpp..sine.hpp] for the full source code of the counter
definition). For more information about this technique (called Curiously Recurring Template Pattern - CRTP),
please see for instance the corresponding Wikipedia article’*®. This base class itself is derived from the
performance_counter interface described above.

Additionally, a full Performance Counter implementation not only exposes the actual value but also provides informa-
tion about

* The point in time a particular value was retrieved
* A (sequential) invocation count

* The actual counter value

* An optional scaling coefficient

¢ Information about the counter status

Existing HPX performance counters

The HPX runtime system exposes a wide variety of predefined Performance Counters. These counters expose critical
information about different modules of the runtime system. They can help determine system bottlenecks and fine-tune
system and application performance.

236 http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

2.5. Manual 185

http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

HPX Documentation,

1.3.0

Table 2.31: AGAS performance counters

where:

<agas_service_categ
locality,
component
symbol

or

<agas_instance> is

ydirg >nimoneadf the followin

service to query. Cur-
rently, this value will be
locality#0 where 0
is the root locality (the id
of the locality hosting the
AGAS service). Except for
<agas_service_categq
primary or symbol for
which the value for » can
be any locality id (only

and_symbol

g: primary,

ory>,

Counter type Counter instance format- | Description Parameters
ting
/agas/count/ <agas_instance>/ None Returns the total number
<agas_service> total of invocations of the spec-
where: where: ified AGAS service since
<agas_service> is | <agas_instance> is its creation.
one of the following: the name of the AGAS
primary names- | service to query. Cur-
pace services: | rently, this value will be
route, bind_gid, | locality#0 where 0 is
resolve_gid, the root locality (the id
unbind_gid, of the locality hosting the
increment_credit, AGAS service).
decrement_credit, The value for * can be any
allocate, locality id for the follow-
begin_migration, ing <agas_service>:
end_migration route, bind_gid,
component names- | resolve_gid,
pace services: | unbind_gid,
bind_prefix, increment_credit,
bind_name, decrement_credit,
resolve_id, bin, resolve,
unbind_name, unbind, and
iterate_types, iterate_names
get_component_typendonly the primary and
num_localities_type symbol AGAS service
locality namespace | components live on all lo-
services: free, | calities, whereas all other
localities, AGAS services are avail-
num_localities, able on locality#0
num_threads, only).
resolve_locality,
resolved_localities
symbol namespace
services: bind,
resolve, unbind,
iterate_names,
on_symbol_namespace_event
/agas/ <agas_instance>/ None Returns the overall total
<agas_service_categdmors/l number of invocations of
count where: all AGAS services pro-

vided by the given AGAS
service category since its
creation.

186

the nrimqr}

the primary and-symb
AGAS service compo-
nents live on all localities,
whereas all other AGAS
services are available on

Chapter 2. What]

's so special about HPX?

HPX Documentation,

1.3.0

Table 2.32: Parcel layer performance counters

Counter type Counter Description Parameters

instance

formatting
/data/count/ locality#+/ Returns the overall number of raw (un- | None
<connection_typextotal compressed) bytes sent or received (see
<operation> where: <operation, e.g. en or eceived) for
where: x is the [o- | the specified <connection_type>.
<operation> is | cality id of | The performance counters for the connection
one of the following: | the locality | type mpi are available only if the compile
sent, received the overall | time constant HPX_HAVE_PARCELPORT_MPI
<connection_type¢ number of | was defined while compiling the HPX core li-
is one of the follow- | transmitted brary (which is not defined by default, the
ing: tcp, mpi bytes should | corresponding cmake configuration constant is

be queried | HPX_WITH_PARCELPORT_MPI.

for. The | Please see CMake variables used to configure

locality id is a | HPX for more details.

(zero Dbased)

number iden-

tifying the

locality.
/data/time/ locality#«) Returns the total time (in nanoseconds) between | None
<connection_type>t/otal the start of each asynchronous transmission op-
<operation> where: eration and the end of the corresponding oper-
where: + 1is the [o- | ation for the specified <connection_type>
<operation> is | cality id of | the given locality (see <operation, e.g. en or
one of the following: | the locality | eceived).
sent, received the total | The performance counters for the connection
<connection_type transmission type mpi are available only if the compile
is one of the follow- | time should | time constant HPX_ HAVE_PARCELPORT_MPI
ing: tcp, mpi be queried | was defined while compiling the HPX core li-

for. The | brary (which is not defined by default, the

localityid is a | corresponding cmake configuration constant is

(zero based) | HPX_WITH_PARCELPORT_MPI.

number iden- | Please see CMake variables used to configure

tifying the | HPX for more details.

locality.
/serialize/ locality#*/ Returns the overall number of bytes trans- | If the configure-
count/ total ferred (see <operation>, e.g. sent or | time option
<connection_type>where: received possibly compressed) for the speci- | ~-DHPX_WITH_PAR
<operation> x 1s the lo- | fied <connection_type> by the given local- | was specified, this
where: cality id of | iry. counter allows to
<operation> is | the locality | The performance counters for the connection | specify an optional
one of the following: | the overall | type mpi are available only if the compile | action name as its
sent, received number of | time constant HPX_HAVE_PARCELPORT_MPTI | parameter. In this
<connection_type transmitted was defined while compiling the HPX core li- | case the counter
is one of the follow- | bytes should | brary (which is not defined by default, the | will report the
ing: tcp, mpi be queried | corresponding cmake configuration constant is | number of bytes

for. The | HPX_WITH_PARCELPORT_MPI. transmitted for the

locality id is a
(zero Dbased)
number iden-

Please see CMake variables used to configure
HPX for more details.

given action only.

tifying the
locality.
seriati toecatityir/Returas—the —overall time—spent—performing - H—the—econfigure
2.5: pManual total outgoing data serialization for the specified | time optidB7
<connection_type>where: <connection_type> on the given locality | ~-DHPX_WITH_PAR
<operation> * is the local- | (see <operation,e.g. sent or received). was specified, this
where: ity id of the | The performance counters for the connection | counter allows to

CELPORT_ACTI

CELPORT_ACTI

HPX Documentation, 1.3.0

237 A message can potentially consist of more than one parcel.

188 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0
Table 2.33: Thread manager performance counters
Counter type Counter instance format- | Description Parameters
ting
/threads/count/ locality#=*/total Returns the overall num- | None
cumulative or ber of executed (retired)
locality#x/ HPX-threads on the
worker—thread#x given locality since ap-
or plication start. If the
locality#x/ instance name is total
pool#*/ the counter returns the
worker—threadi#x accumulated number
where: of retired HPX-threads
locality#* is defin- | for all worker threads
ing the locality for which | (cores) on that locality.
the overall number of re- | If the instance name is
tired HPX-threads should | worker—thread#x
be queried for. The local- | the counter will return
ityid (given by is a (zero | the overall number of
based) number identifying | retired HPX-threads for
the locality. all worker threads sep-
pooli#= is defining the poohfatelvhicH'tixe cuunemt valpe of the
idle-loop counter | available only if the con-
should be queried | figuration time constant
for. HPX_WITH_THREAD_CUNMULATIVE_COUNTS
worker—-thread#* is defining theoWoideénthread for which the overall
number of retired
HPX-threads
should be queried
for. The worker
thread number
(given by the * is a
(zero based) num-
ber identifying the
worker thread. The
number of available
worker threads is
usually specified on
the command line
for the application
using the option
——hpx:threads.
If no pool-name
is specified the
counter refers to the
‘default’ pool.
/threads/time/ locality#+/total Returns the average | None
average or time spent executing
locality#=/ one HPX-thread on the
worker—thread#x* given locality since ap-
or plication start. If the
locality#x/ instance name is total
pool#x/ the counter returns the
worker—-thread#= average time spent exe-
where: cuting —one HPX-thread
2.5. Manual locality#x is defin- | for all worker threads 189

ing the locality for which
the average time spent ex-
ecuting one HPX-thread

(cores) on that [ocality.
If the instance name is
worker—-thread#x* the

HPX Documentation,

1.3.0

Table 2.34: General performance counters exposing characteristics of

NENT.

localities
Counter type Counter instance format- | Description Parameters
ting
/runtime/count/ locality#«/total Returns the overall num- | The type of the compo-
component where: ber of currently active | nent. This is the string
x is the locality id of | components of the speci- | which has been used
the locality the number | fied type on the given lo- | while registering the
of components should be | cality. component with HPX,
queried. The locality id e.g. which has been
is a (zero based) number passed as the second
identifying the locality. parameter to the macro
HPX REGISTER_COMPO]
/runtime/count/ locality#«/total Returns the overall (lo- | The action type. This is
action-invocation where: cal) invocation count of | the string which has been

* is the locality id of the
locality the number of ac-
tion invocations should be
queried. The locality id
is a (zero based) number
identifying the locality.

the specified action type
on the given locality.

used while registering
the action with HPX,
e.g. which has been
passed as the second
parameter to the macro

HPX REGISTER _ACTIO]

or

HPX_ REGISTER _ACTION

/runtime/count/

remote—action—-invo

locality#+/total
axhever

* is the locality id of the
locality the number of ac-
tion invocations should be
queried. The locality id
is a (zero based) number

Returns the overall (re-
mote) invocation count of
the specified action type
on the given locality.

The action type. This is
the string which has been
used while registering
the action with HPX,
e.g. which has been
passed as the second
parameter to the macro

identifying the locality. HPX_REGISTER _ACTIO]
or
HPX REGISTER_ACTION_

/runtime/uptime locality#+/total Returns the overall time | None

where: since application start

* is the locality id of the | on the given locality in

locality the system uptime | nanoseconds.

should be queried. The lo-

cality id is a (zero based)

number identifying the /o-

cality.
/runtime/memory/ locality#«+/total Returns the amount of vir- | None
virtual where: tual memory currently al-

+ is the locality id of | located by the referenced

the locality the allocated | locality (in bytes).

virtual memory should be

queried. The locality id

is a (zero based) number

identifying the locality.
/runtime/memory/ locality#+/total Returns the amount of res- | None
resident where: ident memory currently

* is the locality id of the
locality the allocated res-

ident memory should be
Th]]: 4

allocated by the refer-
enced /ocality (in bytes).

190

Aareriad M
\.:[UUIIUU. T I(ILMLI[’) T

is a (zero based) number
identifying the locality.

Chapter 2. What]

's so special about HPX?

