
HPX Documentation
1.5.1

The STE | |AR Group

October 01, 2020

USER DOCUMENTATION

i

ii

HPX Documentation, 1.5.1

If you’re new to HPX you can get started with the Quick start guide. Don’t forget to read the Terminology section
to learn about the most important concepts in HPX. The Examples give you a feel for how it is to write real HPX
applications and the Manual contains detailed information about everything from building HPX to debugging it. There
are links to blog posts and videos about HPX in Additional material.

If you can’t find what you’re looking for in the documentation, please:

• open an issue on GitHub1;

• contact us on IRC, the HPX channel on the C++ Slack2, or on our mailing list3; or

• read or ask questions tagged with HPX on StackOverflow4.

See Citing HPX for details on how to cite HPX in publications.

1 https://github.com/STEllAR-GROUP/hpx/issues
2 https://cpplang.slack.com
3 hpx-users@stellar.cct.lsu.edu
4 https://stackoverflow.com/questions/tagged/hpx

USER DOCUMENTATION 1

https://github.com/STEllAR-GROUP/hpx/issues
irc://irc.freenode.net:6667/#ste||ar
https://cpplang.slack.com
mailto:hpx-users@stellar.cct.lsu.edu
https://stackoverflow.com/questions/tagged/hpx

HPX Documentation, 1.5.1

2 USER DOCUMENTATION

CHAPTER

ONE

WHAT IS HPX?

HPX is a C++ Standard Library for Concurrency and Parallelism. It implements all of the corresponding facilities
as defined by the C++ Standard. Additionally, in HPX we implement functionalities proposed as part of the ongoing
C++ standardization process. We also extend the C++ Standard APIs to the distributed case. HPX is developed by the
STE||AR group (see People).

The goal of HPX is to create a high quality, freely available, open source implementation of a new programming model
for conventional systems, such as classic Linux based Beowulf clusters or multi-socket highly parallel SMP nodes. At
the same time, we want to have a very modular and well designed runtime system architecture which would allow us
to port our implementation onto new computer system architectures. We want to use real-world applications to drive
the development of the runtime system, coining out required functionalities and converging onto a stable API which
will provide a smooth migration path for developers.

The API exposed by HPX is not only modeled after the interfaces defined by the C++11/14/17/20 ISO standard. It
also adheres to the programming guidelines used by the Boost collection of C++ libraries. We aim to improve the
scalability of today’s applications and to expose new levels of parallelism which are necessary to take advantage of
the exascale systems of the future.

3

HPX Documentation, 1.5.1

4 Chapter 1. What is HPX?

CHAPTER

TWO

WHAT’S SO SPECIAL ABOUT HPX?

• HPX exposes a uniform, standards-oriented API for ease of programming parallel and distributed applications.

• It enables programmers to write fully asynchronous code using hundreds of millions of threads.

• HPX provides unified syntax and semantics for local and remote operations.

• HPX makes concurrency manageable with dataflow and future based synchronization.

• It implements a rich set of runtime services supporting a broad range of use cases.

• HPX exposes a uniform, flexible, and extendable performance counter framework which can enable runtime
adaptivity

• It is designed to solve problems conventionally considered to be scaling-impaired.

• HPX has been designed and developed for systems of any scale, from hand-held devices to very large scale
systems.

• It is the first fully functional implementation of the ParalleX execution model.

• HPX is published under a liberal open-source license and has an open, active, and thriving developer community.

2.1 Why HPX?

Current advances in high performance computing (HPC) continue to suffer from the issues plaguing parallel compu-
tation. These issues include, but are not limited to, ease of programming, inability to handle dynamically changing
workloads, scalability, and efficient utilization of system resources. Emerging technological trends such as multi-
core processors further highlight limitations of existing parallel computation models. To mitigate the aforementioned
problems, it is necessary to rethink the approach to parallelization models. ParalleX contains mechanisms such as
multi-threading, parcels, global name space support, percolation and local control objects (LCO). By design, Par-
alleX overcomes limitations of current models of parallelism by alleviating contention, latency, overhead and starva-
tion. With ParalleX, it is further possible to increase performance by at least an order of magnitude on challenging
parallel algorithms, e.g., dynamic directed graph algorithms and adaptive mesh refinement methods for astrophysics.
An additional benefit of ParalleX is fine-grained control of power usage, enabling reductions in power consumption.

5

HPX Documentation, 1.5.1

2.1.1 ParalleX—a new execution model for future architectures

ParalleX is a new parallel execution model that offers an alternative to the conventional computation models, such as
message passing. ParalleX distinguishes itself by:

• Split-phase transaction model

• Message-driven

• Distributed shared memory (not cache coherent)

• Multi-threaded

• Futures synchronization

• Local Control Objects (LCOs)

• Synchronization for anonymous producer-consumer scenarios

• Percolation (pre-staging of task data)

The ParalleX model is intrinsically latency hiding, delivering an abundance of variable-grained parallelism within a
hierarchical namespace environment. The goal of this innovative strategy is to enable future systems delivering very
high efficiency, increased scalability and ease of programming. ParalleX can contribute to significant improvements
in the design of all levels of computing systems and their usage from application algorithms and their programming
languages to system architecture and hardware design together with their supporting compilers and operating system
software.

2.1.2 What is HPX?

High Performance ParalleX (HPX) is the first runtime system implementation of the ParalleX execution model. The
HPX runtime software package is a modular, feature-complete, and performance-oriented representation of the Par-
alleX execution model targeted at conventional parallel computing architectures, such as SMP nodes and commodity
clusters. It is academically developed and freely available under an open source license. We provide HPX to the
community for experimentation and application to achieve high efficiency and scalability for dynamic adaptive and ir-
regular computational problems. HPX is a C++ library that supports a set of critical mechanisms for dynamic adaptive
resource management and lightweight task scheduling within the context of a global address space. It is solidly based
on many years of experience in writing highly parallel applications for HPC systems.

The two-decade success of the communicating sequential processes (CSP) execution model and its message passing
interface (MPI) programming model have been seriously eroded by challenges of power, processor core complexity,
multi-core sockets, and heterogeneous structures of GPUs. Both efficiency and scalability for some current (strong
scaled) applications and future Exascale applications demand new techniques to expose new sources of algorithm
parallelism and exploit unused resources through adaptive use of runtime information.

The ParalleX execution model replaces CSP to provide a new computing paradigm embodying the governing principles
for organizing and conducting highly efficient scalable computations greatly exceeding the capabilities of today’s
problems. HPX is the first practical, reliable, and performance-oriented runtime system incorporating the principal
concepts of the ParalleX model publicly provided in open source release form.

HPX is designed by the STE||AR5 Group (Systems Technology, Emergent Parallelism, and Algorithm Research) at
Louisiana State University (LSU)6’s Center for Computation and Technology (CCT)7 to enable developers to exploit
the full processing power of many-core systems with an unprecedented degree of parallelism. STE||AR8 is a research
group focusing on system software solutions and scientific application development for hybrid and many-core hard-
ware architectures.

5 https://stellar-group.org
6 https://www.lsu.edu
7 https://www.cct.lsu.edu
8 https://stellar-group.org

6 Chapter 2. What’s so special about HPX?

https://stellar-group.org
https://www.lsu.edu
https://www.cct.lsu.edu
https://stellar-group.org

HPX Documentation, 1.5.1

For more information about the STE||AR9 Group, see People.

2.1.3 What makes our systems slow?

Estimates say that we currently run our computers at well below 100% efficiency. The theoretical peak performance
(usually measured in FLOPS10—floating point operations per second) is much higher than any practical peak per-
formance reached by any application. This is particularly true for highly parallel hardware. The more hardware
parallelism we provide to an application, the better the application must scale in order to efficiently use all the re-
sources of the machine. Roughly speaking, we distinguish two forms of scalability: strong scaling (see Amdahl’s
Law11) and weak scaling (see Gustafson’s Law12). Strong scaling is defined as how the solution time varies with the
number of processors for a fixed total problem size. It gives an estimate of how much faster we can solve a particular
problem by throwing more resources at it. Weak scaling is defined as how the solution time varies with the number of
processors for a fixed problem size per processor. In other words, it defines how much more data can we process by
using more hardware resources.

In order to utilize as much hardware parallelism as possible an application must exhibit excellent strong and weak
scaling characteristics, which requires a high percentage of work executed in parallel, i.e., using multiple threads of
execution. Optimally, if you execute an application on a hardware resource with N processors it either runs N times
faster or it can handle N times more data. Both cases imply 100% of the work is executed on all available processors
in parallel. However, this is just a theoretical limit. Unfortunately, there are more things that limit scalability, mostly
inherent to the hardware architectures and the programming models we use. We break these limitations into four
fundamental factors that make our systems SLOW:

• Starvation occurs when there is insufficient concurrent work available to maintain high utilization of all re-
sources.

• Latencies are imposed by the time-distance delay intrinsic to accessing remote resources and services.

• Overhead is work required for the management of parallel actions and resources on the critical execution path,
which is not necessary in a sequential variant.

• Waiting for contention resolution is the delay due to the lack of availability of oversubscribed shared resources.

Each of those four factors manifests itself in multiple and different ways; each of the hardware architectures and
programming models expose specific forms. However, the interesting part is that all of them are limiting the scalability
of applications no matter what part of the hardware jungle we look at. Hand-helds, PCs, supercomputers, or the cloud,
all suffer from the reign of the 4 horsemen: Starvation, Latency, Overhead, and Contention. This realization is very
important as it allows us to derive the criteria for solutions to the scalability problem from first principles, and it allows
us to focus our analysis on very concrete patterns and measurable metrics. Moreover, any derived results will be
applicable to a wide variety of targets.

2.1.4 Technology demands new response

Today’s computer systems are designed based on the initial ideas of John von Neumann13, as published back in
1945, and later extended by the Harvard architecture14. These ideas form the foundation, the execution model, of
computer systems we use currently. However, a new response is required in the light of the demands created by
today’s technology.

So, what are the overarching objectives for designing systems allowing for applications to scale as they should? In our
opinion, the main objectives are:

9 https://stellar-group.org
10 http://en.wikipedia.org/wiki/FLOPS
11 http://en.wikipedia.org/wiki/Amdahl%27s_law
12 http://en.wikipedia.org/wiki/Gustafson%27s_law
13 http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
14 http://en.wikipedia.org/wiki/Harvard_architecture

2.1. Why HPX? 7

https://stellar-group.org
http://en.wikipedia.org/wiki/FLOPS
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/Gustafson%27s_law
http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
http://en.wikipedia.org/wiki/Harvard_architecture

HPX Documentation, 1.5.1

• Performance: as previously mentioned, scalability and efficiency are the main criteria people are interested in.

• Fault tolerance: the low expected mean time between failures (MTBF15) of future systems requires embracing
faults, not trying to avoid them.

• Power: minimizing energy consumption is a must as it is one of the major cost factors today, and will continue
to rise in the future.

• Generality: any system should be usable for a broad set of use cases.

• Programmability: for programmer this is a very important objective, ensuring long term platform stability and
portability.

What needs to be done to meet those objectives, to make applications scale better on tomorrow’s architectures? Well,
the answer is almost obvious: we need to devise a new execution model—a set of governing principles for the holistic
design of future systems—targeted at minimizing the effect of the outlined SLOW factors. Everything we create
for future systems, every design decision we make, every criteria we apply, have to be validated against this single,
uniform metric. This includes changes in the hardware architecture we prevalently use today, and it certainly involves
new ways of writing software, starting from the operating system, runtime system, compilers, and at the application
level. However, the key point is that all those layers have to be co-designed; they are interdependent and cannot be
seen as separate facets. The systems we have today have been evolving for over 50 years now. All layers function in
a certain way, relying on the other layers to do so. But we do not have the time to wait another 50 years for a new
coherent system to evolve. The new paradigms are needed now—therefore, co-design is the key.

2.1.5 Governing principles applied while developing HPX

As it turn out, we do not have to start from scratch. Not everything has to be invented and designed anew. Many of
the ideas needed to combat the 4 horsemen already exist, many for more than 30 years. All it takes is to gather them
into a coherent approach. We’ll highlight some of the derived principles we think to be crucial for defeating SLOW.
Some of those are focused on high-performance computing, others are more general.

2.1.6 Focus on latency hiding instead of latency avoidance

It is impossible to design a system exposing zero latencies. In an effort to come as close as possible to this goal
many optimizations are mainly targeted towards minimizing latencies. Examples for this can be seen everywhere,
such as low latency network technologies like InfiniBand16, caching memory hierarchies in all modern processors,
the constant optimization of existing MPI17 implementations to reduce related latencies, or the data transfer latencies
intrinsic to the way we use GPGPUs18 today. It is important to note that existing latencies are often tightly related
to some resource having to wait for the operation to be completed. At the same time it would be perfectly fine to do
some other, unrelated work in the meantime, allowing the system to hide the latencies by filling the idle-time with
useful work. Modern systems already employ similar techniques (pipelined instruction execution in the processor
cores, asynchronous input/output operations, and many more). What we propose is to go beyond anything we know
today and to make latency hiding an intrinsic concept of the operation of the whole system stack.

15 http://en.wikipedia.org/wiki/Mean_time_between_failures
16 http://en.wikipedia.org/wiki/InfiniBand
17 https://en.wikipedia.org/wiki/Message_Passing_Interface
18 http://en.wikipedia.org/wiki/GPGPU

8 Chapter 2. What’s so special about HPX?

http://en.wikipedia.org/wiki/Mean_time_between_failures
http://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/GPGPU

HPX Documentation, 1.5.1

2.1.7 Embrace fine-grained parallelism instead of heavyweight threads

If we plan to hide latencies even for very short operations, such as fetching the contents of a memory cell from main
memory (if it is not already cached), we need to have very lightweight threads with extremely short context switching
times, optimally executable within one cycle. Granted, for mainstream architectures, this is not possible today (even
if we already have special machines supporting this mode of operation, such as the Cray XMT19). For conventional
systems, however, the smaller the overhead of a context switch and the finer the granularity of the threading system,
the better will be the overall system utilization and its efficiency. For today’s architectures we already see a flurry of
libraries providing exactly this type of functionality: non-pre-emptive, task-queue based parallelization solutions, such
as Intel Threading Building Blocks (TBB)20, Microsoft Parallel Patterns Library (PPL)21, Cilk++22, and many others.
The possibility to suspend a current task if some preconditions for its execution are not met (such as waiting for I/O or
the result of a different task), seamlessly switching to any other task which can continue, and to reschedule the initial
task after the required result has been calculated, which makes the implementation of latency hiding almost trivial.

2.1.8 Rediscover constraint-based synchronization to replace global barriers

The code we write today is riddled with implicit (and explicit) global barriers. By “global barriers,” we mean the
synchronization of the control flow between several (very often all) threads (when using OpenMP23) or processes
(MPI24). For instance, an implicit global barrier is inserted after each loop parallelized using OpenMP25 as the system
synchronizes the threads used to execute the different iterations in parallel. In MPI26 each of the communication steps
imposes an explicit barrier onto the execution flow as (often all) nodes have to be synchronized. Each of those barriers
is like the eye of a needle the overall execution is forced to be squeezed through. Even minimal fluctuations in the
execution times of the parallel threads (jobs) causes them to wait. Additionally, it is often only one of the executing
threads that performs the actual reduce operation, which further impedes parallelism. A closer analysis of a couple of
key algorithms used in science applications reveals that these global barriers are not always necessary. In many cases
it is sufficient to synchronize a small subset of the threads. Any operation should proceed whenever the preconditions
for its execution are met, and only those. Usually there is no need to wait for iterations of a loop to finish before you
can continue calculating other things; all you need is to complete the iterations that produce the required results for the
next operation. Good bye global barriers, hello constraint based synchronization! People have been trying to build this
type of computing (and even computers) since the 1970s. The theory behind what they did is based on ideas around
static and dynamic dataflow. There are certain attempts today to get back to those ideas and to incorporate them with
modern architectures. For instance, a lot of work is being done in the area of constructing dataflow-oriented execution
trees. Our results show that employing dataflow techniques in combination with the other ideas, as outlined herein,
considerably improves scalability for many problems.

2.1.9 Adaptive locality control instead of static data distribution

While this principle seems to be a given for single desktop or laptop computers (the operating system is your friend),
it is everything but ubiquitous on modern supercomputers, which are usually built from a large number of separate
nodes (i.e., Beowulf clusters), tightly interconnected by a high-bandwidth, low-latency network. Today’s prevalent
programming model for those is MPI, which does not directly help with proper data distribution, leaving it to the
programmer to decompose the data to all of the nodes the application is running on. There are a couple of specialized
languages and programming environments based on PGAS27 (Partitioned Global Address Space) designed to over-

19 http://en.wikipedia.org/wiki/Cray_XMT
20 https://www.threadingbuildingblocks.org/
21 https://msdn.microsoft.com/en-us/library/dd492418.aspx
22 https://software.intel.com/en-us/articles/intel-cilk-plus/
23 https://openmp.org/wp/
24 https://en.wikipedia.org/wiki/Message_Passing_Interface
25 https://openmp.org/wp/
26 https://en.wikipedia.org/wiki/Message_Passing_Interface
27 https://www.pgas.org/

2.1. Why HPX? 9

http://en.wikipedia.org/wiki/Cray_XMT
https://www.threadingbuildingblocks.org/
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://software.intel.com/en-us/articles/intel-cilk-plus/
https://openmp.org/wp/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://openmp.org/wp/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.pgas.org/

HPX Documentation, 1.5.1

come this limitation, such as Chapel28, X1029, UPC30, or Fortress31. However, all systems based on PGAS rely on
static data distribution. This works fine as long as this static data distribution does not result in heterogeneous workload
distributions or other resource utilization imbalances. In a distributed system these imbalances can be mitigated by
migrating part of the application data to different localities (nodes). The only framework supporting (limited) migra-
tion today is Charm++32. The first attempts towards solving related problem go back decades as well, a good example
is the Linda coordination language33. Nevertheless, none of the other mentioned systems support data migration to-
day, which forces the users to either rely on static data distribution and live with the related performance hits or to
implement everything themselves, which is very tedious and difficult. We believe that the only viable way to flexibly
support dynamic and adaptive locality control is to provide a global, uniform address space to the applications, even
on distributed systems.

2.1.10 Prefer moving work to the data over moving data to the work

For the best performance it seems obvious to minimize the amount of bytes transferred from one part of the system
to another. This is true on all levels. At the lowest level we try to take advantage of processor memory caches, thus,
minimizing memory latencies. Similarly, we try to amortize the data transfer time to and from GPGPUs34 as much
as possible. At high levels we try to minimize data transfer between different nodes of a cluster or between different
virtual machines on the cloud. Our experience (well, it’s almost common wisdom) shows that the amount of bytes
necessary to encode a certain operation is very often much smaller than the amount of bytes encoding the data the
operation is performed upon. Nevertheless, we still often transfer the data to a particular place where we execute the
operation just to bring the data back to where it came from afterwards. As an example let’s look at the way we usually
write our applications for clusters using MPI. This programming model is all about data transfer between nodes. MPI
is the prevalent programming model for clusters, and it is fairly straightforward to understand and to use. Therefore,
we often write applications in a way that accommodates this model, centered around data transfer. These applications
usually work well for smaller problem sizes and for regular data structures. The larger the amount of data we have to
churn and the more irregular the problem domain becomes, the worse the overall machine utilization and the (strong)
scaling characteristics become. While it is not impossible to implement more dynamic, data driven, and asynchronous
applications using MPI, it is somewhat difficult to do so. At the same time, if we look at applications that prefer to
execute the code close to the locality where the data was placed, i.e., utilizing active messages (for instance based on
Charm++35), we see better asynchrony, simpler application codes, and improved scaling.

2.1.11 Favor message driven computation over message passing

Today’s prevalently used programming model on parallel (multi-node) systems is MPI. It is based on message pass-
ing, as the name implies, which means that the receiver has to be aware of a message about to come in. Both codes,
the sender and the receiver, have to synchronize in order to perform the communication step. Even the newer, asyn-
chronous interfaces require explicitly coding the algorithms around the required communication scheme. As a result,
everything but the most trivial MPI applications spends a considerable amount of time waiting for incoming messages,
thus, causing starvation and latencies to impede full resource utilization. The more complex and more dynamic the data
structures and algorithms become, the larger the adverse effects. The community discovered message-driven and data-
driven methods of implementing algorithms a long time ago, and systems such as Charm++36 have already integrated
active messages demonstrating the validity of the concept. Message-driven computation allows for sending messages
without requiring the receiver to actively wait for them. Any incoming message is handled asynchronously and triggers

28 https://chapel.cray.com/
29 https://x10-lang.org/
30 https://upc.lbl.gov/
31 https://labs.oracle.com/projects/plrg/Publications/index.html
32 https://charm.cs.uiuc.edu/
33 http://en.wikipedia.org/wiki/Linda_(coordination_language)
34 http://en.wikipedia.org/wiki/GPGPU
35 https://charm.cs.uiuc.edu/
36 https://charm.cs.uiuc.edu/

10 Chapter 2. What’s so special about HPX?

https://chapel.cray.com/
https://x10-lang.org/
https://upc.lbl.gov/
https://labs.oracle.com/projects/plrg/Publications/index.html
https://charm.cs.uiuc.edu/
http://en.wikipedia.org/wiki/Linda_(coordination_language)
http://en.wikipedia.org/wiki/GPGPU
https://charm.cs.uiuc.edu/
https://charm.cs.uiuc.edu/

HPX Documentation, 1.5.1

the encoded action by passing along arguments and—possibly—continuations. HPX combines this scheme with work-
queue based scheduling as described above, which allows the system to almost completely overlap any communication
with useful work, thereby minimizing latencies.

2.2 Quick start

This section is intended to get you to the point of running a basic HPX program as quickly as possible. To that end we
skip many details but instead give you hints and links to more details along the way.

We assume that you are on a Unix system with access to reasonably recent packages. You should have cmake and
make available for the build system (pkg-config is also supported, see Using HPX with pkg-config).

2.2.1 Getting HPX

Download a tarball of the latest release from HPX Downloads37 and unpack it or clone the repository directly using
git:

git clone https://github.com/STEllAR-GROUP/hpx.git

It is also recommended that you check out the latest stable tag:

git checkout 1.5.1

2.2.2 HPX dependencies

The minimum dependencies needed to use HPX are Boost38 and Portable Hardware Locality (HWLOC)39. If these
are not available through your system package manager, see Installing Boost and Installing Hwloc for instructions on
how to build them yourself. In addition to Boost and Portable Hardware Locality (HWLOC), it is recommended that
you don’t use the system allocator, but instead use either tcmalloc from google-perftools40 (default) or jemalloc41

for better performance. If you would like to try HPX without a custom allocator at this point, you can configure HPX
to use the system allocator in the next step.

A full list of required and optional dependencies, including recommended versions, is available at Prerequisites.

2.2.3 Building HPX

Once you have the source code and the dependencies, set up a separate build directory and configure the project.
Assuming all your dependencies are in paths known to CMake, the following gets you started:

In the HPX source directory
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=/install/path ..
make install

37 https://stellar-group.org/downloads/
38 https://www.boost.org/
39 https://www.open-mpi.org/projects/hwloc/
40 https://code.google.com/p/gperftools
41 http://jemalloc.net

2.2. Quick start 11

https://stellar-group.org/downloads/
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://code.google.com/p/gperftools
http://jemalloc.net

HPX Documentation, 1.5.1

This will build the core HPX libraries and examples, and install them to your chosen location. If you want to install
HPX to system folders, simply leave out the CMAKE_INSTALL_PREFIX option. This may take a while. To speed
up the process, launch more jobs by passing the -jN option to make.

Tip: Do not set only -j (i.e. -j without an explicit number of jobs) unless you have a lot of memory available on
your machine.

Tip: If you want to change CMake variables for your build, it is usually a good idea to start with a clean build directory
to avoid configuration problems. It is especially important that you use a clean build directory when changing between
Release and Debug modes.

If your dependencies are in custom locations, you may need to tell CMake where to find them by passing one or more
of the following options to CMake:

-DBOOST_ROOT=/path/to/boost
-DHWLOC_ROOT=/path/to/hwloc
-DTCMALLOC_ROOT=/path/to/tcmalloc
-DJEMALLOC_ROOT=/path/to/jemalloc

If you want to try HPX without using a custom allocator pass -DHPX_WITH_MALLOC=system to CMake.

Important: If you are building HPX for a system with more than 64 processing units, you must change the CMake
variables HPX_WITH_MORE_THAN_64_THREADS (to On) and HPX_WITH_MAX_CPU_COUNT (to a value at least
as big as the number of (virtual) cores on your system).

To build the tests, run make tests. To run the tests, run either make test or use ctest for more control over
which tests to run. You can run single tests for example with ctest --output-on-failure -R tests.
unit.parallel.algorithms.for_loop or a whole group of tests with ctest --output-on-failure
-R tests.unit.

If you did not run make install earlier, do so now or build the hello_world_1 example by running:

make hello_world_1

HPX executables end up in the bin directory in your build directory. You can now run hello_world_1 and should
see the following output:

./bin/hello_world_1
Hello World!

You’ve just run an example which prints Hello World! from the HPX runtime. The source for the example
is in examples/quickstart/hello_world_1.cpp. The hello_world_distributed example (also
available in the examples/quickstart directory) is a distributed hello world program, which is described in
Remote execution with actions: Hello world. It provides a gentle introduction to the distributed aspects of HPX.

Tip: Most build targets in HPX have two names: a simple name and a hierarchical name corresponding to what
type of example or test the target is. If you are developing HPX it is often helpful to run make help to get a list of
available targets. For example, make help | grep hello_world outputs the following:

... examples.quickstart.hello_world_2

... hello_world_2

(continues on next page)

12 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

... examples.quickstart.hello_world_1

... hello_world_1

... examples.quickstart.hello_world_distributed

... hello_world_distributed

It is also possible to build, for instance, all quickstart examples using make examples.quickstart.

2.2.4 Installing and building HPX via vcpkg

You can download and install HPX using the vcpkg <https://github.com/Microsoft/vcpkg> dependency manager:

git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
vcpkg install hpx

The HPX port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is
out of date, please create an issue or pull request <https://github.com/Microsoft/vcpkg> on the vcpkg repository.

2.2.5 Hello, World!

The following CMakeLists.txt is a minimal example of what you need in order to build an executable using
CMake and HPX:

cmake_minimum_required(VERSION 3.13)
project(my_hpx_project CXX)
find_package(HPX REQUIRED)
add_executable(my_hpx_program main.cpp)
target_link_libraries(my_hpx_program HPX::hpx HPX::wrap_main HPX::iostreams_component)

Note: You will most likely have more than one main.cpp file in your project. See the section on Using HPX with
CMake-based projects for more details on how to use add_hpx_executable.

Note: HPX::wrap_main is required if you are implicitly using main() as the runtime entry point. See Re-use the
main() function as the main HPX entry point for more information.

Note: HPX::iostreams_component is optional for a minimal project but lets us use the HPX equivalent of
std::cout, i.e., the HPX The HPX I/O-streams component functionality in our application.

Create a new project directory and a CMakeLists.txt with the contents above. Also create a main.cpp with the
contents below.

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.
#include <hpx/hpx_main.hpp>
#include <hpx/iostream.hpp>

(continues on next page)

2.2. Quick start 13

HPX Documentation, 1.5.1

(continued from previous page)

int main()
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return 0;

}

Then, in your project directory run the following:

mkdir build && cd build
cmake -DCMAKE_PREFIX_PATH=/path/to/hpx/installation ..
make all
./my_hpx_program

The program looks almost like a regular C++ hello world with the exception of the two includes and hpx::cout.
When you include hpx_main.hpp some things will be done behind the scenes to make sure that main actually
gets launched on the HPX runtime. So while it looks almost the same you can now use futures, async, parallel
algorithms and more which make use of the HPX runtime with lightweight threads. hpx::cout is a replacement for
std::cout to make sure printing never blocks a lightweight thread. You can read more about hpx::cout in The
HPX I/O-streams component. If you rebuild and run your program now, you should see the familiar Hello World!:

./my_hpx_program
Hello World!

Note: You do not have to let HPX take over your main function like in the example. You can instead keep your
normal main function, and define a separate hpx_main function which acts as the entry point to the HPX runtime. In
that case you start the HPX runtime explicitly by calling hpx::init:

// Copyright (c) 2007-2012 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

///
// The purpose of this example is to initialize the HPX runtime explicitly and
// execute a HPX-thread printing "Hello World!" once. That's all.

//[hello_world_2_getting_started
#include <hpx/hpx_init.hpp>
#include <hpx/iostream.hpp>

int hpx_main(int, char**)
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return hpx::finalize();

}

int main(int argc, char* argv[])
{

return hpx::init(argc, argv);
}
//]

14 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

You can also use hpx::start and hpx::stop for a non-blocking alternative, or use hpx::resume and
hpx::suspend if you need to combine HPX with other runtimes.

See Starting the HPX runtime for more details on how to initialize and run the HPX runtime.

Caution: When including hpx_main.hpp the user-defined main gets renamed and the real main func-
tion is defined by HPX. This means that the user-defined main must include a return statement, unlike the real
main. If you do not include the return statement, you may end up with confusing compile time errors mentioning
user_main or even runtime errors.

2.2.6 Writing task-based applications

So far we haven’t done anything that can’t be done using the C++ standard library. In this section we will give a short
overview of what you can do with HPX on a single node. The essence is to avoid global synchronization and break up
your application into small, composable tasks whose dependencies control the flow of your application. Remember,
however, that HPX allows you to write distributed applications similarly to how you would write applications for a
single node (see Why HPX? and Writing distributed HPX applications).

If you are already familiar with async and futures from the C++ standard library, the same functionality is available
in HPX.

The following terminology is essential when talking about task-based C++ programs:

• lightweight thread: Essential for good performance with task-based programs. Lightweight refers to smaller
stacks and faster context switching compared to OS threads. Smaller overheads allow the program to be broken
up into smaller tasks, which in turns helps the runtime fully utilize all processing units.

• async: The most basic way of launching tasks asynchronously. Returns a future<T>.

• future<T>: Represents a value of type T that will be ready in the future. The value can be retrieved with get
(blocking) and one can check if the value is ready with is_ready (non-blocking).

• shared_future<T>: Same as future<T> but can be copied (similar to std::unique_ptr vs
std::shared_ptr).

• continuation: A function that is to be run after a previous task has run (represented by a future). then is a
method of future<T> that takes a function to run next. Used to build up dataflow DAGs (directed acyclic
graphs). shared_futures help you split up nodes in the DAG and functions like when_all help you join
nodes in the DAG.

The following example is a collection of the most commonly used functionality in HPX:

#include <hpx/hpx_main.hpp>
#include <hpx/include/lcos.hpp>
#include <hpx/include/parallel_generate.hpp>
#include <hpx/include/parallel_sort.hpp>
#include <hpx/iostream.hpp>

#include <random>
#include <vector>

void final_task(
hpx::future<hpx::util::tuple<hpx::future<double>, hpx::future<void>>>)

{
hpx::cout << "in final_task" << hpx::endl;

}

(continues on next page)

2.2. Quick start 15

HPX Documentation, 1.5.1

(continued from previous page)

// Avoid ABI incompatibilities between C++11/C++17 as std::rand has exception
// specification in libstdc++.
int rand_wrapper()
{

return std::rand();
}

int main(int, char**)
{

// A function can be launched asynchronously. The program will not block
// here until the result is available.
hpx::future<int> f = hpx::async([]() { return 42; });
hpx::cout << "Just launched a task!" << hpx::endl;

// Use get to retrieve the value from the future. This will block this task
// until the future is ready, but the HPX runtime will schedule other tasks
// if there are tasks available.
hpx::cout << "f contains " << f.get() << hpx::endl;

// Let's launch another task.
hpx::future<double> g = hpx::async([]() { return 3.14; });

// Tasks can be chained using the then method. The continuation takes the
// future as an argument.
hpx::future<double> result = g.then([](hpx::future<double>&& gg) {

// This function will be called once g is ready. gg is g moved
// into the continuation.
return gg.get() * 42.0 * 42.0;

});

// You can check if a future is ready with the is_ready method.
hpx::cout << "Result is ready? " << result.is_ready() << hpx::endl;

// You can launch other work in the meantime. Let's sort a vector.
std::vector<int> v(1000000);

// We fill the vector synchronously and sequentially.
hpx::generate(hpx::parallel::execution::seq, std::begin(v), std::end(v),

&rand_wrapper);

// We can launch the sort in parallel and asynchronously.
hpx::future<void> done_sorting = hpx::parallel::sort(

hpx::parallel::execution::par(// In parallel.
hpx::parallel::execution::task), // Asynchronously.

std::begin(v), std::end(v));

// We launch the final task when the vector has been sorted and result is
// ready using when_all.
auto all = hpx::when_all(result, done_sorting).then(&final_task);

// We can wait for all to be ready.
all.wait();

// all must be ready at this point because we waited for it to be ready.
hpx::cout << (all.is_ready() ? "all is ready!" : "all is not ready...")

<< hpx::endl;
(continues on next page)

16 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

return hpx::finalize();
}

Try copying the contents to your main.cpp file and look at the output. It can be a good idea to go through the
program step by step with a debugger. You can also try changing the types or adding new arguments to functions to
make sure you can get the types to match. The type of the then method can be especially tricky to get right (the
continuation needs to take the future as an argument).

Note: HPX programs accept command line arguments. The most important one is --hpx:threads=N to set the
number of OS threads used by HPX. HPX uses one thread per core by default. Play around with the example above
and see what difference the number of threads makes on the sort function. See Launching and configuring HPX
applications for more details on how and what options you can pass to HPX.

Tip: The example above used the construction hpx::when_all(...).then(...). For convenience and
performance it is a good idea to replace uses of hpx::when_all(...).then(...) with dataflow. See
Dataflow: Interest calculator for more details on dataflow.

Tip: If possible, try to use the provided parallel algorithms instead of writing your own implementation. This can
save you time and the resulting program is often faster.

2.2.7 Next steps

If you haven’t done so already, reading the Terminology section will help you get familiar with the terms used in HPX.

The Examples section contains small, self-contained walkthroughs of example HPX programs. The Local to remote:
1D stencil example is a thorough, realistic example starting from a single node implementation and going stepwise to
a distributed implementation.

The Manual contains detailed information on writing, building and running HPX applications.

2.3 Terminology

This section gives definitions for some of the terms used throughout the HPX documentation and source code.

Locality A locality in HPX describes a synchronous domain of execution, or the domain of bounded upper response
time. This normally is just a single node in a cluster or a NUMA domain in a SMP machine.

Active Global Address Space

AGAS HPX incorporates a global address space. Any executing thread can access any object within the domain
of the parallel application with the caveat that it must have appropriate access privileges. The model does
not assume that global addresses are cache coherent; all loads and stores will deal directly with the site of
the target object. All global addresses within a Synchronous Domain are assumed to be cache coherent for
those processor cores that incorporate transparent caches. The Active Global Address Space used by HPX
differs from research PGAS42 models. Partitioned Global Address Space is passive in their means of address

42 https://www.pgas.org/

2.3. Terminology 17

https://www.pgas.org/

HPX Documentation, 1.5.1

translation. Copy semantics, distributed compound operations, and affinity relationships are some of the global
functionality supported by AGAS.

Process The concept of the “process” in HPX is extended beyond that of either sequential execution or communicating
sequential processes. While the notion of process suggests action (as do “function” or “subroutine”) it has a
further responsibility of context, that is, the logical container of program state. It is this aspect of operation that
process is employed in HPX. Furthermore, referring to “parallel processes” in HPX designates the presence of
parallelism within the context of a given process, as well as the coarse grained parallelism achieved through
concurrency of multiple processes of an executing user job. HPX processes provide a hierarchical name space
within the framework of the active global address space and support multiple means of internal state access from
external sources.

Parcel The Parcel is a component in HPX that communicates data, invokes an action at a distance, and distributes
flow-control through the migration of continuations. Parcels bridge the gap of asynchrony between synchronous
domains while maintaining symmetry of semantics between local and global execution. Parcels enable message-
driven computation and may be seen as a form of “active messages”. Other important forms of message-driven
computation predating active messages include dataflow tokens43, the J-machine’s44 support for remote method
instantiation, and at the coarse grained variations of Unix remote procedure calls, among others. This enables
work to be moved to the data as well as performing the more common action of bringing data to the work.
A parcel can cause actions to occur remotely and asynchronously, among which are the creation of threads at
different system nodes or synchronous domains.

Local Control Object

Lightweight Control Object

LCO A local control object (sometimes called a lightweight control object) is a general term for the synchronization
mechanisms used in HPX. Any object implementing a certain concept can be seen as an LCO. This concepts
encapsulates the ability to be triggered by one or more events which when taking the object into a predefined
state will cause a thread to be executed. This could either create a new thread or resume an existing thread.

The LCO is a family of synchronization functions potentially representing many classes of synchronization
constructs, each with many possible variations and multiple instances. The LCO is sufficiently general that it can
subsume the functionality of conventional synchronization primitives such as spinlocks, mutexes, semaphores,
and global barriers. However due to the rich concept an LCO can represent powerful synchronization and control
functionality not widely employed, such as dataflow and futures (among others), which open up enormous
opportunities for rich diversity of distributed control and operation.

See Using LCOs for more details on how to use LCOs in HPX.

Action An action is a function that can be invoked remotely. In HPX a plain function can be made into an action
using a macro. See Applying actions for details on how to use actions in HPX.

Component A component is a C++ object which can be accessed remotely. A component can also contain member
functions which can be invoked remotely. These are referred to as component actions. See Writing components
for details on how to use components in HPX.

43 http://en.wikipedia.org/wiki/Dataflow_architecture
44 http://en.wikipedia.org/wiki/J%E2%80%93Machine

18 Chapter 2. What’s so special about HPX?

http://en.wikipedia.org/wiki/Dataflow_architecture
http://en.wikipedia.org/wiki/J%E2%80%93Machine

HPX Documentation, 1.5.1

2.4 Examples

The following sections analyze some examples to help you get familiar with the HPX style of programming. We start
off with simple examples that utilize basic HPX elements and then begin to expose the reader to the more complex
and powerful HPX concepts.

2.4.1 Asynchronous execution with hpx::async: Fibonacci

The Fibonacci sequence is a sequence of numbers starting with 0 and 1 where every subsequent number is the sum of
the previous two numbers. In this example, we will use HPX to calculate the value of the n-th element of the Fibonacci
sequence. In order to compute this problem in parallel, we will use a facility known as a future.

As shown in the Fig. ?? below, a future encapsulates a delayed computation. It acts as a proxy for a result initially
not known, most of the time because the computation of the result has not completed yet. The future synchronizes the
access of this value by optionally suspending any HPX-threads requesting the result until the value is available. When
a future is created, it spawns a new HPX-thread (either remotely with a parcel or locally by placing it into the thread
queue) which, when run, will execute the function associated with the future. The arguments of the function are bound
when the future is created.

Fig. 2.1: Schematic of a future execution.

Once the function has finished executing, a write operation is performed on the future. The write operation marks the
future as completed, and optionally stores data returned by the function. When the result of the delayed computation
is needed, a read operation is performed on the future. If the future’s function hasn’t completed when a read operation
is performed on it, the reader HPX-thread is suspended until the future is ready. The future facility allows HPX to
schedule work early in a program so that when the function value is needed it will already be calculated and available.
We use this property in our Fibonacci example below to enable its parallel execution.

2.4. Examples 19

HPX Documentation, 1.5.1

Setup

The source code for this example can be found here: fibonacci_local.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

make examples.quickstart.fibonacci_local

To run the program type:

./bin/fibonacci_local

This should print (time should be approximate):

fibonacci(10) == 55
elapsed time: 0.002430 [s]

This run used the default settings, which calculate the tenth element of the Fibonacci sequence. To declare which
Fibonacci value you want to calculate, use the --n-value option. Additionally you can use the --hpx:threads
option to declare how many OS-threads you wish to use when running the program. For instance, running:

./bin/fibonacci --n-value 20 --hpx:threads 4

Will yield:

fibonacci(20) == 6765
elapsed time: 0.062854 [s]

Walkthrough

Now that you have compiled and run the code, let’s look at how the code works. Since this code is written in C++, we
will begin with the main() function. Here you can see that in HPX, main() is only used to initialize the runtime sys-
tem. It is important to note that application-specific command line options are defined here. HPX uses Boost.Program
Options45 for command line processing. You can see that our programs --n-value option is set by calling the
add_options() method on an instance of hpx::program_options::options_description. The de-
fault value of the variable is set to 10. This is why when we ran the program for the first time without using the
--n-value option the program returned the 10th value of the Fibonacci sequence. The constructor argument of the
description is the text that appears when a user uses the --hpx:help option to see what command line options are
available. HPX_APPLICATION_STRING is a macro that expands to a string constant containing the name of the
HPX application currently being compiled.

In HPX main() is used to initialize the runtime system and pass the command line arguments to the program. If
you wish to add command line options to your program you would add them here using the instance of the Boost
class options_description, and invoking the public member function .add_options() (see Boost Docu-
mentation46 for more details). hpx::init calls hpx_main() after setting up HPX, which is where the logic of our
program is encoded.

int main(int argc, char* argv[])
{

// Configure application-specific options
hpx::program_options::options_description

desc_commandline("Usage: " HPX_APPLICATION_STRING " [options]");

(continues on next page)

45 https://www.boost.org/doc/html/program_options.html
46 https://www.boost.org/doc/

20 Chapter 2. What’s so special about HPX?

https://www.boost.org/doc/html/program_options.html
https://www.boost.org/doc/html/program_options.html
https://www.boost.org/doc/
https://www.boost.org/doc/

HPX Documentation, 1.5.1

(continued from previous page)

desc_commandline.add_options()
("n-value",
hpx::program_options::value<std::uint64_t>()->default_value(10),
"n value for the Fibonacci function")

;

// Initialize and run HPX
return hpx::init(desc_commandline, argc, argv);

}

The hpx::init function in main() starts the runtime system, and invokes hpx_main() as the first HPX-thread.
Below we can see that the basic program is simple. The command line option --n-value is read in, a timer
(hpx::util::high_resolution_timer) is set up to record the time it takes to do the computation, the
fibonacci function is invoked synchronously, and the answer is printed out.

int hpx_main(hpx::program_options::variables_map& vm)
{

// extract command line argument, i.e. fib(N)
std::uint64_t n = vm["n-value"].as<std::uint64_t>();

{
// Keep track of the time required to execute.
hpx::util::high_resolution_timer t;

std::uint64_t r = fibonacci(n);

char const* fmt = "fibonacci({1}) == {2}\nelapsed time: {3} [s]\n";
hpx::util::format_to(std::cout, fmt, n, r, t.elapsed());

}

return hpx::finalize(); // Handles HPX shutdown
}

The fibonacci function itself is synchronous as the work done inside is asynchronous. To understand what is
happening we have to look inside the fibonacci function:

std::uint64_t fibonacci(std::uint64_t n)
{

if (n < 2)
return n;

// Invoking the Fibonacci algorithm twice is inefficient.
// However, we intentionally demonstrate it this way to create some
// heavy workload.

hpx::future<std::uint64_t> n1 = hpx::async(fibonacci, n - 1);
hpx::future<std::uint64_t> n2 = hpx::async(fibonacci, n - 2);

return n1.get() + n2.get(); // wait for the Futures to return their values
}

This block of code is looks similar to regular C++ code. First, if (n < 2), meaning n is 0 or 1, then we re-
turn 0 or 1 (recall the first element of the Fibonacci sequence is 0 and the second is 1). If n is larger than 1
we spawn two new tasks whose results are contained in n1 and n2. This is done using hpx::async which
takes as arguments a function (function pointer, object or lambda) and the arguments to the function. Instead of
returning a std::uint64_t like fibonacci does, hpx::async returns a future of a std::uint64_t,

2.4. Examples 21

HPX Documentation, 1.5.1

i.e. hpx::future<std::uint64_t>. Each of these futures represents an asynchronous, recursive call to
fibonacci. After we’ve created the futures, we wait for both of them to finish computing, we add them together,
and return that value as our result. We get the values from the futures using the get method. The recursive call tree
will continue until n is equal to 0 or 1, at which point the value can be returned because it is implicitly known. When
this termination condition is reached, the futures can then be added up, producing the n-th value of the Fibonacci
sequence.

Note that calling get potentially blocks the calling HPX-thread, and lets other HPX-threads run in the meantime.
There are, however, more efficient ways of doing this. examples/quickstart/fibonacci_futures.cpp
contains many more variations of locally computing the Fibonacci numbers, where each method makes different
tradeoffs in where asynchrony and parallelism is applied. To get started, however, the method above is sufficient
and optimizations can be applied once you are more familiar with HPX. The example Dataflow: Interest calculator
presents dataflow, which is a way to more efficiently chain together multiple tasks.

2.4.2 Asynchronous execution with hpx::async and actions: Fibonacci

This example extends the previous example by introducing actions: functions that can be run remotely. In this example,
however, we will still only run the action locally. The mechanism to execute actions stays the same: hpx::async.
Later examples will demonstrate running actions on remote localities (e.g. Remote execution with actions: Hello
world).

Setup

The source code for this example can be found here: fibonacci.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

make examples.quickstart.fibonacci

To run the program type:

./bin/fibonacci

This should print (time should be approximate):

fibonacci(10) == 55
elapsed time: 0.00186288 [s]

This run used the default settings, which calculate the tenth element of the Fibonacci sequence. To declare which
Fibonacci value you want to calculate, use the --n-value option. Additionally you can use the --hpx:threads
option to declare how many OS-threads you wish to use when running the program. For instance, running:

./bin/fibonacci --n-value 20 --hpx:threads 4

Will yield:

fibonacci(20) == 6765
elapsed time: 0.233827 [s]

22 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Walkthrough

The code needed to initialize the HPX runtime is the same as in the previous example:

//[fib_main
int main(int argc, char* argv[])
{

// Configure application-specific options
hpx::program_options::options_description

desc_commandline("Usage: " HPX_APPLICATION_STRING " [options]");

desc_commandline.add_options()
("n-value",
hpx::program_options::value<std::uint64_t>()->default_value(10),
"n value for the Fibonacci function")

;

// Initialize and run HPX
return hpx::init(desc_commandline, argc, argv);

The hpx::init function in main() starts the runtime system, and invokes hpx_main() as the first HPX-thread.
The command line option --n-value is read in, a timer (hpx::util::high_resolution_timer) is set up
to record the time it takes to do the computation, the fibonacci action is invoked synchronously, and the answer is
printed out.

//[fib_hpx_main
int hpx_main(hpx::program_options::variables_map& vm)
{

// extract command line argument, i.e. fib(N)
std::uint64_t n = vm["n-value"].as<std::uint64_t>();

{
// Keep track of the time required to execute.
hpx::util::high_resolution_timer t;

// Wait for fib() to return the value
fibonacci_action fib;
std::uint64_t r = fib(hpx::find_here(), n);

char const* fmt = "fibonacci({1}) == {2}\nelapsed time: {3} [s]\n";
hpx::util::format_to(std::cout, fmt, n, r, t.elapsed());

}

return hpx::finalize(); // Handles HPX shutdown

Upon a closer look we see that we’ve created a std::uint64_t to store the result of invoking our
fibonacci_action fib. This action will launch synchronously (as the work done inside of the action will
be asynchronous itself) and return the result of the Fibonacci sequence. But wait, what is an action? And what is this
fibonacci_action? For starters, an action is a wrapper for a function. By wrapping functions, HPX can send
packets of work to different processing units. These vehicles allow users to calculate work now, later, or on certain
nodes. The first argument to our action is the location where the action should be run. In this case, we just want to
run the action on the machine that we are currently on, so we use hpx::find_here. To further understand this we
turn to the code to find where fibonacci_action was defined:

//[fib_action
// forward declaration of the Fibonacci function
std::uint64_t fibonacci(std::uint64_t n);

(continues on next page)

2.4. Examples 23

HPX Documentation, 1.5.1

(continued from previous page)

// This is to generate the required boilerplate we need for the remote
// invocation to work.

A plain action is the most basic form of action. Plain actions wrap simple global functions which are not associated
with any particular object (we will discuss other types of actions in Components and actions: Accumulator). In this
block of code the function fibonacci() is declared. After the declaration, the function is wrapped in an action
in the declaration HPX_PLAIN_ACTION . This function takes two arguments: the name of the function that is to be
wrapped and the name of the action that you are creating.

This picture should now start making sense. The function fibonacci() is wrapped in an ac-
tion fibonacci_action, which was run synchronously but created asynchronous work, then returns a
std::uint64_t representing the result of the function fibonacci(). Now, let’s look at the function
fibonacci():

//[fib_func
std::uint64_t fibonacci(std::uint64_t n)
{

if (n < 2)
return n;

// We restrict ourselves to execute the Fibonacci function locally.
hpx::naming::id_type const locality_id = hpx::find_here();

// Invoking the Fibonacci algorithm twice is inefficient.
// However, we intentionally demonstrate it this way to create some
// heavy workload.

fibonacci_action fib;
hpx::future<std::uint64_t> n1 =

hpx::async(fib, locality_id, n - 1);
hpx::future<std::uint64_t> n2 =

hpx::async(fib, locality_id, n - 2);

return n1.get() + n2.get(); // wait for the Futures to return their values

This block of code is much more straightforward and should look familiar from the previous example. First, if (n
< 2), meaning n is 0 or 1, then we return 0 or 1 (recall the first element of the Fibonacci sequence is 0 and the second
is 1). If n is larger than 1 we spawn two tasks using hpx::async. Each of these futures represents an asynchronous,
recursive call to fibonacci. As previously we wait for both futures to finish computing, get the results, add them
together, and return that value as our result. The recursive call tree will continue until n is equal to 0 or 1, at which
point the value can be returned because it is implicitly known. When this termination condition is reached, the futures
can then be added up, producing the n-th value of the Fibonacci sequence.

2.4.3 Remote execution with actions: Hello world

This program will print out a hello world message on every OS-thread on every locality. The output will look some-
thing like this:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 1 on locality 1
hello world from OS-thread 0 on locality 0
hello world from OS-thread 0 on locality 1

24 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Setup

The source code for this example can be found here: hello_world_distributed.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

make examples.quickstart.hello_world_distributed

To run the program type:

./bin/hello_world_distributed

This should print:

hello world from OS-thread 0 on locality 0

To use more OS-threads use the command line option --hpx:threads and type the number of threads that you
wish to use. For example, typing:

./bin/hello_world_distributed --hpx:threads 2

will yield:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0

Notice how the ordering of the two print statements will change with subsequent runs. To run this program on multiple
localities please see the section How to use HPX applications with PBS.

Walkthrough

Now that you have compiled and run the code, let’s look at how the code works, beginning with main():

// Here is the main entry point. By using the include 'hpx/hpx_main.hpp' HPX
// will invoke the plain old C-main() as its first HPX thread.
int main()
{

// Get a list of all available localities.
std::vector<hpx::naming::id_type> localities =

hpx::find_all_localities();

// Reserve storage space for futures, one for each locality.
std::vector<hpx::lcos::future<void> > futures;
futures.reserve(localities.size());

for (hpx::naming::id_type const& node : localities)
{

// Asynchronously start a new task. The task is encapsulated in a
// future, which we can query to determine if the task has
// completed.
typedef hello_world_foreman_action action_type;
futures.push_back(hpx::async<action_type>(node));

}

// The non-callback version of hpx::lcos::wait_all takes a single parameter,

(continues on next page)

2.4. Examples 25

HPX Documentation, 1.5.1

(continued from previous page)

// a vector of futures to wait on. hpx::wait_all only returns when
// all of the futures have finished.
hpx::wait_all(futures);
return 0;

}

In this excerpt of the code we again see the use of futures. This time the futures are stored in a vector so that they
can easily be accessed. hpx::wait_all is a family of functions that wait on for an std::vector<> of futures
to become ready. In this piece of code, we are using the synchronous version of hpx::wait_all, which takes one
argument (the std::vector<> of futures to wait on). This function will not return until all the futures in the vector
have been executed.

In Asynchronous execution with hpx::async and actions: Fibonacci we used hpx::find_here to specify the tar-
get of our actions. Here, we instead use hpx::find_all_localities, which returns an std::vector<>
containing the identifiers of all the machines in the system, including the one that we are on.

As in Asynchronous execution with hpx::async and actions: Fibonacci our futures are set using hpx::async<>.
The hello_world_foreman_action is declared here:

// Define the boilerplate code necessary for the function 'hello_world_foreman'
// to be invoked as an HPX action.
HPX_PLAIN_ACTION(hello_world_foreman, hello_world_foreman_action);

Another way of thinking about this wrapping technique is as follows: functions (the work to be done) are wrapped in
actions, and actions can be executed locally or remotely (e.g. on another machine participating in the computation).

Now it is time to look at the hello_world_foreman() function which was wrapped in the action above:

void hello_world_foreman()
{

// Get the number of worker OS-threads in use by this locality.
std::size_t const os_threads = hpx::get_os_thread_count();

// Populate a set with the OS-thread numbers of all OS-threads on this
// locality. When the hello world message has been printed on a particular
// OS-thread, we will remove it from the set.
std::set<std::size_t> attendance;
for (std::size_t os_thread = 0; os_thread < os_threads; ++os_thread)

attendance.insert(os_thread);

// As long as there are still elements in the set, we must keep scheduling
// HPX-threads. Because HPX features work-stealing task schedulers, we have
// no way of enforcing which worker OS-thread will actually execute
// each HPX-thread.
while (!attendance.empty())
{

// Each iteration, we create a task for each element in the set of
// OS-threads that have not said "Hello world". Each of these tasks
// is encapsulated in a future.
std::vector<hpx::lcos::future<std::size_t> > futures;
futures.reserve(attendance.size());

for (std::size_t worker : attendance)
{

// Asynchronously start a new task. The task is encapsulated in a
// future, which we can query to determine if the task has
// completed. We give the task a hint to run on a particular worker

(continues on next page)

26 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

// thread, but no guarantees are given by the scheduler that the
// task will actually run on that worker thread.
hpx::parallel::execution::default_executor exec(

hpx::threads::thread_schedule_hint(
hpx::threads::thread_schedule_hint_mode_thread, worker));

futures.push_back(hpx::async(exec, hello_world_worker, worker));
}

// Wait for all of the futures to finish. The callback version of the
// hpx::lcos::wait_each function takes two arguments: a vector of futures,
// and a binary callback. The callback takes two arguments; the first
// is the index of the future in the vector, and the second is the
// return value of the future. hpx::lcos::wait_each doesn't return until
// all the futures in the vector have returned.
hpx::lcos::local::spinlock mtx;
hpx::lcos::wait_each(

hpx::util::unwrapping([&](std::size_t t) {
if (std::size_t(-1) != t)
{

std::lock_guard<hpx::lcos::local::spinlock> lk(mtx);
attendance.erase(t);

}
}),
futures);

}
}

Now, before we discuss hello_world_foreman(), let’s talk about the hpx::wait_each function. The ver-
sion of hpx::lcos::wait_each invokes a callback function provided by the user, supplying the callback function
with the result of the future.

In hello_world_foreman(), an std::set<> called attendance keeps track of which OS-threads have
printed out the hello world message. When the OS-thread prints out the statement, the future is marked as ready, and
hpx::lcos::wait_each in hello_world_foreman(). If it is not executing on the correct OS-thread, it
returns a value of -1, which causes hello_world_foreman() to leave the OS-thread id in attendance.

std::size_t hello_world_worker(std::size_t desired)
{

// Returns the OS-thread number of the worker that is running this
// HPX-thread.
std::size_t current = hpx::get_worker_thread_num();
if (current == desired)
{

// The HPX-thread has been run on the desired OS-thread.
char const* msg = "hello world from OS-thread {1} on locality {2}\n";

hpx::util::format_to(hpx::cout, msg, desired, hpx::get_locality_id())
<< std::flush;

return desired;
}

// This HPX-thread has been run by the wrong OS-thread, make the foreman
// try again by rescheduling it.
return std::size_t(-1);

}

2.4. Examples 27

HPX Documentation, 1.5.1

Because HPX features work stealing task schedulers, there is no way to guarantee that an action will be scheduled on
a particular OS-thread. This is why we must use a guess-and-check approach.

2.4.4 Components and actions: Accumulator

The accumulator example demonstrates the use of components. Components are C++ classes that expose methods as
a type of HPX action. These actions are called component actions.

Components are globally named, meaning that a component action can be called remotely (e.g., from another ma-
chine). There are two accumulator examples in HPX.

In the Asynchronous execution with hpx::async and actions: Fibonacci and the Remote execution with actions: Hello
world, we introduced plain actions, which wrapped global functions. The target of a plain action is an identifier which
refers to a particular machine involved in the computation. For plain actions, the target is the machine where the action
will be executed.

Component actions, however, do not target machines. Instead, they target component instances. The instance may live
on the machine that we’ve invoked the component action from, or it may live on another machine.

The component in this example exposes three different functions:

• reset() - Resets the accumulator value to 0.

• add(arg) - Adds arg to the accumulators value.

• query() - Queries the value of the accumulator.

This example creates an instance of the accumulator, and then allows the user to enter commands at a prompt, which
subsequently invoke actions on the accumulator instance.

Setup

The source code for this example can be found here: accumulator_client.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

make examples.accumulators.accumulator

To run the program type:

./bin/accumulator_client

Once the program starts running, it will print the following prompt and then wait for input. An example session is
given below:

commands: reset, add [amount], query, help, quit
> add 5
> add 10
> query
15
> add 2
> query
17
> reset
> add 1
> query

(continues on next page)

28 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

1
> quit

Walkthrough

Now, let’s take a look at the source code of the accumulator example. This example consists of two parts: an
HPX component library (a library that exposes an HPX component) and a client application which uses the library.
This walkthrough will cover the HPX component library. The code for the client application can be found here:
accumulator_client.cpp.

An HPX component is represented by two C++ classes:

• A server class - The implementation of the component’s functionality.

• A client class - A high-level interface that acts as a proxy for an instance of the component.

Typically, these two classes both have the same name, but the server class usually lives in different sub-namespaces
(server). For example, the full names of the two classes in accumulator are:

• examples::server::accumulator (server class)

• examples::accumulator (client class)

The server class

The following code is from: accumulator.hpp.

All HPX component server classes must inherit publicly from the HPX component base class:
hpx::components::component_base

The accumulator component inherits from hpx::components::locking_hook. This allows the runtime sys-
tem to ensure that all action invocations are serialized. That means that the system ensures that no two actions are
invoked at the same time on a given component instance. This makes the component thread safe and no additional
locking has to be implemented by the user. Moreover, an accumulator component is a component because it also
inherits from hpx::components::component_base (the template argument passed to locking_hook is used
as its base class). The following snippet shows the corresponding code:

class accumulator
: public hpx::components::locking_hook<

hpx::components::component_base<accumulator> >

Our accumulator class will need a data member to store its value in, so let’s declare a data member:

argument_type value_;

The constructor for this class simply initializes value_ to 0:

accumulator() : value_(0) {}

Next, let’s look at the three methods of this component that we will be exposing as component actions:

/// Reset the components value to 0.
void reset()
{

// set value_ to 0.

(continues on next page)

2.4. Examples 29

HPX Documentation, 1.5.1

(continued from previous page)

value_ = 0;
}

/// Add the given number to the accumulator.
void add(argument_type arg)
{

// add value_ to arg, and store the result in value_.
value_ += arg;

}

/// Return the current value to the caller.
argument_type query() const
{

// Get the value of value_.
return value_;

}

Here are the action types. These types wrap the methods we’re exposing. The wrapping technique is very similar to
the one used in the Asynchronous execution with hpx::async and actions: Fibonacci and the Remote execution with
actions: Hello world:

HPX_DEFINE_COMPONENT_ACTION(accumulator, reset);
HPX_DEFINE_COMPONENT_ACTION(accumulator, add);
HPX_DEFINE_COMPONENT_ACTION(accumulator, query);

The last piece of code in the server class header is the declaration of the action type registration code:

HPX_REGISTER_ACTION_DECLARATION(
examples::server::accumulator::reset_action,
accumulator_reset_action);

HPX_REGISTER_ACTION_DECLARATION(
examples::server::accumulator::add_action,
accumulator_add_action);

HPX_REGISTER_ACTION_DECLARATION(
examples::server::accumulator::query_action,
accumulator_query_action);

Note: The code above must be placed in the global namespace.

The rest of the registration code is in accumulator.cpp

//[accumulator_registration_definitions
///
// Add factory registration functionality.
HPX_REGISTER_COMPONENT_MODULE();

///
typedef hpx::components::component<

examples::server::accumulator
> accumulator_type;

HPX_REGISTER_COMPONENT(accumulator_type, accumulator);

(continues on next page)

30 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

///
// Serialization support for accumulator actions.
HPX_REGISTER_ACTION(

accumulator_type::wrapped_type::reset_action,
accumulator_reset_action);

HPX_REGISTER_ACTION(
accumulator_type::wrapped_type::add_action,
accumulator_add_action);

HPX_REGISTER_ACTION(
accumulator_type::wrapped_type::query_action,

Note: The code above must be placed in the global namespace.

The client class

The following code is from accumulator.hpp.

The client class is the primary interface to a component instance. Client classes are used to create components:

// Create a component on this locality.
examples::accumulator c = hpx::new_<examples::accumulator>(hpx::find_here());

and to invoke component actions:

c.add(hpx::launch::apply, 4);

Clients, like servers, need to inherit from a base class, this time, hpx::components::client_base:

class accumulator
: public hpx::components::client_base<

accumulator, server::accumulator
>

For readability, we typedef the base class like so:

typedef hpx::components::client_base<
accumulator, server::accumulator

> base_type;

Here are examples of how to expose actions through a client class:

There are a few different ways of invoking actions:

• Non-blocking: For actions that don’t have return types, or when we do not care about the result of an action,
we can invoke the action using fire-and-forget semantics. This means that once we have asked HPX to compute
the action, we forget about it completely and continue with our computation. We use hpx::apply to invoke
an action in a non-blocking fashion.

void reset(hpx::launch::apply_policy)
{

HPX_ASSERT(this->get_id());

typedef server::accumulator::reset_action action_type;

(continues on next page)

2.4. Examples 31

HPX Documentation, 1.5.1

(continued from previous page)

hpx::apply<action_type>(this->get_id());
}

• Asynchronous: Futures, as demonstrated in Asynchronous execution with hpx::async: Fibonacci, Asynchronous
execution with hpx::async and actions: Fibonacci, and the Remote execution with actions: Hello world, enable
asynchronous action invocation. Here’s an example from the accumulator client class:

hpx::future<argument_type> query(hpx::launch::async_policy)
{

HPX_ASSERT(this->get_id());

typedef server::accumulator::query_action action_type;
return hpx::async<action_type>(hpx::launch::async, this->get_id());

}

• Synchronous: To invoke an action in a fully synchronous manner, we can simply call hpx::async().
get() (i.e., create a future and immediately wait on it to be ready). Here’s an example from the accumulator
client class:

void add(argument_type arg)
{

HPX_ASSERT(this->get_id());

typedef server::accumulator::add_action action_type;
action_type()(this->get_id(), arg);

}

Note that this->get_id() references a data member of the hpx::components::client_base base class
which identifies the server accumulator instance.

hpx::naming::id_type is a type which represents a global identifier in HPX. This type specifies the target of
an action. This is the type that is returned by hpx::find_here in which case it represents the locality the code is
running on.

2.4.5 Dataflow: Interest calculator

HPX provides its users with several different tools to simply express parallel concepts. One of these tools is a local
control object (LCO) called dataflow. An LCO is a type of component that can spawn a new thread when triggered.
They are also distinguished from other components by a standard interface that allow users to understand and use
them easily. A Dataflow, being an LCO, is triggered when the values it depends on become available. For instance,
if you have a calculation X that depends on the results of three other calculations, you could set up a dataflow that
would begin the calculation X as soon as the other three calculations have returned their values. Dataflows are set up
to depend on other dataflows. It is this property that makes dataflow a powerful parallelization tool. If you understand
the dependencies of your calculation, you can devise a simple algorithm that sets up a dependency tree to be executed.
In this example, we calculate compound interest. To calculate compound interest, one must calculate the interest made
in each compound period, and then add that interest back to the principal before calculating the interest made in the
next period. A practical person would, of course, use the formula for compound interest:

𝐹 = 𝑃 (1 + 𝑖)𝑛

where 𝐹 is the future value, 𝑃 is the principal value, 𝑖 is the interest rate, and 𝑛 is the number of compound periods.

However, for the sake of this example, we have chosen to manually calculate the future value by iterating:

𝐼 = 𝑃𝑖

32 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

and

𝑃 = 𝑃 + 𝐼

Setup

The source code for this example can be found here: interest_calculator.cpp.

To compile this program, go to your HPX build directory (see HPX build system for information on configuring and
building HPX) and enter:

make examples.quickstart.interest_calculator

To run the program type:

./bin/interest_calculator --principal 100 --rate 5 --cp 6 --time 36

This should print:

Final amount: 134.01
Amount made: 34.0096

Walkthrough

Let us begin with main. Here we can see that we again are using Boost.Program Options to set our command line
variables (see Asynchronous execution with hpx::async and actions: Fibonacci for more details). These options set
the principal, rate, compound period, and time. It is important to note that the units of time for cp and time must be
the same.

///
//[interest_main
int main(int argc, char ** argv)
{

options_description cmdline("Usage: " HPX_APPLICATION_STRING " [options]");

cmdline.add_options()
("principal", value<double>()->default_value(1000), "The principal [$]")
("rate", value<double>()->default_value(7), "The interest rate [%]")
("cp", value<int>()->default_value(12), "The compound period [months]")
("time", value<int>()->default_value(12*30),

"The time money is invested [months]")
;

Next we look at hpx_main.

///
//[interest_hpx_main
int hpx_main(variables_map & vm)
{

{
using hpx::shared_future;
using hpx::make_ready_future;
using hpx::dataflow;
using hpx::util::unwrapping;
hpx::naming::id_type here = hpx::find_here();

(continues on next page)

2.4. Examples 33

HPX Documentation, 1.5.1

(continued from previous page)

double init_principal=vm["principal"].as<double>(); //Initial principal
double init_rate=vm["rate"].as<double>(); //Interest rate
int cp=vm["cp"].as<int>(); //Length of a compound period
int t=vm["time"].as<int>(); //Length of time money is invested

init_rate/=100; //Rate is a % and must be converted
t/=cp; //Determine how many times to iterate interest calculation:

//How many full compound periods can fit in the time invested

// In non-dataflow terms the implemented algorithm would look like:
//
// int t = 5; // number of time periods to use
// double principal = init_principal;
// double rate = init_rate;
//
// for (int i = 0; i < t; ++i)
// {
// double interest = calc(principal, rate);
// principal = add(principal, interest);
// }
//
// Please note the similarity with the code below!

shared_future<double> principal = make_ready_future(init_principal);
shared_future<double> rate = make_ready_future(init_rate);

for (int i = 0; i < t; ++i)
{

shared_future<double> interest = dataflow(unwrapping(calc), principal,
→˓rate);

principal = dataflow(unwrapping(add), principal, interest);
}

// wait for the dataflow execution graph to be finished calculating our
// overall interest
double result = principal.get();

std::cout << "Final amount: " << result << std::endl;
std::cout << "Amount made: " << result-init_principal << std::endl;

}

Here we find our command line variables read in, the rate is converted from a percent to a decimal, the num-
ber of calculation iterations is determined, and then our shared_futures are set up. Notice that we first place
our principal and rate into shares futures by passing the variables init_principal and init_rate using
hpx::make_ready_future.

In this way hpx::shared_future<double> principal and rate will be initialized to init_principal
and init_rate when hpx::make_ready_future<double> returns a future containing those initial values.
These shared futures then enter the for loop and are passed to interest. Next principal and interest are
passed to the reassignment of principal using a hpx::dataflow . A dataflow will first wait for its arguments to
be ready before launching any callbacks, so add in this case will not begin until both principal and interest
are ready. This loop continues for each compound period that must be calculated. To see how interest and
principal are calculated in the loop, let us look at calc_action and add_action:

///

(continues on next page)

34 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

//[interest_calc_add_action
// Calculate interest for one period
double calc(double principal, double rate)
{

return principal * rate;
}

///
// Add the amount made to the principal
double add(double principal, double interest)
{

After the shared future dependencies have been defined in hpx_main, we see the following statement:

double result = principal.get();

This statement calls hpx::future::get on the shared future principal which had its value calculated by our for
loop. The program will wait here until the entire dataflow tree has been calculated and the value assigned to result.
The program then prints out the final value of the investment and the amount of interest made by subtracting the final
value of the investment from the initial value of the investment.

2.4.6 Local to remote: 1D stencil

When developers write code they typically begin with a simple serial code and build upon it until all of the required
functionality is present. The following set of examples were developed to demonstrate this iterative process of evolving
a simple serial program to an efficient, fully-distributed HPX application. For this demonstration, we implemented a
1D heat distribution problem. This calculation simulates the diffusion of heat across a ring from an initialized state
to some user-defined point in the future. It does this by breaking each portion of the ring into discrete segments and
using the current segment’s temperature and the temperature of the surrounding segments to calculate the temperature
of the current segment in the next timestep as shown by Fig. ?? below.

Fig. 2.2: Heat diffusion example program flow.

We parallelize this code over the following eight examples:

• Example 1

• Example 2

• Example 3

• Example 4

• Example 5

• Example 6

2.4. Examples 35

HPX Documentation, 1.5.1

• Example 7

• Example 8

The first example is straight serial code. In this code we instantiate a vector U that contains two vectors of doubles as
seen in the structure stepper.

//[stepper_1
struct stepper
{

// Our partition type
typedef double partition;

// Our data for one time step
typedef std::vector<partition> space;

// Our operator
static double heat(double left, double middle, double right)
{

return middle + (k*dt/(dx*dx)) * (left - 2*middle + right);
}

// do all the work on 'nx' data points for 'nt' time steps
space do_work(std::size_t nx, std::size_t nt)
{

// U[t][i] is the state of position i at time t.
std::vector<space> U(2);
for (space& s : U)

s.resize(nx);

// Initial conditions: f(0, i) = i
for (std::size_t i = 0; i != nx; ++i)

U[0][i] = double(i);

// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{

space const& current = U[t % 2];
space& next = U[(t + 1) % 2];

next[0] = heat(current[nx-1], current[0], current[1]);

for (std::size_t i = 1; i != nx-1; ++i)
next[i] = heat(current[i-1], current[i], current[i+1]);

next[nx-1] = heat(current[nx-2], current[nx-1], current[0]);
}

// Return the solution at time-step 'nt'.
return U[nt % 2];

}

Each element in the vector of doubles represents a single grid point. To calculate the change in heat distribution,
the temperature of each grid point, along with its neighbors, is passed to the function heat. In order to improve
readability, references named current and next are created which, depending on the time step, point to the first
and second vector of doubles. The first vector of doubles is initialized with a simple heat ramp. After calling the heat
function with the data in the current vector, the results are placed into the next vector.

In example 2 we employ a technique called futurization. Futurization is a method by which we can easily transform a

36 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

code that is serially executed into a code that creates asynchronous threads. In the simplest case this involves replacing
a variable with a future to a variable, a function with a future to a function, and adding a .get() at the point where a
value is actually needed. The code below shows how this technique was applied to the struct stepper.

//[stepper_2
struct stepper
{

// Our partition type
typedef hpx::shared_future<double> partition;

// Our data for one time step
typedef std::vector<partition> space;

// Our operator
static double heat(double left, double middle, double right)
{

return middle + (k*dt/(dx*dx)) * (left - 2*middle + right);
}

// do all the work on 'nx' data points for 'nt' time steps
hpx::future<space> do_work(std::size_t nx, std::size_t nt)
{

using hpx::dataflow;
using hpx::util::unwrapping;

// U[t][i] is the state of position i at time t.
std::vector<space> U(2);
for (space& s : U)

s.resize(nx);

// Initial conditions: f(0, i) = i
for (std::size_t i = 0; i != nx; ++i)

U[0][i] = hpx::make_ready_future(double(i));

auto Op = unwrapping(&stepper::heat);

// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{

space const& current = U[t % 2];
space& next = U[(t + 1) % 2];

// WHEN U[t][i-1], U[t][i], and U[t][i+1] have been computed, THEN we
// can compute U[t+1][i]
for (std::size_t i = 0; i != nx; ++i)
{

next[i] = dataflow(
hpx::launch::async, Op,
current[idx(i, -1, nx)], current[i], current[idx(i, +1, nx)]

);
}

}

// Now the asynchronous computation is running; the above for-loop does not
// wait on anything. There is no implicit waiting at the end of each timestep;
// the computation of each U[t][i] will begin as soon as its dependencies
// are ready and hardware is available.

(continues on next page)

2.4. Examples 37

HPX Documentation, 1.5.1

(continued from previous page)

// Return the solution at time-step 'nt'.
return hpx::when_all(U[nt % 2]);

}

In example 2, we redefine our partition type as a shared_future and, in main, create the object result, which
is a future to a vector of partitions. We use result to represent the last vector in a string of vectors created for
each timestep. In order to move to the next timestep, the values of a partition and its neighbors must be passed to
heat once the futures that contain them are ready. In HPX, we have an LCO (Local Control Object) named Dataflow
that assists the programmer in expressing this dependency. Dataflow allows us to pass the results of a set of futures
to a specified function when the futures are ready. Dataflow takes three types of arguments, one which instructs the
dataflow on how to perform the function call (async or sync), the function to call (in this case Op), and futures to the
arguments that will be passed to the function. When called, dataflow immediately returns a future to the result of the
specified function. This allows users to string dataflows together and construct an execution tree.

After the values of the futures in dataflow are ready, the values must be pulled out of the future container to be passed
to the function heat. In order to do this, we use the HPX facility unwrapping, which underneath calls .get() on
each of the futures so that the function heat will be passed doubles and not futures to doubles.

By setting up the algorithm this way, the program will be able to execute as quickly as the dependencies of each future
are met. Unfortunately, this example runs terribly slow. This increase in execution time is caused by the overheads
needed to create a future for each data point. Because the work done within each call to heat is very small, the overhead
of creating and scheduling each of the three futures is greater than that of the actual useful work! In order to amortize
the overheads of our synchronization techniques, we need to be able to control the amount of work that will be done
with each future. We call this amount of work per overhead grain size.

In example 3, we return to our serial code to figure out how to control the grain size of our program. The strategy
that we employ is to create “partitions” of data points. The user can define how many partitions are created and how
many data points are contained in each partition. This is accomplished by creating the struct partition, which
contains a member object data_, a vector of doubles that holds the data points assigned to a particular instance of
partition.

In example 4, we take advantage of the partition setup by redefining space to be a vector of shared_futures with each
future representing a partition. In this manner, each future represents several data points. Because the user can define
how many data points are in each partition, and, therefore, how many data points are represented by one future, a user
can control the grainsize of the simulation. The rest of the code is then futurized in the same manner as example 2. It
should be noted how strikingly similar example 4 is to example 2.

Example 4 finally shows good results. This code scales equivalently to the OpenMP version. While these results are
promising, there are more opportunities to improve the application’s scalability. Currently, this code only runs on one
locality, but to get the full benefit of HPX, we need to be able to distribute the work to other machines in a cluster. We
begin to add this functionality in example 5.

In order to run on a distributed system, a large amount of boilerplate code must be added. Fortunately, HPX provides
us with the concept of a component, which saves us from having to write quite as much code. A component is an
object that can be remotely accessed using its global address. Components are made of two parts: a server and a client
class. While the client class is not required, abstracting the server behind a client allows us to ensure type safety in-
stead of having to pass around pointers to global objects. Example 5 renames example 4’s struct partition to
partition_data and adds serialization support. Next, we add the server side representation of the data in the struc-
ture partition_server. Partition_server inherits from hpx::components::component_base,
which contains a server-side component boilerplate. The boilerplate code allows a component’s public members to be
accessible anywhere on the machine via its Global Identifier (GID). To encapsulate the component, we create a client
side helper class. This object allows us to create new instances of our component and access its members without
having to know its GID. In addition, we are using the client class to assist us with managing our asynchrony. For
example, our client class partition‘s member function get_data() returns a future to partition_data
get_data(). This struct inherits its boilerplate code from hpx::components::client_base.

38 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

In the structure stepper, we have also had to make some changes to accommodate a distributed environment.
In order to get the data from a particular neighboring partition, which could be remote, we must retrieve the data
from all of the neighboring partitions. These retrievals are asynchronous and the function heat_part_data,
which, amongst other things, calls heat, should not be called unless the data from the neighboring partitions
have arrived. Therefore, it should come as no surprise that we synchronize this operation with another instance of
dataflow (found in heat_part). This dataflow receives futures to the data in the current and surrounding partitions
by calling get_data() on each respective partition. When these futures are ready, dataflow passes them to the
unwrapping function, which extracts the shared_array of doubles and passes them to the lambda. The lambda calls
heat_part_data on the locality, which the middle partition is on.

Although this example could run distributed, it only runs on one locality, as it always uses hpx::find_here() as
the target for the functions to run on.

In example 6, we begin to distribute the partition data on different nodes. This is accomplished in
stepper::do_work() by passing the GID of the locality where we wish to create the partition to the partition
constructor.

// Initial conditions: f(0, i) = i
//[do_work_6

We distribute the partitions evenly based on the number of localities used, which is described in the function locidx.
Because some of the data needed to update the partition in heat_part could now be on a new locality, we must
devise a way of moving data to the locality of the middle partition. We accomplished this by adding a switch in the
function get_data() that returns the end element of the buffer data_ if it is from the left partition or the first
element of the buffer if the data is from the right partition. In this way only the necessary elements, not the whole
buffer, are exchanged between nodes. The reader should be reminded that this exchange of end elements occurs in the
function get_data() and, therefore, is executed asynchronously.

Now that we have the code running in distributed, it is time to make some optimizations. The function heat_part
spends most of its time on two tasks: retrieving remote data and working on the data in the middle partition. Because
we know that the data for the middle partition is local, we can overlap the work on the middle partition with that of the
possibly remote call of get_data(). This algorithmic change, which was implemented in example 7, can be seen
below:

//[stepper_7
// The partitioned operator, it invokes the heat operator above on all elements
// of a partition.
static partition heat_part(partition const& left,

partition const& middle, partition const& right)
{

using hpx::dataflow;
using hpx::util::unwrapping;

hpx::shared_future<partition_data> middle_data =
middle.get_data(partition_server::middle_partition);

hpx::future<partition_data> next_middle = middle_data.then(
unwrapping(

[middle](partition_data const& m) -> partition_data
{

HPX_UNUSED(middle);

// All local operations are performed once the middle data of
// the previous time step becomes available.
std::size_t size = m.size();
partition_data next(size);
for (std::size_t i = 1; i != size-1; ++i)

(continues on next page)

2.4. Examples 39

HPX Documentation, 1.5.1

(continued from previous page)

next[i] = heat(m[i-1], m[i], m[i+1]);
return next;

}
)

);

return dataflow(
hpx::launch::async,
unwrapping(

[left, middle, right](partition_data next, partition_data const& l,
partition_data const& m, partition_data const& r) -> partition

{
HPX_UNUSED(left);
HPX_UNUSED(right);

// Calculate the missing boundary elements once the
// corresponding data has become available.
std::size_t size = m.size();
next[0] = heat(l[size-1], m[0], m[1]);
next[size-1] = heat(m[size-2], m[size-1], r[0]);

// The new partition_data will be allocated on the same locality
// as 'middle'.
return partition(middle.get_id(), std::move(next));

}
),
std::move(next_middle),
left.get_data(partition_server::left_partition),
middle_data,
right.get_data(partition_server::right_partition)

Example 8 completes the futurization process and utilizes the full potential of HPX by distributing the program flow
to multiple localities, usually defined as nodes in a cluster. It accomplishes this task by running an instance of HPX
main on each locality. In order to coordinate the execution of the program, the struct stepper is wrapped into
a component. In this way, each locality contains an instance of stepper that executes its own instance of the function
do_work(). This scheme does create an interesting synchronization problem that must be solved. When the program
flow was being coordinated on the head node, the GID of each component was known. However, when we distribute
the program flow, each partition has no notion of the GID of its neighbor if the next partition is on another locality. In
order to make the GIDs of neighboring partitions visible to each other, we created two buffers to store the GIDs of the
remote neighboring partitions on the left and right respectively. These buffers are filled by sending the GID of newly
created edge partitions to the right and left buffers of the neighboring localities.

In order to finish the simulation, the solution vectors named result are then gathered together on locality 0 and
added into a vector of spaces overall_result using the HPX functions gather_id and gather_here.

Example 8 completes this example series, which takes the serial code of example 1 and incrementally morphs it into
a fully distributed parallel code. This evolution was guided by the simple principles of futurization, the knowledge
of grainsize, and utilization of components. Applying these techniques easily facilitates the scalable parallelization of
most applications.

40 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

2.5 Manual

The manual is your comprehensive guide to HPX. It contains detailed information on how to build and use HPX in
different scenarios.

2.5.1 Getting HPX

There are HPX packages available for a few Linux distributions. The easiest way to get started with HPX is to use
those packages. We keep an up-to-date list with instructions on the HPX Downloads47 page. If you use one of the
available packages you can skip the next section, HPX build system, but we still recommend that you look through it
as it contains useful information on how you can customize HPX at compile-time.

If there isn’t a package available for your platform you should either clone our repository:

or download a package with the source files from HPX Downloads48.

2.5.2 HPX build system

The build system for HPX is based on CMake49. CMake is a cross-platform build-generator tool. CMake does not
build the project, it generates the files needed by your build tool (GNU make, Visual Studio, etc.) for building HPX.

This section gives an introduction on how to use our build system to build HPX and how to use HPX in your own
projects.

CMake basics

CMake is a cross-platform build-generator tool. CMake does not build the project, it generates the files needed by
your build tool (gnu make, visual studio, etc.) for building HPX.

In general, the HPX CMake scripts try to adhere to the general CMake policies on how to write CMake-based projects.

Basic CMake usage

This section explains basic aspects of CMake, specifically options needed for day-to-day usage.

CMake comes with extensive documentation in the form of html files and on the CMake executable itself. Execute
cmake --help for further help options.

CMake needs to know which build tool it will generate files for (GNU make, Visual Studio, Xcode, etc.). If not
specified on the command line, it will try to guess the build tool based on you environment. Once it has identified the
build tool, CMake uses the corresponding generator to create files for your build tool. You can explicitly specify the
generator with the command line option -G "Name of the generator". To see the available generators on
your platform, execute:

cmake --help

This will list the generator names at the end of the help text. Generator names are case-sensitive. Example:

cmake -G "Visual Studio 16 2019" path/to/hpx

47 https://stellar-group.org/downloads/
48 https://stellar-group.org/downloads/
49 https://www.cmake.org

2.5. Manual 41

https://stellar-group.org/downloads/
https://stellar-group.org/downloads/
https://www.cmake.org

HPX Documentation, 1.5.1

For a given development platform there can be more than one adequate generator. If you use Visual Studio "NMake
Makefiles" is a generator you can use for building with NMake. By default, CMake chooses the more specific
generator supported by your development environment. If you want an alternative generator, you must tell this to
CMake with the -G option.

Quick start

Here, you will use the command-line, non-interactive CMake interface.

1. Download and install CMake here: CMake Downloads50. Version 3.13 is the minimum required version for
HPX.

2. Open a shell. Your development tools must be reachable from this shell through the PATH environment variable.

3. Create a directory for containing the build. Building HPX on the source directory is not supported. cd to this
directory:

mkdir mybuilddir
cd mybuilddir

4. Execute this command on the shell replacing path/to/hpx with the path to the root of your HPX source tree:

cmake path/to/hpx

CMake will detect your development environment, perform a series of tests and will generate the files required for
building HPX. CMake will use default values for all build parameters. See the CMake variables used to configure
HPX section for fine-tuning your build.

This can fail if CMake can’t detect your toolset, or if it thinks that the environment is not sane enough. In this case
make sure that the toolset that you intend to use is the only one reachable from the shell and that the shell itself is the
correct one for you development environment. CMake will refuse to build MinGW makefiles if you have a POSIX
shell reachable through the PATH environment variable, for instance. You can force CMake to use various compilers
and tools. Please visit CMake Useful Variables51 for a detailed overview of specific CMake variables.

Options and variables

Variables customize how the build will be generated. Options are boolean variables, with possible values ON/OFF.
Options and variables are defined on the CMake command line like this:

cmake -DVARIABLE=value path/to/hpx

You can set a variable after the initial CMake invocation for changing its value. You can also undefine a variable:

cmake -UVARIABLE path/to/hpx

Variables are stored on the CMake cache. This is a file named CMakeCache.txt on the root of the build directory.
Do not hand-edit it.

Variables are listed here appending its type after a colon. You should write the variable and the type on the CMake
command line:

cmake -DVARIABLE:TYPE=value path/to/llvm/source

50 https://www.cmake.org/cmake/resources/software.html
51 https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/Useful-Variables#Compilers-and-Tools

42 Chapter 2. What’s so special about HPX?

https://www.cmake.org/cmake/resources/software.html
https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/Useful-Variables#Compilers-and-Tools

HPX Documentation, 1.5.1

CMake supports the following variable types: BOOL (options), STRING (arbitrary string), PATH (directory name),
FILEPATH (file name).

Prerequisites

Supported platforms

At this time, HPX supports the following platforms. Other platforms may work, but we do not test HPX with other
platforms, so please be warned.

Table 2.1: Supported Platforms for HPX
Name Minimum Version Architectures
Linux 2.6 x86-32, x86-64, k1om
BlueGeneQ V1R2M0 PowerPC A2
Windows Any Windows system x86-32, x86-64
Mac OSX Any OSX system x86-64

Software and libraries

In the simplest case, HPX depends on Boost52 and Portable Hardware Locality (HWLOC)53. So, before you read
further, please make sure you have a recent version of Boost54 installed on your target machine. HPX currently
requires at least Boost V1.61.0 to work properly. It may build and run with older versions, but we do not test HPX
with those versions, so please be warned.

The installation of Boost is described in detail in Boost’s Getting Started55 document. However, if you’ve never used
the Boost libraries (or even if you have), here’s a quick primer: Installing Boost.

It is often possible to download the Boost libraries using the package manager of your distribution. Please refer to the
corresponding documentation for your system for more information.

In addition, we require a recent version of hwloc in order to support thread pinning and NUMA awareness. See
Installing Hwloc for instructions on building Portable Hardware Locality (HWLOC).

HPX is written in 99.99% Standard C++ (the remaining 0.01% is platform specific assembly code). As such, HPX is
compilable with almost any standards compliant C++ compiler. A compiler supporting the C++11 Standard is highly
recommended. The code base takes advantage of C++11 language features when available (move semantics, rvalue
references, magic statics, etc.). This may speed up the execution of your code significantly. We currently support the
following C++ compilers: GCC, MSVC, ICPC and clang. For the status of your favorite compiler with HPX visit
HPX Buildbot Website56.

52 https://www.boost.org/
53 https://www.open-mpi.org/projects/hwloc/
54 https://www.boost.org/
55 https://www.boost.org/doc/libs/1_73_0/more/getting_started/index.html
56 http://rostam.cct.lsu.edu/

2.5. Manual 43

https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://www.boost.org/
https://www.boost.org/doc/libs/1_73_0/more/getting_started/index.html
http://rostam.cct.lsu.edu/

HPX Documentation, 1.5.1

Table 2.2: Software prerequisites for HPX on Linux systems.
Name Minimum version Notes
Compilers
GNU Compiler Collection (g++)57 7.0
Intel Composer XE Suites58 2014
clang: a C language family frontend for LLVM59 5.0
Build System
CMake60 3.13 Cuda support 3.9
Required Libraries
Boost C++ Libraries61 1.64.0
Portable Hardware Locality (HWLOC)62 1.5

Note: When building Boost using gcc, please note that it is required to specify a cxxflags=-std=c++14 com-
mand line argument to b2 (bjam).

Table 2.3: Software prerequisites for HPX on Windows systems
Name Minimum version Notes
Compilers
Visual C++63 (x64) 2015
Build System
CMake64 3.13
Required Libraries
Boost65 1.64.0
Portable Hardware Locality (HWLOC)66 1.5

Note: You need to build the following Boost libraries for HPX: Boost.Filesystem, Boost.ProgramOptions, and
Boost.System. The following are not needed by default, but are required in certain configurations: Boost.Chrono,
Boost.DateTime, Boost.Log, Boost.LogSetup, Boost.Regex, and Boost.Thread.

Depending on the options you chose while building and installing HPX, you will find that HPX may depend on several
other libraries such as those listed below.

Note: In order to use a high speed parcelport, we currently recommend configuring HPX to use MPI so that MPI
can be used for communication between different localities. Please set the CMake variable MPI_CXX_COMPILER to
your MPI C++ compiler wrapper if not detected automatically.

57 https://gcc.gnu.org
58 https://software.intel.com/en-us/intel-composer-xe/
59 https://clang.llvm.org/
60 https://www.cmake.org
61 https://www.boost.org/
62 https://www.open-mpi.org/projects/hwloc/
63 https://msdn.microsoft.com/en-us/visualc/default.aspx
64 https://www.cmake.org
65 https://www.boost.org/
66 https://www.open-mpi.org/projects/hwloc/

44 Chapter 2. What’s so special about HPX?

https://gcc.gnu.org
https://software.intel.com/en-us/intel-composer-xe/
https://clang.llvm.org/
https://www.cmake.org
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/
https://msdn.microsoft.com/en-us/visualc/default.aspx
https://www.cmake.org
https://www.boost.org/
https://www.open-mpi.org/projects/hwloc/

HPX Documentation, 1.5.1

Table 2.4: Highly recommended optional software prerequisites for HPX
on Linux systems

Name Minimum
version

Notes

google-
perftools67

1.7.1 Used as a replacement for the system allocator, and for allocation diagnos-
tics.

libunwind68 0.97 Dependency of google-perftools on x86-64, used for stack unwinding.
Open MPI69 1.8.0 Can be used as a highspeed communication library backend for the parcel-

port.

Note: When using OpenMPI please note that Ubuntu (notably 18.04 LTS) and older Debian ship an OpenMPI 2.x
built with --enable-heterogeneous which may cause communication failures at runtime and should not be
used.

Table 2.5: Optional software prerequisites for HPX on Linux systems
Name Minimum

version
Notes

Performance Application Programming
Interface (PAPI)

Used for accessing hardware performance data.

jemalloc70 2.1.0 Used as a replacement for the system allocator.
mi-malloc71 1.0.0 Used as a replacement for the system allocator.
Hierarchical Data Format V5 (HDF5)72 1.6.7 Used for data I/O in some example applications. See

important note below.

Table 2.6: Optional software prerequisites for HPX on Windows systems
Name Minimum ver-

sion
Notes

Hierarchical Data Format V5
(HDF5)73

1.6.7 Used for data I/O in some example applications. See impor-
tant note below.

Important: The C++ HDF5 libraries must be compiled with enabled thread safety support. This has to be explicitly
specified while configuring the HDF5 libraries as it is not the default. Additionally, you must set the following
environment variables before configuring the HDF5 libraries (this part only needs to be done on Linux):

export CFLAGS='-DHDatexit=""'
export CPPFLAGS='-DHDatexit=""'

67 https://code.google.com/p/gperftools
68 https://www.nongnu.org/libunwind
69 https://www.open-mpi.org
70 http://jemalloc.net
71 http://microsoft.github.io/mimalloc/
72 https://www.hdfgroup.org/HDF5
73 https://www.hdfgroup.org/HDF5

2.5. Manual 45

https://code.google.com/p/gperftools
https://code.google.com/p/gperftools
https://www.nongnu.org/libunwind
https://www.open-mpi.org
http://jemalloc.net
http://microsoft.github.io/mimalloc/
https://www.hdfgroup.org/HDF5
https://www.hdfgroup.org/HDF5
https://www.hdfgroup.org/HDF5

HPX Documentation, 1.5.1

Documentation

To build the HPX documentation, you need recent versions of the following packages:

• python3

• sphinx (Python package)

• sphinx_rtd_theme (Python package)

• breathe 4.16.0 (Python package)

• doxygen

If the Python74 dependencies are not available through your system package manager, you can install them using the
Python package manager pip:

pip install --user sphinx sphinx_rtd_theme breathe

You may need to set the following CMake variables to make sure CMake can find the required dependencies.

DOXYGEN_ROOT:PATH
Specifies where to look for the installation of the Doxygen75 tool.

SPHINX_ROOT:PATH
Specifies where to look for the installation of the Sphinx76 tool.

BREATHE_APIDOC_ROOT:PATH
Specifies where to look for the installation of the Breathe77 tool.

Installing Boost

Important: When building Boost using gcc, please note that it is required to specify a cxxflags=-std=c++14
command line argument to b2 (bjam).

Important: On Windows, depending on the installed versions of Visual Studio, you might also want to pass the
correct toolset to the b2 command depending on which version of the IDE you want to use. In addition, pass-
ing address-model=64 is highly recommended. It might also be necessary to add command line argument
--build-type=complete to the b2 command on the Windows platform.

The easiest way to create a working Boost installation is to compile Boost from sources yourself. This is particularly
important as many high performance resources, even if they have Boost installed, usually only provide you with an
older version of Boost. We suggest you download the most recent release of the Boost libraries from here: Boost
Downloads78. Unpack the downloaded archive into a directory of your choosing. We will refer to this directory a
$BOOST.

Building and installing the Boost binaries is simple. Regardless of what platform you are on, the basic instructions are
as follows (with possible additional platform-dependent command line arguments):

74 https://www.python.org
75 https://www.doxygen.org
76 http://www.sphinx-doc.org
77 https://breathe.readthedocs.io/en/latest
78 https://www.boost.org/users/download/

46 Chapter 2. What’s so special about HPX?

https://www.python.org
https://www.doxygen.org
http://www.sphinx-doc.org
https://breathe.readthedocs.io/en/latest
https://www.boost.org/users/download/
https://www.boost.org/users/download/

HPX Documentation, 1.5.1

cd $BOOST
bootstrap --prefix=<where to install boost>
./b2 -j<N>
./b2 install

where: <where to install boost> is the directory the built binaries will be installed to, and <N> is the
number of cores to use to build the Boost binaries.

After the above sequence of commands has been executed (this may take a while!), you will need to specify the
directory where Boost was installed as BOOST_ROOT (<where to install boost>) while executing CMake
for HPX as explained in detail in the sections How to install HPX on Unix variants and How to install HPX on
Windows.

Installing Hwloc

Note: These instructions are for everything except Windows. On Windows there is no need to build hwloc. Instead,
download the latest release, extract the files, and set HWLOC_ROOT during CMake configuration to the directory in
which you extracted the files.

We suggest you download the most recent release of hwloc from here: Hwloc Downloads79. Unpack the downloaded
archive into a directory of your choosing. We will refer to this directory as $HWLOC.

To build hwloc run:

cd $HWLOC
./configure --prefix=<where to install hwloc>
make -j<N> install

where: <where to install hwloc> is the directory the built binaries will be installed to, and <N> is the
number of cores to use to build hwloc.