/runtime/memory/
total

locality#«/total
where:

Returns the total available

7 7+,

None

memory for use by the refe

renced

HPX Documentation,

1.3.0

Table 2.35: Performance counters exposing PAPI hardware counters

Counter type Counter instance formatting Description Pa-
ram-
e-
ters

/papi/<papi_event> locality#«/total or This counter | None

where: locality#+/worker—thread#« returns the

<papi_event> is the name | where: current count

of the PAPI event to expose as | locality#~ is defining the locality for which the cur- | of occur-

a performance counter (such | rent current accumulated value of all busy-loop counters | rences of

as PAPI_SR_INS). Note that | of all worker threads should be queried. The locality | the specified

the list of available PAPI | id (given by =) is a (zero based) number identifying the | PAPI event.

events changes depending on | locality. This counter

the used architecture. worker—thread#x is defining the worker thread for | is available

For a full list of avail- | which the current value of the busy-loop counter should | only if the

able PAPI events and their | be queried for. The worker thread number (given by | configuration

(short) description use the | the «) is a (zero based) worker thread number (given by | time constant

--hpx:list-counters the «) is a (zero based) number identifying the worker | HPX_WITH_PAPT

and thread. The number of available worker threads is usu- | is set to ON

——papi-event-info=all| ally specified on the command line for the application | (default:

command line options. using the option ——hpx:threads. OFF).

2.5. Manual 191

HPX D

ocumentation,

1.3.0

Table 2.36: Performance counters for general statistics

CounterCounter in- | Description Parameters
type | stance format-
ting
/ Any full perfor- | Returns the cur- | Any parameter will be interpreted as a list of up to two comma
statlimances /counter | rent average | separated (integer) values, where the first is the time interval (in
averagane. The | (mean) value | milliseconds) at which the underlying counter should be queried.
referenced calculated based | If no value is specified, the counter will assume 1000 [ms] as
performance on the values | the default. The second value can be either 0 or 1 and specifies
counter is | queried from | whether the underlying counter should be reset during evaluation
queried at fixed | the underlying | 1 or not 0. The default value is O.
time intervals | counter (the one
as specified | specified as the
by the first | instance name).
parameter.
/ Any full perfor- | Returns the | Any parameter will be interpreted as a list of up to three comma
stat|iatances /counter | current rolling | separated (integer) values, where the first is the time interval (in
rolllingmeveradhe | average (mean) | milliseconds) at which the underlying counter should be queried.
referenced value calculated | If no value is specified, the counter will assume 1000 [ms] as the
performance based on the val- | default. The second value will be interpreted as the size of the
counter is | ues queried from | rolling window (the number of latest values to use to calculate the
queried at fixed | the underlying | rolling average). The default value for this is 10. The third value
time intervals | counter (the one | can be either O or 1 and specifies whether the underlying counter
as specified | specified as the | should be reset during evaluation 1 or not 0. The default value is
by the first | instance name). 0.
parameter.
/ Any full perfor- | Returns the cur- | Any parameter will be interpreted as a list of up to two comma
stat/i manees /counter | rent standard | separated (integer) values, where the first is the time interval (in
stddename. The | deviation (stddev) | milliseconds) at which the underlying counter should be queried.
referenced value calculated | If no value is specified, the counter will assume 1000 [ms] as
performance based on the val- | the default. The second value can be either O or 1 and specifies
counter is | ues queried from | whether the underlying counter should be reset during evaluation
queried at fixed | the underlying | 1 or not 0. The default value is O.
time intervals | counter (the one
as specified | specified as the
by the first | instance name).
parameter.
/ Any full perfor- | Returns the | Any parameter will be interpreted as a list of up to three comma
statfintances /counter | current rolling | separated (integer) values, where the first is the time interval (in
rolllinametdde¥he | variance (stddev) | milliseconds) at which the underlying counter should be queried.
referenced value calculated | If no value is specified, the counter will assume 1000 [ms] as the
performance based on the val- | default. The second value will be interpreted as the size of the
counter is | ues queried from | rolling window (the number of latest values to use to calculate the
queried at fixed | the underlying | rolling average). The default value for this is 10. The third value
time intervals | counter (the one | can be either O or 1 and specifies whether the underlying counter
as specified | specified as the | should be reset during evaluation 1 or not 0. The default value is
by the first | instance name). 0.
parameter.
/ Any full perfor- | Returns the cur- | Any parameter will be interpreted as a list of up to two comma
stat[imiances /counter | rent (statistically | separated (integer) values, where the first is the time interval (in
medijaname. The | estimated) median | milliseconds) at which the underlying counter should be queried.
referenced value calculated | If no value is specified, the counter will assume 1000 [ms] as
performance based on the val- | the default. The second value can be either O or 1 and specifies
counter is | ues queried from | whether the underlying counter should be reset during evaluation

rerted—atfHixed

the

arluing

ot The defanltals fa)

1 orne

192

\iu\/ll\.u At TIACO

time intervals
as specified
by the first

parameter.

underlying
counter (the one
specified as the
instance name).

12817

—orhoto—1ne-aeratt-varue 15—

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Table 2.37: Performance counters for elementary arithmetic operations

parameters).

Counter | Counter | Description Parameters
type in-
stance
format-
ting
/ None Returns the sum calculated based | The parameter will be interpreted as a comma sepa-
arithmetics/ | on the values queried from the un- | rated list of full performance counter names which are
add derlying counters (the ones speci- | queried whenever this counter is accessed. Any wild-
fied as the parameters). cards in the counter names will be expanded.
/ None Returns the difference calculated | The parameter will be interpreted as a comma sepa-
arithmetics/ | based on the values queried from | rated list of full performance counter names which are
subtragt the underlying counters (the ones | queried whenever this counter is accessed. Any wild-
specified as the parameters). cards in the counter names will be expanded.
/ None Returns the product calculated | The parameter will be interpreted as a comma sepa-
arithmetics/ | based on the values queried from | rated list of full performance counter names which are
multiply the underlying counters (the ones | queried whenever this counter is accessed. Any wild-
specified as the parameters). cards in the counter names will be expanded.
/ None Returns the result of division of the | The parameter will be interpreted as a comma sepa-
arithmetics/ | values queried from the underlying | rated list of full performance counter names which are
divide counters (the ones specified as the | queried whenever this counter is accessed. Any wild-
parameters). cards in the counter names will be expanded.
/ None Returns the average value of all | The parameter will be interpreted as a comma sepa-
arithmetics/ values queried from the underlying | rated list of full performance counter names which are
mean counters (the ones specified as the | queried whenever this counter is accessed. Any wild-
parameters). cards in the counter names will be expanded.
/ None Returns the standard deviation of | The parameter will be interpreted as a comma sepa-
arithmetics/ | all values queried from the under- | rated list of full performance counter names which are
variange lying counters (the ones specified | queried whenever this counter is accessed. Any wild-
as the parameters). cards in the counter names will be expanded.
/ None Returns the median value of all | The parameter will be interpreted as a comma sepa-
arithmetics/ values queried from the underlying | rated list of full performance counter names which are
median counters (the ones specified as the | queried whenever this counter is accessed. Any wild-
parameters). cards in the counter names will be expanded.
/ None Returns the minimum value of all | The parameter will be interpreted as a comma sepa-
arithmetics/ | values queried from the underlying | rated list of full performance counter names which are
min counters (the ones specified as the | queried whenever this counter is accessed. Any wild-
parameters). cards in the counter names will be expanded.
/ None Returns the maximum value of all | The parameter will be interpreted as a comma sepa-
arithmetics/ | values queried from the underlying | rated list of full performance counter names which are
max counters (the ones specified as the | queried whenever this counter is accessed. Any wild-
parameters). cards in the counter names will be expanded.
/ None Returns the count value of all val- | The parameter will be interpreted as a comma sepa-
arithmetics/ | ues queried from the underlying | rated list of full performance counter names which are
count counters (the ones specified as the | queried whenever this counter is accessed. Any wild-

cards in the counter names will be expanded.

Note: The /arithmetics counters can consume an arbitrary number of other counters. For this reason those have
to be specified as parameters (a comma separated list of counters appended after a ' @ '. For instance:

./bin/hello_world_distributed -t2 \

(continues on next page)

2.5. Manual

193

HPX Documentation, 1.3.0

(continued from previous page)

——hpx:print-counter=/threads{locality#0/worker-thread#«}/count/cumulative \
——hpx:print-counter=/arithmetics/add@/threads{locality#0/worker—thread#«*}/count/
—cumulative
hello world from OS-thread 0 on locality O
hello world from OS-thread 1 on locality 0
/threads{locality#0/worker-thread#0}/count/cumulative,1,0.515640, [s],25
/threads{locality#0/worker—-thread#l}/count/cumulative,1,0.515520, [s], 36
/arithmetics/add@/threads{locality#0/worker-thread#«}/count/cumulative,1,0.516445, [s],
64

Since all wildcards in the parameters are expanded, this example is fully equivalent to specifying both counters sepa-
rately to /arithmetics/add:

./bin/hello_world_distributed -t2 \
——hpx:print-counter=/threads{locality#0/worker—thread#x}/count/cumulative \
——hpx:print-counter=/arithmetics/adde\

/threads{locality#0/worker—-thread#0}/count/cumulative, \
/threads{locality#0/worker—-thread#1}/count/cumulative

194 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Table 2.38: Performance counters tracking parcel coalescing

CountetCounter Description Parameters
type | instance
formatting
/ locality#+y Returns the number of parcels handled by | The action type. This is the string
coalesotnd/ the message handler associated with the ac- | which has been used while registering
count where: tion which is given by the counter parameter. | the action with HPX, e.g. which has
parceksis the lo- been passed as the second parameter to
cality id of the macro HPX_REGISTER_ACTION or
the locality HPX _REGISTER_ACTION_ID.
the number
of parcels

for the given
action should
be queried
for. The
locality id 1is
a (zero based)
number iden-
tifying the
locality.

coal
coun|
mess

locality#x*
esotnd/
It where:
agess the lo-
cality id of
the locality
the number
of messages
for the given
action should
be queried
for. The
locality id 1is
a (zero based)
number iden-
tifying the
locality.

Returns the number of messages generated
by the message handler associated with the
action which is given by the counter param-
eter.

The action type. This is the string
which has been used while registering
the action with HPX, e.g. which has
been passed as the second parameter to
the macro HPX REGISTER ACTION or
HPX REGISTER ACTION_ID.

coal
coun
aver

locality#x*

esotnd/

't where:

age i dha-dd-s
cality id of
the locality
the number
of messages
for the given
action should
be queried
for. The
locality id 1is
a (zero based)
number iden-
tifying the

locality
+GCEHHY-

Returns the average number of parcels sent
in a message generated by the message han-
dler associated with the action which is

- Eévenrbythe ceunter parameter.

The action type. This is the string
which has been used while registering
the action with HPX, e.g. which has
been passed as the second parameter to
the macro HPX_REGISTER_ACTION or
HPX REGISTER _ACTION_ID

7

2.5.
coal
time
aver|

anuak 1 ity#«
esotnd/
/ where:

age i dhecdd—

Returns the average time between arriving
parcels for the action which is given by the
counter parameter.

arrival

The action type. This is the strif®
which has been used while registering
the action with HPX, e.g. which has
been passed as the second parameter to

HPX Documentation, 1.3.0

Note: The performance counters related to parcel coalescing are available only if the con-
figuration time constant HPX_WITH_PARCEL_COALESCING is set to ON (default: ON).
However, even in this case it will be available only for those actions, which are enabled
for parcel coalescing (see the macros HPX_ACTION_USES_MESSAGE_COALESCING and
HPX_ACTION_USES_MESSAGE_COALESCING_NOTHROW).

APEX integration

HPX provides integration with APEX?*, which is a framework for application profiling using task timers and various
performance counters. It can be added as a git submodule by turning on the option FPX_WITH APEX : BOOL during
CMake®® configuration. TAU?* is an optional dependency when using APEX?*!,

To build HPX with APEX?**? add HPX_WITH_APEX=0N, and, optionally, TAU_ROOT=$PATH_TO_TAU to your
CMake?* configuration. In addition, you can override the tag used for APEX?* with the HPX_WITH_APEX_ TAG
option. Please see the APEX HPX documentation’ for detailed instructions on using APEX?*® with HPX.

2.5.11 HPX runtime and resources

HPX thread scheduling policies

The HPX runtime has five thread scheduling policies: local-priority, static-priority, local, static and abp-priority.
These policies can be specified from the command line using the command line option ——hpx : queuing. In order
to use a particular scheduling policy, the runtime system must be built with the appropriate scheduler flag turned
on (e.g. cmake -DHPX_THREAD_SCHEDULERS=local, see CMake variables used to configure HPX for more
information).

Priority local scheduling policy (default policy)

e default or invoke using: ——hpx:queuinglocal-priority-fifo

The priority local scheduling policy maintains one queue per operating system (OS) thread. The OS thread pulls its
work from this queue. By default the number of high priority queues is equal to the number of OS threads; the number
of high priority queues can be specified on the command line using ——hpx:high-priority-threads. High
priority threads are executed by any of the OS threads before any other work is executed. When a queue is empty work
will be taken from high priority queues first. There is one low priority queue from which threads will be scheduled
only when there is no other work.

For this scheduling policy there is an option to turn on NUMA sensitivity using the command line option
——hpx:numa-sensitive. When NUMA sensitivity is turned on work stealing is done from queues associated
with the same NUMA domain first, only after that work is stolen from other NUMA domains.

This scheduler is enabled at build time by default and will be available always.

238 https://khuck.github.io/xpress-apex/

239 https://www.cmake.org

240 https://www.cs.uoregon.edu/research/tau/home.php

241 https://khuck.github.io/xpress-apex/

242 https://khuck.github.io/xpress-apex/

243 https://www.cmake.org

244 https://khuck.github.io/xpress-apex/

245 https://khuck.github.io/xpress-apex/usage/#hpx-louisiana- state-university
246 hitps://khuck.github.io/xpress-apex/

196 Chapter 2. What’s so special about HPX?

https://khuck.github.io/xpress-apex/
https://www.cmake.org
https://www.cs.uoregon.edu/research/tau/home.php
https://khuck.github.io/xpress-apex/
https://khuck.github.io/xpress-apex/
https://www.cmake.org
https://khuck.github.io/xpress-apex/
https://khuck.github.io/xpress-apex/usage/#hpx-louisiana-state-university
https://khuck.github.io/xpress-apex/

HPX Documentation, 1.3.0

This scheduler can be used with two underlying queuing policies (FIFO: first-in-first-out, and LIFO: last-
in-first-out). The default is FIFO. In order to use the LIFO policy use the command line option
——hpx:queuing=local-priority-1lifo.

Static priority scheduling policy

* invoke using: ——hpx:queuing=static-priority (or —gs)
. ﬂag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=static-priority

The static scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user
threads). Threads are distributed in a round robin fashion. There is no thread stealing in this policy.

Local scheduling policy

* invoke using: ——hpx:queuing=local (or —gl)
* flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=local

The local scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user
threads).

Static scheduling policy

e invoke using: ——hpx:queuing=static
* ﬂag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=static

The static scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user
threads). Threads are distributed in a round robin fashion. There is no thread stealing in this policy.

Priority ABP scheduling policy

* invoke using: ——hpx:queuing=abp-priority-fifo
* flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=abp-priority

Priority ABP policy maintains a double ended lock free queue for each OS thread. By default the number of high
priority queues is equal to the number of OS threads; the number of high priority queues can be specified on the com-
mand line using ——hpx:high-priority-threads. High priority threads are executed by the first OS threads
before any other work is executed. When a queue is empty work will be taken from high priority queues first. There
is one low priority queue from which threads will be scheduled only when there is no other work. For this scheduling
policy there is an option to turn on NUMA sensitivity using the command line option ——hpx : numa-sensitive.
When NUMA sensitivity is turned on work stealing is done from queues associated with the same NUMA domain
first, only after that work is stolen from other NUMA domains.

This scheduler can be used with two underlying queuing policies (FIFO: first-in-first-out, and LIFO: last-in-first-out).
In order to use the LIFO policy use the command line option ——hpx : queuing=abp-priority-lifo.

The HPX resource partitioner

The HPX resource partitioner lets you take the execution resources available on a system—processing units, cores, and
numa domains—and assign them to thread pools. By default HPX creates a single thread pool name default. While

2.5. Manual 197

HPX Documentation, 1.3.0

this is good for most use cases, the resource partitioner lets you create multiple thread pools with custom resources
and options.

Creating custom thread pools is useful for cases where you have tasks which absolutely need to run without interfer-
ence from other tasks. An example of this is when using MPI**” for distribution instead of the built-in mechanisms in
HPX (useful in legacy applications). In this case one can create a thread pool containing a single thread for MPI**
communication. MPI**° tasks will then always run on the same thread, instead of potentially being stuck in a queue
behind other threads.

Note that HPX thread pools are completely independent from each other in the sense that task stealing will never
happen between different thread pools. However, tasks running on a particular thread pool can schedule tasks on
another thread pool.

Note: It is simpler in some situations to to schedule important tasks with high priority instead of using a separate
thread pool.

Using the resource partitioner

In order to create custom thread pools the resource partitioner needs to be set up before HPX is initialized by creating
an instance of hpx: : resource: :partitioner:

#include <hpx/hpx_init.hpp>
#include <hpx/runtime/resource/partitioner.hpp>

int hpx_main(int argc, charx argv([])
{

return hpx::finalize();

int main(int argc, charxx argv)

{
hpx::resource::partitioner rp(argc, argv);
hpx::init ();

Note that we have to pass argc and argv to the resource partitioner to be able to parse thread binding options passed
on the command line. You should pass the same arguments to the hpx : : resource: :partitioner constructor
as you would to hpx: :init or hpx: :start. Running the above code will have the same effect as not initializing
it at all, i.e. a default thread pool will be created with the type and number of threads specified on the command line.

The resource partitioner class is the interface to add thread pools to the HPX runtime and to assign resources to the
thread pools.

To add a thread pool use the hpx::resource::partitioner::create_thread _pool method.
If you simply want to use the default scheduler and scheduler options it is enough to call rp.
create_thread_pool ("my-thread-pool").

Then, to add resources to the thread pool you can use the hpx : : resource: :partitioner::add _resource
method. The resource partitioner exposes the hardware topology retrieved using Portable Hardware Locality
(HWLOC)>" and lets you iterate through the topology to add the wanted processing units to the thread pool. Be-

247 https://en.wikipedia.org/wiki/Message_Passing_Interface
248 https://en.wikipedia.org/wiki/Message_Passing_Interface
249 hitps://en.wikipedia.org/wiki/Message_Passing_Interface
250 https://www.open-mpi.org/projects/hwloc/

198 Chapter 2. What’s so special about HPX?

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/

HPX Documentation, 1.3.0

low is an example of adding all processing units from the first NUMA domain to a custom thread pool, unless there is
only one NUMA domain in which case we leave the first processing unit for the default thread pool:

#include <hpx/hpx_init.hpp>
#include <hpx/runtime/resource/partitioner.hpp>

#include <iostream>

int hpx_main(int argc, charx argv([])

{
return hpx::finalize();

int main(int argc, charx argv[])
hpx::resource::partitioner rp(argc, argv);
rp.create_thread_pool ("my-thread-pool");

bool one_numa_domain = rp.numa_domains().size() == 1;
bool skipped_first_pu = false;

hpx::resource: ::numa_domain consté& d = rp.numa_domains () [0];

for (const hpx::resource::core& ¢ : d.cores())
{
for (const hpx::resource::pu& p : c.pus())
{
if (one_numa_domain && !skipped_first_pu)
{
skipped_first_pu = true;
continue;

rp.add_resource (p, "my-thread-pool");

hpx::init ();

Note: Whatever processing units not assigned to a thread pool by the time hpx: :init is called will be added to
the default thread pool. It is also possible to explicitly add processing units to the default thread pool, and to create the
default thread pool manually (in order to e.g. set the scheduler type).

Tip: The command line option ——hpx : print—-bind is useful for checking that the thread pools have been set up
the way you expect.

Advanced usage

It is ©possible to customize the built in schedulers by passing scheduler options to
hpx::resource: :partitioner::create_thread _pool. It is also possible to create and use cus-
tom schedulers.

2.5. Manual 199

HPX Documentation, 1.3.0

Note: It is not recommended to create your own scheduler. The HPX developers use this to experiment with
new scheduler designs before making them available to users via the standard mechanisms of choosing a scheduler
(command line options). If you would like to experiment with a custom scheduler the resource partitioner exam-
ple shared_priority_queue_scheduler.cpp contains a fully implemented scheduler with logging etc. to
make exploration easier.

To choose a scheduler and custom mode for a thread pool, pass additional options when creating the thread pool like
this:

rp.create_thread_pool ("my-thread-pool",
hpx::resource::policies::local_priority_1lifo,
hpx::policies: :scheduler_mode (
hpx::policies::scheduler_mode: :default |
hpx::policies::scheduler_mode: :enable_elasticity));

The available schedulers are documented here: hpx: :resource: :scheduling policy, and the avail-
able scheduler modes here: hpx::threads::policies::scheduler_mode. Also see the examples
folder for examples of advanced resource partitioner usage: simple_resource_partitioner.cpp and
oversubscribing resource_partitioner.cpp.

2.5.12 Miscellaneous

Error handling

Like in any other asynchronous invocation scheme it is important to be able to handle error conditions occurring while
the asynchronous (and possibly remote) operation is executed. In HPX all error handling is based on standard C++
exception handling. Any exception thrown during the execution of an asynchronous operation will be transferred back
to the original invocation locality, where it is rethrown during synchronization with the calling thread.

The source code for this example can be found here: error_handling.cpp.

Working with exceptions

For the following description we assume that the function raise_exception () is executed by invoking the plain
action raise_exception_type.

void raise_exception|()

{
HPX_THROW_EXCEPTION (hpx::no_success, "raise_exception", "simulated error");

}

HPX_PLAIN_ACTION (raise_exception, raise_exception_action);

The exception is thrown using the macro HPX THROW_EXCEPTION. The type of the thrown exception is
hpx::exception. This associates additional diagnostic information with the exception, such as file name and
line number, locality id and thread id, and stack backtrace from the point where the exception was thrown.