After the above sequence of commands has been executed, you will need to specify the directory where hwloc was
installed as HWLOC_ROOT (<where to install hwloc>) while executing CMake for HPX as explained in
detail in the sections How to install HPX on Unix variants and How to install HPX on Windows.

Please see Hwloc Documentation80 for more information about hwloc.

Building HPX

Basic information

Once CMake has been run, the build process can be started. The HPX build process is highly configurable through
CMake, and various CMake variables influence the build process. The build process consists of the following parts:

• The HPX core libraries (target core): This forms the basic set of HPX libraries. The generated targets are:

– hpx: The core HPX library (always enabled).

– hpx_init: The HPX initialization library that applications need to link against to define the HPX entry
points (disabled for static builds).

79 https://www.open-mpi.org/software/hwloc/v1.11
80 https://www.open-mpi.org/projects/hwloc/doc/

2.5. Manual 47

https://www.open-mpi.org/software/hwloc/v1.11
https://www.open-mpi.org/projects/hwloc/doc/

HPX Documentation, 1.5.1

– hpx_wrap: The HPX static library used to determine the runtime behavior of HPX code and respective
entry points for hpx_main.h

– iostreams_component: The component used for (distributed) IO (always enabled).

– component_storage_component: The component needed for migration to persistent storage.

– unordered_component: The component needed for a distributed (partitioned) hash table.

– partioned_vector_component: The component needed for a distributed (partitioned) vector.

– memory_component: A dynamically loaded plugin that exposes memory based performance counters
(only available on Linux).

– io_counter_component: A dynamically loaded plugin that exposes I/O performance counters (only
available on Linux).

– papi_component: A dynamically loaded plugin that exposes PAPI performance counters (enabled with
HPX_WITH_PAPI:BOOL, default is Off).

• HPX Examples (target examples): This target is enabled by default and builds all HPX examples (disable by
setting HPX_WITH_EXAMPLES:BOOL=Off). HPX examples are part of the all target and are included in
the installation if enabled.

• HPX Tests (target tests): This target builds the HPX test suite and is enabled by default (disable by setting
HPX_WITH_TESTS:BOOL =Off). They are not built by the all target and have to be built separately.

• HPX Documentation (target docs): This target builds the documentation, and is not enabled by default (enable
by setting HPX_WITH_DOCUMENTATION:BOOL=On. For more information see Documentation.

For a complete list of available CMake variables that influence the build of HPX, see CMake variables used to configure
HPX.

The variables can be used to refine the recipes that can be found at Platform specific build recipes which show some
basic steps on how to build HPX for a specific platform.

In order to use HPX, only the core libraries are required (the ones marked as optional above are truly optional). When
building against HPX, the CMake variable HPX_LIBRARIES will contain hpx and hpx_init (for pkgconfig, those
are added to the Libs sections). In order to use the optional libraries, you need to specify them as link dependencies
in your build (See Creating HPX projects).

As HPX is a modern C++ library, we require a certain minimum set of features from the C++11 standard. In addition,
we make use of certain C++14 features if the used compiler supports them. This means that the HPX build system
will try to determine the highest support C++ standard flavor and check for availability of those features. That is, the
default will be the highest C++ standard version available. If you want to force HPX to use a specific C++ standard
version, you can use the following CMake variables:

• HPX_WITH_CXX14: Enables C++14 support (this is the minimum requirement)

• HPX_WITH_CXX17: Enables C++17 support

• HPX_WITH_CXX2A: Enables (experimental) C++20 support

48 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Build types

CMake can be configured to generate project files suitable for builds that have enabled debugging support or for an
optimized build (without debugging support). The CMake variable used to set the build type is CMAKE_BUILD_TYPE
(for more information see the CMake Documentation81). Available build types are:

• Debug: Full debug symbols are available as well as additional assertions to help debugging. To enable the debug
build type for the HPX API, the C++ Macro HPX_DEBUG is defined.

• RelWithDebInfo: Release build with debugging symbols. This is most useful for profiling applications

• Release: Release build. This disables assertions and enables default compiler optimizations.

• RelMinSize: Release build with optimizations for small binary sizes.

Important: We currently don’t guarantee ABI compatibility between Debug and Release builds. Please make sure
that applications built against HPX use the same build type as you used to build HPX. For CMake builds, this means
that the CMAKE_BUILD_TYPE variables have to match and for projects not using CMake82, the HPX_DEBUG macro
has to be set in debug mode.

Platform specific notes

Some platforms require users to have special link and/or compiler flags specified to build HPX. This is handled via
CMake’s support for different toolchains (see cmake-toolchains(7)83 for more information). This is also used for cross
compilation.

HPX ships with a set of toolchains that can be used for compilation of HPX itself and applications depending on HPX.
Please see CMake toolchains shipped with HPX for more information.

In order to enable full static linking with the libraries, the CMake variable HPX_WITH_STATIC_LINKING:BOOL
has to be set to On.

Debugging applications using core files

For HPX to generate useful core files, HPX has to be compiled without signal and exception handlers
HPX_WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS:BOOL. If this option is not specified, the signal han-
dlers change the application state. For example, after a segmentation fault the stack trace will show the signal handler.
Similarly, unhandled exceptions are also caught by these handlers and the stack trace will not point to the location
where the unhandled exception was thrown.

In general, core files are a helpful tool to inspect the state of the application at the moment of the crash (post-mortem
debugging), without the need of attaching a debugger beforehand. This approach to debugging is especially useful if
the error cannot be reliably reproduced, as only a single crashed application run is required to gain potentially helpful
information like a stacktrace.

To debug with core files, the operating system first has to be told to actually write them. On most Unix systems this
can be done by calling:

ulimit -c unlimited

in the shell. Now the debugger can be started up with:
81 https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
82 https://www.cmake.org
83 https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

2.5. Manual 49

https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html
https://www.cmake.org
https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

HPX Documentation, 1.5.1

gdb <application> <core file name>

The debugger should now display the last state of the application. The default file name for core files is core.

Platform specific build recipes

Note: The following build recipes are mostly user-contributed and may be outdated. We always welcome updated
and new build recipes.

How to install HPX on Unix variants

• Create a build directory. HPX requires an out-of-tree build. This means you will be unable to run CMake in the
HPX source tree.

cd hpx
mkdir my_hpx_build
cd my_hpx_build

• Invoke CMake from your build directory, pointing the CMake driver to the root of your HPX source tree.

cmake -DBOOST_ROOT=/root/of/boost/installation \
-DHWLOC_ROOT=/root/of/hwloc/installation
[other CMake variable definitions] \
/path/to/source/tree

For instance:

cmake -DBOOST_ROOT=~/packages/boost -DHWLOC_ROOT=/packages/hwloc -DCMAKE_INSTALL_
→˓PREFIX=~/packages/hpx ~/downloads/hpx_1.5.1

• Invoke GNU make. If you are on a machine with multiple cores, add the -jN flag to your make invocation, where
N is the number of parallel processes HPX gets compiled with.

gmake -j4

Caution: Compiling and linking HPX needs a considerable amount of memory. It is advisable that at least
2 GB of memory per parallel process is available.

Note: Many Linux distributions use make as an alias for gmake.

• To complete the build and install HPX:

gmake install

Important: These commands will build and install the essential core components of HPX only. In order to
build and run the tests, please invoke:

50 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

gmake tests && gmake test

and in order to build (and install) all examples invoke:

cmake -DHPX_WITH_EXAMPLES=On .
gmake examples
gmake install

For more detailed information about using CMake, please refer to its documentation and also the section Building
HPX. Please pay special attention to the section about HPX_WITH_MALLOC:STRING as this is crucial for getting
decent performance.

How to install HPX on OS X (Mac)

This section describes how to build HPX for OS X (Mac).

Build (and install) a recent version of Boost, using Clang and libc++

To build Boost with Clang and make it link to libc++ as standard library, you’ll need to set up either of the following
in your ~/user-config.jam file:

user-config.jam (put this file into your home directory)
...

using clang
:
: "/usr/bin/clang++"
: <cxxflags>"-std=c++11 -fcolor-diagnostics"

<linkflags>"-stdlib=libc++ -L/path/to/libcxx/lib"
;

(Again, remember to replace /path/to with whatever you used earlier.)

Then, you can use one of the following for your build command:

b2 --build-dir=/tmp/build-boost --layout=versioned toolset=clang install -j4

or:

b2 --build-dir=/tmp/build-boost --layout=versioned toolset=clang install -j4

We verified this using Boost V1.53. If you use a different version, just remember to replace /usr/local/
include/boost-1_53 with whatever prefix you used in your installation.

2.5. Manual 51

HPX Documentation, 1.5.1

Build HPX, finally

cd /path/to
git clone https://github.com/STEllAR-GROUP/hpx.git
mkdir build-hpx && cd build-hpx

To build with Clang, execute:

cmake ../hpx \
-DCMAKE_CXX_COMPILER=clang++ \
-DBOOST_ROOT=/path/to/boost \
-DHWLOC_ROOT=/path/to/hwloc \
-DHPX_WITH_GENERIC_CONTEXT_COROUTINES=On

make -j

For more detailed information about using CMake, please refer its documentation and to the section Building HPX.

Alternative installation method of HPX on OS X (Mac)

Alternatively, you can install a recent version of gcc as well as all required libraries via MacPorts:

1. Install MacPorts

2. Install CMake, gcc, hwloc:

sudo brew install cmake
sudo brew install boost
sudo brew install hwloc
sudo brew install make

3. You may also want:

sudo brew install gperftools

4. If you need to build Boost manually (the Boost package of MacPorts is built with Clang, and unfortunately
doesn’t work with a GCC-build version of HPX):

wget https://dl.bintray.com/boostorg/release/1.69.0/source/boost_1_69_0.tar.bz2
tar xjf boost_1_69_0.tar.bz2
pushd boost_1_69_0
export BOOST_ROOT=$HOME/boost_1_69_0
./bootstrap.sh --prefix=$BOOST_DIR
./b2 -j8
./b2 -j8 install
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:$BOOST_ROOT/lib
popd

5. Build HPX:

git clone https://github.com/STEllAR-GROUP/hpx.git
mkdir hpx-build
pushd hpx-build
export HPX_ROOT=$HOME/hpx
cmake -DCMAKE_C_COMPILER=gcc \

-DCMAKE_CXX_COMPILER=g++ \
-DCMAKE_FORTRAN_COMPILER=gfortran \

(continues on next page)

52 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

-DCMAKE_C_FLAGS="-Wno-unused-local-typedefs" \
-DCMAKE_CXX_FLAGS="-Wno-unused-local-typedefs" \
-DBOOST_ROOT=$BOOST_ROOT \
-DHWLOC_ROOT=/opt/local \
-DCMAKE_INSTALL_PREFIX=$HOME/hpx \
-DHPX_WITH_GENERIC_CONTEXT_COROUTINES=On \

$(pwd)/../hpx
make -j8
make -j8 install
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:$HPX_ROOT/lib/hpx
popd

6. Note that you need to set BOOST_ROOT, HPX_ROOT and DYLD_LIBRARY_PATH (for both BOOST_ROOT
and HPX_ROOT) every time you configure, build, or run an HPX application.

7. Note that you need to set HPX_WITH_GENERIC_CONTEXT_COROUTINES=On for MacOS.

8. If you want to use HPX with MPI, you need to enable the MPI parcelport, and also specify the location of the
MPI wrapper scripts. This can be done using the following command:

cmake -DHPX_WITH_PARCELPORT_MPI=ON \
-DCMAKE_C_COMPILER=gcc \
-DCMAKE_CXX_COMPILER=g++ \
-DCMAKE_FORTRAN_COMPILER=gfortran \
-DMPI_C_COMPILER=openmpicc \
-DMPI_CXX_COMPILER=openmpic++ \
-DMPI_FORTRAN_COMPILER=openmpif90 \
-DCMAKE_C_FLAGS="-Wno-unused-local-typedefs" \
-DCMAKE_CXX_FLAGS="-Wno-unused-local-typedefs" \
-DBOOST_ROOT=$BOOST_DIR \
-DHWLOC_ROOT=/opt/local \
-DCMAKE_INSTALL_PREFIX=$HOME/hpx

$(pwd)/../hpx

How to install HPX on Windows

Installation of required prerequisites

• Download the Boost c++ libraries from Boost Downloads84

• Install the Boost library as explained in the section Installing Boost

• Install the hwloc library as explained in the section Installing Hwloc

• Download the latest version of CMake binaries, which are located under the platform section of the downloads
page at CMake Downloads85.

• Download the latest version of HPX from the STE||AR website: HPX Downloads86.
84 https://www.boost.org/users/download/
85 https://www.cmake.org/cmake/resources/software.html
86 https://stellar-group.org/downloads/

2.5. Manual 53

https://www.boost.org/users/download/
https://www.cmake.org/cmake/resources/software.html
https://stellar-group.org/downloads/

HPX Documentation, 1.5.1

Installation of the HPX library

• Create a build folder. HPX requires an out-of-tree-build. This means that you will be unable to run CMake in
the HPX source folder.

• Open up the CMake GUI. In the input box labelled “Where is the source code:”, enter the full path to the source
folder. The source directory is the one where the sources were checked out. CMakeLists.txt files in the source
directory as well as the subdirectories describe the build to CMake. In addition to this, there are CMake scripts
(usually ending in .cmake) stored in a special CMake directory. CMake does not alter any file in the source
directory and doesn’t add new ones either. In the input box labelled “Where to build the binaries:”, enter the
full path to the build folder you created before. The build directory is one where all compiler outputs are stored,
which includes object files and final executables.

• Add CMake variable definitions (if any) by clicking the “Add Entry” button. There are two required variables
you need to define: BOOST_ROOT and HWLOC_ROOT These (PATH) variables need to be set to point to the root
folder of your Boost and hwloc installations. It is recommended to set the variable CMAKE_INSTALL_PREFIX
as well. This determines where the HPX libraries will be built and installed. If this (PATH) variable is set, it has
to refer to the directory where the built HPX files should be installed to.

• Press the “Configure” button. A window will pop up asking you which compilers to use. Select the Visual
Studio 10 (64Bit) compiler (it usually is the default if available). The Visual Studio 2012 (64Bit) and Visual
Studio 2013 (64Bit) compilers are supported as well. Note that while it is possible to build HPX for x86, we
don’t recommend doing so as 32 bit runs are severely restricted by a 32 bit Windows system limitation affecting
the number of HPX threads you can create.

• Press “Configure” again. Repeat this step until the “Generate” button becomes clickable (and until no variable
definitions are marked in red anymore).

• Press “Generate”.

• Open up the build folder, and double-click hpx.sln.

• Build the INSTALL target.

For more detailed information about using CMake87 please refer its documentation and also the section Building HPX.

How to build HPX under Windows 10 x64 with Visual Studio 2015

• Download the CMake V3.18.1 installer (or latest version) from here88

• Download the hwloc V1.11.0 (or the latest version) from here89 and unpack it.

• Download the latest Boost libraries from here90 and unpack them.

• Build the Boost DLLs and LIBs by using these commands from Command Line (or PowerShell). Open
CMD/PowerShell inside the Boost dir and type in:

bootstrap.bat

This batch file will set up everything needed to create a successful build. Now execute:

b2.exe link=shared variant=release,debug architecture=x86 address-model=64
→˓threading=multi --build-type=complete install

This command will start a (very long) build of all available Boost libraries. Please, be patient.

87 https://www.cmake.org
88 https://blog.kitware.com/cmake-3-18-1-available-for-download/
89 http://www.open-mpi.org/software/hwloc/v1.11/downloads/hwloc-win64-build-1.11.0.zip
90 https://www.boost.org/users/download/

54 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://blog.kitware.com/cmake-3-18-1-available-for-download/
http://www.open-mpi.org/software/hwloc/v1.11/downloads/hwloc-win64-build-1.11.0.zip
https://www.boost.org/users/download/

HPX Documentation, 1.5.1

• Open CMake-GUI.exe and set up your source directory (input field ‘Where is the source code’) to the base
directory of the source code you downloaded from HPX’s GitHub pages. Here’s an example of CMake path
settings, which point to the Documents/GitHub/hpx folder:

Fig. 2.3: Example CMake path settings.

Inside ‘Where is the source-code’ enter the base directory of your HPX source directory (do not enter the “src”
sub-directory!). Inside ‘Where to build the binaries’ you should put in the path where all the building processes
will happen. This is important because the building machinery will do an “out-of-tree” build. CMake will not
touch or change the original source files in any way. Instead, it will generate Visual Studio Solution Files, which
will build HPX packages out of the HPX source tree.

• Set three new environment variables (in CMake, not in Windows environment): BOOST_ROOT, HWLOC_ROOT,
CMAKE_INSTALL_PREFIX. The meaning of these variables is as follows:

– BOOST_ROOT the HPX root directory of the unpacked Boost headers/cpp files.

– HWLOC_ROOT the HPX root directory of the unpacked Portable Hardware Locality files.

– CMAKE_INSTALL_PREFIX the HPX root directory where the future builds of HPX should be installed.

Note: HPX is a very large software collection, so it is not recommended to use the default C:\Program
Files\hpx. Many users may prefer to use simpler paths without whitespace, like C:\bin\hpx or
D:\bin\hpx etc.

To insert new env-vars click on “Add Entry” and then insert the name inside “Name”, select PATH as Type and
put the path-name in the “Path” text field. Repeat this for the first three variables.

2.5. Manual 55

HPX Documentation, 1.5.1

This is how variable insertion will look:

Fig. 2.4: Example CMake adding entry.

Alternatively, users could provide BOOST_LIBRARYDIR instead of BOOST_ROOT; the difference is that
BOOST_LIBRARYDIR should point to the subdirectory inside Boost root where all the compiled DLLs/LIBs
are. For example,

BOOST_LIBRARYDIR may point to the bin.v2 subdirectory under the Boost rootdir. It is impor-
tant to keep the meanings of these two variables separated from each other:

BOOST_DIR points to the ROOT folder of the Boost library. BOOST_LIBRARYDIR points to the
subdir inside the Boost root folder where the compiled binaries are.

• Click the ‘Configure’ button of CMake-GUI. You will be immediately presented with a small window where
you can select the C++ compiler to be used within Visual Studio. This has been tested using the latest v14 (a.k.a
C++ 2015) but older versions should be sufficient too. Make sure to select the 64Bit compiler.

• After the generate process has finished successfully, click the ‘Generate’ button. Now, CMake will put new VS
Solution files into the BUILD folder you selected at the beginning.

• Open Visual Studio and load the HPX.sln from your build folder.

• Go to CMakePredefinedTargets and build the INSTALL project:

It will take some time to compile everything, and in the end you should see an output similar to this one:

56 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Fig. 2.5: Visual Studio INSTALL target.

Fig. 2.6: Visual Studio build output.

2.5. Manual 57

HPX Documentation, 1.5.1

How to install HPX on Fedora distributions

Important: There are official HPX packages for Fedora. Unless you want to customize your, build you may want to
start off with the official packages. Instructions can be found on the HPX Downloads91 page.

Note: This section of the manual is based off of our collaborator Patrick Diehl’s blog post Installing |hpx| on Fedora
2292.

• Install all packages for minimal installation:

sudo dnf install gcc-c++ cmake boost-build boost boost-devel hwloc-devel \
hwloc gcc-gfortran papi-devel gperftools-devel docbook-dtds \
docbook-style-xsl libsodium-devel doxygen boost-doc hdf5-devel \
fop boost-devel boost-openmpi-devel boost-mpich-devel

• Get the development branch of HPX:

git clone https://github.com/STEllAR-GROUP/hpx.git

• Configure it with CMake:

cd hpx
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/opt/hpx ..
make -j
make install

Note: To build HPX without examples use:

cmake -DCMAKE_INSTALL_PREFIX=/opt/hpx -DHPX_WITH_EXAMPLES=Off ..

• Add the library path of HPX to ldconfig:

sudo echo /opt/hpx/lib > /etc/ld.so.conf.d/hpx.conf
sudo ldconfig

How to install HPX on Arch distributions

Important: There are HPX packages for Arch in the AUR. Unless you want to customize your build, you may want
to start off with those. Instructions can be found on the HPX Downloads93 page.

• Install all packages for a minimal installation:
91 https://stellar-group.org/downloads/
92 http://diehlpk.github.io/2015/08/04/hpx-fedora.html
93 https://stellar-group.org/downloads/

58 Chapter 2. What’s so special about HPX?

https://stellar-group.org/downloads/
http://diehlpk.github.io/2015/08/04/hpx-fedora.html
http://diehlpk.github.io/2015/08/04/hpx-fedora.html
https://stellar-group.org/downloads/

HPX Documentation, 1.5.1

sudo pacman -S gcc clang cmake boost hwloc gperftools

• For building the documentation, you will need to further install the following:

sudo pacman -S doxygen python-pip

pip install --user sphinx sphinx_rtd_theme breathe

The rest of the installation steps are the same as those for the Fedora or Unix variants.

How to install HPX on Debian-based distributions

• Install all packages for a minimal installation:

sudo apt install cmake libboost-all-dev hwloc libgoogle-perftools-dev

• To build the documentation you will need to further install the following:

sudo apt install doxygen python-pip

pip install --user sphinx sphinx_rtd_theme breathe

or the following if you prefer to get Python packages from the Debian repositories:

sudo apt install doxygen python-sphinx python-sphinx-rtd-theme python-breathe

The rest of the installation steps are same as those for the Fedora or Unix variants.

CMake toolchains shipped with HPX

In order to compile HPX for various platforms, we provide a variety of toolchain files that take care of setting up
various CMake variables like compilers, etc. They are located in the cmake/toolchains directory:

• ARM-gcc

• BGION-gcc

• BGQ

• Cray

• CrayKNL

• CrayKNLStatic

• CrayStatic

• XeonPhi

To use them, pass the -DCMAKE_TOOLCHAIN_FILE=<toolchain> argument to the CMake invocation.

2.5. Manual 59

HPX Documentation, 1.5.1

ARM-gcc

Copyright (c) 2015 Thomas Heller
#
SPDX-License-Identifier: BSL-1.0
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_CROSSCOMPILING ON)
Set the gcc Compiler
set(CMAKE_CXX_COMPILER arm-linux-gnueabihf-g++-4.8)
set(CMAKE_C_COMPILER arm-linux-gnueabihf-gcc-4.8)
set(HPX_WITH_GENERIC_CONTEXT_COROUTINES

ON
CACHE BOOL "enable generic coroutines"

)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)

BGION-gcc

Copyright (c) 2014 John Biddiscombe
#
SPDX-License-Identifier: BSL-1.0
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
This is the default toolchain file to be used with CNK on a BlueGene/Q. It
sets the appropriate compile flags and compiler such that HPX will compile.
Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.
#
Usage : cmake
-DCMAKE_TOOLCHAIN_FILE=~/src/hpx/cmake/toolchains/BGION-gcc.cmake ~/src/hpx
#
set(CMAKE_SYSTEM_NAME Linux)
Set the gcc Compiler
set(CMAKE_CXX_COMPILER g++)
set(CMAKE_C_COMPILER gcc)
set(CMAKE_Fortran_COMPILER)
Add flags we need for BGAS compilation
set(CMAKE_CXX_FLAGS_INIT

"-D__powerpc__ -D__bgion__ -I/gpfs/bbp.cscs.ch/home/biddisco/src/bgas/rdmahelper "
CACHE STRING "Initial compiler flags used to compile for BGAS"

)
cmake-format: off
the V1R2M2 includes are necessary for some hardware specific features
-DHPX_SMALL_STACK_SIZE=0x200000
-DHPX_MEDIUM_STACK_SIZE=0x200000
-DHPX_LARGE_STACK_SIZE=0x200000
-DHPX_HUGE_STACK_SIZE=0x200000
cmake-format: on
set(CMAKE_EXE_LINKER_FLAGS_INIT

"-L/gpfs/bbp.cscs.ch/apps/bgas/tools/gcc/gcc-4.8.2/install/lib64 -latomic -lrt"

(continues on next page)

60 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

CACHE STRING "BGAS flags"
)
set(CMAKE_C_FLAGS_INIT

"-D__powerpc__ -I/gpfs/bbp.cscs.ch/home/biddisco/src/bgas/rdmahelper"
CACHE STRING "BGAS flags"

)
We do not perform cross compilation here ...
set(CMAKE_CROSSCOMPILING OFF)
Set our platform name
set(HPX_PLATFORM "native")
Disable generic coroutines (and use posix version)
set(HPX_WITH_GENERIC_CONTEXT_COROUTINES

OFF
CACHE BOOL "disable generic coroutines"

)
BGAS nodes support ibverbs, but it is deprecated
set(HPX_WITH_PARCELPORT_VERBS

OFF
CACHE BOOL ""

)
Always disable the tcp parcelport as it is non-functional on the BGQ.
set(HPX_WITH_PARCELPORT_TCP

ON
CACHE BOOL ""

)
Always enable the tcp parcelport as it is currently the only way to
communicate on the BGQ.
set(HPX_WITH_PARCELPORT_MPI

ON
CACHE BOOL ""

)
We have a bunch of cores on the A2 processor ...
set(HPX_WITH_MAX_CPU_COUNT

"64"
CACHE STRING ""

)
We have no custom malloc yet
if(NOT DEFINED HPX_WITH_MALLOC)

set(HPX_WITH_MALLOC
"system"
CACHE STRING ""

)
endif()
set(HPX_HIDDEN_VISIBILITY

OFF
CACHE BOOL ""

)
#
Convenience setup for jb @ bbpbg2.cscs.ch
#
set(BOOST_ROOT "/gpfs/bbp.cscs.ch/home/biddisco/apps/gcc-4.8.2/boost_1_56_0")
set(HWLOC_ROOT "/gpfs/bbp.cscs.ch/home/biddisco/apps/gcc-4.8.2/hwloc-1.8.1")
set(CMAKE_BUILD_TYPE

"Debug"
CACHE STRING "Default build"

)
#

(continues on next page)

2.5. Manual 61

HPX Documentation, 1.5.1

(continued from previous page)

Testing flags
#
set(BUILD_TESTING

ON
CACHE BOOL "Testing enabled by default"

)
set(HPX_WITH_TESTS

ON
CACHE BOOL "Testing enabled by default"

)
set(HPX_WITH_TESTS_BENCHMARKS

ON
CACHE BOOL "Testing enabled by default"

)
set(HPX_WITH_TESTS_REGRESSIONS

ON
CACHE BOOL "Testing enabled by default"

)
set(HPX_WITH_TESTS_UNIT

ON
CACHE BOOL "Testing enabled by default"

)
set(HPX_WITH_TESTS_EXAMPLES

ON
CACHE BOOL "Testing enabled by default"

)
set(HPX_WITH_TESTS_EXTERNAL_BUILD

OFF
CACHE BOOL "Turn off build of cmake build tests"

)
set(DART_TESTING_TIMEOUT

45
CACHE STRING "Life is too short"

)
HPX_WITH_STATIC_LINKING

BGQ

Copyright (c) 2014 Thomas Heller
#
SPDX-License-Identifier: BSL-1.0
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#
This is the default toolchain file to be used with CNK on a BlueGene/Q. It sets
the appropriate compile flags and compiler such that HPX will compile.
Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.
#
set(CMAKE_SYSTEM_NAME Linux)
Set the Intel Compiler
set(CMAKE_CXX_COMPILER bgclang++11)
set(CMAKE_C_COMPILER bgclang)
set(CMAKE_Fortran_COMPILER)

(continues on next page)

62 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

set(MPI_CXX_COMPILER mpiclang++11)
set(MPI_C_COMPILER mpiclang)
set(MPI_Fortran_COMPILER)
set(CMAKE_C_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_C_COMPILE_OBJECT

"<CMAKE_C_COMPILER> -fPIC <DEFINES> <FLAGS> -o <OBJECT> -c <SOURCE>"
CACHE STRING ""

)
set(CMAKE_C_LINK_EXECUTABLE

"<CMAKE_C_COMPILER> -fPIC -dynamic <FLAGS> <CMAKE_C_LINK_FLAGS> <LINK_FLAGS>
→˓<OBJECTS> -o <TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_C_CREATE_SHARED_LIBRARY

"<CMAKE_C_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_CXX_FLAGS> <LANGUAGE_
→˓COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS> <SONAME_FLAG>
→˓<TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES> "

CACHE STRING ""
)
set(CMAKE_CXX_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_CXX_COMPILE_OBJECT

"<CMAKE_CXX_COMPILER> -fPIC <DEFINES> <FLAGS> -o <OBJECT> -c <SOURCE>"
CACHE STRING ""

)
set(CMAKE_CXX_LINK_EXECUTABLE

"<CMAKE_CXX_COMPILER> -fPIC -dynamic <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS>
→˓<OBJECTS> -o <TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_CXX_CREATE_SHARED_LIBRARY

"<CMAKE_CXX_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_CXX_FLAGS> <LANGUAGE_
→˓COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS> <SONAME_FLAG>
→˓<TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_Fortran_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_Fortran_COMPILE_OBJECT

"<CMAKE_Fortran_COMPILER> -fPIC <DEFINES> <FLAGS> -o <OBJECT> -c <SOURCE>"
CACHE STRING ""

)
set(CMAKE_Fortran_LINK_EXECUTABLE

"<CMAKE_Fortran_COMPILER> -fPIC -dynamic <FLAGS> <CMAKE_Fortran_LINK_FLAGS> <LINK_
→˓FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>"
)
set(CMAKE_Fortran_CREATE_SHARED_LIBRARY

"<CMAKE_Fortran_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_Fortran_FLAGS>
→˓<LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_Fortran_FLAGS>
→˓<SONAME_FLAG><TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES> "

(continues on next page)

2.5. Manual 63

HPX Documentation, 1.5.1

(continued from previous page)

CACHE STRING ""
)
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
We do a cross compilation here ...
set(CMAKE_CROSSCOMPILING ON)
Set our platform name
set(HPX_PLATFORM "BlueGeneQ")
Always disable the ibverbs parcelport as it is non-functional on the BGQ.
set(HPX_WITH_PARCELPORT_VERBS OFF)
Always disable the tcp parcelport as it is non-functional on the BGQ.
set(HPX_WITH_PARCELPORT_TCP OFF)
Always enable the mpi parcelport as it is currently the only way to
communicate on the BGQ.
set(HPX_WITH_PARCELPORT_MPI ON)
We have a bunch of cores on the BGQ ...
set(HPX_WITH_MAX_CPU_COUNT "64")
We default to tbbmalloc as our allocator on the MIC
if(NOT DEFINED HPX_WITH_MALLOC)

set(HPX_WITH_MALLOC
"system"
CACHE STRING ""

)
endif()

Cray

Copyright (c) 2014 Thomas Heller
#
SPDX-License-Identifier: BSL-1.0
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#
This is the default toolchain file to be used with Intel Xeon PHIs. It sets
the appropriate compile flags and compiler such that HPX will compile.
Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.
#
set(CMAKE_SYSTEM_NAME Cray-CNK-Intel)
if(HPX_WITH_STATIC_LINKING)

set_property(GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)
else()
endif()
Set the Cray Compiler Wrapper
set(CMAKE_CXX_COMPILER CC)
set(CMAKE_C_COMPILER cc)
set(CMAKE_Fortran_COMPILER ftn)
set(CMAKE_C_FLAGS_INIT

""
CACHE STRING ""

(continues on next page)

64 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

)
set(CMAKE_SHARED_LIBRARY_C_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_C_COMPILE_OBJECT

"<CMAKE_C_COMPILER> -shared -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -c
→˓<SOURCE>"

CACHE STRING ""
)
set(CMAKE_C_LINK_EXECUTABLE

"<CMAKE_C_COMPILER> -fPIC -dynamic <FLAGS> <CMAKE_C_LINK_FLAGS> <LINK_FLAGS>
→˓<OBJECTS> -o <TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_C_CREATE_SHARED_LIBRARY

"<CMAKE_C_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_CXX_FLAGS> <LANGUAGE_
→˓COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS> <SONAME_FLAG>
→˓<TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES> "

CACHE STRING ""
)
set(CMAKE_CXX_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CXX_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_CXX_COMPILE_OBJECT

"<CMAKE_CXX_COMPILER> -shared -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -c
→˓<SOURCE>"

CACHE STRING ""
)
set(CMAKE_CXX_LINK_EXECUTABLE

"<CMAKE_CXX_COMPILER> -fPIC -dynamic <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS>
→˓<OBJECTS> -o <TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_CXX_CREATE_SHARED_LIBRARY

"<CMAKE_CXX_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_CXX_FLAGS> <LANGUAGE_
→˓COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS> <SONAME_FLAG>
→˓<TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES>"

CACHE STRING ""
)

(continues on next page)

2.5. Manual 65

HPX Documentation, 1.5.1

(continued from previous page)

set(CMAKE_Fortran_FLAGS_INIT
""
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_Fortran_FLAGS

"-fPIC"
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CREATE_Fortran_FLAGS

"-shared"
CACHE STRING ""

)
set(CMAKE_Fortran_COMPILE_OBJECT

"<CMAKE_Fortran_COMPILER> -shared -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -
→˓c <SOURCE>"

CACHE STRING ""
)
set(CMAKE_Fortran_LINK_EXECUTABLE

"<CMAKE_Fortran_COMPILER> -fPIC -dynamic <FLAGS> <CMAKE_Fortran_LINK_FLAGS> <LINK_
→˓FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>"
)
set(CMAKE_Fortran_CREATE_SHARED_LIBRARY

"<CMAKE_Fortran_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_Fortran_FLAGS>
→˓<LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_Fortran_FLAGS>
→˓<SONAME_FLAG><TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES> "

CACHE STRING ""
)
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(HPX_WITH_PARCELPORT_TCP

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_MPI

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_MPI_MULTITHREADED

OFF
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_LIBFABRIC

ON
CACHE BOOL ""

)
set(HPX_PARCELPORT_LIBFABRIC_PROVIDER

"gni"
CACHE STRING "See libfabric docs for details, gni,verbs,psm2 etc etc"

)
set(HPX_PARCELPORT_LIBFABRIC_THROTTLE_SENDS

"256"
CACHE STRING "Max number of messages in flight at once"

)
(continues on next page)

66 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

set(HPX_PARCELPORT_LIBFABRIC_WITH_DEV_MODE
OFF
CACHE BOOL "Custom libfabric logging flag"

)
set(HPX_PARCELPORT_LIBFABRIC_WITH_LOGGING

OFF
CACHE BOOL "Libfabric parcelport logging on/off flag"

)
set(HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD

"4096"
CACHE

STRING
"The threshold in bytes to when perform zero copy optimizations (default: 128)"

)
We do a cross compilation here ...
set(CMAKE_CROSSCOMPILING

ON
CACHE BOOL ""

)

CrayKNL

Copyright (c) 2014 Thomas Heller
#
SPDX-License-Identifier: BSL-1.0
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#
This is the default toolchain file to be used with Intel Xeon PHIs. It sets
the appropriate compile flags and compiler such that HPX will compile.
Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.
#
if(HPX_WITH_STATIC_LINKING)

set_property(GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)
else()
endif()
Set the Cray Compiler Wrapper
set(CMAKE_CXX_COMPILER CC)
set(CMAKE_C_COMPILER cc)
set(CMAKE_Fortran_COMPILER ftn)
set(CMAKE_C_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_C_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_C_COMPILE_OBJECT

(continues on next page)

2.5. Manual 67

HPX Documentation, 1.5.1

(continued from previous page)

"<CMAKE_C_COMPILER> -shared -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -c
→˓<SOURCE>"

CACHE STRING ""
)
set(CMAKE_C_LINK_EXECUTABLE

"<CMAKE_C_COMPILER> -fPIC <FLAGS> <CMAKE_C_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o
→˓<TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_C_CREATE_SHARED_LIBRARY

"<CMAKE_C_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_CXX_FLAGS> <LANGUAGE_
→˓COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS> <SONAME_FLAG>
→˓<TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES> "

CACHE STRING ""
)
#
set(CMAKE_CXX_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CXX_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS

"-fPIC -shared"
CACHE STRING ""

)
set(CMAKE_CXX_COMPILE_OBJECT

"<CMAKE_CXX_COMPILER> -shared -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -c
→˓<SOURCE>"

CACHE STRING ""
)
set(CMAKE_CXX_LINK_EXECUTABLE

"<CMAKE_CXX_COMPILER> -fPIC -dynamic <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS>
→˓<OBJECTS> -o <TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_CXX_CREATE_SHARED_LIBRARY

"<CMAKE_CXX_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_CXX_FLAGS> <LANGUAGE_
→˓COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS> <SONAME_FLAG>
→˓<TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES>"

CACHE STRING ""
)
#
set(CMAKE_Fortran_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_SHARED_LIBRARY_Fortran_FLAGS

"-fPIC"
CACHE STRING ""

)
(continues on next page)

68 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

set(CMAKE_SHARED_LIBRARY_CREATE_Fortran_FLAGS
"-shared"
CACHE STRING ""

)
set(CMAKE_Fortran_COMPILE_OBJECT

"<CMAKE_Fortran_COMPILER> -shared -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -
→˓c <SOURCE>"

CACHE STRING ""
)
set(CMAKE_Fortran_LINK_EXECUTABLE

"<CMAKE_Fortran_COMPILER> -fPIC <FLAGS> <CMAKE_Fortran_LINK_FLAGS> <LINK_FLAGS>
→˓<OBJECTS> -o <TARGET> <LINK_LIBRARIES>"
)
set(CMAKE_Fortran_CREATE_SHARED_LIBRARY

"<CMAKE_Fortran_COMPILER> -fPIC -shared <CMAKE_SHARED_LIBRARY_Fortran_FLAGS>
→˓<LANGUAGE_COMPILE_FLAGS> <LINK_FLAGS> <CMAKE_SHARED_LIBRARY_CREATE_Fortran_FLAGS>
→˓<SONAME_FLAG><TARGET_SONAME> -o <TARGET> <OBJECTS> <LINK_LIBRARIES> "

CACHE STRING ""
)
#
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(HPX_WITH_PARCELPORT_TCP

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_MPI

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_MPI_MULTITHREADED

OFF
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_LIBFABRIC

ON
CACHE BOOL ""

)
set(HPX_PARCELPORT_LIBFABRIC_PROVIDER

"gni"
CACHE STRING "See libfabric docs for details, gni,verbs,psm2 etc etc"

)
set(HPX_PARCELPORT_LIBFABRIC_THROTTLE_SENDS

"256"
CACHE STRING "Max number of messages in flight at once"

)
set(HPX_PARCELPORT_LIBFABRIC_WITH_DEV_MODE

OFF
CACHE BOOL "Custom libfabric logging flag"

)
set(HPX_PARCELPORT_LIBFABRIC_WITH_LOGGING

OFF
CACHE BOOL "Libfabric parcelport logging on/off flag"

(continues on next page)

2.5. Manual 69

HPX Documentation, 1.5.1

(continued from previous page)

)
set(HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD

"4096"
CACHE

STRING
"The threshold in bytes to when perform zero copy optimizations (default: 128)"

)
Set the TBBMALLOC_PLATFORM correctly so that find_package(TBBMalloc) sets the
right hints
set(TBBMALLOC_PLATFORM

"mic-knl"
CACHE STRING ""

)
We have a bunch of cores on the MIC ... increase the default
set(HPX_WITH_MAX_CPU_COUNT

"512"
CACHE STRING ""

)
We do a cross compilation here ...
set(CMAKE_CROSSCOMPILING

ON
CACHE BOOL ""

)
RDTSCP is available on Xeon/Phis
set(HPX_WITH_RDTSCP

ON
CACHE BOOL ""

)

CrayKNLStatic

Copyright (c) 2014-2017 Thomas Heller
Copyright (c) 2017 Bryce Adelstein Lelbach
#
SPDX-License-Identifier: BSL-1.0
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
set(HPX_WITH_STATIC_LINKING

ON
CACHE BOOL ""

)
set(HPX_WITH_STATIC_EXE_LINKING

ON
CACHE BOOL ""

)
set_property(GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)
Set the Cray Compiler Wrapper
set(CMAKE_CXX_COMPILER CC)
set(CMAKE_C_COMPILER cc)
set(CMAKE_Fortran_COMPILER ftn)
set(CMAKE_C_FLAGS_INIT

""
CACHE STRING ""

)

(continues on next page)

70 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

set(CMAKE_C_COMPILE_OBJECT
"<CMAKE_C_COMPILER> -static -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -c

→˓<SOURCE>"
CACHE STRING ""

)
set(CMAKE_C_LINK_EXECUTABLE

"<CMAKE_C_COMPILER> -fPIC <FLAGS> <CMAKE_C_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o
→˓<TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_CXX_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_CXX_COMPILE_OBJECT

"<CMAKE_CXX_COMPILER> -static -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -c
→˓<SOURCE>"

CACHE STRING ""
)
set(CMAKE_CXX_LINK_EXECUTABLE

"<CMAKE_CXX_COMPILER> -fPIC <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS>
→˓-o <TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_Fortran_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_Fortran_COMPILE_OBJECT

"<CMAKE_Fortran_COMPILER> -static -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -
→˓c <SOURCE>"

CACHE STRING ""
)
set(CMAKE_Fortran_LINK_EXECUTABLE

"<CMAKE_Fortran_COMPILER> -fPIC <FLAGS> <CMAKE_Fortran_LINK_FLAGS> <LINK_FLAGS>
→˓<OBJECTS> -o <TARGET> <LINK_LIBRARIES>"
)
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(HPX_WITH_PARCELPORT_TCP

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_MPI

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_MPI_MULTITHREADED

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_LIBFABRIC

ON
(continues on next page)

2.5. Manual 71

HPX Documentation, 1.5.1

(continued from previous page)

CACHE BOOL ""
)
set(HPX_PARCELPORT_LIBFABRIC_PROVIDER

"gni"
CACHE STRING "See libfabric docs for details, gni,verbs,psm2 etc etc"

)
set(HPX_PARCELPORT_LIBFABRIC_THROTTLE_SENDS

"256"
CACHE STRING "Max number of messages in flight at once"

)
set(HPX_PARCELPORT_LIBFABRIC_WITH_DEV_MODE

OFF
CACHE BOOL "Custom libfabric logging flag"

)
set(HPX_PARCELPORT_LIBFABRIC_WITH_LOGGING

OFF
CACHE BOOL "Libfabric parcelport logging on/off flag"

)
set(HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD

"4096"
CACHE

STRING
"The threshold in bytes to when perform zero copy optimizations (default: 128)"

)
Set the TBBMALLOC_PLATFORM correctly so that find_package(TBBMalloc) sets the
right hints
set(TBBMALLOC_PLATFORM

"mic-knl"
CACHE STRING ""

)
We have a bunch of cores on the MIC ... increase the default
set(HPX_WITH_MAX_CPU_COUNT

"512"
CACHE STRING ""

)
We do a cross compilation here ...
set(CMAKE_CROSSCOMPILING

ON
CACHE BOOL ""

)
RDTSCP is available on Xeon/Phis
set(HPX_WITH_RDTSCP

ON
CACHE BOOL ""

)

72 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

CrayStatic

Copyright (c) 2014-2017 Thomas Heller
Copyright (c) 2017 Bryce Adelstein Lelbach
#
SPDX-License-Identifier: BSL-1.0
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
set(HPX_WITH_STATIC_LINKING

ON
CACHE BOOL ""

)
set(HPX_WITH_STATIC_EXE_LINKING

ON
CACHE BOOL ""

)
set_property(GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)
Set the Cray Compiler Wrapper
set(CMAKE_CXX_COMPILER CC)
set(CMAKE_C_COMPILER cc)
set(CMAKE_Fortran_COMPILER ftn)
set(CMAKE_C_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_C_COMPILE_OBJECT

"<CMAKE_C_COMPILER> -static -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -c
→˓<SOURCE>"

CACHE STRING ""
)
set(CMAKE_C_LINK_EXECUTABLE

"<CMAKE_C_COMPILER> -fPIC <FLAGS> <CMAKE_C_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o
→˓<TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_CXX_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_CXX_COMPILE_OBJECT

"<CMAKE_CXX_COMPILER> -static -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -c
→˓<SOURCE>"

CACHE STRING ""
)
set(CMAKE_CXX_LINK_EXECUTABLE

"<CMAKE_CXX_COMPILER> -fPIC <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS>
→˓-o <TARGET> <LINK_LIBRARIES>"

CACHE STRING ""
)
set(CMAKE_Fortran_FLAGS_INIT

""
CACHE STRING ""

)
set(CMAKE_Fortran_COMPILE_OBJECT

"<CMAKE_Fortran_COMPILER> -static -fPIC <DEFINES> <INCLUDES> <FLAGS> -o <OBJECT> -
→˓c <SOURCE>"

CACHE STRING ""

(continues on next page)

2.5. Manual 73

HPX Documentation, 1.5.1

(continued from previous page)

)
set(CMAKE_Fortran_LINK_EXECUTABLE

"<CMAKE_Fortran_COMPILER> -fPIC <FLAGS> <CMAKE_Fortran_LINK_FLAGS> <LINK_FLAGS>
→˓<OBJECTS> -o <TARGET> <LINK_LIBRARIES>"
)
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
We do a cross compilation here ...
set(CMAKE_CROSSCOMPILING

ON
CACHE BOOL ""

)
RDTSCP is available on Xeon/Phis
set(HPX_WITH_RDTSCP

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_TCP

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_MPI

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_MPI_MULTITHREADED

ON
CACHE BOOL ""

)
set(HPX_WITH_PARCELPORT_LIBFABRIC

ON
CACHE BOOL ""

)
set(HPX_PARCELPORT_LIBFABRIC_PROVIDER

"gni"
CACHE STRING "See libfabric docs for details, gni,verbs,psm2 etc etc"

)
set(HPX_PARCELPORT_LIBFABRIC_THROTTLE_SENDS

"256"
CACHE STRING "Max number of messages in flight at once"

)
set(HPX_PARCELPORT_LIBFABRIC_WITH_DEV_MODE

OFF
CACHE BOOL "Custom libfabric logging flag"

)
set(HPX_PARCELPORT_LIBFABRIC_WITH_LOGGING

OFF
CACHE BOOL "Libfabric parcelport logging on/off flag"

)
set(HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD

"4096"
CACHE

STRING
(continues on next page)

74 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

"The threshold in bytes to when perform zero copy optimizations (default: 128)"
)

XeonPhi

Copyright (c) 2014 Thomas Heller
#
SPDX-License-Identifier: BSL-1.0
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#
This is the default toolchain file to be used with Intel Xeon PHIs. It sets
the appropriate compile flags and compiler such that HPX will compile.
Note that you still need to provide Boost, hwloc and other utility libraries
like a custom allocator yourself.
#
set(CMAKE_SYSTEM_NAME Linux)
Set the Intel Compiler
set(CMAKE_CXX_COMPILER icpc)
set(CMAKE_C_COMPILER icc)
set(CMAKE_Fortran_COMPILER ifort)
Add the -mmic compile flag such that everything will be compiled for the
correct platform
set(CMAKE_CXX_FLAGS_INIT

"-mmic"
CACHE STRING "Initial compiler flags used to compile for the Xeon Phi"

)
set(CMAKE_C_FLAGS_INIT

"-mmic"
CACHE STRING "Initial compiler flags used to compile for the Xeon Phi"

)
set(CMAKE_Fortran_FLAGS_INIT

"-mmic"
CACHE STRING "Initial compiler flags used to compile for the Xeon Phi"

)
Disable searches in the default system paths. We are cross compiling after all
and cmake might pick up wrong libraries that way
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
We do a cross compilation here ...
set(CMAKE_CROSSCOMPILING ON)
Set our platform name
set(HPX_PLATFORM "XeonPhi")
Always disable the ibverbs parcelport as it is non-functional on the BGQ.
set(HPX_WITH_PARCELPORT_VERBS

OFF
CACHE

BOOL
"Enable the ibverbs based parcelport. This is currently an experimental feature"

)
set(HPX_WITH_PARCELPORT_MPI

ON

(continues on next page)

2.5. Manual 75

HPX Documentation, 1.5.1

(continued from previous page)

CACHE BOOL "Enable the MPI based parcelport."
)
We have a bunch of cores on the MIC ... increase the default
set(HPX_WITH_MAX_CPU_COUNT

"256"
CACHE STRING ""

)
We default to tbbmalloc as our allocator on the MIC
if(NOT DEFINED HPX_WITH_MALLOC)

set(HPX_WITH_MALLOC
"tbbmalloc"
CACHE STRING ""

)
endif()
Set the TBBMALLOC_PLATFORM correctly so that find_package(TBBMalloc) sets the
right hints
set(TBBMALLOC_PLATFORM

"mic"
CACHE STRING ""

)
set(HPX_HIDDEN_VISIBILITY

OFF
CACHE BOOL

"Use -fvisibility=hidden for builds on platforms which support it"
)
RDTSC is available on Xeon/Phis
set(HPX_WITH_RDTSC

ON
CACHE BOOL ""

)

CMake variables used to configure HPX

In order to configure HPX, you can set a variety of options to allow CMake to generate your specific makefiles/project
files.

Variables that influence how HPX is built

The options are split into these categories:

• Generic options

• Build Targets options

• Thread Manager options

• AGAS options

• Parcelport options

• Profiling options

• Debugging options

• Modules options

76 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Generic options

• HPX_WITH_ACTION_BASE_COMPATIBILITY:BOOL

• HPX_WITH_ASYNC_CUDA:BOOL

• HPX_WITH_AUTOMATIC_SERIALIZATION_REGISTRATION:BOOL

• HPX_WITH_BENCHMARK_SCRIPTS_PATH:PATH

• HPX_WITH_BUILD_BINARY_PACKAGE:BOOL

• HPX_WITH_COMPILER_WARNINGS:BOOL

• HPX_WITH_COMPILER_WARNINGS_AS_ERRORS:BOOL

• HPX_WITH_COMPRESSION_BZIP2:BOOL

• HPX_WITH_COMPRESSION_SNAPPY:BOOL

• HPX_WITH_COMPRESSION_ZLIB:BOOL

• HPX_WITH_CUDA:BOOL

• HPX_WITH_CUDA_CLANG:BOOL

• HPX_WITH_CUDA_COMPUTE:BOOL

• HPX_WITH_DATAPAR_VC:BOOL

• HPX_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS:BOOL

• HPX_WITH_DYNAMIC_HPX_MAIN:BOOL

• HPX_WITH_EMBEDDED_THREAD_POOLS_COMPATIBILITY:BOOL

• HPX_WITH_FAULT_TOLERANCE:BOOL

• HPX_WITH_FORTRAN:BOOL

• HPX_WITH_FULL_RPATH:BOOL

• HPX_WITH_GCC_VERSION_CHECK:BOOL

• HPX_WITH_GENERIC_CONTEXT_COROUTINES:BOOL

• HPX_WITH_HIDDEN_VISIBILITY:BOOL

• HPX_WITH_INIT_START_OVERLOADS_COMPATIBILITY:BOOL

• HPX_WITH_LOGGING:BOOL

• HPX_WITH_MALLOC:STRING

• HPX_WITH_NATIVE_TLS:BOOL

• HPX_WITH_NICE_THREADLEVEL:BOOL

• HPX_WITH_PARCEL_COALESCING:BOOL

• HPX_WITH_POOL_EXECUTOR_COMPATIBILITY:BOOL

• HPX_WITH_PROMISE_ALIAS_COMPATIBILITY:BOOL

• HPX_WITH_REGISTER_THREAD_COMPATIBILITY:BOOL

• HPX_WITH_REGISTER_THREAD_OVERLOADS_COMPATIBILITY:BOOL

• HPX_WITH_RUN_MAIN_EVERYWHERE:BOOL

2.5. Manual 77

HPX Documentation, 1.5.1

• HPX_WITH_STACKOVERFLOW_DETECTION:BOOL

• HPX_WITH_STATIC_LINKING:BOOL

• HPX_WITH_THREAD_AWARE_TIMER_COMPATIBILITY:BOOL

• HPX_WITH_THREAD_EXECUTORS_COMPATIBILITY:BOOL

• HPX_WITH_THREAD_POOL_OS_EXECUTOR_COMPATIBILITY:BOOL

• HPX_WITH_UNITY_BUILD:BOOL

• HPX_WITH_UNSCOPED_ENUM_COMPATIBILITY:BOOL

• HPX_WITH_VIM_YCM:BOOL

• HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD:STRING

HPX_WITH_ACTION_BASE_COMPATIBILITY:BOOL
Enable deprecated action bases (default: ON)

HPX_WITH_ASYNC_CUDA:BOOL
Enable HPX CUDA compute capability (parallel algorithms) module (default: OFF) - note: CUDA futures may
be used without CUDA Compute

HPX_WITH_AUTOMATIC_SERIALIZATION_REGISTRATION:BOOL
Use automatic serialization registration for actions and functions. This affects compatibility between HPX
applications compiled with different compilers (default ON)

HPX_WITH_BENCHMARK_SCRIPTS_PATH:PATH
Directory to place batch scripts in

HPX_WITH_BUILD_BINARY_PACKAGE:BOOL
Build HPX on the build infrastructure on any LINUX distribution (default: OFF).

HPX_WITH_COMPILER_WARNINGS:BOOL
Enable compiler warnings (default: ON)

HPX_WITH_COMPILER_WARNINGS_AS_ERRORS:BOOL
Turn compiler warnings into errors (default: OFF)

HPX_WITH_COMPRESSION_BZIP2:BOOL
Enable bzip2 compression for parcel data (default: OFF).

HPX_WITH_COMPRESSION_SNAPPY:BOOL
Enable snappy compression for parcel data (default: OFF).

HPX_WITH_COMPRESSION_ZLIB:BOOL
Enable zlib compression for parcel data (default: OFF).

HPX_WITH_CUDA:BOOL
Enable HPX_WITH_ASYNC_CUDA (CUDA futures) and HPX_WITH_CUDA_COMPUTE (CUDA enabled
parallel algorithms) (default: OFF)

HPX_WITH_CUDA_CLANG:BOOL
Use clang to compile CUDA code (default: OFF)

HPX_WITH_CUDA_COMPUTE:BOOL
Enable HPX CUDA compute capability (parallel algorithms) module (default: OFF) - note: enabling this also
enables CUDA futures via HPX_WITH_ASYNC_CUDA

HPX_WITH_DATAPAR_VC:BOOL
Enable data parallel algorithm support using the external Vc library (default: OFF)

78 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: ON)

HPX_WITH_DISABLED_SIGNAL_EXCEPTION_HANDLERS:BOOL
Disables the mechanism that produces debug output for caught signals and unhandled exceptions (default: OFF)

HPX_WITH_DYNAMIC_HPX_MAIN:BOOL
Enable dynamic overload of system main() (Linux and Apple only, default: ON)

HPX_WITH_EMBEDDED_THREAD_POOLS_COMPATIBILITY:BOOL
Enable deprecated embedded thread pools (default: ON)

HPX_WITH_FAULT_TOLERANCE:BOOL
Build HPX to tolerate failures of nodes, i.e. ignore errors in active communication channels (default: OFF)

HPX_WITH_FORTRAN:BOOL
Enable or disable the compilation of Fortran examples using HPX

HPX_WITH_FULL_RPATH:BOOL
Build and link HPX libraries and executables with full RPATHs (default: ON)

HPX_WITH_GCC_VERSION_CHECK:BOOL
Don’t ignore version reported by gcc (default: ON)

HPX_WITH_GENERIC_CONTEXT_COROUTINES:BOOL
Use Boost.Context as the underlying coroutines context switch implementation.

HPX_WITH_HIDDEN_VISIBILITY:BOOL
Use -fvisibility=hidden for builds on platforms which support it (default OFF)

HPX_WITH_INIT_START_OVERLOADS_COMPATIBILITY:BOOL
Enable deprecated init() and start() overloads functions (default: ON)

HPX_WITH_LOGGING:BOOL
Build HPX with logging enabled (default: ON).

HPX_WITH_MALLOC:STRING
Define which allocator should be linked in. Options are: system, tcmalloc, jemalloc, mimalloc, tbbmalloc, and
custom (default is: tcmalloc)

HPX_WITH_NATIVE_TLS:BOOL
Use native TLS support if available (default:)

HPX_WITH_NICE_THREADLEVEL:BOOL
Set HPX worker threads to have high NICE level (may impact performance) (default: OFF)

HPX_WITH_PARCEL_COALESCING:BOOL
Enable the parcel coalescing plugin (default: ON).

HPX_WITH_POOL_EXECUTOR_COMPATIBILITY:BOOL
Enable deprecated pool executor (default: ON)

HPX_WITH_PROMISE_ALIAS_COMPATIBILITY:BOOL
Enable deprecated alias of hpx::promise to hpx::lcos::promise (default: ON)

HPX_WITH_REGISTER_THREAD_COMPATIBILITY:BOOL
Enable deprecated register_thread/work functions in the hpx::applier namespace (default: ON)

HPX_WITH_REGISTER_THREAD_OVERLOADS_COMPATIBILITY:BOOL
Enable deprecated register_thread/work overloads (default: ON)

HPX_WITH_RUN_MAIN_EVERYWHERE:BOOL
Run hpx_main by default on all localities (default: OFF).

2.5. Manual 79

HPX Documentation, 1.5.1

HPX_WITH_STACKOVERFLOW_DETECTION:BOOL
Enable stackoverflow detection for HPX threads/coroutines. (default: OFF, debug: ON)

HPX_WITH_STATIC_LINKING:BOOL
Compile HPX statically linked libraries (Default: OFF)

HPX_WITH_THREAD_AWARE_TIMER_COMPATIBILITY:BOOL
Enable deprecated thread_aware_timer (default: ON)

HPX_WITH_THREAD_EXECUTORS_COMPATIBILITY:BOOL
Enable deprecated thread executors (default: ON)

HPX_WITH_THREAD_POOL_OS_EXECUTOR_COMPATIBILITY:BOOL
Enable deprecated thread pool executors (default: ON)

HPX_WITH_UNITY_BUILD:BOOL
Enable unity build for certain build targets (experimental, requires CMake 3.16 or newer) (default OFF)

HPX_WITH_UNSCOPED_ENUM_COMPATIBILITY:BOOL
Enable deprecated unscoped enums (default: ON)

HPX_WITH_VIM_YCM:BOOL
Generate HPX completion file for VIM YouCompleteMe plugin

HPX_WITH_ZERO_COPY_SERIALIZATION_THRESHOLD:STRING
The threshold in bytes to when perform zero copy optimizations (default: 128)

Build Targets options

• HPX_WITH_COMPILE_ONLY_TESTS:BOOL

• HPX_WITH_DEFAULT_TARGETS:BOOL

• HPX_WITH_DISTRIBUTED_RUNTIME:BOOL

• HPX_WITH_DOCUMENTATION:BOOL

• HPX_WITH_DOCUMENTATION_OUTPUT_FORMATS:STRING

• HPX_WITH_EXAMPLES:BOOL

• HPX_WITH_EXAMPLES_HDF5:BOOL

• HPX_WITH_EXAMPLES_OPENMP:BOOL

• HPX_WITH_EXAMPLES_QT4:BOOL

• HPX_WITH_EXAMPLES_QTHREADS:BOOL

• HPX_WITH_EXAMPLES_TBB:BOOL

• HPX_WITH_EXECUTABLE_PREFIX:STRING

• HPX_WITH_FAIL_COMPILE_TESTS:BOOL

• HPX_WITH_IO_COUNTERS:BOOL

• HPX_WITH_PSEUDO_DEPENDENCIES:BOOL

• HPX_WITH_TESTS:BOOL

• HPX_WITH_TESTS_BENCHMARKS:BOOL

• HPX_WITH_TESTS_EXAMPLES:BOOL

• HPX_WITH_TESTS_EXTERNAL_BUILD:BOOL

80 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• HPX_WITH_TESTS_HEADERS:BOOL

• HPX_WITH_TESTS_REGRESSIONS:BOOL

• HPX_WITH_TESTS_UNIT:BOOL

• HPX_WITH_TOOLS:BOOL

HPX_WITH_COMPILE_ONLY_TESTS:BOOL
Create build system support for compile time only HPX tests (default ON)

HPX_WITH_DEFAULT_TARGETS:BOOL
Associate the core HPX library with the default build target (default: ON).

HPX_WITH_DISTRIBUTED_RUNTIME:BOOL
Enable the distributed runtime (default: ON). Turning off the distributed runtime completely disallows the
creation and use of components and actions. Turning this option off is experimental!

HPX_WITH_DOCUMENTATION:BOOL
Build the HPX documentation (default OFF).

HPX_WITH_DOCUMENTATION_OUTPUT_FORMATS:STRING
List of documentation output formats to generate. Valid options are html;singlehtml;latexpdf;man. Multiple
values can be separated with semicolons. (default html).

HPX_WITH_EXAMPLES:BOOL
Build the HPX examples (default ON)

HPX_WITH_EXAMPLES_HDF5:BOOL
Enable examples requiring HDF5 support (default: OFF).

HPX_WITH_EXAMPLES_OPENMP:BOOL
Enable examples requiring OpenMP support (default: OFF).

HPX_WITH_EXAMPLES_QT4:BOOL
Enable examples requiring Qt4 support (default: OFF).

HPX_WITH_EXAMPLES_QTHREADS:BOOL
Enable examples requiring QThreads support (default: OFF).

HPX_WITH_EXAMPLES_TBB:BOOL
Enable examples requiring TBB support (default: OFF).

HPX_WITH_EXECUTABLE_PREFIX:STRING
Executable prefix (default none), ‘hpx_’ useful for system install.

HPX_WITH_FAIL_COMPILE_TESTS:BOOL
Create build system support for fail compile HPX tests (default ON)

HPX_WITH_IO_COUNTERS:BOOL
Enable IO counters (default: ON)

HPX_WITH_PSEUDO_DEPENDENCIES:BOOL
Force creating pseudo targets and pseudo dependencies (default ON).

HPX_WITH_TESTS:BOOL
Build the HPX tests (default ON)

HPX_WITH_TESTS_BENCHMARKS:BOOL
Build HPX benchmark tests (default: ON)

HPX_WITH_TESTS_EXAMPLES:BOOL
Add HPX examples as tests (default: ON)

2.5. Manual 81

HPX Documentation, 1.5.1

HPX_WITH_TESTS_EXTERNAL_BUILD:BOOL
Build external cmake build tests (default: ON)

HPX_WITH_TESTS_HEADERS:BOOL
Build HPX header tests (default: OFF)

HPX_WITH_TESTS_REGRESSIONS:BOOL
Build HPX regression tests (default: ON)

HPX_WITH_TESTS_UNIT:BOOL
Build HPX unit tests (default: ON)

HPX_WITH_TOOLS:BOOL
Build HPX tools (default: OFF)

Thread Manager options

• HPX_SCHEDULER_MAX_TERMINATED_THREADS:STRING

• HPX_WITH_COROUTINE_COUNTERS:BOOL

• HPX_WITH_IO_POOL:BOOL

• HPX_WITH_MAX_CPU_COUNT:STRING

• HPX_WITH_MAX_NUMA_DOMAIN_COUNT:STRING

• HPX_WITH_MORE_THAN_64_THREADS:BOOL

• HPX_WITH_SCHEDULER_LOCAL_STORAGE:BOOL

• HPX_WITH_SPINLOCK_DEADLOCK_DETECTION:BOOL

• HPX_WITH_SPINLOCK_POOL_NUM:STRING

• HPX_WITH_STACKTRACES:BOOL

• HPX_WITH_STACKTRACES_DEMANGLE_SYMBOLS:BOOL

• HPX_WITH_STACKTRACES_STATIC_SYMBOLS:BOOL

• HPX_WITH_SWAP_CONTEXT_EMULATION:BOOL

• HPX_WITH_THREAD_BACKTRACE_DEPTH:STRING

• HPX_WITH_THREAD_BACKTRACE_ON_SUSPENSION:BOOL

• HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES:BOOL

• HPX_WITH_THREAD_CUMULATIVE_COUNTS:BOOL

• HPX_WITH_THREAD_IDLE_RATES:BOOL

• HPX_WITH_THREAD_LOCAL_STORAGE:BOOL

• HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF:BOOL

• HPX_WITH_THREAD_QUEUE_WAITTIME:BOOL

• HPX_WITH_THREAD_SCHEDULERS:STRING

• HPX_WITH_THREAD_STACK_MMAP:BOOL

• HPX_WITH_THREAD_STEALING_COUNTS:BOOL

• HPX_WITH_THREAD_TARGET_ADDRESS:BOOL

82 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• HPX_WITH_TIMER_POOL:BOOL

HPX_SCHEDULER_MAX_TERMINATED_THREADS:STRING
[Deprecated] Maximum number of terminated threads collected before those are cleaned up (default: 100)

HPX_WITH_COROUTINE_COUNTERS:BOOL
Enable keeping track of coroutine creation and rebind counts (default: OFF)

HPX_WITH_IO_POOL:BOOL
Disable internal IO thread pool, do not change if not absolutely necessary (default: ON)

HPX_WITH_MAX_CPU_COUNT:STRING
HPX applications will not use more that this number of OS-Threads (empty string means dynamic) (default: 64)

HPX_WITH_MAX_NUMA_DOMAIN_COUNT:STRING
HPX applications will not run on machines with more NUMA domains (default: 8)

HPX_WITH_MORE_THAN_64_THREADS:BOOL
HPX applications will be able to run on more than 64 cores (This variable is deprecated. The value is derived
from HPX_WITH_MAX_CPU_COUNT instead.)

HPX_WITH_SCHEDULER_LOCAL_STORAGE:BOOL
Enable scheduler local storage for all HPX schedulers (default: OFF)

HPX_WITH_SPINLOCK_DEADLOCK_DETECTION:BOOL
Enable spinlock deadlock detection (default: OFF)

HPX_WITH_SPINLOCK_POOL_NUM:STRING
Number of elements a spinlock pool manages (default: 128)

HPX_WITH_STACKTRACES:BOOL
Attach backtraces to HPX exceptions (default: ON)

HPX_WITH_STACKTRACES_DEMANGLE_SYMBOLS:BOOL
Thread stack back trace symbols will be demangled (default: ON)

HPX_WITH_STACKTRACES_STATIC_SYMBOLS:BOOL
Thread stack back trace will resolve static symbols (default: OFF)

HPX_WITH_SWAP_CONTEXT_EMULATION:BOOL
Emulate SwapContext API for coroutines (default: OFF)

HPX_WITH_THREAD_BACKTRACE_DEPTH:STRING
Thread stack back trace depth being captured (default: 20)

HPX_WITH_THREAD_BACKTRACE_ON_SUSPENSION:BOOL
Enable thread stack back trace being captured on suspension (default: OFF)

HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES:BOOL
Enable measuring thread creation and cleanup times (default: OFF)

HPX_WITH_THREAD_CUMULATIVE_COUNTS:BOOL
Enable keeping track of cumulative thread counts in the schedulers (default: ON)

HPX_WITH_THREAD_IDLE_RATES:BOOL
Enable measuring the percentage of overhead times spent in the scheduler (default: OFF)

HPX_WITH_THREAD_LOCAL_STORAGE:BOOL
Enable thread local storage for all HPX threads (default: OFF)

HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF:BOOL
HPX scheduler threads do exponential backoff on idle queues (default: ON)

2.5. Manual 83

HPX Documentation, 1.5.1

HPX_WITH_THREAD_QUEUE_WAITTIME:BOOL
Enable collecting queue wait times for threads (default: OFF)

HPX_WITH_THREAD_SCHEDULERS:STRING
Which thread schedulers are built. Options are: all, abp-priority, local, static-priority, static, shared-priority. For
multiple enabled schedulers, separate with a semicolon (default: all)

HPX_WITH_THREAD_STACK_MMAP:BOOL
Use mmap for stack allocation on appropriate platforms

HPX_WITH_THREAD_STEALING_COUNTS:BOOL
Enable keeping track of counts of thread stealing incidents in the schedulers (default: OFF)

HPX_WITH_THREAD_TARGET_ADDRESS:BOOL
Enable storing target address in thread for NUMA awareness (default: OFF)

HPX_WITH_TIMER_POOL:BOOL
Disable internal timer thread pool, do not change if not absolutely necessary (default: ON)

AGAS options

• HPX_WITH_AGAS_DUMP_REFCNT_ENTRIES:BOOL

HPX_WITH_AGAS_DUMP_REFCNT_ENTRIES:BOOL
Enable dumps of the AGAS refcnt tables to logs (default: OFF)

Parcelport options

• HPX_WITH_NETWORKING:BOOL

• HPX_WITH_PARCELPORT_ACTION_COUNTERS:BOOL

• HPX_WITH_PARCELPORT_LIBFABRIC:BOOL

• HPX_WITH_PARCELPORT_MPI:BOOL

• HPX_WITH_PARCELPORT_TCP:BOOL

• HPX_WITH_PARCELPORT_VERBS:BOOL

• HPX_WITH_PARCEL_PROFILING:BOOL

HPX_WITH_NETWORKING:BOOL
Enable support for networking and multi-node runs (default: ON)

HPX_WITH_PARCELPORT_ACTION_COUNTERS:BOOL
Enable performance counters reporting parcelport statistics on a per-action basis.

HPX_WITH_PARCELPORT_LIBFABRIC:BOOL
Enable the libfabric based parcelport. This is currently an experimental feature

HPX_WITH_PARCELPORT_MPI:BOOL
Enable the MPI based parcelport.

HPX_WITH_PARCELPORT_TCP:BOOL
Enable the TCP based parcelport.

HPX_WITH_PARCELPORT_VERBS:BOOL
Enable the ibverbs based parcelport. This is currently an experimental feature

84 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_WITH_PARCEL_PROFILING:BOOL
Enable profiling data for parcels

Profiling options

• HPX_WITH_APEX:BOOL

• HPX_WITH_GOOGLE_PERFTOOLS:BOOL

• HPX_WITH_ITTNOTIFY:BOOL

• HPX_WITH_PAPI:BOOL

HPX_WITH_APEX:BOOL
Enable APEX instrumentation support.

HPX_WITH_GOOGLE_PERFTOOLS:BOOL
Enable Google Perftools instrumentation support.

HPX_WITH_ITTNOTIFY:BOOL
Enable Amplifier (ITT) instrumentation support.

HPX_WITH_PAPI:BOOL
Enable the PAPI based performance counter.

Debugging options

• HPX_WITH_ATTACH_DEBUGGER_ON_TEST_FAILURE:BOOL

• HPX_WITH_PARALLEL_TESTS_BIND_NONE:BOOL

• HPX_WITH_SANITIZERS:BOOL

• HPX_WITH_TESTS_DEBUG_LOG:BOOL

• HPX_WITH_TESTS_DEBUG_LOG_DESTINATION:STRING

• HPX_WITH_TESTS_MAX_THREADS_PER_LOCALITY:STRING

• HPX_WITH_THREAD_DEBUG_INFO:BOOL

• HPX_WITH_THREAD_DESCRIPTION_FULL:BOOL

• HPX_WITH_THREAD_GUARD_PAGE:BOOL

• HPX_WITH_VALGRIND:BOOL

• HPX_WITH_VERIFY_LOCKS:BOOL

• HPX_WITH_VERIFY_LOCKS_BACKTRACE:BOOL

• HPX_WITH_VERIFY_LOCKS_GLOBALLY:BOOL

HPX_WITH_ATTACH_DEBUGGER_ON_TEST_FAILURE:BOOL
Break the debugger if a test has failed (default: OFF)

HPX_WITH_PARALLEL_TESTS_BIND_NONE:BOOL
Pass –hpx:bind=none to tests that may run in parallel (cmake -j flag) (default: OFF)

HPX_WITH_SANITIZERS:BOOL
Configure with sanitizer instrumentation support.

2.5. Manual 85

HPX Documentation, 1.5.1

HPX_WITH_TESTS_DEBUG_LOG:BOOL
Turn on debug logs (–hpx:debug-hpx-log) for tests (default: OFF)

HPX_WITH_TESTS_DEBUG_LOG_DESTINATION:STRING
Destination for test debug logs (default: cout)

HPX_WITH_TESTS_MAX_THREADS_PER_LOCALITY:STRING
Maximum number of threads to use for tests (default: 0, use the number of threads specified by the test)

HPX_WITH_THREAD_DEBUG_INFO:BOOL
Enable thread debugging information (default: OFF, implicitly enabled in debug builds)

HPX_WITH_THREAD_DESCRIPTION_FULL:BOOL
Use function address for thread description (default: OFF)

HPX_WITH_THREAD_GUARD_PAGE:BOOL
Enable thread guard page (default: ON)

HPX_WITH_VALGRIND:BOOL
Enable Valgrind instrumentation support.

HPX_WITH_VERIFY_LOCKS:BOOL
Enable lock verification code (default: OFF, implicitly enabled in debug builds)

HPX_WITH_VERIFY_LOCKS_BACKTRACE:BOOL
Enable thread stack back trace being captured on lock registration (to be used in combination with
HPX_WITH_VERIFY_LOCKS=ON, default: OFF)

HPX_WITH_VERIFY_LOCKS_GLOBALLY:BOOL
Enable global lock verification code (default: OFF, implicitly enabled in debug builds)

Modules options

• HPX_ACTIONS_BASE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ACTIONS_BASE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ACTIONS_BASE_WITH_TESTS:BOOL

• HPX_ACTIONS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ACTIONS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ACTIONS_WITH_TESTS:BOOL

• HPX_AFFINITY_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_AFFINITY_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_AFFINITY_WITH_TESTS:BOOL

• HPX_ALGORITHMS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ALGORITHMS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ALGORITHMS_WITH_TESTS:BOOL

• HPX_ALLOCATOR_SUPPORT_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ALLOCATOR_SUPPORT_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ALLOCATOR_SUPPORT_WITH_TESTS:BOOL

• HPX_ASIO_WITH_COMPATIBILITY_HEADERS:BOOL

86 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• HPX_ASIO_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ASIO_WITH_TESTS:BOOL

• HPX_ASSERTION_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ASSERTION_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ASSERTION_WITH_TESTS:BOOL

• HPX_ASYNC_BASE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ASYNC_BASE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ASYNC_BASE_WITH_TESTS:BOOL

• HPX_ASYNC_COMBINATORS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ASYNC_COMBINATORS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ASYNC_COMBINATORS_WITH_TESTS:BOOL

• HPX_ASYNC_DISTRIBUTED_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ASYNC_DISTRIBUTED_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ASYNC_DISTRIBUTED_WITH_TESTS:BOOL

• HPX_ASYNC_LOCAL_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ASYNC_LOCAL_WITH_TESTS:BOOL

• HPX_BATCH_ENVIRONMENTS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_BATCH_ENVIRONMENTS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_BATCH_ENVIRONMENTS_WITH_TESTS:BOOL

• HPX_CACHE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_CACHE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_CACHE_WITH_TESTS:BOOL

• HPX_CHECKPOINT_BASE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_CHECKPOINT_BASE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_CHECKPOINT_BASE_WITH_TESTS:BOOL

• HPX_CHECKPOINT_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_CHECKPOINT_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_CHECKPOINT_WITH_TESTS:BOOL

• HPX_COLLECTIVES_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_COLLECTIVES_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_COLLECTIVES_WITH_TESTS:BOOL

• HPX_COMMAND_LINE_HANDLING_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_COMMAND_LINE_HANDLING_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_COMMAND_LINE_HANDLING_WITH_TESTS:BOOL

• HPX_COMPONENTS_BASE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_COMPONENTS_BASE_WITH_DEPRECATION_WARNINGS:BOOL

2.5. Manual 87

HPX Documentation, 1.5.1

• HPX_COMPONENTS_BASE_WITH_TESTS:BOOL

• HPX_COMPUTE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_COMPUTE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_COMPUTE_WITH_TESTS:BOOL

• HPX_CONCEPTS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_CONCEPTS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_CONCEPTS_WITH_TESTS:BOOL

• HPX_CONCURRENCY_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_CONCURRENCY_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_CONCURRENCY_WITH_TESTS:BOOL

• HPX_CONFIG_REGISTRY_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_CONFIG_REGISTRY_WITH_TESTS:BOOL

• HPX_CONFIG_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_CONFIG_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_CONFIG_WITH_TESTS:BOOL

• HPX_COROUTINES_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_COROUTINES_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_COROUTINES_WITH_TESTS:BOOL

• HPX_DATASTRUCTURES_WITH_ADAPT_STD_TUPLE:BOOL

• HPX_DATASTRUCTURES_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_DATASTRUCTURES_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_DATASTRUCTURES_WITH_TESTS:BOOL

• HPX_DEBUGGING_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_DEBUGGING_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_DEBUGGING_WITH_TESTS:BOOL

• HPX_ERRORS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ERRORS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ERRORS_WITH_TESTS:BOOL

• HPX_EXECUTION_BASE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_EXECUTION_BASE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_EXECUTION_BASE_WITH_TESTS:BOOL

• HPX_EXECUTION_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_EXECUTION_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_EXECUTION_WITH_TESTS:BOOL

• HPX_EXECUTORS_DISTRIBUTED_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_EXECUTORS_DISTRIBUTED_WITH_DEPRECATION_WARNINGS:BOOL

88 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• HPX_EXECUTORS_DISTRIBUTED_WITH_TESTS:BOOL

• HPX_EXECUTORS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_EXECUTORS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_EXECUTORS_WITH_TESTS:BOOL

• HPX_FILESYSTEM_WITH_BOOST_FILESYSTEM_COMPATIBILITY:BOOL

• HPX_FILESYSTEM_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_FILESYSTEM_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_FILESYSTEM_WITH_TESTS:BOOL

• HPX_FORMAT_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_FORMAT_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_FORMAT_WITH_TESTS:BOOL

• HPX_FUNCTIONAL_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_FUNCTIONAL_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_FUNCTIONAL_WITH_TESTS:BOOL

• HPX_FUTURES_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_FUTURES_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_FUTURES_WITH_TESTS:BOOL

• HPX_HARDWARE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_HARDWARE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_HARDWARE_WITH_TESTS:BOOL

• HPX_HASHING_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_HASHING_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_HASHING_WITH_TESTS:BOOL

• HPX_INCLUDE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_INCLUDE_WITH_TESTS:BOOL

• HPX_INIT_RUNTIME_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_INIT_RUNTIME_WITH_TESTS:BOOL

• HPX_IO_SERVICE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_IO_SERVICE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_IO_SERVICE_WITH_TESTS:BOOL

• HPX_ITERATOR_SUPPORT_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ITERATOR_SUPPORT_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ITERATOR_SUPPORT_WITH_TESTS:BOOL

• HPX_ITT_NOTIFY_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_ITT_NOTIFY_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_ITT_NOTIFY_WITH_TESTS:BOOL

2.5. Manual 89

HPX Documentation, 1.5.1

• HPX_LCOS_DISTRIBUTED_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_LCOS_DISTRIBUTED_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_LCOS_DISTRIBUTED_WITH_TESTS:BOOL

• HPX_LCOS_LOCAL_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_LCOS_LOCAL_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_LCOS_LOCAL_WITH_TESTS:BOOL

• HPX_LOGGING_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_LOGGING_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_LOGGING_WITH_TESTS:BOOL

• HPX_MEMORY_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_MEMORY_WITH_TESTS:BOOL

• HPX_NAMING_BASE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_NAMING_BASE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_NAMING_BASE_WITH_TESTS:BOOL

• HPX_PACK_TRAVERSAL_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_PACK_TRAVERSAL_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_PACK_TRAVERSAL_WITH_TESTS:BOOL

• HPX_PERFORMANCE_COUNTERS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_PERFORMANCE_COUNTERS_WITH_TESTS:BOOL

• HPX_PLUGIN_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_PLUGIN_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_PLUGIN_WITH_TESTS:BOOL

• HPX_PREFIX_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_PREFIX_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_PREFIX_WITH_TESTS:BOOL

• HPX_PREPROCESSOR_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_PREPROCESSOR_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_PREPROCESSOR_WITH_TESTS:BOOL

• HPX_PROGRAM_OPTIONS_WITH_BOOST_PROGRAM_OPTIONS_COMPATIBILITY:BOOL

• HPX_PROGRAM_OPTIONS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_PROGRAM_OPTIONS_WITH_TESTS:BOOL

• HPX_RESILIENCY_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_RESILIENCY_WITH_TESTS:BOOL

• HPX_RESOURCE_PARTITIONER_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_RESOURCE_PARTITIONER_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_RESOURCE_PARTITIONER_WITH_TESTS:BOOL

90 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• HPX_RUNTIME_CONFIGURATION_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_RUNTIME_CONFIGURATION_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_RUNTIME_CONFIGURATION_WITH_TESTS:BOOL

• HPX_RUNTIME_LOCAL_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_RUNTIME_LOCAL_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_RUNTIME_LOCAL_WITH_TESTS:BOOL

• HPX_SCHEDULERS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_SCHEDULERS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_SCHEDULERS_WITH_TESTS:BOOL

• HPX_SEGMENTED_ALGORITHMS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_SEGMENTED_ALGORITHMS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_SEGMENTED_ALGORITHMS_WITH_TESTS:BOOL

• HPX_SERIALIZATION_WITH_BOOST_TYPES:BOOL

• HPX_SERIALIZATION_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_SERIALIZATION_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_SERIALIZATION_WITH_TESTS:BOOL

• HPX_STATIC_REINIT_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_STATIC_REINIT_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_STATIC_REINIT_WITH_TESTS:BOOL

• HPX_STATISTICS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_STATISTICS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_STATISTICS_WITH_TESTS:BOOL

• HPX_STRING_UTIL_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_STRING_UTIL_WITH_TESTS:BOOL

• HPX_SYNCHRONIZATION_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_SYNCHRONIZATION_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_SYNCHRONIZATION_WITH_TESTS:BOOL

• HPX_TESTING_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_TESTING_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_TESTING_WITH_TESTS:BOOL

• HPX_THREADING_BASE_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_THREADING_BASE_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_THREADING_BASE_WITH_TESTS:BOOL

• HPX_THREADING_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_THREADING_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_THREADING_WITH_TESTS:BOOL

2.5. Manual 91

HPX Documentation, 1.5.1

• HPX_THREADMANAGER_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_THREADMANAGER_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_THREADMANAGER_WITH_TESTS:BOOL

• HPX_THREAD_EXECUTORS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_THREAD_EXECUTORS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_THREAD_EXECUTORS_WITH_TESTS:BOOL

• HPX_THREAD_POOLS_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_THREAD_POOLS_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_THREAD_POOLS_WITH_TESTS:BOOL

• HPX_THREAD_SUPPORT_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_THREAD_SUPPORT_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_THREAD_SUPPORT_WITH_TESTS:BOOL

• HPX_TIMED_EXECUTION_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_TIMED_EXECUTION_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_TIMED_EXECUTION_WITH_TESTS:BOOL

• HPX_TIMING_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_TIMING_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_TIMING_WITH_TESTS:BOOL

• HPX_TOPOLOGY_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_TOPOLOGY_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_TOPOLOGY_WITH_TESTS:BOOL

• HPX_TYPE_SUPPORT_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_TYPE_SUPPORT_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_TYPE_SUPPORT_WITH_TESTS:BOOL

• HPX_UTIL_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_UTIL_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_UTIL_WITH_TESTS:BOOL

• HPX_VERSION_WITH_COMPATIBILITY_HEADERS:BOOL

• HPX_VERSION_WITH_DEPRECATION_WARNINGS:BOOL

• HPX_VERSION_WITH_TESTS:BOOL

HPX_ACTIONS_BASE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ACTIONS_BASE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ACTIONS_BASE_WITH_TESTS:BOOL
Build HPX actions_base module tests. (default: ON)

92 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_ACTIONS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ACTIONS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ACTIONS_WITH_TESTS:BOOL
Build HPX actions module tests. (default: ON)

HPX_AFFINITY_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_AFFINITY_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_AFFINITY_WITH_TESTS:BOOL
Build HPX affinity module tests. (default: ON)

HPX_ALGORITHMS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ALGORITHMS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ALGORITHMS_WITH_TESTS:BOOL
Build HPX algorithms module tests. (default: ON)

HPX_ALLOCATOR_SUPPORT_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ALLOCATOR_SUPPORT_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ALLOCATOR_SUPPORT_WITH_TESTS:BOOL
Build HPX allocator_support module tests. (default: ON)

HPX_ASIO_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ASIO_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ASIO_WITH_TESTS:BOOL
Build HPX asio module tests. (default: ON)

HPX_ASSERTION_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ASSERTION_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ASSERTION_WITH_TESTS:BOOL
Build HPX assertion module tests. (default: ON)

HPX_ASYNC_BASE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ASYNC_BASE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ASYNC_BASE_WITH_TESTS:BOOL
Build HPX async_base module tests. (default: ON)

2.5. Manual 93

HPX Documentation, 1.5.1

HPX_ASYNC_COMBINATORS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ASYNC_COMBINATORS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ASYNC_COMBINATORS_WITH_TESTS:BOOL
Build HPX async_combinators module tests. (default: ON)

HPX_ASYNC_DISTRIBUTED_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ASYNC_DISTRIBUTED_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ASYNC_DISTRIBUTED_WITH_TESTS:BOOL
Build HPX async_distributed module tests. (default: ON)

HPX_ASYNC_LOCAL_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ASYNC_LOCAL_WITH_TESTS:BOOL
Build HPX async_local module tests. (default: ON)

HPX_BATCH_ENVIRONMENTS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_BATCH_ENVIRONMENTS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_BATCH_ENVIRONMENTS_WITH_TESTS:BOOL
Build HPX batch_environments module tests. (default: ON)

HPX_CACHE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_CACHE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_CACHE_WITH_TESTS:BOOL
Build HPX cache module tests. (default: ON)

HPX_CHECKPOINT_BASE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: OFF)

HPX_CHECKPOINT_BASE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_CHECKPOINT_BASE_WITH_TESTS:BOOL
Build HPX checkpoint_base module tests. (default: ON)

HPX_CHECKPOINT_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_CHECKPOINT_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_CHECKPOINT_WITH_TESTS:BOOL
Build HPX checkpoint module tests. (default: ON)

HPX_COLLECTIVES_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

94 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_COLLECTIVES_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_COLLECTIVES_WITH_TESTS:BOOL
Build HPX collectives module tests. (default: ON)

HPX_COMMAND_LINE_HANDLING_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_COMMAND_LINE_HANDLING_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_COMMAND_LINE_HANDLING_WITH_TESTS:BOOL
Build HPX command_line_handling module tests. (default: ON)

HPX_COMPONENTS_BASE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_COMPONENTS_BASE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_COMPONENTS_BASE_WITH_TESTS:BOOL
Build HPX components_base module tests. (default: ON)

HPX_COMPUTE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_COMPUTE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_COMPUTE_WITH_TESTS:BOOL
Build HPX compute module tests. (default: ON)

HPX_CONCEPTS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_CONCEPTS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_CONCEPTS_WITH_TESTS:BOOL
Build HPX concepts module tests. (default: ON)

HPX_CONCURRENCY_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_CONCURRENCY_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_CONCURRENCY_WITH_TESTS:BOOL
Build HPX concurrency module tests. (default: ON)

HPX_CONFIG_REGISTRY_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_CONFIG_REGISTRY_WITH_TESTS:BOOL
Build HPX config_registry module tests. (default: ON)

HPX_CONFIG_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: OFF)

HPX_CONFIG_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

2.5. Manual 95

HPX Documentation, 1.5.1

HPX_CONFIG_WITH_TESTS:BOOL
Build HPX config module tests. (default: ON)

HPX_COROUTINES_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_COROUTINES_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_COROUTINES_WITH_TESTS:BOOL
Build HPX coroutines module tests. (default: ON)

HPX_DATASTRUCTURES_WITH_ADAPT_STD_TUPLE:BOOL
Enable compatibility of hpx::util::tuple with std::tuple. (default: ON)

HPX_DATASTRUCTURES_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_DATASTRUCTURES_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_DATASTRUCTURES_WITH_TESTS:BOOL
Build HPX datastructures module tests. (default: ON)

HPX_DEBUGGING_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_DEBUGGING_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_DEBUGGING_WITH_TESTS:BOOL
Build HPX debugging module tests. (default: ON)

HPX_ERRORS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ERRORS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ERRORS_WITH_TESTS:BOOL
Build HPX errors module tests. (default: ON)

HPX_EXECUTION_BASE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_EXECUTION_BASE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_EXECUTION_BASE_WITH_TESTS:BOOL
Build HPX execution_base module tests. (default: ON)

HPX_EXECUTION_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_EXECUTION_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_EXECUTION_WITH_TESTS:BOOL
Build HPX execution module tests. (default: ON)

HPX_EXECUTORS_DISTRIBUTED_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

96 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_EXECUTORS_DISTRIBUTED_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_EXECUTORS_DISTRIBUTED_WITH_TESTS:BOOL
Build HPX executors_distributed module tests. (default: ON)

HPX_EXECUTORS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_EXECUTORS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_EXECUTORS_WITH_TESTS:BOOL
Build HPX executors module tests. (default: ON)

HPX_FILESYSTEM_WITH_BOOST_FILESYSTEM_COMPATIBILITY:BOOL
Enable Boost.FileSystem compatibility. (default: ON)

HPX_FILESYSTEM_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_FILESYSTEM_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_FILESYSTEM_WITH_TESTS:BOOL
Build HPX filesystem module tests. (default: ON)

HPX_FORMAT_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_FORMAT_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_FORMAT_WITH_TESTS:BOOL
Build HPX format module tests. (default: ON)

HPX_FUNCTIONAL_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_FUNCTIONAL_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_FUNCTIONAL_WITH_TESTS:BOOL
Build HPX functional module tests. (default: ON)

HPX_FUTURES_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_FUTURES_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_FUTURES_WITH_TESTS:BOOL
Build HPX futures module tests. (default: ON)

HPX_HARDWARE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_HARDWARE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_HARDWARE_WITH_TESTS:BOOL
Build HPX hardware module tests. (default: ON)

2.5. Manual 97

HPX Documentation, 1.5.1

HPX_HASHING_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_HASHING_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_HASHING_WITH_TESTS:BOOL
Build HPX hashing module tests. (default: ON)

HPX_INCLUDE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_INCLUDE_WITH_TESTS:BOOL
Build HPX include module tests. (default: ON)

HPX_INIT_RUNTIME_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_INIT_RUNTIME_WITH_TESTS:BOOL
Build HPX init_runtime module tests. (default: ON)

HPX_IO_SERVICE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_IO_SERVICE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_IO_SERVICE_WITH_TESTS:BOOL
Build HPX io_service module tests. (default: ON)

HPX_ITERATOR_SUPPORT_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ITERATOR_SUPPORT_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ITERATOR_SUPPORT_WITH_TESTS:BOOL
Build HPX iterator_support module tests. (default: ON)

HPX_ITT_NOTIFY_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_ITT_NOTIFY_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_ITT_NOTIFY_WITH_TESTS:BOOL
Build HPX itt_notify module tests. (default: ON)

HPX_LCOS_DISTRIBUTED_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_LCOS_DISTRIBUTED_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_LCOS_DISTRIBUTED_WITH_TESTS:BOOL
Build HPX lcos_distributed module tests. (default: ON)

HPX_LCOS_LOCAL_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_LCOS_LOCAL_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

98 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_LCOS_LOCAL_WITH_TESTS:BOOL
Build HPX lcos_local module tests. (default: ON)

HPX_LOGGING_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_LOGGING_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_LOGGING_WITH_TESTS:BOOL
Build HPX logging module tests. (default: ON)

HPX_MEMORY_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_MEMORY_WITH_TESTS:BOOL
Build HPX memory module tests. (default: ON)

HPX_NAMING_BASE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: OFF)

HPX_NAMING_BASE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_NAMING_BASE_WITH_TESTS:BOOL
Build HPX naming_base module tests. (default: ON)

HPX_PACK_TRAVERSAL_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_PACK_TRAVERSAL_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_PACK_TRAVERSAL_WITH_TESTS:BOOL
Build HPX pack_traversal module tests. (default: ON)

HPX_PERFORMANCE_COUNTERS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_PERFORMANCE_COUNTERS_WITH_TESTS:BOOL
Build HPX performance_counters module tests. (default: ON)

HPX_PLUGIN_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_PLUGIN_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_PLUGIN_WITH_TESTS:BOOL
Build HPX plugin module tests. (default: ON)

HPX_PREFIX_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_PREFIX_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_PREFIX_WITH_TESTS:BOOL
Build HPX prefix module tests. (default: ON)

HPX_PREPROCESSOR_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

2.5. Manual 99

HPX Documentation, 1.5.1

HPX_PREPROCESSOR_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_PREPROCESSOR_WITH_TESTS:BOOL
Build HPX preprocessor module tests. (default: ON)

HPX_PROGRAM_OPTIONS_WITH_BOOST_PROGRAM_OPTIONS_COMPATIBILITY:BOOL
Enable Boost.ProgramOptions compatibility. (default: ON)

HPX_PROGRAM_OPTIONS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_PROGRAM_OPTIONS_WITH_TESTS:BOOL
Build HPX program_options module tests. (default: ON)

HPX_RESILIENCY_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_RESILIENCY_WITH_TESTS:BOOL
Build HPX resiliency module tests. (default: ON)

HPX_RESOURCE_PARTITIONER_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_RESOURCE_PARTITIONER_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_RESOURCE_PARTITIONER_WITH_TESTS:BOOL
Build HPX resource_partitioner module tests. (default: ON)

HPX_RUNTIME_CONFIGURATION_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_RUNTIME_CONFIGURATION_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_RUNTIME_CONFIGURATION_WITH_TESTS:BOOL
Build HPX runtime_configuration module tests. (default: ON)

HPX_RUNTIME_LOCAL_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_RUNTIME_LOCAL_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_RUNTIME_LOCAL_WITH_TESTS:BOOL
Build HPX runtime_local module tests. (default: ON)

HPX_SCHEDULERS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_SCHEDULERS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_SCHEDULERS_WITH_TESTS:BOOL
Build HPX schedulers module tests. (default: ON)

HPX_SEGMENTED_ALGORITHMS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_SEGMENTED_ALGORITHMS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

100 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_SEGMENTED_ALGORITHMS_WITH_TESTS:BOOL
Build HPX segmented_algorithms module tests. (default: ON)

HPX_SERIALIZATION_WITH_BOOST_TYPES:BOOL
Enable serialization of certain Boost types. (default: ON)

HPX_SERIALIZATION_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_SERIALIZATION_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_SERIALIZATION_WITH_TESTS:BOOL
Build HPX serialization module tests. (default: ON)

HPX_STATIC_REINIT_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_STATIC_REINIT_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_STATIC_REINIT_WITH_TESTS:BOOL
Build HPX static_reinit module tests. (default: ON)

HPX_STATISTICS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_STATISTICS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_STATISTICS_WITH_TESTS:BOOL
Build HPX statistics module tests. (default: ON)

HPX_STRING_UTIL_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_STRING_UTIL_WITH_TESTS:BOOL
Build HPX string_util module tests. (default: ON)

HPX_SYNCHRONIZATION_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_SYNCHRONIZATION_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_SYNCHRONIZATION_WITH_TESTS:BOOL
Build HPX synchronization module tests. (default: ON)

HPX_TESTING_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_TESTING_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_TESTING_WITH_TESTS:BOOL
Build HPX testing module tests. (default: ON)

HPX_THREADING_BASE_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_THREADING_BASE_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

2.5. Manual 101

HPX Documentation, 1.5.1

HPX_THREADING_BASE_WITH_TESTS:BOOL
Build HPX threading_base module tests. (default: ON)

HPX_THREADING_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_THREADING_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_THREADING_WITH_TESTS:BOOL
Build HPX threading module tests. (default: ON)

HPX_THREADMANAGER_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_THREADMANAGER_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_THREADMANAGER_WITH_TESTS:BOOL
Build HPX threadmanager module tests. (default: ON)

HPX_THREAD_EXECUTORS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_THREAD_EXECUTORS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_THREAD_EXECUTORS_WITH_TESTS:BOOL
Build HPX thread_executors module tests. (default: ON)

HPX_THREAD_POOLS_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_THREAD_POOLS_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_THREAD_POOLS_WITH_TESTS:BOOL
Build HPX thread_pools module tests. (default: ON)

HPX_THREAD_SUPPORT_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_THREAD_SUPPORT_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_THREAD_SUPPORT_WITH_TESTS:BOOL
Build HPX thread_support module tests. (default: ON)

HPX_TIMED_EXECUTION_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_TIMED_EXECUTION_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_TIMED_EXECUTION_WITH_TESTS:BOOL
Build HPX timed_execution module tests. (default: ON)

HPX_TIMING_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_TIMING_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

102 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_TIMING_WITH_TESTS:BOOL
Build HPX timing module tests. (default: ON)

HPX_TOPOLOGY_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_TOPOLOGY_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_TOPOLOGY_WITH_TESTS:BOOL
Build HPX topology module tests. (default: ON)

HPX_TYPE_SUPPORT_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_TYPE_SUPPORT_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_TYPE_SUPPORT_WITH_TESTS:BOOL
Build HPX type_support module tests. (default: ON)

HPX_UTIL_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: ON)

HPX_UTIL_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_UTIL_WITH_TESTS:BOOL
Build HPX util module tests. (default: ON)

HPX_VERSION_WITH_COMPATIBILITY_HEADERS:BOOL
Enable compatibility headers for old headers. (default: OFF)

HPX_VERSION_WITH_DEPRECATION_WARNINGS:BOOL
Enable warnings for deprecated facilities. (default: On)

HPX_VERSION_WITH_TESTS:BOOL
Build HPX version module tests. (default: ON)

Additional tools and libraries used by HPX

Here is a list of additional libraries and tools that are either optionally supported by the build system or are optionally
required for certain examples or tests. These libraries and tools can be detected by the HPX build system.