Any exception thrown during the execution of an action is transferred back to the (asynchronous) invocation site. It
will be rethrown in this context when the calling thread tries to wait for the result of the action by invoking either
future<>: :get () or the synchronous action invocation wrapper as shown here:

hpx::cout << "Error reporting using exceptions\n";
try {

(continues on next page)

200 Chapter 2. What’s so special about HPX?

HPX Documentation,

1.3.0

(continued from previous page)

// invoke raise_exception() which throws an exception
raise_exception_action do_it;
do_it (hpx::find_here());
}
catch (hpx::exception consts e) {
// Print just the essential error information.
hpx::cout << "caught exception: " << e.what() << "\n\n";
// Print all of the available diagnostic information as stored with
// the exception.
hpx::cout << "diagnostic information:"
<< hpx::diagnostic_information(e) << "\n";
}

hpx::cout << hpx::flush;

Note: The exception is transferred back to the invocation site even if it is executed on a different locality.

Additionally, this example demonstrates how an exception thrown by an (possibly remote) action can be handled. It
shows the use of hpx: : diagnostic_information which retrieves all available diagnostic information from the
exception as a formatted string. This includes, for instance, the name of the source file and line number, the sequence
number of the OS-thread and the HPX-thread id, the /ocality id and the stack backtrace of the point where the original

exception was thrown.

Under certain circumstances it is desirable to output only some of the diagnostics, or to output those using different
formatting. For this case, HPX exposes a set of lower level functions as demonstrated in the following code snippet:

hpx::cout << "Detailed error reporting using exceptions\n";
try {
// Invoke raise _exception() which throws an exception.
raise_exception_action do_it;
do_it (hpx::find_here());
}
catch (hpx::exception consts e) {

// Print the

elements of the diagnostic information separately.

hpx::cout << "{what}: " << hpx::get_error_what (e) << "\n";
hpx::cout << "{locality-id}: " << hpx::get_error_locality_id(e) << "\n";
hpx::cout << "{hostname}: " << hpx::get_error_host_name(e) << "\n";
hpx::cout << "{pid}: " << hpx::get_error_process_id(e) << "\n";
hpx::cout << "{function}: " << hpx::get_error_function_name (e) << "\n";
hpx::cout << "{file}: " << hpx::get_error_file_name(e) << "\n";
hpx::cout << "{line}: " << hpx::get_error_line_number (e) << "\n";
hpx::cout << "{os-thread}: " << hpx::get_error_os_thread(e) << "\n";
hpx::cout << "{thread-id}: " << std::hex << hpx::get_error_thread_id(e)
<< "\n";

hpx::cout <<

<< hpx::get_error_thread_description (e)

"{thread-description}: "
<< u\nu’.

hpx::cout << "{state}: " << std::hex << hpx::get_error_state(e)
<< "\n";
hpx::cout << "{stack-trace}: " << hpx::get_error_backtrace(e) << "\n";
hpx::cout << "{env}: " << hpx::get_error_env(e) << "\n";
}
hpx::cout << hpx::flush;
2.5. Manual 201

HPX Documentation, 1.3.0

Working with error codes

Most of the API functions exposed by HPX can be invoked in two different modes. By default those will throw an
exception on error as described above. However, sometimes it is desirable not to throw an exception in case of an
error condition. In this case an object instance of the hpx : : error._code type can be passed as the last argument to
the API function. In case of an error the error condition will be returned in that hpx : : error. code instance. The
following example demonstrates extracting the full diagnostic information without exception handling:

hpx::cout << "Error reporting using error code\n";

// Create a new error_code instance.
hpx::error_code ec;

// If an instance of an error_code 1is passed as the last argument while
// invoking the action, the function will not throw in case of an error
// but store the error information in this error_code instance instead.
raise_exception_action do_it;

do_it (hpx::find_here(), ec);

if (ec) {
// Print just the essential error information.
hpx::cout << "returned error: " << ec.get_message() << "\n";

// Print all of the available diagnostic information as stored with
// the exception.
hpx::cout << "diagnostic information:"

<< hpx::diagnostic_information (ec) << "\n";

hpx::cout << hpx::flush;

Note: The error information is transferred back to the invocation site even if it is executed on a different locality.

This example show how an error can be handled without having to resolve to exceptions and that the returned
hpx::error_code instance can be used in a very similar way as the hpx: :exception type above. Simply
pass it to the hpx: :diagnostic_information which retrieves all available diagnostic information from the
error code instance as a formatted string.

As for handling exceptions, when working with error codes, under certain circumstances it is desirable to output only
some of the diagnostics, or to output those using different formatting. For this case, HPX exposes a set of lower level
functions usable with error codes as demonstrated in the following code snippet:

hpx::cout << "Detailed error reporting using error code\n";

// Create a new error_code instance.
hpx::error_code ec;

// If an instance of an error_code 1is passed as the last argument while
// invoking the action, the function will not throw in case of an error
// but store the error information in this error_code instance instead.
raise_exception_action do_it;

do_it (hpx::find_here(), ec);

if (ec) {
// Print the elements of the diagnostic information separately.

(continues on next page)

202 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

hpx::cout << "{what}: " << hpx::get_error_what (ec) << "\n";
hpx::cout << "{locality-id}: " << hpx::get_error_locality_id(ec) <<
%"\n",
hpx::cout << "{hostname}: " << hpx::get_error_host_name (ec) << "\n
‘—’"l
hpx::cout << "{pid}: " << hpx::get_error_process_id(ec) << "\n
‘—>"l
hpx::cout << "{function}: " << hpx::get_error_function_name (ec)
<< "\n";
hpx::cout << "{file}: " << hpx::get_error_file_name(ec) << "\n
“’"l
hpx::cout << "{line}: " << hpx::get_error_line_number (ec) <<
—"\n";
hpx::cout << "{os-thread}: " << hpx::get_error_os_thread(ec) << "\n
‘—‘"l
hpx::cout << "{thread-id}: " << std::hex
<< hpx::get_error_thread_id(ec) << "\n";
hpx::cout << "{thread-description}: "
<< hpx::get_error_thread_description(ec) << "\n\n";
hpx::cout << "{state}: " << std::hex << hpx::get_error_state (ec)
<< "\n";
hpx::cout << "{stack-trace}: " << hpx::get_error_backtrace(ec) << "\n
="
hpx::cout << "{env}: " << hpx::get_error_env(ec) << "\n";
}
hpx::cout << hpx::flush;

For more information please refer to the documentation of hpx::get_error_what,
hpx::get_error_locality_1id, hpx::get_error_host_name, hpx::get_error_process_1id,
hpx::get_error function name, hpx::get_error_file name, hpx::get_error_line number,

hpx::get_error._os_thread, hpx::get_error_thread id, hpx::get_error_thread description,

hpx::get_error_backtrace, hpx::get_error_env,and hpx: :get_error._state

Lightweight error codes

Sometimes it is not desirable to collect all the ambient information about the error at the point where it happened as
this might impose too much overhead for simple scenarios. In this case, HPX provides a lightweight error code facility
which will hold the error code only. The following snippet demonstrates its use:

hpx::cout << "Error reporting using an lightweight error code\n";

// Create a new error_code instance.
hpx::error_code ec (hpx::lightweight);

// If an instance of an error._code 1is passed as the last argument while
// invoking the action, the function will not throw in case of an error
// but store the error information in this error code instance instead.
raise_exception_action do_it;

do_it (hpx::find_here(), ec);

if (ec) {
// Print just the essential error information.
hpx::cout << "returned error: " << ec.get_message() << "\n";

(continues on next page)

2.5. Manual 203

HPX Documentation, 1.3.0

(continued from previous page)

// Print all of the available diagnostic information as stored with
// the exception.
hpx::cout << "error code:" << ec.value() << "\n";

hpx::cout << hpx::flush;

All functions which retrieve other diagnostic elements from the hpx::error code will fail if called with a
lightweight error_code instance.

Utilities in HPX

In order to ease the burden of programming in HPX we have provided several utilities to users. The following section
documents those facilies.

Checkpoint

A common need of users is to periodically backup an application. This practice provides resiliency and potential
restart points in code. We have developed the concept of a checkpoint to support this use case.

Found in hpx/util/checkpoint.hpp, checkpoints are defined as objects which hold a serialized version of
an object or set of objects at a particular moment in time. This representation can be stored in memory for later use or
it can be written to disk for storage and/or recovery at a later point. In order to create and fill this object with data we
use a function called save_checkpoint. In code the function looks like this:

hpx::future<hpx::util::checkpoint> hpx::util::save_checkpoint(a, b, ¢, ...);

save_checkpoint takes arbitrary data containers such as int, double, float, vector, and future and serializes them
into a newly created checkpoint object. This function returns a future to a checkpoint containing the data.
Let us look a simple use case below:

using hpx::util::checkpoint;
using hpx::util::save_checkpoint;

std: :vector<int> vec{l,2,3,4,5};
hpx::future<checkpoint> save_checkpoint (vec);

Once the future is ready the checkpoint object will contain the vector vec and its five elements.

It is also possible to modify the launch policy used by save_checkpoint. This is accomplished by pass-
ing a launch policy as the first argument. It is important to note that passing hpx: : launch: : sync will cause
save_checkpoint to return a checkpoint instead of a future to a checkpoint. All other policies passed
to save_checkpoint will return a future to a checkpoint.

Sometimes checkpoint s must be declared before they are used. save_checkpoint allows users to move pre-
created checkpoint s into the function as long as they are the first container passing into the function (In the case
where a launch policy is used, the checkpoint will immediately follow the launch policy). An example of these
features can be found below:

char character = 'd';

int integer = 10;

float flt = 10.01f;

bool boolean = true;

std::string str = "I am a string of characters";

(continues on next page)

204 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

std::vector<char> vec(str.begin(), str.end());
checkpoint archive;

// Test 1
// test basic functionality
hpx::shared_future<checkpoint> f_archive = save_checkpoint (
std: :move (archive), character, integer, flt, boolean, str, vec);

Now that we can create checkpoint s we now must be able to restore the objects they contain into memory. This is
accomplished by the function restore_checkpoint. This function takes a checkpoint and fills its data into
the containers it is provided. It is important to remember that the containers must be ordered in the same way they
were placed into the checkpoint. For clarity see the example below:

char character?2;

int integer2;

float f1lt2;

bool boolean2;
std::string str2;

std: :vector<char> vec2;

restore_checkpoint (
f_archive.get (), character2, integer2, flt2, boolean2, str2, vec2);

The core utility of checkpoint is in its ability to make certain data persistent. Often this means that the data is
needed to be stored in an object, such as a file, for later use. For these cases we have provided two solutions: stream
operator overloads and access iterators.