Each of the tools or libraries listed here will be automatically detected if they are installed in some standard location.
If a tool or library is installed in a different location, you can specify its base directory by appending _ROOT to the
variable name as listed below. For instance, to configure a custom directory for BOOST, specify BOOST_ROOT=/
custom/boost/root.

BOOST_ROOT:PATH
Specifies where to look for the Boost installation to be used for compiling HPX. Set this if CMake is not able
to locate a suitable version of Boost. The directory specified here can be either the root of an installed Boost
distribution or the directory where you unpacked and built Boost without installing it (with staged libraries).

HWLOC_ROOT:PATH
Specifies where to look for the hwloc library. Set this if CMake is not able to locate a suitable version of hwloc.
Hwloc provides platform- independent support for extracting information about the used hardware architecture
(number of cores, number of NUMA domains, hyperthreading, etc.). HPX utilizes this information if available.

2.5. Manual 103

HPX Documentation, 1.5.1

PAPI_ROOT:PATH
Specifies where to look for the PAPI library. The PAPI library is needed to compile a special component ex-
posing PAPI hardware events and counters as HPX performance counters. This is not available on the Windows
platform.

AMPLIFIER_ROOT:PATH
Specifies where to look for one of the tools of the Intel Parallel Studio product, either Intel Amplifier or Intel
Inspector. This should be set if the CMake variable HPX_USE_ITT_NOTIFY is set to ON. Enabling ITT
support in HPX will integrate any application with the mentioned Intel tools, which customizes the generated
information for your application and improves the generated diagnostics.

In addition, some of the examples may need the following variables:

HDF5_ROOT:PATH
Specifies where to look for the Hierarchical Data Format V5 (HDF5) include files and libraries.

2.5.3 Creating HPX projects

Using HPX with pkg-config

How to build HPX applications with pkg-config

After you are done installing HPX, you should be able to build the following program. It prints Hello World! on
the locality you run it on.

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.
#include <hpx/hpx_main.hpp>
#include <hpx/iostream.hpp>

int main()
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return 0;

}

Copy the text of this program into a file called hello_world.cpp.

Now, in the directory where you put hello_world.cpp, issue the following commands (where $HPX_LOCATION is the
build directory or CMAKE_INSTALL_PREFIX you used while building HPX):

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HPX_LOCATION/lib/pkgconfig
c++ -o hello_world hello_world.cpp \

`pkg-config --cflags --libs hpx_application`\
-lhpx_iostreams -DHPX_APPLICATION_NAME=hello_world

Important: When using pkg-config with HPX, the pkg-config flags must go after the -o flag.

Note: HPX libraries have different names in debug and release mode. If you want to link against a debug HPX
library, you need to use the _debug suffix for the pkg-config name. That means instead of hpx_application or
hpx_component, you will have to use hpx_application_debug or hpx_component_debug Moreover,

104 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

all referenced HPX components need to have an appended d suffix. For example, instead of -lhpx_iostreams
you will need to specify -lhpx_iostreamsd.

Important: If the HPX libraries are in a path that is not found by the dynamic linker, you will need to add the path
$HPX_LOCATION/lib to your linker search path (for example LD_LIBRARY_PATH on Linux).

To test the program, type:

./hello_world

which should print Hello World! and exit.

How to build HPX components with pkg-config

Let’s try a more complex example involving an HPX component. An HPX component is a class that exposes HPX
actions. HPX components are compiled into dynamically loaded modules called component libraries. Here’s the
source code:

hello_world_component.cpp

#include "hello_world_component.hpp"
#include <hpx/iostream.hpp>

#include <iostream>

namespace examples { namespace server
{

void hello_world::invoke()
{

hpx::cout << "Hello HPX World!" << std::endl;
}

}}

HPX_REGISTER_COMPONENT_MODULE();

typedef hpx::components::component<
examples::server::hello_world

> hello_world_type;

HPX_REGISTER_COMPONENT(hello_world_type, hello_world);

HPX_REGISTER_ACTION(
examples::server::hello_world::invoke_action, hello_world_invoke_action);

hello_world_component.hpp

#pragma once

#include <hpx/hpx.hpp>
#include <hpx/include/actions.hpp>
#include <hpx/include/lcos.hpp>
#include <hpx/include/components.hpp>
#include <hpx/serialization.hpp>

(continues on next page)

2.5. Manual 105

HPX Documentation, 1.5.1

(continued from previous page)

#include <utility>

namespace examples { namespace server
{

struct HPX_COMPONENT_EXPORT hello_world
: hpx::components::component_base<hello_world>

{
void invoke();
HPX_DEFINE_COMPONENT_ACTION(hello_world, invoke);

};
}}

HPX_REGISTER_ACTION_DECLARATION(
examples::server::hello_world::invoke_action, hello_world_invoke_action);

namespace examples
{

struct hello_world
: hpx::components::client_base<hello_world, server::hello_world>

{
typedef hpx::components::client_base<hello_world, server::hello_world>

base_type;

hello_world(hpx::future<hpx::naming::id_type> && f)
: base_type(std::move(f))

{}

hello_world(hpx::naming::id_type && f)
: base_type(std::move(f))

{}

void invoke()
{

hpx::async<server::hello_world::invoke_action>(this->get_id()).get();
}

};
}

hello_world_client.cpp

#include "hello_world_component.hpp"
#include <hpx/hpx_main.hpp>

int main(int argc, char* argv[])
{

{
// Create a single instance of the component on this locality.
examples::hello_world client =

hpx::new_<examples::hello_world>(hpx::find_here());

// Invoke the component's action, which will print "Hello World!".
client.invoke();

}

return 0;
}

106 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Copy the three source files above into three files (called hello_world_component.cpp,
hello_world_component.hpp and hello_world_client.cpp, respectively).

Now, in the directory where you put the files, run the following command to build the component library. (where
$HPX_LOCATION is the build directory or CMAKE_INSTALL_PREFIX you used while building HPX):

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HPX_LOCATION/lib/pkgconfig
c++ -o libhpx_hello_world.so hello_world_component.cpp \

`pkg-config --cflags --libs hpx_component` \
-lhpx_iostreams -DHPX_COMPONENT_NAME=hpx_hello_world

Now pick a directory in which to install your HPX component libraries. For this example, we’ll choose a directory
named my_hpx_libs:

mkdir ~/my_hpx_libs
mv libhpx_hello_world.so ~/my_hpx_libs

Note: HPX libraries have different names in debug and release mode. If you want to link against a debug HPX
library, you need to use the _debug suffix for the pkg-config name. That means instead of hpx_application or
hpx_component you will have to use hpx_application_debug or hpx_component_debug. Moreover,
all referenced HPX components need to have a appended d suffix, e.g. instead of -lhpx_iostreams you will need
to specify -lhpx_iostreamsd.

Important: If the HPX libraries are in a path that is not found by the dynamic linker. You need to add the path
$HPX_LOCATION/lib to your linker search path (for example LD_LIBRARY_PATH on Linux).

Now, to build the application that uses this component (hello_world_client.cpp), we do:

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HPX_LOCATION/lib/pkgconfig
c++ -o hello_world_client hello_world_client.cpp \

``pkg-config --cflags --libs hpx_application``\
-L${HOME}/my_hpx_libs -lhpx_hello_world -lhpx_iostreams

Important: When using pkg-config with HPX, the pkg-config flags must go after the -o flag.

Finally, you’ll need to set your LD_LIBRARY_PATH before you can run the program. To run the program, type:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$HOME/my_hpx_libs"
./hello_world_client

which should print Hello HPX World! and exit.

2.5. Manual 107

HPX Documentation, 1.5.1

Using HPX with CMake-based projects

In addition to the pkg-config support discussed on the previous pages, HPX comes with full CMake support. In order
to integrate HPX into existing or new CMakeLists.txt, you can leverage the find_package94 command integrated into
CMake. Following, is a Hello World component example using CMake.

Let’s revisit what we have. We have three files that compose our example application:

• hello_world_component.hpp

• hello_world_component.cpp

• hello_world_client.hpp

The basic structure to include HPX into your CMakeLists.txt is shown here:

Require a recent version of cmake
cmake_minimum_required(VERSION 3.13 FATAL_ERROR)

This project is C++ based.
project(your_app CXX)

Instruct cmake to find the HPX settings
find_package(HPX)

In order to have CMake find HPX, it needs to be told where to look for the HPXConfig.cmake file that is generated
when HPX is built or installed. It is used by find_package(HPX) to set up all the necessary macros needed to use
HPX in your project. The ways to achieve this are:

• Set the HPX_DIR CMake variable to point to the directory containing the HPXConfig.cmake script on the
command line when you invoke CMake:

cmake -DHPX_DIR=$HPX_LOCATION/lib/cmake/HPX ...

where $HPX_LOCATION is the build directory or CMAKE_INSTALL_PREFIX you used when build-
ing/configuring HPX.

• Set the CMAKE_PREFIX_PATH variable to the root directory of your HPX build or install location on the
command line when you invoke CMake:

cmake -DCMAKE_PREFIX_PATH=$HPX_LOCATION ...

The difference between CMAKE_PREFIX_PATH and HPX_DIR is that CMake will add common postfixes,
such as lib/cmake/<project, to the CMAKE_PREFIX_PATH and search in these locations too. Note that
if your project uses HPX as well as other CMake-managed projects, the paths to the locations of these multiple
projects may be concatenated in the CMAKE_PREFIX_PATH.

• The variables above may be set in the CMake GUI or curses ccmake interface instead of the command line.

Additionally, if you wish to require HPX for your project, replace the find_package(HPX) line with
find_package(HPX REQUIRED).

You can check if HPX was successfully found with the HPX_FOUND CMake variable.

94 https://www.cmake.org/cmake/help/latest/command/find_package.html

108 Chapter 2. What’s so special about HPX?

https://www.cmake.org/cmake/help/latest/command/find_package.html

HPX Documentation, 1.5.1

Using CMake targets

The recommended way of setting up your targets to use HPX is to link to the HPX::hpx CMake target:

target_link_libraries(hello_world_component PUBLIC HPX::hpx)

This requires that you have already created the target like this:

add_library(hello_world_component SHARED hello_world_component.cpp)
target_include_directories(hello_world_component PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

When you link your library to the HPX::hpx CMake target, you will be able use HPX functionality in your library. To
use main() as the implicit entry point in your application you must additionally link your application to the CMake
target HPX::wrap_main. This target is automatically linked to executables if you are using the macros described
below (Using macros to create new targets). See Re-use the main() function as the main HPX entry point for more
information on implicitly using main() as the entry point.

Creating a component requires setting two additional compile definitions:

target_compile_options(hello_world_component
HPX_COMPONENT_NAME=hello_world
HPX_COMPONENT_EXPORTS)

Instead of setting these definitions manually you may link to the HPX::component target, which sets
HPX_COMPONENT_NAME to hpx_<target_name>, where <target_name> is the target name of your library.
Note that these definitions should be PRIVATE to make sure these definitions are not propagated transitively to de-
pendent targets.

In addition to making your library a component you can make it a plugin. To do so link to the HPX::plugin
target. Similarly to HPX::component this will set HPX_PLUGIN_NAME to hpx_<target_name>. This defi-
nition should also be PRIVATE. Unlike regular shared libraries, plugins are loaded at runtime from certain directo-
ries and will not be found without additional configuration. Plugins should be installed into a directory containing
only plugins. For example, the plugins created by HPX itself are installed into the hpx subdirectory in the li-
brary install directory (typically lib or lib64). When using the HPX::plugin target you need to install your
plugins into an appropriate directory. You may also want to set the location of your plugin in the build directory
with the *_OUTPUT_DIRECTORY* CMake target properties to be able to load the plugins in the build directory.
Once you’ve set the install or output directory of your plugin you need to tell your executable where to find it at
runtime. You can do this either by setting the environment variable HPX_COMPONENT_PATHS or the ini setting
hpx.component_paths (see --hpx:ini) to the directory containing your plugin.

Using macros to create new targets

In addition to the targets described above, HPX provides convenience macros to hide optional boilerplate code that
may be useful for your project. The link to the targets described above. We recommend that you use the targets directly
whenever possible as they tend to compose better with other targets.

The macro for adding an HPX component is add_hpx_component. It can be used in your CMakeLists.txt
file like this:

build your application using HPX
add_hpx_component(hello_world

SOURCES hello_world_component.cpp
HEADERS hello_world_component.hpp
COMPONENT_DEPENDENCIES iostreams)

2.5. Manual 109

HPX Documentation, 1.5.1

Note: add_hpx_component adds a _component suffix to the target name. In the example above, a
hello_world_component target will be created.

The available options to add_hpx_component are:

• SOURCES: The source files for that component

• HEADERS: The header files for that component

• DEPENDENCIES: Other libraries or targets this component depends on

• COMPONENT_DEPENDENCIES: The components this component depends on

• PLUGIN: Treats this component as a plugin-able library

• COMPILE_FLAGS: Additional compiler flags

• LINK_FLAGS: Additional linker flags

• FOLDER: Adds the headers and source files to this Source Group folder

• EXCLUDE_FROM_ALL: Do not build this component as part of the all target

After adding the component, the way you add the executable is as follows:

build your application using HPX
add_hpx_executable(hello_world

ESSENTIAL
SOURCES hello_world_client.cpp
COMPONENT_DEPENDENCIES hello_world)

Note: add_hpx_executable automatically adds a _component suffix to dependencies specified in
COMPONENT_DEPENDENCIES, meaning you can directly use the name given when adding a component using
add_hpx_component.

When you configure your application, all you need to do is set the HPX_DIR variable to point to the installation of
HPX.

Note: All library targets built with HPX are exported and readily available to be used as arguments to tar-
get_link_libraries95 in your targets. The HPX include directories are available with the HPX_INCLUDE_DIRSCMake
variable.

Using the HPX compiler wrapper hpxcxx

The hpxcxx compiler wrapper helps to compile a HPX component, application, or object file, based on the arguments
passed to it.

hpxcxx [--exe=<APPLICATION_NAME> | --comp=<COMPONENT_NAME> | -c] FLAGS FILES

The hpxcxx command requires that either an application or a component is built or -c flag is specified. If the build
is against a debug build, the -g is to be specified while building.

95 https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html

110 Chapter 2. What’s so special about HPX?

https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html
https://www.cmake.org/cmake/help/latest/command/target_link_libraries.html

HPX Documentation, 1.5.1

Optional FLAGS

• -l <LIBRARY> | -l<LIBRARY>: Links <LIBRARY> to the build

• -g: Specifies that the application or component build is against a debug build

• -rd: Sets release-with-debug-info option

• -mr: Sets minsize-release option

All other flags (like -o OUTPUT_FILE) are directly passed to the underlying C++ compiler.

Using macros to set up existing targets to use HPX

In addition to the add_hpx_component and add_hpx_executable, you can use the hpx_setup_target
macro to have an already existing target to be used with the HPX libraries:

hpx_setup_target(target)

Optional parameters are:

• EXPORT: Adds it to the CMake export list HPXTargets

• INSTALL: Generates an install rule for the target

• PLUGIN: Treats this component as a plugin-able library

• TYPE: The type can be: EXECUTABLE, LIBRARY or COMPONENT

• DEPENDENCIES: Other libraries or targets this component depends on

• COMPONENT_DEPENDENCIES: The components this component depends on

• COMPILE_FLAGS: Additional compiler flags

• LINK_FLAGS: Additional linker flags

If you do not use CMake, you can still build against HPX, but you should refer to the section on How to build HPX
components with pkg-config.

Note: Since HPX relies on dynamic libraries, the dynamic linker needs to know where to look for them. If HPX
isn’t installed into a path that is configured as a linker search path, external projects need to either set RPATH or
adapt LD_LIBRARY_PATH to point to where the HPX libraries reside. In order to set RPATHs, you can include
HPX_SetFullRPATH in your project after all libraries you want to link against have been added. Please also consult
the CMake documentation here96.

Using HPX with Makefile

A basic project building with HPX is through creating makefiles. The process of creating one can get complex de-
pending upon the use of cmake parameter HPX_WITH_HPX_MAIN (which defaults to ON).

96 https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/RPATH-handling

2.5. Manual 111

https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/RPATH-handling

HPX Documentation, 1.5.1

How to build HPX applications with makefile

If HPX is installed correctly, you should be able to build and run a simple Hello World program. It prints Hello
World! on the locality you run it on.

// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.
#include <hpx/hpx_main.hpp>
#include <hpx/iostream.hpp>

int main()
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return 0;

}

Copy the content of this program into a file called hello_world.cpp.

Now, in the directory where you put hello_world.cpp, create a Makefile. Add the following code:

CXX=(CXX) # Add your favourite compiler here or let makefile choose default.

CXXFLAGS=-O3 -std=c++17

BOOST_ROOT=/path/to/boost
HWLOC_ROOT=/path/to/hwloc
TCMALLOC_ROOT=/path/to/tcmalloc
HPX_ROOT=/path/to/hpx

INCLUDE_DIRECTIVES=$(HPX_ROOT)/include $(BOOST_ROOT)/include $(HWLOC_ROOT)/include

LIBRARY_DIRECTIVES=-L$(HPX_ROOT)/lib $(HPX_ROOT)/lib/libhpx_init.a $(HPX_ROOT)/lib/
→˓libhpx.so $(BOOST_ROOT)/lib/libboost_atomic-mt.so $(BOOST_ROOT)/lib/libboost_
→˓filesystem-mt.so $(BOOST_ROOT)/lib/libboost_program_options-mt.so $(BOOST_ROOT)/lib/
→˓libboost_regex-mt.so $(BOOST_ROOT)/lib/libboost_system-mt.so -lpthread $(TCMALLOC_
→˓ROOT)/libtcmalloc_minimal.so $(HWLOC_ROOT)/libhwloc.so -ldl -lrt

LINK_FLAGS=$(HPX_ROOT)/lib/libhpx_wrap.a -Wl,-wrap=main # should be left empty for
→˓HPX_WITH_HPX_MAIN=OFF

hello_world: hello_world.o
$(CXX) $(CXXFLAGS) -o hello_world hello_world.o $(LIBRARY_DIRECTIVES) $(LINK_FLAGS)

hello_world.o:
$(CXX) $(CXXFLAGS) -c -o hello_world.o hello_world.cpp $(INCLUDE_DIRECTIVES)

Important: LINK_FLAGS should be left empty if HPX_WITH_HPX_MAIN is set to OFF. Boost in the above
example is build with --layout=tagged. Actual Boost flags may vary on your build of Boost.

To build the program, type:

make

A successful build should result in hello_world binary. To test, type:

112 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

./hello_world

How to build HPX components with makefile

Let’s try a more complex example involving an HPX component. An HPX component is a class that exposes HPX
actions. HPX components are compiled into dynamically-loaded modules called component libraries. Here’s the
source code:

hello_world_component.cpp

#include "hello_world_component.hpp"
#include <hpx/iostream.hpp>

#include <iostream>

namespace examples { namespace server
{

void hello_world::invoke()
{

hpx::cout << "Hello HPX World!" << std::endl;
}

}}

HPX_REGISTER_COMPONENT_MODULE();

typedef hpx::components::component<
examples::server::hello_world

> hello_world_type;

HPX_REGISTER_COMPONENT(hello_world_type, hello_world);

HPX_REGISTER_ACTION(
examples::server::hello_world::invoke_action, hello_world_invoke_action);

hello_world_component.hpp

#pragma once

#include <hpx/hpx.hpp>
#include <hpx/include/actions.hpp>
#include <hpx/include/lcos.hpp>
#include <hpx/include/components.hpp>
#include <hpx/serialization.hpp>

#include <utility>

namespace examples { namespace server
{

struct HPX_COMPONENT_EXPORT hello_world
: hpx::components::component_base<hello_world>

{
void invoke();
HPX_DEFINE_COMPONENT_ACTION(hello_world, invoke);

};
}}

(continues on next page)

2.5. Manual 113

HPX Documentation, 1.5.1

(continued from previous page)

HPX_REGISTER_ACTION_DECLARATION(
examples::server::hello_world::invoke_action, hello_world_invoke_action);

namespace examples
{

struct hello_world
: hpx::components::client_base<hello_world, server::hello_world>

{
typedef hpx::components::client_base<hello_world, server::hello_world>

base_type;

hello_world(hpx::future<hpx::naming::id_type> && f)
: base_type(std::move(f))

{}

hello_world(hpx::naming::id_type && f)
: base_type(std::move(f))

{}

void invoke()
{

hpx::async<server::hello_world::invoke_action>(this->get_id()).get();
}

};
}

hello_world_client.cpp

#include "hello_world_component.hpp"
#include <hpx/hpx_main.hpp>

int main(int argc, char* argv[])
{

{
// Create a single instance of the component on this locality.
examples::hello_world client =

hpx::new_<examples::hello_world>(hpx::find_here());

// Invoke the component's action, which will print "Hello World!".
client.invoke();

}

return 0;
}

Now, in the directory, create a Makefile. Add the following code:

CXX=(CXX) # Add your favourite compiler here or let makefile choose default.

CXXFLAGS=-O3 -std=c++17

BOOST_ROOT=/path/to/boost
HWLOC_ROOT=/path/to/hwloc
TCMALLOC_ROOT=/path/to/tcmalloc
HPX_ROOT=/path/to/hpx

INCLUDE_DIRECTIVES=$(HPX_ROOT)/include $(BOOST_ROOT)/include $(HWLOC_ROOT)/include
(continues on next page)

114 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

LIBRARY_DIRECTIVES=-L$(HPX_ROOT)/lib $(HPX_ROOT)/lib/libhpx_init.a $(HPX_ROOT)/lib/
→˓libhpx.so $(BOOST_ROOT)/lib/libboost_atomic-mt.so $(BOOST_ROOT)/lib/libboost_
→˓filesystem-mt.so $(BOOST_ROOT)/lib/libboost_program_options-mt.so $(BOOST_ROOT)/lib/
→˓libboost_regex-mt.so $(BOOST_ROOT)/lib/libboost_system-mt.so -lpthread $(TCMALLOC_
→˓ROOT)/libtcmalloc_minimal.so $(HWLOC_ROOT)/libhwloc.so -ldl -lrt

LINK_FLAGS=$(HPX_ROOT)/lib/libhpx_wrap.a -Wl,-wrap=main # should be left empty for
→˓HPX_WITH_HPX_MAIN=OFF

hello_world_client: libhpx_hello_world hello_world_client.o
$(CXX) $(CXXFLAGS) -o hello_world_client $(LIBRARY_DIRECTIVES) libhpx_hello_world

→˓$(LINK_FLAGS)

hello_world_client.o: hello_world_client.cpp
$(CXX) $(CXXFLAGS) -o hello_world_client.o hello_world_client.cpp $(INCLUDE_

→˓DIRECTIVES)

libhpx_hello_world: hello_world_component.o
$(CXX) $(CXXFLAGS) -o libhpx_hello_world hello_world_component.o $(LIBRARY_

→˓DIRECTIVES)

hello_world_component.o: hello_world_component.cpp
$(CXX) $(CXXFLAGS) -c -o hello_world_component.o hello_world_component.cpp

→˓$(INCLUDE_DIRECTIVES)

To build the program, type:

make

A successful build should result in hello_world binary. To test, type:

./hello_world

Note: Due to high variations in CMake flags and library dependencies, it is recommended to build HPX applications
and components with pkg-config or CMakeLists.txt. Writing Makefile may result in broken builds if due care is not
taken. pkg-config files and CMake systems are configured with CMake build of HPX. Hence, they are stable when
used together and provide better support overall.

2.5.4 Starting the HPX runtime

In order to write an application which uses services from the HPX runtime system you need to initialize the HPX
library by inserting certain calls into the code of your application. Depending on your use case, this can be done in 3
different ways:

• Minimally invasive: Re-use the main() function as the main HPX entry point.

• Balanced use case: Supply your own main HPX entry point while blocking the main thread.

• Most flexibility: Supply your own main HPX entry point while avoiding to block the main thread.

• Suspend and resume: As above but suspend and resume the HPX runtime to allow for other runtimes to be used.

2.5. Manual 115

HPX Documentation, 1.5.1

Re-use the main() function as the main HPX entry point

This method is the least intrusive to your code. It however provides you with the smallest flexibility in terms of
initializing the HPX runtime system. The following code snippet shows what a minimal HPX application using this
technique looks like:

#include <hpx/hpx_main.hpp>

int main(int argc, char* argv[])
{

return 0;
}

The only change to your code you have to make is to include the file hpx/hpx_main.hpp. In this case the function
main() will be invoked as the first HPX thread of the application. The runtime system will be initialized behind
the scenes before the function main() is executed and will automatically stop after main() has returned. For this
method to work you must link your application to the CMake target HPX::wrap_main. This is done automatically
if you are using the provided macros (Using macros to create new targets) to set up your application, but must be done
explicitly if you are using targets directly (Using CMake targets). All HPX API functions can be used from within the
main() function now.

Note: The function main() does not need to expect receiving argc and argv as shown above, but could expose
the signature int main(). This is consistent with the usually allowed prototypes for the function main() in C++
applications.

All command line arguments specific to HPX will still be processed by the HPX runtime system as usual. However,
those command line options will be removed from the list of values passed to argc/argv of the function main().
The list of values passed to main() will hold only the commandline options which are not recognized by the HPX
runtime system (see the section HPX Command Line Options for more details on what options are recognized by
HPX).

Note: In this mode all one-letter-shortcuts are disabled which are normally available on the HPX command line
(such as -t or -l see HPX Command Line Options). This is done to minimize any possible interaction between
the command line options recognized by the HPX runtime system and any command line options defined by the
application.

The value returned from the function main() as shown above will be returned to the operating system as usual.

Important: To achieve this seamless integration, the header file hpx/hpx_main.hpp defines a macro:

#define main hpx_startup::user_main

which could result in unexpected behavior.

Important: To achieve this seamless integration, we use different implementations for different operating systems.
In case of Linux or macOS, the code present in hpx_wrap.cpp is put into action. We hook into the system function
in case of Linux and provide alternate entry point in case of macOS. For other operating systems we rely on a macro:

#define main hpx_startup::user_main

116 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

provided in the header file hpx/hpx_main.hpp. This implementation can result in unexpected behavior.

Caution: We make use of an override variable include_libhpx_wrap in the header file hpx/hpx_main.
hpp to swiftly choose the function call stack at runtime. Therefore, the header file should only be included in the
main executable. Including it in the components will result in multiple definition of the variable.

Supply your own main HPX entry point while blocking the main thread

With this method you need to provide an explicit main thread function named hpx_main at global scope. This
function will be invoked as the main entry point of your HPX application on the console locality only (this function
will be invoked as the first HPX thread of your application). All HPX API functions can be used from within this
function.

The thread executing the function hpx::init will block waiting for the runtime system to exit. The value returned
from hpx_main will be returned from hpx::init after the runtime system has stopped.

The function hpx::finalize has to be called on one of the HPX localities in order to signal that all work has been
scheduled and the runtime system should be stopped after the scheduled work has been executed.

This method of invoking HPX has the advantage of you being able to decide which version of hpx::init to call.
This allows to pass additional configuration parameters while initializing the HPX runtime system.

#include <hpx/hpx_init.hpp>

int hpx_main(int argc, char* argv[])
{

// Any HPX application logic goes here...
return hpx::finalize();

}

int main(int argc, char* argv[])
{

// Initialize HPX, run hpx_main as the first HPX thread, and
// wait for hpx::finalize being called.
return hpx::init(argc, argv);

}

Note: The function hpx_main does not need to expect receiving argc/argv as shown above, but could expose
one of the following signatures:

int hpx_main();
int hpx_main(int argc, char* argv[]);
int hpx_main(hpx::program_options::variables_map& vm);

This is consistent with (and extends) the usually allowed prototypes for the function main() in C++ applications.

The header file to include for this method of using HPX is hpx/hpx_init.hpp.

There are many additional overloads of hpx::init available, such as for instance to provide your own entry point
function instead of hpx_main. Please refer to the function documentation for more details (see: hpx/hpx_init.
hpp).

2.5. Manual 117

HPX Documentation, 1.5.1

Supply your own main HPX entry point while avoiding to block the main thread

With this method you need to provide an explicit main thread function named hpx_main at global scope. This
function will be invoked as the main entry point of your HPX application on the console locality only (this function
will be invoked as the first HPX thread of your application). All HPX API functions can be used from within this
function.

The thread executing the function hpx::start will not block waiting for the runtime system to exit, but will return
immediately. The function hpx::finalize has to be called on one of the HPX localities in order to signal that all
work has been scheduled and the runtime system should be stopped after the scheduled work has been executed.

This method of invoking HPX is useful for applications where the main thread is used for special operations, such a
GUIs. The function hpx::stop can be used to wait for the HPX runtime system to exit and should be at least used
as the last function called in main(). The value returned from hpx_main will be returned from hpx::stop after
the runtime system has stopped.

#include <hpx/hpx_start.hpp>

int hpx_main(int argc, char* argv[])
{

// Any HPX application logic goes here...
return hpx::finalize();

}

int main(int argc, char* argv[])
{

// Initialize HPX, run hpx_main.
hpx::start(argc, argv);

// ...Execute other code here...

// Wait for hpx::finalize being called.
return hpx::stop();

}

Note: The function hpx_main does not need to expect receiving argc/argv as shown above, but could expose
one of the following signatures:

int hpx_main();
int hpx_main(int argc, char* argv[]);
int hpx_main(hpx::program_options::variables_map& vm);

This is consistent with (and extends) the usually allowed prototypes for the function main() in C++ applications.

The header file to include for this method of using HPX is hpx/hpx_start.hpp.

There are many additional overloads of hpx::start available, such as for instance to provide your own entry point
function instead of hpx_main. Please refer to the function documentation for more details (see: hpx/hpx_start.
hpp).

118 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Suspending and resuming the HPX runtime

In some applications it is required to combine HPX with other runtimes. To support this use case HPX provides
two functions: hpx::suspend and hpx::resume. hpx::suspend is a blocking call which will wait for all
scheduled tasks to finish executing and then put the thread pool OS threads to sleep. hpx::resume simply wakes up
the sleeping threads so that they are ready to accept new work. hpx::suspend and hpx::resume can be found
in the header hpx/hpx_suspend.hpp.

#include <hpx/hpx_start.hpp>
#include <hpx/hpx_suspend.hpp>

int main(int argc, char* argv[])
{

// Initialize HPX, don't run hpx_main
hpx::start(nullptr, argc, argv);

// Schedule a function on the HPX runtime
hpx::apply(&my_function, ...);

// Wait for all tasks to finish, and suspend the HPX runtime
hpx::suspend();

// Execute non-HPX code here

// Resume the HPX runtime
hpx::resume();

// Schedule more work on the HPX runtime

// hpx::finalize has to be called from the HPX runtime before hpx::stop
hpx::apply([]() { hpx::finalize(); });
return hpx::stop();

}

Note: hpx::suspend does not wait for hpx::finalize to be called. Only call hpx::finalize when you
wish to fully stop the HPX runtime.

HPX also supports suspending individual thread pools and threads. For details on how to do that see the documentation
for hpx::threads::thread_pool_base.

Automatically suspending worker threads

The previous method guarantees that the worker threads are suspended when you ask for it and that they stay sus-
pended. An alternative way to achieve the same effect is to tweak how quickly HPX suspends its worker threads when
they run out of work. The following configuration values make sure that HPX idles very quickly:

hpx.max_idle_backoff_time = 1000
hpx.max_idle_loop_count = 0

They can be set on the command line using --hpx:ini=hpx.max_idle_backoff_time=1000 and
--hpx:ini=hpx.max_idle_loop_count=0. See Launching and configuring HPX applications for more de-
tails on how to set configuration parameters.

After setting idling parameters the previous example could now be written like this instead:

2.5. Manual 119

HPX Documentation, 1.5.1

#include <hpx/hpx_start.hpp>

int main(int argc, char* argv[])
{

// Initialize HPX, don't run hpx_main
hpx::start(nullptr, argc, argv);

// Schedule some functions on the HPX runtime
// NOTE: run_as_hpx_thread blocks until completion.
hpx::run_as_hpx_thread(&my_function, ...);
hpx::run_as_hpx_thread(&my_other_function, ...);

// hpx::finalize has to be called from the HPX runtime before hpx::stop
hpx::apply([]() { hpx::finalize(); });
return hpx::stop();

}

In this example each call to hpx::run_as_hpx_thread acts as a “parallel region”.

Working of hpx_main.hpp

In order to initialize HPX from main(), we make use of linker tricks.

It is implemented differently for different Operating Systems. Method of implementation is as follows:

• Linux: Using linker --wrap option.

• Mac OSX: Using the linker -e option.

• Windows: Using #define main hpx_startup::user_main

Linux implementation

We make use of the Linux linker ld‘s --wrap option to wrap the main() function. This way any call to main()
are redirected to our own implementation of main. It is here that we check for the existence of hpx_main.hpp by
making use of a shadow variable include_libhpx_wrap. The value of this variable determines the function stack
at runtime.

The implementation can be found in libhpx_wrap.a.

Important: It is necessary that hpx_main.hpp be not included more than once. Multiple inclusions can result in
multiple definition of include_libhpx_wrap.

120 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Mac OSX implementation

Here we make use of yet another linker option -e to change the entry point to our custom entry function
initialize_main. We initialize the HPX runtime system from this function and call main from the initialized sys-
tem. We determine the function stack at runtime by making use of the shadow variable include_libhpx_wrap.

The implementation can be found in libhpx_wrap.a.

Important: It is necessary that hpx_main.hpp be not included more than once. Multiple inclusions can result in
multiple definition of include_libhpx_wrap.

Windows implementation

We make use of a macro #define main hpx_startup::user_main to take care of the initializations.

This implementation could result in unexpected behaviors.

2.5.5 Launching and configuring HPX applications

Configuring HPX applications

All HPX applications can be configured using special command line options and/or using special configuration files.
This section describes the available options, the configuration file format, and the algorithm used to locate possible
predefined configuration files. Additionally this section describes the defaults assumed if no external configuration
information is supplied.

During startup any HPX application applies a predefined search pattern to locate one or more configuration files.
All found files will be read and merged in the sequence they are found into one single internal database holding all
configuration properties. This database is used during the execution of the application to configure different aspects of
the runtime system.

In addition to the ini files, any application can supply its own configuration files, which will be merged with the
configuration database as well. Moreover, the user can specify additional configuration parameters on the command
line when executing an application. The HPX runtime system will merge all command line configuration options (see
the description of the --hpx:ini, --hpx:config, and --hpx:app-config command line options).

The HPX INI File Format

All HPX applications can be configured using a special file format which is similar to the well-known Windows INI
file format97. This is a structured text format allowing to group key/value pairs (properties) into sections. The basic
element contained in an ini file is the property. Every property has a name and a value, delimited by an equals sign
'='. The name appears to the left of the equals sign:

name=value

The value may contain equal signs as only the first '=' character is interpreted as the delimiter between name and
value Whitespace before the name, after the value and immediately before and after the delimiting equal sign is
ignored. Whitespace inside the value is retained.

97 https://en.wikipedia.org/wiki/INI_file

2.5. Manual 121

https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file

HPX Documentation, 1.5.1

Properties may be grouped into arbitrarily named sections. The section name appears on a line by itself, in square
brackets [and]. All properties after the section declaration are associated with that section. There is no explicit “end
of section” delimiter; sections end at the next section declaration, or the end of the file:

[section]

In HPX sections can be nested. A nested section has a name composed of all section names it is embedded in. The
section names are concatenated using a dot '.':

[outer_section.inner_section]

Here inner_section is logically nested within outer_section.

It is possible to use the full section name concatenated with the property name to refer to a particular property. For
example in:

[a.b.c]
d = e

the property value of d can be referred to as a.b.c.d=e.

In HPX ini files can contain comments. Hash signs '#' at the beginning of a line indicate a comment. All characters
starting with the '#' until the end of line are ignored.

If a property with the same name is reused inside a section, the second occurrence of this property name will override
the first occurrence (discard the first value). Duplicate sections simply merge their properties together, as if they
occurred contiguously.

In HPX ini files, a property value ${FOO:default} will use the environmental variable FOO to extract the actual
value if it is set and default otherwise. No default has to be specified. Therefore ${FOO} refers to the environmen-
tal variable FOO. If FOO is not set or empty the overall expression will evaluate to an empty string. A property value
$[section.key:default] refers to the value held by the property section.key if it exists and default
otherwise. No default has to be specified. Therefore $[section.key] refers to the property section.key. If
the property section.key is not set or empty, the overall expression will evaluate to an empty string.

Note: Any property $[section.key:default] is evaluated whenever it is queried and not when the configu-
ration data is initialized. This allows for lazy evaluation and relaxes initialization order of different sections. The only
exception are recursive property values, e.g. values referring to the very key they are associated with. Those property
values are evaluated at initialization time to avoid infinite recursion.

Built-in Default Configuration Settings

During startup any HPX application applies a predefined search pattern to locate one or more configuration files. All
found files will be read and merged in the sequence they are found into one single internal data structure holding all
configuration properties.

As a first step the internal configuration database is filled with a set of default configuration properties. Those settings
are described on a section by section basis below.

Note: You can print the default configuration settings used for an executable by specifying the command line option
--hpx:dump-config.

122 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The system configuration section

[system]
pid = <process-id>
prefix = <current prefix path of core HPX library>
executable = <current prefix path of executable>

Property Description
system.pid This is initialized to store the current OS-process id of the application instance.
system.prefix This is initialized to the base directory HPX has been loaded from.
system.
executable_prefix

This is initialized to the base directory the current executable has been loaded
from.

The hpx configuration section

[hpx]
location = ${HPX_LOCATION:$[system.prefix]}
component_path = $[hpx.location]/lib/hpx:$[system.executable_prefix]/lib/hpx:$[system.
→˓executable_prefix]/../lib/hpx
master_ini_path = $[hpx.location]/share/hpx-<version>:$[system.executable_prefix]/
→˓share/hpx-<version>:$[system.executable_prefix]/../share/hpx-<version>
ini_path = $[hpx.master_ini_path]/ini
os_threads = 1
localities = 1
program_name =
cmd_line =
lock_detection = ${HPX_LOCK_DETECTION:0}
throw_on_held_lock = ${HPX_THROW_ON_HELD_LOCK:1}
minimal_deadlock_detection = <debug>
spinlock_deadlock_detection = <debug>
spinlock_deadlock_detection_limit = ${HPX_SPINLOCK_DEADLOCK_DETECTION_LIMIT:1000000}
max_background_threads = ${HPX_MAX_BACKGROUND_THREADS:$[hpx.os_threads]}
max_idle_loop_count = ${HPX_MAX_IDLE_LOOP_COUNT:<hpx_idle_loop_count_max>}
max_busy_loop_count = ${HPX_MAX_BUSY_LOOP_COUNT:<hpx_busy_loop_count_max>}
max_idle_backoff_time = ${HPX_MAX_IDLE_BACKOFF_TIME:<hpx_idle_backoff_time_max>}
exception_verbosity = ${HPX_EXCEPTION_VERBOSITY:2}

[hpx.stacks]
small_size = ${HPX_SMALL_STACK_SIZE:<hpx_small_stack_size>}
medium_size = ${HPX_MEDIUM_STACK_SIZE:<hpx_medium_stack_size>}
large_size = ${HPX_LARGE_STACK_SIZE:<hpx_large_stack_size>}
huge_size = ${HPX_HUGE_STACK_SIZE:<hpx_huge_stack_size>}
use_guard_pages = ${HPX_THREAD_GUARD_PAGE:1}

2.5. Manual 123

HPX Documentation, 1.5.1

124 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Property Description
hpx.
location

This is initialized to the id of the locality this application instance is running on.

hpx.
component_path

Duplicates are discarded. This property can refer to a list of directories separated by ':' (Linux,
Android, and MacOS) or using ';' (Windows).

hpx.
master_ini_path

This is initialized to the list of default paths of the main hpx.ini configuration files. This property
can refer to a list of directories separated by ':' (Linux, Android, and MacOS) or using ';'
(Windows).

hpx.
ini_path

This is initialized to the default path where HPX will look for more ini configuration files. This
property can refer to a list of directories separated by ':' (Linux, Android, and MacOS) or using
';' (Windows).

hpx.
os_threads

This setting reflects the number of OS-threads used for running HPX-threads. Defaults to number
of detected cores (not hyperthreads/PUs).

hpx.
localities

This setting reflects the number of localities the application is running on. Defaults to 1.

hpx.
program_name

This setting reflects the program name of the application instance. Initialized from the command
line argv[0].

hpx.
cmd_line

This setting reflects the actual command line used to launch this application instance.

hpx.
lock_detection

This setting verifies that no locks are being held while a HPX thread is suspended. This setting is
applicable only if HPX_WITH_VERIFY_LOCKS is set during configuration in CMake.

hpx.
throw_on_held_lock

This setting causes an exception if during lock detection at least one lock is being held while a HPX
thread is suspended. This setting is applicable only if HPX_WITH_VERIFY_LOCKS is set during
configuration in CMake. This setting has no effect if hpx.lock_detection=0.

hpx.
minimal_deadlock_detection

This setting enables support for minimal deadlock detection for HPX-threads. By default this is
set to 1 (for Debug builds) or to 0 (for Release, RelWithDebInfo, RelMinSize builds), this setting
is effective only if HPX_WITH_THREAD_DEADLOCK_DETECTION is set during configuration in
CMake.

hpx.
spinlock_deadlock_detection

This setting verifies that spinlocks don’t spin longer than specified using the hpx.
spinlock_deadlock_detection_limit. This setting is applicable only if
HPX_WITH_SPINLOCK_DEADLOCK_DETECTION is set during configuration in CMake.
By default this is set to 1 (for Debug builds) or to 0 (for Release, RelWithDebInfo, RelMinSize
builds).

hpx.
spinlock_deadlock_detection_limit

This setting specifies the upper limit of allowed number of spins that spinlocks are allowed to per-
form. This setting is applicable only if HPX_WITH_SPINLOCK_DEADLOCK_DETECTION is set
during configuration in CMake. By default this is set to 1000000.

hpx.
max_background_threads

This setting defines the number of threads in the scheduler which are used to execute background
work. By default this is the same as the number of cores used for the scheduler.

hpx.
max_idle_loop_count

By default this is defined by the preprocessor constant HPX_IDLE_LOOP_COUNT_MAX. This is
an internal setting which you should change only if you know exactly what you are doing.

hpx.
max_busy_loop_count

This setting defines the maximum value of the busy-loop counter in the scheduler. By default this is
defined by the preprocessor constant HPX_BUSY_LOOP_COUNT_MAX. This is an internal setting
which you should change only if you know exactly what you are doing.

hpx.
max_idle_backoff_time

This setting defines the maximum time (in milliseconds) for the scheduler to sleep after be-
ing idle for hpx.max_idle_loop_count iterations. This setting is applicable only if
HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF is set during configuration in CMake. By de-
fault this is defined by the preprocessor constant HPX_IDLE_BACKOFF_TIME_MAX. This is an
internal setting which you should change only if you know exactly what you are doing.

hpx.
exception_verbosity

This setting defines the verbosity of exceptions. Valid values are integers. A setting of 2 or higher
prints all available information. A setting of 1 leaves out the build configuration and environment
variables. A setting of 0 or lower prints only the description of the thrown exception and the file
name, function, and line number where the exception was thrown. The default value is 2 or the
value of the environment variable HPX_EXCEPTION_VERBOSITY.

hpx.
stacks.
small_size

This is initialized to the small stack size to be used by HPX-threads. Set by default to the value of
the compile time preprocessor constant HPX_SMALL_STACK_SIZE (defaults to 0x8000). This
value is used for all HPX threads by default, except for the thread running hpx_main (which runs
on a large stack).

hpx.
stacks.
medium_size

This is initialized to the medium stack size to be used by HPX-threads. Set by default to the value
of the compile time preprocessor constant HPX_MEDIUM_STACK_SIZE (defaults to 0x20000).

hpx.
stacks.
large_size

This is initialized to the large stack size to be used by HPX-threads. Set by default to the value
of the compile time preprocessor constant HPX_LARGE_STACK_SIZE (defaults to 0x200000).
This setting is used by default for the thread running hpx_main only.

hpx.
stacks.
huge_size

This is initialized to the huge stack size to be used by HPX-threads. Set by default to the value of
the compile time preprocessor constant HPX_HUGE_STACK_SIZE (defaults to 0x2000000).

hpx.
stacks.
use_guard_pages

This entry controls whether the coroutine library will generate stack guard pages or not. This entry
is applicable on Linux only and only if the HPX_USE_GENERIC_COROUTINE_CONTEXT option
is not enabled and the HPX_WITH_THREAD_GUARD_PAGE is set to 1 while configuring the build
system. It is set by default to 1.

2.5. Manual 125

HPX Documentation, 1.5.1

The hpx.threadpools configuration section

[hpx.threadpools]
io_pool_size = ${HPX_NUM_IO_POOL_SIZE:2}
parcel_pool_size = ${HPX_NUM_PARCEL_POOL_SIZE:2}
timer_pool_size = ${HPX_NUM_TIMER_POOL_SIZE:2}

Property Description
hpx.threadpools.
io_pool_size

The value of this property defines the number of OS-threads created for the
internal I/O thread pool.

hpx.threadpools.
parcel_pool_size

The value of this property defines the number of OS-threads created for the
internal parcel thread pool.

hpx.threadpools.
timer_pool_size

The value of this property defines the number of OS-threads created for the
internal timer thread pool.

The hpx.thread_queue configuration section

Important: These setting control internal values used by the thread scheduling queues in the HPX scheduler. You
should not modify these settings except if you know exactly what you are doing]

[hpx.thread_queue]
min_tasks_to_steal_pending = ${HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_PENDING:0}
min_tasks_to_steal_staged = ${HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_STAGED:10}
min_add_new_count = ${HPX_THREAD_QUEUE_MIN_ADD_NEW_COUNT:10}
max_add_new_count = ${HPX_THREAD_QUEUE_MAX_ADD_NEW_COUNT:10}
max_delete_count = ${HPX_THREAD_QUEUE_MAX_DELETE_COUNT:1000}

Property Description
hpx.
thread_queue.
min_tasks_to_steal_pending

The value of this property defines the number of pending HPX threads which have to
be available before neighboring cores are allowed to steal work. The default is to allow
stealing always.

hpx.
thread_queue.
min_tasks_to_steal_staged

The value of this property defines the number of staged HPX tasks have which to be
available before neighboring cores are allowed to steal work. The default is to allow
stealing only if there are more tan 10 tasks available.

hpx.
thread_queue.
min_add_new_count

The value of this property defines the minimal number tasks to be converted into HPX
threads whenever the thread queues for a core have run empty.

hpx.
thread_queue.
max_add_new_count

The value of this property defines the maximal number tasks to be converted into HPX
threads whenever the thread queues for a core have run empty.

hpx.
thread_queue.
max_delete_count

The value of this property defines the number of terminated HPX threads to discard
during each invocation of the corresponding function.

126 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The hpx.components configuration section

[hpx.components]
load_external = ${HPX_LOAD_EXTERNAL_COMPONENTS:1}

Property Description
hpx.
components.
load_external

This entry defines whether external components will be loaded on this locality. This entry
normally is set to 1 and usually there is no need to directly change this value. It is automatically
set to 0 for a dedicated AGAS server locality.

Additionally, the section hpx.components will be populated with the information gathered from all found compo-
nents. The information loaded for each of the components will contain at least the following properties:

[hpx.components.<component_instance_name>]
name = <component_name>
path = <full_path_of_the_component_module>
enabled = $[hpx.components.load_external]

Property Description
hpx.
components.
<component_instance_name>.
name

This is the name of a component, usually the same as the second argument to the macro
used while registering the component with HPX_REGISTER_COMPONENT. Set by the
component factory.

hpx.
components.
<component_instance_name>.
path

This is either the full path file name of the component module or the directory the compo-
nent module is located in. In this case, the component module name will be derived from
the property hpx.components.<component_instance_name>.name. Set by
the component factory.

hpx.
components.
<component_instance_name>.
enabled

This setting explicitly enables or disables the component. This is an optional property,
HPX assumed that the component is enabled if it is not defined.

The value for <component_instance_name> is usually the same as for the corresponding name property. How-
ever generally it can be defined to any arbitrary instance name. It is used to distinguish between different ini sections,
one for each component.

The hpx.parcel configuration section

[hpx.parcel]
address = ${HPX_PARCEL_SERVER_ADDRESS:<hpx_initial_ip_address>}
port = ${HPX_PARCEL_SERVER_PORT:<hpx_initial_ip_port>}
bootstrap = ${HPX_PARCEL_BOOTSTRAP:<hpx_parcel_bootstrap>}
max_connections = ${HPX_PARCEL_MAX_CONNECTIONS:<hpx_parcel_max_connections>}
max_connections_per_locality = ${HPX_PARCEL_MAX_CONNECTIONS_PER_LOCALITY:<hpx_parcel_
→˓max_connections_per_locality>}
max_message_size = ${HPX_PARCEL_MAX_MESSAGE_SIZE:<hpx_parcel_max_message_size>}
max_outbound_message_size = ${HPX_PARCEL_MAX_OUTBOUND_MESSAGE_SIZE:<hpx_parcel_max_
→˓outbound_message_size>}
array_optimization = ${HPX_PARCEL_ARRAY_OPTIMIZATION:1}
zero_copy_optimization = ${HPX_PARCEL_ZERO_COPY_OPTIMIZATION:$[hpx.parcel.array_
→˓optimization]}

(continues on next page)

2.5. Manual 127

HPX Documentation, 1.5.1

(continued from previous page)

async_serialization = ${HPX_PARCEL_ASYNC_SERIALIZATION:1}
message_handlers = ${HPX_PARCEL_MESSAGE_HANDLERS:0}

Property Description
hpx.
parcel.
address

This property defines the default IP address to be used for the parcel layer to listen to. This IP
address will be used as long as no other values are specified (for instance using the --hpx:hpx
command line option). The expected format is any valid IP address or domain name format which
can be resolved into an IP address. The default depends on the compile time preprocessor constant
HPX_INITIAL_IP_ADDRESS ("127.0.0.1").

hpx.
parcel.
port

This property defines the default IP port to be used for the parcel layer to listen to. This IP
port will be used as long as no other values are specified (for instance using the --hpx:hpx
command line option). The default depends on the compile time preprocessor constant
HPX_INITIAL_IP_PORT (7910).

hpx.
parcel.
bootstrap

This property defines which parcelport type should be used during application bootstrap. The de-
fault depends on the compile time preprocessor constant HPX_PARCEL_BOOTSTRAP ("tcp").

hpx.
parcel.
max_connections

This property defines how many network connections between different localities are overall
kept alive by each of locality. The default depends on the compile time preprocessor constant
HPX_PARCEL_MAX_CONNECTIONS (512).

hpx.
parcel.
max_connections_per_locality

This property defines the maximum number of network connections that one locality will
open to another locality. The default depends on the compile time preprocessor constant
HPX_PARCEL_MAX_CONNECTIONS_PER_LOCALITY (4).

hpx.
parcel.
max_message_size

This property defines the maximum allowed message size which will be transferrable
through the parcel layer. The default depends on the compile time preprocessor constant
HPX_PARCEL_MAX_MESSAGE_SIZE (1000000000 bytes).

hpx.
parcel.
max_outbound_message_size

This property defines the maximum allowed outbound coalesced message size which will be trans-
ferrable through the parcel layer. The default depends on the compile time preprocessor constant
HPX_PARCEL_MAX_OUTBOUND_MESSAGE_SIZE (1000000 bytes).

hpx.
parcel.
array_optimization

This property defines whether this locality is allowed to utilize array optimizations during serial-
ization of parcel data. The default is 1.

hpx.
parcel.
zero_copy_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations dur-
ing serialization of parcel data. The default is the same value as set for hpx.parcel.
array_optimization.

hpx.
parcel.
async_serialization

This property defines whether this locality is allowed to spawn a new thread for serialization (this
is both for encoding and decoding parcels). The default is 1.

hpx.
parcel.
message_handlers

This property defines whether message handlers are loaded. The default is 0.

The following settings relate to the TCP/IP parcelport.

[hpx.parcel.tcp]
enable = ${HPX_HAVE_PARCELPORT_TCP:$[hpx.parcel.enabled]}
array_optimization = ${HPX_PARCEL_TCP_ARRAY_OPTIMIZATION:$[hpx.parcel.array_
→˓optimization]}
zero_copy_optimization = ${HPX_PARCEL_TCP_ZERO_COPY_OPTIMIZATION:$[hpx.parcel.zero_
→˓copy_optimization]}
async_serialization = ${HPX_PARCEL_TCP_ASYNC_SERIALIZATION:$[hpx.parcel.async_
→˓serialization]}
parcel_pool_size = ${HPX_PARCEL_TCP_PARCEL_POOL_SIZE:$[hpx.threadpools.parcel_pool_
→˓size]} (continues on next page)

128 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

max_connections = ${HPX_PARCEL_TCP_MAX_CONNECTIONS:$[hpx.parcel.max_connections]}
max_connections_per_locality = ${HPX_PARCEL_TCP_MAX_CONNECTIONS_PER_LOCALITY:$[hpx.
→˓parcel.max_connections_per_locality]}
max_message_size = ${HPX_PARCEL_TCP_MAX_MESSAGE_SIZE:$[hpx.parcel.max_message_size]}
max_outbound_message_size = ${HPX_PARCEL_TCP_MAX_OUTBOUND_MESSAGE_SIZE:$[hpx.parcel.
→˓max_outbound_message_size]}

Property Description
hpx.parcel.
tcp.enable

Enable the use of the default TCP parcelport. Note that the initial bootstrap of the overall
HPX application will be performed using the default TCP connections. This parcelport is
enabled by default. This will be disabled only if MPI is enabled (see below).

hpx.
parcel.tcp.
array_optimization

This property defines whether this locality is allowed to utilize array optimizations in the
TCP/IP parcelport during serialization of parcel data. The default is the same value as set
for hpx.parcel.array_optimization.

hpx.
parcel.tcp.
zero_copy_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations
in the TCP/IP parcelport during serialization of parcel data. The default is the same value
as set for hpx.parcel.zero_copy_optimization.

hpx.
parcel.tcp.
async_serialization

This property defines whether this locality is allowed to spawn a new thread for serial-
ization in the TCP/IP parcelport (this is both for encoding and decoding parcels). The
default is the same value as set for hpx.parcel.async_serialization.

hpx.
parcel.tcp.
parcel_pool_size

The value of this property defines the number of OS-threads created for the internal parcel
thread pool of the TCP parcel port. The default is taken from hpx.threadpools.
parcel_pool_size.

hpx.
parcel.tcp.
max_connections

This property defines how many network connections between different localities are
overall kept alive by each of locality. The default is taken from hpx.parcel.
max_connections.

hpx.
parcel.tcp.
max_connections_per_locality

This property defines the maximum number of network connections that one lo-
cality will open to another locality. The default is taken from hpx.parcel.
max_connections_per_locality.

hpx.
parcel.tcp.
max_message_size

This property defines the maximum allowed message size which will be trans-
ferrable through the parcel layer. The default is taken from hpx.parcel.
max_message_size.

hpx.
parcel.tcp.
max_outbound_message_size

This property defines the maximum allowed outbound coalesced message size which will
be transferrable through the parcel layer. The default is taken from hpx.parcel.
max_outbound_connections.

The following settings relate to the MPI parcelport. These settings take effect only if the compile time constant
HPX_HAVE_PARCELPORT_MPI is set (the equivalent cmake variable is HPX_WITH_PARCELPORT_MPI and has
to be set to ON.

[hpx.parcel.mpi]
enable = ${HPX_HAVE_PARCELPORT_MPI:$[hpx.parcel.enabled]}
env = ${HPX_HAVE_PARCELPORT_MPI_ENV:MV2_COMM_WORLD_RANK,PMI_RANK,OMPI_COMM_WORLD_SIZE,
→˓ALPS_APP_PE}
multithreaded = ${HPX_HAVE_PARCELPORT_MPI_MULTITHREADED:0}
rank = <MPI_rank>
processor_name = <MPI_processor_name>
array_optimization = ${HPX_HAVE_PARCEL_MPI_ARRAY_OPTIMIZATION:$[hpx.parcel.array_
→˓optimization]}
zero_copy_optimization = ${HPX_HAVE_PARCEL_MPI_ZERO_COPY_OPTIMIZATION:$[hpx.parcel.
→˓zero_copy_optimization]}
use_io_pool = ${HPX_HAVE_PARCEL_MPI_USE_IO_POOL:$1}

(continues on next page)

2.5. Manual 129

HPX Documentation, 1.5.1

(continued from previous page)

async_serialization = ${HPX_HAVE_PARCEL_MPI_ASYNC_SERIALIZATION:$[hpx.parcel.async_
→˓serialization]}
parcel_pool_size = ${HPX_HAVE_PARCEL_MPI_PARCEL_POOL_SIZE:$[hpx.threadpools.parcel_
→˓pool_size]}
max_connections = ${HPX_HAVE_PARCEL_MPI_MAX_CONNECTIONS:$[hpx.parcel.max_
→˓connections]}
max_connections_per_locality = ${HPX_HAVE_PARCEL_MPI_MAX_CONNECTIONS_PER_LOCALITY:
→˓$[hpx.parcel.max_connections_per_locality]}
max_message_size = ${HPX_HAVE_PARCEL_MPI_MAX_MESSAGE_SIZE:$[hpx.parcel.max_message_
→˓size]}
max_outbound_message_size = ${HPX_HAVE_PARCEL_MPI_MAX_OUTBOUND_MESSAGE_SIZE:$[hpx.
→˓parcel.max_outbound_message_size]}

130 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Property Description
hpx.parcel.
mpi.enable

Enable the use of the MPI parcelport. HPX tries to detect if the application was started within
a parallel MPI environment. If the detection was successful, the MPI parcelport is enabled by
default. To explicitly disable the MPI parcelport, set to 0. Note that the initial bootstrap of the
overall HPX application will be performed using MPI as well.

hpx.parcel.
mpi.env

This property influences which environment variables (comma separated) will be analyzed to
find out whether the application was invoked by MPI.

hpx.
parcel.mpi.
multithreaded

This property is used to determine what threading mode to use when initializing MPI. If this
setting is 0 HPX will initialize MPI with MPI_THREAD_SINGLE if the value is not equal to
0 HPX will initialize MPI with MPI_THREAD_MULTI.

hpx.parcel.
mpi.rank

This property will be initialized to the MPI rank of the locality.

hpx.
parcel.mpi.
processor_name

This property will be initialized to the MPI processor name of the locality.

hpx.
parcel.mpi.
array_optimization

This property defines whether this locality is allowed to utilize array optimizations in the MPI
parcelport during serialization of parcel data. The default is the same value as set for hpx.
parcel.array_optimization.

hpx.
parcel.mpi.
zero_copy_optimization

This property defines whether this locality is allowed to utilize zero copy optimizations in the
MPI parcelport during serialization of parcel data. The default is the same value as set for
hpx.parcel.zero_copy_optimization.

hpx.
parcel.mpi.
use_io_pool

This property can be set to run the progress thread inside of HPX threads instead of a separate
thread pool. The default is 1.

hpx.
parcel.mpi.
async_serialization

This property defines whether this locality is allowed to spawn a new thread for serialization
in the MPI parcelport (this is both for encoding and decoding parcels). The default is the same
value as set for hpx.parcel.async_serialization.

hpx.
parcel.mpi.
parcel_pool_size

The value of this property defines the number of OS-threads created for the internal par-
cel thread pool of the MPI parcel port. The default is taken from hpx.threadpools.
parcel_pool_size.

hpx.
parcel.mpi.
max_connections

This property defines how many network connections between different localities are
overall kept alive by each of locality. The default is taken from hpx.parcel.
max_connections.

hpx.
parcel.mpi.
max_connections_per_locality

This property defines the maximum number of network connections that one lo-
cality will open to another locality. The default is taken from hpx.parcel.
max_connections_per_locality.

hpx.
parcel.mpi.
max_message_size

This property defines the maximum allowed message size which will be transferrable through
the parcel layer. The default is taken from hpx.parcel.max_message_size.

hpx.
parcel.mpi.
max_outbound_message_size

This property defines the maximum allowed outbound coalesced message size which will
be transferrable through the parcel layer. The default is taken from hpx.parcel.
max_outbound_connections.

2.5. Manual 131

HPX Documentation, 1.5.1

The hpx.agas configuration section

[hpx.agas]
address = ${HPX_AGAS_SERVER_ADDRESS:<hpx_initial_ip_address>}
port = ${HPX_AGAS_SERVER_PORT:<hpx_initial_ip_port>}
service_mode = hosted
dedicated_server = 0
max_pending_refcnt_requests = ${HPX_AGAS_MAX_PENDING_REFCNT_REQUESTS:<hpx_initial_
→˓agas_max_pending_refcnt_requests>}
use_caching = ${HPX_AGAS_USE_CACHING:1}
use_range_caching = ${HPX_AGAS_USE_RANGE_CACHING:1}
local_cache_size = ${HPX_AGAS_LOCAL_CACHE_SIZE:<hpx_agas_local_cache_size>}

Property Description
hpx.
agas.
address

This property defines the default IP address to be used for the AGAS root server. This IP address
will be used as long as no other values are specified (for instance using the --hpx:agas com-
mand line option). The expected format is any valid IP address or domain name format which can
be resolved into an IP address. The default depends on the compile time preprocessor constant
HPX_INITIAL_IP_ADDRESS ("127.0.0.1").

hpx.
agas.
port

This property defines the default IP port to be used for the AGAS root server. This IP port will be
used as long as no other values are specified (for instance using the --hpx:agas command line op-
tion). The default depends on the compile time preprocessor constant HPX_INITIAL_IP_PORT
(7009).

hpx.
agas.
service_mode

This property specifies what type of AGAS service is running on this locality. Currently, two modes
exist. The locality that acts as the AGAS server runs in bootstrap mode. All other localities are
in hosted mode.

hpx.
agas.
dedicated_server

This property specifies whether the AGAS server is exclusively running AGAS services
and not hosting any application components. It is a boolean value. Set to 1 if
--hpx:run-agas-server-only is present.

hpx.
agas.
max_pending_refcnt_requests

This property defines the number of reference counting requests (increments or decre-
ments) to buffer. The default depends on the compile time preprocessor constant
HPX_INITIAL_AGAS_MAX_PENDING_REFCNT_REQUESTS (4096).

hpx.
agas.
use_caching

This property specifies whether a software address translation cache is used. It is a boolean value.
Defaults to 1.

hpx.
agas.
use_range_caching

This property specifies whether range-based caching is used by the software address translation
cache. This property is ignored if hpx.agas.use_caching is false. It is a boolean value. Defaults to
1.

hpx.
agas.
local_cache_size

This property defines the size of the software address translation cache for AGAS services.
This property is ignored if hpx.agas.use_caching is false. Note that if hpx.agas.
use_range_caching is true, this size will refer to the maximum number of ranges stored in
the cache, not the number of entries spanned by the cache. The default depends on the compile time
preprocessor constant HPX_AGAS_LOCAL_CACHE_SIZE (4096).

132 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The hpx.commandline configuration section

The following table lists the definition of all pre-defined command line option shortcuts. For more information about
commandline options see the section HPX Command Line Options.

[hpx.commandline]
aliasing = ${HPX_COMMANDLINE_ALIASING:1}
allow_unknown = ${HPX_COMMANDLINE_ALLOW_UNKNOWN:0}

[hpx.commandline.aliases]
-a = --hpx:agas
-c = --hpx:console
-h = --hpx:help
-I = --hpx:ini
-l = --hpx:localities
-p = --hpx:app-config
-q = --hpx:queuing
-r = --hpx:run-agas-server
-t = --hpx:threads
-v = --hpx:version
-w = --hpx:worker
-x = --hpx:hpx
-0 = --hpx:node=0
-1 = --hpx:node=1
-2 = --hpx:node=2
-3 = --hpx:node=3
-4 = --hpx:node=4
-5 = --hpx:node=5
-6 = --hpx:node=6
-7 = --hpx:node=7
-8 = --hpx:node=8
-9 = --hpx:node=9

2.5. Manual 133

HPX Documentation, 1.5.1

134 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Property Description
hpx.commandline.
aliasing

Enable command line aliases as defined in the section hpx.commandline.
aliases (see below). Defaults to 1.

hpx.commandline.
allow_unknown

Allow for unknown command line options to be passed through to
hpx_main() Defaults to 0.

hpx.commandline.
aliases.-a

On the commandline, -a expands to: --hpx:agas.

hpx.commandline.
aliases.-c

On the commandline, -c expands to: --hpx:console.

hpx.commandline.
aliases.-h

On the commandline, -h expands to: --hpx:help.

hpx.commandline.
aliases.--help

On the commandline, --help expands to: --hpx:help.

hpx.commandline.
aliases.-I

On the commandline, -I expands to: --hpx:ini.

hpx.commandline.
aliases.-l

On the commandline, -l expands to: --hpx:localities.

hpx.commandline.
aliases.-p

On the commandline, -p expands to: --hpx:app-config.

hpx.commandline.
aliases.-q

On the commandline, -q expands to: --hpx:queuing.

hpx.commandline.
aliases.-r

On the commandline, -r expands to: --hpx:run-agas-server.

hpx.commandline.
aliases.-t

On the commandline, -t expands to: --hpx:threads.

hpx.commandline.
aliases.-v

On the commandline, -v expands to: --hpx:version.

hpx.commandline.
aliases.--version

On the commandline, --version expands to: --hpx:version.

hpx.commandline.
aliases.-w

On the commandline, -w expands to: --hpx:worker.

hpx.commandline.
aliases.-x

On the commandline, -x expands to: --hpx:hpx.

hpx.commandline.
aliases.-0

On the commandline, -0 expands to: --hpx:node=0.

hpx.commandline.
aliases.-1

On the commandline, -1 expands to: --hpx:node=1.

hpx.commandline.
aliases.-2

On the commandline, -2 expands to: --hpx:node=2.

hpx.commandline.
aliases.-3

On the commandline, -3 expands to: --hpx:node=3.

hpx.commandline.
aliases.-4

On the commandline, -4 expands to: --hpx:node=4.

hpx.commandline.
aliases.-5

On the commandline, -5 expands to: --hpx:node=5.

hpx.commandline.
aliases.-6

On the commandline, -6 expands to: --hpx:node=6.

hpx.commandline.
aliases.-7

On the commandline, -7 expands to: --hpx:node=7.

hpx.commandline.
aliases.-8

On the commandline, -8 expands to: --hpx:node=8.

hpx.commandline.
aliases.-9

On the commandline, -9 expands to: --hpx:node=9.

2.5. Manual 135

HPX Documentation, 1.5.1

Loading INI files

During startup and after the internal database has been initialized as described in the section Built-in Default Configu-
ration Settings, HPX will try to locate and load additional ini files to be used as a source for configuration properties.
This allows for a wide spectrum of additional customization possibilities by the user and system administrators. The
sequence of locations where HPX will try loading the ini files is well defined and documented in this section. All ini
files found are merged into the internal configuration database. The merge operation itself conforms to the rules as
described in the section The HPX INI File Format.

1. Load all component shared libraries found in the directories specified by the property hpx.component_path
and retrieve their default configuration information (see section Loading components for more details). This
property can refer to a list of directories separated by ':' (Linux, Android, and MacOS) or using ';' (Win-
dows).

2. Load all files named hpx.ini in the directories referenced by the property hpx.master_ini_path This
property can refer to a list of directories separated by ':' (Linux, Android, and MacOS) or using ';' (Win-
dows).

3. Load a file named .hpx.ini in the current working directory, e.g. the directory the application was invoked
from.

4. Load a file referenced by the environment variable HPX_INI. This variable is expected to provide the full path
name of the ini configuration file (if any).

5. Load a file named /etc/hpx.ini. This lookup is done on non-Windows systems only.

6. Load a file named .hpx.ini in the home directory of the current user, e.g. the directory referenced by the
environment variable HOME.

7. Load a file named .hpx.ini in the directory referenced by the environment variable PWD.

8. Load the file specified on the command line using the option --hpx:config.

9. Load all properties specified on the command line using the option --hpx:ini. The properties will be added
to the database in the same sequence as they are specified on the command line. The format for those options
is for instance --hpx:ini=hpx.default_stack_size=0x4000. In addition to the explicit command
line options, this will set the following properties as implied from other settings:

• hpx.parcel.address and hpx.parcel.port as set by --hpx:hpx

• hpx.agas.address, hpx.agas.port and hpx.agas.service_mode as set by --hpx:agas

• hpx.program_name and hpx.cmd_line will be derived from the actual command line

• hpx.os_threads and hpx.localities as set by --hpx:threads and
--hpx:localities

• hpx.runtime_mode will be derived from any explicit --hpx:console, --hpx:worker, or
--hpx:connect, or it will be derived from other settings, such as --hpx:node =0 which implies
--hpx:console

10. Load files based on the pattern *.ini in all directories listed by the property hpx.ini_path. All files found
during this search will be merged. The property hpx.ini_path can hold a list of directories separated by
':' (on Linux or Mac) or ';' (on Windows).

11. Load the file specified on the command line using the option --hpx:app-config. Note that this file will be
merged as the content for a top level section [application].

Note: Any changes made to the configuration database caused by one of the steps will influence the loading process
for all subsequent steps. For instance, if one of the ini files loaded changes the property hpx.ini_path this will

136 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

influence the directories searched in step 9 as described above.

Important: The HPX core library will verify that all configuration settings specified on the command line (using the
--hpx:ini option) will be checked for validity. That means that the library will accept only known configuration
settings. This is to protect the user from unintentional typos while specifying those settings. This behavior can be
overwritten by appending a '!' to the configuration key, thus forcing the setting to be entered into the configuration
database, for instance: --hpx:ini=hpx.foo! = 1

If any of the environment variables or files listed above is not found the corresponding loading step will be silently
skipped.

Loading components

HPX relies on loading application specific components during the runtime of an application. Moreover, HPX comes
with a set of preinstalled components supporting basic functionalities useful for almost every application. Any com-
ponent in HPX is loaded from a shared library, where any of the shared libraries can contain more than one component
type. During startup, HPX tries to locate all available components (e.g. their corresponding shared libraries) and
creates an internal component registry for later use. This section describes the algorithm used by HPX to locate all
relevant shared libraries on a system. As described, this algorithm is customizable by the configuration properties
loaded from the ini files (see section Loading INI files).

Loading components is a two stage process. First HPX tries to locate all component shared libraries, loads those,
and generates default configuration section in the internal configuration database for each component found. For each
found component the following information is generated:

[hpx.components.<component_instance_name>]
name = <name_of_shared_library>
path = $[component_path]
enabled = $[hpx.components.load_external]
default = 1

The values in this section correspond to the expected configuration information for a component as described in the
section Built-in Default Configuration Settings.

In order to locate component shared libraries, HPX will try loading all shared libraries (files with the platform specific
extension of a shared library, Linux: *.so, Windows: *.dll, MacOS: *.dylib found in the directory referenced
by the ini property hpx.component_path).

This first step corresponds to step 1) during the process of filling the internal configuration database with default
information as described in section Loading INI files.

After all of the configuration information has been loaded, HPX performs the second step in terms of
loading components. During this step, HPX scans all existing configuration sections [hpx.component.
<some_component_instance_name>] and instantiates a special factory object for each of the successfully
located and loaded components. During the application’s life time, these factory objects will be responsible to create
new and discard old instances of the component they are associated with. This step is performed after step 11) of the
process of filling the internal configuration database with default information as described in section Loading INI files.

2.5. Manual 137

HPX Documentation, 1.5.1

Application specific component example

In this section we assume to have a simple application component which exposes one member function as a component
action. The header file app_server.hpp declares the C++ type to be exposed as a component. This type has a
member function print_greeting() which is exposed as an action print_greeting_action. We assume
the source files for this example are located in a directory referenced by $APP_ROOT:

// file: $APP_ROOT/app_server.hpp
#include <hpx/hpx.hpp>
#include <hpx/include/iostreams.hpp>

namespace app
{

// Define a simple component exposing one action 'print_greeting'
class HPX_COMPONENT_EXPORT server

: public hpx::components::component_base<server>
{

void print_greeting ()
{

hpx::cout << "Hey, how are you?\n" << hpx::flush;
}

// Component actions need to be declared, this also defines the
// type 'print_greeting_action' representing the action.
HPX_DEFINE_COMPONENT_ACTION(server, print_greeting, print_greeting_action);

};
}

// Declare boilerplate code required for each of the component actions.
HPX_REGISTER_ACTION_DECLARATION(app::server::print_greeting_action);

The corresponding source file contains mainly macro invocations which define boilerplate code needed for HPX to
function properly:

// file: $APP_ROOT/app_server.cpp
#include "app_server.hpp"

// Define boilerplate required once per component module.
HPX_REGISTER_COMPONENT_MODULE();

// Define factory object associated with our component of type 'app::server'.
HPX_REGISTER_COMPONENT(app::server, app_server);

// Define boilerplate code required for each of the component actions. Use the
// same argument as used for HPX_REGISTER_ACTION_DECLARATION above.
HPX_REGISTER_ACTION(app::server::print_greeting_action);

The following gives an example of how the component can be used. We create one instance of the app::server
component on the current locality and invoke the exposed action print_greeting_action using the global id
of the newly created instance. Note, that no special code is required to delete the component instance after it is not
needed anymore. It will be deleted automatically when its last reference goes out of scope, here at the closing brace
of the block surrounding the code:

// file: $APP_ROOT/use_app_server_example.cpp
#include <hpx/hpx_init.hpp>
#include "app_server.hpp"

(continues on next page)

138 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

int hpx_main()
{

{
// Create an instance of the app_server component on the current locality.
hpx::naming:id_type app_server_instance =

hpx::create_component<app::server>(hpx::find_here());

// Create an instance of the action 'print_greeting_action'.
app::server::print_greeting_action print_greeting;

// Invoke the action 'print_greeting' on the newly created component.
print_greeting(app_server_instance);

}
return hpx::finalize();

}

int main(int argc, char* argv[])
{

return hpx::init(argc, argv);
}

In order to make sure that the application will be able to use the component app::server, special configuration
information must be passed to HPX. The simples way to allow HPX to ‘find’ the component is to provide special ini
configuration files, which add the necessary information to the internal configuration database. The component should
have a special ini file containing the information specific to the component app_server.

file: $APP_ROOT/app_server.ini
[hpx.components.app_server]
name = app_server
path = $APP_LOCATION/

Here $APP_LOCATION is the directory where the (binary) component shared library is located. HPX will at-
tempt to load the shared library from there. The section name hpx.components.app_server reflects the
instance name of the component (app_server is an arbitrary, but unique name). The property value for
hpx.components.app_server.name should be the same as used for the second argument to the macro
HPX_REGISTER_COMPONENT above.

Additionally a file .hpx.ini which could be located in the current working directory (see step 3 as described in the
section Loading INI files) can be used to add to the ini search path for components:

file: $PWD/.hpx.ini
[hpx]
ini_path = $[hpx.ini_path]:$APP_ROOT/

This assumes that the above ini file specific to the component is located in the directory $APP_ROOT.

Note: It is possible to reference the defined property from inside its value. HPX will gracefully use the previous
value of hpx.ini_path for the reference on the right hand side and assign the overall (now expanded) value to the
property.

2.5. Manual 139

HPX Documentation, 1.5.1

Logging

HPX uses a sophisticated logging framework allowing to follow in detail what operations have been performed inside
the HPX library in what sequence. This information proves to be very useful for diagnosing problems or just for
improving the understanding what is happening in HPX as a consequence of invoking HPX API functionality.

Default logging

Enabling default logging is a simple process. The detailed description in the remainder of this section explains different
ways to customize the defaults. Default logging can be enabled by using one of the following:

• a command line switch --hpx:debug-hpx-log, which will enable logging to the console terminal

• the command line switch --hpx:debug-hpx-log=<filename>, which enables logging to a given file
<filename>, or

• setting an environment variable HPX_LOGLEVEL=<loglevel> while running the HPX application. In this
case <loglevel> should be a number between (or equal to) 1 and 5 where 1 means minimal logging and
5 causes to log all available messages. When setting the environment variable the logs will be written to a
file named hpx.<PID>.lo in the current working directory, where <PID> is the process id of the console
instance of the application.

Customizing logging

Generally, logging can be customized either using environment variable settings or using by an ini configuration
file. Logging is generated in several categories, each of which can be customized independently. All customizable
configuration parameters have reasonable defaults, allowing to use logging without any additional configuration effort.
The following table lists the available categories.

Table 2.7: Logging categories
Cate-
gory

Category
shortcut

Information to be generated Environment
variable

Gen-
eral

None Logging information generated by different subsystems of HPX, such
as thread-manager, parcel layer, LCOs, etc.

HPX_LOGLEVEL

AGAS AGAS Logging output generated by the AGAS subsystem HPX_AGAS_LOGLEVEL
Appli-
cation

APP Logging generated by applications. HPX_APP_LOGLEVEL

By default, all logging output is redirected to the console instance of an application, where it is collected and written
to a file, one file for each logging category.

Each logging category can be customized at two levels, the parameters for each are stored in the ini configuration sec-
tions hpx.logging.CATEGORY and hpx.logging.console.CATEGORY (where CATEGORY is the category
shortcut as listed in the table above). The former influences logging at the source locality and the latter modifies the
logging behaviour for each of the categories at the console instance of an application.

140 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Levels

All HPX logging output has seven different logging levels. These levels can be set explicitly or through environmental
variables in the main HPX ini file as shown below. The logging levels and their associated integral values are shown
in the table below, ordered from most verbose to least verbose. By default, all HPX logs are set to 0, e.g. all logging
output is disabled by default.

Table 2.8: Logging levels
Logging level Integral value
<debug> 5
<info> 4
<warning> 3
<error> 2
<fatal> 1
No logging 0

Tip: The easiest way to enable logging output is to set the environment variable corresponding to the logging category
to an integral value as described in the table above. For instance, setting HPX_LOGLEVEL=5 will enable full logging
output for the general category. Please note that the syntax and means of setting environment variables varies between
operating systems.

Configuration

Logs will be saved to destinations as configured by the user. By default, logging output is saved on the console
instance of an application to hpx.<CATEGORY>.<PID>.lo (where CATEGORY and PID> are placeholders for
the category shortcut and the OS process id). The output for the general logging category is saved to hpx.<PID>.
log. The default settings for the general logging category are shown here (the syntax is described in the section The
HPX INI File Format):

[hpx.logging]
level = ${HPX_LOGLEVEL:0}
destination = ${HPX_LOGDESTINATION:console}
format = ${HPX_LOGFORMAT:(T%locality%/%hpxthread%.%hpxphase%/%hpxcomponent%) P
→˓%parentloc%/%hpxparent%.%hpxparentphase% %time%($hh:$mm.$ss.$mili) [%idx%]|\\n}

The logging level is taken from the environment variable HPX_LOGLEVEL and defaults to zero, e.g. no logging. The
default logging destination is read from the environment variable HPX_LOGDESTINATION On any of the localities
it defaults to console which redirects all generated logging output to the console instance of an application. The
following table lists the possible destinations for any logging output. It is possible to specify more than one destination
separated by whitespace.

Table 2.9: Logging destinations
Logging desti-
nation

Description

file(<filename>)Direct all output to a file with the given <filename>.
cout Direct all output to the local standard output of the application instance on this locality.
cerr Direct all output to the local standard error output of the application instance on this locality.
console Direct all output to the console instance of the application. The console instance has its logging

destinations configured separately.
android_log Direct all output to the (Android) system log (available on Android systems only).

2.5. Manual 141

HPX Documentation, 1.5.1

The logging format is read from the environment variable HPX_LOGFORMAT and it defaults to a complex format
description. This format consists of several placeholder fields (for instance %locality% which will be replaced by
concrete values when the logging output is generated. All other information is transferred verbatim to the output. The
table below describes the available field placeholders. The separator character | separates the logging message prefix
formatted as shown and the actual log message which will replace the separator.

Table 2.10: Available field placeholders
Name Description
locality The id of the locality on which the logging message was generated.
hpxthread The id of the HPX-thread generating this logging output.
hpxphase The phase99 of the HPX-thread generating this logging output.
hpxcom-
ponent

The local virtual address of the component which the current HPX-thread is accessing.

parentloc The id of the locality where the HPX thread was running which initiated the current HPX-thread. The
current HPX-thread is generating this logging output.

hpxparent The id of the HPX-thread which initiated the current HPX-thread. The current HPX-thread is gener-
ating this logging output.

hpxpar-
entphase

The phase of the HPX-thread when it initiated the current HPX-thread. The current HPX-thread is
generating this logging output.

time The time stamp for this logging outputline as generated by the source locality.
idx The sequence number of the logging output line as generated on the source locality.
osthread The sequence number of the OS-thread which executes the current HPX-thread.

Note: Not all of the field placeholder may be expanded for all generated logging output. If no value is available for a
particular field it is replaced with a sequence of '-' characters.]

Here is an example line from a logging output generated by one of the HPX examples (please note that this is generated
on a single line, without line break):

(T00000000/0000000002d46f90.01/00000000009ebc10) P--------/0000000002d46f80.02 17:49.
→˓37.320 [000000000000004d]

<info> [RT] successfully created component {0000000100ff0001, 0000000000030002}
→˓of type: component_barrier[7(3)]

The default settings for the general logging category on the console is shown here:

[hpx.logging.console]
level = ${HPX_LOGLEVEL:$[hpx.logging.level]}
destination = ${HPX_CONSOLE_LOGDESTINATION:file(hpx.$[system.pid].log)}
format = ${HPX_CONSOLE_LOGFORMAT:|}

These settings define how the logging is customized once the logging output is received by the console instance of
an application. The logging level is read from the environment variable HPX_LOGLEVEL (as set for the console
instance of the application). The level defaults to the same values as the corresponding settings in the general logging
configuration shown before. The destination on the console instance is set to be a file which name is generated based
from its OS process id. Setting the environment variable HPX_CONSOLE_LOGDESTINATION allows customization
of the naming scheme for the output file. The logging format is set to leave the original logging output unchanged, as
received from one of the localities the application runs on.

99 The phase of a HPX-thread counts how often this thread has been activated.

142 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX Command Line Options

The predefined command line options for any application using hpx::init are described in the following subsec-
tions.

HPX options (allowed on command line only)

--hpx:help
print out program usage (default: this message), possible values: full (additionally prints options from com-
ponents)

--hpx:version
print out HPX version and copyright information

--hpx:info
print out HPX configuration information

--hpx:options-file arg
specify a file containing command line options (alternatively: @filepath)

HPX options (additionally allowed in an options file)

--hpx:worker
run this instance in worker mode

--hpx:console
run this instance in console mode

--hpx:connect
run this instance in worker mode, but connecting late

--hpx:run-agas-server
run AGAS server as part of this runtime instance

--hpx:run-hpx-main
run the hpx_main function, regardless of locality mode

--hpx:hpx arg
the IP address the HPX parcelport is listening on, expected format: address:port (default: 127.0.0.
1:7910)

--hpx:agas arg
the IP address the AGAS root server is running on, expected format: address:port (default: 127.0.0.
1:7910)

--hpx:run-agas-server-only
run only the AGAS server

--hpx:nodefile arg
the file name of a node file to use (list of nodes, one node name per line and core)

--hpx:nodes arg
the (space separated) list of the nodes to use (usually this is extracted from a node file)

--hpx:endnodes
this can be used to end the list of nodes specified using the option --hpx:nodes

--hpx:ifsuffix arg
suffix to append to host names in order to resolve them to the proper network interconnect

2.5. Manual 143

HPX Documentation, 1.5.1

--hpx:ifprefix arg
prefix to prepend to host names in order to resolve them to the proper network interconnect

--hpx:iftransform arg
sed-style search and replace (s/search/replace/) used to transform host names to the proper network
interconnect

--hpx:localities arg
the number of localities to wait for at application startup (default: 1)

--hpx:node arg
number of the node this locality is run on (must be unique)

--hpx:ignore-batch-env
ignore batch environment variables

--hpx:expect-connecting-localities
this locality expects other localities to dynamically connect (this is implied if the number of initial localities is
larger than 1)

--hpx:pu-offset
the first processing unit this instance of HPX should be run on (default: 0)

--hpx:pu-step
the step between used processing unit numbers for this instance of HPX (default: 1)

--hpx:threads arg
the number of operating system threads to spawn for this HPX locality. Possible values are: numeric values 1,
2, 3 and so on, all (which spawns one thread per processing unit, includes hyperthreads), or cores (which
spawns one thread per core) (default: cores).

--hpx:cores arg
the number of cores to utilize for this HPX locality (default: all, i.e. the number of cores is based on the
number of threads --hpx:threads assuming --hpx:bind=compact

--hpx:affinity arg
the affinity domain the OS threads will be confined to, possible values: pu, core, numa, machine (default:
pu)

--hpx:bind arg
the detailed affinity description for the OS threads, see More details about HPX command line options for
a detailed description of possible values. Do not use with --hpx:pu-step, --hpx:pu-offset or
--hpx:affinity options. Implies --hpx:numa-sensitive (--hpx:bind=none) disables defining
thread affinities).

--hpx:use-process-mask
use the process mask to restrict available hardware resources (implies --hpx:ignore-batch-env)

--hpx:print-bind
print to the console the bit masks calculated from the arguments specified to all --hpx:bind options.

--hpx:queuing arg
the queue scheduling policy to use, options are local, local-priority-fifo,
local-priority-lifo, static, static-priority, abp-priority-fifo and
abp-priority-lifo (default: local-priority-fifo)

--hpx:high-priority-threads arg
the number of operating system threads maintaining a high priority queue (default: number of OS
threads), valid for --hpx:queuing=abp-priority, --hpx:queuing=static-priority and
--hpx:queuing=local-priority only

144 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

--hpx:numa-sensitive
makes the scheduler NUMA sensitive

HPX configuration options

--hpx:app-config arg
load the specified application configuration (ini) file

--hpx:config arg
load the specified hpx configuration (ini) file

--hpx:ini arg
add a configuration definition to the default runtime configuration

--hpx:exit
exit after configuring the runtime

HPX debugging options

--hpx:list-symbolic-names
list all registered symbolic names after startup

--hpx:list-component-types
list all dynamic component types after startup

--hpx:dump-config-initial
print the initial runtime configuration

--hpx:dump-config
print the final runtime configuration

--hpx:debug-hpx-log [arg]
enable all messages on the HPX log channel and send all HPX logs to the target destination (default: cout)

--hpx:debug-agas-log [arg]
enable all messages on the AGAS log channel and send all AGAS logs to the target destination (default: cout)

--hpx:debug-parcel-log [arg]
enable all messages on the parcel transport log channel and send all parcel transport logs to the target destination
(default: cout)

--hpx:debug-timing-log [arg]
enable all messages on the timing log channel and send all timing logs to the target destination (default: cout)

--hpx:debug-app-log [arg]
enable all messages on the application log channel and send all application logs to the target destination (default:
cout)

--hpx:debug-clp
debug command line processing

--hpx:attach-debugger arg
wait for a debugger to be attached, possible arg values: startup or exception (default: startup)

2.5. Manual 145

HPX Documentation, 1.5.1

HPX options related to performance counters

--hpx:print-counter
print the specified performance counter either repeatedly and/or at the times specified by
--hpx:print-counter-at (see also option --hpx:print-counter-interval)

--hpx:print-counter-reset
print the specified performance counter either repeatedly and/or at the times specified by
--hpx:print-counter-at reset the counter after the value is queried. (see also option
--hpx:print-counter-interval)

--hpx:print-counter-interval
print the performance counter(s) specified with --hpx:print-counter repeatedly after the time interval
(specified in milliseconds), (default: 0, which means print once at shutdown)

--hpx:print-counter-destination
print the performance counter(s) specified with --hpx:print-counter to the given file (default:
console)

--hpx:list-counters
list the names of all registered performance counters, possible values: minimal (prints counter name skele-
tons), full (prints all available counter names)

--hpx:list-counter-infos
list the description of all registered performance counters, possible values: minimal (prints info for counter
name skeletons), full (prints all available counter infos)

--hpx:print-counter-format
print the performance counter(s) specified with --hpx:print-counter possible formats in csv format
with header or without any header (see option --hpx:no-csv-header, possible values: csv (prints
counter values in CSV format with full names as header), csv-short (prints counter values in CSV for-
mat with shortnames provided with --hpx:print-counter as --hpx:print-counter shortname,
full-countername

--hpx:no-csv-header
print the performance counter(s) specified with --hpx:print-counter and csv or csv-short format
specified with --hpx:print-counter-format without header

--hpx:print-counter-at arg
print the performance counter(s) specified with --hpx:print-counter (or
--hpx:print-counter-reset at the given point in time, possible argument values: startup,
shutdown (default), noshutdown

--hpx:reset-counters
reset all performance counter(s) specified with --hpx:print-counter after they have been evaluated.

--hpx:print-counters-locally
Each locality prints only its own local counters. If this is used with
--hpx:print-counter-destination=<file>, the code will append a ".<locality_id>"
to the file name in order to avoid clashes between localities.

146 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Command line argument shortcuts

Additionally, the following shortcuts are available from every HPX application.

Table 2.11: Predefined command line option shortcuts
Shortcut option Equivalent long option
-a --hpx:agas
-c --hpx:console
-h --hpx:help
-I --hpx:ini
-l --hpx:localities
-p --hpx:app-config
-q --hpx:queuing
-r --hpx:run-agas-server
-t --hpx:threads
-v --hpx:version
-w --hpx:worker
-x --hpx:hpx
-0 --hpx:node=0
-1 --hpx:node=1
-2 --hpx:node=2
-3 --hpx:node=3
-4 --hpx:node=4
-5 --hpx:node=5
-6 --hpx:node=6
-7 --hpx:node=7
-8 --hpx:node=8
-9 --hpx:node=9

It is possible to define your own shortcut options. In fact, all of the shortcuts listed above are pre-defined using the
technique described here. Also, it is possible to redefine any of the pre-defined shortcuts to expand differently as well.

Shortcut options are obtained from the internal configuration database. They are stored as key-value properties in
a special properties section named hpx.commandline. You can define your own shortcuts by adding the corre-
sponding definitions to one of the ini configuration files as described in the section Configuring HPX applications.
For instance, in order to define a command line shortcut --p which should expand to -hpx:print-counter, the
following configuration information needs to be added to one of the ini configuration files:

[hpx.commandline.aliases]
--pc = --hpx:print-counter

Note: Any arguments for shortcut options passed on the command line are retained and passed as arguments to the
corresponding expanded option. For instance, given the definition above, the command line option:

--pc=/threads{locality#0/total}/count/cumulative

would be expanded to:

--hpx:print-counter=/threads{locality#0/total}/count/cumulative

Important: Any shortcut option should either start with a single '-' or with two '--' characters. Shortcuts

2.5. Manual 147

HPX Documentation, 1.5.1

starting with a single '-' are interpreted as short options (i.e. everything after the first character following the '-' is
treated as the argument). Shortcuts starting with '--' are interpreted as long options. No other shortcut formats are
supported.

Specifying options for single localities only

For runs involving more than one locality it is sometimes desirable to supply specific command line options to single
localities only. When the HPX application is launched using a scheduler (like PBS, for more details see section How
to use HPX applications with PBS), specifying dedicated command line options for single localities may be desirable.
For this reason all of the command line options which have the general format --hpx:<some_key> can be used
in a more general form: --hpx:<N>:<some_key>, where <N> is the number of the locality this command line
options will be applied to, all other localities will simply ignore the option. For instance, the following PBS script
passes the option --hpx:pu-offset=4 to the locality '1' only.

#!/bin/bash
#
#PBS -l nodes=2:ppn=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u $APP_PATH $APP_OPTIONS --hpx:1:pu-offset=4 --hpx:nodes=`cat $PBS_NODEFILE`

Caution: If the first application specific argument (inside $APP_OPTIONS is a non-option (i.e. does not start
with a - or a --, then it must be placed before the option --hpx:nodes, which, in this case, should be the last
option on the command line.

Alternatively, use the option --hpx:endnodes to explicitly mark the end of the list of node names:

pbsdsh -u $APP_PATH --hpx:1:pu-offset=4 --hpx:nodes=`cat $PBS_NODEFILE` --
→˓hpx:endnodes $APP_OPTIONS

More details about HPX command line options

This section documents the following list of the command line options in more detail:

• The command line option --hpx:bind

The command line option --hpx:bind

This command line option allows one to specify the required affinity of the HPX worker threads to the underlying
processing units. As a result the worker threads will run only on the processing units identified by the corresponding
bind specification. The affinity settings are to be specified using --hpx:bind=<BINDINGS>, where <BINDINGS>
have to be formatted as described below.