We have created the two stream overloads operator<< and operator>> to stream data out of and into
checkpoint. You can see an example of the overloads in use below:

double a9 = 1.0, b9 = 1.1, c9 = 1.2;

std::ofstream test_file_ 9 ("test_file 9.txt");
hpx::future<checkpoint> f_9 = save_checkpoint (a9, b9, c9);
test_file 9 << f_9.get();

test_file_9.close();

double a9_1, b9 1, c9_1;

std::ifstream test_file_9_1("test_file 9.txt");
checkpoint archive9;

test_file_9_1 >> archive9;

restore_checkpoint (archive9, a9_1, bS9_1, c9_1);

This is the primary way to move data into and out of a checkpoint. It is important to note, however, that users
should be cautious when using a stream operator to load data an another function to remove it (or vice versa). Both
operator<<and operator>>relyona .write () anda .read () function respectively. In order to know how
much data to read from the std: : istream, the operator<< will write the size of the checkpoint before writ-
ing the checkpoint data. Correspondingly, the operator>> will read the size of the stored data before reading
the data into new instance of checkpoint. As long as the user employs the operator<< and operator>> to
stream the data this detail can be ignored.

Important: Be careful when mixing operator<< and operator>> with other facilities to read and write to a
checkpoint. operator<< writes and extra variable and operator>> reads this variable back separately. Used
together the user will not encounter any issues and can safely ignore this detail.

Users may also move the data into and out of a checkpoint using the exposed .begin () and .end () iterators.

2.5. Manual 205

HPX Documentation, 1.3.0

An example of this use case is illustrated below.

std::ofstream test_file_7 ("checkpoint_test_file.txt");
std: :vector<float> vec7{1.02f, 1.03f, 1.04f, 1.05f};

hpx::future<checkpoint> fut_7 = save_checkpoint (vec7);

checkpoint archive7 = fut_7.get();

std: :copy (archive7.begin () // Write data to ofstream
, archive7.end() // le. the file

, std::ostream_iterator<char> (test_file_7));
test_file_7.close();

std: :vector<float> vec7_1;

std: :vector<char> char_vec;

std::ifstream test_file_7_1("checkpoint_test_file.txt");

if (test_file_7_1)

{
test_file_7_1.seekg(0, test_file_7_1.end);
int length = test_file_7_1.tellg();
test_file_7_1.seekg (0, test_file_7_1.beqg);
char_vec.resize (length);
test_file_7_1.read(char_vec.data(), length);

}

checkpoint archive7_1 (std: :move (char_vec)); // Write data to checkpoint

restore_checkpoint (archive7_1, wvec7_1);

The HPX 1/0-streams component

The HPX 1/O-streams subsystem extends the standard C++ output streams std: : cout and std: :cerr to work
in the distributed setting of an HPX application. All of the output streamed to*‘hpx::cout‘‘will be dispatched to
std::cout on the console locality. Likewise, all output generated from hpx::cerr will be dispatched to
std: :cerr on the console locality.

Note: All existing standard manipulators can be used in conjunction with hpx: : cout and hpx: : cerr Histor-
ically, HPX also defines hpx: :endl and hpx: : f1lush but those are just aliases for the corresponding standard
manipulators.

In order to use either hpx: :cout or hpx::cerr application codes need to #include <hpx/include/
iostreams.hpp>. For an example, please see the simplest possible ‘Hello world’ program as included as an
example with HPX:

// Copyright (c) 2007-2012 Hartmut Kaiser

//

// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

LSS S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSS SSSSSSSSSSSSSSS SSS S
// The purpose of this example is to execute a HPX-thread printing
// "Hello World!" once. That's all.

//[hello_world 1_getting started

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.

#include <hpx/hpx_main.hpp>

#include <hpx/include/iostreams.hpp>

(continues on next page)

206 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

(continued from previous page)

int main ()

{
// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return 0O;

}

/71

Additionally those applications need to link with the iostreams component. When using cmake this can be achieved
by using the COMPONENT_DEPENDENCIES parameter, for instance:

include (HPX_AddExecutable)

add_hpx_executable (
hello_world
SOURCES hello_world.cpp
COMPONENT_DEPENDENCIES iostreams

Note: The hpx: :cout and hpx: : cerr streams buffer all output locally until a std: :endl or std: : flushis
encountered. That means that no output will appear on the console as long as either of those is explicitly used.

2.6 Additional material

¢ 2-day workshop held at CSCS in 2016
— Recorded lectures®!
— Slides®?

+ Tutorials repository>>>

* STEIIAR Group blog posts®>*

2.7 Overview

HPX is organized into different sub-libraries. Those libraries can be seen as independent modules, with clear de-
pendencies and no cycles. As an end-user, the use of these modules is completely transparent. If you use e.g.
add_hpx_executable to create a target in your project you will automatically get all modules as dependencies.
See All modules for a list of the available modules.

251 https://www.youtube.com/playlist?list=PL 1tk51Gm7zvS XfS-sqOOmIJOIFNjKze 18
252 https://github.com/STEIIAR- GROUP/tutorials/tree/master/cscs2016

253 https://github.com/STEIIAR-GROUP/tutorials

254 http://stellar- group.org/blog/

2.6. Additional material 207

https://www.youtube.com/playlist?list=PL1tk5lGm7zvSXfS-sqOOmIJ0lFNjKze18
https://github.com/STEllAR-GROUP/tutorials/tree/master/cscs2016
https://github.com/STEllAR-GROUP/tutorials
http://stellar-group.org/blog/

HPX Documentation, 1.3.0

2.8 All modules

2.8.1 Example module

This is an example module used to explain the structure of an HPX module.

The tool create_library_skeleton.py”> can be used to generate a basic skeleton. The structure of this skeleton is as
follows:

e <lib_name>/
— README.rst
— CMakelLists.txt
- cmake
- docs/
* index.rst
- examples/
* CMakeLists.txt
— include/
* hpx/
- <lib_name>
- src/
* CMakeLists.txt
- tests/
%+ CMakeLists.txt
* unit/
- CMakeLists.txt
% regressions/
- CMakeLists.txt
* performance/
- CMakelLists.txt

A README. rst should be always included which explains the basic purpose of the library and a link to the generated
documentation.

The include directory should contain only headers that other libraries need. For each of those headers, an automatic
header test to check for self containment will be generated. Private headers should be placed under the src directory.
This allows for clear seperation. The cmake subdirectory may include additional CMake?® scripts needed to generate
the respective build configurations.

Documentation is placed in the docs folder. A empty skeleton for the index is created, which is picked up by the
main build system and will be part of the generated documentation. Each header inside the include directory will
automatically be processed by Doxygen and included into the documentation. If a header should be excluded from the
API reference, a comment // sphinx:undocumented needs to be added.

255 https://github.com/STEIIAR- GROUP/hpx/blob/master/libs/create_library_skeleton.py
256 hitps://www.cmake.org

208 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/blob/master/libs/create_library_skeleton.py
https://www.cmake.org

HPX Documentation, 1.3.0

In order to consume any library defined here, all you have to do is use target_link_libraries to get the
dependencies. This of course requires that the library to link against specified the appropriate target include directories
and libraries.

2.8.2 preprocessor

This library contains useful preprocessor macros:
* HPX PP _CAT
* HPX PP _EXPAND
e HPX PP_NARGS
* HPX PP _STRINGIZE

* HPX PP _STRIP_PARENS

2.9 API reference

2.9.1 Main HPX library reference

template<typename Action>
struct async_result
#include <colocating_distribution_policy.hpp>

Note This function is part of the invocation policy implemented by this class

Public Types

template<>
using type = /ipx:future<typename fraits::promise_local_result<t ypename /ipx::traits::extract_action<Action>::remote_

template<typename Action>
struct async_result
#include <default_distribution_policy.hpp>

Note This function is part of the invocation policy implemented by this class

Public Types

template<>
using type = /ipx:future<typename fraits::promise_local_result<typename /px::traits::extract_action<Action>::remote_

struct auto_chunk_ size
#include <auto_chunk_size.hpp> Loop iterations are divided into pieces and then assigned to threads. The
number of loop iterations combined is determined based on measurements of how long the execution of 1% of
the overall number of iterations takes. This executor parameters type makes sure that as many loop iterations
are combined as necessary to run for the amount of time specified.

2.9. API reference 209

HPX Documentation, 1.3.0

Public Functions

auto_chunk_size ()
Construct an auto_chunk_size executor parameters object

Note Default constructed auto_chunk_size executor parameter types will use 80 microseconds as the min-
imal time for which any of the scheduled chunks should run.

auto_chunk_size (/ipx::util::steady_duration const &rel_time)
Construct an auto_chunk_size executor parameters object
Parameters
* rel_time: [in] The time duration to use as the minimum to decide how many loop iterations

should be combined.

class barrier
#include <barrierhpp> The barrier is an implementation performing a barrier over a number of participating
threads. The different threads don’t have to be on the same locality. This barrier can be invoked in a distributed
application.

For a local only barrier

See hpx::lcos::local::barrier.

Public Functions

barrier (std::string const &base_name)
Creates a barrier, rank is locality id, size is number of localities

A barrier base_name is created. It expects that hpx::get_num_localities() participate and the local rank is
hpx::get_locality_id().

Parameters

* base_name: The name of the barrier

barrier (std::string const &base_name, std::size_t num)
Creates a barrier with a given size, rank is locality id

A barrier base_name is created. It expects that num participate and the local rank is hpx::get_locality_id().
Parameters
¢ base_name: The name of the barrier

* num: The number of participating threads

barrier (std::string const &base_name, std::size_t num, std::size_t rank)
Creates a barrier with a given size and rank

A barrier base_name is created. It expects that num participate and the local rank is rank.
Parameters

* base_name: The name of the barrier

* num: The number of participating threads

* rank: The rank of the calling site for this invocation

210 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

barrier (std::string const &base_name, std::vector<std::size_t> const &ranks, std::size_t rank)
Creates a barrier with a vector of ranks

A barrier base_name is created. It expects that ranks.size() and the local rank is rank (must be contained
in ranks).

Parameters
¢ base_name: The name of the barrier
* ranks: Gives a list of participating ranks (this could be derived from a list of locality ids

* rank: The rank of the calling site for this invocation

void wait ()
Wait until each participant entered the barrier. Must be called by all participants

Return This function returns once all participants have entered the barrier (have called wait).

hpx:future<void> wait (hpx::launch::async_policy)
Wait until each participant entered the barrier. Must be called by all participants

Return a future that becomes ready once all participants have entered the barrier (have called wait).

Public Static Functions

static void synchronize ()
Perform a global synchronization using the default global barrier The barrier is created once at startup and
can be reused throughout the lifetime of an HPX application.

Note This function currently does not support dynamic connection and disconnection of localities.

struct binpacking distribution_policy
#include <binpacking_distribution_policy.hpp> This class specifies the parameters for a binpacking distribution
policy to use for creating a given number of items on a given set of localities. The binpacking policy will
distribute the new objects in a way such that each of the localities will equalize the number of overall objects of
this type based on a given criteria (by default this criteria is the overall number of objects of this type).