In addition to the syntax described below one can use --hpx:bind=none to disable all binding of any threads to a
particular core. This is mostly supported for debugging purposes.

The specified affinities refer to specific regions within a machine hardware topology. In order to understand the
hardware topology of a particular machine it may be useful to run the lstopo tool which is part of Portable Hardware

148 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Locality (HWLOC) to see the reported topology tree. Seeing and understanding a topology tree will definitely help in
understanding the concepts that are discussed below.

Affinities can be specified using HWLOC (Portable Hardware Locality (HWLOC)) tuples. Tuples of HWLOC
objects and associated indexes can be specified in the form object:index, object:index-index or
object:index,...,index. HWLOC objects represent types of mapped items in a topology tree. Possible
values for objects are socket, numanode, core and pu (processing unit). Indexes are non-negative integers that
specify a unique physical object in a topology tree using its logical sequence number.

Chaining multiple tuples together in the more general form object1:index1[.object2:index2[...]] is
permissible. While the first tuple’s object may appear anywhere in the topology, the Nth tuple’s object must have a
shallower topology depth than the (N+1)th tuple’s object. Put simply: as you move right in a tuple chain, objects must
go deeper in the topology tree. Indexes specified in chained tuples are relative to the scope of the parent object. For
example, socket:0.core:1 refers to the second core in the first socket (all indices are zero based).

Multiple affinities can be specified using several --hpx:bind command line options or by appending several affini-
ties separated by a ';' By default, if multiple affinities are specified, they are added.

"all" is a special affinity consisting in the entire current topology.

Note: All ‘names’ in an affinity specification, such as thread, socket, numanode, pu or all can be abbreviated.
Thus the affinity specification threads:0-3=socket:0.core:1.pu:1 is fully equivalent to its shortened form
t:0-3=s:0.c:1.p:1.

Here is a full grammar describing the possible format of mappings:

mappings ::= distribution | mapping (";" mapping)*
distribution ::= "compact" | "scatter" | "balanced" | "numa-balanced"
mapping ::= thread_spec "=" pu_specs
thread_spec ::= "thread:" range_specs
pu_specs ::= pu_spec ("." pu_spec)*
pu_spec ::= type ":" range_specs | "~" pu_spec
range_specs ::= range_spec ("," range_spec)*
range_spec ::= int | int "-" int | "all"
type ::= "socket" | "numanode" | "core" | "pu"

The following example assumes a system with at least 4 cores, where each core has more than 1 processing unit
(hardware threads). Running hello_world_distributed with 4 OS-threads (on 4 processing units), where
each of those threads is bound to the first processing unit of each of the cores, can be achieved by invoking:

hello_world_distributed -t4 --hpx:bind=thread:0-3=core:0-3.pu:0

Here thread:0-3 specifies the OS threads for which to define affinity bindings, and core:0-3.pu: defines that
for each of the cores (core:0-3) only their first processing unit pu:0 should be used.

Note: The command line option --hpx:print-bind can be used to print the bitmasks generated from the affinity
mappings as specified with --hpx:bind. For instance, on a system with hyperthreading enabled (i.e. 2 processing
units per core), the command line:

hello_world_distributed -t4 --hpx:bind=thread:0-3=core:0-3.pu:0 --hpx:print-bind

will cause this output to be printed:

2.5. Manual 149

HPX Documentation, 1.5.1

0: PU L#0(P#0), Core L#0, Socket L#0, Node L#0(P#0)
1: PU L#2(P#2), Core L#1, Socket L#0, Node L#0(P#0)
2: PU L#4(P#4), Core L#2, Socket L#0, Node L#0(P#0)
3: PU L#6(P#6), Core L#3, Socket L#0, Node L#0(P#0)

where each bit in the bitmasks corresponds to a processing unit the listed worker thread will be bound to run on.

The difference between the four possible predefined distribution schemes (compact, scatter, balanced and
numa-balanced) is best explained with an example. Imagine that we have a system with 4 cores and 4 hard-
ware threads per core on 2 sockets. If we place 8 threads the assignments produced by the compact, scatter,
balanced and numa-balanced types are shown in the figure below. Notice that compact does not fully uti-
lize all the cores in the system. For this reason it is recommended that applications are run using the scatter or
balanced/numa-balanced options in most cases.

Fig. 2.7: Schematic of thread affinity type distributions.

In addition to the predefined distributions it is possible to restrict the resources used by HPX to the process CPU

150 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

mask. The CPU mask is typically set by e.g. MPI98 and batch environments. Using the command line option
--hpx:use-process-mask makes HPX act as if only the processing units in the CPU mask are available for use
by HPX. The number of threads is automatically determined from the CPU mask. The number of threads can still
be changed manually using this option, but only to a number less than or equal to the number of processing units in
the CPU mask. The option --hpx:print-bind is useful in conjunction with --hpx:use-process-mask to
make sure threads are placed as expected.

2.5.6 Writing single-node HPX applications

HPX is a C++ Standard Library for Concurrency and Parallelism. This means that it implements all of the corre-
sponding facilities as defined by the C++ Standard. Additionally, HPX implements functionalities proposed as part
of the ongoing C++ standardization process. This section focuses on the features available in HPX for parallel and
concurrent computation on a single node, although many of the features presented here are also implemented to work
in the distributed case.

Using LCOs

Lightweight Control Objects (LCOs) provide synchronization for HPX applications. Most of them are familiar from
other frameworks, but a few of them work in slightly different ways adapted to HPX. The following synchronization
objects are available in HPX:

1. future

2. queue

3. object_semaphore

4. barrier

Channels

Channels combine communication (the exchange of a value) with synchronization (guaranteeing that two calculations
(tasks) are in a known state). A channel can transport any number of values of a given type from a sender to a receiver:

hpx::lcos::local::channel<int> c;
hpx::future<int> f = c.get();
HPX_ASSERT(!f.is_ready());
c.set(42);
HPX_ASSERT(f.is_ready());
hpx::cout << f.get() << hpx::endl;

Channels can be handed to another thread (or in case of channel components, to other localities), thus establishing a
communication channel between two independent places in the program:

void do_something(hpx::lcos::local::receive_channel<int> c,
hpx::lcos::local::send_channel<> done)

{
// prints 43
hpx::cout << c.get(hpx::launch::sync) << hpx::endl;
// signal back
done.set();

}

(continues on next page)

98 https://en.wikipedia.org/wiki/Message_Passing_Interface

2.5. Manual 151

https://en.wikipedia.org/wiki/Message_Passing_Interface

HPX Documentation, 1.5.1

(continued from previous page)

void send_receive_channel()
{

hpx::lcos::local::channel<int> c;
hpx::lcos::local::channel<> done;

hpx::apply(&do_something, c, done);

// send some value
c.set(43);
// wait for thread to be done
done.get().wait();

}

Note how hpx::lcos::local::channel::get without any arguments returns a future which is ready
when a value has been set on the channel. The launch policy hpx::launch::sync can be used to make
hpx::lcos::local::channel::get block until a value is set and return the value directly.

A channel component is created on one locality and can be sent to another locality using an action. This example also
demonstrates how a channel can be used as a range of values:

// channel components need to be registered for each used type (not needed
// for hpx::lcos::local::channel)
HPX_REGISTER_CHANNEL(double);

void channel_sender(hpx::lcos::channel<double> c)
{

for (double d : c)
hpx::cout << d << std::endl;

}
HPX_PLAIN_ACTION(channel_sender);

void channel()
{

// create the channel on this locality
hpx::lcos::channel<double> c(hpx::find_here());

// pass the channel to a (possibly remote invoked) action
hpx::apply(channel_sender_action(), hpx::find_here(), c);

// send some values to the receiver
std::vector<double> v = {1.2, 3.4, 5.0};
for (double d : v)

c.set(d);

// explicitly close the communication channel (implicit at destruction)
c.close();

}

152 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Composable guards

Composable guards operate in a manner similar to locks, but are applied only to asynchronous functions. The guard
(or guards) is automatically locked at the beginning of a specified task and automatically unlocked at the end. Because
guards are never added to an existing task’s execution context, the calling of guards is freely composable and can never
deadlock.

To call an application with a single guard, simply declare the guard and call run_guarded() with a function (task):

hpx::lcos::local::guard gu;
run_guarded(gu,task);

If a single method needs to run with multiple guards, use a guard set:

boost::shared<hpx::lcos::local::guard> gu1(new hpx::lcos::local::guard());
boost::shared<hpx::lcos::local::guard> gu2(new hpx::lcos::local::guard());
gs.add(*gu1);
gs.add(*gu2);
run_guarded(gs,task);

Guards use two atomic operations (which are not called repeatedly) to manage what they do, so overhead should be
extremely low. The following guards are available in HPX:

1. conditional_trigger

2. counting_semaphore

3. dataflow

4. event

5. mutex

6. once

7. recursive_mutex

8. spinlock

9. spinlock_no_backoff

10. trigger

Extended facilities for futures

Concurrency is about both decomposing and composing the program from the parts that work well individually and
together. It is in the composition of connected and multicore components where today’s C++ libraries are still lacking.

The functionality of std::future offers a partial solution. It allows for the separation of the initiation of an
operation and the act of waiting for its result; however, the act of waiting is synchronous. In communication-intensive
code this act of waiting can be unpredictable, inefficient and simply frustrating. The example below illustrates a
possible synchronous wait using futures:

#include <future>
using namespace std;
int main()
{

future<int> f = async([]() { return 123; });
int result = f.get(); // might block

}

2.5. Manual 153

HPX Documentation, 1.5.1

For this reason, HPX implements a set of extensions to std::future (as proposed by __cpp11_n4107__). This
proposal introduces the following key asynchronous operations to hpx::future, hpx::shared_future and
hpx::async, which enhance and enrich these facilities.

Table 2.13: Facilities extending std::future
Facility Description
hpx::future::thenIn asynchronous programming, it is very common for one asynchronous operation, on completion, to

invoke a second operation and pass data to it. The current C++ standard does not allow one to register
a continuation to a future. With then, instead of waiting for the result, a continuation is “attached” to
the asynchronous operation, which is invoked when the result is ready. Continuations registered using
then function will help to avoid blocking waits or wasting threads on polling, greatly improving the
responsiveness and scalability of an application.

un-
wrap-
ping
con-
structor
for
hpx::future

In some scenarios, you might want to create a future that returns another future, resulting in nested
futures. Although it is possible to write code to unwrap the outer future and retrieve the nested future
and its result, such code is not easy to write because users must handle exceptions and it may cause a
blocking call. Unwrapping can allow users to mitigate this problem by doing an asynchronous call to
unwrap the outermost future.

hpx::future::is_readyThere are often situations where a get() call on a future may not be a blocking call, or is only a
blocking call under certain circumstances. This function gives the ability to test for early completion
and allows us to avoid associating a continuation, which needs to be scheduled with some non-trivial
overhead and near-certain loss of cache efficiency.

hpx::make_ready_futureSome functions may know the value at the point of construction. In these cases the value is immediately
available, but needs to be returned as a future. By using hpx::make_ready_future a future can
be created that holds a pre-computed result in its shared state. In the current standard it is non-trivial to
create a future directly from a value. First a promise must be created, then the promise is set, and lastly
the future is retrieved from the promise. This can now be done with one operation.

The standard also omits the ability to compose multiple futures. This is a common pattern that is ubiquitous in other
asynchronous frameworks and is absolutely necessary in order to make C++ a powerful asynchronous programming
language. Not including these functions is synonymous to Boolean algebra without AND/OR.

In addition to the extensions proposed by N4313100, HPX adds functions allowing users to compose several futures in
a more flexible way.

100 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html

154 Chapter 2. What’s so special about HPX?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html

HPX Documentation, 1.5.1

Table 2.14: Facilities for composing hpx::futures
Facility Description Comment
hpx::when_any ,
hpx::when_any_n

Asynchronously wait for at least one of multiple future or
shared_future objects to finish.

N4313101, ..._n
versions are HPX
only

hpx::wait_any ,
hpx::wait_any_n

Synchronously wait for at least one of multiple future or
shared_future objects to finish.

HPX only

hpx::when_all,
hpx::when_all_n

Asynchronously wait for all future and shared_future objects to fin-
ish.

N4313102, ..._n
versions are HPX
only

hpx::wait_all,
hpx::wait_all_n

Synchronously wait for all future and shared_future objects to finish. HPX only

hpx::when_some,
hpx::when_some_n

Asynchronously wait for multiple future and shared_future objects to
finish.

HPX only

hpx::wait_some,
hpx::wait_some_n

Synchronously wait for multiple future and shared_future objects to
finish.

HPX only

hpx::when_each Asynchronously wait for multiple future and shared_future objects to
finish and call a function for each of the future objects as soon as it
becomes ready.

HPX only

hpx::wait_each,
hpx::wait_each_n

Synchronously wait for multiple future and shared_future objects to
finish and call a function for each of the future objects as soon as it
becomes ready.

HPX only

High level parallel facilities

In preparation for the upcoming C++ Standards, there are currently several proposals targeting different facilities
supporting parallel programming. HPX implements (and extends) some of those proposals. This is well aligned with
our strategy to align the APIs exposed from HPX with current and future C++ Standards.

At this point, HPX implements several of the C++ Standardization working papers, most notably N4409103 (Working
Draft, Technical Specification for C++ Extensions for Parallelism), N4411104 (Task Blocks), and N4406105 (Parallel
Algorithms Need Executors).

Using parallel algorithms

A parallel algorithm is a function template described by this document which is declared in the (inline) namespace
hpx::parallel::v1.

Note: For compilers that do not support inline namespaces, all of the namespace v1 is imported into the names-
pace hpx::parallel. The effect is similar to what inline namespaces would do, namely all names defined in
hpx::parallel::v1 are accessible from the namespace hpx::parallel as well.

All parallel algorithms are very similar in semantics to their sequential counterparts (as defined in the namespace
std) with an additional formal template parameter named ExecutionPolicy. The execution policy is generally

101 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
102 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
103 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4409.pdf
104 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
105 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf

2.5. Manual 155

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4409.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf

HPX Documentation, 1.5.1

passed as the first argument to any of the parallel algorithms and describes the manner in which the execution of these
algorithms may be parallelized and the manner in which they apply user-provided function objects.

The applications of function objects in parallel algorithms invoked with an execu-
tion policy object of type hpx::parallel::execution::sequenced_policy or
hpx::parallel::execution::sequenced_task_policy execute in sequential order. For
hpx::parallel::execution::sequenced_policy the execution happens in the calling thread.

The applications of function objects in parallel algorithms invoked with an execu-
tion policy object of type hpx::parallel::execution::parallel_policy or
hpx::parallel::execution::parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and are indeterminately sequenced within each thread.

Important: It is the caller’s responsibility to ensure correctness, such as making sure that the invocation does not
introduce data races or deadlocks.

The applications of function objects in parallel algorithms invoked with an execution policy of type
hpx::parallel::execution::parallel_unsequenced_policy is, in HPX, equivalent to the use of
the execution policy hpx::parallel::execution::parallel_policy .

Algorithms invoked with an execution policy object of type hpx::parallel::v1::execution_policy
execute internally as if invoked with the contained execution policy object. No excep-
tion is thrown when an hpx::parallel::v1::execution_policy contains an ex-
ecution policy of type hpx::parallel::execution::sequenced_task_policy or
hpx::parallel::execution::parallel_task_policy (which normally turn the al-
gorithm into its asynchronous version). In this case the execution is semantically equiv-
alent to the case of passing a hpx::parallel::execution::sequenced_policy
or hpx::parallel::execution::parallel_policy contained in the
hpx::parallel::v1::execution_policy object respectively.

Parallel exceptions

During the execution of a standard parallel algorithm, if temporary memory resources are required by any of the
algorithms and no memory is available, the algorithm throws a std::bad_alloc exception.

During the execution of any of the parallel algorithms, if the application of a function object terminates with an
uncaught exception, the behavior of the program is determined by the type of execution policy used to invoke the
algorithm:

• If the execution policy object is of type hpx::parallel::execution::parallel_unsequenced_policy ,
hpx::terminate shall be called.

• If the execution policy object is of type hpx::parallel::execution::sequenced_policy ,
hpx::parallel::execution::sequenced_task_policy , hpx::parallel::execution::parallel_policy ,
or hpx::parallel::execution::parallel_task_policy , the execution of the algorithm termi-
nates with an hpx::exception_list exception. All uncaught exceptions thrown during the application of
user-provided function objects shall be contained in the hpx::exception_list.

For example, the number of invocations of the user-provided function object in for_each is unspecified. When
hpx::parallel::v1::for_each is executed sequentially, only one exception will be contained in the
hpx::exception_list object.

These guarantees imply that, unless the algorithm has failed to allocate memory and terminated with
std::bad_alloc, all exceptions thrown during the execution of the algorithm are communicated to the caller.
It is unspecified whether an algorithm implementation will “forge ahead” after encountering and capturing a user
exception.

156 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The algorithm may terminate with the std::bad_alloc exception even if one or more user-provided function
objects have terminated with an exception. For example, this can happen when an algorithm fails to allocate memory
while creating or adding elements to the hpx::exception_list object.

Parallel algorithms

HPX provides implementations of the following parallel algorithms:

2.5. Manual 157

HPX Documentation, 1.5.1

Table 2.15: Non-modifying parallel algorithms (in header: <hpx/
algorithm.hpp>)

Name Description In header Algorithm page at
cppreference.com

hpx::parallel::v1::adjacent_findComputes the differences between adja-
cent elements in a range.

<hpx/
algorithm.
hpp>

adjacent_find106

hpx::all_of Checks if a predicate is true for all of
the elements in a range.

<hpx/
algorithm.
hpp>

all_any_none_of107

hpx::any_of Checks if a predicate is true for any of
the elements in a range.

<hpx/
algorithm.
hpp>

all_any_none_of108

hpx::count Returns the number of elements equal to
a given value.

<hpx/
algorithm.
hpp>

count109

hpx::count_if Returns the number of elements satisfy-
ing a specific criteria.

<hpx/
algorithm.
hpp>

count_if110

hpx::equal Determines if two sets of elements are
the same.

<hpx/
algorithm.
hpp>

equal111

hpx::find Finds the first element equal to a given
value.

<hpx/
algorithm.
hpp>

find112

hpx::find_end Finds the last sequence of elements in a
certain range.

<hpx/
algorithm.
hpp>

find_end113

hpx::find_first_of Searches for any one of a set of elements. <hpx/
algorithm.
hpp>

find_first_of114

hpx::find_if Finds the first element satisfying a spe-
cific criteria.

<hpx/
algorithm.
hpp>

find_if115

hpx::find_if_not Finds the first element not satisfying a
specific criteria.

<hpx/
algorithm.
hpp>

find_if_not116

hpx::for_each Applies a function to a range of ele-
ments.

<hpx/
algorithm.
hpp>

for_each117

hpx::for_each_n Applies a function to a number of ele-
ments.

<hpx/
algorithm.
hpp>

for_each_n118

hpx::parallel::v1::lexicographical_compareChecks if a range of values is lexico-
graphically less than another range of
values.

<hpx/
algorithm.
hpp>

lexicographi-
cal_compare119

hpx::parallel::v1::mismatchFinds the first position where two ranges
differ.

<hpx/
algorithm.
hpp>

mismatch120

hpx::none_of Checks if a predicate is true for none
of the elements in a range.

<hpx/
algorithm.
hpp>

all_any_none_of121

hpx::parallel::v1::searchSearches for a range of elements. <hpx/
algorithm.
hpp>

search122

hpx::parallel::v1::search_nSearches for a number consecutive
copies of an element in a range.

<hpx/
algorithm.
hpp>

search_n123158 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/adjacent_find
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/count
http://en.cppreference.com/w/cpp/algorithm/count_if
http://en.cppreference.com/w/cpp/algorithm/equal
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find_end
http://en.cppreference.com/w/cpp/algorithm/find_first_of
http://en.cppreference.com/w/cpp/algorithm/find_if
http://en.cppreference.com/w/cpp/algorithm/find_if_not
http://en.cppreference.com/w/cpp/algorithm/for_each
http://en.cppreference.com/w/cpp/algorithm/for_each_n
http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
http://en.cppreference.com/w/cpp/algorithm/mismatch
http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
http://en.cppreference.com/w/cpp/algorithm/search
http://en.cppreference.com/w/cpp/algorithm/search_n

HPX Documentation, 1.5.1

106 http://en.cppreference.com/w/cpp/algorithm/adjacent_find
107 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
108 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
109 http://en.cppreference.com/w/cpp/algorithm/count
110 http://en.cppreference.com/w/cpp/algorithm/count_if
111 http://en.cppreference.com/w/cpp/algorithm/equal
112 http://en.cppreference.com/w/cpp/algorithm/find
113 http://en.cppreference.com/w/cpp/algorithm/find_end
114 http://en.cppreference.com/w/cpp/algorithm/find_first_of
115 http://en.cppreference.com/w/cpp/algorithm/find_if
116 http://en.cppreference.com/w/cpp/algorithm/find_if_not
117 http://en.cppreference.com/w/cpp/algorithm/for_each
118 http://en.cppreference.com/w/cpp/algorithm/for_each_n
119 http://en.cppreference.com/w/cpp/algorithm/lexicographical_compare
120 http://en.cppreference.com/w/cpp/algorithm/mismatch
121 http://en.cppreference.com/w/cpp/algorithm/all_any_none_of
122 http://en.cppreference.com/w/cpp/algorithm/search
123 http://en.cppreference.com/w/cpp/algorithm/search_n

2.5. Manual 159

HPX Documentation, 1.5.1

Table 2.16: Modifying parallel algorithms (In Header:
<hpx/algorithm.hpp>)

Name Description In header Algorithm page
at cpprefer-
ence.com

hpx::copy Copies a range of elements to a new location. <hpx/
algorithm.
hpp>

exclu-
sive_scan124

hpx::copy_n Copies a number of elements to a new location. <hpx/
algorithm.
hpp>

copy_n125

hpx::copy_if Copies the elements from a range to a new loca-
tion for which the given predicate is true

<hpx/
algorithm.
hpp>

copy126

hpx::move Moves a range of elements to a new location. <hpx/
algorithm.
hpp>

move127

hpx::fill Assigns a range of elements a certain value. <hpx/
algorithm.
hpp>

fill128

hpx::fill_n Assigns a value to a number of elements. <hpx/
algorithm.
hpp>

fill_n129

hpx::generate Saves the result of a function in a range. <hpx/
algorithm.
hpp>

generate130

hpx::generate_n Saves the result of N applications of a function. <hpx/
algorithm.
hpp>

generate_n131

hpx::parallel::v1::removeRemoves the elements from a range that are equal
to the given value.

<hpx/
algorithm.
hpp>

remove132

hpx::parallel::v1::remove_ifRemoves the elements from a range that are equal
to the given predicate is false

<hpx/
algorithm.
hpp>

remove133

hpx::parallel::v1::remove_copyCopies the elements from a range to a new loca-
tion that are not equal to the given value.

<hpx/
algorithm.
hpp>

remove_copy134

hpx::parallel::v1::remove_copy_ifCopies the elements from a range to a new loca-
tion for which the given predicate is false

<hpx/
algorithm.
hpp>

remove_copy135

hpx::parallel::v1::replaceReplaces all values satisfying specific criteria
with another value.

<hpx/
algorithm.
hpp>

replace136

hpx::parallel::v1::replace_ifReplaces all values satisfying specific criteria
with another value.

<hpx/
algorithm.
hpp>

replace137

hpx::parallel::v1::replace_copyCopies a range, replacing elements satisfying
specific criteria with another value.

<hpx/
algorithm.
hpp>

replace_copy138

hpx::parallel::v1::replace_copy_ifCopies a range, replacing elements satisfying
specific criteria with another value.

<hpx/
algorithm.
hpp>

replace_copy139

hpx::parallel::v1::reverseReverses the order elements in a range. <hpx/
algorithm.
hpp>

reverse140

hpx::parallel::v1::reverse_copyCreates a copy of a range that is reversed. <hpx/
algorithm.
hpp>

reverse_copy141

hpx::parallel::v1::rotateRotates the order of elements in a range. <hpx/
algorithm.
hpp>

rotate142

hpx::parallel::v1::rotate_copyCopies and rotates a range of elements. <hpx/
algorithm.
hpp>

rotate_copy143

hpx::parallel::v1::swap_rangesSwaps two ranges of elements. <hpx/
algorithm.
hpp>

swap_ranges144

hpx::parallel::v1::transformApplies a function to a range of elements. <hpx/
algorithm.
hpp>

transform145

hpx::parallel::v1::unique_copyEliminates all but the first element from every
consecutive group of equivalent elements from a
range.

<hpx/
algorithm.
hpp>

unique146

hpx::parallel::v1::unique_copyEliminates all but the first element from every
consecutive group of equivalent elements from a
range.

<hpx/
algorithm.
hpp>

unique_copy147

160 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/copy_n
http://en.cppreference.com/w/cpp/algorithm/copy
http://en.cppreference.com/w/cpp/algorithm/move
http://en.cppreference.com/w/cpp/algorithm/fill
http://en.cppreference.com/w/cpp/algorithm/fill_n
http://en.cppreference.com/w/cpp/algorithm/generate
http://en.cppreference.com/w/cpp/algorithm/generate_n
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/remove_copy
http://en.cppreference.com/w/cpp/algorithm/replace
http://en.cppreference.com/w/cpp/algorithm/replace
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/replace_copy
http://en.cppreference.com/w/cpp/algorithm/reverse
http://en.cppreference.com/w/cpp/algorithm/reverse_copy
http://en.cppreference.com/w/cpp/algorithm/rotate
http://en.cppreference.com/w/cpp/algorithm/rotate_copy
http://en.cppreference.com/w/cpp/algorithm/swap_ranges
http://en.cppreference.com/w/cpp/algorithm/transform
http://en.cppreference.com/w/cpp/algorithm/unique
http://en.cppreference.com/w/cpp/algorithm/unique_copy

HPX Documentation, 1.5.1

Table 2.17: Set operations on sorted sequences (In Header:
<hpx/algorithm.hpp>)

Name Description In header Algorithm page at
cppreference.com

hpx::parallel::v1::merge Merges two sorted ranges. <hpx/
algorithm.
hpp>

merge148

hpx::parallel::v1::inplace_mergeMerges two ordered ranges in-
place.

<hpx/
algorithm.
hpp>

inplace_merge149

hpx::parallel::v1::includesReturns true if one set is a sub-
set of another.

<hpx/
algorithm.
hpp>

includes150

hpx::parallel::v1::set_differenceComputes the difference be-
tween two sets.

<hpx/
algorithm.
hpp>

set_difference151

hpx::parallel::v1::set_intersectionComputes the intersection of
two sets.

<hpx/
algorithm.
hpp>

set_intersection152

hpx::parallel::v1::set_symmetric_differenceComputes the symmetric dif-
ference between two sets.

<hpx/
algorithm.
hpp>

set_symmetric_difference153

hpx::parallel::v1::set_unionComputes the union of two
sets.

<hpx/
algorithm.
hpp>

set_union154

124 http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
125 http://en.cppreference.com/w/cpp/algorithm/copy_n
126 http://en.cppreference.com/w/cpp/algorithm/copy
127 http://en.cppreference.com/w/cpp/algorithm/move
128 http://en.cppreference.com/w/cpp/algorithm/fill
129 http://en.cppreference.com/w/cpp/algorithm/fill_n
130 http://en.cppreference.com/w/cpp/algorithm/generate
131 http://en.cppreference.com/w/cpp/algorithm/generate_n
132 http://en.cppreference.com/w/cpp/algorithm/remove
133 http://en.cppreference.com/w/cpp/algorithm/remove
134 http://en.cppreference.com/w/cpp/algorithm/remove_copy
135 http://en.cppreference.com/w/cpp/algorithm/remove_copy
136 http://en.cppreference.com/w/cpp/algorithm/replace
137 http://en.cppreference.com/w/cpp/algorithm/replace
138 http://en.cppreference.com/w/cpp/algorithm/replace_copy
139 http://en.cppreference.com/w/cpp/algorithm/replace_copy
140 http://en.cppreference.com/w/cpp/algorithm/reverse
141 http://en.cppreference.com/w/cpp/algorithm/reverse_copy
142 http://en.cppreference.com/w/cpp/algorithm/rotate
143 http://en.cppreference.com/w/cpp/algorithm/rotate_copy
144 http://en.cppreference.com/w/cpp/algorithm/swap_ranges
145 http://en.cppreference.com/w/cpp/algorithm/transform
146 http://en.cppreference.com/w/cpp/algorithm/unique
147 http://en.cppreference.com/w/cpp/algorithm/unique_copy
148 http://en.cppreference.com/w/cpp/algorithm/merge
149 http://en.cppreference.com/w/cpp/algorithm/inplace_merge
150 http://en.cppreference.com/w/cpp/algorithm/includes
151 http://en.cppreference.com/w/cpp/algorithm/set_difference
152 http://en.cppreference.com/w/cpp/algorithm/set_intersection
153 http://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
154 http://en.cppreference.com/w/cpp/algorithm/set_union

2.5. Manual 161

http://en.cppreference.com/w/cpp/algorithm/merge
http://en.cppreference.com/w/cpp/algorithm/inplace_merge
http://en.cppreference.com/w/cpp/algorithm/includes
http://en.cppreference.com/w/cpp/algorithm/set_difference
http://en.cppreference.com/w/cpp/algorithm/set_intersection
http://en.cppreference.com/w/cpp/algorithm/set_symmetric_difference
http://en.cppreference.com/w/cpp/algorithm/set_union

HPX Documentation, 1.5.1

Table 2.18: Heap operations (In Header: <hpx/algorithm.hpp>)
Name Description In header Algorithm page at cp-

preference.com
hpx::parallel::v1::is_heapReturns true if the range is

max heap.
<hpx/
algorithm.
hpp>

is_heap155

hpx::parallel::v1::is_heap_untilReturns the first element that
breaks a max heap.

<hpx/
algorithm.
hpp>

is_heap_until156

Table 2.19: Minimum/maximum operations (In Header:
<hpx/algorithm.hpp>)

Name Description In header Algorithm page at cp-
preference.com

hpx::parallel::v1::max_elementReturns the largest element in a
range.

<hpx/
algorithm.
hpp>

max_element157

hpx::parallel::v1::min_elementReturns the smallest element in a
range.

<hpx/
algorithm.
hpp>

min_element158

hpx::parallel::v1::minmax_elementReturns the smallest and the
largest element in a range.

<hpx/
algorithm.
hpp>

minmax_element159

Table 2.20: Partitioning Operations (In Header: <hpx/algorithm.hpp>)
Name Description In header Algorithm page at

cppreference.com
hpx::parallel::v1::is_partitionedReturns true if each true element for a pred-

icate precedes the false elements in a range.
<hpx/
algorithm.
hpp>

is_partitioned160

hpx::parallel::v1::partitionDivides elements into two groups without
preserving their relative order.

<hpx/
algorithm.
hpp>

partition161

hpx::parallel::v1::partition_copyCopies a range dividing the elements into two
groups.

<hpx/
algorithm.
hpp>

partition_copy162

hpx::parallel::v1::stable_partitionDivides elements into two groups while pre-
serving their relative order.

<hpx/
algorithm.
hpp>

stable_partition163

155 http://en.cppreference.com/w/cpp/algorithm/is_heap
156 http://en.cppreference.com/w/cpp/algorithm/is_heap_until
157 http://en.cppreference.com/w/cpp/algorithm/max_element
158 http://en.cppreference.com/w/cpp/algorithm/min_element
159 http://en.cppreference.com/w/cpp/algorithm/minmax_element
160 http://en.cppreference.com/w/cpp/algorithm/is_partitioned
161 http://en.cppreference.com/w/cpp/algorithm/partition
162 http://en.cppreference.com/w/cpp/algorithm/partition_copy
163 http://en.cppreference.com/w/cpp/algorithm/stable_partition

162 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/is_heap
http://en.cppreference.com/w/cpp/algorithm/is_heap_until
http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm/minmax_element
http://en.cppreference.com/w/cpp/algorithm/is_partitioned
http://en.cppreference.com/w/cpp/algorithm/partition
http://en.cppreference.com/w/cpp/algorithm/partition_copy
http://en.cppreference.com/w/cpp/algorithm/stable_partition

HPX Documentation, 1.5.1

Table 2.21: Sorting Operations (In Header: <hpx/algorithm.hpp>)
Name Description In header Algorithm page at

cppreference.com
hpx::parallel::v1::is_sortedReturns true if each element in a

range is sorted.
<hpx/
algorithm.
hpp>

is_sorted164

hpx::parallel::v1::is_sorted_untilReturns the first unsorted element. <hpx/
algorithm.
hpp>

is_sorted_until165

hpx::parallel::v1::sortSorts the elements in a range. <hpx/
algorithm.
hpp>

sort166

hpx::parallel::v1::stable_sortSorts the elements in a range, maintain
sequence of equal elements.

<hpx/
algorithm.
hpp>

stable_sort167

hpx::parallel::v1::sort_by_keySorts one range of data using keys sup-
plied in another range.

<hpx/
algorithm.
hpp>

164 http://en.cppreference.com/w/cpp/algorithm/is_sorted
165 http://en.cppreference.com/w/cpp/algorithm/is_sorted_until
166 http://en.cppreference.com/w/cpp/algorithm/sort
167 http://en.cppreference.com/w/cpp/algorithm/stable_sort

2.5. Manual 163

http://en.cppreference.com/w/cpp/algorithm/is_sorted
http://en.cppreference.com/w/cpp/algorithm/is_sorted_until
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/stable_sort

HPX Documentation, 1.5.1

Table 2.22: Numeric Parallel Algorithms (In Header:
<hpx/numeric.hpp>)

Name Description In
header

Algo-
rithm
page
at cp-
prefer-
ence.com

hpx::parallel::v1::adjacent_differenceCalculates the difference between each element in an input range and the
preceding element.

<hpx/
numeric.
hpp>

adja-
cent_difference168

hpx::parallel::v1::exclusive_scanDoes an exclusive parallel scan over a range of elements. <hpx/
numeric.
hpp>

exclu-
sive_scan169

hpx::reduce Sums up a range of elements. <hpx/
numeric.
hpp>

re-
duce170

hpx::parallel::v1::inclusive_scanDoes an inclusive parallel scan over a range of elements. <hpx/
algorithm.
hpp>

inclu-
sive_scan171

hpx::parallel::v1::reduce_by_keyPerforms an inclusive scan on consecutive elements with matching keys,
with a reduction to output only the final sum for each key. The key se-
quence {1,1,1,2,3,3,3,3,1} and value sequence {2,3,4,5,6,
7,8,9,10} would be reduced to keys={1,2,3,1}, values={9,
5,30,10}.

<hpx/
numeric.
hpp>

hpx::transform_reduceSums up a range of elements after applying a function. Also, accumulates
the inner products of two input ranges.

<hpx/
numeric.
hpp>

trans-
form_reduce172

hpx::parallel::v1::transform_inclusive_scanDoes an inclusive parallel scan over a range of elements after applying a
function.

<hpx/
numeric.
hpp>

trans-
form_inclusive_scan173

hpx::parallel::v1::transform_exclusive_scanDoes an exclusive parallel scan over a range of elements after applying a
function.

<hpx/
numeric.
hpp>

trans-
form_exclusive_scan174

168 http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
169 http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
170 http://en.cppreference.com/w/cpp/algorithm/reduce
171 http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
172 http://en.cppreference.com/w/cpp/algorithm/transform_reduce
173 http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
174 http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan

164 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
http://en.cppreference.com/w/cpp/algorithm/adjacent_difference
http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/reduce
http://en.cppreference.com/w/cpp/algorithm/reduce
http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_reduce
http://en.cppreference.com/w/cpp/algorithm/transform_reduce
http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_inclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan
http://en.cppreference.com/w/cpp/algorithm/transform_exclusive_scan

HPX Documentation, 1.5.1

Table 2.23: Dynamic Memory Management (In Header:
<hpx/memory.hpp>)

Name Description In header Algorithm page at
cppreference.com

hpx::destroy Destroys a range of objects. <hpx/
memory.
hpp>

destroy175

hpx::destroy_n Destroys a range of objects. <hpx/
memory.
hpp>

destroy_n176

hpx::parallel::v1::uninitialized_copyCopies a range of objects to an
uninitialized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_copy177

hpx::parallel::v1::uninitialized_copy_nCopies a number of objects to an
uninitialized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_copy_n178

hpx::parallel::v1::uninitialized_default_constructCopies a range of objects to an
uninitialized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_default_construct179

hpx::parallel::v1::uninitialized_default_construct_nCopies a number of objects to an
uninitialized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_default_construct_n180

hpx::parallel::v1::uninitialized_fillCopies an object to an uninitial-
ized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_fill181

hpx::parallel::v1::uninitialized_fill_nCopies an object to an uninitial-
ized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_fill_n182

hpx::parallel::v1::uninitialized_moveMoves a range of objects to an
uninitialized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_move183

hpx::parallel::v1::uninitialized_move_nMoves a number of objects to an
uninitialized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_move_n184

hpx::parallel::v1::uninitialized_value_constructConstructs objects in an unini-
tialized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_value_construct185

hpx::parallel::v1::uninitialized_value_construct_nConstructs objects in an unini-
tialized area of memory.

<hpx/
memory.
hpp>

uninitial-
ized_value_construct_n186

175 http://en.cppreference.com/w/cpp/memory/destroy
176 http://en.cppreference.com/w/cpp/memory/destroy_n
177 http://en.cppreference.com/w/cpp/memory/uninitialized_copy
178 http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
179 http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
180 http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
181 http://en.cppreference.com/w/cpp/memory/uninitialized_fill
182 http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
183 http://en.cppreference.com/w/cpp/memory/uninitialized_move
184 http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
185 http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
186 http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n

2.5. Manual 165

http://en.cppreference.com/w/cpp/memory/destroy
http://en.cppreference.com/w/cpp/memory/destroy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_copy
http://en.cppreference.com/w/cpp/memory/uninitialized_copy
http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_copy_n
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_default_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_fill
http://en.cppreference.com/w/cpp/memory/uninitialized_fill
http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
http://en.cppreference.com/w/cpp/memory/uninitialized_fill_n
http://en.cppreference.com/w/cpp/memory/uninitialized_move
http://en.cppreference.com/w/cpp/memory/uninitialized_move
http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
http://en.cppreference.com/w/cpp/memory/uninitialized_move_n
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n
http://en.cppreference.com/w/cpp/memory/uninitialized_value_construct_n

HPX Documentation, 1.5.1

Table 2.24: Index-based for-loops (In Header: <hpx/algorithm.hpp>)
Name Description In header
hpx::for_loop Implements loop functionality over a range specified by inte-

gral or iterator bounds.
<hpx/
algorithm.hpp>

hpx::for_loop_stridedImplements loop functionality over a range specified by inte-
gral or iterator bounds.

<hpx/
algorithm.hpp>

hpx::for_loop_n Implements loop functionality over a range specified by inte-
gral or iterator bounds.

<hpx/
algorithm.hpp>

hpx::for_loop_n_stridedImplements loop functionality over a range specified by inte-
gral or iterator bounds.

<hpx/
algorithm.hpp>

Executor parameters and executor parameter traits

HPX introduces the notion of execution parameters and execution parameter traits. At this point, the only parameter
that can be customized is the size of the chunks of work executed on a single HPX thread (such as the number of loop
iterations combined to run as a single task).

An executor parameter object is responsible for exposing the calculation of the size of the chunks scheduled. It
abstracts the (potentially platform-specific) algorithms of determining those chunk sizes.

The way executor parameters are implemented is aligned with the way executors are implemented. All
functionalities of concrete executor parameter types are exposed and accessible through a corresponding
hpx::parallel::executor_parameter_traits type.

With executor_parameter_traits, clients access all types of executor parameters uniformly:

std::size_t chunk_size =
executor_parameter_traits<my_parameter_t>::get_chunk_size(my_parameter,

my_executor, [](){ return 0; }, num_tasks);

This call synchronously retrieves the size of a single chunk of loop iterations (or similar) to combine for execution on
a single HPX thread if the overall number of tasks to schedule is given by num_tasks. The lambda function exposes
a means of test-probing the execution of a single iteration for performance measurement purposes. The execution
parameter type might dynamically determine the execution time of one or more tasks in order to calculate the chunk
size; see hpx::parallel::execution::auto_chunk_size for an example of this executor parameter type.

Other functions in the interface exist to discover whether an executor parameter type should be invoked once
(i.e., it returns a static chunk size; see hpx::parallel::execution::static_chunk_size) or whether
it should be invoked for each scheduled chunk of work (i.e., it returns a variable chunk size; for an example, see
hpx::parallel::execution::guided_chunk_size).

Although this interface appears to require executor parameter type authors to implement all different basic operations,
none are required. In practice, all operations have sensible defaults. However, some executor parameter types will
naturally specialize all operations for maximum efficiency.

HPX implements the following executor parameter types:

• hpx::parallel::execution::auto_chunk_size: Loop iterations are divided into pieces and then
assigned to threads. The number of loop iterations combined is determined based on measurements of how long
the execution of 1% of the overall number of iterations takes. This executor parameter type makes sure that as
many loop iterations are combined as necessary to run for the amount of time specified.

• hpx::parallel::execution::static_chunk_size: Loop iterations are divided into pieces of a
given size and then assigned to threads. If the size is not specified, the iterations are, if possible, evenly divided
contiguously among the threads. This executor parameters type is equivalent to OpenMP’s STATIC scheduling
directive.

166 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• hpx::parallel::execution::dynamic_chunk_size: Loop iterations are divided into pieces of a
given size and then dynamically scheduled among the cores; when a core finishes one chunk, it is dynamically
assigned another. If the size is not specified, the default chunk size is 1. This executor parameter type is
equivalent to OpenMP’s DYNAMIC scheduling directive.

• hpx::parallel::execution::guided_chunk_size: Iterations are dynamically assigned to
cores in blocks as cores request them until no blocks remain to be assigned. This is similar to
dynamic_chunk_size except that the block size decreases each time a number of loop iterations is given to a
thread. The size of the initial block is proportional to number_of_iterations / number_of_cores.
Subsequent blocks are proportional to number_of_iterations_remaining / number_of_cores.
The optional chunk size parameter defines the minimum block size. The default minimal chunk size is 1. This
executor parameter type is equivalent to OpenMP’s GUIDED scheduling directive.

Using task blocks

The define_task_block, run and the wait functions implemented based on N4411187 are based on the
task_block concept that is a part of the common subset of the Microsoft Parallel Patterns Library (PPL)188 and the
Intel Threading Building Blocks (TBB)189 libraries.

These implementations adopt a simpler syntax than exposed by those libraries— one that is influenced by language-
based concepts, such as spawn and sync from Cilk++190 and async and finish from X10191. They improve on existing
practice in the following ways:

• The exception handling model is simplified and more consistent with normal C++ exceptions.

• Most violations of strict fork-join parallelism can be enforced at compile time (with compiler assistance, in
some cases).

• The syntax allows scheduling approaches other than child stealing.

Consider an example of a parallel traversal of a tree, where a user-provided function compute is applied to each node
of the tree, returning the sum of the results:

template <typename Func>
int traverse(node& n, Func && compute)
{

int left = 0, right = 0;
define_task_block(

[&](task_block<>& tr) {
if (n.left)

tr.run([&] { left = traverse(*n.left, compute); });
if (n.right)

tr.run([&] { right = traverse(*n.right, compute); });
});

return compute(n) + left + right;
}

The example above demonstrates the use of two of the functions, hpx::parallel::define_task_block and
the hpx::parallel::task_block::run member function of a hpx::parallel::task_block.

The task_block function delineates a region in a program code potentially containing invocations of threads
spawned by the run member function of the task_block class. The run function spawns an HPX thread, a

187 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
188 https://msdn.microsoft.com/en-us/library/dd492418.aspx
189 https://www.threadingbuildingblocks.org/
190 https://software.intel.com/en-us/articles/intel-cilk-plus/
191 https://x10-lang.org/

2.5. Manual 167

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://www.threadingbuildingblocks.org/
https://software.intel.com/en-us/articles/intel-cilk-plus/
https://x10-lang.org/

HPX Documentation, 1.5.1

unit of work that is allowed to execute in parallel with respect to the caller. Any parallel tasks spawned by run within
the task block are joined back to a single thread of execution at the end of the define_task_block. run takes a
user-provided function object f and starts it asynchronously—i.e., it may return before the execution of f completes.
The HPX scheduler may choose to run f immediately or delay running f until compute resources become available.

A task_block can be constructed only by define_task_block because it has no public constructors. Thus,
run can be invoked directly or indirectly only from a user-provided function passed to define_task_block:

void g();

void f(task_block<>& tr)
{

tr.run(g); // OK, invoked from within task_block in h
}

void h()
{

define_task_block(f);
}

int main()
{

task_block<> tr; // Error: no public constructor
tr.run(g); // No way to call run outside of a define_task_block
return 0;

}

Extensions for task blocks

Using execution policies with task blocks

HPX implements some extensions for task_block beyond the actual standards proposal N4411192. The main
addition is that a task_block can be invoked with an execution policy as its first argument, very similar to the
parallel algorithms.

An execution policy is an object that expresses the requirements on the ordering of functions invoked as a consequence
of the invocation of a task block. Enabling passing an execution policy to define_task_block gives the user
control over the amount of parallelism employed by the created task_block. In the following example the use of
an explicit par execution policy makes the user’s intent explicit:

template <typename Func>
int traverse(node *n, Func&& compute)
{

int left = 0, right = 0;

define_task_block(
execution::par, // execution::parallel_policy
[&](task_block<>& tb) {

if (n->left)
tb.run([&] { left = traverse(n->left, compute); });

if (n->right)
tb.run([&] { right = traverse(n->right, compute); });

});

(continues on next page)

192 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf

168 Chapter 2. What’s so special about HPX?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf

HPX Documentation, 1.5.1

(continued from previous page)

return compute(n) + left + right;
}

This also causes the hpx::parallel::v2::task_block object to be a template in our implementation. The
template argument is the type of the execution policy used to create the task block. The template argument defaults to
hpx::parallel::execution::parallel_policy .

HPX still supports calling hpx::parallel::v2::define_task_block without an explicit execution policy.
In this case the task block will run using the hpx::parallel::execution::parallel_policy .

HPX also adds the ability to access the execution policy that was used to create a given task_block.

Using executors to run tasks

Often, users want to be able to not only define an execution policy to use by default for all spawned tasks inside the
task block, but also to customize the execution context for one of the tasks executed by task_block::run. Adding
an optionally passed executor instance to that function enables this use case:

template <typename Func>
int traverse(node *n, Func&& compute)
{

int left = 0, right = 0;

define_task_block(
execution::par, // execution::parallel_policy
[&](auto& tb) {

if (n->left)
{

// use explicitly specified executor to run this task
tb.run(my_executor(), [&] { left = traverse(n->left, compute); });

}
if (n->right)
{

// use the executor associated with the par execution policy
tb.run([&] { right = traverse(n->right, compute); });

}
});

return compute(n) + left + right;
}

HPX still supports calling hpx::parallel::v2::task_block::run without an explicit executor object.
In this case the task will be run using the executor associated with the execution policy that was used to call
hpx::parallel::v2::define_task_block.

2.5. Manual 169

HPX Documentation, 1.5.1

2.5.7 Writing distributed HPX applications

This section focuses on the features of HPX needed to write distributed applications, namely the Active Global Address
Space (AGAS), remotely executable functions (i.e. actions), and distributed objects (i.e. components).

Global names

HPX implements an Active Global Address Space (AGAS) which is exposing a single uniform address space spanning
all localities an application runs on. AGAS is a fundamental component of the ParalleX execution model. Conceptually,
there is no rigid demarcation of local or global memory in AGAS; all available memory is a part of the same address
space. AGAS enables named objects to be moved (migrated) across localities without having to change the object’s
name, i.e., no references to migrated objects have to be ever updated. This feature has significance for dynamic load
balancing and in applications where the workflow is highly dynamic, allowing work to be migrated from heavily
loaded nodes to less loaded nodes. In addition, immutability of names ensures that AGAS does not have to keep extra
indirections (“bread crumbs”) when objects move, hence minimizing complexity of code management for system
developers as well as minimizing overheads in maintaining and managing aliases.

The AGAS implementation in HPX does not automatically expose every local address to the global address space. It
is the responsibility of the programmer to explicitly define which of the objects have to be globally visible and which
of the objects are purely local.

In HPX global addresses (global names) are represented using the hpx::id_type data type. This data type is
conceptually very similar to void* pointers as it does not expose any type information of the object it is referring to.

The only predefined global addresses are assigned to all localities. The following HPX API functions allow one to
retrieve the global addresses of localities:

• hpx::find_here: retrieve the global address of the locality this function is called on.

• hpx::find_all_localities: retrieve the global addresses of all localities available to this application
(including the locality the function is being called on).

• hpx::find_remote_localities: retrieve the global addresses of all remote localities available to this
application (not including the locality the function is being called on)

• hpx::get_num_localities: retrieve the number of localities available to this application.

• hpx::find_locality: retrieve the global address of any locality supporting the given component type.

• hpx::get_colocation_id: retrieve the global address of the locality currently hosting the object with the
given global address.

Additionally, the global addresses of localities can be used to create new instances of components using the following
HPX API function:

• hpx::components::new_: Create a new instance of the given Component type on the specified locality.

Note: HPX does not expose any functionality to delete component instances. All global addresses (as represented us-
ing hpx::id_type) are automatically garbage collected. When the last (global) reference to a particular component
instance goes out of scope the corresponding component instance is automatically deleted.

170 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Applying actions

Action type definition

Actions are special types we use to describe possibly remote operations. For every global function and every member
function which has to be invoked distantly, a special type must be defined. For any global function the special macro
HPX_PLAIN_ACTION can be used to define the action type. Here is an example demonstrating this:

namespace app
{

void some_global_function(double d)
{

cout << d;
}

}

// This will define the action type 'some_global_action' which represents
// the function 'app::some_global_function'.
HPX_PLAIN_ACTION(app::some_global_function, some_global_action);

Important: The macro HPX_PLAIN_ACTION has to be placed in global namespace, even if the wrapped function
is located in some other namespace. The newly defined action type is placed in the global namespace as well.

If the action type should be defined somewhere not in global namespace, the action type definition has to be split into
two macro invocations (HPX_DEFINE_PLAIN_ACTION and HPX_REGISTER_ACTION) as shown in the next
example:

namespace app
{

void some_global_function(double d)
{

cout << d;
}

// On conforming compilers the following macro expands to:
//
// typedef hpx::actions::make_action<
// decltype(&some_global_function), &some_global_function
// >::type some_global_action;
//
// This will define the action type 'some_global_action' which represents
// the function 'some_global_function'.
HPX_DEFINE_PLAIN_ACTION(some_global_function, some_global_action);

}

// The following macro expands to a series of definitions of global objects
// which are needed for proper serialization and initialization support
// enabling the remote invocation of the function``some_global_function``
HPX_REGISTER_ACTION(app::some_global_action, app_some_global_action);

The shown code defines an action type some_global_action inside the namespace app.

Important: If the action type definition is split between two macros as shown above, the name of the action type to
create has to be the same for both macro invocations (here some_global_action).

2.5. Manual 171

HPX Documentation, 1.5.1

Important: The second argument passed to HPX_REGISTER_ACTION (app_some_global_action) has to
comprise a globally unique C++ identifier representing the action. This is used for serialization purposes.

For member functions of objects which have been registered with AGAS (e.g. ‘components’) a different registration
macro HPX_DEFINE_COMPONENT_ACTION has to be utilized. Any component needs to be declared in a header
file and have some special support macros defined in a source file. Here is an example demonstrating this. The first
snippet has to go into the header file:

namespace app
{

struct some_component
: hpx::components::component_base<some_component>

{
int some_member_function(std::string s)
{

return boost::lexical_cast<int>(s);
}

// This will define the action type 'some_member_action' which
// represents the member function 'some_member_function' of the
// object type 'some_component'.
HPX_DEFINE_COMPONENT_ACTION(some_component, some_member_function,

some_member_action);
};

}

// Note: The second argument to the macro below has to be systemwide-unique
// C++ identifiers
HPX_REGISTER_ACTION_DECLARATION(app::some_component::some_member_action, some_
→˓component_some_action);

The next snippet belongs into a source file (e.g. the main application source file) in the simplest case:

typedef hpx::components::component<app::some_component> component_type;
typedef app::some_component some_component;

HPX_REGISTER_COMPONENT(component_type, some_component);

// The parameters for this macro have to be the same as used in the corresponding
// HPX_REGISTER_ACTION_DECLARATION() macro invocation above
typedef some_component::some_member_action some_component_some_action;
HPX_REGISTER_ACTION(some_component_some_action);

Granted, these macro invocations are a bit more complex than for simple global functions, however we believe they
are still manageable.

The most important macro invocation is the HPX_DEFINE_COMPONENT_ACTION in the header file as this defines
the action type we need to invoke the member function. For a complete example of a simple component action see
[hpx_link examples/quickstart/component_in_executable.cpp..component_in_executable.cpp]

172 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Action invocation

The process of invoking a global function (or a member function of an object) with the help of the associated action
is called ‘applying the action’. Actions can have arguments, which will be supplied while the action is applied. At
the minimum, one parameter is required to apply any action - the id of the locality the associated function should
be invoked on (for global functions), or the id of the component instance (for member functions). Generally, HPX
provides several ways to apply an action, all of which are described in the following sections.

Generally, HPX actions are very similar to ‘normal’ C++ functions except that actions can be invoked remotely. Fig.
?? below shows an overview of the main API exposed by HPX. This shows the function invocation syntax as defined
by the C++ language (dark gray), the additional invocation syntax as provided through C++ Standard Library features
(medium gray), and the extensions added by HPX (light gray) where:

• f function to invoke,

• p..: (optional) arguments,

• R: return type of f,

• action: action type defined by, HPX_DEFINE_PLAIN_ACTION or
HPX_DEFINE_COMPONENT_ACTION encapsulating f,

• a: an instance of the type `action,

• id: the global address the action is applied to.

Fig. 2.8: Overview of the main API exposed by HPX.

This figure shows that HPX allows the user to apply actions with a syntax similar to the C++ standard. In fact, all action
types have an overloaded function operator allowing to synchronously apply the action. Further, HPX implements
hpx::async which semantically works similar to the way std::async works for plain C++ function.

Note: The similarity of applying an action to conventional function invocations extends even further. HPX im-
plements hpx::bind and hpx::function two facilities which are semantically equivalent to the std::bind
and std::function types as defined by the C++11 Standard. While hpx::async extends beyond the con-
ventional semantics by supporting actions and conventional C++ functions, the HPX facilities hpx::bind and
hpx::function extend beyond the conventional standard facilities too. The HPX facilities not only support con-
ventional functions, but can be used for actions as well.

2.5. Manual 173

HPX Documentation, 1.5.1

Additionally, HPX exposes hpx::apply and hpx::async_continue both of which refine and extend the stan-
dard C++ facilities.

The different ways to invoke a function in HPX will be explained in more detail in the following sections.

Applying an action asynchronously without any synchronization

This method (‘fire and forget’) will make sure the function associated with the action is scheduled to run on the
target locality. Applying the action does not wait for the function to start running, instead it is a fully asynchronous
operation. The following example shows how to apply the action as defined in the previous section on the local locality
(the locality this code runs on):

some_global_action act; // define an instance of some_global_action
hpx::apply(act, hpx::find_here(), 2.0);

(the function hpx::find_here() returns the id of the local locality, i.e. the locality this code executes on).

Any component member function can be invoked using the same syntactic construct. Given that id is the global
address for a component instance created earlier, this invocation looks like:

some_component_action act; // define an instance of some_component_action
hpx::apply(act, id, "42");

In this case any value returned from this action (e.g. in this case the integer 42 is ignored. Please look at Action type
definition for the code defining the component action some_component_action used.

Applying an action asynchronously with synchronization

This method will make sure the action is scheduled to run on the target locality. Applying the action itself does not
wait for the function to start running or to complete, instead this is a fully asynchronous operation similar to using
hpx::apply as described above. The difference is that this method will return an instance of a hpx::future<>
encapsulating the result of the (possibly remote) execution. The future can be used to synchronize with the asyn-
chronous operation. The following example shows how to apply the action from above on the local locality:

some_global_action act; // define an instance of some_global_action
hpx::future<void> f = hpx::async(act, hpx::find_here(), 2.0);
//
// ... other code can be executed here
//
f.get(); // this will possibly wait for the asynchronous operation to 'return'

(as before, the function hpx::find_here() returns the id of the local locality (the locality this code is executed
on).

Note: The use of a hpx::future<void> allows the current thread to synchronize with any remote operation not
returning any value.

Note: Any std::future<> returned from std::async() is required to block in its destructor if the value has
not been set for this future yet. This is not true for hpx::future<> which will never block in its destructor, even
if the value has not been returned to the future yet. We believe that consistency in the behavior of futures is more
important than standards conformance in this case.

174 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Any component member function can be invoked using the same syntactic construct. Given that id is the global
address for a component instance created earlier, this invocation looks like:

some_component_action act; // define an instance of some_component_action
hpx::future<int> f = hpx::async(act, id, "42");
//
// ... other code can be executed here
//
cout << f.get(); // this will possibly wait for the asynchronous operation to
→˓'return' 42

Note: The invocation of f.get() will return the result immediately (without suspending the calling thread) if
the result from the asynchronous operation has already been returned. Otherwise, the invocation of f.get() will
suspend the execution of the calling thread until the asynchronous operation returns its result.

Applying an action synchronously

This method will schedule the function wrapped in the specified action on the target locality. While the invocation
appears to be synchronous (as we will see), the calling thread will be suspended while waiting for the function to
return. Invoking a plain action (e.g. a global function) synchronously is straightforward:

some_global_action act; // define an instance of some_global_action
act(hpx::find_here(), 2.0);

While this call looks just like a normal synchronous function invocation, the function wrapped by the action will be
scheduled to run on a new thread and the calling thread will be suspended. After the new thread has executed the
wrapped global function, the waiting thread will resume and return from the synchronous call.

Equivalently, any action wrapping a component member function can be invoked synchronously as follows:

some_component_action act; // define an instance of some_component_action
int result = act(id, "42");

The action invocation will either schedule a new thread locally to execute the wrapped member function (as before, id
is the global address of the component instance the member function should be invoked on), or it will send a parcel to
the remote locality of the component causing a new thread to be scheduled there. The calling thread will be suspended
until the function returns its result. This result will be returned from the synchronous action invocation.

It is very important to understand that this ‘synchronous’ invocation syntax in fact conceals an asynchronous function
call. This is beneficial as the calling thread is suspended while waiting for the outcome of a potentially remote
operation. The HPX thread scheduler will schedule other work in the meantime, allowing the application to make
further progress while the remote result is computed. This helps overlapping computation with communication and
hiding communication latencies.

Note: The syntax of applying an action is always the same, regardless whether the target locality is remote to the
invocation locality or not. This is a very important feature of HPX as it frees the user from the task of keeping track
what actions have to be applied locally and which actions are remote. If the target for applying an action is local, a
new thread is automatically created and scheduled. Once this thread is scheduled and run, it will execute the function
encapsulated by that action. If the target is remote, HPX will send a parcel to the remote locality which encapsulates
the action and its parameters. Once the parcel is received on the remote locality HPX will create and schedule a new
thread there. Once this thread runs on the remote locality, it will execute the function encapsulated by the action.

2.5. Manual 175

HPX Documentation, 1.5.1

Applying an action with a continuation but without any synchronization

This method is very similar to the method described in section Applying an action asynchronously without any syn-
chronization. The difference is that it allows the user to chain a sequence of asynchronous operations, while handing
the (intermediate) results from one step to the next step in the chain. Where hpx::apply invokes a single function
using ‘fire and forget’ semantics, hpx::apply_continue asynchronously triggers a chain of functions without
the need for the execution flow ‘to come back’ to the invocation site. Each of the asynchronous functions can be
executed on a different locality.

Applying an action with a continuation and with synchronization

This method is very similar to the method described in section Applying an action asynchronously with synchroniza-
tion. In addition to what hpx::async can do, the functions hpx::async_continue takes an additional function
argument. This function will be called as the continuation of the executed action. It is expected to perform additional
operations and to make sure that a result is returned to the original invocation site. This method chains operations asyn-
chronously by providing a continuation operation which is automatically executed once the first action has finished
executing.

As an example we chain two actions, where the result of the first action is forwarded to the second action and the result
of the second action is sent back to the original invocation site:

// first action
std::int32_t action1(std::int32_t i)
{

return i+1;
}
HPX_PLAIN_ACTION(action1); // defines action1_type

// second action
std::int32_t action2(std::int32_t i)
{

return i*2;
}
HPX_PLAIN_ACTION(action2); // defines action2_type

// this code invokes 'action1' above and passes along a continuation
// function which will forward the result returned from 'action1' to
// 'action2'.
action1_type act1; // define an instance of 'action1_type'
action2_type act2; // define an instance of 'action2_type'
hpx::future<int> f =

hpx::async_continue(act1, hpx::make_continuation(act2),
hpx::find_here(), 42);

hpx::cout << f.get() << "\n"; // will print: 86 ((42 + 1) * 2)

By default, the continuation is executed on the same locality as hpx::async_continue is invoked from. If you
want to specify the locality where the continuation should be executed, the code above has to be written as:

// this code invokes 'action1' above and passes along a continuation
// function which will forward the result returned from 'action1' to
// 'action2'.
action1_type act1; // define an instance of 'action1_type'
action2_type act2; // define an instance of 'action2_type'
hpx::future<int> f =

hpx::async_continue(act1, hpx::make_continuation(act2, hpx::find_here()),

(continues on next page)

176 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

hpx::find_here(), 42);
hpx::cout << f.get() << "\n"; // will print: 86 ((42 + 1) * 2)

Similarly, it is possible to chain more than 2 operations:

action1_type act1; // define an instance of 'action1_type'
action2_type act2; // define an instance of 'action2_type'
hpx::future<int> f =

hpx::async_continue(act1,
hpx::make_continuation(act2, hpx::make_continuation(act1)),
hpx::find_here(), 42);

hpx::cout << f.get() << "\n"; // will print: 87 ((42 + 1) * 2 + 1)

The function hpx::make_continuation creates a special function object which exposes the following prototype:

struct continuation
{

template <typename Result>
void operator()(hpx::id_type id, Result&& result) const
{

...
}

};

where the parameters passed to the overloaded function operator operator()() are:

• the id is the global id where the final result of the asynchronous chain of operations should be sent to (in most
cases this is the id of the hpx::future returned from the initial call to hpx::async_continue. Any
custom continuation function should make sure this id is forwarded to the last operation in the chain.

• the result is the result value of the current operation in the asynchronous execution chain. This value needs
to be forwarded to the next operation.

Note: All of those operations are implemented by the predefined continuation function object which is returned from
hpx::make_continuation. Any (custom) function object used as a continuation should conform to the same
interface.

Action error handling

Like in any other asynchronous invocation scheme it is important to be able to handle error conditions occurring while
the asynchronous (and possibly remote) operation is executed. In HPX all error handling is based on standard C++
exception handling. Any exception thrown during the execution of an asynchronous operation will be transferred back
to the original invocation locality, where it is rethrown during synchronization with the calling thread.

Important: Exceptions thrown during asynchronous execution can be transferred back to the invoking thread only
for the synchronous and the asynchronous case with synchronization. Like with any other unhandled exception,
any exception thrown during the execution of an asynchronous action without synchronization will result in calling
hpx::terminate causing the running application to exit immediately.

Note: Even if error handling internally relies on exceptions, most of the API functions exposed by HPX can be used

2.5. Manual 177

HPX Documentation, 1.5.1

without throwing an exception. Please see Working with exceptions for more information.

As an example, we will assume that the following remote function will be executed:

namespace app
{

void some_function_with_error(int arg)
{

if (arg < 0) {
HPX_THROW_EXCEPTION(bad_parameter, "some_function_with_error",

"some really bad error happened");
}
// do something else...

}
}

// This will define the action type 'some_error_action' which represents
// the function 'app::some_function_with_error'.
HPX_PLAIN_ACTION(app::some_function_with_error, some_error_action);

The use of HPX_THROW_EXCEPTION to report the error encapsulates the creation of a hpx::exception which
is initialized with the error code hpx::bad_parameter. Additionally it carries the passed strings, the information
about the file name, line number, and call stack of the point the exception was thrown from.

We invoke this action using the synchronous syntax as described before:

// note: wrapped function will throw hpx::exception
some_error_action act; // define an instance of some_error_action
try {

act(hpx::find_here(), -3); // exception will be rethrown from here
}
catch (hpx::exception const& e) {

// prints: 'some really bad error happened: HPX(bad parameter)'
cout << e.what();

}

If this action is invoked asynchronously with synchronization, the exception is propagated to the waiting thread as
well and is re-thrown from the future’s function get():

// note: wrapped function will throw hpx::exception
some_error_action act; // define an instance of some_error_action
hpx::future<void> f = hpx::async(act, hpx::find_here(), -3);
try {

f.get(); // exception will be rethrown from here
}
catch (hpx::exception const& e) {

// prints: 'some really bad error happened: HPX(bad parameter)'
cout << e.what();

}

For more information about error handling please refer to the section Working with exceptions. There we also explain
how to handle error conditions without having to rely on exception.

178 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Writing components

A component in HPX is a C++ class which can be created remotely and for which its member functions can be invoked
remotely as well. The following sections highlight how components can be defined, created, and used.

Defining components

In order for a C++ class type to be managed remotely in HPX, the type must be derived from the
hpx::components::component_base template type. We call such C++ class types ‘components’.

Note that the component type itself is passed as a template argument to the base class:

// header file some_component.hpp

#include <hpx/include/components.hpp>

namespace app
{

// Define a new component type 'some_component'
struct some_component

: hpx::components::component_base<some_component>
{

// This member function is has to be invoked remotely
int some_member_function(std::string const& s)
{

return boost::lexical_cast<int>(s);
}

// This will define the action type 'some_member_action' which
// represents the member function 'some_member_function' of the
// object type 'some_component'.
HPX_DEFINE_COMPONENT_ACTION(some_component, some_member_function, some_member_

→˓action);
};

}

// This will generate the necessary boiler-plate code for the action allowing
// it to be invoked remotely. This declaration macro has to be placed in the
// header file defining the component itself.
//
// Note: The second argument to the macro below has to be systemwide-unique
// C++ identifiers
//
HPX_REGISTER_ACTION_DECLARATION(app::some_component::some_member_action, some_
→˓component_some_action);

There is more boiler plate code which has to be placed into a source file in order for the component to be usable. Every
component type is required to have macros placed into its source file, one for each component type and one macro for
each of the actions defined by the component type.

For instance:

// source file some_component.cpp

#include "some_component.hpp"

// The following code generates all necessary boiler plate to enable the
(continues on next page)

2.5. Manual 179

HPX Documentation, 1.5.1

(continued from previous page)

// remote creation of 'app::some_component' instances with 'hpx::new_<>()'
//
using some_component = app::some_component;
using some_component_type = hpx::components::component<some_component>;

// Please note that the second argument to this macro must be a
// (system-wide) unique C++-style identifier (without any namespaces)
//
HPX_REGISTER_COMPONENT(some_component_type, some_component);

// The parameters for this macro have to be the same as used in the corresponding
// HPX_REGISTER_ACTION_DECLARATION() macro invocation in the corresponding
// header file.
//
// Please note that the second argument to this macro must be a
// (system-wide) unique C++-style identifier (without any namespaces)
//
HPX_REGISTER_ACTION(app::some_component::some_member_action, some_component_some_
→˓action);

Defining client side representation classes

Often it is very convenient to define a separate type for a component which can be used on the client side (from
where the component is instantiated and used). This step might seem as unnecessary duplicating code, however it
significantly increases the type safety of the code.

A possible implementation of such a client side representation for the component described in the previous section
could look like:

#include <hpx/include/components.hpp>

namespace app
{

// Define a client side representation type for the component type
// 'some_component' defined in the previous section.
//
struct some_component_client

: hpx::components::client_base<some_component_client, some_component>
{

using base_type = hpx::components::client_base<
some_component_client, some_component>;

some_component_client(hpx::future<hpx::id_type> && id)
: base_type(std::move(id))

{}

hpx::future<int> some_member_function(std::string const& s)
{

some_component::some_member_action act;
return hpx::async(act, get_id(), s);

}
};

}

A client side object stores the global id of the component instance it represents. This global id is accessible by calling
the function client_base<>::get_id(). The special constructor which is provided in the example allows to

180 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

create this client side object directly using the API function hpx::new_.

Creating component instances

Instances of defined component types can be created in two different ways. If the component to create has a defined
client side representation type, then this can be used, otherwise use the server type.

The following examples assume that some_component_type is the type of the server side implementation of the
component to create. All additional arguments (see , ... notation below) are passed through to the corresponding
constructor calls of those objects:

// create one instance on the given locality
hpx::id_type here = hpx::find_here();
hpx::future<hpx::id_type> f =

hpx::new_<some_component_type>(here, ...);

// create one instance using the given distribution
// policy (here: hpx::colocating_distribution_policy)
hpx::id_type here = hpx::find_here();
hpx::future<hpx::id_type> f =

hpx::new_<some_component_type>(hpx::colocated(here), ...);

// create multiple instances on the given locality
hpx::id_type here = find_here();
hpx::future<std::vector<hpx::id_type>> f =

hpx::new_<some_component_type[]>(here, num, ...);

// create multiple instances using the given distribution
// policy (here: hpx::binpacking_distribution_policy)
hpx::future<std::vector<hpx::id_type>> f = hpx::new_<some_component_type[]>(

hpx::binpacking(hpx::find_all_localities()), num, ...);

The examples below demonstrate the use of the same API functions for creating client side representation objects
(instead of just plain ids). These examples assume that client_type is the type of the client side representation of
the component type to create. As above, all additional arguments (see , ... notation below) are passed through to
the corresponding constructor calls of the server side implementation objects corresponding to the client_type:

// create one instance on the given locality
hpx::id_type here = hpx::find_here();
client_type c = hpx::new_<client_type>(here, ...);

// create one instance using the given distribution
// policy (here: hpx::colocating_distribution_policy)
hpx::id_type here = hpx::find_here();
client_type c = hpx::new_<client_type>(hpx::colocated(here), ...);

// create multiple instances on the given locality
hpx::id_type here = hpx::find_here();
hpx::future<std::vector<client_type>> f =

hpx::new_<client_type[]>(here, num, ...);

// create multiple instances using the given distribution
// policy (here: hpx::binpacking_distribution_policy)
hpx::future<std::vector<client_type>> f = hpx::new_<client_type[]>(

hpx::binpacking(hpx::find_all_localities()), num, ...);

2.5. Manual 181

HPX Documentation, 1.5.1

Using component instances

Segmented containers

In parallel programming, there is now a plethora of solutions aimed at implementing “partially contiguous” or seg-
mented data structures, whether on shared memory systems or distributed memory systems. HPX implements such
structures by drawing inspiration from Standard C++ containers.

Using segmented containers

A segmented container is a template class that is described in the namespace hpx. All segmented containers are very
similar semantically to their sequential counterpart (defined in namespace std but with an additional template
parameter named DistPolicy). The distribution policy is an optional parameter that is passed last to the segmented
container constructor (after the container size when no default value is given, after the default value if not). The
distribution policy describes the manner in which a container is segmented and the placement of each segment among
the available runtime localities.

However, only a part of the std container member functions were reimplemented:

• (constructor), (destructor), operator=

• operator[]

• begin, cbegin, end, cend

• size

An example of how to use the partitioned_vector container would be:

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

// By default, the number of segments is equal to the current number of
// localities
//
hpx::partitioned_vector<double> va(50);
hpx::partitioned_vector<double> vb(50, 0.0);

An example of how to use the partitioned_vector container with distribution policies would be:

#include <hpx/include/partitioned_vector.hpp>
#include <hpx/runtime/find_localities.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

std::size_t num_segments = 10;
std::vector<hpx::id_type> locs = hpx::find_all_localities()

auto layout =
hpx::container_layout(num_segments, locs);

(continues on next page)

182 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

// The number of segments is 10 and those segments are spread across the
// localities collected in the variable locs in a Round-Robin manner
//
hpx::partitioned_vector<double> va(50, layout);
hpx::partitioned_vector<double> vb(50, 0.0, layout);

By definition, a segmented container must be accessible from any thread although its construction is synchronous only
for the thread who has called its constructor. To overcome this problem, it is possible to assign a symbolic name to the
segmented container:

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

hpx::future<void> fserver = hpx::async(
[](){
hpx::partitioned_vector<double> v(50);

// Register the 'partitioned_vector' with the name "some_name"
//
v.register_as("some_name");

/* Do some code */
});

hpx::future<void> fclient =
hpx::async(
[](){

// Naked 'partitioned_vector'
//
hpx::partitioned_vector<double> v;

// Now the variable v points to the same 'partitioned_vector' that has
// been registered with the name "some_name"
//
v.connect_to("some_name");

/* Do some code */
});

Segmented containers

HPX provides the following segmented containers:

Table 2.25: Sequence containers
Name Description In header Class page at cppref-

erence.com
hpx::partitioned_vectorDynamic segmented con-

tiguous array.
<hpx/include/
partitioned_vector.hpp>

vector193

2.5. Manual 183

http://en.cppreference.com/w/cpp/container/vector

HPX Documentation, 1.5.1

Table 2.26: Unordered associative containers
Name Description In header Class page at cp-

preference.com
hpx::unordered_mapSegmented collection of key-value pairs,

hashed by keys, keys are unique.
<hpx/include/
unordered_map.hpp>

unordered_map194

Segmented iterators and segmented iterator traits

The basic iterator used in the STL library is only suitable for one-dimensional structures. The iterators we use in
HPX must adapt to the segmented format of our containers. Our iterators are then able to know when incrementing
themselves if the next element of type T is in the same data segment or in another segment. In this second case, the
iterator will automatically point to the beginning of the next segment.

Note: Note that the dereference operation operator * does not directly return a reference of type T& but an
intermediate object wrapping this reference. When this object is used as an l-value, a remote write operation is
performed; When this object is used as an r-value, implicit conversion to T type will take care of performing remote
read operation.

It is sometimes useful not only to iterate element by element, but also segment by segment, or simply get a local
iterator in order to avoid additional construction costs at each deferencing operations. To mitigate this need, the
hpx::traits::segmented_iterator_traits are used.

With segmented_iterator_traits users can uniformly get the iterators which specifically iterates over seg-
ments (by providing a segmented iterator as a parameter), or get the local begin/end iterators of the nearest local
segment (by providing a per-segment iterator as a parameter):

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

using iterator = hpx::partitioned_vector<T>::iterator;
using traits = hpx::traits::segmented_iterator_traits<iterator>;

hpx::partitioned_vector<T> v;
std::size_t count = 0;

auto seg_begin = traits::segment(v.begin());
auto seg_end = traits::segment(v.end());

// Iterate over segments
for (auto seg_it = seg_begin; seg_it != seg_end; ++seg_it)
{

auto loc_begin = traits::begin(seg_it);
auto loc_end = traits::end(seg_it);

// Iterate over elements inside segments
for (auto lit = loc_begin; lit != loc_end; ++lit, ++count)

(continues on next page)

193 http://en.cppreference.com/w/cpp/container/vector
194 http://en.cppreference.com/w/cpp/container/unordered_map

184 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/container/unordered_map

HPX Documentation, 1.5.1

(continued from previous page)

{

*lit = count;
}

}

Which is equivalent to:

hpx::partitioned_vector<T> v;
std::size_t count = 0;

auto begin = v.begin();
auto end = v.end();

for (auto it = begin; it != end; ++it, ++count)
{

*it = count;
}

Using views

The use of multidimensional arrays is quite common in the numerical field whether to perform dense matrix op-
erations or to process images. It exist many libraries which implement such object classes overloading their basic
operators (e.g.``+``, -, *, (), etc.). However, such operation becomes more delicate when the underlying data layout
is segmented or when it is mandatory to use optimized linear algebra subroutines (i.e. BLAS subroutines).

Our solution is thus to relax the level of abstraction by allowing the user to work not directly on n-dimensionnal data,
but on “n-dimensionnal collections of 1-D arrays”. The use of well-accepted techniques on contiguous data is thus
preserved at the segment level, and the composability of the segments is made possible thanks to multidimensional
array-inspired access mode.

Preface: Why SPMD?

Although HPX refutes by design this programming model, the locality plays a dominant role when it comes to im-
plement vectorized code. To maximize local computations and avoid unneeded data transfers, a parallel section (or
Single Programming Multiple Data section) is required. Because the use of global variables is prohibited, this parallel
section is created via the RAII idiom.

To define a parallel section, simply write an action taking a spmd_block variable as a first parameter:

#include <hpx/collectives/spmd_block.hpp>

void bulk_function(hpx::lcos::spmd_block block /* , arg0, arg1, ... */)
{

// Parallel section

/* Do some code */
}
HPX_PLAIN_ACTION(bulk_function, bulk_action);

Note: In the following paragraphs, we will use the term “image” several times. An image is defined as a lightweight
process whose entry point is a function provided by the user. It’s an “image of the function”.

2.5. Manual 185

HPX Documentation, 1.5.1

The spmd_block class contains the following methods:

• [def Team information] get_num_images, this_image, images_per_locality

• [def Control statements] sync_all, sync_images

Here is a sample code summarizing the features offered by the spmd_block class:

#include <hpx/collectives/spmd_block.hpp>

void bulk_function(hpx::lcos::spmd_block block /* , arg0, arg1, ... */)
{

std::size_t num_images = block.get_num_images();
std::size_t this_image = block.this_image();
std::size_t images_per_locality = block.images_per_locality();

/* Do some code */

// Synchronize all images in the team
block.sync_all();

/* Do some code */

// Synchronize image 0 and image 1
block.sync_images(0,1);

/* Do some code */

std::vector<std::size_t> vec_images = {2,3,4};

// Synchronize images 2, 3 and 4
block.sync_images(vec_images);

// Alternative call to synchronize images 2, 3 and 4
block.sync_images(vec_images.begin(), vec_images.end());

/* Do some code */

// Non-blocking version of sync_all()
hpx::future<void> event =

block.sync_all(hpx::launch::async);

// Callback waiting for 'event' to be ready before being scheduled
hpx::future<void> cb =

event.then(
[](hpx::future<void>)
{

/* Do some code */

});

// Finally wait for the execution tree to be finished
cb.get();

}
HPX_PLAIN_ACTION(bulk_test_function, bulk_test_action);

Then, in order to invoke the parallel section, call the function define_spmd_block specifying an arbitrary sym-
bolic name and indicating the number of images per locality to create:

186 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void bulk_function(hpx::lcos::spmd_block block, /* , arg0, arg1, ... */)
{

}
HPX_PLAIN_ACTION(bulk_test_function, bulk_test_action);

int main()
{

/* std::size_t arg0, arg1, ...; */

bulk_action act;
std::size_t images_per_locality = 4;

// Instantiate the parallel section
hpx::lcos::define_spmd_block(

"some_name", images_per_locality, std::move(act) /*, arg0, arg1, ... */);

return 0;
}

Note: In principle, the user should never call the spmd_block constructor. The define_spmd_block function
is responsible of instantiating spmd_block objects and broadcasting them to each created image.

SPMD multidimensional views

Some classes are defined as “container views” when the purpose is to observe and/or modify the values of a container
using another perspective than the one that characterizes the container. For example, the values of an std::vector
object can be accessed via the expression [i]. Container views can be used, for example, when it is desired for
those values to be “viewed” as a 2D matrix that would have been flattened in a std::vector. The values would be
possibly accessible via the expression vv(i,j) which would call internally the expression v[k].

By default, the partitioned_vector class integrates 1-D views of its segments:

#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

using iterator = hpx::partitioned_vector<double>::iterator;
using traits = hpx::traits::segmented_iterator_traits<iterator>;

hpx::partitioned_vector<double> v;

// Create a 1-D view of the vector of segments
auto vv = traits::segment(v.begin());

// Access segment i
std::vector<double> v = vv[i];

Our views are called “multidimensional” in the sense that they generalize to N dimensions the purpose of
segmented_iterator_traits::segment() in the 1-D case. Note that in a parallel section, the 2-D ex-
pression a(i,j) = b(i,j) is quite confusing because without convention, each of the images invoked will race

2.5. Manual 187

HPX Documentation, 1.5.1

to execute the statement. For this reason, our views are not only multidimensional but also “spmd-aware”.

Note: SPMD-awareness: The convention is simple. If an assignment statement contains a view subscript as an l-
value, it is only and only the image holding the r-value who is evaluating the statement. (In MPI sense, it is called a
Put operation).

Subscript-based operations

Here are some examples of using subscripts in the 2-D view case:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(double);

using Vec = hpx::partitioned_vector<double>;
using View_2D = hpx::partitioned_vector_view<double,2>;

/* Do some code */

Vec v;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t height, width;

// Instantiate the view
View_2D vv(block, v.begin(), v.end(), {height,width});

// The l-value is a view subscript, the image that owns vv(1,0)
// evaluates the assignment.
vv(0,1) = vv(1,0);

// The l-value is a view subscript, the image that owns the r-value
// (result of expression 'std::vector<double>(4,1.0)') evaluates the
// assignment : oops! race between all participating images.
vv(2,3) = std::vector<double>(4,1.0);

}

Iterator-based operations

Here are some examples of using iterators in the 3-D view case:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(int);

(continues on next page)

188 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

using Vec = hpx::partitioned_vector<int>;
using View_3D = hpx::partitioned_vector_view<int,3>;

/* Do some code */

Vec v1, v2;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t sixe_x, size_y, size_z;

// Instantiate the views
View_3D vv1(block, v1.begin(), v1.end(), {sixe_x,size_y,size_z});
View_3D vv2(block, v2.begin(), v2.end(), {sixe_x,size_y,size_z});

// Save previous segments covered by vv1 into segments covered by vv2
auto vv2_it = vv2.begin();
auto vv1_it = vv1.cbegin();

for(; vv2_it != vv2.end(); vv2_it++, vv1_it++)
{

// It's a Put operation

*vv2_it = *vv1_it;
}

// Ensure that all images have performed their Put operations
block.sync_all();

// Ensure that only one image is putting updated data into the different
// segments covered by vv1
if(block.this_image() == 0)
{

int idx = 0;

// Update all the segments covered by vv1
for(auto i = vv1.begin(); i != vv1.end(); i++)
{

// It's a Put operation

*i = std::vector<float>(elt_size,idx++);
}

}
}

Here is an example that shows how to iterate only over segments owned by the current image:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/components/containers/partitioned_vector/partitioned_vector_local_view.
→˓hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(float);

using Vec = hpx::partitioned_vector<float>;
(continues on next page)

2.5. Manual 189

HPX Documentation, 1.5.1

(continued from previous page)

using View_1D = hpx::partitioned_vector_view<float,1>;

/* Do some code */

Vec v;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t num_segments;

// Instantiate the view
View_1D vv(block, v.begin(), v.end(), {num_segments});

// Instantiate the local view from the view
auto local_vv = hpx::local_view(vv);

for (auto i = local_vv.begin(); i != local_vv.end(); i++)
{

std::vector<float> & segment = *i;

/* Do some code */
}

}

Instantiating sub-views

It is possible to construct views from other views: we call it sub-views. The constraint nevertheless for the subviews
is to retain the dimension and the value type of the input view. Here is an example showing how to create a sub-view:

#include <hpx/components/containers/partitioned_vector/partitioned_vector_view.hpp>
#include <hpx/include/partitioned_vector.hpp>

// The following code generates all necessary boiler plate to enable the
// remote creation of 'partitioned_vector' segments
//
HPX_REGISTER_PARTITIONED_VECTOR(float);

using Vec = hpx::partitioned_vector<float>;
using View_2D = hpx::partitioned_vector_view<float,2>;

/* Do some code */

Vec v;

// Parallel section (suppose 'block' an spmd_block instance)
{

std::size_t N = 20;
std::size_t tilesize = 5;

// Instantiate the view
View_2D vv(block, v.begin(), v.end(), {N,N});

// Instantiate the subview
View_2D svv(

(continues on next page)

190 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

block,&vv(tilesize,0),&vv(2*tilesize-1,tilesize-1),{tilesize,tilesize},{N,N});

if(block.this_image() == 0)
{

// Equivalent to 'vv(tilesize,0) = 2.0f'
svv(0,0) = 2.0f;

// Equivalent to 'vv(2*tilesize-1,tilesize-1) = 3.0f'
svv(tilesize-1,tilesize-1) = 3.0f;

}

}

Note: The last parameter of the subview constructor is the size of the original view. If one would like to create a
subview of the subview and so on, this parameter should stay unchanged. {N,N} for the above example).

C++ co-arrays

Fortran has extended its scalar element indexing approach to reference each segment of a distributed array. In this
extension, a segment is attributed a ?co-index? and lives in a specific locality. A co-index provides the application
with enough information to retrieve the corresponding data reference. In C++, containers present themselves as a
?smarter? alternative of Fortran arrays but there are still no corresponding standardized features similar to the Fortran
co-indexing approach. We present here an implementation of such features in HPX.

Preface: co-array, a segmented container tied to a SPMD multidimensional views

As mentioned before, a co-array is a distributed array whose segments are accessible through an array-inspired access
mode. We have previously seen that it is possible to reproduce such access mode using the concept of views. Nev-
ertheless, the user must pre-create a segmented container to instantiate this view. We illustrate below how a single
constructor call can perform those two operations:

#include <hpx/components/containers/coarray/coarray.hpp>
#include <hpx/collectives/spmd_block.hpp>

// The following code generates all necessary boiler plate to enable the
// co-creation of 'coarray'
//
HPX_REGISTER_COARRAY(double);

// Parallel section (suppose 'block' an spmd_block instance)
{

using hpx::container::placeholders::_;

std::size_t height=32, width=4, segment_size=10;

hpx::coarray<double,3> a(block, "a", {height,width,_}, segment_size);

/* Do some code */
}

Unlike segmented containers, a co-array object can only be instantiated within a parallel section. Here is the description
of the parameters to provide to the coarray constructor:

2.5. Manual 191

HPX Documentation, 1.5.1

Table 2.27: Parameters of coarray constructor
Parameter Description
block Reference to a spmd_block object
"a" Symbolic name of type std::string
{height,width,
_}

Dimensions of the coarray object

segment_size Size of a co-indexed element (i.e. size of the object referenced by the expression a(i,
j,k))

Note that the “last dimension size” cannot be set by the user. It only accepts the constexpr variable
hpx::container::placeholders::_. This size, which is considered private, is equal to the number of cur-
rent images (value returned by block.get_num_images()).

Note: An important constraint to remember about coarray objects is that all segments sharing the same “last dimension
index” are located in the same image.

Using co-arrays

The member functions owned by the coarray objects are exactly the same as those of spmd multidimensional views.
These are:

* Subscript-based operations

* Iterator-based operations

However, one additional functionality is provided. Knowing that the element a(i,j,k) is in the memory of the kth
image, the use of local subscripts is possible.

Note: For spmd multidimensional views, subscripts are only global as it still involves potential remote data transfers.

Here is an example of using local subscripts:

#include <hpx/components/containers/coarray/coarray.hpp>
#include <hpx/collectives/spmd_block.hpp>

// The following code generates all necessary boiler plate to enable the
// co-creation of 'coarray'
//
HPX_REGISTER_COARRAY(double);

// Parallel section (suppose 'block' an spmd_block instance)
{

using hpx::container::placeholders::_;

std::size_t height=32, width=4, segment_size=10;

hpx::coarray<double,3> a(block, "a", {height,width,_}, segment_size);

double idx = block.this_image()*height*width;

for (std::size_t j = 0; j<width; j++)
for (std::size_t i = 0; i<height; i++)

(continues on next page)

192 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

{
// Local write operation performed via the use of local subscript
a(i,j,_) = std::vector<double>(elt_size,idx);
idx++;

}

block.sync_all();
}

Note: When the “last dimension index” of a subscript is equal to hpx::container::placeholders::_, local
subscript (and not global subscript) is used. It is equivalent to a global subscript used with a “last dimension index”
equal to the value returned by block.this_image().

2.5.8 Running on batch systems

This section walks you through launching HPX applications on various batch systems.

How to use HPX applications with PBS

Most HPX applications are executed on parallel computers. These platforms typically provide integrated job manage-
ment services that facilitate the allocation of computing resources for each parallel program. HPX includes support
for one of the most common job management systems, the Portable Batch System (PBS).

All PBS jobs require a script to specify the resource requirements and other parameters associated with a parallel job.
The PBS script is basically a shell script with PBS directives placed within commented sections at the beginning of the
file. The remaining (not commented-out) portions of the file executes just like any other regular shell script. While the
description of all available PBS options is outside the scope of this tutorial (the interested reader may refer to in-depth
documentation195 for more information), below is a minimal example to illustrate the approach. The following test
application will use the multithreaded hello_world_distributed program, explained in the section Remote
execution with actions: Hello world.

#!/bin/bash
#
#PBS -l nodes=2:ppn=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u $APP_PATH $APP_OPTIONS --hpx:nodes=`cat $PBS_NODEFILE`

Caution: If the first application specific argument (inside $APP_OPTIONS) is a non-option (i.e., does not start
with a - or a --), then the argument has to be placed before the option --hpx:nodes, which, in this case, should
be the last option on the command line.

Alternatively, use the option --hpx:endnodes to explicitly mark the end of the list of node names:

pbsdsh -u $APP_PATH --hpx:nodes`cat $PBS_NODEFILE` --hpx:endnodes $APP_OPTIONS

195 http://www.clusterresources.com/torquedocs21/

2.5. Manual 193

http://www.clusterresources.com/torquedocs21/

HPX Documentation, 1.5.1

The #PBS -l nodes=2:ppn=4 directive will cause two compute nodes to be allocated for the application, as
specified in the option nodes. Each of the nodes will dedicate four cores to the program, as per the option ppn, short
for “processors per node” (PBS does not distinguish between processors and cores). Note that requesting more cores
per node than physically available is pointless and may prevent PBS from accepting the script.

On newer PBS versions the PBS command syntax might be different. For instance, the PBS script above would look
like:

#!/bin/bash
#
#PBS -l select=2:ncpus=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u $APP_PATH $APP_OPTIONS --hpx:nodes=`cat $PBS_NODEFILE`

APP_PATH and APP_OPTIONS are shell variables that respectively specify the correct path to the ex-
ecutable (hello_world_distributed in this case) and the command line options. Since the
hello_world_distributed application doesn’t need any command line options, APP_OPTIONS has been left
empty. Unlike in other execution environments, there is no need to use the --hpx:threads option to indicate the
required number of OS threads per node; the HPX library will derive this parameter automatically from PBS.

Finally, pbsdsh is a PBS command that starts tasks to the resources allocated to the current job. It is recommended to
leave this line as shown and modify only the PBS options and shell variables as needed for a specific application.

Important: A script invoked by pbsdsh starts in a very basic environment: the user’s $HOME directory is defined and
is the current directory, the LANG variable is set to C and the PATH is set to the basic /usr/local/bin:/usr/
bin:/bin as defined in a system-wide file pbs_environment. Nothing that would normally be set up by a system
shell profile or user shell profile is defined, unlike the environment for the main job script.

Another choice is for the pbsdsh command in your main job script to invoke your program via a shell, like sh or
bash, so that it gives an initialized environment for each instance. Users can create a small script runme.sh, which
is used to invoke the program:

#!/bin/bash
Small script which invokes the program based on what was passed on its
command line.
#
This script is executed by the bash shell which will initialize all
environment variables as usual.
$@

Now, the script is invoked using the pbsdsh tool:

#!/bin/bash
#
#PBS -l nodes=2:ppn=4

APP_PATH=~/packages/hpx/bin/hello_world_distributed
APP_OPTIONS=

pbsdsh -u runme.sh $APP_PATH $APP_OPTIONS --hpx:nodes=`cat $PBS_NODEFILE`

All that remains now is submitting the job to the queuing system. Assuming that the contents of the PBS script were
saved in the file pbs_hello_world.sh in the current directory, this is accomplished by typing:

194 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

qsub ./pbs_hello_world_pbs.sh

If the job is accepted, qsub will print out the assigned job ID, which may look like:

$ 42.supercomputer.some.university.edu

To check the status of your job, issue the following command:

qstat 42.supercomputer.some.university.edu

and look for a single-letter job status symbol. The common cases include:

• Q - signifies that the job is queued and awaiting its turn to be executed.

• R - indicates that the job is currently running.

• C - means that the job has completed.

The example qstat output below shows a job waiting for execution resources to become available:

Job id Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
42.supercomputer ...ello_world.sh joe_user 0 Q batch

After the job completes, PBS will place two files, pbs_hello_world.sh.o42 and pbs_hello_world.sh.
e42, in the directory where the job was submitted. The first contains the standard output and the second contains the
standard error from all the nodes on which the application executed. In our example, the error output file should be
empty and the standard output file should contain something similar to:

hello world from OS-thread 3 on locality 0
hello world from OS-thread 2 on locality 0
hello world from OS-thread 1 on locality 1
hello world from OS-thread 0 on locality 0
hello world from OS-thread 3 on locality 1
hello world from OS-thread 2 on locality 1
hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 1

Congratulations! You have just run your first distributed HPX application!

How to use HPX applications with SLURM

Just like PBS (described in section How to use HPX applications with PBS), SLURM is a job management system
which is widely used on large supercomputing systems. Any HPX application can easily be run using SLURM. This
section describes how this can be done.

The easiest way to run an HPX application using SLURM is to utilize the command line tool srun, which interacts
with the SLURM batch scheduling system:

srun -p <partition> -N <number-of-nodes> hpx-application <application-arguments>

Here, <partition> is one of the node partitions existing on the target machine (consult the machine’s documenta-
tion to get a list of existing partitions) and <number-of-nodes> is the number of compute nodes that should be
used. By default, the HPX application is started with one locality per node and uses all available cores on a node. You
can change the number of localities started per node (for example, to account for NUMA effects) by specifying the
-n option of srun. The number of cores per locality can be set by -c. The <application-arguments> are any
application specific arguments that need to be passed on to the application.

2.5. Manual 195

HPX Documentation, 1.5.1

Note: There is no need to use any of the HPX command line options related to the number of localities, num-
ber of threads, or related to networking ports. All of this information is automatically extracted from the SLURM
environment by the HPX startup code.

Important: The srun documentation explicitly states: “If -c is specified without -n, as many tasks will be allocated
per node as possible while satisfying the -c restriction. For instance on a cluster with 8 CPUs per node, a job request
for 4 nodes and 3 CPUs per task may be allocated 3 or 6 CPUs per node (1 or 2 tasks per node) depending upon resource
consumption by other jobs.” For this reason, it’s recommended to always specify -n <number-of-instances>,
even if <number-of-instances> is equal to one (1).

Interactive shells

To get an interactive development shell on one of the nodes, users can issue the following command:

srun -p <node-type> -N <number-of-nodes> --pty /bin/bash -l

After the shell has been opened, users can run their HPX application. By default, it uses all available cores. Note that
if you requested one node, you don’t need to do srun again. However, if you requested more than one node, and want
to run your distributed application, you can use srun again to start up the distributed HPX application. It will use the
resources that have been requested for the interactive shell.

Scheduling batch jobs

The above mentioned method of running HPX applications is fine for development purposes. The disadvantage that
comes with srun is that it only returns once the application is finished. This might not be appropriate for longer-
running applications (for example, benchmarks or larger scale simulations). In order to cope with that limitation, users
can use the sbatch command.

The sbatch command expects a script that it can run once the requested resources are available. In order to request
resources, users need to add #SBATCH comments in their script or provide the necessary parameters to sbatch
directly. The parameters are the same as with run. The commands you need to execute are the same you would need
to start your application as if you were in an interactive shell.

2.5.9 Debugging HPX applications

Using a debugger with HPX applications

Using a debugger such as gdb with HPX applications is no problem. However, there are some things to keep in mind
to make the experience somewhat more productive.

Call stacks in HPX can often be quite unwieldy as the library is heavily templated and the call stacks can be very
deep. For this reason it is sometimes a good idea compile HPX in RelWithDebInfo mode, which applies some
optimizations but keeps debugging symbols. This can often compress call stacks significantly. On the other hand,
stepping through the code can also be more difficult because of statements being reordered and variables being opti-
mized away. Also, note that because HPX implements user-space threads and context switching, call stacks may not
always be complete in a debugger.

HPX launches not only worker threads but also a few helper threads. The first thread is the main thread, which typically
does no work in an HPX application, except at startup and shutdown. If using the default settings, HPX will spawn six

196 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

additional threads (used for service thread pools). The first worker thread is usually the eighth thread, and most user
codes will be run on these worker threads. The last thread is a helper thread used for HPX shutdown.

Finally, since HPX is a multi-threaded runtime, the following gdb options can be helpful:

set pagination off
set non-stop on

Non-stop mode allows users to have a single thread stop on a breakpoint without stopping all other threads as well.

Using sanitizers with HPX applications

Warning: Not all parts of HPX are sanitizer clean. This means that users may end up with false positives from
HPX itself when using sanitizers for their applications.

To use sanitizers with HPX, turn on HPX_WITH_SANITIZERS and turn off
HPX_WITH_STACKOVERFLOW_DETECTION during CMake configuration. It’s recommended to also build
Boost with the same sanitizers that will be used for HPX. The appropriate sanitizers can then be enabled using
CMake by appending -fsanitize=address -fno-omit-frame-pointer to CMAKE_CXX_FLAGS and
-fsanitize=address to CMAKE_EXE_LINKER_FLAGS. Replace address with the sanitizer that you want
to use.

2.5.10 Optimizing HPX applications

Performance counters

Performance counters in HPX are used to provide information as to how well the runtime system or an application
is performing. The counter data can help determine system bottlenecks, and fine-tune system and application per-
formance. The HPX runtime system, its networking, and other layers provide counter data that an application can
consume to provide users with information about how well the application is performing.

Applications can also use counter data to determine how much system resources to consume. For example, an appli-
cation that transfers data over the network could consume counter data from a network switch to determine how much
data to transfer without competing for network bandwidth with other network traffic. The application could use the
counter data to adjust its transfer rate as the bandwidth usage from other network traffic increases or decreases.

Performance counters are HPX parallel processes that expose a predefined interface. HPX exposes special API func-
tions that allow one to create, manage, and read the counter data, and release instances of performance counters.
Performance Counter instances are accessed by name, and these names have a predefined structure which is described
in the section Performance counter names. The advantage of this is that any Performance Counter can be accessed
remotely (from a different locality) or locally (from the same locality). Moreover, since all counters expose their data
using the same API, any code consuming counter data can be utilized to access arbitrary system information with
minimal effort.

Counter data may be accessed in real time. More information about how to consume counter data can be found in the
section Consuming performance counter data.

All HPX applications provide command line options related to performance counters, such as the ability to list available
counter types, or periodically query specific counters to be printed to the screen or save them in a file. For more
information, please refer to the section HPX Command Line Options.

2.5. Manual 197

HPX Documentation, 1.5.1

Performance counter names

All Performance Counter instances have a name uniquely identifying each instance. This name can be used to access
the counter, retrieve all related meta data, and to query the counter data (as described in the section Consuming
performance counter data). Counter names are strings with a predefined structure. The general form of a countername
is:

/objectname{full_instancename}/countername@parameters

where full_instancename could be either another (full) counter name or a string formatted as:

parentinstancename#parentindex/instancename#instanceindex

Each separate part of a countername (e.g., objectname, countername parentinstancename,
instancename, and parameters) should start with a letter ('a'. . .'z', 'A'. . .'Z') or an underscore char-
acter ('_'), optionally followed by letters, digits ('0'. . .'9'), hyphen ('-'), or underscore characters. Whitespace
is not allowed inside a counter name. The characters '/', '{', '}', '#' and '@' have a special meaning and are
used to delimit the different parts of the counter name.

The parts parentinstanceindex and instanceindex are integers. If an index is not specified, HPX will
assume a default of -1.

Two counter name examples

This section gives examples of both simple counter names and aggregate counter names. For more information on
simple and aggregate counter names, please see Performance counter instances.

An example of a well-formed (and meaningful) simple counter name would be:

/threads{locality#0/total}/count/cumulative

This counter returns the current cumulative number of executed (retired) HPX threads for the locality 0. The counter
type of this counter is /threads/count/cumulative and the full instance name is locality#0/total.
This counter type does not require an instanceindex or parameters to be specified.

In this case, the parentindex (the '0') designates the locality for which the counter instance is created. The
counter will return the number of HPX threads retired on that particular locality.

Another example for a well formed (aggregate) counter name is:

/statistics{/threads{locality#0/total}/count/cumulative}/average@500

This counter takes the simple counter from the first example, samples its values every 500milliseconds, and returns the
average of the value samples whenever it is queried. The counter type of this counter is /statistics/average
and the instance name is the full name of the counter for which the values have to be averaged. In this case, the
parameters (the '500') specify the sampling interval for the averaging to take place (in milliseconds).

198 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Performance counter types

Every performance counter belongs to a specific performance counter type which classifies the counters into groups
of common semantics. The type of a counter is identified by the objectname and the countername parts of the
name.

/objectname/countername

When an application starts HPX will register all available counter types on each of the localities. These counter types
are held in a special performance counter registration database, which can be used to retrieve the meta data related to
a counter type and to create counter instances based on a given counter instance name.

Performance counter instances

The full_instancename distinguishes different counter instances of the same counter type. The formatting of
the full_instancename depends on the counter type. There are two types of counters: simple counters, which
usually generate the counter values based on direct measurements, and aggregate counters, which take another counter
and transform its values before generating their own counter values. An example for a simple counter is given above:
counting retired HPX threads. An aggregate counter is shown as an example above as well: calculating the average of
the underlying counter values sampled at constant time intervals.

While simple counters use instance names formatted as parentinstancename#parentindex/
instancename#instanceindex, most aggregate counters have the full counter name of the embedded
counter as their instance name.

Not all simple counter types require specifying all four elements of a full counter instance name; some of the parts
(parentinstancename, parentindex, instancename, and instanceindex) are optional for specific
counters. Please refer to the documentation of a particular counter for more information about the formatting require-
ments for the name of this counter (see Existing HPX performance counters).

The parameters are used to pass additional information to a counter at creation time. They are optional, and they
fully depend on the concrete counter. Even if a specific counter type allows additional parameters to be given, those
usually are not required as sensible defaults will be chosen. Please refer to the documentation of a particular counter
for more information about what parameters are supported, how to specify them, and what default values are assumed
(see also Existing HPX performance counters).

Every locality of an application exposes its own set of performance counter types and performance counter instances.
The set of exposed counters is determined dynamically at application start based on the execution environment of the
application. For instance, this set is influenced by the current hardware environment for the locality (such as whether
the locality has access to accelerators), and the software environment of the application (such as the number of OS
threads used to execute HPX threads).

Using wildcards in performance counter names

It is possible to use wildcard characters when specifying performance counter names. Performance counter names can
contain two types of wildcard characters:

• Wildcard characters in the performance counter type

• Wildcard characters in the performance counter instance name

A wildcard character has a meaning which is very close to usual file name wildcard matching rules implemented by
common shells (like bash).

2.5. Manual 199

HPX Documentation, 1.5.1

Table 2.28: Wildcard characters in the performance counter type
Wild-
card

Description

* This wildcard character matches any number (zero or more) of arbitrary characters.
? This wildcard character matches any single arbitrary character.
[...] This wildcard character matches any single character from the list of specified within the square brack-

ets.

Table 2.29: Wildcard characters in the performance counter instance
name

Wild-
card

Description

* This wildcard character matches any locality or any thread, depending on whether it is used for
locality#* or worker-thread#*. No other wildcards are allowed in counter instance names.

Consuming performance counter data

You can consume performance data using either the command line interface, the HPX application or the HPX API.
The command line interface is easier to use, but it is less flexible and does not allow one to adjust the behaviour of
your application at runtime. The command line interface provides a convenience abstraction but simplified abstraction
for querying and logging performance counter data for a set of performance counters.

Consuming performance counter data from the command line

HPX provides a set of predefined command line options for every application that uses hpx::init for its initializa-
tion. While there are many more command line options available (see HPX Command Line Options), the set of options
related to performance counters allows one to list existing counters, and query existing counters once at application
termination or repeatedly after a constant time interval.

The following table summarizes the available command line options:

200 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.30: HPX Command Line Options Related to Performance Coun-
ters

Com-
mand line
option

Description

--hpx:print-counterPrints the specified performance counter either repeatedly and/or at the times specified by
--hpx:print-counter-at (see also option --hpx:print-counter-interval).

--hpx:print-counter-resetPrints the specified performance counter either repeatedly and/or at the times specified by
--hpx:print-counter-at. Reset the counter after the value is queried (see also option
--hpx:print-counter-interval).

--hpx:print-counter-intervalPrints the performance counter(s) specified with --hpx:print-counter repeatedly after the time
interval (specified in milliseconds) (default:0 which means print once at shutdown).

--hpx:print-counter-destinationPrints the performance counter(s) specified with --hpx:print-counter to the given file (default:
console).

--hpx:list-countersLists the names of all registered performance counters.
--hpx:list-counter-infosLists the description of all registered performance counters.
--hpx:print-counter-formatPrints the performance counter(s) specified with --hpx:print-counter. Possible formats in

CVS format with header or without any header (see option --hpx:no-csv-header), possi-
ble values: csv (prints counter values in CSV format with full names as header) csv-short
(prints counter values in CSV format with shortnames provided with --hpx:print-counter
as --hpx:print-counter shortname,full-countername).

--hpx:no-csv-headerPrints the performance counter(s) specified with --hpx:print-counter and csv or
csv-short format specified with --hpx:print-counter-format without header.

--hpx:print-counter-at
arg

Prints the performance counter(s) specified with --hpx:print-counter (or
--hpx:print-counter-reset) at the given point in time. Possible argument values:
startup, shutdown (default), noshutdown.

--hpx:reset-countersResets all performance counter(s) specified with --hpx:print-counter after they have been
evaluated.

--hpx:print-counter-typesAppends counter type description to generated output.
--hpx:print-counters-locallyEach locality prints only its own local counters.

While the options --hpx:list-counters and --hpx:list-counter-infos give a short list of all available
counters, the full documentation for those can be found in the section Existing HPX performance counters.

A simple example

All of the commandline options mentioned above can be tested using the hello_world_distributed example.

Listing all available counters hello_world_distributed --hpx:list-counters yields:

List of available counter instances (replace * below with the appropriate
sequence number)

/agas/count/allocate /agas/count/bind /agas/count/bind_gid
/agas/count/bind_name ... /threads{locality#*/allocator#*}/count/objects
/threads{locality#*/total}/count/stack-recycles
/threads{locality#*/total}/idle-rate
/threads{locality#*/worker-thread#*}/idle-rate

Providing more information about all available counters, hello_world_distributed
--hpx:list-counter-infos yields:

2.5. Manual 201

HPX Documentation, 1.5.1

Information about available counter instances (replace * below with the
appropriate sequence number)
--
fullname: /agas/count/allocate helptext: returns the number of invocations of
the AGAS service 'allocate' type: counter_raw version: 1.0.0
--

--
fullname: /agas/count/bind helptext: returns the number of invocations of the
AGAS service 'bind' type: counter_raw version: 1.0.0
--

--
fullname: /agas/count/bind_gid helptext: returns the number of invocations of
the AGAS service 'bind_gid' type: counter_raw version: 1.0.0
--

...

This command will not only list the counter names but also a short description of the data exposed by this counter.

Note: The list of available counters may differ depending on the concrete execution environment (hardware or
software) of your application.

Requesting the counter data for one or more performance counters can be achieved by invoking
hello_world_distributed with a list of counter names:

hello_world_distributed \
--hpx:print-counter=/threads{locality#0/total}/count/cumulative \
--hpx:print-counter=/agas{locality#0/total}/count/bind

which yields for instance:

hello world from OS-thread 0 on locality 0
/threads{locality#0/total}/count/cumulative,1,0.212527,[s],33
/agas{locality#0/total}/count/bind,1,0.212790,[s],11

The first line is the normal output generated by hello_world_distributed and has no relation to the counter
data listed. The last two lines contain the counter data as gathered at application shutdown. These lines have six
fields, the counter name, the sequence number of the counter invocation, the time stamp at which this information has
been sampled, the unit of measure for the time stamp, the actual counter value and an optional unit of measure for the
counter value.

Note: The command line option --hpx:print-counter-types will append a seventh field to the generated
output. This field will hold an abbreviated counter type.

The actual counter value can be represented by a single number (for counters returning singular values) or a list of
numbers separated by ':' (for counters returning an array of values, like for instance a histogram).

Note: The name of the performance counter will be enclosed in double quotes '"' if it contains one or more commas
','.

Requesting to query the counter data once after a constant time interval with this command line:

202 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

hello_world_distributed \
--hpx:print-counter=/threads{locality#0/total}/count/cumulative \
--hpx:print-counter=/agas{locality#0/total}/count/bind \
--hpx:print-counter-interval=20

yields for instance (leaving off the actual console output of the hello_world_distributed example for brevity):

threads{locality#0/total}/count/cumulative,1,0.002409,[s],22
agas{locality#0/total}/count/bind,1,0.002542,[s],9
threads{locality#0/total}/count/cumulative,2,0.023002,[s],41
agas{locality#0/total}/count/bind,2,0.023557,[s],10
threads{locality#0/total}/count/cumulative,3,0.037514,[s],46
agas{locality#0/total}/count/bind,3,0.038679,[s],10

The command --hpx:print-counter-destination=<file> will redirect all counter data gathered to the
specified file name, which avoids cluttering the console output of your application.

The command line option --hpx:print-counter supports using a limited set of wildcards for a (very limited)
set of use cases. In particular, all occurrences of #* as in locality#* and in worker-thread#* will be au-
tomatically expanded to the proper set of performance counter names representing the actual environment for the
executed program. For instance, if your program is utilizing four worker threads for the execution of HPX threads (see
command line option --hpx:threads) the following command line

hello_world_distributed \
--hpx:threads=4 \
--hpx:print-counter=/threads{locality#0/worker-thread#*}/count/cumulative

will print the value of the performance counters monitoring each of the worker threads:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
hello world from OS-thread 3 on locality 0
hello world from OS-thread 2 on locality 0
/threads{locality#0/worker-thread#0}/count/cumulative,1,0.0025214,[s],27
/threads{locality#0/worker-thread#1}/count/cumulative,1,0.0025453,[s],33
/threads{locality#0/worker-thread#2}/count/cumulative,1,0.0025683,[s],29
/threads{locality#0/worker-thread#3}/count/cumulative,1,0.0025904,[s],33

The command --hpx:print-counter-format takes values csv and csv-short to generate CSV formatted
counter values with a header.

With format as csv:

hello_world_distributed \
--hpx:threads=2 \
--hpx:print-counter-format csv \
--hpx:print-counter /threads{locality#*/total}/count/cumulative \
--hpx:print-counter /threads{locality#*/total}/count/cumulative-phases

will print the values of performance counters in CSV format with the full countername as a header:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
/threads{locality#*/total}/count/cumulative,/threads{locality#*/total}/count/
→˓cumulative-phases
39,93

With format csv-short:

2.5. Manual 203

HPX Documentation, 1.5.1

hello_world_distributed \
--hpx:threads 2 \
--hpx:print-counter-format csv-short \
--hpx:print-counter cumulative,/threads{locality#*/total}/count/cumulative \
--hpx:print-counter phases,/threads{locality#*/total}/count/cumulative-phases

will print the values of performance counters in CSV format with the short countername as a header:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
cumulative,phases
39,93

With format csv and csv-short when used with --hpx:print-counter-interval:

hello_world_distributed \
--hpx:threads 2 \
--hpx:print-counter-format csv-short \
--hpx:print-counter cumulative,/threads{locality#*/total}/count/cumulative \
--hpx:print-counter phases,/threads{locality#*/total}/count/cumulative-phases \
--hpx:print-counter-interval 5

will print the header only once repeating the performance counter value(s) repeatedly:

cum,phases
25,42
hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
44,95

The command --hpx:no-csv-header can be used with --hpx:print-counter-format to print perfor-
mance counter values in CSV format without any header:

hello_world_distributed \
--hpx:threads 2 \
--hpx:print-counter-format csv-short \
--hpx:print-counter cumulative,/threads{locality#*/total}/count/cumulative \
--hpx:print-counter phases,/threads{locality#*/total}/count/cumulative-phases \
--hpx:no-csv-header

will print:

hello world from OS-thread 1 on locality 0
hello world from OS-thread 0 on locality 0
37,91

Consuming performance counter data using the HPX API

HPX provides an API that allows users to discover performance counters and to retrieve the current value of any
existing performance counter from any application.

204 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Discover existing performance counters

Retrieve the current value of any performance counter

Performance counters are specialized HPX components. In order to retrieve a counter value, the performance counter
needs to be instantiated. HPX exposes a client component object for this purpose:

hpx::performance_counters::performance_counter counter(std::string const& name);

Instantiating an instance of this type will create the performance counter identified by the given name. Only the first
invocation for any given counter name will create a new instance of that counter. All following invocations for a given
counter name will reference the initially created instance. This ensures that at any point in time there is never more
than one active instance of any of the existing performance counters.

In order to access the counter value (or to invoke any of the other functionality related to a performance counter, like
start, stop or reset) member functions of the created client component instance should be called:

// print the current number of threads created on locality 0
hpx::performance_counters::performance_counter count(

"/threads{locality#0/total}/count/cumulative");
hpx::cout << count.get_value<int>().get() << hpx::endl;

For more information about the client component type, see hpx::performance_counters::performance_counter

Note: In the above example count.get_value() returns a future. In order to print the result we must append
.get() to retrieve the value. You could write the above example like this for more clarity:

// print the current number of threads created on locality 0
hpx::performance_counters::performance_counter count(

"/threads{locality#0/total}/count/cumulative");
hpx::future<int> result = count.get_value<int>();
hpx::cout << result.get() << hpx::endl;

Providing performance counter data

HPX offers several ways by which you may provide your own data as a performance counter. This has the benefit
of exposing additional, possibly application-specific information using the existing Performance Counter framework,
unifying the process of gathering data about your application.

An application that wants to provide counter data can implement a performance counter to provide the data. When
a consumer queries performance data, the HPX runtime system calls the provider to collect the data. The runtime
system uses an internal registry to determine which provider to call.

Generally, there are two ways of exposing your own performance counter data: a simple, function-based way and a
more complex, but more powerful way of implementing a full performance counter. Both alternatives are described in
the following sections.

2.5. Manual 205

HPX Documentation, 1.5.1

Exposing performance counter data using a simple function

The simplest way to expose arbitrary numeric data is to write a function which will then be called whenever a consumer
queries this counter. Currently, this type of performance counter can only be used to expose integer values. The
expected signature of this function is:

std::int64_t some_performance_data(bool reset);

The argument bool reset (which is supplied by the runtime system when the function is invoked) specifies whether
the counter value should be reset after evaluating the current value (if applicable).

For instance, here is such a function returning how often it was invoked:

// The atomic variable 'counter' ensures the thread safety of the counter.
boost::atomic<std::int64_t> counter(0);

std::int64_t some_performance_data(bool reset)
{

std::int64_t result = ++counter;
if (reset)

counter = 0;
return result;

}

This example function exposes a linearly-increasing value as our performance data. The value is incremented on each
invocation, i.e., each time a consumer requests the counter data of this performance counter.

The next step in exposing this counter to the runtime system is to register the function as a new raw counter type
using the HPX API function hpx::performance_counters::install_counter_type. A counter type
represents certain common characteristics of counters, like their counter type name and any associated description
information. The following snippet shows an example of how to register the function some_performance_data,
which is shown above, for a counter type named "/test/data". This registration has to be executed before any
consumer instantiates, and queries an instance of this counter type:

#include <hpx/include/performance_counters.hpp>

void register_counter_type()
{

// Call the HPX API function to register the counter type.
hpx::performance_counters::install_counter_type(

"/test/data", // counter type name
&some_performance_data, // function providing counter

→˓data
"returns a linearly increasing counter value" // description text (optional)
"" // unit of measure (optional)

);
}

Now it is possible to instantiate a new counter instance based on the naming scheme "/test{locality#*/
total}/data" where * is a zero-based integer index identifying the locality for which the counter instance should
be accessed. The function hpx::performance_counters::install_counter_type enables users to in-
stantiate exactly one counter instance for each locality. Repeated requests to instantiate such a counter will return the
same instance, i.e., the instance created for the first request.

If this counter needs to be accessed using the standard HPX command line options, the registration has to be performed
during application startup, before hpx_main is executed. The best way to achieve this is to register an HPX startup
function using the API function hpx::register_startup_function before calling hpx::init to initialize
the runtime system:

206 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

int main(int argc, char* argv[])
{

// By registering the counter type we make it available to any consumer
// who creates and queries an instance of the type "/test/data".
//
// This registration should be performed during startup. The
// function 'register_counter_type' should be executed as an HPX thread right
// before hpx_main is executed.
hpx::register_startup_function(®ister_counter_type);

// Initialize and run HPX.
return hpx::init(argc, argv);

}

Please see the code in simplest_performance_counter.cpp for a full example demonstrating this function-
ality.

Implementing a full performance counter

Sometimes, the simple way of exposing a single value as a performance counter is not sufficient. For that reason, HPX
provides a means of implementing full performance counters which support:

• Retrieving the descriptive information about the performance counter

• Retrieving the current counter value

• Resetting the performance counter (value)

• Starting the performance counter

• Stopping the performance counter

• Setting the (initial) value of the performance counter

Every full performance counter will implement a predefined interface:

// Copyright (c) 2007-2020 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#pragma once

#include <hpx/config.hpp>
#include <hpx/async_base/launch_policy.hpp>
#include <hpx/functional/bind_front.hpp>
#include <hpx/futures/future.hpp>
#include <hpx/modules/execution.hpp>
#include <hpx/runtime/components/client_base.hpp>

#include <hpx/performance_counters/counters_fwd.hpp>
#include <hpx/performance_counters/server/base_performance_counter.hpp>

#include <string>
#include <utility>
#include <vector>

(continues on next page)

2.5. Manual 207

HPX Documentation, 1.5.1

(continued from previous page)

///
namespace hpx { namespace performance_counters {

///
struct HPX_EXPORT performance_counter
: components::client_base<performance_counter,

server::base_performance_counter>
{

using base_type = components::client_base<performance_counter,
server::base_performance_counter>;

performance_counter() = default;

performance_counter(std::string const& name);

performance_counter(
std::string const& name, hpx::id_type const& locality);

performance_counter(id_type const& id)
: base_type(id)

{
}

performance_counter(future<id_type>&& id)
: base_type(std::move(id))

{
}

performance_counter(hpx::future<performance_counter>&& c)
: base_type(std::move(c))

{
}

///
future<counter_info> get_info() const;
counter_info get_info(

launch::sync_policy, error_code& ec = throws) const;

future<counter_value> get_counter_value(bool reset = false);
counter_value get_counter_value(

launch::sync_policy, bool reset = false, error_code& ec = throws);

future<counter_value> get_counter_value() const;
counter_value get_counter_value(

launch::sync_policy, error_code& ec = throws) const;

future<counter_values_array> get_counter_values_array(
bool reset = false);

counter_values_array get_counter_values_array(
launch::sync_policy, bool reset = false, error_code& ec = throws);

future<counter_values_array> get_counter_values_array() const;
counter_values_array get_counter_values_array(

launch::sync_policy, error_code& ec = throws) const;

///
future<bool> start();

(continues on next page)

208 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

bool start(launch::sync_policy, error_code& ec = throws);

future<bool> stop();
bool stop(launch::sync_policy, error_code& ec = throws);

future<void> reset();
void reset(launch::sync_policy, error_code& ec = throws);

future<void> reinit(bool reset = true);
void reinit(

launch::sync_policy, bool reset = true, error_code& ec = throws);

///
future<std::string> get_name() const;
std::string get_name(

launch::sync_policy, error_code& ec = throws) const;

private:
template <typename T>
static T extract_value(future<counter_value>&& value)
{

return value.get().get_value<T>();
}

public:
template <typename T>
future<T> get_value(bool reset = false)
{

return get_counter_value(reset).then(hpx::launch::sync,
util::bind_front(&performance_counter::extract_value<T>));

}
template <typename T>
T get_value(

launch::sync_policy, bool reset = false, error_code& ec = throws)
{

return get_counter_value(launch::sync, reset).get_value<T>(ec);
}

template <typename T>
future<T> get_value() const
{

return get_counter_value().then(hpx::launch::sync,
util::bind_front(&performance_counter::extract_value<T>));

}
template <typename T>
T get_value(launch::sync_policy, error_code& ec = throws) const
{

return get_counter_value(launch::sync).get_value<T>(ec);
}

};

// Return all counters matching the given name (with optional wild cards).
HPX_EXPORT std::vector<performance_counter> discover_counters(

std::string const& name, error_code& ec = throws);
}} // namespace hpx::performance_counters

In order to implement a full performance counter, you have to create an HPX component exposing this interface. To

2.5. Manual 209

HPX Documentation, 1.5.1

simplify this task, HPX provides a ready-made base class which handles all the boiler plate of creating a component
for you. The remainder of this section will explain the process of creating a full performance counter based on the
Sine example, which you can find in the directory examples/performance_counters/sine/.

The base class is defined in the header file [hpx_link hpx/performance_counters/base_performance_counter.hpp..hpx/performance_counters/base_performance_counter.hpp]
as:

// Copyright (c) 2007-2018 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#pragma once

#include <hpx/config.hpp>
#include <hpx/actions_base/component_action.hpp>
#include <hpx/performance_counters/counters.hpp>
#include <hpx/performance_counters/server/base_performance_counter.hpp>
#include <hpx/runtime/components/component_type.hpp>
#include <hpx/runtime/components/server/component_base.hpp>

///
//[performance_counter_base_class
namespace hpx { namespace performance_counters {

template <typename Derived>
class base_performance_counter;

}} // namespace hpx::performance_counters
//]

///
namespace hpx { namespace performance_counters {

template <typename Derived>
class base_performance_counter

: public hpx::performance_counters::server::base_performance_counter
, public hpx::components::component_base<Derived>

{
private:

typedef hpx::components::component_base<Derived> base_type;

public:
typedef Derived type_holder;
typedef hpx::performance_counters::server::base_performance_counter

base_type_holder;

base_performance_counter() {}

base_performance_counter(
hpx::performance_counters::counter_info const& info)

: base_type_holder(info)
{
}

// Disambiguate finalize() which is implemented in both base classes
void finalize()
{

base_type_holder::finalize();
base_type::finalize();

(continues on next page)

210 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

}
};

}} // namespace hpx::performance_counters

The single template parameter is expected to receive the type of the derived class implementing the performance
counter. In the Sine example this looks like:

// Copyright (c) 2007-2012 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#pragma once

#include <hpx/hpx.hpp>
#include <hpx/include/lcos_local.hpp>
#include <hpx/include/performance_counters.hpp>
#include <hpx/include/util.hpp>

#include <cstdint>

namespace performance_counters { namespace sine { namespace server
{

///
//[sine_counter_definition
class sine_counter

: public hpx::performance_counters::base_performance_counter<sine_counter>
//]
{
public:

sine_counter() : current_value_(0), evaluated_at_(0) {}
explicit sine_counter(

hpx::performance_counters::counter_info const& info);

/// This function will be called in order to query the current value of
/// this performance counter
hpx::performance_counters::counter_value get_counter_value(bool reset);

/// The functions below will be called to start and stop collecting
/// counter values from this counter.
bool start();
bool stop();

/// finalize() will be called just before the instance gets destructed
void finalize();

protected:
bool evaluate();

private:
typedef hpx::lcos::local::spinlock mutex_type;

mutable mutex_type mtx_;
double current_value_;
std::uint64_t evaluated_at_;

(continues on next page)

2.5. Manual 211

HPX Documentation, 1.5.1

(continued from previous page)

hpx::util::interval_timer timer_;
};

}}}

i.e., the type sine_counter is derived from the base class passing the type as a template argument (please see
simplest_performance_counter.cpp for the full source code of the counter definition). For more in-
formation about this technique (called Curiously Recurring Template Pattern - CRTP), please see for instance the
corresponding Wikipedia article196. This base class itself is derived from the performance_counter interface
described above.

Additionally, a full performance counter implementation not only exposes the actual value but also provides informa-
tion about:

• The point in time a particular value was retrieved.

• A (sequential) invocation count.

• The actual counter value.

• An optional scaling coefficient.

• Information about the counter status.

Existing HPX performance counters

The HPX runtime system exposes a wide variety of predefined performance counters. These counters expose critical
information about different modules of the runtime system. They can help determine system bottlenecks and fine-tune
system and application performance.

196 http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

212 Chapter 2. What’s so special about HPX?

http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

HPX Documentation, 1.5.1

Table 2.31: AGAS performance counters
Counter type Counter instance formatting De-

scrip-
tion

Parame-
ters

/agas/count/<agas_service>
where:
<agas_service> is one of the following:
primary namespace services: route,
bind_gid, resolve_gid,
unbind_gid, increment_credit,
decrement_credit, allocate,
begin_migration, end_migration
component namespace services:
bind_prefix, bind_name, resolve_id,
unbind_name, iterate_types,
get_component_typename,
num_localities_type
locality namespace services: free,
localities, num_localities,
num_threads, resolve_locality,
resolved_localities
symbol namespace services: bind,
resolve, unbind, iterate_names,
on_symbol_namespace_event

<agas_instance>/total
where:
<agas_instance> is the name of the
AGAS service to query. Currently, this
value will be locality#0 where 0 is
the root locality (the id of the locality
hosting the AGAS service).
The value for * can be any locality id
for the following <agas_service>:
route, bind_gid, resolve_gid,
unbind_gid, increment_credit,
decrement_credit, bin,
resolve, unbind, and
iterate_names (only the primary and
symbol AGAS service components live
on all localities, whereas all other AGAS
services are available on locality#0
only).

None Returns
the total
number
of invo-
cations
of the
specified
AGAS
service
since its
creation.

/agas/<agas_service_category>/
count
where:
<agas_service_category> is one of the
following: primary, locality, component
or symbol

<agas_instance>/total
where:
<agas_instance> is the name of the
AGAS service to query. Currently, this
value will be locality#0 where 0 is
the root locality (the id of the locality
hosting the AGAS service). Except
for <agas_service_category>,
primary or symbol for which the
value for * can be any locality id (only
the primary and symbol AGAS service
components live on all localities, whereas
all other AGAS services are available on
locality#0 only).

None Returns
the over-
all total
number
of invo-
cations of
all AGAS
services
provided
by the
given
AGAS
service
category
since its
creation.

agas/time/<agas_service>
where:
<agas_service> is one of the following:
primary namespace services: route,
bind_gid, resolve_gid,
unbind_gid, increment_credit,
decrement_credit, allocate
begin_migration, end_migration
component namespace services:
bind_prefix, bind_name, resolve_id,
unbind_name, iterate_types,
get_component_typename,
num_localities_type
locality namespace services: free,
localities, num_localities,
num_threads, resolve_locality,
resolved_localities
symbol namespace services: bind,
resolve, unbind, iterate_names,
on_symbol_namespace_event

<agas_instance>/total
where:
<agas_instance> is the name of the
AGAS service to query. Currently, this
value will be locality#0 where 0 is
the root locality (the id of the locality
hosting the AGAS service).
The value for * can be any locality id
for the following <agas_service>:
route, bind_gid, resolve_gid,
unbind_gid, increment_credit,
decrement_credit, bin,
resolve, unbind, and
iterate_names (only the primary and
symbol AGAS service components live
on all localities, whereas all other AGAS
services are available on locality#0
only).

None Re-
turns the
overall
execution
time
of the
specified
AGAS
service
since
its cre-
ation (in
nanosec-
onds).

/agas/<agas_service_category>/
time
where:
<agas_service_category> is one of the
following: primary, locality, component
or symbol

<agas_instance>/total
where:
<agas_instance> is the name of the
AGAS service to query. Currently, this
value will be locality#0 where 0
is the root locality (the id of the lo-
cality hosting the AGAS service). Ex-
cept for <agas_service_category
primary or symbol for which the
value for * can be any locality id (only
the primary and symbol AGAS service
components live on all localities, whereas
all other AGAS services are available on
locality#0 only).

None Re-
turns the
overall
execution
time of
all AGAS
services
provided
by the
given
AGAS
service
category
since
its cre-
ation (in
nanosec-
onds).

/agas/count/entries locality#*/total
where:
* is the locality id of the locality the
AGAS cache should be queried. The lo-
cality id is a (zero based) number identi-
fying the locality.

None Returns
the num-
ber of
cache
entries
resident
in the
AGAS
cache
of the
specified
local-
ity (see
<cache_statistics>).

/agas/count/<cache_statistics>
where:
<cache_statistics> is one of the fol-
lowing: cache/evictions, cache/hits,
cache/insertions, cache/misses

locality#*/total
where:
* is the locality id of the locality the
AGAS cache should be queried. The lo-
cality id is a (zero based) number identi-
fying the locality.

None Returns
the num-
ber of
cache
events
(evic-
tions,
hits, in-
serts, and
misses) in
the AGAS
cache
of the
specified
local-
ity (see
<cache_statistics>).

/agas/count/
<full_cache_statistics>
where:
<full_cache_statistics> is one of the
following: cache/get_entry, cache/
insert_entry, cache/update_entry,
cache/erase_entry

locality#*/total
where:
* is the locality id of the locality the
AGAS cache should be queried. The lo-
cality id is a (zero based) number identi-
fying the locality.

None Returns
the num-
ber of
invoca-
tions of
the speci-
fied cache
API func-
tion of
the AGAS
cache.

/agas/time/<full_cache_statistics>
where:
<full_cache_statistics> is one of the
following: cache/get_entry, cache/
insert_entry, cache/update_entry,
cache/erase_entry

locality#*/total
where:
* is the locality id of the locality the
AGAS cache should be queried. The lo-
cality id is a (zero based) number identi-
fying the locality.

None Returns
the over-
all time
spent
executing
of the
specified
API func-
tion of
the AGAS
cache.

2.5. Manual 213

HPX Documentation, 1.5.1

Table 2.32: Parcel layer performance counters
Counter type Counter

instance
formatting

Description Parameters

/data/count/
<connection_type>/
<operation>
where:
<operation>
is one of the fol-
lowing: sent,
received
<connection_type
is one of the follow-
ing: tcp, mpi

locality#*/
total
where:
* is the lo-
cality id of
the locality
the overall
number of
transmitted
bytes should
be queried
for. The
locality id is a
(zero based)
number iden-
tifying the
locality.

Returns the overall number of raw (uncompressed)
bytes sent or received (see <operation,
e.g. en or eceived) for the specified
<connection_type>.
The performance counters for the connection
type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI
was defined while compiling the HPX core li-
brary (which is not defined by default, the
corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake variables used to configure
HPX for more details.

None

/data/time/
<connection_type>/
<operation>
where:
<operation>
is one of the fol-
lowing: sent,
received
<connection_type
is one of the follow-
ing: tcp, mpi

locality#*/
total
where:
* is the lo-
cality id of
the locality
the total
transmission
time should
be queried
for. The
locality id is a
(zero based)
number iden-
tifying the
locality.

Returns the total time (in nanoseconds) between
the start of each asynchronous transmission op-
eration and the end of the corresponding opera-
tion for the specified <connection_type> the
given locality (see <operation, e.g. en or
eceived).
The performance counters for the connection
type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI
was defined while compiling the HPX core li-
brary (which is not defined by default, the
corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake variables used to configure
HPX for more details.

None

/serialize/
count/
<connection_type>/
<operation>
where:
<operation>
is one of the fol-
lowing: sent,
received
<connection_type
is one of the follow-
ing: tcp, mpi

locality#*/
total
where:
* is the lo-
cality id of
the locality
the overall
number of
transmitted
bytes should
be queried
for. The
locality id is a
(zero based)
number iden-
tifying the
locality.

Returns the overall number of bytes trans-
ferred (see <operation>, e.g. sent or
received possibly compressed) for the speci-
fied <connection_type> by the given local-
ity.
The performance counters for the connection
type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI
was defined while compiling the HPX core li-
brary (which is not defined by default, the
corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake variables used to configure
HPX for more details.

If the configure-
time option
-DHPX_WITH_PARCELPORT_ACTION_COUNTERS=On
was specified, this
counter allows one
to specify an op-
tional action name
as its parameter.
In this case the
counter will report
the number of bytes
transmitted for the
given action only.

/serialize/
time/
<connection_type>/
<operation>
where:
<operation>
is one of the fol-
lowing: sent,
received
<connection_type
is one of the follow-
ing: tcp, mpi

locality#*/
total
where:
* is the local-
ity id of the
locality the
serialization
time should
be queried
for. The
locality id is a
(zero based)
number iden-
tifying the
locality.

Returns the overall time spent performing
outgoing data serialization for the specified
<connection_type> on the given locality
(see <operation, e.g. sent or received).
The performance counters for the connection
type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI
was defined while compiling the HPX core li-
brary (which is not defined by default, the
corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake variables used to configure
HPX for more details.

If the configure-
time option
-DHPX_WITH_PARCELPORT_ACTION_COUNTERS=On
was specified, this
counter allows one
to specify an op-
tional action name
as its parameter.
In this case the
counter will report
the serialization
time for the given
action only.

/parcels/
count/routed

locality#*/
total
where:
* is the lo-
cality id of
the locality
the number of
routed parcels
should be
queried for.
The local-
ity id is a
(zero based)
number iden-
tifying the
locality.

Returns the overall number of routed (outbound)
parcels transferred by the given locality.
Routed parcels are those which cannot directly be
delivered to its destination as the local AGAS is not
able to resolve the destination address. In this case
a parcel is sent to the AGAS service component
which is responsible for creating the destination
GID (and is responsible for resolving the destina-
tion address). This AGAS service component will
deliver the parcel to its final target.

If the configure-
time option
-DHPX_WITH_PARCELPORT_ACTION_COUNTERS=On
was specified, this
counter allows
one to specify an
optional action
name as its param-
eter. In this case
the counter will
report the number
of parcels for the
given action only.

/parcels/
count/
<connection_type>/
<operation>
where:
<operation>
is one of the fol-
lowing: sent,
received
<connection_type
is one of the follow-
ing: tcp, mpi

locality#*/
total
where:
* is the lo-
cality id of
the locality
the number
of parcels
should be
queried for.
The local-
ity id is a
(zero based)
number iden-
tifying the
locality.

Returns the overall number of parcels transferred
using the specified <connection_type by the
given locality (see operation>, e.g. sent or
received.
The performance counters for the connection
type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI
was defined while compiling the HPX core li-
brary (which is not defined by default, the
corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake variables used to configure
HPX for more details.

None

/messages/
count/
<connection_type>/
<operation>
where:
<operation>
is one of the fol-
lowing: sent,
received
<connection_type
is one of the follow-
ing: tcp, mpi

locality#*/
total
where:
* is the lo-
cality id of
the locality
the number
of messages
should be
queried for.
The local-
ity id is a
(zero based)
number iden-
tifying the
locality.

Returns the overall number of mes-
sages197 transferred using the specified
<connection_type> by the given locality
(see <operation, e.g. sent or received)
The performance counters for the connection
type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI
was defined while compiling the HPX core li-
brary (which is not defined by default, the
corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake variables used to configure
HPX for more details.

None

/parcelport/
count/
<connection_type>/
<cache_statistics>
where:
<cache_statistics>
is one of the fol-
lowing: cache/
insertions,
cache/
evictions,
cache/hits,
cache/misses
<connection_type`
is one of the follow-
ing: tcp, mpi

locality#*/
total
where:
* is the lo-
cality id of
the locality
the number
of messages
should be
queried for.
The local-
ity id is a
(zero based)
number iden-
tifying the
locality.

Returns the overall number cache events
(evictions, hits, inserts, misses, and re-
claims) for the connection cache of the
given connection type on the given locality
(see <cache_statistics, e.g. ache/
insertions, cache/evictions, cache/
hits, cache/misses or``cache/reclaims``.
The performance counters for the connection
type mpi are available only if the compile
time constant HPX_HAVE_PARCELPORT_MPI
was defined while compiling the HPX core li-
brary (which is not defined by default, the
corresponding cmake configuration constant is
HPX_WITH_PARCELPORT_MPI.
Please see CMake variables used to configure
HPX for more details.

None

/parcelqueue/
length/
<operation>
where:
<operation>
is one of the fol-
lowing: send,
receive

locality#*/
total
where:
* is the local-
ity id of the
locality the
parcel queue
should be
queried. The
locality id is a
(zero based)
number iden-
tifying the
locality.

Returns the current number of parcels stored in the
parcel queue (see <operation for which queue
to query, e.g. sent or received).

None

214 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33: Thread manager performance counters
Counter type Counter instance format-

ting
Description Parameters

/threads/count/
cumulative

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defin-
ing the locality for which
the overall number of re-
tired HPX-threads should
be queried for. The local-
ity id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the pool for which the current value of the

idle-loop counter
should be queried
for.

worker-thread#* is defining the worker thread for which the overall
number of retired
HPX-threads
should be queried
for. The worker
thread number
(given by the * is a
(zero based) num-
ber identifying the
worker thread. The
number of available
worker threads is
usually specified on
the command line
for the application
using the option
--hpx:threads.
If no pool-name
is specified the
counter refers to the
‘default’ pool.

Returns the overall num-
ber of executed (retired)
HPX-threads on the
given locality since ap-
plication start. If the
instance name is total
the counter returns the
accumulated number
of retired HPX-threads
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#*
the counter will return
the overall number of
retired HPX-threads for
all worker threads sep-
arately. This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_CUMULATIVE_COUNTS
is set to ON (default: ON).

None

continues on next page

197 A message can potentially consist of more than one parcel.

2.5. Manual 215

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
average

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defin-
ing the locality for which
the average time spent ex-
ecuting one HPX-thread
should be queried for. The
locality id (given by * is a
(zero based) number iden-
tifying the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the average time
spent executing one HPX-
thread should be queried
for. The worker thread
number (given by the *
is a (zero based) num-
ber identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the average
time spent executing
one HPX-thread on the
given locality since ap-
plication start. If the
instance name is total
the counter returns the
average time spent exe-
cuting one HPX-thread
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#* the
counter will return the
average time spent exe-
cuting one HPX-thread
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_THREAD_CUMULATIVE_COUNTS
(default: ON) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].

None

continues on next page

216 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
average-overhead

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which
the average overhead
spent executing one HPX-
thread should be queried
for. The locality id (given
by * is a (zero based)
number identifying the
locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the
average overhead spent
executing one HPX-
thread should be queried
for. The worker thread
number (given by the *
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the average
time spent on over-
head while executing
one HPX-thread on the
given locality since ap-
plication start. If the
instance name is total
the counter returns the
average time spent on
overhead while exe-
cuting one HPX-thread
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#*
the counter will return
the average time spent
on overhead executing
one HPX-thread for all
worker threads sepa-
rately. This counter is
available only if the con-
figuration time constants
HPX_WITH_THREAD_CUMULATIVE_COUNTS
(default: ON) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].

None

continues on next page

2.5. Manual 217

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/count/
cumulative-phases

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
overall number of exe-
cuted HPX-thread phases
(invocations) should be
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the over-
all number of executed
HPX-thread phases (invo-
cations) should be queried
for. The worker thread
number (given by the *
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the overall
number of executed
HPX-thread phases (in-
vocations) on the given
locality since application
start. If the instance
name is total the
counter returns the ac-
cumulated number of
executed HPX-thread
phases (invocations)
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#* the
counter will return the
overall number of exe-
cuted HPX-thread phases
for all worker threads
separately. This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_CUMULATIVE_COUNTS
is set to ON (default: ON).
The unit of measure for
this counter is nanosecond
[ns].

None

continues on next page

218 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
average-phase

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defin-
ing the locality for which
the average time spent ex-
ecuting one HPX-thread
phase (invocation) should
be queried for. The local-
ity id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the average
time executing one HPX-
thread phase (invocation)
should be queried for.
The worker thread num-
ber (given by the * is a
(zero based) number iden-
tifying the worker thread.
The number of available
worker threads is usu-
ally specified on the com-
mand line for the appli-
cation using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the average
time spent executing
one HPX-thread phase
(invocation) on the given
locality since application
start. If the instance name
is total the counter
returns the average time
spent executing one HPX-
thread phase (invocation)
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#* the
counter will return the
average time spent execut-
ing one HPX-thread phase
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_THREAD_CUMULATIVE_COUNTS
(default: ON) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].

None

continues on next page

2.5. Manual 219

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
average-phase-overhead

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
average time overhead ex-
ecuting one HPX-thread
phase (invocation) should
be queried for. The local-
ity id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the average
overhead executing one
HPX-thread phase (invo-
cation) should be queried
for. The worker thread
number (given by the *
is a (zero based) num-
ber identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the average time
spent on overhead execut-
ing one HPX-thread phase
(invocation) on the given
locality since application
start. If the instance name
is total the counter
returns the average time
spent on overhead while
executing one HPX-
thread phase (invocation)
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#*
the counter will return
the average time spent
on overhead executing
one HPX-thread phase
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_THREAD_CUMULATIVE_COUNTS
(default: ON) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].

None

continues on next page

220 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
overall

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
overall time spent running
the scheduler should be
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the overall time
spent running the sched-
uler should be queried
for. The worker thread
number (given by the *
is a (zero based) num-
ber identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the overall time
spent running the sched-
uler on the given locality
since application start.
If the instance name
is total the counter
returns the overall time
spent running the sched-
uler for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#*
the counter will return
the overall time spent
running the scheduler
for all worker threads
separately. This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_IDLE_RATES
is set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].

None

continues on next page

2.5. Manual 221

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
cumulative

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defin-
ing the locality for which
the overall time spent ex-
ecuting all HPX-threads
should be queried for. The
locality id (given by * is a
(zero based) number iden-
tifying the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the overall time
spent executing all HPX-
threads should be queried
for. The worker thread
number (given by the *
is a (zero based) num-
ber identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the overall
time spent executing
all HPX-threads on the
given locality since ap-
plication start. If the
instance name is total
the counter returns the
overall time spent exe-
cuting all HPX-threads
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#* the
counter will return the
overall time spent exe-
cuting all HPX-threads
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_THREAD_MAINTAIN_CUMULATIVE_COUNTS
(default: ON) and
HPX_THREAD_MAINTAIN_IDLE_RATES
are set to ON (default:
OFF).

None

continues on next page

222 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
cumulative-overheads

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
overall overhead time in-
curred by executing all
HPX-threads should be
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the the over-
all overhead time incurred
by executing all HPX-
threads should be queried
for. The worker thread
number (given by the *
is a (zero based) num-
ber identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the overall
overhead time incurred
executing all HPX-threads
on the given locality since
application start. If the
instance name is total
the counter returns the
overall overhead time
incurred executing all
HPX-threads for all
worker threads (cores)
on that locality. If
the instance name is
worker-thread#*
the counter will return
the overall overhead
time incurred executing
all HPX-threads for all
worker threads sepa-
rately. This counter is
available only if the con-
figuration time constants
HPX_THREAD_MAINTAIN_CUMULATIVE_COUNTS
(default: ON) and
HPX_THREAD_MAINTAIN_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].

None

continues on next page

2.5. Manual 223

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
threads/count/
instantaneous/
<thread-state>
where:
<thread-state>
is one of the follow-
ing: all, active,
pending, suspended,
terminated, staged

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
current number of threads
with the given state should
be queried for. The local-
ity id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the current
number of threads with
the given state should
be queried for. The
worker thread number
(given by the * is a
(zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.
The staged thread state
refers to registered tasks
before they are converted
to thread objects.

Returns the current
number of HPX-threads
having the given thread
state on the given locality.
If the instance name
is total the counter
returns the current num-
ber of HPX-threads of
the given state for all
worker threads (cores)
on that locality. If
the instance name is
worker-thread#* the
counter will return the
current number of HPX-
threads in the given state
for all worker threads
separately.

None

continues on next page

224 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
threads/
wait-time/
<thread-state>
where:
<thread-state> is
one of the following:
pending staged

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which
the average wait time of
HPX-threads (pending)
or thread descriptions
(staged) with the given
state should be queried
for. The locality id (given
by * is a (zero based)
number identifying the
locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the average
wait time for the given
state should be queried
for. The worker thread
number (given by the *
is a (zero based) num-
ber identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.
The staged thread state
refers to the wait time
of registered tasks be-
fore they are converted
into thread objects, while
the pending thread state
refers to the wait time
of threads in any of the
scheduling queues.

Returns the average wait
time of HPX-threads
(if the thread state is
pending or of task
descriptions (if the thread
state is staged on
the given locality since
application start. If the
instance name is total
the counter returns the
wait time of HPX-threads
of the given state for all
worker threads (cores)
on that locality. If
the instance name is
worker-thread#* the
counter will return the
wait time of HPX-threads
in the given state for all
worker threads separately.
These counters are
available only if the
compile time constant
HPX_WITH_THREAD_QUEUE_WAITTIME
was defined while com-
piling the HPX core
library (default: OFF).
The unit of measure for
this counter is nanosecond
[ns].

None

continues on next page

2.5. Manual 225

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/
idle-rate

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
average idle rate of all
(or one) worker threads
should be queried for. The
locality id (given by * is a
(zero based) number iden-
tifying the locality
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the averaged
idle rate should be queried
for. The worker thread
number (given by the *
is a (zero based) num-
ber identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the average idle
rate for the given worker
thread(s) on the given
locality. The idle rate is
defined as the ratio of the
time spent on scheduling
and management tasks
and the overall time
spent executing work
since the application
started. This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_IDLE_RATES
is set to ON (default:
OFF).

None

continues on next page

226 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/
creation-idle-rate

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
average creation idle rate
of all (or one) worker
threads should be queried
for. The locality id (given
by * is a (zero based)
number identifying the lo-
cality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the averaged
idle rate should be queried
for. The worker thread
number (given by the *
is a (zero based) num-
ber identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the average idle
rate for the given worker
thread(s) on the given
locality which is caused
by creating new threads.
The creation idle rate is
defined as the ratio of the
time spent on creating
new threads and the over-
all time spent executing
work since the application
started. This counter is
available only if the con-
figuration time constants
HPX_WITH_THREAD_IDLE_RATES
(default: OFF) and
HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES
are set to ON.

None

continues on next page

2.5. Manual 227

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/
cleanup-idle-rate

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
average cleanup idle rate
of all (or one) worker
threads should be queried
for. The locality id (given
by * is a (zero based)
number identifying the lo-
cality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the
averaged cleanup idle
rate should be queried
for. The worker thread
number (given by the *
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the average idle
rate for the given worker
thread(s) on the given
locality which is caused
by cleaning up terminated
threads. The cleanup idle
rate is defined as the ratio
of the time spent on clean-
ing up terminated thread
objects and the overall
time spent executing
work since the application
started. This counter is
available only if the con-
figuration time constants
HPX_WITH_THREAD_IDLE_RATES
(default: OFF) and
HPX_WITH_THREAD_CREATION_AND_CLEANUP_RATES
are set to ON.

None

continues on next page

228 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threadqueue/
length

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
current length of all thread
queues in the scheduler
for all (or one) worker
threads should be queried
for. The locality id (given
by * is a (zero based)
number identifying the lo-
cality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the cur-
rent length of all thread
queues in the scheduler
should be queried for.
The worker thread num-
ber (given by the * is
a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the overall length
of all queues for the given
worker thread(s) on the
given locality.

None

/threads/count/
stack-unbinds

locality#*/total
where:
* is the locality id of the
locality the unbind (mad-
vise) operations should be
queried for. The locality
id is a (zero based) num-
ber identifying the local-
ity.

Returns the total num-
ber of HPX-thread unbind
(madvise) operations per-
formed for the referenced
locality. Note that this
counter is not available
on Windows based plat-
forms.

None

continues on next page

2.5. Manual 229

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/count/
stack-recycles

locality#*/total
where:
* is the locality id of the
locality the recycling op-
erations should be queried
for. The locality id is a
(zero based) number iden-
tifying the locality.

Returns the total number
of HPX-thread recycling
operations performed.

None

/threads/count/
stolen-from-pending

locality#*/total
where:

* is the locality id of
the locality the number of
‘stole’ threads should be
queried for. The locality
id is a (zero based) num-
ber identifying the local-
ity.

Returns the total number
of HPX-threads ‘stolen’
from the pending thread
queue by a neighboring
thread worker thread
(these threads are ex-
ecuted by a different
worker thread than they
were initially scheduled
on). This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_STEALING_COUNTS
is set to ON (default: ON).

None

continues on next page

230 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/count/
pending-misses

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
number of pending queue
misses of all (or one)
worker threads should be
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the number
of pending queue misses
should be queried for.
The worker thread num-
ber (given by the * is a
(zero based) number iden-
tifying the worker thread.
The number of available
worker threads is usu-
ally specified on the com-
mand line for the appli-
cation using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the total number
of times that the ref-
erenced worker-thread
on the referenced lo-
cality failed to find
pending HPX-threads
in its associated queue.
This counter is avail-
able only if the con-
figuration time constant
HPX_WITH_THREAD_STEALING_COUNTS
is set to ON (default: ON).

None

continues on next page

2.5. Manual 231

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/count/
pending-accesses

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
number of pending queue
accesses of all (or one)
worker threads should be
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#* is
defining the worker thread
for which the number of
pending queue accesses
should be queried for.
The worker thread num-
ber (given by the * is a
(zero based) number iden-
tifying the worker thread.
The number of available
worker threads is usu-
ally specified on the com-
mand line for the appli-
cation using the option
--hpx:threads. If no
pool-name is specified the
counter refers to the ‘de-
fault’ pool.

Returns the total number
of times that the refer-
enced worker-thread on
the referenced locality
looked for pending HPX-
threads in its associated
queue. This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_STEALING_COUNTS
is set to ON (default: ON).

None

continues on next page

232 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/count/
stolen-from-staged

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
number of HPX-threads
stolen from the staged
queue of all (or one)
worker threads should be
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the
number of HPX-threads
stolen from the staged
queue should be queried
for. The worker thread
number (given by the *
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the total num-
ber of HPX-threads
‘stolen’ from the staged
thread queue by a neigh-
boring worker thread
(these threads are ex-
ecuted by a different
worker thread than they
were initially scheduled
on). This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_STEALING_COUNTS
is set to ON (default: ON).

None

continues on next page

2.5. Manual 233

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/count/
stolen-to-pending

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
number of HPX-threads
stolen to the pending
queue of all (or one)
worker threads should be
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the
number of HPX-threads
stolen to the pending
queue should be queried
for. The worker thread
number (given by the *
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the total number
of HPX-threads ‘stolen’
to the pending thread
queue of the worker
thread (these threads are
executed by a different
worker thread than they
were initially scheduled
on). This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_STEALING_COUNTS
is set to ON (default: ON).

None

continues on next page

234 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/count/
stolen-to-staged

locality#*/total
or
locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
number of HPX-threads
stolen to the staged queue
of all (or one) worker
threads should be queried
for. The locality id (given
by * is a (zero based)
number identifying the lo-
cality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the
number of HPX-threads
stolen to the staged queue
should be queried for. The
worker thread number
(given by the * is a (zero
based) worker thread
number (given by the *
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the total number
of HPX-threads ‘stolen’
to the staged thread queue
of a neighboring worker
thread (these threads are
executed by a different
worker thread than they
were initially scheduled
on). This counter is
available only if the con-
figuration time constant
HPX_WITH_THREAD_STEALING_COUNTS
is set to ON (default: ON).

None

continues on next page

2.5. Manual 235

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/count/
objects

locality#*/total
or
locality#*/
allocator#*
where:
locality#* is defining
the locality for which the
current (cumulative) num-
ber of all created HPX-
thread objects should be
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality.
allocator#* is defin-
ing the number of the allo-
cator instance using which
the threads have been cre-
ated. HPX uses a vary-
ing number of allocators
to create (and recycle)
HPX-thread objects, most
likely these counters are
of use for debugging pur-
poses only. The allocator
id (given by * is a (zero
based) number identifying
the allocator to query.

Returns the total num-
ber of HPX-thread ob-
jects created. Note that
thread objects are reused
to improve system perfor-
mance, thus this number
does not reflect the num-
ber of actually executed
(retired) HPX-threads.

None

/scheduler/
utilization/
instantaneous

locality#*/total
where:
locality#* is defining
the locality for which the
current (instantaneous)
scheduler utilization
queried for. The locality
id (given by * is a (zero
based) number identifying
the locality.

Returns the total (instantaneous) scheduler utilization. This is the
current percentage
of scheduler threads
executing HPX
threads.

Percent

continues on next page

236 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/
idle-loop-count/
instantaneous

locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
current current accumu-
lated value of all idle-loop
counters of all worker
threads should be queried.
The locality id (given by
* is a (zero based) number
identifying the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the
current value of the
idle-loop counter should
be queried for. The
worker thread number
(given by the * is a (zero
based) worker thread
number (given by the *
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the current (in-
stantaneous) idle-loop
count for the given HPX-
worker thread or the
accumulated value for all
worker threads.

None

continues on next page

2.5. Manual 237

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/
busy-loop-count/
instantaneous

locality#*/
worker-thread#*
or
locality#*/
pool#*/
worker-thread#*
where:
locality#* is defin-
ing the locality for which
the current current ac-
cumulated value of all
busy-loop counters of all
worker threads should be
queried. The locality id
(given by * is a (zero
based) number identifying
the locality.
pool#* is defining the
pool for which the cur-
rent value of the idle-loop
counter should be queried
for.
worker-thread#*
is defining the worker
thread for which the
current value of the
busy-loop counter should
be queried for. The
worker thread number
(given by the * is a (zero
based) worker thread
number (given by the *
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads. If
no pool-name is specified
the counter refers to the
‘default’ pool.

Returns the current (in-
stantaneous) busy-loop
count for the given HPX-
worker thread or the
accumulated value for all
worker threads.

None

continues on next page

238 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
background-work-duration

locality#*/total
or
locality#*/
worker-thread#*
where:
locality#* is defin-
ing the locality for which
the overall time spent per-
forming background work
should be queried for. The
locality id (given by *) is a
(zero based) number iden-
tifying the locality.
worker-thread#* is
defining the worker thread
for which the overall
time spent performing
background work should
be queried for. The
worker thread number
(given by the *) is a
(zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads.

Returns the overall
time spent performing
background work on
the given locality since
application start. If the
instance name is total
the counter returns the
overall time spent per-
forming background work
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#* the
counter will return the
overall time spent per-
forming background work
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_BACKGROUND_THREAD_COUNTERS
(default: OFF) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].

None

continues on next page

2.5. Manual 239

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/
background-overhead

locality#*/total
or
locality#*/
worker-thread#*
where:
locality#* is defin-
ing the locality for which
the background overhead
should be queried for. The
locality id (given by *) is a
(zero based) number iden-
tifying the locality.
worker-thread#*
is defining the worker
thread for which the
background overhead
should be queried for.
The worker thread num-
ber (given by the *) is
a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads.

Returns the background
overhead on the given
locality since application
start. If the instance
name is total the
counter returns the
background overhead
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#*
the counter will return
background overhead
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_BACKGROUND_THREAD_COUNTERS
(default: OFF) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure displayed for this
counter is 0.1%.

None

continues on next page

240 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
background-send-duration

locality#*/total
or
locality#*/
worker-thread#*
where:
locality#* is defin-
ing the locality for which
the overall time spent per-
forming background work
related to sending parcels
should be queried for. The
locality id (given by *) is a
(zero based) number iden-
tifying the locality.
worker-thread#* is
defining the worker thread
for which the overall
time spent performing
background work related
to sending parcels should
be queried for. The
worker thread number
(given by the *) is a
(zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads.

Returns the overall time
spent performing back-
ground work related
to sending parcels on
the given locality since
application start. If the
instance name is total
the counter returns the
overall time spent per-
forming background work
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#* the
counter will return the
overall time spent per-
forming background work
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_BACKGROUND_THREAD_COUNTERS
(default: OFF) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].
This counter will cur-
rently return meaningful
values for the MPI parcel-
port only.

None

continues on next page

2.5. Manual 241

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/
background-send-overhead

locality#*/total
or
locality#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
background overhead re-
lated to sending parcels
should be queried for. The
locality id (given by *) is a
(zero based) number iden-
tifying the locality.
worker-thread#*
is defining the worker
thread for which the
background overhead
related to sending parcels
should be queried for.
The worker thread num-
ber (given by the *) is
a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads.

Returns the background
overhead related to
sending parcels on the
given locality since ap-
plication start. If the
instance name is total
the counter returns the
background overhead
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#*
the counter will return
background overhead
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_BACKGROUND_THREAD_COUNTERS
(default: OFF) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure displayed for this
counter is 0.1%.
This counter will cur-
rently return meaningful
values for the MPI parcel-
port only.

None

continues on next page

242 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/time/
background-receive-duration

locality#*/total
or
locality#*/
worker-thread#*
where:
locality#* is defining
the locality for which
the overall time spent
performing background
work related to receiving
parcels should be queried
for. The locality id (given
by *) is a (zero based)
number identifying the
locality.
worker-thread#*
is defining the worker
thread for which the
overall time spent per-
forming background
work related to receiving
parcels should be queried
for. The worker thread
number (given by the *)
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads.

Returns the overall time
spent performing back-
ground work related
to receiving parcels on
the given locality since
application start. If the
instance name is total
the counter returns the
overall time spent per-
forming background work
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#* the
counter will return the
overall time spent per-
forming background work
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_BACKGROUND_THREAD_COUNTERS
(default: OFF) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure for this counter is
nanosecond [ns].
This counter will cur-
rently return meaningful
values for the MPI parcel-
port only.

None

continues on next page

2.5. Manual 243

HPX Documentation, 1.5.1

Table 2.33 – continued from previous page
/threads/
background-receive-overhead

locality#*/total
or
locality#*/
worker-thread#*
where:
locality#* is defining
the locality for which the
background overhead re-
lated to receiving should
be queried for. The lo-
cality id (given by *) is a
(zero based) number iden-
tifying the locality.
worker-thread#*
is defining the worker
thread for which the
background overhead
related to receiving
parcels should be queried
for. The worker thread
number (given by the *)
is a (zero based) number
identifying the worker
thread. The number of
available worker threads
is usually specified on the
command line for the ap-
plication using the option
--hpx:threads.

Returns the background
overhead related to re-
ceiving parcels on the
given locality since ap-
plication start. If the
instance name is total
the counter returns the
background overhead
for all worker threads
(cores) on that locality.
If the instance name is
worker-thread#*
the counter will return
background overhead
for all worker threads
separately. This counter is
available only if the con-
figuration time constants
HPX_WITH_BACKGROUND_THREAD_COUNTERS
(default: OFF) and
HPX_WITH_THREAD_IDLE_RATES
are set to ON (default:
OFF). The unit of mea-
sure displayed for this
counter is 0.1%.
This counter will cur-
rently return meaningful
values for the MPI parcel-
port only.

None

244 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.34: General performance counters exposing characteristics of
localities

Counter type Counter instance format-
ting

Description Parameters

/runtime/count/
component

locality#*/total
where:
* is the locality id of
the locality the number
of components should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the overall num-
ber of currently active
components of the speci-
fied type on the given lo-
cality.

The type of the compo-
nent. This is the string
which has been used
while registering the
component with HPX,
e.g. which has been
passed as the second
parameter to the macro
HPX_REGISTER_COMPONENT.

/runtime/count/
action-invocation

locality#*/total
where:

* is the locality id of the
locality the number of ac-
tion invocations should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the overall (lo-
cal) invocation count of
the specified action type
on the given locality.

The action type. This is
the string which has been
used while registering
the action with HPX,
e.g. which has been
passed as the second
parameter to the macro
HPX_REGISTER_ACTION
or
HPX_REGISTER_ACTION_ID.

/runtime/count/
remote-action-invocation

locality#*/total
where:
* is the locality id of the
locality the number of ac-
tion invocations should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the overall (re-
mote) invocation count of
the specified action type
on the given locality.

The action type. This is
the string which has been
used while registering
the action with HPX,
e.g. which has been
passed as the second
parameter to the macro
HPX_REGISTER_ACTION
or
HPX_REGISTER_ACTION_ID.

/runtime/uptime locality#*/total
where:
* is the locality id of the
locality the system uptime
should be queried. The lo-
cality id is a (zero based)
number identifying the lo-
cality.

Returns the overall time
since application start
on the given locality in
nanoseconds.

None

/runtime/memory/
virtual

locality#*/total
where:
* is the locality id of
the locality the allocated
virtual memory should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the amount of vir-
tual memory currently al-
located by the referenced
locality (in bytes).

None

/runtime/memory/
resident

locality#*/total
where:
* is the locality id of the
locality the allocated res-
ident memory should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the amount of res-
ident memory currently
allocated by the refer-
enced locality (in bytes).

None

/runtime/memory/
total

locality#*/total
where:
* is the locality id of
the locality the total avail-
able memory should be
queried. The locality id
is a (zero based) num-
ber identifying the local-
ity. Note: only supported
in Linux.

Returns the total available memory for use by the referenced
locality (in bytes).
This counter is
available on Linux
and Windows
systems only.

None

/runtime/io/
read_bytes_issued

locality#*/total
where:
* is the locality id of
the locality the number
of bytes read should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the number of
bytes read by the process
(aggregate of count argu-
ments passed to read() call
or its analogues). This
performance counter is
available only on systems
which expose the related
data through the /proc file
system.

None

/runtime/io/
write_bytes_issued

locality#*/total
where:
* is the locality id of
the locality the number of
bytes written should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the number of
bytes written by the
process (aggregate of
count arguments passed
to write() call or its
analogues). This perfor-
mance counter is available
only on systems which
expose the related data
through the /proc file
system.

None

/runtime/io/
read_syscalls

locality#*/total
where:
* is the locality id of
the locality the number
of system calls should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the number of
system calls that perform
I/O reads. This perfor-
mance counter is available
only on systems which
expose the related data
through the /proc file sys-
tem.

None

/runtime/io/
write_syscalls

locality#*/total
where:
* is the locality id of
the locality the number
of system calls should be
queried. The locality id
is a (zero based) number
identifying the locality.

Returns the number of
system calls that perform
I/O writes. This perfor-
mance counter is available
only on systems which
expose the related data
through the /proc file sys-
tem.

None

/runtime/io/
read_bytes_transferred

locality#*/total
where:
* is the locality id of
the locality the number of
bytes transferred should
be queried. The locality id
is a (zero based) number
identifying the locality.

Returns the number of
bytes retrieved from stor-
age by I/O operations.
This performance counter
is available only on sys-
tems which expose the
related data through the
/proc file system.

None

/runtime/io/
write_bytes_transferred

locality#*/total
where:
* is the locality id of
the locality the number of
bytes transferred should
be queried. The locality id
is a (zero based) number
identifying the locality.

Returns the number of
bytes retrieved from stor-
age by I/O operations.
This performance counter
is available only on sys-
tems which expose the
related data through the
/proc file system.

None

/runtime/io/
write_bytes_cancelled

locality#*/total
where:
* is the locality id of
the locality the number
of bytes not being trans-
ferred should be queried.
The locality id is a (zero
based) number identifying
the locality.

Returns the number
of bytes accounted by
write_bytes_transferred
that has not been ul-
timately stored due to
truncation or deletion.
This performance counter
is available only on sys-
tems which expose the
related data through the
/proc file system.

None

2.5. Manual 245

HPX Documentation, 1.5.1

Table 2.35: Performance counters exposing PAPI hardware counters
Counter type Counter instance formatting Description Pa-

ram-
e-
ters

/papi/<papi_event>
where:
<papi_event> is the name
of the PAPI event to expose
as a performance counter (such
as PAPI_SR_INS). Note that
the list of available PAPI
events changes depending on
the used architecture.
For a full list of avail-
able PAPI events and their
(short) description use the
--hpx:list-counters
and
--hpx:papi-event-info=all
command line options.

locality#*/total or
locality#*/worker-thread#*
where:
locality#* is defining the locality for which the cur-
rent current accumulated value of all busy-loop counters
of all worker threads should be queried. The locality id
(given by *) is a (zero based) number identifying the
locality.
worker-thread#* is defining the worker thread for
which the current value of the busy-loop counter should
be queried for. The worker thread number (given by
the *) is a (zero based) worker thread number (given by
the *) is a (zero based) number identifying the worker
thread. The number of available worker threads is usu-
ally specified on the command line for the application
using the option --hpx:threads.

This counter
returns the
current count
of occur-
rences of
the specified
PAPI event.
This counter
is available
only if the
configuration
time constant
HPX_WITH_PAPI
is set to ON
(default:
OFF).

None

246 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Table 2.36: Performance counters for general statistics
Counter
type

Counter in-
stance format-
ting

Description Parameters

/
statistics/
average

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the cur-
rent average
(mean) value
calculated based
on the values
queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to two comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as
the default. The second value can be either 0 or 1 and specifies
whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

/
statistics/
rolling_average

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the
current rolling
average (mean)
value calculated
based on the val-
ues queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to three comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as the
default. The second value will be interpreted as the size of the
rolling window (the number of latest values to use to calculate the
rolling average). The default value for this is 10. The third value
can be either 0 or 1 and specifies whether the underlying counter
should be reset during evaluation 1 or not 0. The default value is
0.

/
statistics/
stddev

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the cur-
rent standard
deviation (stddev)
value calculated
based on the val-
ues queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to two comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as
the default. The second value can be either 0 or 1 and specifies
whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

/
statistics/
rolling_stddev

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the
current rolling
variance (stddev)
value calculated
based on the val-
ues queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to three comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as the
default. The second value will be interpreted as the size of the
rolling window (the number of latest values to use to calculate the
rolling average). The default value for this is 10. The third value
can be either 0 or 1 and specifies whether the underlying counter
should be reset during evaluation 1 or not 0. The default value is
0.

/
statistics/
median

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the cur-
rent (statistically
estimated) median
value calculated
based on the val-
ues queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to two comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as
the default. The second value can be either 0 or 1 and specifies
whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

/
statistics/
max

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the cur-
rent maximum
value calculated
based on the val-
ues queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to two comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as
the default. The second value can be either 0 or 1 and specifies
whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

/
statistics/
rolling_max

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the
current rolling
maximum value
calculated based
on the values
queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to three comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as the
default. The second value will be interpreted as the size of the
rolling window (the number of latest values to use to calculate the
rolling average). The default value for this is 10. The third value
can be either 0 or 1 and specifies whether the underlying counter
should be reset during evaluation 1 or not 0. The default value is
0.

/
statistics/
min

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the cur-
rent minimum
value calculated
based on the val-
ues queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to two comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as
the default. The second value can be either 0 or 1 and specifies
whether the underlying counter should be reset during evaluation
1 or not 0. The default value is 0.

/
statistics/
rolling_min

Any full perfor-
mance counter
name. The
referenced
performance
counter is
queried at fixed
time intervals
as specified
by the first
parameter.

Returns the
current rolling
minimum value
calculated based
on the values
queried from
the underlying
counter (the one
specified as the
instance name).

Any parameter will be interpreted as a list of up to three comma
separated (integer) values, where the first is the time interval (in
milliseconds) at which the underlying counter should be queried.
If no value is specified, the counter will assume 1000 [ms] as the
default. The second value will be interpreted as the size of the
rolling window (the number of latest values to use to calculate the
rolling average). The default value for this is 10. The third value
can be either 0 or 1 and specifies whether the underlying counter
should be reset during evaluation 1 or not 0. The default value is
0.

2.5. Manual 247

HPX Documentation, 1.5.1

Table 2.37: Performance counters for elementary arithmetic operations
Counter
type

Counter
in-
stance
format-
ting

Description Parameters

/
arithmetics/
add

None Returns the sum calculated based
on the values queried from the un-
derlying counters (the ones speci-
fied as the parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
subtract

None Returns the difference calculated
based on the values queried from
the underlying counters (the ones
specified as the parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
multiply

None Returns the product calculated
based on the values queried from
the underlying counters (the ones
specified as the parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
divide

None Returns the result of division of the
values queried from the underlying
counters (the ones specified as the
parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
mean

None Returns the average value of all
values queried from the underlying
counters (the ones specified as the
parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
variance

None Returns the standard deviation of
all values queried from the under-
lying counters (the ones specified
as the parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
median

None Returns the median value of all
values queried from the underlying
counters (the ones specified as the
parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
min

None Returns the minimum value of all
values queried from the underlying
counters (the ones specified as the
parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
max

None Returns the maximum value of all
values queried from the underlying
counters (the ones specified as the
parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

/
arithmetics/
count

None Returns the count value of all val-
ues queried from the underlying
counters (the ones specified as the
parameters).

The parameter will be interpreted as a comma sepa-
rated list of full performance counter names which are
queried whenever this counter is accessed. Any wild-
cards in the counter names will be expanded.

Note: The /arithmetics counters can consume an arbitrary number of other counters. For this reason those have
to be specified as parameters (a comma separated list of counters appended after a '@'). For instance:

./bin/hello_world_distributed -t2 \
(continues on next page)

248 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

--hpx:print-counter=/threads{locality#0/worker-thread#*}/count/cumulative \
--hpx:print-counter=/arithmetics/add@/threads{locality#0/worker-thread#*}/count/

→˓cumulative
hello world from OS-thread 0 on locality 0
hello world from OS-thread 1 on locality 0
/threads{locality#0/worker-thread#0}/count/cumulative,1,0.515640,[s],25
/threads{locality#0/worker-thread#1}/count/cumulative,1,0.515520,[s],36
/arithmetics/add@/threads{locality#0/worker-thread#*}/count/cumulative,1,0.516445,[s],
→˓64

Since all wildcards in the parameters are expanded, this example is fully equivalent to specifying both counters sepa-
rately to /arithmetics/add:

./bin/hello_world_distributed -t2 \
--hpx:print-counter=/threads{locality#0/worker-thread#*}/count/cumulative \
--hpx:print-counter=/arithmetics/add@\

/threads{locality#0/worker-thread#0}/count/cumulative,\
/threads{locality#0/worker-thread#1}/count/cumulative

2.5. Manual 249

HPX Documentation, 1.5.1

Table 2.38: Performance counters tracking parcel coalescing
Counter
type

Counter
instance
formatting

Description Parameters

/
coalescing/
count/
parcels

locality#*/
total
where:
* is the lo-
cality id of
the locality
the number
of parcels
for the given
action should
be queried
for. The
locality id is
a (zero based)
number iden-
tifying the
locality.

Returns the number of parcels handled by
the message handler associated with the ac-
tion which is given by the counter parameter.

The action type. This is the string
which has been used while registering
the action with HPX, e.g. which has
been passed as the second parameter to
the macro HPX_REGISTER_ACTION or
HPX_REGISTER_ACTION_ID.

/
coalescing/
count/
messages

locality#*/
total
where:
* is the lo-
cality id of
the locality
the number
of messages
for the given
action should
be queried
for. The
locality id is
a (zero based)
number iden-
tifying the
locality.

Returns the number of messages generated
by the message handler associated with the
action which is given by the counter param-
eter.

The action type. This is the string
which has been used while registering
the action with HPX, e.g. which has
been passed as the second parameter to
the macro HPX_REGISTER_ACTION or
HPX_REGISTER_ACTION_ID.

/
coalescing/
count/
average-parcels-per-message

locality#*/
total
where:
* is the lo-
cality id of
the locality
the number
of messages
for the given
action should
be queried
for. The
locality id is
a (zero based)
number iden-
tifying the
locality.

Returns the average number of parcels sent
in a message generated by the message han-
dler associated with the action which is
given by the counter parameter.

The action type. This is the string
which has been used while registering
the action with HPX, e.g. which has
been passed as the second parameter to
the macro HPX_REGISTER_ACTION or
HPX_REGISTER_ACTION_ID

/
coalescing/
time/
average-parcel-arrival

locality#*/
total
where:
* is the lo-
cality id of
the locality
the average
time between
parcels for
the given
action should
be queried
for. The
locality id is
a (zero based)
number iden-
tifying the
locality.

Returns the average time between arriving
parcels for the action which is given by the
counter parameter.

The action type. This is the string
which has been used while registering
the action with HPX, e.g. which has
been passed as the second parameter to
the macro HPX_REGISTER_ACTION or
HPX_REGISTER_ACTION_ID

/
coalescing/
time/
parcel-arrival-histogram

locality#*/
total
where:
* is the lo-
cality id of
the locality
the average
time between
parcels for
the given
action should
be queried
for. The
locality id is
a (zero based)
number iden-
tifying the
locality.

Returns a histogram representing the times
between arriving parcels for the action
which is given by the counter parameter.
This counter returns an array of values,
where the first three values represent the
three parameters used for the histogram fol-
lowed by one value for each of the histogram
buckets.
The first unit of measure displayed for this
counter [ns] refers to the lower and upper
boundary values in the returned histogram
data only. The second unit of measure dis-
played [0.1%] refers to the actual his-
togram data.
For each bucket the counter shows a value
between 0 and 1000 which corresponds to
a percentage value between 0% and 100%.

The action type and optional histogram pa-
rameters. The action type is the string
which has been used while registering
the action with HPX, e.g. which has
been passed as the second parameter to
the macro HPX_REGISTER_ACTION or
HPX_REGISTER_ACTION_ID.
The action type may be followed by a
comma separated list of up-to three num-
bers: the lower and upper boundaries for
the collected histogram, and the number
of buckets for the histogram to generate.
By default these three numbers will be
assumed to be 0 ([ns], lower bound),
1000000 ([ns], upper bound), and 20
(number of buckets to generate).

250 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note: The performance counters related to parcel coalescing are available only if the configuration time constant
HPX_WITH_PARCEL_COALESCING is set to ON (default: ON). However, even in this case it will be available only
for actions that are enabled for parcel coalescing (see the macros HPX_ACTION_USES_MESSAGE_COALESCING
and HPX_ACTION_USES_MESSAGE_COALESCING_NOTHROW).

APEX integration

HPX provides integration with APEX198, which is a framework for application profiling using task timers and various
performance counters. It can be added as a git submodule by turning on the option HPX_WITH_APEX:BOOL during
CMake configuration. TAU199 is an optional dependency when using APEX.

To build HPX with APEX, add HPX_WITH_APEX=ON, and, optionally, TAU_ROOT=$PATH_TO_TAU to your
CMake configuration. In addition, you can override the tag used for APEX with the HPX_WITH_APEX_TAG op-
tion. Please see the APEX HPX documentation200 for detailed instructions on using APEX with HPX.

2.5.11 HPX runtime and resources

HPX thread scheduling policies

The HPX runtime has five thread scheduling policies: local-priority, static-priority, local, static and abp-priority.
These policies can be specified from the command line using the command line option --hpx:queuing. In order
to use a particular scheduling policy, the runtime system must be built with the appropriate scheduler flag turned
on (e.g. cmake -DHPX_THREAD_SCHEDULERS=local, see CMake variables used to configure HPX for more
information).

Priority local scheduling policy (default policy)

• default or invoke using: --hpx:queuinglocal-priority-fifo

The priority local scheduling policy maintains one queue per operating system (OS) thread. The OS thread pulls its
work from this queue. By default the number of high priority queues is equal to the number of OS threads; the number
of high priority queues can be specified on the command line using --hpx:high-priority-threads. High
priority threads are executed by any of the OS threads before any other work is executed. When a queue is empty work
will be taken from high priority queues first. There is one low priority queue from which threads will be scheduled
only when there is no other work.

For this scheduling policy there is an option to turn on NUMA sensitivity using the command line option
--hpx:numa-sensitive. When NUMA sensitivity is turned on work stealing is done from queues associated
with the same NUMA domain first, only after that work is stolen from other NUMA domains.

This scheduler is enabled at build time by default and will be available always.

This scheduler can be used with two underlying queuing policies (FIFO: first-in-first-out, and LIFO: last-
in-first-out). The default is FIFO. In order to use the LIFO policy use the command line option
--hpx:queuing=local-priority-lifo.

198 https://khuck.github.io/xpress-apex/
199 https://www.cs.uoregon.edu/research/tau/home.php
200 https://khuck.github.io/xpress-apex/usage/#hpx-louisiana-state-university

2.5. Manual 251

https://khuck.github.io/xpress-apex/
https://www.cs.uoregon.edu/research/tau/home.php
https://khuck.github.io/xpress-apex/usage/#hpx-louisiana-state-university

HPX Documentation, 1.5.1

Static priority scheduling policy

• invoke using: --hpx:queuing=static-priority (or -qs)

• flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=static-priority

The static scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user
threads). Threads are distributed in a round robin fashion. There is no thread stealing in this policy.

Local scheduling policy

• invoke using: --hpx:queuing=local (or -ql)

• flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=local

The local scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user
threads).

Static scheduling policy

• invoke using: --hpx:queuing=static

• flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=static

The static scheduling policy maintains one queue per OS thread from which each OS thread pulls its tasks (user
threads). Threads are distributed in a round robin fashion. There is no thread stealing in this policy.

Priority ABP scheduling policy

• invoke using: --hpx:queuing=abp-priority-fifo

• flag to turn on for build: HPX_THREAD_SCHEDULERS=all or HPX_THREAD_SCHEDULERS=abp-priority

Priority ABP policy maintains a double ended lock free queue for each OS thread. By default the number of high
priority queues is equal to the number of OS threads; the number of high priority queues can be specified on the com-
mand line using --hpx:high-priority-threads. High priority threads are executed by the first OS threads
before any other work is executed. When a queue is empty work will be taken from high priority queues first. There
is one low priority queue from which threads will be scheduled only when there is no other work. For this scheduling
policy there is an option to turn on NUMA sensitivity using the command line option --hpx:numa-sensitive.
When NUMA sensitivity is turned on work stealing is done from queues associated with the same NUMA domain
first, only after that work is stolen from other NUMA domains.

This scheduler can be used with two underlying queuing policies (FIFO: first-in-first-out, and LIFO: last-in-first-out).
In order to use the LIFO policy use the command line option --hpx:queuing=abp-priority-lifo.

252 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The HPX resource partitioner

The HPX resource partitioner lets you take the execution resources available on a system—processing units, cores, and
numa domains—and assign them to thread pools. By default HPX creates a single thread pool name default. While
this is good for most use cases, the resource partitioner lets you create multiple thread pools with custom resources
and options.

Creating custom thread pools is useful for cases where you have tasks which absolutely need to run without interfer-
ence from other tasks. An example of this is when using MPI201 for distribution instead of the built-in mechanisms in
HPX (useful in legacy applications). In this case one can create a thread pool containing a single thread for MPI202

communication. MPI203 tasks will then always run on the same thread, instead of potentially being stuck in a queue
behind other threads.

Note that HPX thread pools are completely independent from each other in the sense that task stealing will never
happen between different thread pools. However, tasks running on a particular thread pool can schedule tasks on
another thread pool.

Note: It is simpler in some situations to schedule important tasks with high priority instead of using a separate thread
pool.

Using the resource partitioner

The hpx::resource::partitioner is now created during HPX runtime initialization without explicit action
needed from the user. To specify some of the initialization parameters you can use the hpx::init_params.

#include <hpx/hpx_init.hpp>
#include <hpx/resource_partitioner/partitioner.hpp>

int hpx_main(int argc, char* argv[])
{

return hpx::finalize();
}

int main(int argc, char** argv)
{

// Setup the init parameters
hpx::init_params init_args;
hpx::init(argc, argv, init_args);

}

The resource partitioner callback is the interface to add thread pools to the HPX runtime and to assign resources
to the thread pools. In order to create custom thread pools you can specify the resource partitioner callback
hpx::init_params::rp_callback which will be called once the resource partitioner will be created , see
the example below. You can also specify other parameters, see hpx::init_params.

To add a thread pool use the hpx::resource::partitioner::create_thread_pool method.
If you simply want to use the default scheduler and scheduler options it is enough to call rp.
create_thread_pool("my-thread-pool").

Then, to add resources to the thread pool you can use the hpx::resource::partitioner::add_resource
method. The resource partitioner exposes the hardware topology retrieved using Portable Hardware Locality

201 https://en.wikipedia.org/wiki/Message_Passing_Interface
202 https://en.wikipedia.org/wiki/Message_Passing_Interface
203 https://en.wikipedia.org/wiki/Message_Passing_Interface

2.5. Manual 253

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/

HPX Documentation, 1.5.1

(HWLOC)204 and lets you iterate through the topology to add the wanted processing units to the thread pool. Be-
low is an example of adding all processing units from the first NUMA domain to a custom thread pool, unless there is
only one NUMA domain in which case we leave the first processing unit for the default thread pool:

#include <hpx/hpx_init.hpp>
#include <hpx/resource_partitioner/partitioner.hpp>

#include <iostream>

int hpx_main(int argc, char* argv[])
{

return hpx::finalize();
}

void init_resource_partitioner_handler(hpx::resource::partitioner& rp)
{

rp.create_thread_pool("my-thread-pool");

bool one_numa_domain = rp.numa_domains().size() == 1;
bool skipped_first_pu = false;

hpx::resource::numa_domain const& d = rp.numa_domains()[0];

for (const hpx::resource::core& c : d.cores())
{

for (const hpx::resource::pu& p : c.pus())
{

if (one_numa_domain && !skipped_first_pu)
{

skipped_first_pu = true;
continue;

}

rp.add_resource(p, "my-thread-pool");
}

}
}

int main(int argc, char* argv[])
{

// Set the callback to init the thread_pools
hpx::init_params init_args;
init_args.rp_callback = &init_resource_partitioner_handler;

hpx::init(argc, argv, init_args);
}

Note: Whatever processing units not assigned to a thread pool by the time hpx::init is called will be added to
the default thread pool. It is also possible to explicitly add processing units to the default thread pool, and to create the
default thread pool manually (in order to e.g. set the scheduler type).

Tip: The command line option --hpx:print-bind is useful for checking that the thread pools have been set up
the way you expect.

204 https://www.open-mpi.org/projects/hwloc/

254 Chapter 2. What’s so special about HPX?

https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/

HPX Documentation, 1.5.1

Difference between the old and new version

In the old version, you had to create an instance of the resource_partitioner with argc and argv.

int main(int argc, char** argv)
{

hpx::resource::partitioner rp(argc, argv);
hpx::init();

}

From HPX 1.5.0 onwards, you just pass argc and argv to hpx::init() or hpx::start() for the binding
options to be parsed by the resource partitioner.

int main(int argc, char** argv)
{

hpx::init_params init_args;
hpx::init(argc, argv, init_args);

}

In the old version, when creating a custom thread pool, you just called the utilities on the resource partitioner instanti-
ated previously.

int main(int argc, char** argv)
{

hpx::resource::partitioner rp(argc, argv);

rp.create_thread_pool("my-thread-pool");

bool one_numa_domain = rp.numa_domains().size() == 1;
bool skipped_first_pu = false;

hpx::resource::numa_domain const& d = rp.numa_domains()[0];

for (const hpx::resource::core& c : d.cores())
{

for (const hpx::resource::pu& p : c.pus())
{

if (one_numa_domain && !skipped_first_pu)
{

skipped_first_pu = true;
continue;

}

rp.add_resource(p, "my-thread-pool");
}

}

hpx::init();
}

You now specify the resource partitioner callback which will tie the resources to the resource partitioner created during
runtime initialization.

void init_resource_partitioner_handler(hpx::resource::partitioner& rp)
{

rp.create_thread_pool("my-thread-pool");

(continues on next page)

2.5. Manual 255

HPX Documentation, 1.5.1

(continued from previous page)

bool one_numa_domain = rp.numa_domains().size() == 1;
bool skipped_first_pu = false;

hpx::resource::numa_domain const& d = rp.numa_domains()[0];

for (const hpx::resource::core& c : d.cores())
{

for (const hpx::resource::pu& p : c.pus())
{

if (one_numa_domain && !skipped_first_pu)
{

skipped_first_pu = true;
continue;

}

rp.add_resource(p, "my-thread-pool");
}

}
}

int main(int argc, char* argv[])
{

hpx::init_params init_args;
init_args.rp_callback = &init_resource_partitioner_handler;

hpx::init(argc, argv, init_args);
}

Advanced usage

It is possible to customize the built in schedulers by passing scheduler options to
hpx::resource::partitioner::create_thread_pool. It is also possible to create and use cus-
tom schedulers.

Note: It is not recommended to create your own scheduler. The HPX developers use this to experiment with
new scheduler designs before making them available to users via the standard mechanisms of choosing a scheduler
(command line options). If you would like to experiment with a custom scheduler the resource partitioner exam-
ple shared_priority_queue_scheduler.cpp contains a fully implemented scheduler with logging etc. to
make exploration easier.

To choose a scheduler and custom mode for a thread pool, pass additional options when creating the thread pool like
this:

rp.create_thread_pool("my-thread-pool",
hpx::resource::policies::local_priority_lifo,
hpx::policies::scheduler_mode(

hpx::policies::scheduler_mode::default |
hpx::policies::scheduler_mode::enable_elasticity));

The available schedulers are documented here: hpx::resource::scheduling_policy , and the avail-
able scheduler modes here: hpx::threads::policies::scheduler_mode. Also see the examples
folder for examples of advanced resource partitioner usage: simple_resource_partitioner.cpp and
oversubscribing_resource_partitioner.cpp.

256 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

2.5.12 Miscellaneous

Error handling

Like in any other asynchronous invocation scheme, it is important to be able to handle error conditions occurring while
the asynchronous (and possibly remote) operation is executed. In HPX all error handling is based on standard C++
exception handling. Any exception thrown during the execution of an asynchronous operation will be transferred back
to the original invocation locality, where it will be rethrown during synchronization with the calling thread.

The source code for this example can be found here: error_handling.cpp.

Working with exceptions

For the following description assume that the function raise_exception() is executed by invoking the plain
action raise_exception_type.

#include <hpx/modules/runtime_local.hpp>

//[error_handling_raise_exception
void raise_exception()
{

The exception is thrown using the macro HPX_THROW_EXCEPTION . The type of the thrown exception is
hpx::exception. This associates additional diagnostic information with the exception, such as file name and
line number, locality id and thread id, and stack backtrace from the point where the exception was thrown.

Any exception thrown during the execution of an action is transferred back to the (asynchronous) invocation site. It
will be rethrown in this context when the calling thread tries to wait for the result of the action by invoking either
future<>::get() or the synchronous action invocation wrapper as shown here:

///
// Error reporting using exceptions
//[exception_diagnostic_information
hpx::cout << "Error reporting using exceptions\n";
try {

// invoke raise_exception() which throws an exception
raise_exception_action do_it;
do_it(hpx::find_here());

}
catch (hpx::exception const& e) {

// Print just the essential error information.
hpx::cout << "caught exception: " << e.what() << "\n\n";

// Print all of the available diagnostic information as stored with
// the exception.
hpx::cout << "diagnostic information:"

Note: The exception is transferred back to the invocation site even if it is executed on a different locality.

Additionally, this example demonstrates how an exception thrown by an (possibly remote) action can be handled. It
shows the use of hpx::diagnostic_information, which retrieves all available diagnostic information from
the exception as a formatted string. This includes, for instance, the name of the source file and line number, the
sequence number of the OS thread and the HPX thread id, the locality id and the stack backtrace of the point where
the original exception was thrown.

2.5. Manual 257

HPX Documentation, 1.5.1

Under certain circumstances it is desirable to output only some of the diagnostics, or to output those using different
formatting. For this case, HPX exposes a set of lower-level functions as demonstrated in the following code snippet:

// Detailed error reporting using exceptions
//[exception_diagnostic_elements
hpx::cout << "Detailed error reporting using exceptions\n";
try {

// Invoke raise_exception() which throws an exception.
raise_exception_action do_it;
do_it(hpx::find_here());

}
catch (hpx::exception const& e) {

// Print the elements of the diagnostic information separately.
hpx::cout << "{what}: " << hpx::get_error_what(e) << "\n";
hpx::cout << "{locality-id}: " << hpx::get_error_locality_id(e) << "\n";
hpx::cout << "{hostname}: " << hpx::get_error_host_name(e) << "\n";
hpx::cout << "{pid}: " << hpx::get_error_process_id(e) << "\n";
hpx::cout << "{function}: " << hpx::get_error_function_name(e) << "\n";
hpx::cout << "{file}: " << hpx::get_error_file_name(e) << "\n";
hpx::cout << "{line}: " << hpx::get_error_line_number(e) << "\n";
hpx::cout << "{os-thread}: " << hpx::get_error_os_thread(e) << "\n";
hpx::cout << "{thread-id}: " << std::hex << hpx::get_error_thread_id(e)

<< "\n";
hpx::cout << "{thread-description}: "

<< hpx::get_error_thread_description(e) << "\n";
hpx::cout << "{state}: " << std::hex << hpx::get_error_state(e)

<< "\n";
hpx::cout << "{stack-trace}: " << hpx::get_error_backtrace(e) << "\n";

Working with error codes

Most of the API functions exposed by HPX can be invoked in two different modes. By default those will throw an
exception on error as described above. However, sometimes it is desirable not to throw an exception in case of an
error condition. In this case an object instance of the hpx::error_code type can be passed as the last argument to
the API function. In case of an error, the error condition will be returned in that hpx::error_code instance. The
following example demonstrates extracting the full diagnostic information without exception handling:

// Error reporting using error code
{

//[error_handling_diagnostic_information
hpx::cout << "Error reporting using error code\n";

// Create a new error_code instance.
hpx::error_code ec;

// If an instance of an error_code is passed as the last argument while
// invoking the action, the function will not throw in case of an error
// but store the error information in this error_code instance instead.
raise_exception_action do_it;
do_it(hpx::find_here(), ec);

if (ec) {
// Print just the essential error information.
hpx::cout << "returned error: " << ec.get_message() << "\n";

// Print all of the available diagnostic information as stored with

(continues on next page)

258 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

// the exception.
hpx::cout << "diagnostic information:"

<< hpx::diagnostic_information(ec) << "\n";

Note: The error information is transferred back to the invocation site even if it is executed on a different locality.