Public Functions

binpacking distribution_policy ()
Default-construct a new instance of a binpacking_distribution_policy. This policy will represent one lo-
cality (the local locality).

binpacking_distribution_policy operator () (std::vector<id_type> const &locs,
char const *perf_counter_name de-

fault_binpacking_counter_name) const
Create a new default_distribution policy representing the given set of localities.

Parameters
* locs: [in] The list of localities the new instance should represent

* perf_counter_name: [in] The name of the performance counter which should be used as the
distribution criteria (by default the overall number of existing instances of the given component
type will be used).

2.9. API reference 211

HPX Documentation, 1.3.0

binpacking_distribution_policy operator () (std::vector<id_type> &&locs, char

const *perf_counter_name = de-

Sfault_binpacking_counter_name) const
Create a new default_distribution policy representing the given set of localities.

Parameters

* locs: [in] The list of localities the new instance should represent

* perf_counter_name: [in] The name of the performance counter which should be used as the

distribution criteria (by default the overall number of existing instances of the given component
type will be used).

binpacking_distribution_policy operator () (id_type const &loc, char const *perf_counter_name

= default_binpacking_counter_name) const
Create a new default_distribution policy representing the given locality

Parameters
* loc: [in] The locality the new instance should represent
* perf_counter_name: [in] The name of the performance counter which should be used as the

distribution criteria (by default the overall number of existing instances of the given component
type will be used).

template<typename Component, typename ...Ts>
hpx::future<hpx::id_type> create (Ts&&... vs) const
Create one object on one of the localities associated by this policy instance

Return A future holding the global address which represents the newly created object

Parameters

* vs: [in] The arguments which will be forwarded to the constructor of the new object.

template<typename Component, typename ...Ts>

hpx:future<std::vector<bulk_locality_result>> bulk_create (std::size_t count, Ts&&... vs) const
Create multiple objects on the localities associated by this policy instance

Return A future holding the list of global addresses which represent the newly created objects
Parameters
* count: [in] The number of objects to create
* vs: [in] The arguments which will be forwarded to the constructors of the new objects.
std::string const &get_counter_name () const
Returns the name of the performance counter associated with this policy instance.

std::size_t get_num_localities () const
Returns the number of associated localities for this distribution policy

Note This function is part of the creation policy implemented by this class

212 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

class checkpoint
#include <checkpoint.hpp> Checkpoint Object

Checkpoint is the container object which is produced by save_checkpoint and is consumed by a re-
store_checkpoint. A checkpoint may be moved into the save_checkpoint object to write the byte stream to
the pre-created checkpoint object.

Public Types

using const_iterator = std::vector::const_iterator

Public Functions

checkpoint ()

checkpoint (checkpoint const &c)
checkpoint (checkpoint &&c)

~checkpoint ()

checkpoint (std::vector<char> const &vec)
checkpoint (std::vector<char> &&vec)
checkpoint &operator= (checkpoint const &c)
checkpoint &operator= (checkpoint &&c)

bool operator== (checkpoint const &c) const
bool operator!= (checkpoint const &c) const
const_iterator begin () const

const_iterator end () const

size_t size () const

Private Functions

template<typename Archive>
void serialize (Archive &arch, const unsigned int version)

Private Members

std::vector<char> data

2.9. API reference 213

HPX Documentation, 1.3.0

Friends

friend hpx::util::checkpoint: :hpx::serialization: :access
std::ostream &operator<< (std::ostream &ost, checkpoint const &ckp)
Operator<< Overload

This overload is the main way to write data from a checkpoint to an object such as a file. Inside the function,
the size of the checkpoint will be written to the stream before the checkpoint’s data. The operator>>
overload uses this to read the correct number of bytes. Be mindful of this additional write and read when
you use different facilities to write out or read in data to a checkpoint!

Parameters
* ost: Output stream to write to.

* ckp: Checkpoint to copy from.

Return Operator<< returns the ostream object.

std::istream &operator>> (std::istream &ist, checkpoint &ckp)
Operator>> Overload

This overload is the main way to read in data from an object such as a file to a checkpoint. It is important to
note that inside the function, the first variable to be read is the size of the checkpoint. This size variable is
written to the stream before the checkpoint’s data in the operator<< overload. Be mindful of this additional
read and write when you use different facilities to read in or write out data from a checkpoint!

Parameters
* ist: Input stream to write from.

* ckp: Checkpoint to write to.

Return Operator>> returns the ostream object.

template<typename T, typename ...Ts>
void restore_checkpoint (checkpoint const &c, T &t, Ts&... ts)
Resurrect

Restore_checkpoint takes a checkpoint object as a first argument and the containers which will be filled
from the byte stream (in the same order as they were placed in save_checkpoint).
Return Restore_checkpoint returns void.
Template Parameters
* T: A container to restore.

* Ts: Other containers to restore. Containers must be in the same order that they were inserted into
the checkpoint.

Parameters
* c: The checkpoint to restore.
e t: A container to restore.

* ts: Other containers to restore Containers must be in the same order that they were inserted into
the checkpoint.

214 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

struct colocating distribution_policy

#include <colocating_distribution_policy.hpp> This class specifies the parameters for a distribution policy to
use for creating a given number of items on the locality where a given object is currently placed.

Public Functions

colocating distribution_policy ()

Default-construct a new instance of a colocating_distribution_policy. This policy will represent the local
locality.

colocating_distribution_policy operator () (id_type const &id) const

Create a new colocating_distribution_policy representing the locality where the given object os current
located

Parameters

» id: [in] The global address of the object with which the new instances should be colocated on

template<typename Client, typename Stub>
colocating_distribution_policy operator () (client_base<Client, Stub> const &client) const

Create a new colocating_distribution_policy representing the locality where the given object os current
located

Parameters

* client: [in] The client side representation of the object with which the new instances should
be colocated on

template<typename Component, typename ...Ts>

hpx:future<hpx::id_type> create (Ts&&... vs) const
Create one object on the locality of the object this distribution policy instance is associated with
Note This function is part of the placement policy implemented by this class
Return A future holding the global address which represents the newly created object

Parameters

* vs: [in] The arguments which will be forwarded to the constructor of the new object.

template<typename Component, typename ...Ts>
hpx:future<std::vector<bulk_locality_result>> bulk_create (std::size_t count, Ts&&... vs) const
Create multiple objects colocated with the object represented by this policy instance

Note This function is part of the placement policy implemented by this class

Return A future holding the list of global addresses which represent the newly created objects

Parameters
* count: [in] The number of objects to create
* vs: [in] The arguments which will be forwarded to the constructors of the new objects.

template<typename Action, typename ...Ts>
async_result<Action>::type asyne (launch policy, Ts&&... vs) const

2.9. API reference 215

HPX Documentation, 1.3.0

template<typename Action, typename Callback, typename ... Ts>
async_result<Action>::type async_cb (launch policy, Callback &&cb, Ts&&... vs) const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename Continuation, typename ... Ts>
bool apply (Continuation &&c, threads::thread_priority priority, Ts&&... vs) const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename ...Ts>
bool apply (threads::thread_priority priority, Ts&&... vs) const

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
bool apply_cb (Continuation &&c, threads::thread_priority priority, Callback &&cb, Ts&&... vs)
const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename Callback, typename ...Ts>
bool apply_cb (threads::thread_priority priority, Callback &&cb, Ts&&... vs) const

std::size_t get_num_localities () const
Returns the number of associated localities for this distribution policy

Note This function is part of the creation policy implemented by this class

hpx:id_type get_next_target () const
Returns the locality which is anticipated to be used for the next async operation

class core
#include <partitioner.hpp>

Public Functions

core (std::size_t id = invalid_core_id, numa_domain *domain = nullptr)
std::vector<pu> const &pus () const
std::size_t id () const

Private Functions

std::vector<core> cores_sharing_numa_domain ()

Private Members

std::size_tid
numa_domain *domain_

std::vector<pu> pus_

Private Static Attributes

const std::size_t invalid_core_id = std::size_t(-1)

216 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Friends

friend hpx::resource::core: :pu
friend hpx::resource: :core: :numa_domain
struct default_distribution_policy

#include <default_distribution_policy.hpp> This class specifies the parameters for a simple distribution policy
to use for creating (and evenly distributing) a given number of items on a given set of localities.

Public Functions

default_distribution_policy ()

Default-construct a new instance of a default_distribution_policy. This policy will represent one locality
(the local locality).

default_distribution_policy operator () (std::vector<id_type> const &locs) const
Create a new default_distribution policy representing the given set of localities.

Parameters

* locs: [in] The list of localities the new instance should represent
default_distribution_policy operator () (std::vector<id_type> &&locs) const
Create a new default_distribution policy representing the given set of localities.

Parameters

* locs: [in] The list of localities the new instance should represent

default_distribution_policy operator () (id_type const &loc) const
Create a new default_distribution policy representing the given locality

Parameters

* loc: [in] The locality the new instance should represent

template<typename Component, typename ...Ts>
hpx::future<hpx::id_type> create (Ts&&... vs) const
Create one object on one of the localities associated by this policy instance
Note This function is part of the placement policy implemented by this class
Return A future holding the global address which represents the newly created object
Parameters

* vs: [in] The arguments which will be forwarded to the constructor of the new object.

template<typename Component, typename ...Ts>

hpx:future<std::vector<bulk_locality_result>> bulk_create (std::size_t count, Ts&&... vs) const
Create multiple objects on the localities associated by this policy instance

Note This function is part of the placement policy implemented by this class

Return A future holding the list of global addresses which represent the newly created objects

2.9. API reference 217

HPX Documentation, 1.3.0

Parameters
* count: [in] The number of objects to create

* vs: [in] The arguments which will be forwarded to the constructors of the new objects.

template<typename Action, typename ...Ts>
async_result<Action>::type asyne (launch policy, Ts&&... vs) const

template<typename Action, typename Callback, typename ...Ts>
async_result<Action>::type async_cb (launch policy, Callback &&cb, Ts&&... vs) const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename Continuation, typename ...Ts>
bool apply (Continuation &&c, threads::thread_priority priority, Ts&&... vs) const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename ...Ts>
bool apply (threads::thread_priority priority, Ts&&... vs) const

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
bool apply_cb (Continuation &&c, threads::thread_priority priority, Callback &&cb, Ts&&... vs)
const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename Callback, typename ...Ts>
bool apply_cb (threads::thread_priority priority, Callback &&cb, Ts&&... vs) const

std::size_t get_num_localities () const
Returns the number of associated localities for this distribution policy

Note This function is part of the creation policy implemented by this class

hpx::id_type get_next_target () const
Returns the locality which is anticipated to be used for the next async operation

struct dynamic_chunk_size
#include <dynamic_chunk_size.hpp> Loop iterations are divided into pieces of size chunk_size and then dy-
namically scheduled among the threads; when a thread finishes one chunk, it is dynamically assigned another If
chunk_size is not specified, the default chunk size is 1.

Note This executor parameters type is equivalent to OpenMP’s DYNAMIC scheduling directive.

Public Functions

dynamic_chunk_size (std::size_t chunk_size = 1)
Construct a dynamic_chunk_size executor parameters object
Parameters

e chunk_size: [in] The optional chunk size to use as the number of loop iterations to schedule
together. The default chunk size is 1.

218 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

class error_code: public error_code
#include <error_code.hpp> A hpx::error_code represents an arbitrary error condition.

The class hpx::error_code describes an object used to hold error code values, such as those originating from the

operating system or other low-level application program interfaces.

Note Class hpx::error_code is an adjunct to error reporting by exception

Public Functions

error_code (throwmode mode = plain)
Construct an object of type error_code.
Parameters

* mode: The parameter mode specifies whether the constructed hpx::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions
* nothing:
error_code (error e, throwmode mode = plain)
Construct an object of type error_code.
Parameters

* e: The parameter e holds the /iipx::error code the new exception should encapsulate.

* mode: The parameter mode specifies whether the constructed /px::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions
* nothing:
error_code (error e, char const *func, char const *file, long line, throwmode mode = plain)
Construct an object of type error_code.
Parameters
* e: The parameter e holds the /iipx::error code the new exception should encapsulate.
e func: The name of the function where the error was raised.
e file: The file name of the code where the error was raised.
e line: The line number of the code line where the error was raised.

* mode: The parameter mode specifies whether the constructed /px::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions

* nothing:

2.9. API reference 219

HPX Documentation, 1.3.0

error_code (error e, char const *msg, throwmode mode = plain)
Construct an object of type error_code.
Parameters
* e: The parameter e holds the iipx::error code the new exception should encapsulate.
* msg: The parameter msg holds the error message the new exception should encapsulate.

* mode: The parameter mode specifies whether the constructed /px::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions

e std::bad_alloc: (if allocation of a copy of the passed string fails).

error_code (error e, char const *msg, char const *func, char const *file, long line, throwmode
mode = plain)

Construct an object of type error_code.

Parameters
* e: The parameter e holds the /ipx::error code the new exception should encapsulate.
* msg: The parameter msg holds the error message the new exception should encapsulate.
e func: The name of the function where the error was raised.
e file: The file name of the code where the error was raised.

¢ line: The line number of the code line where the error was raised.

* mode: The parameter mode specifies whether the constructed /px::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions

* std::bad_alloc: (if allocation of a copy of the passed string fails).

error_code (error e, std::string const &msg, throwmode mode = plain)
Construct an object of type error_code.
Parameters
* e: The parameter e holds the /ipx::error code the new exception should encapsulate.
* msg: The parameter msg holds the error message the new exception should encapsulate.

* mode: The parameter mode specifies whether the constructed /px::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions

* std::bad_alloc: (if allocation of a copy of the passed string fails).

error_code (error e, std::string const &msg, char const *func, char const *file, long line, throw-

mode mode = plain)
Construct an object of type error_code.

Parameters

220 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

* e: The parameter e holds the ipx::error code the new exception should encapsulate.

* msg: The parameter msg holds the error message the new exception should encapsulate.
e func: The name of the function where the error was raised.

e file: The file name of the code where the error was raised.

* line: The line number of the code line where the error was raised.

* mode: The parameter mode specifies whether the constructed /px::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions

* std::bad_alloc: (if allocation of a copy of the passed string fails).

std::string get_message () const
Return a reference to the error message stored in the /ipx::error_code.

Exceptions

* nothing:

void clear ()
Clear this error_code object. The postconditions of invoking this method are.

e value() == hpx::success and category() == hpx::get_hpx_category()

error_code (error_code const &rhs)
Copy constructor for error_code

Note This function maintains the error category of the left hand side if the right hand side is a success
code.

error_code &operator= (error_code const &rhs)
Assignment operator for error_code

Note This function maintains the error category of the left hand side if the right hand side is a success
code.

Private Functions

error_code (int err, hpx::exception const &e)

error_code (std::exception_ptr const &e)

Private Members

std::exception_ptr exception__

2.9. API reference 221

HPX Documentation, 1.3.0

Friends

friend hpx::error_code: :exception

error_code make_error_code (std::exception_ptr const &e)

class exception: public system_error
#include <exception.hpp> A hpx::exception is the main exception type used by HPX to report errors.

The hpx::exception type is the main exception type used by HPX to report errors. Any exceptions thrown by
functions in the HPX library are either of this type or of a type derived from it. This implies that it is always
safe to use this type only in catch statements guarding HPX library calls.

Subclassed by hpx::exception_list, hpx::parallel::v2::task_canceled_exception

Public Functions

exception (error e = success)
Construct a hpx::exception from a hpx::error.
Parameters

* e: The parameter e holds the /iipx::error code the new exception should encapsulate.

exception (boost::system::system_error const &e)
Construct a hpx::exception from a boost::system_error.

exception (boost::system::error_code const &e)
Construct a hipx::exception from a boost::system::error_code (this is new for Boost V1.69). This construc-
tor is required to compensate for the changes introduced as a resolution to LWG3162 (https://cplusplus.
github.io/LWG/issue3162).

exception (error e, char const *msg, throwmode mode = plain)
Construct a hpx::exception from a hpx::error and an error message.
Parameters
* e: The parameter e holds the /ipx::error code the new exception should encapsulate.
* msg: The parameter msg holds the error message the new exception should encapsulate.

* mode: The parameter mode specifies whether the returned hpx::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

exception (error e, std::string const &msg, throwmode mode = plain)
Construct a hpx::exception from a hpx::error and an error message.
Parameters
* e: The parameter e holds the /px::error code the new exception should encapsulate.
* msg: The parameter msg holds the error message the new exception should encapsulate.

* mode: The parameter mode specifies whether the returned /px::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

222 Chapter 2. What’s so special about HPX?

https://cplusplus.github.io/LWG/issue3162
https://cplusplus.github.io/LWG/issue3162

HPX Documentation, 1.3.0

~exception ()
Destruct a hpx::exception
Exceptions
* nothing:
error get_error () const
The function get_error() returns the /ipx::error code stored in the referenced instance of a hpx::exception.
It returns the /ipx::error code this exception instance was constructed from.
Exceptions
* nothing:
error_code get_error_code (throwmode mode = plain) const
The function get_error_code() returns a iipx::error_code which represents the same error condition as this
hpx::exception instance.
Parameters

* mode: The parameter mode specifies whether the returned /px::error_code belongs to
the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

class exception_list : public /px::exception
#include <exception_list.hpp> The class exception_list is a container of exception_ptr objects parallel algo-
rithms may use to communicate uncaught exceptions encountered during parallel execution to the caller of the
algorithm

The type exception_list::const_iterator fulfills the requirements of a forward iterator.

Public Types

typedef cxception_list_type::const_iterator iterator
bidirectional iterator

Public Functions

std::size_t size () const
The number of exception_ptr objects contained within the exception_list.

Note Complexity: Constant time.

exception_list_type::const_iterator begin () const
An iterator referring to the first exception_ptr object contained within the exception_list.

exception_list_type::const_iterator end () const
An iterator which is the past-the-end value for the exception_list.

2.9. API reference 223

HPX Documentation, 1.3.0

Private Types

typedef /ipx::lcos::local::spinlock mutex_type

typedef std:list<std::exception_ptr> exception_list_type

Private Members

exception_list_type exceptions_
mutex_type mtx__

struct guided_chunk_size
#include <guided_chunk_size.hpp> Iterations are dynamically assigned to threads in blocks as threads request
them until no blocks remain to be assigned. Similar to dynamic_chunk_size except that the block size decreases
each time a number of loop iterations is given to a thread. The size of the initial block is proportional to num-
ber_of _iterations | number_of_cores. Subsequent blocks are proportional to number_of _iterations_remaining /
number_of_cores. The optional chunk size parameter defines the minimum block size. The default chunk size
is 1.

Note This executor parameters type is equivalent to OpenMP’s GUIDED scheduling directive.

Public Functions

guided_chunk_size (std::size_t min_chunk_size = 1)
Construct a guided_chunk_size executor parameters object
Parameters
* min_chunk_size: [in] The optional minimal chunk size to use as the minimal number of loop

iterations to schedule together. The default minimal chunk size is 1.

struct invoke
#include <invoke.hpp>

Public Functions

template<typename F, typename... Ts>HPX HOST_DEVICE util::invoke_result<F, Ts...>::typ

template<typename R>
struct invoke_r
#include <invoke.hpp>

Public Functions

template<typename F, typename... Ts>HPX HOST DEVICE R hpx::util::functional: :invoke_r:

template<typename T>

struct is_async_execution_policy : public execution::detail::is_async_execution_policy</px::util::decay<T>::type>
#include <is_execution_policy.hpp> Extension: Detect whether given execution policy makes algorithms asyn-
chronous

1. The type is_async_execution_policy can be used to detect asynchronous execution policies for the purpose
of excluding function signatures from otherwise ambiguous overload resolution participation.

224 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

2. If T is the type of a standard or implementation-defined execution policy, is_async_execution_policy<T>
shall be publicly derived from integral_constant<bool, true>, otherwise from integral_constant<bool,
false>.

3. The behavior of a program that adds specializations for is_async_execution_policy is undefined.

template<typename T>
struct is_execution_policy : public execution::detail::is_execution_policy<hpx::util::decay<7>::type>
#include <is_execution_policy.hpp>

1. The type is_execution_policy can be used to detect execution policies for the purpose of excluding function
signatures from otherwise ambiguous overload resolution participation.

2. If T is the type of a standard or implementation-defined execution policy, is_execution_policy<T> shall be
publicly derived from integral_constant<bool, true>, otherwise from integral_constant<bool, false>.

3. The behavior of a program that adds specializations for is_execution_policy is undefined.

template<typename T>
struct is_parallel_execution_policy : public execution::detail::is_parallel_execution_policy</ipx::util::decay<7>::ty
#include <is_execution_policy.hpp> Extension: Detect whether given execution policy enables parallelization

1. The type is_parallel_execution_policy can be used to detect parallel execution policies for the purpose of
excluding function signatures from otherwise ambiguous overload resolution participation.

2. If T is the type of a standard or implementation-defined execution policy, is_parallel_execution_policy<T>
shall be publicly derived from integral_constant<bool, true>, otherwise from integral_constant<bool,
false>.

3. The behavior of a program that adds specializations for is_parallel_execution_policy is undefined.
template<typename T>
struct is_sequenced execution_policy: public execution::detail::is_sequenced_execution_policy<hpx::util::decay<T"

#include <is_execution_policy.hpp> Extension: Detect whether given execution policy does not enable paral-
lelization

1. The type is_sequenced_execution_policy can be used to detect non-parallel execution policies for the pur-
pose of excluding function signatures from otherwise ambiguous overload resolution participation.