This example show how an error can be handled without having to resolve to exceptions and that the returned
hpx::error_code instance can be used in a very similar way as the hpx::exception type above. Simply
pass it to the hpx::diagnostic_information, which retrieves all available diagnostic information from the
error code instance as a formatted string.

As for handling exceptions, when working with error codes, under certain circumstances it is desirable to output only
some of the diagnostics, or to output those using different formatting. For this case, HPX exposes a set of lower-level
functions usable with error codes as demonstrated in the following code snippet:

// Detailed error reporting using error code
{

//[error_handling_diagnostic_elements
hpx::cout << "Detailed error reporting using error code\n";

// Create a new error_code instance.
hpx::error_code ec;

// If an instance of an error_code is passed as the last argument while
// invoking the action, the function will not throw in case of an error
// but store the error information in this error_code instance instead.
raise_exception_action do_it;
do_it(hpx::find_here(), ec);

if (ec) {
// Print the elements of the diagnostic information separately.
hpx::cout << "{what}: " << hpx::get_error_what(ec) << "\n";
hpx::cout << "{locality-id}: " << hpx::get_error_locality_id(ec) << "\

→˓n";
hpx::cout << "{hostname}: " << hpx::get_error_host_name(ec) << "\n

→˓";
hpx::cout << "{pid}: " << hpx::get_error_process_id(ec) << "\n

→˓";
hpx::cout << "{function}: " << hpx::get_error_function_name(ec)

<< "\n";
hpx::cout << "{file}: " << hpx::get_error_file_name(ec) << "\n

→˓";
hpx::cout << "{line}: " << hpx::get_error_line_number(ec) << "\

→˓n";
hpx::cout << "{os-thread}: " << hpx::get_error_os_thread(ec) << "\n

→˓";
hpx::cout << "{thread-id}: " << std::hex

<< hpx::get_error_thread_id(ec) << "\n";
hpx::cout << "{thread-description}: "

<< hpx::get_error_thread_description(ec) << "\n\n";
hpx::cout << "{state}: " << std::hex << hpx::get_error_state(ec)

<< "\n";
hpx::cout << "{stack-trace}: " << hpx::get_error_backtrace(ec) << "\n

→˓";
hpx::cout << "{env}: " << hpx::get_error_env(ec) << "\n";

2.5. Manual 259

HPX Documentation, 1.5.1

For more information please refer to the documentation of hpx::get_error_what,
hpx::get_error_locality_id, hpx::get_error_host_name, hpx::get_error_process_id,
hpx::get_error_function_name, hpx::get_error_file_name, hpx::get_error_line_number,
hpx::get_error_os_thread, hpx::get_error_thread_id, hpx::get_error_thread_description,
hpx::get_error_backtrace, hpx::get_error_env , and hpx::get_error_state.

Lightweight error codes

Sometimes it is not desirable to collect all the ambient information about the error at the point where it happened as
this might impose too much overhead for simple scenarios. In this case, HPX provides a lightweight error code facility
that will hold the error code only. The following snippet demonstrates its use:

// Error reporting using lightweight error code
{

//[lightweight_error_handling_diagnostic_information
hpx::cout << "Error reporting using an lightweight error code\n";

// Create a new error_code instance.
hpx::error_code ec(hpx::lightweight);

// If an instance of an error_code is passed as the last argument while
// invoking the action, the function will not throw in case of an error
// but store the error information in this error_code instance instead.
raise_exception_action do_it;
do_it(hpx::find_here(), ec);

if (ec) {
// Print just the essential error information.
hpx::cout << "returned error: " << ec.get_message() << "\n";

// Print all of the available diagnostic information as stored with
// the exception.
hpx::cout << "error code:" << ec.value() << "\n";

All functions that retrieve other diagnostic elements from the hpx::error_code will fail if called with a
lightweight error_code instance.

Utilities in HPX

In order to ease the burden of programming, HPX provides several utilities to users. The following section documents
those facilies.

Checkpoint

See checkpoint.

260 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The HPX I/O-streams component

The HPX I/O-streams subsystem extends the standard C++ output streams std::cout and std::cerr to work
in the distributed setting of an HPX application. All of the output streamed to hpx::cout will be dispatched
to std::cout on the console locality. Likewise, all output generated from hpx::cerr will be dispatched to
std::cerr on the console locality.

Note: All existing standard manipulators can be used in conjunction with hpx::cout and hpx::cerr Histor-
ically, HPX also defines hpx::endl and hpx::flush but those are just aliases for the corresponding standard
manipulators.

In order to use either hpx::cout or hpx::cerr, application codes need to #include <hpx/include/
iostreams.hpp>. For an example, please see the following ‘Hello world’ program:

// Copyright (c) 2007-2012 Hartmut Kaiser
//
// SPDX-License-Identifier: BSL-1.0
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

///
// The purpose of this example is to execute a HPX-thread printing
// "Hello World!" once. That's all.

//[hello_world_1_getting_started
// Including 'hpx/hpx_main.hpp' instead of the usual 'hpx/hpx_init.hpp' enables
// to use the plain C-main below as the direct main HPX entry point.
#include <hpx/hpx_main.hpp>
#include <hpx/iostream.hpp>

int main()
{

// Say hello to the world!
hpx::cout << "Hello World!\n" << hpx::flush;
return 0;

}
//]

Additionally, those applications need to link with the iostreams component. When using CMake this can be achieved
by using the COMPONENT_DEPENDENCIES parameter; for instance:

include(HPX_AddExecutable)

add_hpx_executable(
hello_world
SOURCES hello_world.cpp
COMPONENT_DEPENDENCIES iostreams

)

Note: The hpx::cout and hpx::cerr streams buffer all output locally until a std::endl or std::flush is
encountered. That means that no output will appear on the console as long as either of these is explicitly used.

2.5. Manual 261

HPX Documentation, 1.5.1

2.5.13 Troubleshooting

This section contains commonly encountered problems when compiling or using HPX.

Undefined reference to boost::program_options

Boost.ProgramOptions is not ABI compatible between all C++ versions and compilers. Because of this you may see
linker errors similar to this:

...: undefined reference to `boost::program_options::operator<<(std::ostream&,
→˓boost::program_options::options_description const&)'

if you are not linking to a compatible version of Boost.ProgramOptions. We recommend that you use
hpx::program_options, which is part of HPX, as a replacement for boost::program_options (see pro-
gram_options). Until you have migrated to use hpx::program_options we recommend that you always build
Boost205 libraries and HPX with the same compiler and C++ standard.

Undefined reference to hpx::cout

You may see an linker error message that looks a bit like this:

hello_world.cpp:(.text+0x5aa): undefined reference to `hpx::cout'
hello_world.cpp:(.text+0x5c3): undefined reference to `hpx::iostreams::flush'

This usually happens if you are trying to use HPX iostreams functionality such as hpx::cout but are not linking
against it. The iostreams functionality is not part of the core HPX library, and must be linked to explicitly. Typi-
cally this can be solved by adding COMPONENT_DEPENDENCIES iostreams to a call to add_hpx_library/
add_hpx_executable/hpx_setup_target if using CMake. See Creating HPX projects for more details.

2.6 Additional material

• 2-day workshop held at CSCS in 2016

– Recorded lectures206

– Slides207

• Tutorials repository208

• STE||AR Group blog posts209

205 https://www.boost.org/
206 https://www.youtube.com/playlist?list=PL1tk5lGm7zvSXfS-sqOOmIJ0lFNjKze18
207 https://github.com/STEllAR-GROUP/tutorials/tree/master/cscs2016
208 https://github.com/STEllAR-GROUP/tutorials
209 http://stellar-group.org/blog/

262 Chapter 2. What’s so special about HPX?

https://www.boost.org/
https://www.youtube.com/playlist?list=PL1tk5lGm7zvSXfS-sqOOmIJ0lFNjKze18
https://github.com/STEllAR-GROUP/tutorials/tree/master/cscs2016
https://github.com/STEllAR-GROUP/tutorials
http://stellar-group.org/blog/

HPX Documentation, 1.5.1

2.7 Overview

HPX is organized into different sub-libraries. Those libraries can be seen as independent modules, with clear de-
pendencies and no cycles. As an end-user, the use of these modules is completely transparent. If you use e.g.
add_hpx_executable to create a target in your project you will automatically get all modules as dependencies.
See All modules for a list of the available modules.

2.8 All modules

2.8.1 actions

TODO: High-level description of the library.

See the API reference of this module for more details.

2.8.2 actions_base

TODO: High-level description of the library.

See the API reference of this module for more details.

2.8.3 affinity

The affinity module contains helper functionality for mapping worker threads to hardware resources.

See the API reference of the module for more details.

2.8.4 algorithms

The algorithms module exposes the full set of algorithms defined by the C++ standard. There is also partial support
for C++ ranges.

See the API reference of the module for more details.

2.8.5 allocator_support

This module provides utilities for allocators. It contains hpx::util::internal_allocator which directly
forwards allocation calls to jemalloc. This utility is is mainly useful on Windows.

See the API reference of the module for more details.

2.7. Overview 263

HPX Documentation, 1.5.1

2.8.6 asio

The asio module is a thin wrapper around the Boost.ASIO library, providing a few additional helper functions.

See the API reference of the module for more details.

2.8.7 assertion

The assertion library implements the macros HPX_ASSERT and HPX_ASSERT_MSG. Those two macros can be used
to implement assertions which are turned of during a release build.

By default, the location and function where the assert has been called from are displayed when the assertion fires. This
behavior can be modified by using hpx::assertion::set_assertion_handler. When HPX initializes, it
uses this function to specify a more elaborate assertion handler. If your application needs to customize this, it needs
to do so before calling hpx::hpx_init, hpx::hpx_main or using the C-main wrappers.

See the API reference of the module for more details.

2.8.8 async_base

The async_base module defines the basic functionality for spawning tasks on thread pools. This module does not im-
plement any functionality on its own, but is extended by async_local and libs_async_distributed with implementations
for the local and distributed cases.

See the API reference of this module for more details.

2.8.9 async_combinators

This module contains combinators for futures. The when_* functions allow you to turn multiple futures into a single
future which is ready when all, any, some, or each of the given futures are ready. The wait_* combinators are
equivalent to the when_* functions except that they do not return a future.

The split_future combinator takes a single future of a container (e.g. tuple) and turns it into a container of
futures.

See lcos_local, synchronization, and async for other synchronization facilities.

See the API reference of this module for more details.

2.8.10 async_cuda

This library adds a simple API that enables the user to retrieve a future from a cuda stream. Typically, a user may
launch one or more kernels and then get a future from the stream that will become ready when those kernels have
completed. The act of getting a future from the cuda_stream_helper object in this library hides the creation of a cuda
stream event and the attachment of this event to the promise that is backing the future returned.

The usage is best illustrated by looking at an example

// create a cuda target using device number 0,1,2...
hpx::cuda::experimental::target target(device);
// create a stream helper object
hpx::cuda::experimental::cuda_future_helper helper(device);

// launch a kernel and return a future

(continues on next page)

264 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

auto fn = &cuda_trivial_kernel<double>;
double d = 3.1415;
auto f = helper.async(fn, d);

// attach a continuation to the future
f.then([](hpx::future<void>&& f) {

std::cout << "trivial kernel completed \n";
}).get();

Kernels and CPU work may be freely intermixed/overlapped and synchronized with futures.

It is important to note that multiple kernels may be launched without fetching a future, and multiple futures may be
obtained from the helper. Please refer to the unit tests and examples for further examples.

CMake variables

HPX_WITH_CUDA - this is a general option that will enable both HPX_WITH_ASYNC_CUDA and
HPX_WITH_CUDA_COMPUTE when turned ON.

HPX_WITH_ASYNC_CUDA=ON enables the building of this module which requires only the presence of
CUDA on the system and only exposes cuda+fuures support (HPX_WITH_ASYNC_CUDA may be used when
HPX_WITH_CUDA_COMPUTE=OFF).

HPX_WITH_CUDA_COMPUTE=ON enables building HPX compute features that allow parallel algorithms to be passed
through to the GPU/CUDA backend.

See the API reference of this module for more details.

2.8.11 async

This module contains functionality for asynchronously launching work on remote localities: hpx::async,
hpx::apply . This module extends the local-only functions in async_local.

See the API reference of this module for more details.

2.8.12 async_local

This module extends async_base to provide local implementations of hpx::async, hpx::apply , hpx::sync,
and hpx::dataflow .

See the API reference of this module for more details.

2.8.13 async_mpi

The MPI library is intended to simplify the process of integrating MPI based codes with the HPX runtime. Any MPI
function that is asynchronous and uses an MPI_Request may be converted into an hpx::future. The syntax is designed
to allow a simple replacement of the MPI call with a futurized async version that accepts an executor instead of a
communicator, and returns a future instead of assigning a request. Typically, an MPI call of the form

int MPI_Isend(buf, count, datatype, rank, tag, comm, request);

becomes

2.8. All modules 265

HPX Documentation, 1.5.1

hpx::future<int> f = hpx::async(executor, MPI_Isend, buf, count, datatype, rank, tag);

When the MPI operation is complete, the future will become ready. This allows communication to integrated cleanly
with the rest of HPX, in particular the continuation style of programming may be used to build up more complex code.
Consider the following example, that chains user processing, sends and receives using continuations. . .

// create an executor for MPI dispatch
hpx::mpi::experimental::executor exec(MPI_COMM_WORLD);

// post an asynchronous receive using MPI_Irecv
hpx::future<int> f_recv = hpx::async(

exec, MPI_Irecv, &data, rank, MPI_INT, rank_from, i);

// attach a continuation to run when the recv completes,
f_recv.then([=, &tokens, &counter](auto&&)
{

// call an application specific function
msg_recv(rank, size, rank_to, rank_from, tokens[i], i);

// send a new message
hpx::future<int> f_send = hpx::async(

exec, MPI_Isend, &tokens[i], 1, MPI_INT, rank_to, i);

// when that send completes
f_send.then([=, &tokens, &counter](auto&&)
{

// call an application specific function
msg_send(rank, size, rank_to, rank_from, tokens[i], i);

});
}

The example above makes use of MPI_Isend and MPI_Irecv, but any MPI function that uses requests may be
futurized in this manner. The following is a (non exhaustive) list of MPI functions that should be supported, though
not all have been tested at the time of writing (please report any problems to the issue tracker).

int MPI_Isend(...);
int MPI_Ibsend(...);
int MPI_Issend(...);
int MPI_Irsend(...);
int MPI_Irecv(...);
int MPI_Imrecv(...);
int MPI_Ibarrier(...);
int MPI_Ibcast(...);
int MPI_Igather(...);
int MPI_Igatherv(...);
int MPI_Iscatter(...);
int MPI_Iscatterv(...);
int MPI_Iallgather(...);
int MPI_Iallgatherv(...);
int MPI_Ialltoall(...);
int MPI_Ialltoallv(...);
int MPI_Ialltoallw(...);
int MPI_Ireduce(...);
int MPI_Iallreduce(...);
int MPI_Ireduce_scatter(...);
int MPI_Ireduce_scatter_block(...);
int MPI_Iscan(...);

(continues on next page)

266 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

int MPI_Iexscan(...);
int MPI_Ineighbor_allgather(...);
int MPI_Ineighbor_allgatherv(...);
int MPI_Ineighbor_alltoall(...);
int MPI_Ineighbor_alltoallv(...);
int MPI_Ineighbor_alltoallw(...);

Note that the HPX mpi futurization wrapper should work with any asynchronous MPI call, as long as the function
signature has the last two arguments MPI_xxx(. . . , MPI_Comm comm, MPI_Request *request) - internally these two
parameters will be substituted by the executor and future data parameters that are supplied by template instantiations
inside the hpx::mpi code.

See the API reference of this module for more details.

2.8.14 batch_environments

This module allows for the detection of execution as batch jobs, a series of programs executed without user interven-
tion. All data is preselected and will be executed according to preset parameters, such as date or completion of another
task. Batch environments are especially useful for executing repetitive tasks.

HPX supports the creation of batch jobs through the Portable Batch System (PBS) and SLURM.

For more information on batch environments, see Running on batch systems and the API reference for the module.

2.8.15 cache

This module provides two cache data structures:

• hpx::util::cache::local_cache

• hpx::util::cache::lru_cache

See the API reference of the module for more details.

2.8.16 checkpoint

A common need of users is to periodically backup an application. This practice provides resiliency and potential
restart points in code. HPX utilizes the concept of a checkpoint to support this use case.

Found in hpx/util/checkpoint.hpp, checkpoints are defined as objects that hold a serialized version of
an object or set of objects at a particular moment in time. This representation can be stored in memory for later use
or it can be written to disk for storage and/or recovery at a later point. In order to create and fill this object with data,
users must use a function called save_checkpoint. In code the function looks like this:

hpx::future<hpx::util::checkpoint> hpx::util::save_checkpoint(a, b, c, ...);

save_checkpoint takes arbitrary data containers, such as int, double, float, vector, and future, and
serializes them into a newly created checkpoint object. This function returns a future to a checkpoint
containing the data. Here’s an example of a simple use case:

using hpx::util::checkpoint;
using hpx::util::save_checkpoint;

std::vector<int> vec{1,2,3,4,5};
hpx::future<checkpoint> save_checkpoint(vec);

2.8. All modules 267

HPX Documentation, 1.5.1

Once the future is ready, the checkpoint object will contain the vector vec and its five elements.

prepare_checkpoint takes arbitrary data containers (same as for save_checkpoint), , such as int,
double, float, vector, and future, and calculates the necessary buffer space for the checkpoint that would
be created if save_checkpoint was called with the same arguments. This function returns a future to a
checkpoint that is appropriately initialized. Here’s an example of a simple use case:

using hpx::util::checkpoint;
using hpx::util::prepare_checkpoint;

std::vector<int> vec{1,2,3,4,5};
hpx::future<checkpoint> prepare_checkpoint(vec);

Once the future is ready, the checkpoint object will be initialized with an appropriately sized internal buffer.

It is also possible to modify the launch policy used by save_checkpoint. This is accomplished by pass-
ing a launch policy as the first argument. It is important to note that passing hpx::launch::sync will cause
save_checkpoint to return a checkpoint instead of a future to a checkpoint. All other policies passed
to save_checkpoint will return a future to a checkpoint.

Sometimes checkpoint s must be declared before they are used. save_checkpoint allows users to move pre-
created checkpoint s into the function as long as they are the first container passing into the function (In the case
where a launch policy is used, the checkpoint will immediately follow the launch policy). An example of these
features can be found below:

char character = 'd';
int integer = 10;
float flt = 10.01f;
bool boolean = true;
std::string str = "I am a string of characters";
std::vector<char> vec(str.begin(), str.end());
checkpoint archive;

// Test 1
// test basic functionality
hpx::shared_future<checkpoint> f_archive = save_checkpoint(

std::move(archive), character, integer, flt, boolean, str, vec);

Once users can create checkpoints they must now be able to restore the objects they contain into memory. This is
accomplished by the function restore_checkpoint. This function takes a checkpoint and fills its data into
the containers it is provided. It is important to remember that the containers must be ordered in the same way they
were placed into the checkpoint. For clarity see the example below:

char character2;
int integer2;
float flt2;
bool boolean2;
std::string str2;
std::vector<char> vec2;

restore_checkpoint(data, character2, integer2, flt2, boolean2, str2, vec2);

The core utility of checkpoint is in its ability to make certain data persistent. Often, this means that the data needs
to be stored in an object, such as a file, for later use. HPX has two solutions for these issues: stream operator overloads
and access iterators.

HPX contains two stream overloads, operator<< and operator>>, to stream data out of and into checkpoint.
Here is an example of the overloads in use below:

268 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

double a9 = 1.0, b9 = 1.1, c9 = 1.2;
std::ofstream test_file_9("test_file_9.txt");
hpx::future<checkpoint> f_9 = save_checkpoint(a9, b9, c9);
test_file_9 << f_9.get();
test_file_9.close();

double a9_1, b9_1, c9_1;
std::ifstream test_file_9_1("test_file_9.txt");
checkpoint archive9;
test_file_9_1 >> archive9;
restore_checkpoint(archive9, a9_1, b9_1, c9_1);

This is the primary way to move data into and out of a checkpoint. It is important to note, however, that users
should be cautious when using a stream operator to load data and another function to remove it (or vice versa).
Both operator<< and operator>> rely on a .write() and a .read() function respectively. In order to
know how much data to read from the std::istream, the operator<< will write the size of the checkpoint
before writing the checkpoint data. Correspondingly, the operator>> will read the size of the stored data
before reading the data into a new instance of checkpoint. As long as the user employs the operator<< and
operator>> to stream the data, this detail can be ignored.

Important: Be careful when mixing operator<< and operator>> with other facilities to read and write to a
checkpoint. operator<< writes an extra variable, and operator>> reads this variable back separately. Used
together the user will not encounter any issues and can safely ignore this detail.

Users may also move the data into and out of a checkpoint using the exposed .begin() and .end() iterators.
An example of this use case is illustrated below.

std::ofstream test_file_7("checkpoint_test_file.txt");
std::vector<float> vec7{1.02f, 1.03f, 1.04f, 1.05f};
hpx::future<checkpoint> fut_7 = save_checkpoint(vec7);
checkpoint archive7 = fut_7.get();
std::copy(archive7.begin(), // Write data to ofstream

archive7.end(), // ie. the file
std::ostream_iterator<char>(test_file_7));

test_file_7.close();

std::vector<float> vec7_1;
std::vector<char> char_vec;
std::ifstream test_file_7_1("checkpoint_test_file.txt");
if (test_file_7_1)
{

test_file_7_1.seekg(0, test_file_7_1.end);
auto length = test_file_7_1.tellg();
test_file_7_1.seekg(0, test_file_7_1.beg);
char_vec.resize(length);
test_file_7_1.read(char_vec.data(), length);

}
checkpoint archive7_1(std::move(char_vec)); // Write data to checkpoint
restore_checkpoint(archive7_1, vec7_1);

2.8. All modules 269

HPX Documentation, 1.5.1

Checkpointing components

save_checkpoint and restore_checkpoint are also able to store components inside checkpoints. This
can be done in one of two ways. First a client of the component can be passed to save_checkpoint. When the
user wishes to resurrect the component she can pass a client instance to restore_checkpoint.

This technique is demonstrated below:

// Try to checkpoint and restore a component with a client
std::vector<int> vec3{10, 10, 10, 10, 10};

// Create a component instance through client constructor
data_client D(hpx::find_here(), std::move(vec3));
hpx::future<checkpoint> f3 = save_checkpoint(D);

// Create a new client
data_client E;

// Restore server inside client instance
restore_checkpoint(f3.get(), E);

The second way a user can save a component is by passing a shared_ptr to the component to
save_checkpoint. This component can be resurrected by creating a new instance of the component type and
passing a shared_ptr to the new instance to restore_checkpoint.

This technique is demonstrated below:

// test checkpoint a component using a shared_ptr
std::vector<int> vec{1, 2, 3, 4, 5};
data_client A(hpx::find_here(), std::move(vec));

// Checkpoint Server
hpx::id_type old_id = A.get_id();

hpx::future<std::shared_ptr<data_server>> f_a_ptr =
hpx::get_ptr<data_server>(A.get_id());

std::shared_ptr<data_server> a_ptr = f_a_ptr.get();
hpx::future<checkpoint> f = save_checkpoint(a_ptr);
auto&& data = f.get();

// test prepare_checkpoint API
checkpoint c = prepare_checkpoint(hpx::launch::sync, a_ptr);
HPX_TEST(c.size() == data.size());

// Restore Server
// Create a new server instance
std::shared_ptr<data_server> b_server;
restore_checkpoint(data, b_server);

270 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

2.8.17 checkpoint_base

The checkpoint_base module contains lower level facilities that wrap simple check-pointing capabilities. This module
does not implement special handling for futures or components, but simply serializes all arguments to or from a given
container.

This module exposes the hpx::util::save_checkpoint_data, hpx::util::restore_checkpoint_data,
and hpx::util::prepare_checkpoint_data APIs. These functions encapsulate the basic serialization
functionalities necessary to save/restore a variadic list of arguments to/from a given data container.

See the API reference of this module for more details.

2.8.18 collectives

The collectives module exposes a set of distributed collective operations. Those can be used to exchange data between
participating sites in a coordinated way. At this point the module exposes the following collective primitives:

• hpx::collectives::all_reduce: performs a reduction on data from each participating site to each
participating site.

• hpx::collectives::all_to_all: each participating site provides its element of the data to collect
while all participating sites receive the data from every other site.

• hpx::lcos::barrier: distributed barrier.

• hpx::lcos::broadcast: performs a given action on all given global identifiers.

• hpx::lcos::fold: performs a fold with a given action on all given global identifiers.

• hpx::lcos::gather: gathers values from all participating sites.

• hpx::lcos::latch: distributed latch.

• hpx::lcos::reduce: performs a reduction on data from each participating site to a root site.

• hpx::lcos::spmd_block: performs the same operation on a local image while providing handles to the
other images.

See the API reference of the module for more details.

2.8.19 command_line_handling

The command_line_handling module defines and handles the command-line options required by the HPX runtime,
combining them with configuration options defined by the runtime_configuration module. The actual parsing of
command line options is handled by the program_options module.

See the API reference of the module for more details.

2.8.20 components_base

TODO: High-level description of the library.

See the API reference of this module for more details.

2.8. All modules 271

HPX Documentation, 1.5.1

2.8.21 compute

The compute module provides utilities for handling task and memory affinity on host systems. The compute_cuda for
extensions to CUDA programmable GPU devices.

See the API reference of the module for more details.

2.8.22 compute_cuda

This module extends the compute module to handle CUDA programmable GPU devices.

See the API reference of the module for more details.

2.8.23 concepts

This module provides helpers for emulating concepts. It provides the following macros:

• HPX_CONCEPT_REQUIRES

• HPX_HAS_MEMBER_XXX_TRAIT_DEF

• HPX_HAS_XXX_TRAIT_DEF

See the API reference of the module for more details.

2.8.24 concurrency

This module provides concurrency primitives useful for multi-threaded programming such as:

• hpx::util::barrier

• hpx::util::cache_line_data and hpx::util::cache_aligned_data: wrappers for aligning
and padding data to cache lines.

• various lockfree queue data structures

See the API reference of the module for more details.

2.8.25 config

The config module contains various configuration options, typically hidden behind macros that choose the correct
implementation based on the compiler and other available options.

See the API reference of the module for more details.

2.8.26 config_registry

The config_registry module is a low level module providing helper functionality for registering configuration entries to
a global registry from other modules. The hpx::config_registry::add_module_config function is used
to add configuration options, and hpx::config_registry::get_module_configs can be used to retrieve
configuration entries registered so far. add_module_config_helper can be used to register configuration entries
through static global options.

See the API reference of this module for more details.

272 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

2.8.27 coroutines

The coroutines module provides coroutine (user-space thread) implementations for different platforms.

See the API reference of the module for more details.

2.8.28 datastructures

The datastructures module provides basic data structures (typically provided for compatibility with older C++ stan-
dards):

• hpx::util::basic_any

• hpx::util::optional

• hpx::util::tuple

See the API reference of the module for more details.

2.8.29 debugging

This module provides helpers for demangling symbol names.

See the API reference of the module for more details.

2.8.30 errors

This module provides support for exceptions and error codes:

• hpx::exception

• hpx::error_code

• hpx::error

See the API reference of the module for more details.

2.8.31 execution

This library implements executors and execution policies for use with parallel algorithms and other facilities related
to managing the execution of tasks.

See the API reference of the module for more details.

2.8.32 execution_base

The basic execution module is the main entry point to implement parallel and concurrent operations. It is modeled after
P0443210 with some additions and implementations for the described concepts. Most notably, it provides an abstraction
for execution resources, execution contexts and execution agents in such a way, that it provides customization points
that those aforementioned concepts can be replaced and combined with ease.

For that purpose, three virtual base classes are provided to be able to provide implementations with different properties:

• resource_base: This is the abstraction for execution resources, that is for example CPU cores or an ac-
celerator.

210 http://wg21.link/p0443

2.8. All modules 273

http://wg21.link/p0443

HPX Documentation, 1.5.1

• context_base: An execution context uses execution resources and is able to spawn new execution
agents, as new threads of executions on the available resources.

• agent_base: The execution agent represents the thread of execution, and can be used to yield, suspend,
resume or abort a thread of execution.

2.8.33 executors

The executors module exposes executors and execution policies. Most importantly, it exposes the following classes
and constants:

• hpx::parallel::execution::sequenced_executor

• hpx::parallel::execution::parallel_executor

• hpx::parallel::execution::sequenced_policy

• hpx::parallel::execution::parallel_policy

• hpx::parallel::execution::parallel_unsequenced_policy

• hpx::parallel::execution::sequenced_task_policy

• hpx::parallel::execution::parallel_task_policy

• hpx::parallel::execution::seq

• hpx::parallel::execution::par

• hpx::parallel::execution::par_unseq

• hpx::parallel::execution::task

See the API reference of this module for more details.

2.8.34 executors_distributed

This module provides the executor hpx::parallel::execution::disribution_policy_executor. It
allows one to create work that is implicitly distributed over multiple localities.

See the API reference of this module for more details.

2.8.35 filesystem

This module provides a compatibility layer for the C++17 filesystem library. If the filesystem library is available this
module will simply forward its contents into the hpx::filesystem namespace. If the library is not available it
will fall back to Boost.Filesystem instead.

See the API reference of the module for more details.

274 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

2.8.36 format

The format module exposes the format and format_to functions for formatting strings.

See the API reference of the module for more details.

2.8.37 functional

This module provides function wrappers and helpers for managing functions and their arguments.

• hpx::util::function

• hpx::util::function_ref

• hpx::util::unique_function

• hpx::util::bind

• hpx::util::bind_back

• hpx::util::bind_front

• hpx::util::deferred_call

• hpx::util::invoke

• hpx::util::invoke_fused

• hpx::util::mem_fn

• hpx::util::one_shot

• hpx::util::protect

• hpx::util::result_of

See the API reference of the module for more details.

2.8.38 futures

This module defines the hpx::lcos::future and hpx:lcos::shared_future classes corresponding to
the C++ standard library classes std::future and std::shared_future. Note that the specializations of
hpx::lcos::future::then for executors and execution policies are defined in the execution module.

See the API reference of this module for more details.

2.8.39 hardware

The hardware module abstracts away hardware specific details of timestamps and CPU features.

See the API reference of the module for more details.

2.8. All modules 275

HPX Documentation, 1.5.1

2.8.40 hashing

The hashing module provides two hashing implementations:

• hpx::util::fibhash

• hpx::util::jenkins_hash

See the API reference of the module for more details.

2.8.41 include

This module provides no functionality in itself. Instead it provides headers that group together other headers that often
appear together. The grouping is similar to that provided by modules. We intend to deprecate these headers in favor
of hpx/<modulename>.hpp headers.

See the API reference of this module for more details.

2.8.42 init_runtime

TODO: High-level description of the library.

See the API reference of this module for more details.

2.8.43 io_service

This module provides an abstraction over Boost.ASIO, combining multiple boost::asio::io_services
into a single pool. hpx::util::io_service_pool provides a simple pool of
boost::asio::io_services with an API similar to boost::asio::io_service.
hpx::threads::detail::io_service_thread_pool` wraps hpx::util::io_service_pool
into an interface derived from hpx::threads::detail::thread_pool_base.

See the API reference of this module for more details.

2.8.44 iterator_support

This module provides helpers for iterators. It provides hpx::util::iterator_facade and
hpx::util::iterator_adaptor for creating new iterators, and the trait hpx::util::is_iterator
along with more specific iterator traits.

See the API reference of the module for more details.

2.8.45 itt_notify

This module provides support for profiling with Intel VTune211.

See the API reference of this module for more details.

211 https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

276 Chapter 2. What’s so special about HPX?

https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

HPX Documentation, 1.5.1

2.8.46 lcos_distributed

This module contains distributed LCOs. Currently the only LCO provided is :cpp:class::hpx::lcos::channel, a construct
for sending values from one locality to another. See lcos_local for local LCOs.

See the API reference of this module for more details.

2.8.47 lcos_local

This module provides the following local LCOs:

• hpx::lcos::local::and_gate

• hpx::lcos::local::channel

• hpx::lcos::local::one_element_channel

• hpx::lcos::local::receive_channel

• hpx::lcos::local::send_channel

• hpx::lcos::local::guard

• hpx::lcos::local::guard_set

• hpx::lcos::local::run_guarded

• hpx::lcos::local::conditional_trigger

• hpx::lcos::local::packaged_task

• hpx::lcos::local::promise

• hpx::lcos::local::receive_buffer

• hpx::lcos::local::trigger

See lcos_distributed for distributed LCOs. Basic synchronization primitives for use in HPX threads can be found in
synchronization. async_combinators contains useful utility functions for combining futures.

See the API reference of this module for more details.

2.8.48 logging

This module provides useful macros for logging information.

See the API reference of the module for more details.

2.8.49 memory

Part of this module is a forked version of boost::intrusive_ptr from Boost.SmartPtr.

See the API reference of the module for more details.

2.8. All modules 277

HPX Documentation, 1.5.1

2.8.50 mpi_base

This module provides helper functionality for detecting MPI environments.

See the API reference of this module for more details.

2.8.51 naming_base

This module provides a forward declaration of address_type, component_type and invalid_locality_id.

See the API reference of this module for more details.

2.8.52 pack_traversal

This module exposes the basic functionality for traversing various packs, both synchronously and asyn-
chronously: hpx::util::traverse_pack and hpx::util::traverse_pack_async. It also exposes
the higher level functionality of unwrapping nested futures: hpx::util::unwrap and its function object form
hpx::util::functional::unwrap.

See the API reference of this module for more details.

2.8.53 performance_counters

This module provides the basic functionality required for defining performance counters. See Performance counters
for more information about performance counters.

See the API reference of this module for more details.

2.8.54 plugin

This module provides base utilities for creating plugins.

See the API reference of the module for more details.

2.8.55 prefix

This module provides utilities for handling the prefix of an HPX application, i.e. the paths used for searching compo-
nents and plugins.

See the API reference of this module for more details.

2.8.56 preprocessor

This library contains useful preprocessor macros:

• HPX_PP_CAT

• HPX_PP_EXPAND

• HPX_PP_NARGS

• HPX_PP_STRINGIZE

• HPX_PP_STRIP_PARENS

278 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

See the API reference of the module for more details.

2.8.57 program_options

The module program_options is a direct fork of the Boost.ProgramOptions library (Boost V1.70.0). For more infor-
mation about this library please see here212. In order to be included as an HPX module, the Boost.ProgramOptions
library has been moved to the namespace hpx::program_options. We have also replaced all Boost facilities
the library depends on with either the equivalent facilities from the standard library or from HPX. As a result, the HPX
program_options module is fully interface compatible with Boost.ProgramOptions (sans the hpx namespace and the
#include <hpx/modules/program_options.hpp> changes that need to be applied to all code relying on
this library).

All credit goes to Vladimir Prus, the author of the excellent Boost.ProgramOptions library. All bugs have been intro-
duced by us.

See the API reference of the module for more details.

2.8.58 resiliency

In HPX, a program failure is a manifestation of a failing task. This module exposes several APIs that allow users to
manage failing tasks in a convenient way by either replaying a failed task or by replicating a specific task.

Task replay is analogous to the Checkpoint/Restart mechanism found in conventional execution models. The key
difference being localized fault detection. When the runtime detects an error, it replays the failing task as opposed to
completely rolling back the entire program to the previous checkpoint.

Task replication is designed to provide reliability enhancements by replicating a set of tasks and evaluating their results
to determine a consensus among them. This technique is most effective in situations where there are few tasks in the
critical path of the DAG which leaves the system underutilized or where hardware or software failures may result in
an incorrect result instead of an error. However, the drawback of this method is the additional computational cost
incurred by repeating a task multiple times.

The following API functions are exposed:

• hpx::resiliency::experimental::async_replay: This version of task replay will
catch user-defined exceptions and automatically reschedule the task N times before throwing an
hpx::resiliency::experimental::abort_replay_exception if no task is able to com-
plete execution without an exception.

• hpx::resiliency::experimental::async_replay_validate: This version of replay adds an
argument to async replay which receives a user-provided validation function to test the result of the task against.
If the task’s output is validated, the result is returned. If the output fails the check or an exception is thrown, the
task is replayed until no errors are encountered or the number of specified retries has been exceeded.

• hpx::resiliency::experimental::async_replicate: This is the most basic implementation of
the task replication. The API returns the first result that runs without detecting any errors.

• hpx::resiliency::experimental::async_replicate_validate: This API additionally takes
a validation function which evaluates the return values produced by the threads. The first task to compute a valid
result is returned.

• hpx::resiliency::experimental::async_replicate_vote: This API adds a vote function to
the basic replicate function. Many hardware or software failures are silent errors which do not interrupt program
flow. In order to detect errors of this kind, it is necessary to run the task several times and compare the values
returned by every version of the task. In order to determine which return value is “correct”, the API allows the

212 https://www.boost.org/doc/libs/1_70_0/doc/html/program_options.html

2.8. All modules 279

https://www.boost.org/doc/libs/1_70_0/doc/html/program_options.html

HPX Documentation, 1.5.1

user to provide a custom consensus function to properly form a consensus. This voting function then returns the
“correct”” answer.

• hpx::resiliency::experimental::async_replicate_vote_validate: This combines the
features of the previously discussed replicate set. Replicate vote validate allows a user to provide a validation
function to filter results. Additionally, as described in replicate vote, the user can provide a “voting function”
which returns the consensus formed by the voting logic.

• hpx::resiliency::experimental::dataflow_replay: This version of dataflow replay will
catch user-defined exceptions and automatically reschedules the task N times before throwing an
hpx::resiliency::experimental::abort_replay_exception if no task is able to complete
execution without an exception. Any arguments for the executed task that are futures will cause the task invoca-
tion to be delayed until all of those futures have become ready.

• hpx::resiliency::experimental::dataflow_replay_validate : This version of replay adds
an argument to dataflow replay which receives a user-provided validation function to test the result of the task
against. If the task’s output is validated, the result is returned. If the output fails the check or an exception
is thrown, the task is replayed until no errors are encountered or the number of specified retries have been
exceeded. Any arguments for the executed task that are futures will cause the task invocation to be delayed until
all of those futures have become ready.

• hpx::resiliency::experimental::dataflow_replicate: This is the most basic implementa-
tion of the task replication. The API returns the first result that runs without detecting any errors. Any arguments
for the executed task that are futures will cause the task invocation to be delayed until all of those futures have
become ready.

• hpx::resiliency::experimental::dataflow_replicate_validate: This API additionally
takes a validation function which evaluates the return values produced by the threads. The first task to compute
a valid result is returned. Any arguments for the executed task that are futures will cause the task invocation to
be delayed until all of those futures have become ready.

• hpx::resiliency::experimental::dataflow_replicate_vote: This API adds a vote func-
tion to the basic replicate function. Many hardware or software failures are silent errors which do not interrupt
program flow. In order to detect errors of this kind, it is necessary to run the task several times and compare
the values returned by every version of the task. In order to determine which return value is “correct”, the API
allows the user to provide a custom consensus function to properly form a consensus. This voting function then
returns the “correct” answer. Any arguments for the executed task that are futures will cause the task invocation
to be delayed until all of those futures have become ready.

• hpx::resiliency::experimental::dataflow_replicate_vote_validate: This combines
the features of the previously discussed replicate set. Replicate vote validate allows a user to provide a validation
function to filter results. Additionally, as described in replicate vote, the user can provide a “voting function”
which returns the consensus formed by the voting logic. Any arguments for the executed task that are futures
will cause the task invocation to be delayed until all of those futures have become ready.

See the API reference of the module for more details.

2.8.59 resource_partitioner

The resource_partitioner module defines hpx::resource::partitioner, the class used by the runtime and
users to partition available hardware resources into thread pools. See Using the resource partitioner for more details
on using the resource partitioner in applications.

See the API reference of this module for more details.

280 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

2.8.60 runtime_configuration

This module handles the configuration options required by the runtime.

See the API reference of this module for more details.

2.8.61 runtime_local

TODO: High-level description of the library.

See the API reference of this module for more details.

2.8.62 schedulers

This module provides schedulers used by thread pools in the thread_pools module. There are currently three main
schedulers:

• hpx::threads::policies::local_priority_queue_scheduler

• hpx::threads::policies::static_priority_queue_scheduler

• hpx::threads::policies::shared_priority_queue_scheduler

Other schedulers are specializations or variations of the above schedulers. See the examples of the resource_partitioner
module for examples of specifying a custom scheduler for a thread pool.

See the API reference of this module for more details.

2.8.63 segmented_algorithms

Segmented algorithms extend the usual parallel algorithms by providing overloads that work with distributed contain-
ers, such as partitioned vectors.

See the API reference of the module for more details.

2.8.64 serialization

This module provides serialization primitives and support for all built-in types as well as all C++ Standard Library
collection and utility types. This list is extended by HPX vocabulary types with proper support for global reference
counting. HPX’s mode of serialization is derived from Boost’s serialization model213 and, as such, is mostly interface
compatible with its Boost counterpart.

The purest form of serializing data is to copy the content of the payload bit by bit; however, this method is impractical
for generic C++ types, which might be composed of more than just regular built-in types. Instead, HPX’s approach to
serialization is derived from the Boost Serialization library, and is geared towards allowing the programmer of a given
class explicit control and syntax of what to serialize. It is based on operator overloading of two special archive types
that hold a buffer or stream to store the serialized data and is responsible for dispatching the serialization mechanism to
the intrusive or non-intrusive version. The serialization process is recursive. Each member that needs to be serialized
must be specified explicitly. The advantage of this approach is that the serialization code is written in C++ and
leverages all necessary programming techniques. The generic, user-facing interface allows for effective application of
the serialization process without obstructing the algorithms that need special code for packing and unpacking. It also
allows for optimizations in the implementation of the archives.

See the API reference of the module for more details.

213 https://www.boost.org/doc/libs/1_72_0/libs/serialization/doc/index.html

2.8. All modules 281

https://www.boost.org/doc/libs/1_72_0/libs/serialization/doc/index.html

HPX Documentation, 1.5.1

2.8.65 static_reinit

This module provides a simple wrapper around static variables that can be reinitialized.

See the API reference of this module for more details.

2.8.66 statistics

This module provide some statistics utilities like rolling min/max and histogram.

See the API reference of the module for more details.

2.8.67 string_util

This module contains string utilities inspired by the Boost string algorithms library.

See the API reference of this module for more details.

2.8.68 synchronization

This module provides synchronization primitives which should be used rather than the C++ standard ones in HPX
threads:

• hpx::lcos::local::barrier

• hpx::lcos::local::condition_variable

• hpx::lcos::local::counting_semaphore

• hpx::lcos::local::event

• hpx::lcos::local::latch

• hpx::lcos::local::mutex

• hpx::lcos::local::no_mutex

• hpx::lcos::local::once_flag

• hpx::lcos::local::recursive_mutex

• hpx::lcos::local::shared_mutex

• hpx::lcos::local::sliding_semaphore

• hpx::lcos::local::spinlock (std::mutex compatible spinlock)

• hpx::lcos::local::spinlock_no_backoff (boost::mutex compatible spinlock)

• hpx::lcos::local::spinlock_pool

See lcos_local, async_combinators, and async for higher level synchronization facilities.

See the API reference of this module for more details.

282 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

2.8.69 testing

The testing module contains useful macros for testing. The results of tests can be printed with
hpx::util::report_errors. The following macros are provided:

• HPX_TEST

• HPX_TEST_MSG

• HPX_TEST_EQ

• HPX_TEST_NEQ

• HPX_TEST_LT

• HPX_TEST_LTE

• HPX_TEST_RANGE

• HPX_TEST_EQ_MSG

• HPX_TEST_NEQ_MSG

• HPX_SANITY

• HPX_SANITY_MSG

• HPX_SANITY_EQ

• HPX_SANITY_NEQ

• HPX_SANITY_LT

• HPX_SANITY_LTE

• HPX_SANITY_RANGE

• HPX_SANITY_EQ_MSG

See the API reference of the module for more details.

2.8.70 thread_executors

This module provides executors implementing the executor interface proposed in N3562214. These executors are
deprecated.

See the API reference of this module for more details.

2.8.71 thread_pools

This module defines the thread pools and utilities used by the HPX runtime. The only thread pool implementation
provided by this module is hpx::threads::detail::scheduled_thread_pool, which is derived from
hpx::threads::detail::thread_pool_base defined in the threading_base module.

See the API reference of this module for more details.

214 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3562.pdf

2.8. All modules 283

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3562.pdf

HPX Documentation, 1.5.1

2.8.72 thread_support

This module provides miscellaneous utilities for threading and concurrency.

See the API reference of the module for more details.

2.8.73 threading

This module provides the equivalents of std::thread and std::jthread for lightweight HPX threads:

• hpx::thread

• hpx::jthread

See the API reference of this module for more details.

2.8.74 threading_base

This module contains the base class definition required for threads. The base class
hpx::threads::thread_data is inherited by two specializations for stackful and stackless threads:
hpx::threads::thread_data_stackful and hpx::threads::thread_data_stackless.
In addition, the module defines the base classes for schedulers and thread pools:
hpx::threads::policies::scheduler_base and hpx::threads::thread_pool_base.

See the API reference of this module for more details.

2.8.75 thread_manager

This module defines the hpx::threads::threadmanager class. This is used by the runtime to manage the
creation and destruction of thread pools. The resource_partitioner module handles the partitioning of resources into
thread pools, but not the creation of thread pools.

See the API reference of this module for more details.

2.8.76 timed_execution

This module provides extensions to the executor interfaces defined in the execution module that allow timed submis-
sion of tasks on thread pools (at or after a specified time).

See the API reference of this module for more details.

2.8.77 timing

This module provides the timing utilities (clocks and timers).

See the API reference of the module for more details.

284 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

2.8.78 topology

This module provides the class hpx::threads::topology which represents the hardware resources avail-
able on a node. The class is a light wrapper around the Portable Hardware Locality (HWLOC)215 library. The
hpx::threads::cpu_mask is a small companion class that represents a set of resources on a node.

See the API reference of the module for more details.

2.8.79 type_support

This module provides helper facilities related to types.

See the API reference of the module for more details.

2.8.80 util

The util module provides miscellaneous standalone utilities.

See the API reference of the module for more details.

2.8.81 version

This module macros and functions for accessing version information about HPX and its dependencies.

See the API reference of this module for more details.

2.9 API reference

HPX follows a versioning scheme with three numbers: major.minor.patch. We guarantee no breaking changes
in the API for patch releases. Minor releases may remove or break existing APIs, but only after a deprecation period
of at least two minor releases. In rare cases do we outright remove old and unused functionality without a deprecation
period.

We do not provide any ABI compatibility guarantees between any versions, debug and release builds, and builds with
different C++ standards.

The public API of HPX is presented below. Clicking on a name brings you to the full documentation for the class or
function. Including the header specified in a heading brings in the features listed under that heading.

Note: Names listed here are guaranteed stable with respect to semantic versioning. However, at the moment the list
is incomplete and certain unlisted features are intended to be in the public API. While we work on completing the list,
if you’re unsure about whether a particular unlisted name is part of the public API you can get into contact with us or
open an issue and we’ll clarify the situation.

215 https://www.open-mpi.org/projects/hwloc/

2.9. API reference 285

https://www.open-mpi.org/projects/hwloc/

HPX Documentation, 1.5.1

2.9.1 Public API

All names below are also available in the top-level hpx namespace unless otherwise noted. The names in hpx should
be preferred. The names in sub-namespaces will eventually be removed.

Header hpx/algorithm.hpp

Corresponds to the C++ standard library header algorithm216. See Using parallel algorithms for more information
about the parallel algorithms.

Classes

• hpx::parallel::v2::reduction

• hpx::parallel::v2::induction

Functions

• hpx::parallel::v1::adjacent_find

• hpx::all_of

• hpx::any_of

• hpx::copy

• hpx::copy_if

• hpx::copy_n

• hpx::count

• hpx::count_if

• hpx::equal

• hpx::fill

• hpx::fill_n

• hpx::find

• hpx::find_end

• hpx::find_first_of

• hpx::find_if

• hpx::find_if_not

• hpx::for_each

• hpx::for_each_n

• hpx::generate

• hpx::generate_n

• hpx::parallel::v1::includes

• hpx::parallel::v1::inplace_merge

216 http://en.cppreference.com/w/cpp/header/algorithm

286 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/header/algorithm

HPX Documentation, 1.5.1

• hpx::parallel::v1::is_heap

• hpx::parallel::v1::is_heap_until

• hpx::parallel::v1::is_partitioned

• hpx::parallel::v1::is_sorted

• hpx::parallel::v1::is_sorted_until

• hpx::parallel::v1::lexicographical_compare

• hpx::parallel::v1::max_element

• hpx::parallel::v1::merge

• hpx::parallel::v1::min_element

• hpx::parallel::v1::minmax_element

• hpx::parallel::v1::mismatch

• hpx::move

• hpx::none_of

• hpx::parallel::v1::partition

• hpx::parallel::v1::partition_copy

• hpx::parallel::v1::remove

• hpx::parallel::v1::remove_copy

• hpx::parallel::v1::remove_copy_if

• hpx::parallel::v1::remove_if

• hpx::parallel::v1::replace

• hpx::parallel::v1::replace_copy

• hpx::parallel::v1::replace_copy_if

• hpx::parallel::v1::replace_if

• hpx::parallel::v1::reverse

• hpx::parallel::v1::reverse_copy

• hpx::parallel::v1::rotate

• hpx::parallel::v1::rotate_copy

• hpx::parallel::v1::search

• hpx::parallel::v1::search_n

• hpx::parallel::v1::set_difference

• hpx::parallel::v1::set_intersection

• hpx::parallel::v1::set_symmetric_difference

• hpx::parallel::v1::set_union

• hpx::parallel::v1::sort

• hpx::parallel::v1::stable_partition

• hpx::parallel::v1::stable_sort

2.9. API reference 287

HPX Documentation, 1.5.1

• hpx::parallel::v1::swap_ranges

• hpx::parallel::v1::unique

• hpx::parallel::v1::unique_copy

• hpx::for_loop

• hpx::for_loop_strided

• hpx::for_loop_n

• hpx::for_loop_n_strided

• hpx::ranges::all_of

• hpx::ranges::any_of

• hpx::ranges::copy

• hpx::ranges::copy_if

• hpx::ranges::copy_n

• hpx::ranges::count

• hpx::ranges::count_if

• hpx::ranges::equal

• hpx::ranges::fill

• hpx::ranges::fill_n

• hpx::ranges::find

• hpx::ranges::find_end

• hpx::ranges::find_first_of

• hpx::ranges::find_if

• hpx::ranges::find_if_not

• hpx::ranges::for_each

• hpx::ranges::for_each_n

• hpx::ranges::generate

• hpx::ranges::generate_n

• hpx::ranges::move

• hpx::ranges::none_of

Header hpx/any.hpp

Corresponds to the C++ standard library header any217. hpx::util::any is compatible with std::any.

217 http://en.cppreference.com/w/cpp/header/any

288 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/header/any

HPX Documentation, 1.5.1

Classes

• hpx::util::any

• hpx::util::any_nonser

• hpx::util::bad_any_cast

• hpx::util::unique_any_nonser

Functions

• hpx::util::make_any

• hpx::util::make_any_nonser

• hpx::util::make_unique_any_nonser

Header hpx/assert.hpp

Corresponds to the C++ standard library header cassert218. HPX_ASSERT is the HPX equivalent to assert in
cassert. HPX_ASSERT can also be used in CUDA device code.

Macros

• HPX_ASSERT

• HPX_ASSERT_MSG

Header hpx/barrier.hpp

This header includes Header hpx/local/barrier.hpp and Header hpx/distributed/barrier.hpp.

Header hpx/local/barrier.hpp

Corresponds to the C++ standard library header barrier219.

Classes

• hpx::lcos::local::cpp20_barrier

218 http://en.cppreference.com/w/cpp/header/cassert
219 http://en.cppreference.com/w/cpp/header/barrier

2.9. API reference 289

http://en.cppreference.com/w/cpp/header/cassert
http://en.cppreference.com/w/cpp/header/barrier

HPX Documentation, 1.5.1

Header hpx/distributed/barrier.hpp

Contains a distributed barrier implementation. This functionality is also exposed through the hpx::distributed
namespace. The name in hpx::distributed should be preferred.

Classes

• hpx::lcos::barrier

Header hpx/channel.hpp

This header includes Header hpx/local/channel.hpp and Header hpx/distributed/channel.hpp.

Header hpx/local/channel.hpp

Contains a local channel implementation.

Classes

• hpx::lcos::local::channel

Header hpx/distributed/channel.hpp

Contains a distributed channel implementation. This functionality is also exposed through the hpx::distributed
namespace. The name in hpx::distributed should be preferred.

Classes

• hpx::lcos::channel

Header hpx/chrono.hpp

Corresponds to the C++ standard library header chrono220. The following replacements and extensions are provided
compared to chrono221. The classes below are also available in the hpx::chrono namespace, not in the top-level
hpx namespace.

220 http://en.cppreference.com/w/cpp/header/chrono
221 http://en.cppreference.com/w/cpp/header/chrono

290 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/header/chrono
http://en.cppreference.com/w/cpp/header/chrono

HPX Documentation, 1.5.1

Classes

• hpx::util::high_resolution_clock

• hpx::util::high_resolution_timer

• hpx::util::steady_time_point

Header hpx/condition_variable.hpp

Corresponds to the C++ standard library header condition_variable222.

Classes

• hpx::lcos::local::condition_variable

• hpx::lcos::local::condition_variable_any

• hpx::lcos::local::cv_status

Header hpx/exception.hpp

Corresponds to the C++ standard library header exception223. hpx::exception extends std::exception and
is the base class for all exceptions thrown in HPX. HPX_THROW_EXCEPTION can be used to throw HPX exceptions
with file and line information attached to the exception.

Macros

• HPX_THROW_EXCEPTION

Classes

• hpx::exception

Header hpx/execution.hpp

Corresponds to the C++ standard library header execution224. See High level parallel facilities, Using parallel al-
gorithms and Executor parameters and executor parameter traits for more information about execution policies and
executor parameters.

Note: These names are also available in the hpx::execution namespace, but not in the top-level hpx namespace.

222 http://en.cppreference.com/w/cpp/header/condition_variable
223 http://en.cppreference.com/w/cpp/header/exception
224 http://en.cppreference.com/w/cpp/header/execution

2.9. API reference 291

http://en.cppreference.com/w/cpp/header/condition_variable
http://en.cppreference.com/w/cpp/header/exception
http://en.cppreference.com/w/cpp/header/execution

HPX Documentation, 1.5.1

Constants

• hpx::parallel::execution::seq

• hpx::parallel::execution::par

• hpx::parallel::execution::par_unseq

• hpx::parallel::execution::task

Classes

• hpx::parallel::execution::sequenced_policy

• hpx::parallel::execution::parallel_policy

• hpx::parallel::execution::parallel_unsequenced_policy

• hpx::parallel::execution::sequenced_task_policy

• hpx::parallel::execution::parallel_task_policy

• hpx::parallel::execution::auto_chunk_size

• hpx::parallel::execution::dynamic_chunk_size

• hpx::parallel::execution::guided_chunk_size

• hpx::parallel::execution::persistent_auto_chunk_size

• hpx::parallel::execution::static_chunk_size

Header hpx/functional.hpp

Corresponds to the C++ standard library header functional225. hpx::util::function is a more efficient and
serializable replacement for std::function.

Constants

The following constants are also available in hpx::placeholders, not the top-level hpx namespace.

• hpx::util::placeholders::_1

• hpx::util::placeholders::_2

• . . .

• hpx::util::placeholders::_9

225 http://en.cppreference.com/w/cpp/header/functional

292 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/header/functional

HPX Documentation, 1.5.1

Classes

• hpx::util::function

• hpx::util::function_nonser

• hpx::util::function_ref

• hpx::util::unique_function

• hpx::util::unique_function_nonser

• hpx::traits::is_bind_expression

• hpx::traits::is_placeholder

Functions

• hpx::util::bind

• hpx::util::bind_back

• hpx::util::bind_front

• hpx::util::invoke

• hpx::util::invoke_fused

• hpx::util::mem_fn

Header hpx/future.hpp

This header includes Header hpx/local/future.hpp and Header hpx/distributed/future.hpp.

Header hpx/local/future.hpp

Corresponds to the C++ standard library header future226. See Extended facilities for futures for more information
about extensions to futures compared to the C++ standard library.

Note: All names except hpx::lcos::local::promise are also available in the top-level hpx namespace.
hpx::promise refers to hpx::lcos::promise, a distributed variant of hpx::lcos::local::promise,
but will eventually refer to hpx::lcos::local::promise after a deprecation period.

Classes

• hpx::lcos::future

• hpx::lcos::shared_future

• hpx::lcos::local::promise

• hpx::launch

226 http://en.cppreference.com/w/cpp/header/future

2.9. API reference 293

http://en.cppreference.com/w/cpp/header/future

HPX Documentation, 1.5.1

Functions

• hpx::lcos::make_future

• hpx::lcos::make_shared_future

• hpx::lcos::make_ready_future

• hpx::async

• hpx::apply

• hpx::sync

• hpx::dataflow

• hpx::when_all

• hpx::when_any

• hpx::when_some

• hpx::when_each

• hpx::wait_all

• hpx::wait_any

• hpx::wait_some

• hpx::wait_each

Examples

#include <hpx/assert.hpp>
#include <hpx/future.hpp>
#include <hpx/hpx_main.hpp>
#include <hpx/tuple.hpp>

#include <iostream>
#include <utility>

int main()
{

// Asynchronous execution with futures
hpx::future<void> f1 = hpx::async(hpx::launch::async, []() {});
hpx::shared_future<int> f2 =

hpx::async(hpx::launch::async, []() { return 42; });
hpx::future<int> f3 =

f2.then([](hpx::shared_future<int>&& f) { return f.get() * 3; });

hpx::lcos::local::promise<double> p;
auto f4 = p.get_future();
HPX_ASSERT(!f4.is_ready());
p.set_value(123.45);
HPX_ASSERT(f4.is_ready());

hpx::packaged_task<int()> t([]() { return 43; });
hpx::future<int> f5 = t.get_future();
HPX_ASSERT(!f5.is_ready());
t();

(continues on next page)

294 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

HPX_ASSERT(f5.is_ready());

// Fire-and-forget
hpx::apply([]() {

std::cout << "This will be printed later\n" << std::flush;
});

// Synchronous execution
hpx::sync([]() {

std::cout << "This will be printed immediately\n" << std::flush;
});

// Combinators
hpx::future<double> f6 = hpx::async([]() { return 3.14; });
hpx::future<double> f7 = hpx::async([]() { return 42.0; });
std::cout

<< hpx::when_all(f6, f7)
.then([](hpx::future<

hpx::tuple<hpx::future<double>, hpx::future<double>>>
f) {

hpx::tuple<hpx::future<double>, hpx::future<double>> t =
f.get();

double pi = hpx::get<0>(t).get();
double r = hpx::get<1>(t).get();
return pi * r * r;

})
.get()

<< std::endl;

// Easier continuations with dataflow; it waits for all future or
// shared_future arguments before executing the continuation, and also
// accepts non-future arguments
hpx::future<double> f8 = hpx::async([]() { return 3.14; });
hpx::future<double> f9 = hpx::make_ready_future(42.0);
hpx::shared_future<double> f10 = hpx::async([]() { return 123.45; });
hpx::future<hpx::tuple<double, double>> f11 = hpx::dataflow(

[](hpx::future<double> a, hpx::future<double> b,
hpx::shared_future<double> c, double d) {
return hpx::make_tuple<>(a.get() + b.get(), c.get() / d);

},
f8, f9, f10, -3.9);

// split_future gives a tuple of futures from a future of tuple
hpx::tuple<hpx::future<double>, hpx::future<double>> f12 =

hpx::split_future(std::move(f11));
std::cout << hpx::get<1>(f12).get() << std::endl;

return 0;
}

2.9. API reference 295

HPX Documentation, 1.5.1

Header hpx/distributed/future.hpp

Contains overloads of hpx::async, hpx::apply , hpx::sync, and hpx::dataflow that can be used with
actions. See Action invocation for more information about invoking actions.

Note: The alias from hpx::promise to hpx::lcos::promise is deprecated and will be removed in a future
release. The alias hpx::distributed::promise should be used in new applications.

Classes

• hpx::lcos::promise

Functions

• hpx::async

• hpx::apply

• hpx::sync

• hpx::dataflow

Header hpx/init.hpp

This header contains functionality for starting, stopping, suspending, and resuming the HPX runtime. This is the main
way to explicitly start the HPX runtime. See Starting the HPX runtime for more details on starting the HPX runtime.

Classes

• hpx::init_params

• hpx::runtime_mode

Functions

• hpx::init

• hpx::start

• hpx::finalize

• hpx::disconnect

• hpx::suspend

• hpx::resume

296 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/latch.hpp

This header includes Header hpx/local/latch.hpp and Header hpx/distributed/latch.hpp.

Header hpx/local/latch.hpp

Corresponds to the C++ standard library header latch227.

Classes

• hpx::lcos::local::cpp20_latch

Header hpx/distributed/latch.hpp

Contains a distributed latch implementation. This functionality is also exposed through the hpx::distributed
namespace. The name in hpx::distributed should be preferred.

Classes

• hpx::lcos::latch

Header hpx/mutex.hpp

Corresponds to the C++ standard library header mutex228.

Classes

• hpx::lcos::local::mutex

• hpx::lcos::local::no_mutex

• hpx::lcos::local::once_flag

• hpx::lcos::local::recursive_mutex

• hpx::lcos::local::spinlock

• hpx::lcos::local::timed_mutex

• hpx::lcos::local::unlock_guard

227 http://en.cppreference.com/w/cpp/header/latch
228 http://en.cppreference.com/w/cpp/header/mutex

2.9. API reference 297

http://en.cppreference.com/w/cpp/header/latch
http://en.cppreference.com/w/cpp/header/mutex

HPX Documentation, 1.5.1

Functions

• hpx::lcos::local::call_once

Header hpx/memory.hpp

Corresponds to the C++ standard library header memory229. It contains parallel versions of the copy, fill, move,
and construct helper functions in memory230. See Using parallel algorithms for more information about the parallel
algorithms.

Functions

• hpx::parallel::v1::uninitialized_copy

• hpx::parallel::v1::uninitialized_copy_n

• hpx::parallel::v1::uninitialized_default_construct

• hpx::parallel::v1::uninitialized_default_construct_n

• hpx::parallel::v1::uninitialized_fill

• hpx::parallel::v1::uninitialized_fill_n

• hpx::parallel::v1::uninitialized_move

• hpx::parallel::v1::uninitialized_move_n

• hpx::parallel::v1::uninitialized_value_construct

• hpx::parallel::v1::uninitialized_value_construct_n

Header hpx/numeric.hpp

Corresponds to the C++ standard library header numeric231. See Using parallel algorithms for more information about
the parallel algorithms.

Functions

• hpx::parallel::v1::adjacent_difference

• hpx::parallel::v1::exclusive_scan

• hpx::parallel::v1::inclusive_scan

• hpx::reduce

• hpx::parallel::v1::transform_exclusive_scan

• hpx::parallel::v1::transform_inclusive_scan

• hpx::transform_reduce

229 http://en.cppreference.com/w/cpp/header/memory
230 http://en.cppreference.com/w/cpp/header/memory
231 http://en.cppreference.com/w/cpp/header/numeric

298 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/header/memory
http://en.cppreference.com/w/cpp/header/memory
http://en.cppreference.com/w/cpp/header/numeric

HPX Documentation, 1.5.1

Header hpx/optional.hpp

Corresponds to the C++ standard library header optional232. hpx::util::optional is compatible with
std::optional.

Constants

• hpx::util::nullopt

Classes

• hpx::util::optional

• hpx::util::nullopt_t

• hpx::util::bad_optional_access

Functions

• hpx::util::make_optional

Header hpx/runtime.hpp

This header includes Header hpx/local/runtime.hpp and Header hpx/distributed/runtime.hpp.

Header hpx/local/runtime.hpp

This header contains functions for accessing local runtime information.

Typedefs

• hpx::startup_function_type

• hpx::shutdown_function_type

Functions

• hpx::get_num_worker_threads

• hpx::get_worker_thread_num

• hpx::get_thread_name

• hpx::register_pre_startup_function

• hpx::register_startup_function

• hpx::register_pre_shutdown_function

• hpx::register_shutdown_function

232 http://en.cppreference.com/w/cpp/header/optional

2.9. API reference 299

http://en.cppreference.com/w/cpp/header/optional

HPX Documentation, 1.5.1

• hpx::get_num_localities

• hpx::get_locality_name

Header hpx/distributed/runtime.hpp

This header contains functions for accessing distributed runtime information.

Functions

• hpx::find_root_locality

• hpx::find_all_localities

• hpx::find_remote_localities

• hpx::find_locality

• hpx::get_colocation_id

• hpx::get_locality_id

Header hpx/system_error.hpp

Corresponds to the C++ standard library header system_error233.

Classes

• hpx::error_code

Header hpx/task_block.hpp

Corresponds to the task_block feature in N4411234. See Using task blocks for more details on using task blocks.

Classes

• hpx::parallel::v2::task_canceled_exception

• hpx::parallel::v2::task_block

233 http://en.cppreference.com/w/cpp/header/system_error
234 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf

300 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/header/system_error
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf

HPX Documentation, 1.5.1

Functions

• hpx::parallel::v2::define_task_block

• hpx::parallel::v2::define_task_block_restore_thread

Header hpx/thread.hpp

Corresponds to the C++ standard library header thread235. The functionality in this header is equivalent to the standard
library thread functionality, with the exception that the HPX equivalents are implemented on top of lightweight threads
and the HPX runtime.

Classes

• hpx::thread

• hpx::jthread

Functions

• hpx::this_thread::yield

• hpx::this_thread::get_id

• hpx::this_thread::sleep_for

• hpx::this_thread::sleep_until

Header hpx/semaphore.hpp

Corresponds to the C++ standard library header semaphore236.

Classes

• hpx::lcos::local::cpp20_binary_semaphore

• hpx::lcos::local::cpp20_counting_semaphore

Header hpx/shared_mutex.hpp

Corresponds to the C++ standard library header shared_mutex237.

235 http://en.cppreference.com/w/cpp/header/thread
236 http://en.cppreference.com/w/cpp/header/semaphore
237 http://en.cppreference.com/w/cpp/header/shared_mutex

2.9. API reference 301

http://en.cppreference.com/w/cpp/header/thread
http://en.cppreference.com/w/cpp/header/semaphore
http://en.cppreference.com/w/cpp/header/shared_mutex

HPX Documentation, 1.5.1

Classes

• hpx::lcos::local::shared_mutex

Header hpx/stop_token.hpp

Corresponds to the C++ standard library header stop_token238.

Constants

• hpx::nostopstate

Classes

• hpx::stop_callback

• hpx::stop_source

• hpx::stop_token

• hpx::nostopstate_t

Header hpx/tuple.hpp

Corresponds to the C++ standard library header tuple239. hpx::util::tuple can be used in CUDA device code,
unlike std::tuple.

Constants

• hpx::util::ignore

Classes

• hpx::util::tuple

• hpx::util::tuple_size

• hpx::util::tuple_element

238 http://en.cppreference.com/w/cpp/header/stop_token
239 http://en.cppreference.com/w/cpp/header/tuple

302 Chapter 2. What’s so special about HPX?

http://en.cppreference.com/w/cpp/header/stop_token
http://en.cppreference.com/w/cpp/header/tuple

HPX Documentation, 1.5.1

Functions

• hpx::util::make_tuple

• hpx::util::tie

• hpx::util::forward_as_tuple

• hpx::util::tuple_cat

• hpx::util::get

Header hpx/type_traits.hpp

Corresponds to the C++ standard library header type_traits240. Provides hpx::util::invoke_result as a
replacement for std::invoke_result.

Classes

• hpx::util::invoke_result

Header hpx/version.hpp

This header provides version information about HPX.

Macros

• HPX_VERSION_MAJOR

• HPX_VERSION_MINOR

• HPX_VERSION_SUBMINOR

• HPX_VERSION_FULL

• HPX_VERSION_DATE

• HPX_VERSION_TAG

• HPX_AGAS_VERSION

Functions

• hpx::major_version

• hpx::minor_version

• hpx::subminor_version

• hpx::full_version

• hpx::full_version_as_string

• hpx::tag

• hpx::agas_version

240 http://en.cppreference.com/w/cpp/header/type_traits

2.9. API reference 303

http://en.cppreference.com/w/cpp/header/type_traits

HPX Documentation, 1.5.1

• hpx::build_type

• hpx::build_date_time

Header hpx/wrap_main.hpp

This header does not provide any direct functionality but is used for implicitly using main as the runtime entry point.
See Re-use the main() function as the main HPX entry point for more details on implicitly starting the HPX runtime.

2.9.2 Full API

The full API of HPX is presented below. The listings for the public API above refer to the full documentation below.

Note: Most names listed in the full API reference are implementation details or considered unstable. They are listed
mostly for completeness. If there is a particular feature you think deserves being in the public API we may consider
promoting it. In general we prioritize making sure features corresponding to C++ standard library features are stable
and complete.

Main HPX library

This lists functionality in the main HPX library that has not been moved to modules yet.

template<typename Action>
struct async_result

#include <colocating_distribution_policy.hpp>

Note This function is part of the invocation policy implemented by this class

Public Types

template<>
using type = hpx::future<typename traits::promise_local_result<typename hpx::traits::extract_action<Action>::remote_result_type>::type>

template<typename Action>
struct async_result

#include <default_distribution_policy.hpp>

Note This function is part of the invocation policy implemented by this class

Public Types

template<>
using type = hpx::future<typename traits::promise_local_result<typename hpx::traits::extract_action<Action>::remote_result_type>::type>

struct binpacking_distribution_policy
#include <binpacking_distribution_policy.hpp> This class specifies the parameters for a binpacking distribution
policy to use for creating a given number of items on a given set of localities. The binpacking policy will
distribute the new objects in a way such that each of the localities will equalize the number of overall objects of
this type based on a given criteria (by default this criteria is the overall number of objects of this type).

304 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

binpacking_distribution_policy()
Default-construct a new instance of a binpacking_distribution_policy. This policy will represent one lo-
cality (the local locality).

binpacking_distribution_policy operator()(std::vector<id_type> const &locs,
char const *perf_counter_name = de-
fault_binpacking_counter_name) const

Create a new default_distribution policy representing the given set of localities.

Parameters

• locs: [in] The list of localities the new instance should represent

• perf_counter_name: [in] The name of the performance counter which should be used as the
distribution criteria (by default the overall number of existing instances of the given component
type will be used).

binpacking_distribution_policy operator()(std::vector<id_type> &&locs, char
const *perf_counter_name = de-
fault_binpacking_counter_name) const

Create a new default_distribution policy representing the given set of localities.

Parameters

• locs: [in] The list of localities the new instance should represent

• perf_counter_name: [in] The name of the performance counter which should be used as the
distribution criteria (by default the overall number of existing instances of the given component
type will be used).

binpacking_distribution_policy operator()(id_type const &loc, char const *perf_counter_name
= default_binpacking_counter_name) const

Create a new default_distribution policy representing the given locality

Parameters

• loc: [in] The locality the new instance should represent

• perf_counter_name: [in] The name of the performance counter which should be used as the
distribution criteria (by default the overall number of existing instances of the given component
type will be used).

template<typename Component, typename ...Ts>
hpx::future<hpx::id_type> create(Ts&&... vs) const

Create one object on one of the localities associated by this policy instance

Return A future holding the global address which represents the newly created object

Parameters

• vs: [in] The arguments which will be forwarded to the constructor of the new object.

template<typename Component, typename ...Ts>
hpx::future<std::vector<bulk_locality_result>> bulk_create(std::size_t count, Ts&&... vs) const

Create multiple objects on the localities associated by this policy instance

2.9. API reference 305

HPX Documentation, 1.5.1

Return A future holding the list of global addresses which represent the newly created objects

Parameters

• count: [in] The number of objects to create

• vs: [in] The arguments which will be forwarded to the constructors of the new objects.

std::string const &get_counter_name() const
Returns the name of the performance counter associated with this policy instance.

std::size_t get_num_localities() const
Returns the number of associated localities for this distribution policy

Note This function is part of the creation policy implemented by this class

struct colocating_distribution_policy
#include <colocating_distribution_policy.hpp> This class specifies the parameters for a distribution policy to
use for creating a given number of items on the locality where a given object is currently placed.

Public Functions

colocating_distribution_policy()
Default-construct a new instance of a colocating_distribution_policy. This policy will represent the local
locality.

colocating_distribution_policy operator()(id_type const &id) const
Create a new colocating_distribution_policy representing the locality where the given object os current
located

Parameters

• id: [in] The global address of the object with which the new instances should be colocated on

template<typename Client, typename Stub>
colocating_distribution_policy operator()(client_base<Client, Stub> const &client) const

Create a new colocating_distribution_policy representing the locality where the given object os current
located

Parameters

• client: [in] The client side representation of the object with which the new instances should
be colocated on

template<typename Component, typename ...Ts>
hpx::future<hpx::id_type> create(Ts&&... vs) const

Create one object on the locality of the object this distribution policy instance is associated with

Note This function is part of the placement policy implemented by this class

Return A future holding the global address which represents the newly created object

Parameters

• vs: [in] The arguments which will be forwarded to the constructor of the new object.

template<typename Component, typename ...Ts>

306 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

hpx::future<std::vector<bulk_locality_result>> bulk_create(std::size_t count, Ts&&... vs) const
Create multiple objects colocated with the object represented by this policy instance

Note This function is part of the placement policy implemented by this class

Return A future holding the list of global addresses which represent the newly created objects

Parameters

• count: [in] The number of objects to create

• vs: [in] The arguments which will be forwarded to the constructors of the new objects.

template<typename Action, typename ...Ts>
async_result<Action>::type async(launch policy, Ts&&... vs) const

template<typename Action, typename Callback, typename ...Ts>
async_result<Action>::type async_cb(launch policy, Callback &&cb, Ts&&... vs) const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename Continuation, typename ...Ts>
bool apply(Continuation &&c, threads::thread_priority priority, Ts&&... vs) const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename ...Ts>
bool apply(threads::thread_priority priority, Ts&&... vs) const

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
bool apply_cb(Continuation &&c, threads::thread_priority priority, Callback &&cb, Ts&&... vs)

const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename Callback, typename ...Ts>
bool apply_cb(threads::thread_priority priority, Callback &&cb, Ts&&... vs) const

std::size_t get_num_localities() const
Returns the number of associated localities for this distribution policy

Note This function is part of the creation policy implemented by this class

hpx::id_type get_next_target() const
Returns the locality which is anticipated to be used for the next async operation

struct default_distribution_policy
#include <default_distribution_policy.hpp> This class specifies the parameters for a simple distribution policy
to use for creating (and evenly distributing) a given number of items on a given set of localities.

2.9. API reference 307

HPX Documentation, 1.5.1

Public Functions

default_distribution_policy()
Default-construct a new instance of a default_distribution_policy. This policy will represent one locality
(the local locality).

default_distribution_policy operator()(std::vector<id_type> const &locs) const
Create a new default_distribution policy representing the given set of localities.

Parameters

• locs: [in] The list of localities the new instance should represent

default_distribution_policy operator()(std::vector<id_type> &&locs) const
Create a new default_distribution policy representing the given set of localities.

Parameters

• locs: [in] The list of localities the new instance should represent

default_distribution_policy operator()(id_type const &loc) const
Create a new default_distribution policy representing the given locality

Parameters

• loc: [in] The locality the new instance should represent

template<typename Component, typename ...Ts>
hpx::future<hpx::id_type> create(Ts&&... vs) const

Create one object on one of the localities associated by this policy instance

Note This function is part of the placement policy implemented by this class

Return A future holding the global address which represents the newly created object

Parameters

• vs: [in] The arguments which will be forwarded to the constructor of the new object.

template<typename Component, typename ...Ts>
hpx::future<std::vector<bulk_locality_result>> bulk_create(std::size_t count, Ts&&... vs) const

Create multiple objects on the localities associated by this policy instance

Note This function is part of the placement policy implemented by this class

Return A future holding the list of global addresses which represent the newly created objects

Parameters

• count: [in] The number of objects to create

• vs: [in] The arguments which will be forwarded to the constructors of the new objects.

template<typename Action, typename ...Ts>
async_result<Action>::type async(launch policy, Ts&&... vs) const

template<typename Action, typename Callback, typename ...Ts>
async_result<Action>::type async_cb(launch policy, Callback &&cb, Ts&&... vs) const

308 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename Continuation, typename ...Ts>
bool apply(Continuation &&c, threads::thread_priority priority, Ts&&... vs) const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename ...Ts>
bool apply(threads::thread_priority priority, Ts&&... vs) const

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
bool apply_cb(Continuation &&c, threads::thread_priority priority, Callback &&cb, Ts&&... vs)

const

Note This function is part of the invocation policy implemented by this class

template<typename Action, typename Callback, typename ...Ts>
bool apply_cb(threads::thread_priority priority, Callback &&cb, Ts&&... vs) const

std::size_t get_num_localities() const
Returns the number of associated localities for this distribution policy

Note This function is part of the creation policy implemented by this class

hpx::id_type get_next_target() const
Returns the locality which is anticipated to be used for the next async operation

namespace hpx

Functions

std::vector<Client> find_all_from_basename(std::string base_name, std::size_t num_ids)
Return all registered ids from all localities from the given base name.

This function locates all ids which were registered with the given base name. It returns a list of futures
representing those ids.

Return all registered clients from all localities from the given base name.

Return A list of futures representing the ids which were registered using the given base name.

Note The futures will become ready even if the event (for instance, binding the name to an id) has already
happened in the past. This is important in order to reliably retrieve ids from a name, even if the name
was already registered.

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• num_ids: [in] The number of registered ids to expect.

This function locates all ids which were registered with the given base name. It returns a list of futures
representing those ids.

Return A list of futures representing the ids which were registered using the given base name.

Note The futures embedded in the returned client objects will become ready even if the event (for instance,
binding the name to an id) has already happened in the past. This is important in order to reliably
retrieve ids from a name, even if the name was already registered.

Template Parameters

2.9. API reference 309

HPX Documentation, 1.5.1

• Client: The client type to return

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• num_ids: [in] The number of registered ids to expect.

std::vector<Client> find_from_basename(std::string base_name, std::vector<std::size_t> const
&ids)

Return registered ids from the given base name and sequence numbers.

This function locates the ids which were registered with the given base name and the given sequence
numbers. It returns a list of futures representing those ids.

Return registered clients from the given base name and sequence numbers.

Return A list of futures representing the ids which were registered using the given base name and se-
quence numbers.

Note The futures will become ready even if the event (for instance, binding the name to an id) has already
happened in the past. This is important in order to reliably retrieve ids from a name, even if the name
was already registered.

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• ids: [in] The sequence numbers of the registered ids.

This function locates the ids which were registered with the given base name and the given sequence
numbers. It returns a list of futures representing those ids.

Return A list of futures representing the ids which were registered using the given base name and se-
quence numbers.

Note The futures embedded in the returned client objects will become ready even if the event (for instance,
binding the name to an id) has already happened in the past. This is important in order to reliably
retrieve ids from a name, even if the name was already registered.

Template Parameters

• Client: The client type to return

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• ids: [in] The sequence numbers of the registered ids.

Client find_from_basename(std::string base_name, std::size_t sequence_nr =
~static_cast<std::size_t>(0))

Return registered id from the given base name and sequence number.

This function locates the id which was registered with the given base name and the given sequence number.
It returns a future representing those id.

This function locates the id which was registered with the given base name and the given sequence number.
It returns a future representing those id.

Return A representing the id which was registered using the given base name and sequence numbers.

310 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note The future will become ready even if the event (for instance, binding the name to an id) has already
happened in the past. This is important in order to reliably retrieve ids from a name, even if the name
was already registered.

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• sequence_nr: [in] The sequence number of the registered id.

Return A representing the id which was registered using the given base name and sequence numbers.

Note The future embedded in the returned client object will become ready even if the event (for instance,
binding the name to an id) has already happened in the past. This is important in order to reliably
retrieve ids from a name, even if the name was already registered.

Template Parameters

• Client: The client type to return

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• sequence_nr: [in] The sequence number of the registered id.

hpx::future<bool> register_with_basename(std::string base_name, hpx::id_type id, std::size_t
sequence_nr = ~static_cast<std::size_t>(0))

Register the given id using the given base name.

The function registers the given ids using the provided base name.

Return A future representing the result of the registration operation itself.

Note The operation will fail if the given sequence number is not unique.

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• id: [in] The id to register using the given base name.

• sequence_nr: [in, optional] The sequential number to use for the registration of the id. This
number has to be unique system wide for each registration using the same base name. The default
is the current locality identifier. Also, the sequence numbers have to be consecutive starting from
zero.

hpx::future<bool> register_with_basename(std::string base_name, hpx::future<hpx::id_type>
f, std::size_t sequence_nr =
~static_cast<std::size_t>(0))

Register the id wrapped in the given future using the given base name.

The function registers the object the given future refers to using the provided base name.

Return A future representing the result of the registration operation itself.

Note The operation will fail if the given sequence number is not unique.

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• f: [in] The future which should be registered using the given base name.

2.9. API reference 311

HPX Documentation, 1.5.1

• sequence_nr: [in, optional] The sequential number to use for the registration of the id. This
number has to be unique system wide for each registration using the same base name. The default
is the current locality identifier. Also, the sequence numbers have to be consecutive starting from
zero.

template<typename Client, typename Stub>
hpx::future<bool> register_with_basename(std::string base_name, compo-

nents::client_base<Client, Stub> &client, std::size_t
sequence_nr = ~static_cast<std::size_t>(0))

Register the id wrapped in the given client using the given base name.

The function registers the object the given client refers to using the provided base name.

Return A future representing the result of the registration operation itself.

Note The operation will fail if the given sequence number is not unique.

Template Parameters

• Client: The client type to register

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• client: [in] The client which should be registered using the given base name.

• sequence_nr: [in, optional] The sequential number to use for the registration of the id. This
number has to be unique system wide for each registration using the same base name. The default
is the current locality identifier. Also, the sequence numbers have to be consecutive starting from
zero.

Client unregister_with_basename(std::string base_name, std::size_t sequence_nr =
~static_cast<std::size_t>(0))

Unregister the given id using the given base name.

The function unregisters the given ids using the provided base name.

Unregister the given base name.

Return A future representing the result of the un-registration operation itself.

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• sequence_nr: [in, optional] The sequential number to use for the un-registration. This number
has to be the same as has been used with register_with_basename before.

The function unregisters the given ids using the provided base name.

Return A future representing the result of the un-registration operation itself.

Template Parameters

• Client: The client type to return

Parameters

• base_name: [in] The base name for which to retrieve the registered ids.

• sequence_nr: [in, optional] The sequential number to use for the un-registration. This number
has to be the same as has been used with register_with_basename before.

312 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

naming::id_type find_here(error_code &ec = throws)
Return the global id representing this locality.

The function find_here() can be used to retrieve the global id usable to refer to the current locality.

Note Generally, the id of a locality can be used for instance to create new instances of components and to
invoke plain actions (global functions).

Return The global id representing the locality this function has been called on.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note This function will return meaningful results only if called from an HPX-thread. It will return
hpx::naming::invalid_id otherwise.

See hpx::find_all_localities(), hpx::find_locality()

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

naming::id_type find_root_locality(error_code &ec = throws)
Return the global id representing the root locality.

The function find_root_locality() can be used to retrieve the global id usable to refer to the root locality.
The root locality is the locality where the main AGAS service is hosted.

Note Generally, the id of a locality can be used for instance to create new instances of components and to
invoke plain actions (global functions).

Return The global id representing the root locality for this application.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note This function will return meaningful results only if called from an HPX-thread. It will return
hpx::naming::invalid_id otherwise.

See hpx::find_all_localities(), hpx::find_locality()

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

std::vector<naming::id_type> find_all_localities(error_code &ec = throws)
Return the list of global ids representing all localities available to this application.

The function find_all_localities() can be used to retrieve the global ids of all localities currently available
to this application.

Note Generally, the id of a locality can be used for instance to create new instances of components and to
invoke plain actions (global functions).

Return The global ids representing the localities currently available to this application.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

2.9. API reference 313

HPX Documentation, 1.5.1

Note This function will return meaningful results only if called from an HPX-thread. It will return an
empty vector otherwise.

See hpx::find_here(), hpx::find_locality()

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

std::vector<naming::id_type> find_all_localities(components::component_type type, er-
ror_code &ec = throws)

Return the list of global ids representing all localities available to this application which support the given
component type.

The function find_all_localities() can be used to retrieve the global ids of all localities currently available
to this application which support the creation of instances of the given component type.

Note Generally, the id of a locality can be used for instance to create new instances of components and to
invoke plain actions (global functions).

Return The global ids representing the localities currently available to this application which support the
creation of instances of the given component type. If no localities supporting the given component
type are currently available, this function will return an empty vector.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note This function will return meaningful results only if called from an HPX-thread. It will return an
empty vector otherwise.

See hpx::find_here(), hpx::find_locality()

Parameters

• type: [in] The type of the components for which the function should return the available locali-
ties.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

std::vector<naming::id_type> find_remote_localities(error_code &ec = throws)
Return the list of locality ids of remote localities supporting the given component type. By default this
function will return the list of all remote localities (all but the current locality).

The function find_remote_localities() can be used to retrieve the global ids of all remote localities currently
available to this application (i.e. all localities except the current one).

Note Generally, the id of a locality can be used for instance to create new instances of components and to
invoke plain actions (global functions).

Return The global ids representing the remote localities currently available to this application.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note This function will return meaningful results only if called from an HPX-thread. It will return an
empty vector otherwise.

See hpx::find_here(), hpx::find_locality()

Parameters

314 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

std::vector<naming::id_type> find_remote_localities(components::component_type type, er-
ror_code &ec = throws)

Return the list of locality ids of remote localities supporting the given component type. By default this
function will return the list of all remote localities (all but the current locality).

The function find_remote_localities() can be used to retrieve the global ids of all remote localities cur-
rently available to this application (i.e. all localities except the current one) which support the creation of
instances of the given component type.

Note Generally, the id of a locality can be used for instance to create new instances of components and to
invoke plain actions (global functions).

Return The global ids representing the remote localities currently available to this application.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note This function will return meaningful results only if called from an HPX-thread. It will return an
empty vector otherwise.

See hpx::find_here(), hpx::find_locality()

Parameters

• type: [in] The type of the components for which the function should return the available remote
localities.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

naming::id_type find_locality(components::component_type type, error_code &ec = throws)
Return the global id representing an arbitrary locality which supports the given component type.

The function find_locality() can be used to retrieve the global id of an arbitrary locality currently available
to this application which supports the creation of instances of the given component type.

Note Generally, the id of a locality can be used for instance to create new instances of components and to
invoke plain actions (global functions).

Return The global id representing an arbitrary locality currently available to this application which sup-
ports the creation of instances of the given component type. If no locality supporting the given com-
ponent type is currently available, this function will return hpx::naming::invalid_id.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note This function will return meaningful results only if called from an HPX-thread. It will return
hpx::naming::invalid_id otherwise.

See hpx::find_here(), hpx::find_all_localities()

Parameters

• type: [in] The type of the components for which the function should return any available locality.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

2.9. API reference 315

HPX Documentation, 1.5.1

naming::id_type get_colocation_id(launch::sync_policy, naming::id_type const &id, er-
ror_code &ec = throws)

Return the id of the locality where the object referenced by the given id is currently located on.

The function hpx::get_colocation_id() returns the id of the locality where the given object is currently
located.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

See hpx::get_colocation_id()

Parameters

• id: [in] The id of the object to locate.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

lcos::future<naming::id_type> get_colocation_id(naming::id_type const &id)
Asynchronously return the id of the locality where the object referenced by the given id is currently located
on.

See hpx::get_colocation_id(launch::sync_policy)

Parameters

• id: [in] The id of the object to locate.

template<typename Component>
hpx::future<std::shared_ptr<Component>> get_ptr(naming::id_type const &id)

Returns a future referring to the pointer to the underlying memory of a component.

The function hpx::get_ptr can be used to extract a future referring to the pointer to the underlying memory
of a given component.

Return This function returns a future representing the pointer to the underlying memory for the compo-
nent instance with the given id.

Note This function will successfully return the requested result only if the given component is currently
located on the calling locality. Otherwise the function will raise an error.

Note The component instance the returned pointer refers to can not be migrated as long as there is at least
one copy of the returned shared_ptr alive.

Parameters

• id: [in] The global id of the component for which the pointer to the underlying memory should
be retrieved.

Template Parameters

• The: only template parameter has to be the type of the server side component.

template<typename Derived, typename Stub>
hpx::future<std::shared_ptr<typename components::client_base<Derived, Stub>::server_component_type>> get_ptr(components::client_base<Derived,

Stub>
const
&c)

Returns a future referring to the pointer to the underlying memory of a component.

316 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The function hpx::get_ptr can be used to extract a future referring to the pointer to the underlying memory
of a given component.

Return This function returns a future representing the pointer to the underlying memory for the compo-
nent instance with the given id.

Note This function will successfully return the requested result only if the given component is currently
located on the calling locality. Otherwise the function will raise an error.

Note The component instance the returned pointer refers to can not be migrated as long as there is at least
one copy of the returned shared_ptr alive.

Parameters

• c: [in] A client side representation of the component for which the pointer to the underlying
memory should be retrieved.

template<typename Component>
std::shared_ptr<Component> get_ptr(launch::sync_policy p, naming::id_type const &id, er-

ror_code &ec = throws)
Returns the pointer to the underlying memory of a component.

The function hpx::get_ptr_sync can be used to extract the pointer to the underlying memory of a given
component.

Return This function returns the pointer to the underlying memory for the component instance with the
given id.

Note This function will successfully return the requested result only if the given component is currently
located on the requesting locality. Otherwise the function will raise and error.

Note The component instance the returned pointer refers to can not be migrated as long as there is at least
one copy of the returned shared_ptr alive.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• p: [in] The parameter p represents a placeholder type to turn make the call synchronous.

• id: [in] The global id of the component for which the pointer to the underlying memory should
be retrieved.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

Template Parameters

• The: only template parameter has to be the type of the server side component.

template<typename Derived, typename Stub>

2.9. API reference 317

HPX Documentation, 1.5.1

std::shared_ptr<typename components::client_base<Derived, Stub>::server_component_type> get_ptr(launch::sync_policy
p,
com-
po-
nents::client_base<Derived,
Stub>
const
&c,
er-
ror_code
&ec
=
throws)

Returns the pointer to the underlying memory of a component.

The function hpx::get_ptr_sync can be used to extract the pointer to the underlying memory of a given
component.

Return This function returns the pointer to the underlying memory for the component instance with the
given id.

Note This function will successfully return the requested result only if the given component is currently
located on the requesting locality. Otherwise the function will raise and error.

Note The component instance the returned pointer refers to can not be migrated as long as there is at least
one copy of the returned shared_ptr alive.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• p: [in] The parameter p represents a placeholder type to turn make the call synchronous.

• c: [in] A client side representation of the component for which the pointer to the underlying
memory should be retrieved.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

std::string get_locality_name()
Return the name of the locality this function is called on.

This function returns the name for the locality on which this function is called.

Return This function returns the name for the locality on which the function is called. The name is
retrieved from the underlying networking layer and may be different for different parcelports.

See future<std::string> get_locality_name(naming::id_type const& id)

future<std::string> get_locality_name(naming::id_type const &id)
Return the name of the referenced locality.

This function returns a future referring to the name for the locality of the given id.

Return This function returns the name for the locality of the given id. The name is retrieved from the
underlying networking layer and may be different for different parcel ports.

See std::string get_locality_name()

318 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters

• id: [in] The global id of the locality for which the name should be retrieved

void trigger_lco_event(naming::id_type const &id, naming::address &&addr, bool
move_credits = true)

Trigger the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should be triggered.

• addr: [in] This represents the addr of the LCO which should be triggered.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void trigger_lco_event(naming::id_type const &id, bool move_credits = true)
Trigger the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should be triggered.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void trigger_lco_event(naming::id_type const &id, naming::address &&addr, naming::id_type
const &cont, bool move_credits = true)

Trigger the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should be triggered.

• addr: [in] This represents the addr of the LCO which should be triggered.

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void trigger_lco_event(naming::id_type const &id, naming::id_type const &cont, bool
move_credits = true)

Trigger the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should be triggered.

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

template<typename Result>
void set_lco_value(naming::id_type const &id, naming::address &&addr, Result &&t, bool

move_credits = true)
Set the result value for the LCO referenced by the given id.

2.9. API reference 319

HPX Documentation, 1.5.1

Parameters

• id: [in] This represents the id of the LCO which should receive the given value.

• addr: [in] This represents the addr of the LCO which should be triggered.

• t: [in] This is the value which should be sent to the LCO.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

template<typename Result>
std::enable_if<!std::is_same<typename util::decay<Result>::type, naming::address>::value>::type set_lco_value(naming::id_type

const
&id,
Re-
sult
&&t,
bool
move_credits
=
true)

Set the result value for the (managed) LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the given value.

• t: [in] This is the value which should be sent to the LCO.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

template<typename Result>
std::enable_if<!std::is_same<typename util::decay<Result>::type, naming::address>::value>::type set_lco_value_unmanaged(naming::id_type

const
&id,
Re-
sult
&&t,
bool
move_credits
=
true)

Set the result value for the (unmanaged) LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the given value.

• t: [in] This is the value which should be sent to the LCO.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

template<typename Result>
void set_lco_value(naming::id_type const &id, naming::address &&addr, Result &&t, nam-

ing::id_type const &cont, bool move_credits = true)
Set the result value for the LCO referenced by the given id.

320 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters

• id: [in] This represents the id of the LCO which should receive the given value.

• addr: [in] This represents the addr of the LCO which should be triggered.

• t: [in] This is the value which should be sent to the LCO.

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

template<typename Result>
std::enable_if<!std::is_same<typename util::decay<Result>::type, naming::address>::value>::type set_lco_value(naming::id_type

const
&id,
Re-
sult
&&t,
nam-
ing::id_type
const
&cont,
bool
move_credits
=
true)

Set the result value for the (managed) LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the given value.

• t: [in] This is the value which should be sent to the LCO.

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

template<typename Result>
std::enable_if<!std::is_same<typename util::decay<Result>::type, naming::address>::value>::type set_lco_value_unmanaged(naming::id_type

const
&id,
Re-
sult
&&t,
nam-
ing::id_type
const
&cont,
bool
move_credits
=
true)

Set the result value for the (unmanaged) LCO referenced by the given id.

Parameters

2.9. API reference 321

HPX Documentation, 1.5.1

• id: [in] This represents the id of the LCO which should receive the given value.

• t: [in] This is the value which should be sent to the LCO.

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void set_lco_error(naming::id_type const &id, naming::address &&addr, std::exception_ptr
const &e, bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the error value.

• addr: [in] This represents the addr of the LCO which should be triggered.