2.If T is the type of a standard or implementation-defined execution policy,
is_sequenced_execution_policy<T> shall be publicly derived from integral_constant<bool, true>,
otherwise from integral_constant<bool, false>.

3. The behavior of a program that adds specializations for is_sequenced_execution_policy is undefined.

struct launch: public detail::policy_holder<>
#include <launch_policy.hpp> Launch policies for hpx::async etc.

Public Functions

launch ()
Default constructor. This creates a launch policy representing all possible launch modes

2.9. API reference 225

HPX Documentation, 1.3.0

Public Static Attributes

const detail::fork_policy fork
Predefined launch policy representing asynchronous execution.The new thread is executed in a preferred
way

const detail::sync_policy sync
Predefined launch policy representing synchronous execution.

const detail::deferred_policy deferred
Predefined launch policy representing deferred execution.

const detail::apply_policy apply
Predefined launch policy representing fire and forget execution.

const detail::select_policy_generator select
Predefined launch policy representing delayed policy selection.

class numa_domain
#include <partitioner.hpp>

Public Functions

numa_domain (std::size_t id = invalid_numa_domain_id)
std::vector<core> const &cores () const

std::size_t id () const

Private Members
std::size_tid
std::vector<core> cores__
Private Static Attributes

const std::size_t invalid numa_domain_id = std::size_t(-1)

Friends

friend hpx::resource: :numa_domain: :pu
friend hpx::resource: :numa_domain: :core

struct parallel_execution_tag
#include <execution_fwd.hpp> Function invocations executed by a group of parallel execution agents execute
in unordered fashion. Any such invocations executing in the same thread are indeterminately sequenced with
respect to each other.

Note parallel_execution_tag is weaker than sequenced_execution_tag.

226 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

struct parallel_policy
#include <execution_policy.hpp> The class parallel_policy is an execution policy type used as a unique type
to disambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution may be paral-
lelized.

Subclassed by hpx::parallel::execution::parallel_policy_shim< Executor, Parameters >

Public Types
typedef parallel_executor executor_type
The type of the executor associated with this execution policy.

typedef execution:.extract_executor_parameters<executor_type>::type executor_parameters_type
The type of the associated executor parameters object which is associated with this execution policy

typedef parallel_execution_tag execution_category
The category of the execution agents created by this execution policy.

Public Functions

parallel_task_policy operator () (task_policy_tag) const
Create a new parallel_policy referencing a chunk size.
Return The new parallel_policy
Parameters

* tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor>
rebind_executor<parallel_policy, Executor, executor_parameters_type>::type on (Executor — &&exec)

const
Create a new parallel_policy referencing an executor and a chunk size.

Return The new parallel_policy
Parameters

* exec: [in] The executor to use for the execution of the parallel algorithm the returned execution
policy is used with

template<typename ...Parameters, typename ParametersType = typename executor_parameters_join<Parameters...>::t
rebind_executor<parallel_policy, executor_type, ParametersType>::type with (Parameters&&...

params) const
Create a new parallel_policy from the given execution parameters

Note Requires: is_executor_parameters<Parameters>::value is true
Return The new parallel_policy
Template Parameters
* Parameters: The type of the executor parameters to associate with this execution policy.
Parameters

* params: [in] The executor parameters to use for the execution of the parallel algorithm the
returned execution policy is used with.

2.9. API reference 227

HPX Documentation, 1.3.0

executor_type &executor ()
Return the associated executor object.

executor_type const &executor () const
Return the associated executor object.

executor_parameters_type ¶meters ()
Return the associated executor parameters object.

executor_parameters_type const ¶meters () const
Return the associated executor parameters object.

Private Functions

template<typename Archive>
void serialize (Archive &ar, const unsigned int version)

Private Members

executor_type exec__

executor_parameters_type params__

Friends

friend hpx::parallel: :execution::parallel_policy: :hpx::serialization::access

template<typename Policy>

struct parallel_policy_ executor
#include <parallel_executor.hpp> A parallel_executor creates groups of parallel execution agents which exe-
cute in threads implicitly created by the executor. This executor prefers continuing with the creating thread first
before executing newly created threads.

This executor conforms to the concepts of a TwoWayExecutor, and a BulkTwoWayExecutor

Public Types

typedef parallel_execution_tag execution_category
Associate the parallel_execution_tag executor tag type as a default with this executor.

typedef static_chunk_size executor_parameters_type
Associate the static_chunk_size executor parameters type as a default with this executor.

Public Functions

parallel_policy_ executor (Policy | = detail::get_default_policy<Policy>::call(), std::size_t

spread = 4, std::size_t tasks = std::size_t(-1))
Create a new parallel executor.

template<typename Executor, typename Parameters>

struct parallel_policy_shim: public hpx::parallel::execution::parallel_policy
#include <execution_policy.hpp> The class parallel_policy_shim is an execution policy type used as a unique
type to disambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution may be
parallelized.

228 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

Public Types
typedef Executor executor_type
The type of the executor associated with this execution policy.

typedef Parameters executor_ parameters_type
The type of the associated executor parameters object which is associated with this execution policy

typedef /ipx::traits::executor_execution_category<executor_type>:itype execution_ category
The category of the execution agents created by this execution policy.

Public Functions

parallel_task_policy_shim<Executor, Parameters> operator () (task_policy_tag fag) const
Create a new parallel_policy referencing a chunk size.

Return The new parallel_policy
Parameters

* tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor_>
rebind_executor<parallel_policy_shim, Executor_, executor_parameters_type>::type on (Executor_
&&exec)

) i const
Create a new parallel_policy from the given executor

Note Requires: is_executor<Executor>::value is true
Return The new parallel_policy
Template Parameters
* Executor: The type of the executor to associate with this execution policy.
Parameters
* exec: [in] The executor to use for the execution of the parallel algorithm the returned execution

policy is used with.

~

template<typename ..Parameters_, typename ParametersType = typename executor_parameters_join<Parameters_...>
rebind_executor<parallel_policy_shim, executor_type, ParametersType>::type with (Parameters_&&...
params) const

Create a new parallel_policy_shim from the given execution parameters

Note Requires: is_executor_parameters<Parameters>::value is true

Return The new parallel_policy_shim

Template Parameters

* Parameters: The type of the executor parameters to associate with this execution policy.
Parameters

* params: [in] The executor parameters to use for the execution of the parallel algorithm the
returned execution policy is used with.

2.9. API reference 229

HPX Documentation, 1.3.0

Executor &executor ()
Return the associated executor object.

Executor const &executor () const
Return the associated executor object.

Parameters ¶meters ()
Return the associated executor parameters object.

Parameters const ¶meters () const
Return the associated executor parameters object.

struct parallel_task_policy

#include <execution_policy.hpp> Extension: The class parallel_task_policy is an execution policy type used as
a unique type to disambiguate parallel algorithm overloading and indicate that a parallel algorithm’s execution
may be parallelized.

The algorithm returns a future representing the result of the corresponding algorithm when invoked with the
parallel_policy.

Subclassed by hpx::parallel::execution::parallel_task_policy_shim< Executor, Parameters >

Public Types
typedef parallel_executor executor_type
The type of the executor associated with this execution policy.

typedef execution::extract_executor_parameters<executor_type>::type executor_parameters_type
The type of the associated executor parameters object which is associated with this execution policy

typedef parallel_execution_tag execution_category
The category of the execution agents created by this execution policy.

Public Functions

parallel_task_policy operator () (task_policy_tag) const
Create a new parallel_task_policy from itself
Return The new parallel_task_policy
Parameters

* tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor>
rebind_executor<parallel_task_policy, Executor, executor_parameters_type>::type on (Executor
&&exec)

_) const
Create a new parallel_task_policy from given executor

Note Requires: is_executor<Executor>::value is true
Return The new parallel_task_policy
Template Parameters
* Executor: The type of the executor to associate with this execution policy.

Parameters

230

Chapter 2. What’s so special about HPX?

HPX Documentation, 1.3.0

* exec: [in] The executor to use for the execution of the parallel algorithm the returned execution
policy is used with.

template<typename ...Parameters, typename ParametersType = typename executor_parameters_join<Parameters...>::t
rebind_executor<parallel_task_policy, executor_type, ParametersType>::type with (Parameters&&...

params) const
Create a new parallel_policy_shim from the given execution parameters

Note Requires: all parameters are executor_parameters, different parameter types can’t be duplicated
Return The new parallel_policy_shim
Template Parameters

* Parameters: The type of the executor parameters to associate with this execution policy.
Parameters

* params: [in] The executor parameters to use for the execution of the parallel algorithm the
returned execution policy is used with.

executor_type &executor ()
Return the associated executor object.

executor_type const &executor () const
Return the associated executor object.

executor_parameters_type ¶meters ()
Return the associated executor parameters object.

executor_parameters_type const ¶meters () const
Return the associated executor parameters object.

Private Functions

template<typename Archive>
void serialize (Archive &ar, const unsigned int version)

Private Members

executor_type exec__

executor_parameters_type params_

Friends

friend hpx::parallel: :execution::parallel_task policy: :hpx::serialization::access

template<typename Executor, typename Parameters>

struct parallel_task_policy_shim: public hpx::parallel::execution::parallel_task_policy
#include <execution_policy.hpp> Extension: The class parallel_task_policy _shim is an execution policy type
used as a unique type to disambiguate parallel algorithm overloading based on combining a underlying paral-
lel_task_policy and an executor and indicate that a parallel algorithm’s execution may be parallelized.

2.9. API reference 231

HPX Documentation, 1.3.0

Public Types
typedef Executor executor_type
The type of the executor associated with this execution policy.

typedef Parameters executor_ parameters_type
The type of the associated executor parameters object which is associated with this execution policy

typedef /ipx::traits::executor_execution_category<executor_type>:itype execution_ category
The category of the execution agents created by this execution policy.

Public Functions

parallel_task_policy_shim operator () (task_policy_tag fag) const
Create a new parallel_task_policy_shim from itself
Return The new sequenced_task_policy
Parameters

* tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor_>
rebind_executor<parallel_task_policy_shim, Executor_, executor_parameters_type>::type on (Executor_
&&exec)

_ . const
Create a new parallel_task_policy from the given executor

Note Requires: is_executor<Executor>::value is true
Return The new parallel_task_policy
Template Parameters
* Executor: The type of the executor to associate with this execution policy.
Parameters
* exec: [in] The executor to use for the execution of the parallel algorithm the returned execution

policy is used with.

~

template<typename ..Parameters_, typename ParametersType = typename executor_parameters_join<Parameters_...>
rebind_executor<parallel_task_policy_shim, executor_type, ParametersType>::type with (Parameters_&&...
params)

const
Create a new parallel_policy_shim from the given execution parameters

Note Requires: all parameters are executor_parameters, different parameter types can’t be duplicated
R