• e: [in] This is the error value which should be sent to the LCO.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void set_lco_error(naming::id_type const &id, naming::address &&addr, std::exception_ptr
&&e, bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the error value.

• addr: [in] This represents the addr of the LCO which should be triggered.

• e: [in] This is the error value which should be sent to the LCO.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void set_lco_error(naming::id_type const &id, std::exception_ptr const &e, bool move_credits
= true)

Set the error state for the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the error value.

• e: [in] This is the error value which should be sent to the LCO.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void set_lco_error(naming::id_type const &id, std::exception_ptr &&e, bool move_credits =
true)

Set the error state for the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the error value.

• e: [in] This is the error value which should be sent to the LCO.

322 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void set_lco_error(naming::id_type const &id, naming::address &&addr, std::exception_ptr
const &e, naming::id_type const &cont, bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the error value.

• addr: [in] This represents the addr of the LCO which should be triggered.

• e: [in] This is the error value which should be sent to the LCO.

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void set_lco_error(naming::id_type const &id, naming::address &&addr, std::exception_ptr
&&e, naming::id_type const &cont, bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the error value.

• addr: [in] This represents the addr of the LCO which should be triggered.

• e: [in] This is the error value which should be sent to the LCO.

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void set_lco_error(naming::id_type const &id, std::exception_ptr const &e, naming::id_type
const &cont, bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the error value.

• e: [in] This is the error value which should be sent to the LCO.

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

void set_lco_error(naming::id_type const &id, std::exception_ptr &&e, naming::id_type const
&cont, bool move_credits = true)

Set the error state for the LCO referenced by the given id.

Parameters

• id: [in] This represents the id of the LCO which should receive the error value.

• e: [in] This is the error value which should be sent to the LCO.

2.9. API reference 323

HPX Documentation, 1.5.1

• cont: [in] This represents the LCO to trigger after completion.

• move_credits: [in] If this is set to true then it is ok to send all credits in id along with the
generated message. The default value is true.

template<typename Component, typename ... Ts><unspecified> hpx::new_(id_type const & locality, Ts &&... vs)
Create one or more new instances of the given Component type on the specified locality.

This function creates one or more new instances of the given Component type on the specified locality and
returns a future object for the global address which can be used to reference the new component instance.

Note This function requires to specify an explicit template argument which will define what type of com-
ponent(s) to create, for instance:

hpx::future<hpx::id_type> f =
hpx::new_<some_component>(hpx::find_here(), ...);

hpx::id_type id = f.get();

Return The function returns different types depending on its use:

• If the explicit template argument Component represents a component type
(traits::is_component<Component>::value evaluates to true), the function
will return an hpx::future object instance which can be used to retrieve the global address of the
newly created component.

• If the explicit template argument Component represents a client side object
(traits::is_client<Component>::value evaluates to true), the function will
return a new instance of that type which can be used to refer to the newly created component
instance.

Parameters

• locality: [in] The global address of the locality where the new instance should be created on.

• vs: [in] Any number of arbitrary arguments (passed by value, by const reference or by rvalue
reference) which will be forwarded to the constructor of the created component instance.

template<typename Component, typename ... Ts><unspecified> hpx::local_new(Ts &&... vs)
Create one new instance of the given Component type on the current locality.

This function creates one new instance of the given Component type on the current locality and returns a
future object for the global address which can be used to reference the new component instance.

Note This function requires to specify an explicit template argument which will define what type of com-
ponent(s) to create, for instance:

hpx::future<hpx::id_type> f =
hpx::local_new<some_component>(...);

hpx::id_type id = f.get();

Return The function returns different types depending on its use:

• If the explicit template argument Component represents a component type
(traits::is_component<Component>::value evaluates to true), the function
will return an hpx::future object instance which can be used to retrieve the global address of the
newly created component. If the first argument is hpx::launch::sync the function will
directly return an hpx::id_type.

• If the explicit template argument Component represents a client side object
(traits::is_client<Component>::value evaluates to true), the function will

324 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

return a new instance of that type which can be used to refer to the newly created component
instance.

Note The difference of this function to hpx::new_ is that it can be used in cases where the supplied
arguments are non-copyable and non-movable. All operations are guaranteed to be local only.

Parameters

• vs: [in] Any number of arbitrary arguments (passed by value, by const reference or by rvalue
reference) which will be forwarded to the constructor of the created component instance.

template<typename Component, typename ... Ts><unspecified> hpx::new_(id_type const & locality, std::size_t count, Ts &&... vs)
Create multiple new instances of the given Component type on the specified locality.

This function creates multiple new instances of the given Component type on the specified locality and
returns a future object for the global address which can be used to reference the new component instance.

Note This function requires to specify an explicit template argument which will define what type of com-
ponent(s) to create, for instance:

hpx::future<std::vector<hpx::id_type> > f =
hpx::new_<some_component[]>(hpx::find_here(), 10, ...);

hpx::id_type id = f.get();

Return The function returns different types depending on its use:

• If the explicit template argument Component represents an array of a component type (i.e. Com-
ponent[], where traits::is_component<Component>::value evaluates to true), the
function will return an hpx::future object instance which holds a std::vector<hpx::id_type>, where
each of the items in this vector is a global address of one of the newly created components.

• If the explicit template argument Component represents an array of a client side object type (i.e.
Component[], where traits::is_client<Component>::value evaluates to true), the
function will return an hpx::future object instance which holds a std::vector<hpx::id_type>, where
each of the items in this vector is a client side instance of the given type, each representing one of
the newly created components.

Parameters

• locality: [in] The global address of the locality where the new instance should be created on.

• count: [in] The number of component instances to create

• vs: [in] Any number of arbitrary arguments (passed by value, by const reference or by rvalue
reference) which will be forwarded to the constructor of the created component instance.

template<typename Component, typename DistPolicy, typename ... Ts><unspecified> hpx::new_(DistPolicy const & policy, Ts &&... vs)
Create one or more new instances of the given Component type based on the given distribution policy.

This function creates one or more new instances of the given Component type on the localities defined by
the given distribution policy and returns a future object for global address which can be used to reference
the new component instance(s).

Note This function requires to specify an explicit template argument which will define what type of com-
ponent(s) to create, for instance:

hpx::future<hpx::id_type> f =
hpx::new_<some_component>(hpx::default_layout, ...);

hpx::id_type id = f.get();

Return The function returns different types depending on its use:

2.9. API reference 325

HPX Documentation, 1.5.1

• If the explicit template argument Component represents a component type
(traits::is_component<Component>::value evaluates to true), the function
will return an hpx::future object instance which can be used to retrieve the global address of the
newly created component.

• If the explicit template argument Component represents a client side object
(traits::is_client<Component>::value evaluates to true), the function will
return a new instance of that type which can be used to refer to the newly created component
instance.

Parameters

• policy: [in] The distribution policy used to decide where to place the newly created.

• vs: [in] Any number of arbitrary arguments (passed by value, by const reference or by rvalue
reference) which will be forwarded to the constructor of the created component instance.

template<typename Component, typename DistPolicy, typename ... Ts><unspecified> hpx::new_(DistPolicy const & policy, std::size_t count, Ts &&... vs)
Create multiple new instances of the given Component type on the localities as defined by the given
distribution policy.

This function creates multiple new instances of the given Component type on the localities defined by the
given distribution policy and returns a future object for the global address which can be used to reference
the new component instance.

Note This function requires to specify an explicit template argument which will define what type of com-
ponent(s) to create, for instance:

hpx::future<std::vector<hpx::id_type> > f =
hpx::new_<some_component[]>(hpx::default_layout, 10, ...);

hpx::id_type id = f.get();

Return The function returns different types depending on its use:

• If the explicit template argument Component represents an array of a component type (i.e. Com-
ponent[], where traits::is_component<Component>::value evaluates to true), the
function will return an hpx::future object instance which holds a std::vector<hpx::id_type>, where
each of the items in this vector is a global address of one of the newly created components.

• If the explicit template argument Component represents an array of a client side object type (i.e.
Component[], where traits::is_client<Component>::value evaluates to true), the
function will return an hpx::future object instance which holds a std::vector<hpx::id_type>, where
each of the items in this vector is a client side instance of the given type, each representing one of
the newly created components.

Parameters

• policy: [in] The distribution policy used to decide where to place the newly created.

• count: [in] The number of component instances to create

• vs: [in] Any number of arbitrary arguments (passed by value, by const reference or by rvalue
reference) which will be forwarded to the constructor of the created component instance.

namespace components

326 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename Component>
future<naming::id_type> migrate_from_storage(naming::id_type const &to_resurrect,

naming::id_type const &target = nam-
ing::invalid_id)

Migrate the component with the given id from the specified target storage (resurrect the object)

The function migrate_from_storage<Component> will migrate the component referenced by to_resurrect
from the storage facility specified where the object is currently stored on. It returns a future referring
to the migrated component instance. The component instance is resurrected on the locality specified by
target_locality.

Return A future representing the global id of the migrated component instance. This should be the same
as to_resurrect.

Parameters

• to_resurrect: [in] The global id of the component to migrate.

• target: [in] The optional locality to resurrect the object on. By default the object is resurrected
on the locality it was located on last.

Template Parameters

• The: only template argument specifies the component type of the component to migrate from the
given storage facility.

template<typename Component>
future<naming::id_type> migrate_to_storage(naming::id_type const &to_migrate, nam-

ing::id_type const &target_storage)
Migrate the component with the given id to the specified target storage

The function migrate_to_storage<Component> will migrate the component referenced by to_migrate to
the storage facility specified with target_storage. It returns a future referring to the migrated component
instance.

Return A future representing the global id of the migrated component instance. This should be the same
as migrate_to.

Parameters

• to_migrate: [in] The global id of the component to migrate.

• target_storage: [in] The id of the storage facility to migrate this object to.

Template Parameters

• The: only template argument specifies the component type of the component to migrate to the
given storage facility.

template<typename Derived, typename Stub>
Derived migrate_to_storage(client_base<Derived, Stub> const &to_migrate,

hpx::components::component_storage const &target_storage)
Migrate the given component to the specified target storage

The function migrate_to_storage will migrate the component referenced by to_migrate to the storage
facility specified with target_storage. It returns a future referring to the migrated component instance.

2.9. API reference 327

HPX Documentation, 1.5.1

Return A client side representation of representing of the migrated component instance. This should be
the same as migrate_to.

Parameters

• to_migrate: [in] The client side representation of the component to migrate.

• target_storage: [in] The id of the storage facility to migrate this object to.

template<typename Component>
future<naming::id_type> copy(naming::id_type const &to_copy)

Copy given component to the specified target locality.

The function copy<Component> will create a copy of the component referenced by to_copy on the locality
specified with target_locality. It returns a future referring to the newly created component instance.

Return A future representing the global id of the newly (copied) component instance.

Note The new component instance is created on the locality of the component instance which is to be
copied.

Parameters

• to_copy: [in] The global id of the component to copy

Template Parameters

• The: only template argument specifies the component type to create.

template<typename Component>
future<naming::id_type> copy(naming::id_type const &to_copy, naming::id_type const &tar-

get_locality)
Copy given component to the specified target locality.

The function copy<Component> will create a copy of the component referenced by to_copy on the locality
specified with target_locality. It returns a future referring to the newly created component instance.

Return A future representing the global id of the newly (copied) component instance.

Parameters

• to_copy: [in] The global id of the component to copy

• target_locality: [in] The locality where the copy should be created.

Template Parameters

• The: only template argument specifies the component type to create.

template<typename Derived, typename Stub>
Derived copy(client_base<Derived, Stub> const &to_copy, naming::id_type const &target_locality

= naming::invalid_id)
Copy given component to the specified target locality.

The function copy will create a copy of the component referenced by the client side object to_copy on
the locality specified with target_locality. It returns a new client side object future referring to the newly
created component instance.

Return A future representing the global id of the newly (copied) component instance.

Note If the second argument is omitted (or is invalid_id) the new component instance is created on the
locality of the component instance which is to be copied.

328 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters

• to_copy: [in] The client side object representing the component to copy

• target_locality: [in, optional] The locality where the copy should be created (default is
same locality as source).

Template Parameters

• The: only template argument specifies the component type to create.

template<typename Component, typename DistPolicy>
future<naming::id_type> migrate(naming::id_type const &to_migrate, DistPolicy const &policy)

Migrate the given component to the specified target locality

The function migrate<Component> will migrate the component referenced by to_migrate to the locality
specified with target_locality. It returns a future referring to the migrated component instance.

Return A future representing the global id of the migrated component instance. This should be the same
as migrate_to.

Parameters

• to_migrate: [in] The client side representation of the component to migrate.

• policy: [in] A distribution policy which will be used to determine the locality to migrate this
object to.

Template Parameters

• Component: Specifies the component type of the component to migrate.

• DistPolicy: Specifies the distribution policy to use to determine the destination locality.

template<typename Derived, typename Stub, typename DistPolicy>
Derived migrate(client_base<Derived, Stub> const &to_migrate, DistPolicy const &policy)

Migrate the given component to the specified target locality

The function migrate<Component> will migrate the component referenced by to_migrate to the locality
specified with target_locality. It returns a future referring to the migrated component instance.

Return A future representing the global id of the migrated component instance. This should be the same
as migrate_to.

Parameters

• to_migrate: [in] The client side representation of the component to migrate.

• policy: [in] A distribution policy which will be used to determine the locality to migrate this
object to.

Template Parameters

• Derived: Specifies the component type of the component to migrate.

• DistPolicy: Specifies the distribution policy to use to determine the destination locality.

template<typename Component>
future<naming::id_type> migrate(naming::id_type const &to_migrate, naming::id_type const

&target_locality)
Migrate the component with the given id to the specified target locality

2.9. API reference 329

HPX Documentation, 1.5.1

The function migrate<Component> will migrate the component referenced by to_migrate to the locality
specified with target_locality. It returns a future referring to the migrated component instance.

Return A future representing the global id of the migrated component instance. This should be the same
as migrate_to.

Parameters

• to_migrate: [in] The global id of the component to migrate.

• target_locality: [in] The locality where the component should be migrated to.

Template Parameters

• Component: Specifies the component type of the component to migrate.

template<typename Derived, typename Stub>
Derived migrate(client_base<Derived, Stub> const &to_migrate, naming::id_type const &tar-

get_locality)
Migrate the given component to the specified target locality

The function migrate<Component> will migrate the component referenced by to_migrate to the locality
specified with target_locality. It returns a future referring to the migrated component instance.

Return A client side representation of representing of the migrated component instance. This should be
the same as migrate_to.

Parameters

• to_migrate: [in] The client side representation of the component to migrate.

• target_locality: [in] The id of the locality to migrate this object to.

Template Parameters

• Derived: Specifies the component type of the component to migrate.

Variables

char const *const default_binpacking_counter_name = "/runtime{locality/total}/count/component@"

binpacking_distribution_policy const binpacked
A predefined instance of the binpacking distribution_policy. It will represent the local locality and will
place all items to create here.

colocating_distribution_policy const colocated
A predefined instance of the co-locating distribution_policy. It will represent the local locality and will
place all items to create here.

default_distribution_policy const default_layout = {}
A predefined instance of the default distribution_policy. It will represent the local locality and will place
all items to create here.

namespace naming

330 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

id_type unmanaged(id_type const &id)
The helper function hpx::unmanaged can be used to generate a global identifier which does not participate
in the automatic garbage collection.

Return This function returns a new global id referencing the same object as the parameter id. The only
difference is that the returned global identifier does not participate in the automatic garbage collection.

Note This function allows to apply certain optimizations to the process of memory management in HPX.
It however requires the user to take full responsibility for keeping the referenced objects alive long
enough.

Parameters

• id: [in] The id to generated the unmanaged global id from This parameter can be itself a managed
or a unmanaged global id.

file migrate_from_storage.hpp
#include <hpx/config.hpp>#include <hpx/components_base/traits/is_component.hpp>#include
<hpx/futures/future.hpp>#include <hpx/runtime/naming/id_type.hpp>#include
<hpx/modules/memory.hpp>#include <hpx/runtime/naming_fwd.hpp>#include
<hpx/modules/naming_base.hpp>#include <hpx/runtime/agas_fwd.hpp>#include
<hpx/functional/function.hpp>#include <hpx/runtime_configuration/agas_service_mode.hpp>#include
<cstdint>#include <string>#include <hpx/serialization/serialization_fwd.hpp>#include <iosfwd>#include
<utility>#include <hpx/config/warnings_prefix.hpp>#include <hpx/config/warnings_suffix.hpp>#include
<hpx/components/component_storage/server/migrate_from_storage.hpp>#include <type_traits>

file migrate_to_storage.hpp
#include <hpx/config.hpp>#include <hpx/components_base/traits/is_component.hpp>#include
<hpx/futures/future.hpp>#include <hpx/runtime/components/client_base.hpp>#include
<hpx/actions_base/traits/action_remote_result.hpp>#include <hpx/assert.hpp>#include
<hpx/functional/bind_back.hpp>#include <hpx/futures/traits/acquire_future.hpp>#include
<hpx/futures/traits/future_access.hpp>#include <hpx/futures/traits/future_traits.hpp>#include
<hpx/futures/traits/is_future.hpp>#include <hpx/memory/intrusive_ptr.hpp>#include
<hpx/modules/errors.hpp>#include <hpx/modules/memory.hpp>#include <hpx/runtime/agas/interface.hpp>#include
<hpx/runtime/components/component_type.hpp>#include <hpx/functional/unique_function.hpp>#include
<hpx/preprocessor/cat.hpp>#include <hpx/preprocessor/expand.hpp>#include
<hpx/preprocessor/nargs.hpp>#include <hpx/preprocessor/stringize.hpp>#include
<hpx/preprocessor/strip_parens.hpp>#include <hpx/runtime/naming_fwd.hpp>#include
<hpx/thread_support/atomic_count.hpp>#include <hpx/traits/component_type_database.hpp>#include
<cstdint>#include <hpx/type_support/decay.hpp>#include <string>#include
<hpx/runtime/components_fwd.hpp>#include <hpx/traits/managed_component_policies.hpp>#include
<hpx/type_support/always_void.hpp>#include <cstddef>#include <hpx/async_base/launch_policy.hpp>#include
<hpx/runtime/naming/name.hpp>#include <hpx/allocator_support/internal_allocator.hpp>#include
<hpx/execution_base/register_locks.hpp>#include <hpx/execution_base/this_thread.hpp>#include
<hpx/concurrency/spinlock_pool.hpp>#include <hpx/futures/traits/get_remote_result.hpp>#include
<hpx/futures/traits/promise_local_result.hpp>#include <hpx/modules/itt_notify.hpp>#include
<hpx/runtime/naming/id_type.hpp>#include <hpx/serialization/serialization_fwd.hpp>#include
<hpx/serialization/traits/is_bitwise_serializable.hpp>#include <functional>#include <ios-
fwd>#include <mutex>#include <vector>#include <hpx/config/warnings_prefix.hpp>#include
<hpx/runtime/naming/id_type_impl.hpp>#include <hpx/config/warnings_suffix.hpp>#include
<boost/dynamic_bitset.hpp>#include <map>#include <utility>#include <hpx/runtime/components/make_client.hpp>#include
<hpx/traits/is_client.hpp>#include <type_traits>#include <hpx/runtime/components/stubs/stub_base.hpp>#include
<hpx/async_distributed/detail/async_colocated_fwd.hpp>#include <hpx/async_distributed/detail/async_implementations_fwd.hpp>#include
<hpx/async_local/async_fwd.hpp>#include <hpx/runtime/naming/unmanaged.hpp>#include

2.9. API reference 331

HPX Documentation, 1.5.1

<hpx/serialization/serialize.hpp>#include <exception>#include <hpx/components/component_storage/component_storage.hpp>#include
<hpx/components/component_storage/server/migrate_to_storage.hpp>

file basename_registration_fwd.hpp
#include <hpx/config.hpp>#include <hpx/components_fwd.hpp>#include <hpx/futures/future_fwd.hpp>#include
<hpx/runtime/components/make_client.hpp>#include <hpx/runtime/naming/id_type.hpp>#include <cstd-
def>#include <string>#include <utility>#include <vector>

file binpacking_distribution_policy.hpp
#include <hpx/config.hpp>#include <hpx/assert.hpp>#include <hpx/async_distributed/dataflow.hpp>#include
<hpx/futures/future.hpp>#include <hpx/performance_counters/performance_counter.hpp>#include
<hpx/runtime/components/component_type.hpp>#include <hpx/runtime/components/stubs/stub_base.hpp>#include
<hpx/runtime/find_here.hpp>#include <hpx/modules/errors.hpp>#include <hpx/runtime/naming/id_type.hpp>#include
<hpx/runtime/naming/name.hpp>#include <hpx/serialization/serialization_fwd.hpp>#include
<hpx/serialization/string.hpp>#include <hpx/serialization/vector.hpp>#include
<hpx/traits/is_distribution_policy.hpp>#include <cstddef>#include <type_traits>#include
<hpx/functional/bind_back.hpp>#include <hpx/pack_traversal/unwrap.hpp>#include <algorithm>#include
<cstdint>#include <iterator>#include <string>#include <utility>#include <vector>

file colocating_distribution_policy.hpp
#include <hpx/config.hpp>#include <hpx/actions_base/traits/extract_action.hpp>#include
<hpx/async_base/launch_policy.hpp>#include <hpx/async_distributed/applier/detail/apply_colocated_callback_fwd.hpp>#include
<hpx/async_distributed/applier/detail/apply_colocated_fwd.hpp>#include <hpx/async_distributed/applier/detail/apply_implementations.hpp>#include
<hpx/async_distributed/detail/async_colocated.hpp>#include <hpx/async_distributed/detail/async_colocated_callback.hpp>#include
<hpx/async_distributed/detail/async_implementations.hpp>#include <hpx/futures/future.hpp>#include
<hpx/futures/traits/promise_local_result.hpp>#include <hpx/runtime/components/client_base.hpp>#include
<hpx/runtime/components/stubs/stub_base.hpp>#include <hpx/runtime/find_here.hpp>#include
<hpx/runtime/naming/id_type.hpp>#include <hpx/runtime/naming/name.hpp>#include
<hpx/serialization/serialization_fwd.hpp>#include <hpx/traits/is_distribution_policy.hpp>#include <al-
gorithm>#include <cstddef>#include <type_traits>#include <utility>#include <vector>

file component_factory.hpp

Defines

HPX_REGISTER_COMPONENT(type, name, mode)
Define a component factory for a component type.

This macro is used create and to register a minimal component factory for a component type which allows
it to be remotely created using the hpx::new_<> function.

This macro can be invoked with one, two or three arguments

Parameters

• type: The type parameter is a (fully decorated) type of the component type for which a factory
should be defined.

• name: The name parameter specifies the name to use to register the factory. This should uniquely
(system-wide) identify the component type. The name parameter must conform to the C++ iden-
tifier rules (without any namespace). If this parameter is not given, the first parameter is used.

• mode: The mode parameter has to be one of the defined enumeration values of
the enumeration hpx::components::factory_state_enum. The default for this parameter is
hpx::components::factory_enabled.

file copy_component.hpp
#include <hpx/config.hpp>#include <hpx/actions_base/plain_action.hpp>#include

332 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

<hpx/async_distributed/async.hpp>#include <hpx/async_distributed/detail/async_colocated.hpp>#include
<hpx/components_base/traits/is_component.hpp>#include <hpx/futures/future.hpp>#include
<hpx/runtime/components/server/copy_component.hpp>#include <hpx/runtime/components/stubs/runtime_support.hpp>#include
<hpx/modules/errors.hpp>#include <hpx/async_distributed/detail/async_colocated_fwd.hpp>#include
<hpx/runtime/components/component_type.hpp>#include <hpx/runtime/components/server/runtime_support.hpp>#include
<hpx/actions/base_action.hpp>#include <hpx/actions/transfer_action.hpp>#include
<hpx/actions/transfer_continuation_action.hpp>#include <hpx/actions_base/component_action.hpp>#include
<hpx/assert.hpp>#include <hpx/modules/plugin.hpp>#include <hpx/modules/program_options.hpp>#include
<hpx/performance_counters/counters.hpp>#include <hpx/plugins/plugin_factory_base.hpp>#include
<hpx/runtime_configuration/plugin_registry_base.hpp>#include <hpx/runtime_configuration/ini.hpp>#include
<hpx/type_support/pack.hpp>#include <hpx/runtime/components/server/create_component.hpp>#include
<hpx/runtime/components/server/create_component_fwd.hpp>#include <hpx/runtime/naming/address.hpp>#include
<cstddef>#include <cstdint>#include <utility>#include <vector>#include
<hpx/runtime/components/server/component_heap.hpp>#include <hpx/static_reinit/reinitializable_static.hpp>#include
<sstream>#include <hpx/runtime/find_here.hpp>#include <hpx/runtime/parcelset/locality.hpp>#include
<hpx/runtime/parcelset_fwd.hpp>#include <hpx/serialization/map.hpp>#include
<hpx/serialization/serialization_fwd.hpp>#include <hpx/iterator_support/traits/is_iterator.hpp>#include
<map>#include <memory>#include <string>#include <type_traits>#include
<hpx/config/warnings_prefix.hpp>#include <hpx/config/warnings_suffix.hpp>#include
<hpx/runtime_configuration/static_factory_data.hpp>#include <hpx/synchronization/condition_variable.hpp>#include
<hpx/synchronization/mutex.hpp>#include <hpx/synchronization/spinlock.hpp>#include
<hpx/traits/action_does_termination_detection.hpp>#include <atomic>#include <condi-
tion_variable>#include <list>#include <mutex>#include <set>#include <thread>#include
<hpx/runtime/naming/name.hpp>#include <hpx/serialization/vector.hpp>#include
<hpx/type_support/decay.hpp>#include <hpx/runtime/get_ptr.hpp>#include <hpx/async_base/launch_policy.hpp>#include
<hpx/components_base/get_lva.hpp>#include <hpx/components_base/traits/component_pin_support.hpp>#include
<hpx/functional/bind_back.hpp>#include <hpx/runtime/agas/gva.hpp>#include
<hpx/runtime/components/client_base.hpp>#include <hpx/runtime_fwd.hpp>#include
<hpx/traits/component_type_is_compatible.hpp>#include <hpx/futures/traits/get_remote_result.hpp>

file default_distribution_policy.hpp
#include <hpx/config.hpp>#include <hpx/actions_base/actions_base_support.hpp>#include
<hpx/actions_base/traits/extract_action.hpp>#include <hpx/assert.hpp>#include
<hpx/async_base/launch_policy.hpp>#include <hpx/async_distributed/applier/apply.hpp>#include
<hpx/async_distributed/dataflow.hpp>#include <hpx/futures/future.hpp>#include
<hpx/futures/traits/promise_local_result.hpp>#include <hpx/lcos/packaged_action.hpp>#include
<hpx/actions_base/traits/action_priority.hpp>#include <hpx/allocator_support/internal_allocator.hpp>#include
<hpx/async_distributed/applier/apply_callback.hpp>#include <hpx/lcos/promise.hpp>#include
<hpx/memory/intrusive_ptr.hpp>#include <hpx/modules/errors.hpp>#include
<hpx/modules/memory.hpp>#include <hpx/runtime/components/component_type.hpp>#include
<hpx/traits/action_was_object_migrated.hpp>#include <hpx/components_base/pinned_ptr.hpp>#include
<hpx/runtime/naming/id_type.hpp>#include <hpx/type_support/detail/wrap_int.hpp>#include
<type_traits>#include <utility>#include <hpx/traits/component_supports_migration.hpp>#include
<hpx/traits/component_type_is_compatible.hpp>#include <boost/asio/error.hpp>#include
<exception>#include <memory>#include <hpx/modules/execution.hpp>#include
<hpx/runtime/components/stubs/stub_base.hpp>#include <hpx/runtime/find_here.hpp>#include
<hpx/runtime/naming/name.hpp>#include <hpx/serialization/serialization_fwd.hpp>#include
<hpx/serialization/shared_ptr.hpp>#include <hpx/serialization/vector.hpp>#include
<hpx/traits/is_distribution_policy.hpp>#include <algorithm>#include <cstddef>#include <vector>

file migrate_component.hpp
#include <hpx/config.hpp>#include <hpx/actions_base/plain_action.hpp>#include
<hpx/async_distributed/async.hpp>#include <hpx/async_distributed/detail/async_colocated.hpp>#include
<hpx/components_base/traits/is_component.hpp>#include <hpx/futures/future.hpp>#include
<hpx/runtime/components/client_base.hpp>#include <hpx/runtime/components/server/migrate_component.hpp>#include

2.9. API reference 333

HPX Documentation, 1.5.1

<hpx/runtime/agas/interface.hpp>#include <hpx/runtime/components/stubs/runtime_support.hpp>#include
<hpx/runtime/get_ptr.hpp>#include <hpx/runtime/naming/name.hpp>#include
<hpx/traits/component_supports_migration.hpp>#include <cstdint>#include <mem-
ory>#include <utility>#include <hpx/runtime/components/target_distribution_policy.hpp>#include
<hpx/actions_base/actions_base_support.hpp>#include <hpx/actions_base/traits/extract_action.hpp>#include
<hpx/async_base/launch_policy.hpp>#include <hpx/async_distributed/applier/detail/apply_implementations_fwd.hpp>#include
<hpx/async_distributed/dataflow.hpp>#include <hpx/async_distributed/detail/async_implementations_fwd.hpp>#include
<hpx/futures/traits/promise_local_result.hpp>#include <hpx/lcos/packaged_action.hpp>#include
<hpx/runtime/components/stubs/stub_base.hpp>#include <hpx/runtime/find_here.hpp>#include
<hpx/runtime/naming/id_type.hpp>#include <hpx/serialization/serialization_fwd.hpp>#include
<hpx/traits/is_distribution_policy.hpp>#include <algorithm>#include <cstddef>#include
<type_traits>#include <vector>

file new.hpp
#include <hpx/config.hpp>#include <hpx/async_base/launch_policy.hpp>#include
<hpx/components_base/traits/is_component.hpp>#include <hpx/futures/future.hpp>#include
<hpx/runtime/components/client_base.hpp>#include <hpx/runtime/components/default_distribution_policy.hpp>#include
<hpx/actions_base/actions_base_support.hpp>#include <hpx/actions_base/traits/extract_action.hpp>#include
<hpx/assert.hpp>#include <hpx/async_distributed/applier/apply.hpp>#include
<hpx/async_distributed/dataflow.hpp>#include <hpx/futures/traits/promise_local_result.hpp>#include
<hpx/lcos/packaged_action.hpp>#include <hpx/modules/execution.hpp>#include
<hpx/runtime/components/stubs/stub_base.hpp>#include <hpx/runtime/find_here.hpp>#include
<hpx/runtime/naming/id_type.hpp>#include <hpx/runtime/naming/name.hpp>#include
<hpx/serialization/serialization_fwd.hpp>#include <hpx/serialization/shared_ptr.hpp>#include
<hpx/serialization/vector.hpp>#include <hpx/traits/is_distribution_policy.hpp>#include <algorithm>#include
<cstddef>#include <memory>#include <type_traits>#include <utility>#include <vector>#include
<hpx/runtime/components/server/create_component.hpp>#include <hpx/traits/is_client.hpp>#include
<hpx/type_support/lazy_enable_if.hpp>

file find_here.hpp
#include <hpx/config.hpp>#include <hpx/modules/errors.hpp>#include <hpx/runtime/naming/id_type.hpp>

file find_localities.hpp
#include <hpx/config.hpp>#include <hpx/modules/errors.hpp>#include <hpx/runtime/components/component_type.hpp>#include
<hpx/runtime/naming/id_type.hpp>#include <vector>

file get_colocation_id.hpp
#include <hpx/async_base/launch_policy.hpp>#include <hpx/futures/future_fwd.hpp>#include
<hpx/modules/errors.hpp>#include <hpx/runtime/naming/id_type.hpp>

file get_locality_name.hpp
#include <hpx/config.hpp>#include <hpx/modules/futures.hpp>#include <hpx/runtime/naming/id_type.hpp>#include
<string>

file get_ptr.hpp
#include <hpx/config.hpp>#include <hpx/assert.hpp>#include <hpx/async_base/launch_policy.hpp>#include
<hpx/components_base/get_lva.hpp>#include <hpx/components_base/traits/component_pin_support.hpp>#include
<hpx/functional/bind_back.hpp>#include <hpx/modules/errors.hpp>#include
<hpx/runtime/agas/gva.hpp>#include <hpx/runtime/components/component_type.hpp>#include
<hpx/runtime/naming/name.hpp>#include <hpx/util/ios_flags_saver.hpp>#include <cstdint>#include
<hpx/runtime/components/client_base.hpp>#include <hpx/runtime/naming/address.hpp>#include
<hpx/runtime/naming_fwd.hpp>#include <hpx/serialization/serialization_fwd.hpp>#include
<hpx/serialization/traits/is_bitwise_serializable.hpp>#include <iosfwd>#include
<hpx/config/warnings_prefix.hpp>#include <hpx/config/warnings_suffix.hpp>#include
<hpx/runtime_fwd.hpp>#include <hpx/runtime_local/runtime_local_fwd.hpp>#include
<hpx/traits/component_type_is_compatible.hpp>#include <memory>

334 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

file unmanaged.hpp
#include <hpx/config.hpp>#include <hpx/runtime/naming/name.hpp>

file set_parcel_write_handler.hpp
#include <hpx/config.hpp>

file trigger_lco.hpp
#include <hpx/config.hpp>#include <hpx/actions/actions_fwd.hpp>#include
<hpx/actions_base/action_priority.hpp>#include <hpx/actions_base/continuation_fwd.hpp>#include
<hpx/assert.hpp>#include <hpx/async_distributed/applier/detail/apply_implementations_fwd.hpp>#include
<hpx/lcos_fwd.hpp>#include <hpx/components_base/traits/is_component.hpp>#include
<hpx/futures/future_fwd.hpp>#include <hpx/futures/traits/promise_local_result.hpp>#include
<hpx/futures/traits/promise_remote_result.hpp>#include <vector>#include <hpx/runtime/naming/address.hpp>#include
<hpx/runtime/naming/id_type.hpp>#include <hpx/runtime/naming/name.hpp>#include
<hpx/type_support/decay.hpp>#include <exception>#include <type_traits>#include <utility>

file runtime_fwd.hpp
#include <hpx/config.hpp>#include <hpx/runtime_local/runtime_local_fwd.hpp>

dir /hpx/source/components/component_storage

dir /hpx/source/components/component_storage/include/hpx/components/component_storage

dir /hpx/source/hpx/runtime/components

dir /hpx/source/components/component_storage/include/hpx/components

dir /hpx/source/components

dir /hpx/source/hpx

dir /hpx/source/components/component_storage/include/hpx

dir /hpx/source/components/component_storage/include

dir /hpx/source/hpx/runtime/naming

dir /hpx/source/hpx/runtime

dir /hpx/source

actions

The contents of this module can be included with the header hpx/modules/actions.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/actions.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/actions/action_support.hpp

Header hpx/actions/actions_fwd.hpp

Header hpx/actions/base_action.hpp

Header hpx/actions/register_action.hpp

2.9. API reference 335

HPX Documentation, 1.5.1

Header hpx/actions/transfer_action.hpp

Header hpx/actions/transfer_base_action.hpp

Header hpx/actions/transfer_continuation_action.hpp

actions_base

The contents of this module can be included with the header hpx/modules/actions_base.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/actions_base.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/actions_base/action_priority.hpp

namespace hpx

namespace actions

Functions

template<typename Action>
threads::thread_priority action_priority()

Header hpx/actions_base/actions_base_fwd.hpp

Header hpx/actions_base/actions_base_support.hpp

Header hpx/actions_base/basic_action.hpp

Defines

HPX_REGISTER_ACTION_DECLARATION(...)
Declare the necessary component action boilerplate code.

The macro HPX_REGISTER_ACTION_DECLARATION can be used to declare all the boilerplate code which
is required for proper functioning of component actions in the context of HPX.

The parameter action is the type of the action to declare the boilerplate for.

This macro can be invoked with an optional second parameter. This parameter specifies a unique name of the
action to be used for serialization purposes. The second parameter has to be specified if the first parameter is not
usable as a plain (non-qualified) C++ identifier, i.e. the first parameter contains special characters which cannot
be part of a C++ identifier, such as ‘<’, ‘>’, or ‘:’.

namespace app
{

// Define a simple component exposing one action 'print_greeting'
class HPX_COMPONENT_EXPORT server

(continues on next page)

336 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

: public hpx::components::simple_component_base<server>
{

void print_greeting ()
{

hpx::cout << "Hey, how are you?\n" << hpx::flush;
}

// Component actions need to be declared, this also defines the
// type 'print_greeting_action' representing the action.
HPX_DEFINE_COMPONENT_ACTION(server,

print_greeting, print_greeting_action);
};

}

// Declare boilerplate code required for each of the component actions.
HPX_REGISTER_ACTION_DECLARATION(app::server::print_greeting_action);

Example:

Note This macro has to be used once for each of the component actions defined using one of the
HPX_DEFINE_COMPONENT_ACTION macros. It has to be visible in all translation units using the
action, thus it is recommended to place it into the header file defining the component.

HPX_REGISTER_ACTION_DECLARATION_(...)

HPX_REGISTER_ACTION_DECLARATION_1(action)

HPX_REGISTER_ACTION(...)
Define the necessary component action boilerplate code.

The macro HPX_REGISTER_ACTION can be used to define all the boilerplate code which is required for proper
functioning of component actions in the context of HPX.

The parameter action is the type of the action to define the boilerplate for.

This macro can be invoked with an optional second parameter. This parameter specifies a unique name of the
action to be used for serialization purposes. The second parameter has to be specified if the first parameter is not
usable as a plain (non-qualified) C++ identifier, i.e. the first parameter contains special characters which cannot
be part of a C++ identifier, such as ‘<’, ‘>’, or ‘:’.

Note This macro has to be used once for each of the component actions defined using one of the
HPX_DEFINE_COMPONENT_ACTION or HPX_DEFINE_PLAIN_ACTION macros. It has to occur ex-
actly once for each of the actions, thus it is recommended to place it into the source file defining the
component.

Note Only one of the forms of this macro HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID should
be used for a particular action, never both.

HPX_REGISTER_ACTION_ID(action, actionname, actionid)
Define the necessary component action boilerplate code and assign a predefined unique id to the action.

The macro HPX_REGISTER_ACTION can be used to define all the boilerplate code which is required for proper
functioning of component actions in the context of HPX.

The parameter action is the type of the action to define the boilerplate for.

2.9. API reference 337

HPX Documentation, 1.5.1

The parameter actionname specifies an unique name of the action to be used for serialization purposes. The sec-
ond parameter has to be usable as a plain (non-qualified) C++ identifier, it should not contain special characters
which cannot be part of a C++ identifier, such as ‘<’, ‘>’, or ‘:’.

The parameter actionid specifies an unique integer value which will be used to represent the action during
serialization.

Note This macro has to be used once for each of the component actions defined using one of the
HPX_DEFINE_COMPONENT_ACTION or global actions HPX_DEFINE_PLAIN_ACTION macros. It
has to occur exactly once for each of the actions, thus it is recommended to place it into the source file
defining the component.

Note Only one of the forms of this macro HPX_REGISTER_ACTION or HPX_REGISTER_ACTION_ID should
be used for a particular action, never both.

Header hpx/actions_base/basic_action_fwd.hpp

namespace hpx

namespace actions

template<typename Component, typename Signature, typename Derived>
struct basic_action

#include <basic_action_fwd.hpp>
Template Parameters

• Component: component type
• Signature: return type and arguments
• Derived: derived action class

Header hpx/actions_base/component_action.hpp

Defines

HPX_DEFINE_COMPONENT_ACTION(...)
Registers a member function of a component as an action type with HPX.

The macro HPX_DEFINE_COMPONENT_ACTION can be used to register a member function of a component
as an action type named action_type.

The parameter component is the type of the component exposing the member function func which should be
associated with the newly defined action type. The parameter action_type is the name of the action type to
register with HPX.

namespace app
{

// Define a simple component exposing one action 'print_greeting'
class HPX_COMPONENT_EXPORT server
: public hpx::components::simple_component_base<server>

{
void print_greeting() const
{

hpx::cout << "Hey, how are you?\n" << hpx::flush;
}

(continues on next page)

338 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

// Component actions need to be declared, this also defines the
// type 'print_greeting_action' representing the action.
HPX_DEFINE_COMPONENT_ACTION(server, print_greeting,

print_greeting_action);
};

}

Example:

The first argument must provide the type name of the component the action is defined for.

The second argument must provide the member function name the action should wrap.

The default value for the third argument (the typename of the defined action) is derived from the name of the
function (as passed as the second argument) by appending ‘_action’. The third argument can be omitted only if
the second argument with an appended suffix ‘_action’ resolves to a valid, unqualified C++ type name.

Note The macro HPX_DEFINE_COMPONENT_ACTION can be used with 2 or 3 arguments. The third argu-
ment is optional.

Header hpx/actions_base/continuation_fwd.hpp

namespace hpx

namespace actions

Functions

template<typename Result, typename RemoteResult, typename F, typename ...Ts>
void trigger(typed_continuation<Result, RemoteResult> &&cont, F &&f, Ts&&... vs)

Header hpx/actions_base/plain_action.hpp

Defines

HPX_DEFINE_PLAIN_ACTION(...)
Defines a plain action type.

namespace app
{

void some_global_function(double d)
{

cout << d;
}

// This will define the action type 'app::some_global_action' which
// represents the function 'app::some_global_function'.
HPX_DEFINE_PLAIN_ACTION(some_global_function, some_global_action);

}

2.9. API reference 339

HPX Documentation, 1.5.1

Example:

Note Usually this macro will not be used in user code unless the intent is to avoid defining the action_type in
global namespace. Normally, the use of the macro HPX_PLAIN_ACTION is recommended.

Note The macro HPX_DEFINE_PLAIN_ACTION can be used with 1 or 2 arguments. The second argument is
optional. The default value for the second argument (the typename of the defined action) is derived from
the name of the function (as passed as the first argument) by appending ‘_action’. The second argument
can be omitted only if the first argument with an appended suffix ‘_action’ resolves to a valid, unqualified
C++ type name.

HPX_DECLARE_PLAIN_ACTION(...)
Declares a plain action type.

HPX_PLAIN_ACTION(...)
Defines a plain action type based on the given function func and registers it with HPX.

The macro HPX_PLAIN_ACTION can be used to define a plain action (e.g. an action encapsulating a global or
free function) based on the given function func. It defines the action type name representing the given function.
This macro additionally registers the newly define action type with HPX.

The parameter func is a global or free (non-member) function which should be encapsulated into a plain action.
The parameter name is the name of the action type defined by this macro.

namespace app
{

void some_global_function(double d)
{

cout << d;
}

}

// This will define the action type 'some_global_action' which represents
// the function 'app::some_global_function'.
HPX_PLAIN_ACTION(app::some_global_function, some_global_action);

Example:

Note The macro HPX_PLAIN_ACTION has to be used at global namespace even if the wrapped function is
located in some other namespace. The newly defined action type is placed into the global namespace as
well.

Note The macro HPX_PLAIN_ACTION_ID can be used with 1, 2, or 3 arguments. The second and third
arguments are optional. The default value for the second argument (the typename of the defined action) is
derived from the name of the function (as passed as the first argument) by appending ‘_action’. The second
argument can be omitted only if the first argument with an appended suffix ‘_action’ resolves to a valid,
unqualified C++ type name. The default value for the third argument is hpx::components::factory_check.

Note Only one of the forms of this macro HPX_PLAIN_ACTION or HPX_PLAIN_ACTION_ID should be used
for a particular action, never both.

HPX_PLAIN_ACTION_ID(func, name, id)
Defines a plain action type based on the given function func and registers it with HPX.

The macro HPX_PLAIN_ACTION_ID can be used to define a plain action (e.g. an action encapsulating a global
or free function) based on the given function func. It defines the action type actionname representing the given
function. The parameter actionid

340 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The parameter actionid specifies an unique integer value which will be used to represent the action during
serialization.

The parameter func is a global or free (non-member) function which should be encapsulated into a plain action.
The parameter name is the name of the action type defined by this macro.

The second parameter has to be usable as a plain (non-qualified) C++ identifier, it should not contain special
characters which cannot be part of a C++ identifier, such as ‘<’, ‘>’, or ‘:’.

namespace app
{

void some_global_function(double d)
{

cout << d;
}

}

// This will define the action type 'some_global_action' which represents
// the function 'app::some_global_function'.
HPX_PLAIN_ACTION_ID(app::some_global_function, some_global_action,
some_unique_id);

Example:

Note The macro HPX_PLAIN_ACTION_ID has to be used at global namespace even if the wrapped function
is located in some other namespace. The newly defined action type is placed into the global namespace as
well.

Note Only one of the forms of this macro HPX_PLAIN_ACTION or HPX_PLAIN_ACTION_ID should be used
for a particular action, never both.

Header hpx/actions_base/preassigned_action_id.hpp

Header hpx/actions_base/traits/action_continuation.hpp

namespace hpx

namespace traits

template<typename Action, typename Enable = void>
struct action_continuation

#include <action_continuation.hpp>

2.9. API reference 341

HPX Documentation, 1.5.1

Public Types

typedef hpx::traits::extract_action<Action>::type::continuation_type type

Header hpx/actions_base/traits/action_priority.hpp

namespace hpx

namespace traits

template<typename Action, typename Enable = void>
struct action_priority

#include <action_priority.hpp>

Public Static Attributes

constexpr threads::thread_priority value = threads::thread_priority_default

Header hpx/actions_base/traits/action_remote_result.hpp

Header hpx/actions_base/traits/action_select_direct_execution.hpp

namespace hpx

namespace traits

template<typename Action, typename Enable = void>
struct action_select_direct_execution

#include <action_select_direct_execution.hpp>

Public Static Functions

static constexpr launch call(launch policy, naming::address_type lva)

Header hpx/actions_base/traits/action_stacksize.hpp

namespace hpx

namespace traits

template<typename Action, typename Enable = void>
struct action_stacksize

#include <action_stacksize.hpp>

342 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Static Attributes

constexpr threads::thread_stacksize value = threads::thread_stacksize_default

Header hpx/actions_base/traits/extract_action.hpp

namespace hpx

namespace traits

template<typename Action, typename Enable = void>
struct extract_action

#include <extract_action.hpp>

Public Types

template<>
using type = typename Action::derived_type

template<>
using result_type = typename type::result_type

template<>
using local_result_type = typename type::local_result_type

template<>
using remote_result_type = typename type::remote_result_type

affinity

The contents of this module can be included with the header hpx/modules/affinity.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/affinity.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/affinity/affinity_data.hpp

Header hpx/affinity/parse_affinity_options.hpp

namespace hpx

namespace threads

2.9. API reference 343

HPX Documentation, 1.5.1

Functions

void parse_affinity_options(std::string const &spec, std::vector<mask_type> &affini-
ties, std::size_t used_cores, std::size_t max_cores, std::size_t
num_threads, std::vector<std::size_t> &num_pus, bool
use_process_mask, error_code &ec = throws)

void parse_affinity_options(std::string const &spec, std::vector<mask_type> &affini-
ties, error_code &ec = throws)

algorithms

The contents of this module can be included with the header hpx/modules/algorithms.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/algorithms.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/algorithms/traits/is_value_proxy.hpp

Header hpx/algorithms/traits/projected.hpp

template<typename Iterator>
struct projected_iterator<Iterator, typename std::enable_if<is_segmented_iterator<Iterator>::value>::type>

#include <projected.hpp>

Public Types

typedef segmented_iterator_traits<Iterator>::local_iterator local_iterator

typedef segmented_local_iterator_traits<local_iterator>::local_raw_iterator type

template<typename Iterator>
struct projected_iterator<Iterator, typename hpx::util::always_void<typename hpx::util::decay<Iterator>::type::proxy_type>::type>

#include <projected.hpp>

Public Types

typedef hpx::util::decay<Iterator>::type::proxy_type type

namespace hpx

namespace parallel

namespace traits

template<typename Proj, typename Iter>
struct projected

#include <projected.hpp>

344 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef hpx::util::decay<Proj>::type projector_type

typedef hpx::traits::projected_iterator<Iter>::type iterator_type

namespace traits

template<typename T, typename Enable = void>
struct projected_iterator

#include <projected.hpp>

Public Types

typedef hpx::util::decay<T>::type type

template<typename Iterator>
struct projected_iterator<Iterator, typename hpx::util::always_void<typename hpx::util::decay<Iterator>::type::proxy_type>::type>

#include <projected.hpp>

Public Types

typedef hpx::util::decay<Iterator>::type::proxy_type type

template<typename Iterator>
struct projected_iterator<Iterator, typename std::enable_if<is_segmented_iterator<Iterator>::value>::type>

#include <projected.hpp>

Public Types

typedef segmented_iterator_traits<Iterator>::local_iterator local_iterator

typedef segmented_local_iterator_traits<local_iterator>::local_raw_iterator type

Header hpx/algorithms/traits/projected_range.hpp

template<typename Proj, typename Rng>
struct projected_range<Proj, Rng, typename std::enable_if<hpx::traits::is_range<Rng>::value>::type>

#include <projected_range.hpp>

Public Types

typedef hpx::util::decay<Proj>::type projector_type

typedef hpx::traits::range_iterator<Rng>::type iterator_type

namespace hpx

namespace parallel

2.9. API reference 345

HPX Documentation, 1.5.1

namespace traits

template<typename Proj, typename Rng>
struct projected_range<Proj, Rng, typename std::enable_if<hpx::traits::is_range<Rng>::value>::type>

#include <projected_range.hpp>

Public Types

typedef hpx::util::decay<Proj>::type projector_type

typedef hpx::traits::range_iterator<Rng>::type iterator_type

Header hpx/algorithms/traits/segmented_iterator_traits.hpp

namespace hpx

namespace traits

template<typename Iterator, typename Enable = void>
struct segmented_iterator_traits

#include <segmented_iterator_traits.hpp>

Public Types

typedef std::false_type is_segmented_iterator

template<typename Iterator, typename Enable = void>
struct segmented_local_iterator_traits

#include <segmented_iterator_traits.hpp>

Public Types

typedef std::false_type is_segmented_local_iterator

typedef Iterator iterator

typedef Iterator local_iterator

typedef Iterator local_raw_iterator

Public Static Functions

static local_raw_iterator const &local(local_iterator const &it)

static local_iterator const &remote(local_raw_iterator const &it)

static local_raw_iterator local(local_iterator &&it)

static local_iterator remote(local_raw_iterator &&it)

346 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/algorithm.hpp

Header hpx/parallel/algorithms/adjacent_difference.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter2>::type>::type adjacent_difference(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest)

Assigns each value in the range given by result its corresponding element in the range [first, last]
and the one preceding it except *result, which is assigned *first

The difference operations in the parallel adjacent_difference invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly (last - first) - 1 application of the binary operator and (last - first)

assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used for the input range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the output range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of the range the algorithm will

be applied to.
• last: Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• dest: Refers to the beginning of the sequence of elements the results will be assigned to.

The difference operations in the parallel adjacent_difference invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

This overload of adjacent_find is available if the user decides to provide their algorithm their own
binary predicate op.

2.9. API reference 347

HPX Documentation, 1.5.1

Return The adjacent_difference algorithm returns a hpx::future<FwdIter2> if the execution pol-
icy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise.
The adjacent_find algorithm returns an iterator to the last element in the output range.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter2>::type>::type adjacent_difference(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest,
Op
&&op)

Assigns each value in the range given by result its corresponding element in the range [first, last]
and the one preceding it except *result, which is assigned *first

The difference operations in the parallel adjacent_difference invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly (last - first) - 1 application of the binary operator and (last - first)

assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used for the input range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the output range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Op: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of adjacent_difference requires Op to meet the requirements of Copy-
Constructible.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of the range the algorithm will

be applied to.
• last: Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• dest: Refers to the beginning of the sequence of elements the results will be assigned to.
• op: The binary operator which returns the difference of elements. The signature should be

equivalent to the following:

bool op(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 must be such that objects of type FwdIter1 can be dereferenced
and then implicitly converted to the dereferenced type of dest.

The difference operations in the parallel adjacent_difference invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The adjacent_difference algorithm returns a hpx::future<FwdIter2> if the execution pol-
icy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise.
The adjacent_find algorithm returns an iterator to the last element in the output range.

348 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/adjacent_find.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter, typename Pred = detail::equal_to>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter>::type>::type adjacent_find(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last,
Pred
&&op
=
Pred())

Searches the range [first, last) for two consecutive identical elements. This version uses the given
binary predicate op

The comparison operations in the parallel adjacent_find invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly the smaller of (result - first) + 1 and (last - first) - 1 application of the

predicate where result is the value returned
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used for the range (deduced). This iterator type
must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of adjacent_find requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of the range the algorithm will

be applied to.
• last: Refers to the end of the sequence of elements of the range the algorithm will be

applied to.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1 .

2.9. API reference 349

HPX Documentation, 1.5.1

The comparison operations in the parallel adjacent_find invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

This overload of adjacent_find is available if the user decides to provide their algorithm their own
binary predicate op.
Return The adjacent_find algorithm returns a hpx::future<InIter> if the execution policy is of

type sequenced_task_policy or parallel_task_policy and returns InIter otherwise. The adja-
cent_find algorithm returns an iterator to the first of the identical elements. If no such elements
are found, last is returned.

Header hpx/parallel/algorithms/all_any_none.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type none_of(ExPolicy &&policy, FwdIter first,

FwdIter last, F &&f, Proj &&proj =
Proj())

Checks if unary predicate f returns true for no elements in the range [first, last).

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most last - first applications of the predicate f

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of none_of requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Type must be such that an object of type FwdIter can be dereferenced and then
implicitly converted to Type.

350 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• proj: Specifies the function (or function object) which will be invoked for each of the elements
as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The none_of algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The none_of algorithm
returns true if the unary predicate f returns true for no elements in the range, false otherwise. It
returns true if the range is empty.

template<typename ExPolicy, typename FwdIter, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type any_of(ExPolicy &&policy, FwdIter first, FwdIter

last, F &&f, Proj &&proj = Proj())
Checks if unary predicate f returns true for at least one element in the range [first, last).

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most last - first applications of the predicate f

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of any_of requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Type must be such that an object of type FwdIter can be dereferenced and then
implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the elements
as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

2.9. API reference 351

HPX Documentation, 1.5.1

Return The any_of algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The any_of algorithm re-
turns true if the unary predicate f returns true for at least one element in the range, false otherwise. It
returns false if the range is empty.

template<typename ExPolicy, typename FwdIter, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type all_of(ExPolicy &&policy, FwdIter first, FwdIter

last, F &&f, Proj &&proj = Proj())
Checks if unary predicate f returns true for all elements in the range [first, last).

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most last - first applications of the predicate f

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of all_of requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Type must be such that an object of type FwdIter can be dereferenced and then
implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the elements
as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The all_of algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The all_of algorithm returns
true if the unary predicate f returns true for all elements in the range, false otherwise. It returns true if
the range is empty.

352 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/copy.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type copy(ExPolicy &&policy,

FwdIter1 first, FwdIter1
last, FwdIter2 dest)

Copies the elements in the range, defined by [first, last), to another range beginning at dest.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• dest: Refers to the beginning of the destination range.

The assignments in the parallel copy algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The copy algorithm returns a hpx::future<FwdIter2> > if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter2> otherwise. The copy algorithm
returns the pair of the input iterator last and the output iterator to the element in the destination range,
one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type copy_n(ExPolicy &&policy,

FwdIter1 first, Size
count, FwdIter2 dest)

Copies the elements in the range [first, first + count), starting from first and proceeding to first + count -
1., to another range beginning at dest.

The assignments in the parallel copy_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

2.9. API reference 353

HPX Documentation, 1.5.1

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply f to.

• FwdIter2: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• count: Refers to the number of elements starting at first the algorithm will be applied to.

• dest: Refers to the beginning of the destination range.

The assignments in the parallel copy_n algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The copy_n algorithm returns a hpx::future<FwdIter2> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The copy algorithm
returns the pair of the input iterator forwarded to the first element after the last in the input sequence
and the output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename F>
hpx::parallel::util::detail::algorithm_result<ExPolicy, FwdIter2>::type copy_if(ExPolicy &&pol-

icy, FwdIter1
first, FwdIter1 last,
FwdIter2 dest, Pred
&&pred)

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies only
the elements for which the predicate f returns true. The order of the elements that are not removed is
preserved.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs not more than last - first assignments, exactly last - first applications of the
predicate f.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

354 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• Pred: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• dest: Refers to the beginning of the destination range.

• pred: Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last).This is an unary predicate which returns true for the
required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Type must be such that an object of type FwdIter1 can be dereferenced and then
implicitly converted to Type.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The copy_if algorithm returns a hpx::future<FwdIter2> > if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The copy algorithm
returns the pair of the input iterator forwarded to the first element after the last in the input sequence
and the output iterator to the element in the destination range, one past the last element copied.

Header hpx/parallel/algorithms/count.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIterB, typename FwdIterE, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<FwdIterB>::difference_type>::type count(ExPolicy

&&pol-
icy,
FwdIterB
first,
FwdIterE
last,
T
const
&value,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version counts
the elements that are equal to the given value.

2.9. API reference 355

HPX Documentation, 1.5.1

The comparisons in the parallel count algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly last - first comparisons.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the com-
parisons.

• FwdIterB: The type of the source begin iterator used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIterE: The type of the source end iterator used (deduced). This iterator type must meet the
requirements of an forward iterator.

• T: The type of the value to search for (deduced).

• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• value: The value to search for.

• proj: Specifies the function (or function object) which will be invoked for each of the elements
as a projection operation before the actual predicate is invoked.

Note The comparisons in the parallel count algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The count algorithm returns a hpx::future<difference_type> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns difference_type otherwise (where differ-
ence_type is defined by std::iterator_traits<FwdIterB>::difference_type. The count algorithm returns
the number of elements satisfying the given criteria.

template<typename ExPolicy, typename Iter, typename Sent, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<Iter>::difference_type>::type count_if(ExPolicy

&&pol-
icy,
Iter
first,
Sent
last,
F
&&f,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version counts
elements for which predicate f returns true.

Note Complexity: Performs exactly last - first applications of the predicate.

356 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note The assignments in the parallel count_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note The assignments in the parallel count_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The count_if algorithm returns hpx::future<difference_type> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns difference_type otherwise (where differ-
ence_type is defined by std::iterator_traits<FwdIterB>::difference_type. The count algorithm returns
the number of elements satisfying the given criteria.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the com-
parisons.

• Iter: The type of the source begin iterator used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Sent: The type of the source end iterator used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of count_if requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last).This is an unary predicate which returns true for the required
elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Type must be such that an object of type FwdIterB can be dereferenced and then
implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the elements
as a projection operation before the actual predicate is invoked.

Header hpx/parallel/algorithms/destroy.hpp

namespace hpx

2.9. API reference 357

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename FwdIter>
util::detail::algorithm_result<ExPolicy>::type destroy(ExPolicy &&policy, FwdIter first, FwdIter

last)
Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, last).

The operations in the parallel destroy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly last - first operations.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

The operations in the parallel destroy algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The destroy algorithm returns a hpx::future<void>, if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename ExPolicy, typename FwdIter, typename Size>
util::detail::algorithm_result<ExPolicy, FwdIter>::type destroy_n(ExPolicy &&policy, FwdIter first,

Size count)
Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, first + count).

The operations in the parallel destroy_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly count operations, if count > 0, no assignments otherwise.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply this algorithm to.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• count: Refers to the number of elements starting at first the algorithm will be applied to.

358 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The operations in the parallel destroy_n algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The destroy_n algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The destroy_n algorithm
returns the iterator to the element in the source range, one past the last element constructed.

Header hpx/parallel/algorithms/equal.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result<ExPolicy, bool>::type equal(ExPolicy &&policy, FwdIter1 first1,

FwdIter1 last1, FwdIter2 first2, FwdIter2
last2, Pred &&op = Pred())

Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate f.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of equal requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first1: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last1: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• first2: Refers to the beginning of the sequence of elements of the second range the algorithm
will be applied to.

• last2: Refers to the end of the sequence of elements of the second range the algorithm will be
applied to.

• op: The binary predicate which returns true if the elements should be treated as equal. The
signature of the predicate function should be equivalent to the following:

2.9. API reference 359

HPX Documentation, 1.5.1

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects passed
to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and FwdIter2 can
be dereferenced and then implicitly converted to Type1 and Type2 respectively

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Return The equal algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The equal algorithm returns
true if the elements in the two ranges are equal, otherwise it returns false. If the length of the range
[first1, last1) does not equal the length of the range [first2, last2), it returns false.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result<ExPolicy, bool>::type equal(ExPolicy &&policy, FwdIter1 first1,

FwdIter1 last1, FwdIter2 first2, Pred &&op
= Pred())

Returns true if the range [first1, last1) is equal to the range starting at first2, and false otherwise.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most last1 - first1 applications of the predicate f.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of equal requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first1: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last1: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• first2: Refers to the beginning of the sequence of elements of the second range the algorithm
will be applied to.

• op: The binary predicate which returns true if the elements should be treated as equal. The
signature of the predicate function should be equivalent to the following:

360 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects passed
to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and FwdIter2 can
be dereferenced and then implicitly converted to Type1 and Type2 respectively

The comparison operations in the parallel equal algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals *(first2
+ (i - first1)). This overload of equal uses operator== to determine if two elements are equal.

Return The equal algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The equal algorithm returns
true if the elements in the two ranges are equal, otherwise it returns false.

Header hpx/parallel/algorithms/exclusive_scan.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename Op>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter2>::type>::type exclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest,
T
init,
Op
&&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, *first, . . . , *(first + (i - result) - 1)).

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate op.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

2.9. API reference 361

HPX Documentation, 1.5.1

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T: The type of the value to be used as initial (and intermediate) values (deduced).
• Op: The type of the binary function object used for the reduction operation.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• init: The initial value for the generalized sum.
• op: Specifies the function (or function object) which will be invoked for each of the values

of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the
ith input element in the ith sum. If op is not mathematically associative, the behavior of inclu-
sive_scan may be non-deterministic.
Return The exclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy

is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
exclusive_scan algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

Note GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter2>::type>::type exclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest,
T
init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(+, init, *first, . . . , *(first + (i - result) - 1))

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate std::plus<T>.

362 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T: The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• init: The initial value for the generalized sum.

The reduce operations in the parallel exclusive_scan algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith
input element in the ith sum.
Return The exclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy

is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
exclusive_scan algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

Note GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:
• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <=
N.

Header hpx/parallel/algorithms/fill.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename T>
util::detail::algorithm_result<ExPolicy>::type fill(ExPolicy &&policy, FwdIter first, FwdIter last, T

value)
Assigns the given value to the elements in the range [first, last).

The comparisons in the parallel fill algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

2.9. API reference 363

HPX Documentation, 1.5.1

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• T: The type of the value to be assigned (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• value: The value to be assigned.

The comparisons in the parallel fill algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The fill algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where differ-
ence_type is defined by void.

template<typename ExPolicy, typename FwdIter, typename Size, typename T>
util::detail::algorithm_result<ExPolicy, FwdIter>::type fill_n(ExPolicy &&policy, FwdIter first, Size

count, T value)
Assigns the given value value to the first count elements in the range beginning at first if count > 0. Does
nothing otherwise.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly count assignments, for count > 0.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an output iterator.

• Size: The type of the argument specifying the number of elements to apply f to.

• T: The type of the value to be assigned (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• count: Refers to the number of elements starting at first the algorithm will be applied to.

• value: The value to be assigned.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The fill_n algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where differ-
ence_type is defined by void.

364 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/find.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename T>
util::detail::algorithm_result<ExPolicy, FwdIter>::type find(ExPolicy &&policy, FwdIter first, FwdIter

last, T const &val)
Returns the first element in the range [first, last) that is equal to value

The comparison operations in the parallel find algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most last - first applications of the operator==().

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

• T: The type of the value to find (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• val: the value to compare the elements to

The comparison operations in the parallel find algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The find algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find algorithm re-
turns the first element in the range [first,last) that is equal to val. If no such element in the range of
[first,last) is equal to val, then the algorithm returns last.

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result<ExPolicy, FwdIter>::type find_if(ExPolicy &&policy, FwdIter first,

FwdIter last, F &&f)
Returns the first element in the range [first, last) for which predicate f returns true

The comparison operations in the parallel find_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most last - first applications of the predicate.

Template Parameters

2.9. API reference 365

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of a forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• f: The unary predicate which returns true for the required element. The signature of the predicate
should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects passed
to it. The type Type must be such that objects of type FwdIter can be dereferenced and then
implicitly converted to Type.

The comparison operations in the parallel find_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The find_if algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find_if algorithm
returns the first element in the range [first,last) that satisfies the predicate f. If no such element exists
that satisfies the predicate f, the algorithm returns last.

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result<ExPolicy, FwdIter>::type find_if_not(ExPolicy &&policy, FwdIter

first, FwdIter last, F &&f)
Returns the first element in the range [first, last) for which predicate f returns false

The comparison operations in the parallel find_if_not algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most last - first applications of the predicate.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of a forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

366 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• f: The unary predicate which returns false for the required element. The signature of the predicate
should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const &, but the function must not modify the objects passed
to it. The type Type must be such that objects of type FwdIter can be dereferenced and then
implicitly converted to Type.

The comparison operations in the parallel find_if_not algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The find_if_not algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find_if_not algo-
rithm returns the first element in the range [first, last) that does not satisfy the predicate f. If no such
element exists that does not satisfy the predicate f, the algorithm returns last.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result<ExPolicy, FwdIter1>::type find_end(ExPolicy &&policy, FwdIter1

first1, FwdIter1 last1, FwdIter2
first2, FwdIter2 last2, Pred &&op
= Pred())

Returns the last subsequence of elements [first2, last2) found in the range [first, last) using the given
predicate f to compare elements.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

Note Complexity: at most S*(N-S+1) comparisons where S = distance(first2, last2) and N = dis-
tance(first1, last1).

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of replace requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

• Proj: The type of an optional projection function. This defaults to util::projection_identity and
is applied to the elements of type dereferenced FwdIter1 and dereferenced FwdIter2.

Parameters

2.9. API reference 367

HPX Documentation, 1.5.1

• policy: The execution policy to use for the scheduling of the iterations.

• first1: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last1: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• first2: Refers to the beginning of the sequence of elements the algorithm will be searching
for.

• last2: Refers to the end of the sequence of elements of the algorithm will be searching for.

• op: The binary predicate which returns true if the elements should be treated as equal. The
signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects passed
to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and FwdIter2 can
be dereferenced and then implicitly converted to Type1 and Type2 respectively.

• proj: Specifies the function (or function object) which will be invoked for each of the elements
of type dereferenced FwdIter1 and dereferenced FwdIter2 as a projection operation before the
function f is invoked.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

This overload of find_end is available if the user decides to provide the algorithm their own predicate f.

Return The find_end algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find_end algorithm
returns an iterator to the beginning of the last subsequence [first2, last2) in range [first, last). If the
length of the subsequence [first2, last2) is greater than the length of the range [first1, last1), last1 is
returned. Additionally if the size of the subsequence is empty or no subsequence is found, last1 is
also returned.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result<ExPolicy, FwdIter1>::type find_first_of(ExPolicy &&policy,

FwdIter1 first, FwdIter1
last, FwdIter2 s_first,
FwdIter2 s_last, Pred
&&op = Pred())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses binary predicate p to
compare elements

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

Note Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = distance(first,
last).

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

368 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• FwdIter2: The type of the source iterators used for the second range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of equal requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

• Proj1: The type of an optional projection function. This defaults to util::projection_identity and
is applied to the elements of type dereferenced FwdIter1.

• Proj2: The type of an optional projection function. This defaults to util::projection_identity and
is applied to the elements of type dereferenced FwdIter2.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• s_first: Refers to the beginning of the sequence of elements the algorithm will be searching
for.

• s_last: Refers to the end of the sequence of elements of the algorithm will be searching for.

• op: The binary predicate which returns true if the elements should be treated as equal. The
signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects passed
to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and FwdIter2 can
be dereferenced and then implicitly converted to Type1 and Type2 respectively.

• proj1: Specifies the function (or function object) which will be invoked for each of the elements
of type dereferenced FwdIter1 as a projection operation before the function op is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the elements
of type dereferenced FwdIter2 as a projection operation before the function op is invoked.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The find_first_of algorithm returns a hpx::future<FwdIter1> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter1 otherwise. The find_first_of al-
gorithm returns an iterator to the first element in the range [first, last) that is equal to an element from
the range [s_first, s_last). If the length of the subsequence [s_first, s_last) is greater than the length
of the range [first, last), last is returned. Additionally if the size of the subsequence is empty or no
subsequence is found, last is also returned. This overload of find_end is available if the user decides
to provide the algorithm their own predicate f.

2.9. API reference 369

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/for_each.hpp

namespace hpx

Functions

template<typename InIter, typename F>
F for_each(InIter first, InIter last, F &&f)

Applies f to the result of dereferencing every iterator in the range [first, last).

If f returns a result, the result is ignored.

Note Complexity: Applies f exactly last - first times.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Return f.

Template Parameters

• InIter: The type of the source begin and end iterator used (deduced). This iterator type must
meet the requirements of an input iterator.

• F: The type of the function/function object to use (deduced). F must meet requirements of Move-
Constructible.

Parameters

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
FwdIter can be dereferenced and then implicitly converted to Type.

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result<ExPolicy, void>::type for_each(ExPolicy &&policy, FwdIter first,

FwdIter last, F &&f)
Applies f to the result of dereferencing every iterator in the range [first, last).

If f returns a result, the result is ignored.

Note Complexity: Applies f exactly last - first times.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function param-
eter, since parallelization may not permit efficient state accumulation.

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Template Parameters

370 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIte: The type of the source begin and end iterator used (deduced). This iterator type must
meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of for_each requires F to meet the requirements of CopyConstructible.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
FwdIter can be dereferenced and then implicitly converted to Type.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The for_each algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename InIter, typename Size, typename F>
InIter for_each_n(InIter first, Size count, F &&f)

Applies f to the result of dereferencing every iterator in the range [first, first + count), starting from first
and proceeding to first + count - 1.

If f returns a result, the result is ignored.

Note Complexity: Applies f exactly count times.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Return first + count for non-negative values of count and first for negative values.

Template Parameters

• InIter: The type of the source begin and end iterator used (deduced). This iterator type must
meet the requirements of an input iterator.

• Size: The type of the argument specifying the number of elements to apply f to.

• F: The type of the function/function object to use (deduced). F must meet requirements of Move-
Constructible.

Parameters

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• count: Refers to the number of elements starting at first the algorithm will be applied to.

2.9. API reference 371

HPX Documentation, 1.5.1

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
FwdIter can be dereferenced and then implicitly converted to Type.

template<typename ExPolicy, typename FwdIter, typename Size, typename F>
util::detail::algorithm_result<ExPolicy, FwdIter>::type for_each_n(ExPolicy &&policy, FwdIter first,

Size count, F &&f)
Applies f to the result of dereferencing every iterator in the range [first, first + count), starting from first
and proceeding to first + count - 1.

If f returns a result, the result is ignored.

Note Complexity: Applies f exactly count times.

If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function param-
eter, since parallelization may not permit efficient state accumulation.

The application of function objects in parallel algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply f to.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of for_each requires F to meet the requirements of CopyConstructible.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• count: Refers to the number of elements starting at first the algorithm will be applied to.

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
FwdIter can be dereferenced and then implicitly converted to Type.

The application of function objects in parallel algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

372 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return The for_each_n algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns first + count
for non-negative values of count and first for negative values.

Header hpx/parallel/algorithms/for_loop.hpp

namespace hpx

Functions

template<typename I, typename ...Args>
void for_loop(typename std::decay<I>::type first, I last, Args&&... args)

The for_loop implements loop functionality over a range specified by integral or iterator bounds. For the
iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the programmer
when and if to dereference the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying paral-
lel::execution::seq as the execution policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args param-
eter pack shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function, f. f shall
meet the requirements of MoveConstructible.

Template Parameters

• I: The type of the iteration variable. This could be an (forward) iterator type or an integral type.

• Args: A parameter pack, it’s last element is a function object to be invoked for each iteration,
the others have to be either conforming to the induction or reduction concept.

Parameters

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• args: The last element of this parameter pack is the function (object) to invoke, while the re-
maining elements of the parameter pack are instances of either induction or reduction objects.
The function (or function object) which will be invoked for each of the elements in the sequence
specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the iteration
variable and one argument for each of the induction or reduction objects passed to the algorithms,
representing their current values.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to the
reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding f,
an additional argument is passed to each application of f as follows:

Note As described in the C++ standard, arithmetic on non-random-access iterators is performed using
advance and distance.

2.9. API reference 373

HPX Documentation, 1.5.1

Note The order of the elements of the input sequence is important for determining ordinal position of an
application of f, even though the applications themselves may be unordered.

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

template<typename ExPolicy, typename I, typename ...Args>
util::detail::algorithm_result<ExPolicy>::type for_loop(ExPolicy &&policy, typename

std::decay<I>::type first, I last, Args&&...
args)

The for_loop implements loop functionality over a range specified by integral or iterator bounds. For the
iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the programmer
when and if to dereference the iterator.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args param-
eter pack shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function, f. f shall
meet the requirements of MoveConstructible.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• I: The type of the iteration variable. This could be an (forward) iterator type or an integral type.

• Args: A parameter pack, it’s last element is a function object to be invoked for each iteration,
the others have to be either conforming to the induction or reduction concept.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• args: The last element of this parameter pack is the function (object) to invoke, while the re-
maining elements of the parameter pack are instances of either induction or reduction objects.
The function (or function object) which will be invoked for each of the elements in the sequence
specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the iteration
variable and one argument for each of the induction or reduction objects passed to the algorithms,
representing their current values.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to the
reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding f,
an additional argument is passed to each application of f as follows:

374 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note As described in the C++ standard, arithmetic on non-random-access iterators is performed using
advance and distance.

Note The order of the elements of the input sequence is important for determining ordinal position of an
application of f, even though the applications themselves may be unordered.

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Return The for_loop algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename I, typename S, typename ...Args>
void for_loop_strided(typename std::decay<I>::type first, I last, S stride, Args&&... args)

The for_loop_strided implements loop functionality over a range specified by integral or iterator bounds.
For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the pro-
grammer when and if to dereference the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying paral-
lel::execution::seq as the execution policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args param-
eter pack shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function, f. f shall
meet the requirements of MoveConstructible.

Template Parameters

• I: The type of the iteration variable. This could be an (forward) iterator type or an integral type.

• S: The type of the stride variable. This should be an integral type.

• Args: A parameter pack, it’s last element is a function object to be invoked for each iteration,
the others have to be either conforming to the induction or reduction concept.

Parameters

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• stride: Refers to the stride of the iteration steps. This shall have non-zero value and shall be
negative only if I has integral type or meets the requirements of a bidirectional iterator.

• args: The last element of this parameter pack is the function (object) to invoke, while the re-
maining elements of the parameter pack are instances of either induction or reduction objects.
The function (or function object) which will be invoked for each of the elements in the sequence
specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the iteration
variable and one argument for each of the induction or reduction objects passed to the algorithms,
representing their current values.

2.9. API reference 375

HPX Documentation, 1.5.1

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to the
reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding f,
an additional argument is passed to each application of f as follows:

Note As described in the C++ standard, arithmetic on non-random-access iterators is performed using
advance and distance.

Note The order of the elements of the input sequence is important for determining ordinal position of an
application of f, even though the applications themselves may be unordered.

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

template<typename ExPolicy, typename I, typename S, typename ...Args>
util::detail::algorithm_result<ExPolicy>::type for_loop_strided(ExPolicy &&policy, typename

std::decay<I>::type first, I last, S
stride, Args&&... args)

The for_loop_strided implements loop functionality over a range specified by integral or iterator bounds.
For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the pro-
grammer when and if to dereference the iterator.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args param-
eter pack shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function, f. f shall
meet the requirements of MoveConstructible.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• I: The type of the iteration variable. This could be an (forward) iterator type or an integral type.

• S: The type of the stride variable. This should be an integral type.

• Args: A parameter pack, it’s last element is a function object to be invoked for each iteration,
the others have to be either conforming to the induction or reduction concept.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• stride: Refers to the stride of the iteration steps. This shall have non-zero value and shall be
negative only if I has integral type or meets the requirements of a bidirectional iterator.

• args: The last element of this parameter pack is the function (object) to invoke, while the re-
maining elements of the parameter pack are instances of either induction or reduction objects.

376 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The function (or function object) which will be invoked for each of the elements in the sequence
specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the iteration
variable and one argument for each of the induction or reduction objects passed to the algorithms,
representing their current values.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to the
reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding f,
an additional argument is passed to each application of f as follows:

Note As described in the C++ standard, arithmetic on non-random-access iterators is performed using
advance and distance.

Note The order of the elements of the input sequence is important for determining ordinal position of an
application of f, even though the applications themselves may be unordered.

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Return The for_loop_strided algorithm returns a hpx::future<void> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename I, typename Size, typename ...Args>
void for_loop_n(I first, Size size, Args&&... args)

The for_loop implements loop functionality over a range specified by integral or iterator bounds. For the
iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the programmer
when and if to dereference the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying paral-
lel::execution::seq as the execution policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args param-
eter pack shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function, f. f shall
meet the requirements of MoveConstructible.

Template Parameters

• I: The type of the iteration variable. This could be an (forward) iterator type or an integral type.

• Size: The type of a non-negative integral value specifying the number of items to iterate over.

• Args: A parameter pack, it’s last element is a function object to be invoked for each iteration,
the others have to be either conforming to the induction or reduction concept.

Parameters

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

2.9. API reference 377

HPX Documentation, 1.5.1

• size: Refers to the number of items the algorithm will be applied to.

• args: The last element of this parameter pack is the function (object) to invoke, while the re-
maining elements of the parameter pack are instances of either induction or reduction objects.
The function (or function object) which will be invoked for each of the elements in the sequence
specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the iteration
variable and one argument for each of the induction or reduction objects passed to the algorithms,
representing their current values.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to the
reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding f,
an additional argument is passed to each application of f as follows:

Note As described in the C++ standard, arithmetic on non-random-access iterators is performed using
advance and distance.

Note The order of the elements of the input sequence is important for determining ordinal position of an
application of f, even though the applications themselves may be unordered.

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

template<typename ExPolicy, typename I, typename Size, typename ...Args>
util::detail::algorithm_result<ExPolicy>::type for_loop_n(ExPolicy &&policy, I first, Size size,

Args&&... args)
The for_loop_n implements loop functionality over a range specified by integral or iterator bounds. For
the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the programmer
when and if to dereference the iterator.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args param-
eter pack shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function, f. f shall
meet the requirements of MoveConstructible.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• I: The type of the iteration variable. This could be an (forward) iterator type or an integral type.

• Size: The type of a non-negative integral value specifying the number of items to iterate over.

• Args: A parameter pack, it’s last element is a function object to be invoked for each iteration,
the others have to be either conforming to the induction or reduction concept.

Parameters

378 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• size: Refers to the number of items the algorithm will be applied to.

• args: The last element of this parameter pack is the function (object) to invoke, while the re-
maining elements of the parameter pack are instances of either induction or reduction objects.
The function (or function object) which will be invoked for each of the elements in the sequence
specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the iteration
variable and one argument for each of the induction or reduction objects passed to the algorithms,
representing their current values.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to the
reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding f,
an additional argument is passed to each application of f as follows:

Note As described in the C++ standard, arithmetic on non-random-access iterators is performed using
advance and distance.

Note The order of the elements of the input sequence is important for determining ordinal position of an
application of f, even though the applications themselves may be unordered.

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Return The for_loop_n algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename I, typename Size, typename S, typename ...Args>
void for_loop_n_strided(I first, Size size, S stride, Args&&... args)

The for_loop_n_strided implements loop functionality over a range specified by integral or iterator bounds.
For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the program-
mer when and if to dereference the iterator.

The execution of for_loop without specifying an execution policy is equivalent to specifying paral-
lel::execution::seq as the execution policy.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args param-
eter pack shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function, f. f shall
meet the requirements of MoveConstructible.

Template Parameters

• I: The type of the iteration variable. This could be an (forward) iterator type or an integral type.

2.9. API reference 379

HPX Documentation, 1.5.1

• Size: The type of a non-negative integral value specifying the number of items to iterate over.

• S: The type of the stride variable. This should be an integral type.

• Args: A parameter pack, it’s last element is a function object to be invoked for each iteration,
the others have to be either conforming to the induction or reduction concept.

Parameters

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• size: Refers to the number of items the algorithm will be applied to.

• stride: Refers to the stride of the iteration steps. This shall have non-zero value and shall be
negative only if I has integral type or meets the requirements of a bidirectional iterator.

• args: The last element of this parameter pack is the function (object) to invoke, while the re-
maining elements of the parameter pack are instances of either induction or reduction objects.
The function (or function object) which will be invoked for each of the elements in the sequence
specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the iteration
variable and one argument for each of the induction or reduction objects passed to the algorithms,
representing their current values.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to the
reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding f,
an additional argument is passed to each application of f as follows:

Note As described in the C++ standard, arithmetic on non-random-access iterators is performed using
advance and distance.

Note The order of the elements of the input sequence is important for determining ordinal position of an
application of f, even though the applications themselves may be unordered.

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

template<typename ExPolicy, typename I, typename Size, typename S, typename ...Args>
util::detail::algorithm_result<ExPolicy>::type for_loop_n_strided(ExPolicy &&policy, I first, Size

size, S stride, Args&&... args)
The for_loop_n_strided implements loop functionality over a range specified by integral or iterator bounds.
For the iterator case, these algorithms resemble for_each from the Parallelism TS, but leave to the program-
mer when and if to dereference the iterator.

Requires: I shall be an integral type or meet the requirements of an input iterator type. The args param-
eter pack shall have at least one element, comprising objects returned by invocations of reduction and/or
induction function templates followed by exactly one element invocable element-access function, f. f shall
meet the requirements of MoveConstructible.

380 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• I: The type of the iteration variable. This could be an (forward) iterator type or an integral type.

• Size: The type of a non-negative integral value specifying the number of items to iterate over.

• S: The type of the stride variable. This should be an integral type.

• Args: A parameter pack, it’s last element is a function object to be invoked for each iteration,
the others have to be either conforming to the induction or reduction concept.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• size: Refers to the number of items the algorithm will be applied to.

• stride: Refers to the stride of the iteration steps. This shall have non-zero value and shall be
negative only if I has integral type or meets the requirements of a bidirectional iterator.

• args: The last element of this parameter pack is the function (object) to invoke, while the re-
maining elements of the parameter pack are instances of either induction or reduction objects.
The function (or function object) which will be invoked for each of the elements in the sequence
specified by [first, last) should expose a signature equivalent to:

<ignored> pred(I const& a, ...);

The signature does not need to have const&. It will receive the current value of the iteration
variable and one argument for each of the induction or reduction objects passed to the algorithms,
representing their current values.

Effects: Applies f to each element in the input sequence, with additional arguments corresponding to the
reductions and inductions in the args parameter pack. The length of the input sequence is last - first.

The first element in the input sequence is specified by first. Each subsequent element is generated by
incrementing the previous element.

Along with an element from the input sequence, for each member of the args parameter pack excluding f,
an additional argument is passed to each application of f as follows:

Note As described in the C++ standard, arithmetic on non-random-access iterators is performed using
advance and distance.

Note The order of the elements of the input sequence is important for determining ordinal position of an
application of f, even though the applications themselves may be unordered.

If the pack member is an object returned by a call to a reduction function listed in section, then the
additional argument is a reference to a view of that reduction object. If the pack member is an object
returned by a call to induction, then the additional argument is the induction value for that induction object
corresponding to the position of the application of f in the input sequence.

Complexity: Applies f exactly once for each element of the input sequence.

Remarks: If f returns a result, the result is ignored.

Return The for_loop_n_strided algorithm returns a hpx::future<void> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

2.9. API reference 381

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/for_loop_induction.hpp

namespace hpx

namespace parallel

namespace v2

Functions

template<typename T>
constexpr detail::induction_stride_helper<T> induction(T &&value, std::size_t stride)

The function template returns an induction object of unspecified type having a value type and
encapsulating an initial value value of that type and, optionally, a stride.

For each element in the input range, a looping algorithm over input sequence S computes an
induction value from an induction variable and ordinal position p within S by the formula i + p *
stride if a stride was specified or i + p otherwise. This induction value is passed to the element
access function.

If the value argument to induction is a non-const lvalue, then that lvalue becomes the live-out
object for the returned induction object. For each induction object that has a live-out object, the
looping algorithm assigns the value of i + n * stride to the live-out object upon return, where n is
the number of elements in the input range.

Return This returns an induction object with value type T, initial value value, and (if specified)
stride stride. If T is an lvalue of non-const type, value is used as the live-out object for the
induction object; otherwise there is no live-out object.

Template Parameters
• T: The value type to be used by the induction object.

Parameters
• value: [in] The initial value to use for the induction object
• stride: [in] The (optional) stride to use for the induction object (default: 1)

Header hpx/parallel/algorithms/for_loop_reduction.hpp

namespace hpx

namespace parallel

namespace v2

382 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename T, typename Op>
constexpr detail::reduction_helper<T , typename std::decay<Op>::type> reduction(T

&var,
T
const
&iden-
tity,
Op
&&com-
biner)

The function template returns a reduction object of unspecified type having a value type and
encapsulating an identity value for the reduction, a combiner function object, and a live-out object
from which the initial value is obtained and into which the final value is stored.

A parallel algorithm uses reduction objects by allocating an unspecified number of instances,
called views, of the reduction’s value type. Each view is initialized with the reduction object’s
identity value, except that the live-out object (which was initialized by the caller) comprises one
of the views. The algorithm passes a reference to a view to each application of an element-access
function, ensuring that no two concurrently-executing invocations share the same view. A view
can be shared between two applications that do not execute concurrently, but initialization is
performed only once per view.

Modifications to the view by the application of element access functions accumulate as partial
results. At some point before the algorithm returns, the partial results are combined, two at a
time, using the reduction object’s combiner operation until a single value remains, which is then
assigned back to the live-out object.

T shall meet the requirements of CopyConstructible and MoveAssignable. The expression var =
combiner(var, var) shall be well formed.
Template Parameters

• T: The value type to be used by the induction object.
• Op: The type of the binary function (object) used to perform the reduction operation.

Parameters
• var: [in,out] The life-out value to use for the reduction object. This will hold the reduced

value after the algorithm is finished executing.
• identity: [in] The identity value to use for the reduction operation.
• combiner: [in] The binary function (object) used to perform a pairwise reduction on the

elements.

Note In order to produce useful results, modifications to the view should be limited to com-
mutative operations closely related to the combiner operation. For example if the combiner
is plus<T>, incrementing the view would be consistent with the combiner but doubling it or
assigning to it would not.

Return This returns a reduction object of unspecified type having a value type of T. When the
return value is used by an algorithm, the reference to var is used as the live-out object, new
views are initialized to a copy of identity, and views are combined by invoking the copy of
combiner, passing it the two views to be combined.

2.9. API reference 383

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/generate.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename F>
util::detail::algorithm_result<ExPolicy, FwdIter>::type generate(ExPolicy &&policy, FwdIter first,

FwdIter last, F &&f)
Assign each element in range [first, last) a value generated by the given function object f

The assignments in the parallel generate algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Exactly distance(first, last) invocations of f and assignments.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of a forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• f: generator function that will be called. signature of function should be equivalent to the follow-
ing:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and assigned a
value of type Ret.

The assignments in the parallel generate algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns last.

template<typename ExPolicy, typename FwdIter, typename Size, typename F>
util::detail::algorithm_result<ExPolicy, FwdIter>::type generate_n(ExPolicy &&policy, FwdIter first,

Size count, F &&f)
Assigns each element in range [first, first+count) a value generated by the given function object g.

The assignments in the parallel generate_n algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: Exactly count invocations of f and assignments, for count > 0.

384 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• count: Refers to the number of elements in the sequence the algorithm will be applied to.

• f: Refers to the generator function object that will be called. The signature of the function should
be equivalent to

Ret fun();

The type Ret must be such that an object of type OutputIt can be dereferenced and assigned a
value of type Ret.

The assignments in the parallel generate_n algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns last.

Header hpx/parallel/algorithms/includes.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::less>

2.9. API reference 385

HPX Documentation, 1.5.1

std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, bool>::type>::type includes(ExPolicy
&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
Pred
&&op
=
Pred())

Returns true if every element from the sorted range [first2, last2) is found within the sorted range
[first1, last1). Also returns true if [first2, last2) is empty. The version expects both ranges to be
sorted with the user supplied binary predicate f.

The comparison operations in the parallel includes algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note At most 2*(N1+N2-1) comparisons, where N1 = std::distance(first1, last1) and N2 =

std::distance(first2, last2).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential
form, the parallel overload of includes requires Pred to meet the requirements of Copy-
Constructible. This defaults to std::less<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last1: Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• first2: Refers to the beginning of the sequence of elements of the second range the algo-

rithm will be applied to.
• last2: Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• op: The binary predicate which returns true if the elements should be treated as includes.

The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively

The comparison operations in the parallel includes algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

386 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return The includes algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The includes algo-
rithm returns true every element from the sorted range [first2, last2) is found within the sorted
range [first1, last1). Also returns true if [first2, last2) is empty.

Header hpx/parallel/algorithms/inclusive_scan.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op, typename T>
util::detail::algorithm_result<ExPolicy, FwdIter2>::type inclusive_scan(ExPolicy &&pol-

icy, FwdIter1
first, FwdIter1
last, FwdIter2
dest, Op &&op,
T init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate op.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T: The type of the value to be used as initial (and intermediate) values (deduced).
• Op: The type of the binary function object used for the reduction operation.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• init: The initial value for the generalized sum.
• op: Specifies the function (or function object) which will be invoked for each of the values

of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

2.9. API reference 387

HPX Documentation, 1.5.1

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the
ith input element in the ith sum. If op is not mathematically associative, the behavior of inclu-
sive_scan may be non-deterministic.
Return The inclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy

is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
inclusive_scan algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

Note GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op>
util::detail::algorithm_result<ExPolicy, FwdIter2>::type inclusive_scan(ExPolicy &&pol-

icy, FwdIter1
first, FwdIter1
last, FwdIter2
dest, Op &&op)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate op.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Op: The type of the binary function object used for the reduction operation.
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• op: Specifies the function (or function object) which will be invoked for each of the values

of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy

388 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith
input element in the ith sum.
Return The inclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy

is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
inclusive_scan algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

Note GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:
• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <=
N.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter2>::type>::type inclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest)

Assigns through each iterator i in [result, result + (last - first)) the value of gENERAL-
IZED_NONCOMMUTATIVE_SUM(+, *first, . . . , *(first + (i - result))).

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate op.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

The reduce operations in the parallel inclusive_scan algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

The difference between exclusive_scan and inclusive_scan is that inclusive_scan includes the ith
input element in the ith sum.
Return The inclusive_scan algorithm returns a hpx::future<FwdIter2> if the execution policy

is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise. The
inclusive_scan algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

Note GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aN) is defined as:

2.9. API reference 389

HPX Documentation, 1.5.1

• a1 when N is 1
• GENERALIZED_NONCOMMUTATIVE_SUM(+, a1, . . . , aK)

– GENERALIZED_NONCOMMUTATIVE_SUM(+, aM, . . . , aN) where 1 < K+1 = M <=
N.

Header hpx/parallel/algorithms/is_heap.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename RandIter, typename Comp = detail::less, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type is_heap(ExPolicy &&policy, RandIter

first, RandIter last, Comp
&&comp = Comp(), Proj
&&proj = Proj())

Returns whether the range is max heap. That is, true if the range is max heap, false otherwise.
The function uses the given comparison function object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.
Note Complexity: Performs at most N applications of the comparison comp, at most 2 * N

applications of the projection proj, where N = last - first.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• RandIter: The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp: The type of the function/function object to use (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument of
the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

390 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return The is_heap algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The is_heap al-
gorithm returns whether the range is max heap. That is, true if the range is max heap, false
otherwise.

template<typename ExPolicy, typename RandIter, typename Comp = detail::less, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, RandIter>::type is_heap_until(ExPolicy &&pol-

icy, RandIter first,
RandIter last,
Comp &&comp
= Comp(), Proj
&&proj = Proj())

Returns the upper bound of the largest range beginning at first which is a max heap. That is, the
last iterator it for which range [first, it) is a max heap. The function uses the given comparison
function object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.
Note Complexity: Performs at most N applications of the comparison comp, at most 2 * N

applications of the projection proj, where N = last - first.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• RandIter: The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp: The type of the function/function object to use (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument of
the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The is_heap_until algorithm returns a hpx::future<RandIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns RandIter otherwise. The
is_heap_until algorithm returns the upper bound of the largest range beginning at first which is
a max heap. That is, the last iterator it for which range [first, it) is a max heap.

2.9. API reference 391

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/is_partitioned.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter, typename Pred>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, bool>::type>::type is_partitioned(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last,
Pred
&&pred)

Determines if the range [first, last) is partitioned.

The predicate operations in the parallel is_partitioned algorithm invoked with an execution policy
object of type sequenced_policy executes in sequential order in the calling thread.
Note Complexity: at most (N) predicate evaluations where N = distance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of that the algorithm will be

applied to.
• last: Refers to the end of the sequence of elements of that the algorithm will be applied to.
• pred: Refers to the binary predicate which returns true if the first argument should be

treated as less than the second argument. The signature of the function should be equivalent
to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

The comparison operations in the parallel is_partitioned algorithm invoked with an execution pol-
icy object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The is_partitioned algorithm returns a hpx::future<bool> if the execution policy is of
type task_execution_policy and returns bool otherwise. The is_partitioned algorithm returns
true if each element in the sequence for which pred returns true precedes those for which pred

392 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

returns false. Otherwise is_partitioned returns false. If the range [first, last) contains less than
two elements, the function is always true.

Header hpx/parallel/algorithms/is_sorted.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter, typename Pred = detail::less>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, bool>::type>::type is_sorted(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last,
Pred
&&pred
=
Pred())

Determines if the range [first, last) is sorted. Uses pred to compare elements.

The comparison operations in the parallel is_sorted algorithm invoked with an execution policy
object of type sequenced_policy executes in sequential order in the calling thread.
Note Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of

partitions
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of is_sorted requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of that the algorithm will be

applied to.
• last: Refers to the end of the sequence of elements of that the algorithm will be applied to.
• pred: Refers to the binary predicate which returns true if the first argument should be

treated as less than the second argument. The signature of the function should be equivalent
to

bool pred(const Type &a, const Type &b);

2.9. API reference 393

HPX Documentation, 1.5.1

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

The comparison operations in the parallel is_sorted algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The is_sorted algorithm returns a hpx::future<bool> if the execution policy is of type
task_execution_policy and returns bool otherwise. The is_sorted algorithm returns a bool if
each element in the sequence [first, last) satisfies the predicate passed. If the range [first, last)
contains less than two elements, the function always returns true.

template<typename ExPolicy, typename FwdIter, typename Pred = detail::less>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter>::type>::type is_sorted_until(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last,
Pred
&&pred
=
Pred())

Returns the first element in the range [first, last) that is not sorted. Uses a predicate to compare
elements or the less than operator.

The comparison operations in the parallel is_sorted_until algorithm invoked with an execution
policy object of type sequenced_policy executes in sequential order in the calling thread.
Note Complexity: at most (N+S-1) comparisons where N = distance(first, last). S = number of

partitions
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used for the This iterator type must meet the
requirements of a forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of is_sorted_until requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of that the algorithm will be

applied to.
• last: Refers to the end of the sequence of elements of that the algorithm will be applied to.
• pred: Refers to the binary predicate which returns true if the first argument should be

treated as less than the second argument. The signature of the function should be equivalent
to

bool pred(const Type &a, const Type &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type must be such that objects of types FwdIter can be dereferenced
and then implicitly converted to Type.

The comparison operations in the parallel is_sorted_until algorithm invoked with an execution
policy object of type parallel_policy or parallel_task_policy are permitted to execute in an un-

394 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

ordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The is_sorted_until algorithm returns a hpx::future<FwdIter> if the execution policy is
of type task_execution_policy and returns FwdIter otherwise. The is_sorted_until algorithm
returns the first unsorted element. If the sequence has less than two elements or the sequence
is sorted, last is returned.

Header hpx/parallel/algorithms/lexicographical_compare.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::less>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, bool>::type>::type lexicographical_compare(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
Pred
&&pred
=
Pred())

Checks if the first range [first1, last1) is lexicographically less than the second range [first2, last2).
uses a provided predicate to compare elements.

The comparison operations in the parallel lexicographical_compare algorithm invoked with an
execution policy object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most 2 * min(N1, N2) applications of the comparison operation, where N1

= std::distance(first1, last) and N2 = std::distance(first2, last2).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of lexicographical_compare requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

Parameters

2.9. API reference 395

HPX Documentation, 1.5.1

• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last1: Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• first2: Refers to the beginning of the sequence of elements of the second range the algo-

rithm will be applied to.
• last2: Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• pred: Refers to the comparison function that the first and second ranges will be applied to

The comparison operations in the parallel lexicographical_compare algorithm invoked with an
execution policy object of type parallel_policy or parallel_task_policy are permitted to execute
in an unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Note Lexicographical comparison is an operation with the following properties
• Two ranges are compared element by element
• The first mismatching element defines which range is lexicographically less or greater than

the other
• If one range is a prefix of another, the shorter range is lexicographically less than the other
• If two ranges have equivalent elements and are of the same length, then the ranges are lexi-

cographically equal
• An empty range is lexicographically less than any non-empty range
• Two empty ranges are lexicographically equal

Return The lexicographically_compare algorithm returns a hpx::future<bool> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns bool otherwise.
The lexicographically_compare algorithm returns true if the first range is lexicographically
less, otherwise it returns false. range [first2, last2), it returns false.

Header hpx/parallel/algorithms/merge.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename RandIter1, typename RandIter2, typename RandIter3, typename Comp = detail::less, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_tuple<tag::in1(RandIter1), tag::in2

RandIter2, tag::outRandIter3>>::type mergeExPolicy &&policy, RandIter1 first1, RandIter1
last1, RandIter2 first2, RandIter2 last2, RandIter3 dest, Comp &&comp = Comp(), Proj1
&&proj1 = Proj1(), Proj2 &&proj2 = Proj2()Merges two sorted ranges [first1, last1) and [first2,
last2) into one sorted range beginning at dest. The order of equivalent elements in the each of
original two ranges is preserved. For equivalent elements in the original two ranges, the elements
from the first range precede the elements from the second range. The destination range cannot
overlap with either of the input ranges.

The assignments in the parallel merge algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs O(std::distance(first1, last1) + std::distance(first2, last2)) applica-

tions of the comparison comp and the each projection.

396 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• RandIter1: The type of the source iterators used (deduced) representing the first sorted
range. This iterator type must meet the requirements of an random access iterator.

• RandIter2: The type of the source iterators used (deduced) representing the second sorted
range. This iterator type must meet the requirements of an random access iterator.

• RandIter3: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an random access iterator.

• Comp: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of merge requires Comp to meet the requirements of CopyConstructible.
This defaults to std::less<>

• Proj1: The type of an optional projection function to be used for elements of the first range.
This defaults to util::projection_identity

• Proj2: The type of an optional projection function to be used for elements of the second
range. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the first range of elements the algorithm will be applied

to.
• last1: Refers to the end of the first range of elements the algorithm will be applied to.
• first2: Refers to the beginning of the second range of elements the algorithm will be

applied to.
• last2: Refers to the end of the second range of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• comp: comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types RandIter1 and
RandIter2 can be dereferenced and then implicitly converted to both Type1 and Type2

• proj1: Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual comparison comp is
invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of the second range as a projection operation before the actual comparison comp is
invoked.

The assignments in the parallel merge algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Return The merge algorithm returns a hpx::future<tagged_tuple<tag::in1(RandIter1),
tag::in2(RandIter2), tag::out(RandIter3)> > if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns tagged_tuple<tag::in1(RandIter1),
tag::in2(RandIter2), tag::out(RandIter3)> otherwise. The merge algorithm returns the tuple
of the source iterator last1, the source iterator last2, the destination iterator to the end of the
dest range.

template<typename ExPolicy, typename RandIter, typename Comp = detail::less, typename Proj = util::projection_identity>

2.9. API reference 397

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, RandIter>::type inplace_merge(ExPolicy &&pol-
icy, RandIter first,
RandIter middle,
RandIter last,
Comp &&comp
= Comp(), Proj
&&proj = Proj())

Merges two consecutive sorted ranges [first, middle) and [middle, last) into one sorted range
[first, last). The order of equivalent elements in the each of original two ranges is preserved.
For equivalent elements in the original two ranges, the elements from the first range precede the
elements from the second range.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs O(std::distance(first, last)) applications of the comparison comp and

the each projection.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• RandIter: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an random access iterator.

• Comp: The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of inplace_merge requires Comp to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the first sorted range the algorithm will be applied to.
• middle: Refers to the end of the first sorted range and the beginning of the second sorted

range the algorithm will be applied to.
• last: Refers to the end of the second sorted range the algorithm will be applied to.
• comp: comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types RandIter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The inplace_merge algorithm returns a hpx::future<RandIter> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns RandIter otherwise. The
inplace_merge algorithm returns the source iterator last

398 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/minmax.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter, typename Proj = util::projection_identity, typename F = detail::less>
util::detail::algorithm_result<ExPolicy, FwdIter>::type min_element(ExPolicy &&policy,

FwdIter first, FwdIter
last, F &&f = F(), Proj
&&proj = Proj())

Finds the smallest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel min_element algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of a forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of min_element requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• f: The binary predicate which returns true if the the left argument is less than the right

element. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The comparisons in the parallel min_element algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The min_element algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
min_element algorithm returns the iterator to the smallest element in the range [first, last). If
several elements in the range are equivalent to the smallest element, returns the iterator to the
first such element. Returns last if the range is empty.

2.9. API reference 399

HPX Documentation, 1.5.1

template<typename ExPolicy, typename FwdIter, typename Proj = util::projection_identity, typename F = detail::less>
util::detail::algorithm_result<ExPolicy, FwdIter>::type max_element(ExPolicy &&policy,

FwdIter first, FwdIter
last, F &&f = F(), Proj
&&proj = Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel max_element algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of a forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of max_element requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• f: The binary predicate which returns true if the This argument is optional and defaults to

std::less. the left argument is less than the right element. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The comparisons in the parallel max_element algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The max_element algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
max_element algorithm returns the iterator to the smallest element in the range [first, last). If
several elements in the range are equivalent to the smallest element, returns the iterator to the
first such element. Returns last if the range is empty.

template<typename ExPolicy, typename FwdIter, typename Proj = util::projection_identity, typename F = detail::less>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::min(FwdIter), tag::max

FwdIter>>::type minmax_elementExPolicy &&policy, FwdIter first, FwdIter last, F &&f =
F(), Proj &&proj = Proj()Finds the greatest element in the range [first, last) using the given
comparison function f.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most max(floor(3/2*(N-1)), 0) applications of the predicate, where N =

std::distance(first, last).
Template Parameters

400 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of a forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of minmax_element requires F to meet the requirements of CopyCon-
structible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• f: The binary predicate which returns true if the the left argument is less than the right

element. This argument is optional and defaults to std::less. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The minmax_element algorithm returns a hpx::future<tagged_pair<tag::min(FwdIter),
tag::max(FwdIter)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::min(FwdIter), tag::max(FwdIter)> otherwise.
The minmax_element algorithm returns a pair consisting of an iterator to the smallest el-
ement as the first element and an iterator to the greatest element as the second. Returns
std::make_pair(first, first) if the range is empty. If several elements are equivalent to the small-
est element, the iterator to the first such element is returned. If several elements are equivalent
to the largest element, the iterator to the last such element is returned.

Header hpx/parallel/algorithms/mismatch.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>

2.9. API reference 401

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, std::pair<FwdIter1, FwdIter2>>::type mismatch(ExPolicy
&&policy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2, Pred
&&op =
Pred())

Returns true if the range [first1, last1) is mismatch to the range [first2, last2), and false otherwise.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate f. If FwdIter1 and
FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2) then
no applications of the predicate f are made.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of mismatch requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first1: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last1: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• first2: Refers to the beginning of the sequence of elements of the second range the algorithm
will be applied to.

• last2: Refers to the end of the sequence of elements of the second range the algorithm will be
applied to.

• op: The binary predicate which returns true if the elements should be treated as mismatch. The
signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects passed
to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and FwdIter2 can
be dereferenced and then implicitly converted to Type1 and Type2 respectively

402 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Note The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i mis-
matchs *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two elements
are mismatch.

Return The mismatch algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The mismatch algorithm
returns true if the elements in the two ranges are mismatch, otherwise it returns false. If the length of
the range [first1, last1) does not mismatch the length of the range [first2, last2), it returns false.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to>
util::detail::algorithm_result<ExPolicy, std::pair<FwdIter1, FwdIter2>>::type mismatch(ExPolicy

&&policy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2, Pred
&&op =
Pred())

Returns std::pair with iterators to the first two non-equivalent elements.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

Note Complexity: At most last1 - first1 applications of the predicate f.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This iterator
type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of mismatch requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first1: Refers to the beginning of the sequence of elements of the first range the algorithm will
be applied to.

• last1: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• first2: Refers to the beginning of the sequence of elements of the second range the algorithm
will be applied to.

2.9. API reference 403

HPX Documentation, 1.5.1

• op: The binary predicate which returns true if the elements should be treated as mismatch. The
signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects passed
to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and FwdIter2 can
be dereferenced and then implicitly converted to Type1 and Type2 respectively

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The mismatch algorithm returns a hpx::future<std::pair<FwdIter1, FwdIter2> > if the execu-
tion policy is of type sequenced_task_policy or parallel_task_policy and returns std::pair<FwdIter1,
FwdIter2> otherwise. The mismatch algorithm returns the first mismatching pair of elements from
two ranges: one defined by [first1, last1) and another defined by [first2, last2).

Header hpx/parallel/algorithms/move.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
util::detail::algorithm_result<ExPolicy, FwdIter2>::type move(ExPolicy &&policy, FwdIter1 first,

FwdIter1 last, FwdIter2 dest)
Moves the elements in the range [first, last), to another range beginning at dest. After this operation the
elements in the moved-from range will still contain valid values of the appropriate type, but not necessarily
the same values as before the move.

The move assignments in the parallel move algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly last - first move assignments.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the move
assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• dest: Refers to the beginning of the destination range.

404 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The move assignments in the parallel move algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The move algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)>
> if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise. The move algorithm returns the pair
of the input iterator last and the output iterator to the element in the destination range, one past the
last element moved.

Header hpx/parallel/algorithms/partition.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename BidirIter, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, BidirIter>::type stable_partition(ExPolicy

&&policy,
BidirIter first,
BidirIter last,
F &&f, Proj
&&proj =
Proj())

Permutes the elements in the range [first, last) such that there exists an iterator i such that for every
iterator j in the range [first, i) INVOKE(f, INVOKE (proj, *j)) != false, and for every iterator k in
the range [i, last), INVOKE(f, INVOKE (proj, *k)) == false

The invocations of f in the parallel stable_partition algorithm invoked with an execution policy
object of type sequenced_policy executes in sequential order in the calling thread.
Note Complexity: At most (last - first) * log(last - first) swaps, but only linear number of swaps

if there is enough extra memory. Exactly last - first applications of the predicate and projection.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the invocations of f.

• BidirIter: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an input iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.

2.9. API reference 405

HPX Documentation, 1.5.1

• f: Unary predicate which returns true if the element should be ordered before other elements.
Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). The signature of this predicate should be equivalent to:

bool fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type BidirIter can be dereferenced and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

The invocations of f in the parallel stable_partition algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The stable_partition algorithm returns an iterator i such that for every iterator j in the
range [first, i), f(*j) != false INVOKE(f, INVOKE(proj, *j)) != false, and for every iterator k in
the range [i, last), f(*k) == false INVOKE(f, INVOKE (proj, *k)) == false. The relative order of
the elements in both groups is preserved. If the execution policy is of type parallel_task_policy
the algorithm returns a future<> referring to this iterator.

template<typename ExPolicy, typename FwdIter, typename Pred, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type partition(ExPolicy &&policy,

FwdIter first, FwdIter
last, Pred &&pred, Proj
&&proj = Proj())

Reorders the elements in the range [first, last) in such a way that all elements for which the pred-
icate pred returns true precede the elements for which the predicate pred returns false. Relative
order of the elements is not preserved.

The assignments in the parallel partition algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most 2 * (last - first) swaps. Exactly last - first applications of the predicate

and projection.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition requires Pred to meet the requirements of CopyCon-
structible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• pred: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an unary predicate for partitioning
the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced

406 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

and then implicitly converted to Type.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel partition algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The partition algorithm returns a hpx::future<FwdIter> if the execution policy is of type
parallel_task_policy and returns FwdIter otherwise. The partition algorithm returns the iterator
to the first element of the second group.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_tuple<tag::in(FwdIter1), tag::out1

FwdIter2, tag::out2FwdIter3>>::type partition_copyExPolicy &&policy, FwdIter1 first,
FwdIter1 last, FwdIter2 dest_true, FwdIter3 dest_false, Pred &&pred, Proj &&proj =
Proj()Copies the elements in the range, defined by [first, last), to two different ranges depend-
ing on the value returned by the predicate pred. The elements, that satisfy the predicate pred,
are copied to the range beginning at dest_true. The rest of the elements are copied to the range
beginning at dest_false. The order of the elements is preserved.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range for the elements that
satisfy the predicate pred (deduced). This iterator type must meet the requirements of an
forward iterator.

• FwdIter3: The type of the iterator representing the destination range for the elements that
don’t satisfy the predicate pred (deduced). This iterator type must meet the requirements of
an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of partition_copy requires Pred to meet the requirements of CopyCon-
structible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest_true: Refers to the beginning of the destination range for the elements that satisfy

the predicate pred.
• dest_false: Refers to the beginning of the destination range for the elements that don’t

satisfy the predicate pred.
• pred: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an unary predicate for partitioning
the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects

2.9. API reference 407

HPX Documentation, 1.5.1

passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The partition_copy algorithm returns a hpx::future<tagged_tuple<tag::in(InIter),
tag::out1(OutIter1), tag::out2(OutIter2)> > if the execution policy is of type par-
allel_task_policy and returns tagged_tuple<tag::in(InIter), tag::out1(OutIter1),
tag::out2(OutIter2)> otherwise. The partition_copy algorithm returns the tuple of the
source iterator last, the destination iterator to the end of the dest_true range, and the
destination iterator to the end of the dest_false range.

Header hpx/parallel/algorithms/reduce.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename T, typename F>
util::detail::algorithm_result<ExPolicy, T>::type reduce(ExPolicy &&policy, FwdIter first, FwdIter

last, T init, F &&f)
Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the predicate f.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source begin and end iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• T: The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• f: Specifies the function (or function object) which will be invoked for each of the elements in
the sequence specified by [first, last). This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

408 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The signature does not need to have const&. The types Type1 Ret must be such that an object of
type FwdIter can be dereferenced and then implicitly converted to any of those types.

• init: The initial value for the generalized sum.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm returns
the result of the generalized sum over the elements given by the input range [first, last).

Note GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

template<typename ExPolicy, typename FwdIter, typename T>
util::detail::algorithm_result<ExPolicy, T>::type reduce(ExPolicy &&policy, FwdIter first, FwdIter

last, T init)
Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the operator+().

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source begin and end iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• T: The type of the value to be used as initial (and intermediate) values (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• init: The initial value for the generalized sum.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

2.9. API reference 409

HPX Documentation, 1.5.1

Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm returns
the result of the generalized sum (applying operator+()) over the elements given by the input range
[first, last).

Note GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

template<typename ExPolicy, typename FwdIter>
util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<FwdIter>::value_type>::type reduce(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the operator+().

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source begin and end iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic for
non-associative or non-commutative binary predicate.

Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise (where T is the value_type of
FwdIter). The reduce algorithm returns the result of the generalized sum (applying operator+()) over
the elements given by the input range [first, last).

Note The type of the initial value (and the result type) T is determined from the value_type of the used
FwdIter.

Note GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:

410 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• a1 when N is 1

• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

Header hpx/parallel/algorithms/reduce_by_key.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename RanIter, typename RanIter2, typename FwdIter1, typename FwdIter2, typename Compare = std::equal_to<typename std::iterator_traits<RanIter>::value_type>, typename Func = std::plus<typename std::iterator_traits<RanIter2>::value_type>>
util::detail::algorithm_result<ExPolicy, util::in_out_result<FwdIter1, FwdIter2>>::type reduce_by_key(ExPolicy

&&pol-
icy,
Ran-
Iter
key_first,
Ran-
Iter
key_last,
Ran-
Iter2
val-
ues_first,
FwdIter1
keys_output,
FwdIter2
val-
ues_output,
Com-
pare
&&comp
=
Com-
pare(),
Func
&&func
=
Func())

Reduce by Key performs an inclusive scan reduction operation on elements supplied in key/value
pairs. The algorithm produces a single output value for each set of equal consecutive keys in
[key_first, key_last). the value being the GENERALIZED_NONCOMMUTATIVE_SUM(op,
init, *first, . . . , *(first + (i - result))). for the run of consecutive matching keys. The number of
keys supplied must match the number of values.

2.9. API reference 411

HPX Documentation, 1.5.1

comp has to induce a strict weak ordering on the values.
Note Complexity: O(last - first) applications of the predicate op.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• RanIter: The type of the key iterators used (deduced). This iterator type must meet the
requirements of a random access iterator.

• RanIter2: The type of the value iterators used (deduced). This iterator type must meet the
requirements of a random access iterator.

• FwdIter1: The type of the iterator representing the destination key range (deduced). This
iterator type must meet the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination value range (deduced).
This iterator type must meet the requirements of an forward iterator.

• Compare: The type of the optional function/function object to use to compare keys (de-
duced). Assumed to be std::equal_to otherwise.

• Func: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• key_first: Refers to the beginning of the sequence of key elements the algorithm will be

applied to.
• key_last: Refers to the end of the sequence of key elements the algorithm will be applied

to.
• values_first: Refers to the beginning of the sequence of value elements the algorithm

will be applied to.
• keys_output: Refers to the start output location for the keys produced by the algorithm.
• values_output: Refers to the start output location for the values produced by the algo-

rithm.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

• func: Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a binary predicate. The signature
of this predicate should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an object
of type FwdIter can be dereferenced and then implicitly converted to any of those types.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The reduce_by_key algorithm returns a hpx::future<pair<Iter1,Iter2>> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns pair<Iter1,Iter2>
otherwise.

412 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/remove.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter, typename Pred, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type remove_if(ExPolicy &&policy,

FwdIter first, FwdIter
last, Pred &&pred, Proj
&&proj = Proj())

Removes all elements satisfying specific criteria from the range [first, last) and returns a past-the-
end iterator for the new end of the range. This version removes all elements for which predicate
pred returns true.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the predicate pred and the projection proj.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of remove_if requires Pred to meet the requirements of Copy-
Constructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• pred: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

2.9. API reference 413

HPX Documentation, 1.5.1

Return The remove_if algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The re-
move_if algorithm returns the iterator to the new end of the range.

template<typename ExPolicy, typename FwdIter, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type remove(ExPolicy &&policy, FwdIter

first, FwdIter last, T const
&value, Proj &&proj =
Proj())

Removes all elements satisfying specific criteria from the range [first, last) and returns a past-
the-end iterator for the new end of the range. This version removes all elements that are equal to
value.

The assignments in the parallel remove algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the operator==() and the projection proj.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• T: The type of the value to remove (deduced). This value type must meet the requirements
of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• value: Specifies the value of elements to remove.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel remove algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The remove algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The remove
algorithm returns the iterator to the new end of the range.

Header hpx/parallel/algorithms/remove_copy.hpp

namespace hpx

namespace parallel

namespace v1

414 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, util::in_out_result<FwdIter1, FwdIter2>>::type remove_copy(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest,
T
const
&val,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies
only the elements for which the comparison operator returns false when compare to val. The order
of the elements that are not removed is preserved.

Effects: Copies all the elements referred to by the iterator it in the range [first,last) for which the
following corresponding conditions do not hold: INVOKE(proj, *it) == value

The assignments in the parallel remove_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T: The type that the result of dereferencing FwdIter1 is compared to.
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• val: Value to be removed.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel remove_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The remove_copy algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1),
tag::out(FwdIter2)> > if the execution policy is of type sequenced_task_policy or paral-

2.9. API reference 415

HPX Documentation, 1.5.1

lel_task_policy and returns tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise.
The copy algorithm returns the pair of the input iterator forwarded to the first element after
the last in the input sequence and the output iterator to the element in the destination range, one
past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, util::in_out_result<FwdIter1, FwdIter2>>::type remove_copy_if(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest,
F
&&f,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies
only the elements for which the predicate f returns false. The order of the elements that are not
removed is preserved.

Effects: Copies all the elements referred to by the iterator it in the range [first,last) for which the
following corresponding conditions do not hold: INVOKE(pred, INVOKE(proj, *it)) != false.

The assignments in the parallel remove_copy_if algorithm invoked with an execution policy ob-
ject of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the
elements to be removed. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects

416 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel remove_copy_if algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fash-
ion in unspecified threads, and indeterminately sequenced within each thread.

Return The remove_copy_if algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1),
tag::out(FwdIter2)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise.
The copy algorithm returns the pair of the input iterator forwarded to the first element after
the last in the input sequence and the output iterator to the element in the destination range, one
past the last element copied.

Header hpx/parallel/algorithms/replace.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter, typename T1, typename T2, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type replace(ExPolicy &&policy, FwdIter

first, FwdIter last, T1 const
&old_value, T2 const
&new_value, Proj &&proj =
Proj())

Replaces all elements satisfying specific criteria with new_value in the range [first, last).

Effects: Substitutes elements referred by the iterator it in the range [first, last) with new_value,
when the following corresponding conditions hold: INVOKE(proj, *it) == old_value

The assignments in the parallel replace algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of a forward iterator.

• T1: The type of the old value to replace (deduced).
• T2: The type of the new values to replace (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.

2.9. API reference 417

HPX Documentation, 1.5.1

• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• old_value: Refers to the old value of the elements to replace.
• new_value: Refers to the new value to use as the replacement.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel replace algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The replace algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise. It returns last.

template<typename ExPolicy, typename FwdIter, typename F, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type replace_if(ExPolicy &&policy,

FwdIter first, FwdIter
last, F &&f, T const
&new_value, Proj
&&proj = Proj())

Replaces all elements satisfying specific criteria (for which predicate f returns true) with
new_value in the range [first, last).

Effects: Substitutes elements referred by the iterator it in the range [first, last) with new_value,
when the following corresponding conditions hold: INVOKE(f, INVOKE(proj, *it)) != false

The assignments in the parallel replace_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first applications of the predicate.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of a forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.
(deduced).

• T: The type of the new values to replace (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the
elements which need to replaced. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• new_value: Refers to the new value to use as the replacement.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel replace_if algorithm invoked with an execution policy object of

418 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns
last.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T1, typename T2, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(FwdIter1), tag::out

FwdIter2>>::type replace_copyExPolicy &&policy, FwdIter1 first, FwdIter1 last, FwdIter2
dest, T1 const &old_value, T2 const &new_value, Proj &&proj = Proj()Copies the all ele-
ments from the range [first, last) to another range beginning at dest replacing all elements satisfy-
ing a specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (last - first)) either new_value
or *(first + (it - result)) depending on whether the following corresponding condition holds: IN-
VOKE(proj, *(first + (i - result))) == old_value

The assignments in the parallel replace_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first applications of the predicate.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• T1: The type of the old value to replace (deduced).
• T2: The type of the new values to replace (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• old_value: Refers to the old value of the elements to replace.
• new_value: Refers to the new value to use as the replacement.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel replace_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The replace_copy algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1),
tag::out(FwdIter2)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise.
The copy algorithm returns the pair of the input iterator last and the output iterator to the
element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename F, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(FwdIter1), tag::out

FwdIter2>>::type replace_copy_ifExPolicy &&policy, FwdIter1 first, FwdIter1 last,
FwdIter2 dest, F &&f, T const &new_value, Proj &&proj = Proj()Copies the all elements

2.9. API reference 419

HPX Documentation, 1.5.1

from the range [first, last) to another range beginning at dest replacing all elements satisfying a
specific criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (last - first)) either new_value
or *(first + (it - result)) depending on whether the following corresponding condition holds: IN-
VOKE(f, INVOKE(proj, *(first + (i - result)))) != false

The assignments in the parallel replace_copy_if algorithm invoked with an execution policy ob-
ject of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first applications of the predicate.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.
(deduced).

• T: The type of the new values to replace (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the
elements which need to replaced. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• new_value: Refers to the new value to use as the replacement.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel replace_copy_if algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fash-
ion in unspecified threads, and indeterminately sequenced within each thread.

Return The replace_copy_if algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1),
tag::out(FwdIter2)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise.
The replace_copy_if algorithm returns the input iterator last and the output iterator to the
element in the destination range, one past the last element copied.

420 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/reverse.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename BidirIter>
util::detail::algorithm_result<ExPolicy, BidirIter>::type reverse(ExPolicy &&policy,

BidirIter first, BidirIter
last)

Reverses the order of the elements in the range [first, last). Behaves as if applying std::iter_swap
to every pair of iterators first+i, (last-i) - 1 for each non-negative i < (last-first)/2.

The assignments in the parallel reverse algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Linear in the distance between first and last.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• BidirIter: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an bidirectional iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.

The assignments in the parallel reverse algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The reverse algorithm returns a hpx::future<BidirIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns BidirIter otherwise. It returns last.

template<typename ExPolicy, typename BidirIter, typename FwdIter>
util::detail::algorithm_result<ExPolicy, util::in_out_result<BidirIter, FwdIter>>::type reverse_copy(ExPolicy

&&pol-
icy,
BidirIter
first,
BidirIter
last,
FwdIter
dest_first)

Copies the elements from the range [first, last) to another range beginning at dest_first in such
a way that the elements in the new range are in reverse order. Behaves as if by executing the
assignment *(dest_first + (last - first) - 1 - i) = *(first + i) once for each non-negative i < (last -
first) If the source and destination ranges (that is, [first, last) and [dest_first, dest_first+(last-first))
respectively) overlap, the behavior is undefined.

2.9. API reference 421

HPX Documentation, 1.5.1

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• BidirIter: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an bidirectional iterator.

• FwdIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest_first: Refers to the begin of the destination range.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The reverse_copy algorithm returns a hpx::future<tagged_pair<tag::in(BidirIter),
tag::out(FwdIter)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(BidirIter), tag::out(FwdIter)> otherwise. The
copy algorithm returns the pair of the input iterator forwarded to the first element after the last
in the input sequence and the output iterator to the element in the destination range, one past
the last element copied.

Header hpx/parallel/algorithms/rotate.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter>
util::detail::algorithm_result<ExPolicy, util::in_out_result<FwdIter, FwdIter>>::type rotate(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
new_first,
FwdIter
last)

Performs a left rotation on a range of elements. Specifically, rotate swaps the elements in the
range [first, last) in such a way that the element new_first becomes the first element of the new
range and new_first - 1 becomes the last element.

422 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The assignments in the parallel rotate algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Linear in the distance between first and last.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• new_first: Refers to the element that should appear at the beginning of the rotated range.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note The type of dereferenced FwdIter must meet the requirements of MoveAssignable and
MoveConstructible.

Return The rotate algorithm returns a hpx::future<tagged_pair<tag::begin(FwdIter),
tag::end(FwdIter)> > if the execution policy is of type parallel_task_policy and returns
tagged_pair<tag::begin(FwdIter), tag::end(FwdIter)> otherwise. The rotate algorithm
returns the iterator equal to pair(first + (last - new_first), last).

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
util::detail::algorithm_result<ExPolicy, util::in_out_result<FwdIter1, FwdIter2>>::type rotate_copy(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
new_first,
FwdIter1
last,
FwdIter2
dest_first)

Copies the elements from the range [first, last), to another range beginning at dest_first in such
a way, that the element new_first becomes the first element of the new range and new_first - 1
becomes the last element.

The assignments in the parallel rotate_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an bidirectional iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.

2.9. API reference 423

HPX Documentation, 1.5.1

• first: Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• new_first: Refers to the element that should appear at the beginning of the rotated range.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest_first: Refers to the begin of the destination range.

The assignments in the parallel rotate_copy algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The rotate_copy algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1),
tag::out(FwdIter2)> > if the execution policy is of type parallel_task_policy and returns
tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise. The rotate_copy algorithm
returns the output iterator to the element past the last element copied.

Header hpx/parallel/algorithms/search.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter, typename FwdIter2, typename Pred = detail::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type search(ExPolicy &&policy, FwdIter

first, FwdIter last, FwdIter2
s_first, FwdIter2 s_last,
Pred &&op = Pred(), Proj1
&&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided
predicate to compare elements.

The comparison operations in the parallel search algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-

tance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an input iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of adjacent_find requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

• Proj1: The type of an optional projection function. This defaults to
util::projection_identity and is applied to the elements of type dereferenced FwdIter.

424 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• Proj2: The type of an optional projection function. This defaults to
util::projection_identity and is applied to the elements of type dereferenced FwdIter2.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last: Refers to the end of the sequence of elements of the first range the algorithm will be

applied to.
• s_first: Refers to the beginning of the sequence of elements the algorithm will be search-

ing for.
• s_last: Refers to the end of the sequence of elements of the algorithm will be searching

for.
• op: Refers to the binary predicate which returns true if the elements should be treated as

equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively

• proj1: Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced FwdIter1 as a projection operation before the actual predicate
is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced FwdIter2 as a projection operation before the actual predicate
is invoked.

The comparison operations in the parallel search algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The search algorithm returns a hpx::future<FwdIter> if the execution policy is of type
task_execution_policy and returns FwdIter otherwise. The search algorithm returns an iterator
to the beginning of the first subsequence [s_first, s_last) in range [first, last). If the length of the
subsequence [s_first, s_last) is greater than the length of the range [first, last), last is returned.
Additionally if the size of the subsequence is empty first is returned. If no subsequence is
found, last is returned.

template<typename ExPolicy, typename FwdIter, typename FwdIter2, typename Pred = detail::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type search_n(ExPolicy &&policy,

FwdIter first, std::size_t
count, FwdIter2 s_first,
FwdIter2 s_last, Pred
&&op = Pred(), Proj1
&&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided
predicate to compare elements.

The comparison operations in the parallel search_n algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = count.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

2.9. API reference 425

HPX Documentation, 1.5.1

• FwdIter: The type of the source iterators used for the first range (deduced). This iterator
type must meet the requirements of an input iterator.

• FwdIter2: The type of the source iterators used for the second range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of adjacent_find requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• count: Refers to the range of elements of the first range the algorithm will be applied to.
• s_first: Refers to the beginning of the sequence of elements the algorithm will be search-

ing for.
• s_last: Refers to the end of the sequence of elements of the algorithm will be searching

for.
• op: Refers to the binary predicate which returns true if the elements should be treated as

equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively

• proj1: Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced FwdIter1 as a projection operation before the actual predicate
is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of type dereferenced FwdIter2 as a projection operation before the actual predicate
is invoked.

The comparison operations in the parallel search_n algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The search_n algorithm returns a hpx::future<FwdIter> if the execution policy is of
type task_execution_policy and returns FwdIter otherwise. The search_n algorithm returns an
iterator to the beginning of the last subsequence [s_first, s_last) in range [first, first+count).
If the length of the subsequence [s_first, s_last) is greater than the length of the range [first,
first+count), first is returned. Additionally if the size of the subsequence is empty or no subse-
quence is found, first is also returned.

Header hpx/parallel/algorithms/set_difference.hpp

namespace hpx

namespace parallel

namespace v1

426 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred = detail::less>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter3>::type>::type set_difference(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
FwdIter3
dest,
Pred
&&op
=
Pred())

Constructs a sorted range beginning at dest consisting of all elements present in the range [first1,
last1) and not present in the range [first2, last2). This algorithm expects both input ranges to be
sorted with the given binary predicate f.

Equivalent elements are treated individually, that is, if some element is found m times in [first1,
last1) and n times in [first2, last2), it will be copied to dest exactly std::max(m-n, 0) times. The
resulting range cannot overlap with either of the input ranges.
Note Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first

sequence and N2 is the length of the second sequence.
The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution
policy object execute in sequential order in the calling thread (sequenced_policy) or in a single
new thread spawned from the current thread (for sequenced_task_policy).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter1: The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• FwdIter3: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_difference requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last1: Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• first2: Refers to the beginning of the sequence of elements of the second range the algo-

rithm will be applied to.

2.9. API reference 427

HPX Documentation, 1.5.1

• last2: Refers to the end of the sequence of elements of the second range the algorithm
will be applied to.

• dest: Refers to the beginning of the destination range.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced and
then implicitly converted to Type1

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The set_difference algorithm returns a hpx::future<FwdIter3> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter3 otherwise. The
set_difference algorithm returns the output iterator to the element in the destination range, one
past the last element copied.

Header hpx/parallel/algorithms/set_intersection.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred = detail::less>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter3>::type>::type set_intersection(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
FwdIter3
dest,
Pred
&&op
=
Pred())

Constructs a sorted range beginning at dest consisting of all elements present in both sorted ranges
[first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with the
given binary predicate f.

428 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

If some element is found m times in [first1, last1) and n times in [first2, last2), the first std::min(m,
n) elements will be copied from the first range to the destination range. The order of equivalent
elements is preserved. The resulting range cannot overlap with either of the input ranges.
Note Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first

sequence and N2 is the length of the second sequence.
The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution
policy object execute in sequential order in the calling thread (sequenced_policy) or in a single
new thread spawned from the current thread (for sequenced_task_policy).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter1: The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• FwdIter3: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_intersection requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::less<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last1: Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• first2: Refers to the beginning of the sequence of elements of the second range the algo-

rithm will be applied to.
• last2: Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest: Refers to the beginning of the destination range.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced and
then implicitly converted to Type1

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The set_intersection algorithm returns a hpx::future<FwdIter3> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns FwdIter3 otherwise. The
set_intersection algorithm returns the output iterator to the element in the destination range,
one past the last element copied.

2.9. API reference 429

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/set_symmetric_difference.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred = detail::less>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter3>::type>::type set_symmetric_difference(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
FwdIter3
dest,
Pred
&&op
=
Pred())

Constructs a sorted range beginning at dest consisting of all elements present in either of the
sorted ranges [first1, last1) and [first2, last2), but not in both of them are copied to the range
beginning at dest. The resulting range is also sorted. This algorithm expects both input ranges to
be sorted with the given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), it will be copied
to dest exactly std::abs(m-n) times. If m>n, then the last m-n of those elements are copied from
[first1,last1), otherwise the last n-m elements are copied from [first2,last2). The resulting range
cannot overlap with either of the input ranges.
Note Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first

sequence and N2 is the length of the second sequence.
The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution
policy object execute in sequential order in the calling thread (sequenced_policy) or in a single
new thread spawned from the current thread (for sequenced_task_policy).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter1: The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

430 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• FwdIter3: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of set_symmetric_difference requires Pred to meet the requirements of
CopyConstructible. This defaults to std::less<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last1: Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• first2: Refers to the beginning of the sequence of elements of the second range the algo-

rithm will be applied to.
• last2: Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest: Refers to the beginning of the destination range.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced and
then implicitly converted to Type1

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The set_symmetric_difference algorithm returns a hpx::future<FwdIter3> if the execu-
tion policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter3 oth-
erwise. The set_symmetric_difference algorithm returns the output iterator to the element in
the destination range, one past the last element copied.

Header hpx/parallel/algorithms/set_union.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename Pred = detail::less>

2.9. API reference 431

HPX Documentation, 1.5.1

std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter3>::type>::type set_union(ExPolicy
&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
FwdIter3
dest,
Pred
&&op
=
Pred())

Constructs a sorted range beginning at dest consisting of all elements present in one or both sorted
ranges [first1, last1) and [first2, last2). This algorithm expects both input ranges to be sorted with
the given binary predicate f.

If some element is found m times in [first1, last1) and n times in [first2, last2), then all m elements
will be copied from [first1, last1) to dest, preserving order, and then exactly std::max(n-m, 0)
elements will be copied from [first2, last2) to dest, also preserving order.
Note Complexity: At most 2*(N1 + N2 - 1) comparisons, where N1 is the length of the first

sequence and N2 is the length of the second sequence.
The resulting range cannot overlap with either of the input ranges.

The application of function objects in parallel algorithm invoked with a sequential execution
policy object execute in sequential order in the calling thread (sequenced_policy) or in a single
new thread spawned from the current thread (for sequenced_task_policy).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter1: The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators used (deduced) representing the first sequence.
This iterator type must meet the requirements of an forward iterator.

• FwdIter3: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

• Op: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of set_union requires Pred to meet the requirements of CopyConstructible.
This defaults to std::less<>

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last1: Refers to the end of the sequence of elements of the first range the algorithm will

be applied to.
• first2: Refers to the beginning of the sequence of elements of the second range the algo-

rithm will be applied to.
• last2: Refers to the end of the sequence of elements of the second range the algorithm

will be applied to.
• dest: Refers to the beginning of the destination range.

432 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• op: The binary predicate which returns true if the elements should be treated as equal. The
signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type InIter can be dereferenced and
then implicitly converted to Type1

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The set_union algorithm returns a hpx::future<FwdIter3> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter3 otherwise. The
set_union algorithm returns the output iterator to the element in the destination range, one past
the last element copied.

Header hpx/parallel/algorithms/sort.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename RandomIt, typename Compare = detail::less, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, RandomIt>::type sort(ExPolicy &&policy, RandomIt

first, RandomIt last, Compare
&&comp = Compare(), Proj
&&proj = Proj())

Sorts the elements in the range [first, last) in ascending order. The order of equal elements is
not guaranteed to be preserved. The function uses the given comparison function object comp
(defaults to using operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i))
== false.
Note Complexity: O(Nlog(N)), where N = std::distance(first, last) comparisons.
comp has to induce a strict weak ordering on the values.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• Iter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of a random access iterator.

• Comp: The type of the function/function object to use (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.

2.9. API reference 433

HPX Documentation, 1.5.1

• first: Refers to the beginning of the sequence of elements the algorithm will be applied
to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

• proj: Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The sort algorithm returns a hpx::future<RandomIt> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns RandomIt otherwise. The algorithm
returns an iterator pointing to the first element after the last element in the input sequence.

Header hpx/parallel/algorithms/sort_by_key.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename KeyIter, typename ValueIter, typename Compare = detail::less>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in1(KeyIter), tag::in2

ValueIter>>::type sort_by_keyExPolicy &&policy, KeyIter key_first, KeyIter key_last, Val-
ueIter value_first, Compare &&comp = Compare()Sorts one range of data using keys supplied in
another range. The key elements in the range [key_first, key_last) are sorted in ascending order
with the corresponding elements in the value range moved to follow the sorted order. The algo-
rithm is not stable, the order of equal elements is not guaranteed to be preserved. The function
uses the given comparison function object comp (defaults to using operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i))
== false.
Note Complexity: O(Nlog(N)), where N = std::distance(first, last) comparisons.
comp has to induce a strict weak ordering on the values.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• KeyIter: The type of the key iterators used (deduced). This iterator type must meet the
requirements of a random access iterator.

434 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ValueIter: The type of the value iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Comp: The type of the function/function object to use (deduced).
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• key_first: Refers to the beginning of the sequence of key elements the algorithm will be

applied to.
• key_last: Refers to the end of the sequence of key elements the algorithm will be applied

to.
• value_first: Refers to the beginning of the sequence of value elements the algorithm

will be applied to, the range of elements must match [key_first, key_last)
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The sort_by-key algorithm returns a hpx::future<tagged_pair<tag::in1(KeyIter>,
tag::in2(ValueIter)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns otherwise. The algorithm returns a pair holding an iterator pointing
to the first element after the last element in the input key sequence and an iterator pointing to
the first element after the last element in the input value sequence.

Header hpx/parallel/algorithms/stable_sort.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename RandomIt, typename Sentinel, typename Proj = util::projection_identity, typename Compare = detail::less>
util::detail::algorithm_result<ExPolicy, RandomIt>::type stable_sort(ExPolicy &&policy,

RandomIt first, Sen-
tinel last, Compare
&&comp = Com-
pare(), Proj &&proj
= Proj())

Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements
is preserved. The function uses the given comparison function object comp (defaults to using
operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing

2.9. API reference 435

HPX Documentation, 1.5.1

to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i))
== false.
Note Complexity: O(Nlog(N)), where N = std::distance(first, last) comparisons.
comp has to induce a strict weak ordering on the values.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• RandomIt: The type of the source iterators used (deduced). This iterator type must meet
the requirements of a random access iterator.

• Sentinel: The type of the end iterators used (deduced). This iterator type must meet the
requirements of a random access iterator and must be a valid sentinel type for RandomIt.

• Comp: The type of the function/function object to use (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

• proj: Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The stable_sort algorithm returns a hpx::future<RandomIt> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns RandomIt otherwise. The
algorithm returns an iterator pointing to the first element after the last element in the input
sequence.

Header hpx/parallel/algorithms/swap_ranges.hpp

namespace hpx

namespace parallel

namespace v1

436 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter2>::type>::type swap_ranges(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2)

Exchanges elements between range [first1, last1) and another range starting at first2.

The swap operations in the parallel swap_ranges algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Linear in the distance between first1 and last1
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the swap operations.

• FwdIter1: The type of the first range of iterators to swap (deduced). This iterator type
must meet the requirements of an forward iterator.

• FwdIter2: The type of the second range of iterators to swap (deduced). This iterator type
must meet the requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1: Refers to the end of the first sequence of elements the algorithm will be applied to.
• first2: Refers to the beginning of the second sequence of elements the algorithm will be

applied to.
The swap operations in the parallel swap_ranges algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The swap_ranges algorithm returns a hpx::future<FwdIter2> if the execution policy
is of type parallel_task_policy and returns FwdIter2 otherwise. The swap_ranges algorithm
returns iterator to the element past the last element exchanged in the range beginning with
first2.

Header hpx/parallel/algorithms/transform.hpp

namespace hpx

namespace parallel

namespace v1

2.9. API reference 437

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(FwdIter1), tag::out

FwdIter2>>::type transformExPolicy &&policy, FwdIter1 first, FwdIter1 last, FwdIter2 dest,
F &&f, Proj &&proj = Proj()Applies the given function f to the range [first, last) and stores the
result in another range, beginning at dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly last - first applications of f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the invocations of f.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type FwdIter can be dereferenced and then implicitly converted to Type. The type Ret must
be such that an object of type FwdIter2 can be dereferenced and assigned a value of type
Ret.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The transform algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1),
tag::out(FwdIter2)> > if the execution policy is of type parallel_task_policy and returns
tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise. The transform algorithm
returns a tuple holding an iterator referring to the first element after the input sequence and the
output iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename F, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_tuple<tag::in1(FwdIter1), tag::in2

FwdIter2, tag::outFwdIter3>>::type transformExPolicy &&policy, FwdIter1 first1, FwdIter1
last1, FwdIter2 first2, FwdIter3 dest, F &&f, Proj1 &&proj1 = Proj1(), Proj2 &&proj2 =
Proj2()Applies the given function f to pairs of elements from two ranges: one defined by [first1,

438 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

last1) and the other beginning at first2, and stores the result in another range, beginning at dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly last - first applications of f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the invocations of f.

• FwdIter1: The type of the source iterators for the first range used (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators for the second range used (deduced). This
iterator type must meet the requirements of an forward iterator.

• FwdIter3: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj1: The type of an optional projection function to be used for elements of the first
sequence. This defaults to util::projection_identity

• Proj2: The type of an optional projection function to be used for elements of the second
sequence. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1: Refers to the end of the first sequence of elements the algorithm will be applied to.
• first2: Refers to the beginning of the second sequence of elements the algorithm will be

applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such that
objects of types FwdIter1 and FwdIter2 can be dereferenced and then implicitly converted
to Type1 and Type2 respectively. The type Ret must be such that an object of type FwdIter3
can be dereferenced and assigned a value of type Ret.

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first sequence as a projection operation before the actual predicate f is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate f is
invoked.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The transform algorithm returns a hpx::future<tagged_tuple<tag::in1(FwdIter1),
tag::in2(FwdIter2), tag::out(FwdIter3)> > if the execution policy is of type par-
allel_task_policy and returns tagged_tuple<tag::in1(FwdIter1), tag::in2(FwdIter2),
tag::out(FwdIter3)> otherwise. The transform algorithm returns a tuple holding an iter-
ator referring to the first element after the first input sequence, an iterator referring to the first
element after the second input sequence, and the output iterator referring to the element in the
destination range, one past the last element copied.

2.9. API reference 439

HPX Documentation, 1.5.1

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename FwdIter3, typename F, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_tuple<tag::in1(FwdIter1), tag::in2

FwdIter2, tag::outFwdIter3>>::type transformExPolicy &&policy, FwdIter1 first1, FwdIter1
last1, FwdIter2 first2, FwdIter2 last2, FwdIter3 dest, F &&f, Proj1 &&proj1 = Proj1(), Proj2
&&proj2 = Proj2()Applies the given function f to pairs of elements from two ranges: one defined
by [first1, last1) and the other beginning at first2, and stores the result in another range, beginning
at dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly min(last2-first2, last1-first1) applications of f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the invocations of f.

• FwdIter1: The type of the source iterators for the first range used (deduced). This iterator
type must meet the requirements of an forward iterator.

• FwdIter2: The type of the source iterators for the second range used (deduced). This
iterator type must meet the requirements of an forward iterator.

• FwdIter3: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj1: The type of an optional projection function to be used for elements of the first
sequence. This defaults to util::projection_identity

• Proj2: The type of an optional projection function to be used for elements of the second
sequence. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the first sequence of elements the algorithm will be

applied to.
• last1: Refers to the end of the first sequence of elements the algorithm will be applied to.
• first2: Refers to the beginning of the second sequence of elements the algorithm will be

applied to.
• last2: Refers to the end of the second sequence of elements the algorithm will be applied

to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such that
objects of types FwdIter1 and FwdIter2 can be dereferenced and then implicitly converted
to Type1 and Type2 respectively. The type Ret must be such that an object of type FwdIter3
can be dereferenced and assigned a value of type Ret.

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first sequence as a projection operation before the actual predicate f is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate f is
invoked.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

440 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note The algorithm will invoke the binary predicate until it reaches the end of the shorter of the
two given input sequences

Return The transform algorithm returns a hpx::future<tagged_tuple<tag::in1(FwdIter1),
tag::in2(FwdIter2), tag::out(FwdIter3)> > if the execution policy is of type par-
allel_task_policy and returns tagged_tuple<tag::in1(FwdIter1), tag::in2(FwdIter2),
tag::out(FwdIter3)> otherwise. The transform algorithm returns a tuple holding an iter-
ator referring to the first element after the first input sequence, an iterator referring to the first
element after the second input sequence, and the output iterator referring to the element in the
destination range, one past the last element copied.

Header hpx/parallel/algorithms/transform_exclusive_scan.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename Op, typename Conv>
util::detail::algorithm_result<ExPolicy, FwdIter2>::type transform_exclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest,
T
init,
Op
&&op,
Conv
&&conv)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(binary_op, init, conv(*first), . . . , conv(*(first + (i - result) -
1))).

The reduce operations in the parallel transform_exclusive_scan algorithm invoked with an execu-
tion policy object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicates op and conv.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

2.9. API reference 441

HPX Documentation, 1.5.1

• Conv: The type of the unary function object used for the conversion operation.
• T: The type of the value to be used as initial (and intermediate) values (deduced).
• Op: The type of the binary function object used for the reduction operation.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• conv: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is a unary predicate. The signature of
this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

• init: The initial value for the generalized sum.
• op: Specifies the function (or function object) which will be invoked for each of the values

of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

The reduce operations in the parallel transform_exclusive_scan algorithm invoked with an execu-
tion policy object of type parallel_policy or parallel_task_policy are permitted to execute in an
unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Neither conv nor op shall invalidate iterators or subranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).
Return The transform_exclusive_scan algorithm returns a hpx::future<FwdIter2> if the exe-

cution policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2
otherwise. The transform_exclusive_scan algorithm returns the output iterator to the element
in the destination range, one past the last element copied.

Note GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN) where 1 < K+1 = M <= N.
The behavior of transform_exclusive_scan may be non-deterministic for a non-associative predi-
cate.

442 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/transform_inclusive_scan.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Op, typename Conv, typename T>
util::detail::algorithm_result<ExPolicy, FwdIter2>::type transform_inclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest,
Op
&&op,
Conv
&&conv,
T
init)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, init, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execu-
tion policy object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate op.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Conv: The type of the unary function object used for the conversion operation.
• T: The type of the value to be used as initial (and intermediate) values (deduced).
• Op: The type of the binary function object used for the reduction operation.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• conv: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is a unary predicate. The signature of
this predicate should be equivalent to:

2.9. API reference 443

HPX Documentation, 1.5.1

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

• init: The initial value for the generalized sum.
• op: Specifies the function (or function object) which will be invoked for each of the values

of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execu-
tion policy object of type parallel_policy or parallel_task_policy are permitted to execute in an
unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Neither conv nor op shall invalidate iterators or subranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).
Return The transform_inclusive_scan algorithm returns a hpx::future<FwdIter2> if the exe-

cution policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2
otherwise. The transform_inclusive_scan algorithm returns the output iterator to the element
in the destination range, one past the last element copied.

Note GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.
The difference between exclusive_scan and transform_inclusive_scan is that trans-
form_inclusive_scan includes the ith input element in the ith sum. If op is not mathematically
associative, the behavior of transform_inclusive_scan may be non-deterministic.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Conv, typename Op>
util::detail::algorithm_result<ExPolicy, FwdIter2>::type transform_inclusive_scan(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest,
Op
&&op,
Conv
&&conv)

Assigns through each iterator i in [result, result + (last - first)) the value of GENERAL-
IZED_NONCOMMUTATIVE_SUM(op, conv(*first), . . . , conv(*(first + (i - result)))).

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execu-
tion policy object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate op.
Template Parameters

444 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Conv: The type of the unary function object used for the conversion operation.
• T: The type of the value to be used as initial (and intermediate) values (deduced).
• Op: The type of the binary function object used for the reduction operation.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• conv: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is a unary predicate. The signature of
this predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type. The type R must be such that an object of this type
can be implicitly converted to T.

• op: Specifies the function (or function object) which will be invoked for each of the values
of the input sequence. This is a binary predicate. The signature of this predicate should be
equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Ret must be such that an object of a type as given by the
input sequence can be implicitly converted to any of those types.

The reduce operations in the parallel transform_inclusive_scan algorithm invoked with an execu-
tion policy object of type parallel_policy or parallel_task_policy are permitted to execute in an
unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Neither conv nor op shall invalidate iterators or subranges, or modify elements in the ranges
[first,last) or [result,result + (last - first)).
Return The transform_inclusive_scan algorithm returns a hpx::future<FwdIter2> if the exe-

cution policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2
otherwise. The transform_inclusive_scan algorithm returns the output iterator to the element
in the destination range, one past the last element copied.

Note GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aN) is defined as:
• a1 when N is 1
• op(GENERALIZED_NONCOMMUTATIVE_SUM(op, a1, . . . , aK), GENERAL-

IZED_NONCOMMUTATIVE_SUM(op, aM, . . . , aN)) where 1 < K+1 = M <= N.
The difference between exclusive_scan and transform_inclusive_scan is that trans-
form_inclusive_scan includes the ith input element in the ith sum.

2.9. API reference 445

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/transform_reduce.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter, typename T, typename Reduce, typename Convert>
util::detail::algorithm_result<ExPolicy, T>::type transform_reduce(ExPolicy &&policy, FwdIter

first, FwdIter last, T init,
Reduce &&red_op, Convert
&&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the predicates red_op and conv_op.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an input iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• T: The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce: The type of the binary function object used for the reduction operation.

• Convert: The type of the unary function object used to transform the elements of the input
sequence before invoking the reduce function.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• conv_op: Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature of this
predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Type must be such that an object of type FwdIter can be dereferenced and then
implicitly converted to Type. The type R must be such that an object of this type can be implicitly
converted to T.

• init: The initial value for the generalized sum.

• red_op: Specifies the function (or function object) which will be invoked for each of the values
returned from the invocation of conv_op. This is a binary predicate. The signature of this predicate
should be equivalent to:

446 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The types Type1, Type2, and Ret must be such that an object of a type as returned from
conv_op can be implicitly converted to any of those types.

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may
be non-deterministic for non-associative or non-commutative binary predicate.

Return The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of type par-
allel_task_policy and returns T otherwise. The transform_reduce algorithm returns the result of the
generalized sum over the values returned from conv_op when applied to the elements given by the
input range [first, last).

Note GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T>
util::detail::algorithm_result<ExPolicy, T>::type transform_reduce(ExPolicy &&policy, FwdIter1

first1, FwdIter1 last1,
FwdIter2 first2, T init)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the predicate op2.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the first source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the second source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T: The type of the value to be used as return) values (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first1: Refers to the beginning of the first sequence of elements the result will be calculated
with.

• last1: Refers to the end of the first sequence of elements the algorithm will be applied to.

2.9. API reference 447

HPX Documentation, 1.5.1

• first2: Refers to the beginning of the second sequence of elements the result will be calculated
with.

• init: The initial value for the sum.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename T, typename Reduce, typename Convert>
util::detail::algorithm_result<ExPolicy, T>::type transform_reduce(ExPolicy &&policy, FwdIter1

first1, FwdIter1 last1,
FwdIter2 first2, T init, Re-
duce &&red_op, Convert
&&conv_op)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the predicate op2.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the first source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the second source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T: The type of the value to be used as return) values (deduced).

• Reduce: The type of the binary function object used for the multiplication operation.

• Convert: The type of the unary function object used to transform the elements of the input
sequence before invoking the reduce function.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first1: Refers to the beginning of the first sequence of elements the result will be calculated
with.

• last1: Refers to the end of the first sequence of elements the algorithm will be applied to.

• first2: Refers to the beginning of the second sequence of elements the result will be calculated
with.

• init: The initial value for the sum.

• red_op: Specifies the function (or function object) which will be invoked for the initial value
and each of the return values of op2. This is a binary predicate. The signature of this predicate
should be equivalent to should be equivalent to:

448 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Ret must be such that it can be implicitly converted to a type of T.

• conv_op: Specifies the function (or function object) which will be invoked for each of the input
values of the sequence. This is a binary predicate. The signature of this predicate should be
equivalent to

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Ret must be such that it can be implicitly converted to an object for the second
argument type of op1.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise.

Header hpx/parallel/algorithms/transform_reduce_binary.hpp

Header hpx/parallel/algorithms/uninitialized_copy.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter2>::type>::type uninitialized_copy(ExPolicy

&&pol-
icy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest)

Copies the elements in the range, defined by [first, last), to an uninitialized memory area beginning
at dest. If an exception is thrown during the copy operation, the function has no effects.

The assignments in the parallel uninitialized_copy algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

2.9. API reference 449

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

The assignments in the parallel uninitialized_copy algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_copy algorithm returns a hpx::future<FwdIter2>, if the execution pol-
icy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise.
The uninitialized_copy algorithm returns the output iterator to the element in the destination
range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy, FwdIter2>::type>::type uninitialized_copy_n(ExPolicy

&&pol-
icy,
FwdIter1
first,
Size
count,
FwdIter2
dest)

Copies the elements in the range [first, first + count), starting from first and proceeding to first +
count - 1., to another range beginning at dest. If an exception is thrown during the copy operation,
the function has no effects.

The assignments in the parallel uninitialized_copy_n algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an input iterator.

• Size: The type of the argument specifying the number of elements to apply f to.
• FwdIter2: The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of a forward iterator.
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

The assignments in the parallel uninitialized_copy_n algorithm invoked with an execution policy

450 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_copy_n algorithm returns a hpx::future<FwdIter2> if the execution
policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 other-
wise. The uninitialized_copy_n algorithm returns the output iterator to the element in the des-
tination range, one past the last element copied.

Header hpx/parallel/algorithms/uninitialized_default_construct.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter>
util::detail::algorithm_result<ExPolicy>::type uninitialized_default_construct(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized
storage designated by the range [first, last) by default-initialization. If an exception is thrown
during the initialization, the function has no effects.

The assignments in the parallel uninitialized_default_construct algorithm invoked with an execu-
tion policy object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.

The assignments in the parallel uninitialized_default_construct algorithm invoked with an execu-
tion policy object of type parallel_policy or parallel_task_policy are permitted to execute in an
unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_default_construct algorithm returns a hpx::future<void>, if the exe-
cution policy is of type sequenced_task_policy or parallel_task_policy and returns void other-
wise.

template<typename ExPolicy, typename FwdIter, typename Size>

2.9. API reference 451

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, FwdIter>::type uninitialized_default_construct_n(ExPolicy
&&pol-
icy,
FwdIter
first,
Size
count)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized
storage designated by the range [first, first + count) by default-initialization. If an exception is
thrown during the initialization, the function has no effects.

The assignments in the parallel uninitialized_default_construct_n algorithm invoked with an ex-
ecution policy object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply f to.
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.

The assignments in the parallel uninitialized_default_construct_n algorithm invoked with an ex-
ecution policy object of type parallel_policy or parallel_task_policy are permitted to execute in
an unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_default_construct_n algorithm returns a hpx::future<FwdIter> if the
execution policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter
otherwise. The uninitialized_default_construct_n algorithm returns the iterator to the element
in the source range, one past the last element constructed.

Header hpx/parallel/algorithms/uninitialized_fill.hpp

namespace hpx

namespace parallel

namespace v1

452 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename FwdIter, typename T>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy>::type>::type uninitialized_fill(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last,
T
const
&value)

Copies the given value to an uninitialized memory area, defined by the range [first, last). If an
exception is thrown during the initialization, the function has no effects.

The initializations in the parallel uninitialized_fill algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Linear in the distance between first and last
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• T: The type of the value to be assigned (deduced).
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• value: The value to be assigned.

The initializations in the parallel uninitialized_fill algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_fill algorithm returns a hpx::future<void>, if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns nothing otherwise.

template<typename ExPolicy, typename FwdIter, typename Size, typename T>
std::enable_if<execution::is_execution_policy<ExPolicy>::value, typename util::detail::algorithm_result<ExPolicy>::type>::type uninitialized_fill_n(ExPolicy

&&pol-
icy,
FwdIter
first,
Size
count,
T
const
&value)

Copies the given value value to the first count elements in an uninitialized memory area beginning
at first. If an exception is thrown during the initialization, the function has no effects.

The initializations in the parallel uninitialized_fill_n algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.

2.9. API reference 453

HPX Documentation, 1.5.1

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of a forward iterator.

• Size: The type of the argument specifying the number of elements to apply f to.
• T: The type of the value to be assigned (deduced).

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.
• value: The value to be assigned.

The initializations in the parallel uninitialized_fill_n algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_fill_n algorithm returns a hpx::future<void>, if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns nothing otherwise.

Header hpx/parallel/algorithms/uninitialized_move.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter1, typename FwdIter2>
util::detail::algorithm_result<ExPolicy, FwdIter2>::type uninitialized_move(ExPolicy

&&policy,
FwdIter1
first,
FwdIter1
last,
FwdIter2
dest)

Moves the elements in the range, defined by [first, last), to an uninitialized memory area beginning
at dest. If an exception is thrown during the initialization, some objects in [first, last) are left in a
valid but unspecified state.

The assignments in the parallel uninitialized_move algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first move operations.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

454 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of a forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

The assignments in the parallel uninitialized_move algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_move algorithm returns a hpx::future<FwdIter2>, if the execution pol-
icy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter2 otherwise.
The uninitialized_move algorithm returns the output iterator to the element in the destination
range, one past the last element moved.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(FwdIter1), tag::out

FwdIter2>>::type uninitialized_move_nExPolicy &&policy, FwdIter1 first, Size count,
FwdIter2 destMoves the elements in the range [first, first + count), starting from first and pro-
ceeding to first + count - 1., to another range beginning at dest. If an exception is thrown during
the initialization, some objects in [first, first + count) are left in a valid but unspecified state.

The assignments in the parallel uninitialized_move_n algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly count movements, if count > 0, no move operations other-

wise.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply f to.
• FwdIter2: The type of the iterator representing the destination range (deduced). This

iterator type must meet the requirements of a forward iterator.
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

The assignments in the parallel uninitialized_move_n algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_move_n algorithm returns a hpx::future<std::pair<FwdIter1,
FwdIter2>> if the execution policy is of type sequenced_task_policy or parallel_task_policy
and returns std::pair<FwdIter1, FwdIter2> otherwise. The uninitialized_move_n algorithm
returns the pair of the input iterator to the element past in the source range and an output
iterator to the element in the destination range, one past the last element moved.

2.9. API reference 455

HPX Documentation, 1.5.1

Header hpx/parallel/algorithms/uninitialized_value_construct.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter>
util::detail::algorithm_result<ExPolicy>::type uninitialized_value_construct(ExPolicy

&&pol-
icy,
FwdIter
first,
FwdIter
last)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized
storage designated by the range [first, last) by default-initialization. If an exception is thrown
during the initialization, the function has no effects.

The assignments in the parallel uninitialized_value_construct algorithm invoked with an execu-
tion policy object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.

The assignments in the parallel uninitialized_value_construct algorithm invoked with an execu-
tion policy object of type parallel_policy or parallel_task_policy are permitted to execute in an
unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_value_construct algorithm returns a hpx::future<void>, if the execu-
tion policy is of type sequenced_task_policy or parallel_task_policy and returns void other-
wise.

template<typename ExPolicy, typename FwdIter, typename Size>
util::detail::algorithm_result<ExPolicy, FwdIter>::type uninitialized_value_construct_n(ExPolicy

&&pol-
icy,
FwdIter
first,
Size
count)

Constructs objects of type typename iterator_traits<ForwardIt>::value_type in the uninitialized

456 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

storage designated by the range [first, first + count) by default-initialization. If an exception is
thrown during the initialization, the function has no effects.

The assignments in the parallel uninitialized_value_construct_n algorithm invoked with an exe-
cution policy object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply f to.
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.

The assignments in the parallel uninitialized_value_construct_n algorithm invoked with an exe-
cution policy object of type parallel_policy or parallel_task_policy are permitted to execute in an
unordered fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The uninitialized_value_construct_n algorithm returns a hpx::future<FwdIter> if the
execution policy is of type sequenced_task_policy or parallel_task_policy and returns FwdIter
otherwise. The uninitialized_value_construct_n algorithm returns the iterator to the element in
the source range, one past the last element constructed.

Header hpx/parallel/algorithms/unique.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename FwdIter, typename Pred = detail::equal_to, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type unique(ExPolicy &&policy, FwdIter

first, FwdIter last, Pred
&&pred = Pred(), Proj
&&proj = Proj())

Eliminates all but the first element from every consecutive group of equivalent elements from the
range [first, last) and returns a past-the-end iterator for the new logical end of the range.

The assignments in the parallel unique algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first - 1 appli-

cations of the predicate pred and no more than twice as many applications of the projection
proj.

Template Parameters

2.9. API reference 457

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of unique requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• pred: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an binary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel unique algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The unique algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The unique
algorithm returns the iterator to the new end of the range.

template<typename ExPolicy, typename FwdIter1, typename FwdIter2, typename Pred = detail::equal_to, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(FwdIter1), tag::out

FwdIter2>>::type unique_copyExPolicy &&policy, FwdIter1 first, FwdIter1 last, FwdIter2
dest, Pred &&pred = Pred(), Proj &&proj = Proj()Copies the elements from the range [first,
last), to another range beginning at dest in such a way that there are no consecutive equal elements.
Only the first element of each group of equal elements is copied.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first - 1 appli-

cations of the predicate pred and no more than twice as many applications of the projection
proj

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of unique_copy requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

458 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied

to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• pred: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an binary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The unique_copy algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1),
tag::out(FwdIter2)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise.
The unique_copy algorithm returns the pair of the source iterator to last, and the destination
iterator to the end of the dest range.

Header hpx/parallel/container_algorithms.hpp

Header hpx/parallel/container_algorithms/all_any_none.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Rng, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type none_of(ExPolicy &&policy, Rng &&rng, F

&&f, Proj &&proj = Proj())
Checks if unary predicate f returns true for no elements in the range rng.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

2.9. API reference 459

HPX Documentation, 1.5.1

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of none_of requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The none_of algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The none_of algorithm
returns true if the unary predicate f returns true for no elements in the range, false otherwise. It
returns true if the range is empty.

template<typename ExPolicy, typename Rng, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type any_of(ExPolicy &&policy, Rng &&rng, F

&&f, Proj &&proj = Proj())
Checks if unary predicate f returns true for at least one element in the range rng.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of none_of requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

460 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The any_of algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The any_of algorithm
returns true if the unary predicate f returns true for at least one element in the range, false other-
wise. It returns false if the range is empty.

template<typename ExPolicy, typename Rng, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type all_of(ExPolicy &&policy, Rng &&rng, F

&&f, Proj &&proj = Proj())
Checks if unary predicate f returns true for all elements in the range rng.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most std::distance(begin(rng), end(rng)) applications of the predicate f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of none_of requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The all_of algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The all_of algorithm
returns true if the unary predicate f returns true for all elements in the range, false otherwise. It
returns true if the range is empty.

2.9. API reference 461

HPX Documentation, 1.5.1

Header hpx/parallel/container_algorithms/copy.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename FwdIter>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::ranges::copy_result<Iter1, Iter>>::type copy(ExPolicy

&&pol-
icy,
Iter1
iter,
Sent1
sent,
FwdIter
dest)

Copies the elements in the range, defined by [first, last), to another range beginning at dest.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Iter1: The type of the begin source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent1: The type of the end source iterators used (deduced). This iterator type must meet the
requirements of an sentinel for Iter1.

• FwdIter: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• iter: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• sent: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

The assignments in the parallel copy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The copy algorithm returns a hpx::future<ranges::copy_result<FwdIter1, FwdIter> > if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
ranges::copy_result<FwdIter1, FwdIter> otherwise. The copy algorithm returns the pair of the
input iterator last and the output iterator to the element in the destination range, one past the last
element copied.

template<typename ExPolicy, typename Rng, typename FwdIter>

462 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::ranges::copy_result<typename hpx::traits::range_traits<Rng>::iterator_type, FwdIter>>::type copy(ExPolicy
&&pol-
icy,
Rng
&&rng,
FwdIter
dest)

Copies the elements in the range rng to another range beginning at dest.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• FwdIter: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

The assignments in the parallel copy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The copy algorithm returns a hpx::future<ranges::copy_result<iterator_t<Rng>,
FwdIter2>> if the execution policy is of type sequenced_task_policy or parallel_task_policy and
returns ranges::copy_result<iterator_t<Rng>, FwdIter2> otherwise. The copy algorithm returns
the pair of the input iterator last and the output iterator to the element in the destination range,
one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Size, typename FwdIter2>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::ranges::copy_n_result<FwdIter1, FwdIter2>>::type copy_n(ExPolicy

&&pol-
icy,
FwdIter1
first,
Size
count,
FwdIter2
dest)

Copies the elements in the range [first, first + count), starting from first and proceeding to first + count
- 1., to another range beginning at dest.

The assignments in the parallel copy_n algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly count assignments, if count > 0, no assignments otherwise.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

2.9. API reference 463

HPX Documentation, 1.5.1

• Size: The type of the argument specifying the number of elements to apply f to.
• FwdIter2: The type of the iterator representing the destination range (deduced). This iterator

type must meet the requirements of an forward iterator.
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

The assignments in the parallel copy_n algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The copy_n algorithm returns a hpx::future<ranges::copy_n_result<FwdIter1, FwdIter2>
> if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
ranges::copy_n_result<FwdIter1, FwdIter2> otherwise. The copy algorithm returns the pair of
the input iterator forwarded to the first element after the last in the input sequence and the output
iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter, typename F, typename Proj = hpx::parallel::util::projection_identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::ranges::copy_if_result<typename hpx::traits::range_traits<Rng>::iterator_type, OutIter>>::type copy_if(ExPolicy

&&pol-
icy,
FwdIter1
iter,
Sent1
sent,
FwdIter
dest,
F
&&f,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by [first, last) to another range beginning at dest. Copies only
the elements for which the predicate f returns true. The order of the elements that are not removed is
preserved.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than std::distance(begin(rng), end(rng)) assignments, exactly

std::distance(begin(rng), end(rng)) applications of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter1: The type of the begin source iterators used (deduced). This iterator type must
meet the requirements of an forward iterator.

• Sent1: The type of the end source iterators used (deduced). This iterator type must meet the
requirements of an sentinel for FwdIter1.

• FwdIter: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an output iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity

464 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• iter: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• sent: Refers to the end of the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the
required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced and
then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The copy_if algorithm returns a hpx::future<ranges::copy_if_result<iterator_t<Rng>,
FwdIter2>> if the execution policy is of type sequenced_task_policy or parallel_task_policy and
returns ranges::copy_if_result<iterator_t<Rng>, FwdIter2> otherwise. The copy_if algorithm
returns the pair of the input iterator last and the output iterator to the element in the destination
range, one past the last element copied.

template<typename ExPolicy, typename Rng, typename OutIter, typename F, typename Proj = hpx::parallel::util::projection_identity>
hpx::parallel::util::detail::algorithm_result<ExPolicy, hpx::ranges::copy_if_result<typename hpx::traits::range_traits<Rng>::iterator_type, OutIter>>::type copy_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
Out-
Iter
dest,
F
&&f,
Proj
&&proj
=
Proj())

Copies the elements in the range rng to another range beginning at dest. Copies only the elements for
which the predicate f returns true. The order of the elements that are not removed is preserved.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than std::distance(begin(rng), end(rng)) assignments, exactly

std::distance(begin(rng), end(rng)) applications of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an output iterator.

2.9. API reference 465

HPX Documentation, 1.5.1

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the
required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced and
then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

The assignments in the parallel copy_if algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The copy_if algorithm returns a hpx::future<ranges::copy_if_result<iterator_t<Rng>,
FwdIter2>> if the execution policy is of type sequenced_task_policy or parallel_task_policy and
returns ranges::copy_if_result<iterator_t<Rng>, FwdIter2> otherwise. The copy_if algorithm
returns the pair of the input iterator last and the output iterator to the element in the destination
range, one past the last element copied.

Header hpx/parallel/container_algorithms/count.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Rng, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::difference_type>::type count(ExPolicy

&&pol-
icy,
Rng
&&rng,
T
const
&value,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts the elements that are equal to the given value.

466 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The comparisons in the parallel count algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first comparisons.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the comparisons.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• T: The type of the value to search for (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• value: The value to search for.
• proj: Specifies the function (or function object) which will be invoked for each of the ele-

ments as a projection operation before the actual predicate is invoked.

Note The comparisons in the parallel count algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The count algorithm returns a hpx::future<difference_type> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns difference_type otherwise (where dif-
ference_type is defined by std::iterator_traits<FwdIter>::difference_type. The count algorithm
returns the number of elements satisfying the given criteria.

template<typename ExPolicy, typename Rng, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::difference_type>::type count_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f,
Proj
&&proj
=
Proj())

Returns the number of elements in the range [first, last) satisfying a specific criteria. This version
counts elements for which predicate f returns true.

Note Complexity: Performs exactly last - first applications of the predicate.
Note The assignments in the parallel count_if algorithm invoked with an execution policy object of

type sequenced_policy execute in sequential order in the calling thread.
Note The assignments in the parallel count_if algorithm invoked with an execution policy object of

type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The count_if algorithm returns hpx::future<difference_type> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns difference_type otherwise (where
difference_type is defined by std::iterator_traits<FwdIter>::difference_type. The count algo-
rithm returns the number of elements satisfying the given criteria.

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it executes
the comparisons.

2.9. API reference 467

HPX Documentation, 1.5.1

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of count_if requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the
required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

Header hpx/parallel/container_algorithms/destroy.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy>
util::detail::algorithm_result<ExPolicy, typename traits::range_iterator<Rng>::type>::type destroy(ExPolicy

&&pol-
icy,
Rng
&&rng)

Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, last).

The operations in the parallel destroy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first operations.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.

The operations in the parallel destroy algorithm invoked with an execution policy object of type par-
allel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

468 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return The destroy algorithm returns a hpx::future<void>, if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename ExPolicy, typename FwdIter, typename Size>
util::detail::algorithm_result<ExPolicy, FwdIter>::type destroy_n(ExPolicy &&policy, FwdIter

first, Size count)
Destroys objects of type typename iterator_traits<ForwardIt>::value_type in the range [first, first +
count).

The operations in the parallel destroy_n algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly count operations, if count > 0, no assignments otherwise.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply this algorithm to.
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.

The operations in the parallel destroy_n algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The destroy_n algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The destroy_n
algorithm returns the iterator to the element in the source range, one past the last element con-
structed.

Header hpx/parallel/container_algorithms/equal.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred = ranges::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type equal(ExPolicy &&policy, Iter1 first1, Sent1

last1, Iter2 first2, Sent2 last2, Pred
&&op = Pred(), Proj1 &&proj1 =
Proj1(), Proj2 &&proj2 = Proj2())

Returns true if the range [first1, last1) is equal to the range [first2, last2), and false otherwise.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

2.9. API reference 469

HPX Documentation, 1.5.1

• Iter1: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

• Sent1: The type of the source iterators used for the end of the first range (deduced).
• Iter2: The type of the source iterators used for the second range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Sent2: The type of the source iterators used for the end of the second range (deduced).
• Pred: The type of an optional function/function object to use. Unlike its sequential form, the

parallel overload of equal requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

• Proj1: The type of an optional projection function applied to the first range. This defaults to
util::projection_identity

• Proj2: The type of an optional projection function applied to the second range. This defaults
to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last1: Refers to the end of the sequence of elements of the first range the algorithm will be

applied to.
• first2: Refers to the beginning of the sequence of elements of the second range the algorithm

will be applied to.
• last2: Refers to the end of the sequence of elements of the second range the algorithm will

be applied to.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first range as a projection operation before the actual predicate is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the second range as a projection operation before the actual predicate is invoked.

The comparison operations in the parallel equal algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals
*(first2 + (i - first1)). This overload of equal uses operator== to determine if two elements are
equal.

Return The equal algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The equal algorithm
returns true if the elements in the two ranges are equal, otherwise it returns false. If the length of
the range [first1, last1) does not equal the length of the range [first2, last2), it returns false.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = ranges::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type equal(ExPolicy &&policy, Rng1 &&rng1,

Rng2 &&rng2, Pred &&op = Pred(),
Proj1 &&proj1 = Proj1(), Proj2
&&proj2 = Proj2())

Returns true if the range [first1, last1) is equal to the range starting at first2, and false otherwise.

The comparison operations in the parallel equal algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.

470 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note Complexity: At most last1 - first1 applications of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng1: The type of the first source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Rng2: The type of the second source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of equal requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

• Proj1: The type of an optional projection function applied to the first range. This defaults to
util::projection_identity

• Proj2: The type of an optional projection function applied to the second range. This defaults
to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng1: Refers to the first sequence of elements the algorithm will be applied to.
• rng2: Refers to the second sequence of elements the algorithm will be applied to.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first range as a projection operation before the actual predicate is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the second range as a projection operation before the actual predicate is invoked.

The comparison operations in the parallel equal algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note The two ranges are considered equal if, for every iterator i in the range [first1,last1), *i equals
*(first2 + (i - first1)). This overload of equal uses operator== to determine if two elements are
equal.

Return The equal algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The equal algorithm
returns true if the elements in the two ranges are equal, otherwise it returns false.

2.9. API reference 471

HPX Documentation, 1.5.1

Header hpx/parallel/container_algorithms/fill.hpp

namespace hpx

Functions

template<typename ExPolicy, typename Rng, typename T>
util::detail::algorithm_result<ExPolicy>::type fill(ExPolicy &&policy, Rng &&rng, T const

&value)
Assigns the given value to the elements in the range [first, last).

The comparisons in the parallel fill algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly last - first assignments.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• T: The type of the value to be assigned (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• rng: Refers to the sequence of elements the algorithm will be applied to.

• value: The value to be assigned.

The comparisons in the parallel fill algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The fill algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where differ-
ence_type is defined by void.

template<typename ExPolicy, typename Iterator, typename Size, typename T>
util::detail::algorithm_result<ExPolicy, Iterator>::type fill_n(ExPolicy &&policy, Iterator first, Size

count, T const &value)
Assigns the given value value to the first count elements in the range beginning at first if count > 0. Does
nothing otherwise.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly count assignments, for count > 0.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

472 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• Iterator: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply f to.

• T: The type of the value to be assigned (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• count: Refers to the number of elements starting at first the algorithm will be applied to.

• value: The value to be assigned.

The comparisons in the parallel fill_n algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The fill_n algorithm returns a hpx::future<void> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns difference_type otherwise (where differ-
ence_type is defined by void.

Header hpx/parallel/container_algorithms/find.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Iter, typename Sent, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, Iter>::type find(ExPolicy &&policy, Iter first, Sent last, T

const &val, Proj &&proj = Proj())
Returns the first element in the range [first, last) that is equal to value

The comparison operations in the parallel find algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most last - first applications of the operator==().
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Iter: The type of the begin source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Sent: The type of the end source iterators used (deduced). This iterator type must meet the
requirements of an sentinel for Iter.

• T: The type of the value to find (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.

2.9. API reference 473

HPX Documentation, 1.5.1

• last: Refers to the end of the sequence of elements of the first range the algorithm will be
applied to.

• val: the value to compare the elements to
• proj: Specifies the function (or function object) which will be invoked for each of the ele-

ments as a projection operation before the actual predicate is invoked.
The comparison operations in the parallel find algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The find algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find algorithm
returns the first element in the range [first,last) that is equal to val. If no such element in the range
of [first,last) is equal to val, then the algorithm returns last.

template<typename ExPolicy, typename Rng, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, Iter>::type find(ExPolicy &&policy, Rng &&rng, T

const &val, Proj &&proj = Proj())
Returns the first element in the range [first, last) that is equal to value

The comparison operations in the parallel find algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most last - first applications of the operator==().
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• T: The type of the value to find (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• val: the value to compare the elements to
• proj: Specifies the function (or function object) which will be invoked for each of the ele-

ments as a projection operation before the actual predicate is invoked.
The comparison operations in the parallel find algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The find algorithm returns a hpx::future<FwdIter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The find algorithm
returns the first element in the range [first,last) that is equal to val. If no such element in the range
of [first,last) is equal to val, then the algorithm returns last.

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred = ranges::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>

474 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng1>::type>::type find_end(ExPolicy
&&pol-
icy,
Iter1
first1,
Sent1
last1,
Iter2
first2,
Sent2
last2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Returns the last subsequence of elements [first2, last2) found in the range [first1, last1) using the given
predicate f to compare elements.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: at most S*(N-S+1) comparisons where S = distance(first2, last2) and N = dis-

tance(first1, last1).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Iter1: The type of the begin source iterators for the first sequence used (deduced). This
iterator type must meet the requirements of an forward iterator.

• Sent1: The type of the end source iterators for the first sequence used (deduced). This iterator
type must meet the requirements of an sentinel for Iter1.

• Iter2: The type of the begin source iterators for the second sequence used (deduced). This
iterator type must meet the requirements of an forward iterator.

• Sent2: The type of the end source iterators for the second sequence used (deduced). This
iterator type must meet the requirements of an sentinel for Iter2.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of replace requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

• Proj1: The type of an optional projection function applied to the first sequence. This defaults
to util::projection_identity

• Proj2: The type of an optional projection function applied to the second sequence. This
defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the first sequence of elements the algorithm will be applied

to.
• last1: Refers to the end of the first sequence of elements the algorithm will be applied to.
• first2: Refers to the beginning of the second sequence of elements the algorithm will be

2.9. API reference 475

HPX Documentation, 1.5.1

applied to.
• last2: Refers to the end of the second sequence of elements the algorithm will be applied to.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types iterator_t<Rng>
and iterator_t<Rng2> can be dereferenced and then implicitly converted to Type1 and Type2
respectively.

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first range of type dereferenced iterator_t<Rng1> as a projection operation before
the function op is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the el-
ements of the second range of type dereferenced iterator_t<Rng2> as a projection operation
before the function op is invoked.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

This overload of find_end is available if the user decides to provide the algorithm their own predicate
op.
Return The find_end algorithm returns a hpx::future<iterator_t<Rng> > if the execution policy is

of type sequenced_task_policy or parallel_task_policy and returns iterator_t<Rng> otherwise.
The find_end algorithm returns an iterator to the beginning of the last subsequence rng2 in range
rng. If the length of the subsequence rng2 is greater than the length of the range rng, end(rng)
is returned. Additionally if the size of the subsequence is empty or no subsequence is found,
end(rng) is also returned.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = ranges::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng1>::type>::type find_end(ExPolicy

&&pol-
icy,
Rng1
&&rng,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Returns the last subsequence of elements rng2 found in the range rng using the given predicate f to
compare elements.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

476 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note Complexity: at most S*(N-S+1) comparisons where S = distance(begin(rng2), end(rng2)) and
N = distance(begin(rng), end(rng)).

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng1: The type of the first source range (deduced). The iterators extracted from this range
type must meet the requirements of a forward iterator.

• Rng2: The type of the second source range (deduced). The iterators extracted from this range
type must meet the requirements of a forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of replace requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

• Proj1: The type of an optional projection function applied to the first sequence. This defaults
to util::projection_identity

• Proj2: The type of an optional projection function applied to the second sequence. This
defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the first sequence of elements the algorithm will be applied to.
• rng2: Refers to the second sequence of elements the algorithm will be applied to.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types iterator_t<Rng>
and iterator_t<Rng2> can be dereferenced and then implicitly converted to Type1 and Type2
respectively.

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first range of type dereferenced iterator_t<Rng1> as a projection operation before
the function op is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the el-
ements of the second range of type dereferenced iterator_t<Rng2> as a projection operation
before the function op is invoked.

The comparison operations in the parallel find_end algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

This overload of find_end is available if the user decides to provide the algorithm their own predicate
op.
Return The find_end algorithm returns a hpx::future<iterator_t<Rng> > if the execution policy is

of type sequenced_task_policy or parallel_task_policy and returns iterator_t<Rng> otherwise.
The find_end algorithm returns an iterator to the beginning of the last subsequence rng2 in range
rng. If the length of the subsequence rng2 is greater than the length of the range rng, end(rng)
is returned. Additionally if the size of the subsequence is empty or no subsequence is found,
end(rng) is also returned.

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred = ranges::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>

2.9. API reference 477

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng1>::type>::type find_first_of(ExPolicy
&&pol-
icy,
Iter1
first1,
Sent1
last1,
Iter2
first2,
Sent2
last2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Searches the range [first1, last1) for any elements in the range [first2, last2). Uses binary predicate p
to compare elements

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: at most (S*N) comparisons where S = distance(first2, last2) and N = dis-

tance(first1, last1).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Iter1: The type of the begin source iterators for the first sequence used (deduced). This
iterator type must meet the requirements of an forward iterator.

• Sent1: The type of the end source iterators for the first sequence used (deduced). This iterator
type must meet the requirements of an sentinel for Iter1.

• Iter2: The type of the begin source iterators for the second sequence used (deduced). This
iterator type must meet the requirements of an forward iterator.

• Sent2: The type of the end source iterators for the second sequence used (deduced). This
iterator type must meet the requirements of an sentinel for Iter2.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of replace requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

• Proj1: The type of an optional projection function. This defaults to util::projection_identity
and is applied to the elements in rng1.

• Proj2: The type of an optional projection function. This defaults to util::projection_identity
and is applied to the elements in rng2.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the first sequence of elements the algorithm will be applied

to.
• last1: Refers to the end of the first sequence of elements the algorithm will be applied to.
• first2: Refers to the beginning of the second sequence of elements the algorithm will be

478 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

applied to.
• last2: Refers to the end of the second sequence of elements the algorithm will be applied to.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types iterator_t<Rng1>
and iterator_t<Rng2> can be dereferenced and then implicitly converted to Type1 and Type2
respectively.

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of type dereferenced iterator_t<Rng1> before the function op is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the ele-
ments of type dereferenced iterator_t<Rng2> before the function op is invoked.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

This overload of find_first_of is available if the user decides to provide the algorithm their own pred-
icate op.
Return The find_end algorithm returns a hpx::future<iterator_t<Rng1> > if the execution policy is

of type sequenced_task_policy or parallel_task_policy and returns iterator_t<Rng1> otherwise.
The find_first_of algorithm returns an iterator to the first element in the range rng1 that is equal to
an element from the range rng2. If the length of the subsequence rng2 is greater than the length
of the range rng1, end(rng1) is returned. Additionally if the size of the subsequence is empty or
no subsequence is found, end(rng1) is also returned.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = ranges::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng1>::type>::type find_first_of(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Searches the range rng1 for any elements in the range rng2. Uses binary predicate p to compare
elements

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: at most (S*N) comparisons where S = distance(begin(rng2), end(rng2)) and N =

distance(begin(rng1), end(rng1)).
Template Parameters

2.9. API reference 479

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng1: The type of the first source range (deduced). The iterators extracted from this range
type must meet the requirements of a forward iterator.

• Rng2: The type of the second source range (deduced). The iterators extracted from this range
type must meet the requirements of a forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of replace requires Pred to meet the requirements of CopyConstructible. This
defaults to std::equal_to<>

• Proj1: The type of an optional projection function. This defaults to util::projection_identity
and is applied to the elements in rng1.

• Proj2: The type of an optional projection function. This defaults to util::projection_identity
and is applied to the elements in rng2.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng1: Refers to the first sequence of elements the algorithm will be applied to.
• rng2: Refers to the second sequence of elements the algorithm will be applied to.
• op: The binary predicate which returns true if the elements should be treated as equal. The

signature should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types iterator_t<Rng1>
and iterator_t<Rng2> can be dereferenced and then implicitly converted to Type1 and Type2
respectively.

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of type dereferenced iterator_t<Rng1> before the function op is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the ele-
ments of type dereferenced iterator_t<Rng2> before the function op is invoked.

The comparison operations in the parallel find_first_of algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

This overload of find_first_of is available if the user decides to provide the algorithm their own pred-
icate op.
Return The find_end algorithm returns a hpx::future<iterator_t<Rng1> > if the execution policy is

of type sequenced_task_policy or parallel_task_policy and returns iterator_t<Rng1> otherwise.
The find_first_of algorithm returns an iterator to the first element in the range rng1 that is equal to
an element from the range rng2. If the length of the subsequence rng2 is greater than the length
of the range rng1, end(rng1) is returned. Additionally if the size of the subsequence is empty or
no subsequence is found, end(rng1) is also returned.

Header hpx/parallel/container_algorithms/for_each.hpp

namespace hpx

namespace ranges

480 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename InIter, typename Sent, typename F, typename Proj = util::projection_identity>
hpx::ranges::for_each_result<InIter, F> for_each(InIter first, Sent last, F &&f, Proj &&proj =

Proj())
Applies f to the result of dereferencing every iterator in the range [first, last).

If f returns a result, the result is ignored.
Note Complexity: Applies f exactly last - first times.
If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Applies f to the result of dereferencing every iterator in the range [first, first + count), starting from
first and proceeding to first + count - 1.
Return {last, std::move(f)} where last is the iterator corresponding to the input sentinel last.
Template Parameters

• InIter: The type of the source begin iterator used (deduced). This iterator type must meet
the requirements of an input iterator.

• Sent: The type of the source sentinel (deduced). This sentinel type must be a sentinel for
InIter.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of for_each requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
InIter can be dereferenced and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

If f returns a result, the result is ignored.
Note Complexity: Applies f exactly last - first times.
If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Return {first + count, std::move(f)}
Template Parameters

• InIter: The type of the source begin iterator used (deduced). This iterator type must meet
the requirements of an input iterator.

• Size: The type of the argument specifying the number of elements to apply f to.
• F: The type of the function/function object to use (deduced). Unlike its sequential form, the

parallel overload of for_each requires F to meet the requirements of CopyConstructible.
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

2.9. API reference 481

HPX Documentation, 1.5.1

The signature does not need to have const&. The type Type must be such that an object of type
InIter can be dereferenced and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

template<typename ExPolicy, typename FwdIter, typename Sent, typename F, typename Proj = util::projection_identity>
FwdIter for_each(ExPolicy &&policy, FwdIter first, Sent last, F &&f, Proj &&proj = Proj())

Applies f to the result of dereferencing every iterator in the range [first, last).

If f returns a result, the result is ignored.
Note Complexity: Applies f exactly last - first times.
If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function
parameter, since parallelization may not permit efficient state accumulation.

Return The for_each algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns last.

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter: The type of the source begin iterator used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent: The type of the source sentinel (deduced). This sentinel type must be a sentinel for
InIter.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of for_each requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
InIter can be dereferenced and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

template<typename Rng, typename F, typename Proj = util::projection_identity>
hpx::ranges::for_each_result<typename hpx::traits::range_iterator<Rng>::type, F> for_each(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f,
Proj
&&proj
=
Proj())

Applies f to the result of dereferencing every iterator in the given range rng.

482 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

If f returns a result, the result is ignored.
Note Complexity: Applies f exactly size(rng) times.
If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Return {std::end(rng), std::move(f)}
Template Parameters

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of for_each requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
InIter can be dereferenced and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

template<typename ExPolicy, typename Rng, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type for_each(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f,
Proj
&&proj
=
Proj())

Applies f to the result of dereferencing every iterator in the given range rng.

If f returns a result, the result is ignored.
Note Complexity: Applies f exactly size(rng) times.
If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function
parameter, since parallelization may not permit efficient state accumulation.

The application of function objects in parallel algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of for_each requires F to meet the requirements of CopyConstructible.

2.9. API reference 483

HPX Documentation, 1.5.1

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
InIter can be dereferenced and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The for_each algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns last.

template<typename ExPolicy, typename FwdIter, typename Size, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, FwdIter>::type for_each_n(ExPolicy &&policy, FwdIter

first, Size count, F &&f, Proj
&&proj = Proj())

Applies f to the result of dereferencing every iterator in the range [first, first + count), starting from
first and proceeding to first + count - 1.

If f returns a result, the result is ignored.
Note Complexity: Applies f exactly count times.
If the type of first satisfies the requirements of a mutable iterator, f may apply non-constant functions
through the dereferenced iterator.

Unlike its sequential form, the parallel overload of for_each does not return a copy of its Function
parameter, since parallelization may not permit efficient state accumulation.

Return The for_each algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns last.

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• FwdIter: The type of the source begin iterator used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Size: The type of the argument specifying the number of elements to apply f to.
• F: The type of the function/function object to use (deduced). Unlike its sequential form, the

parallel overload of for_each requires F to meet the requirements of CopyConstructible.
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• count: Refers to the number of elements starting at first the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). The signature of this predicate should be equivalent to:

<ignored> pred(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of type
InIter can be dereferenced and then implicitly converted to Type.

484 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• proj: Specifies the function (or function object) which will be invoked for each of the ele-
ments as a projection operation before the actual predicate is invoked.

Header hpx/parallel/container_algorithms/generate.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Rng, typename F>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type generate(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f)

Assign each element in range [first, last) a value generated by the given function object f

The assignments in the parallel generate algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly distance(first, last) invocations of f and assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: generator function that will be called. signature of function should be equivalent to the

following:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and assigned a
value of type Ret.

The assignments in the parallel generate algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns last.

template<typename ExPolicy, typename Iter, typename Sent, typename F>
util::detail::algorithm_result<ExPolicy, Iter>::type generate(ExPolicy &&policy, Iter first, Sent

last, F &&f)
Assign each element in range [first, last) a value generated by the given function object f

2.9. API reference 485

HPX Documentation, 1.5.1

The assignments in the parallel generate algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly distance(first, last) invocations of f and assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Iter: The type of the source begin iterator used (deduced). This iterator type must meet the
requirements of an forward iterator.

• Sent: The type of the source end iterator used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• f: generator function that will be called. signature of function should be equivalent to the

following:

Ret fun();

The type Ret must be such that an object of type FwdIter can be dereferenced and assigned a
value of type Ret.

The assignments in the parallel generate algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns last.

template<typename ExPolicy, typename FwdIter, typename Size, typename F>
util::detail::algorithm_result<ExPolicy, FwdIter>::type generate_n(ExPolicy &&policy, FwdIter

first, Size count, F &&f)
Assigns each element in range [first, first+count) a value generated by the given function object g.

The assignments in the parallel generate_n algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly count invocations of f and assignments, for count > 0.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source iterators used (deduced). This iterator type must meet the
requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of equal requires F to meet the requirements of CopyConstructible.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• count: Refers to the number of elements in the sequence the algorithm will be applied to.
• f: Refers to the generator function object that will be called. The signature of the function

should be equivalent to

Ret fun();

486 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The type Ret must be such that an object of type OutputIt can be dereferenced and assigned a
value of type Ret.

The assignments in the parallel generate_n algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. It returns last.

Header hpx/parallel/container_algorithms/is_heap.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng, typename Comp = detail::less, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, bool>::type is_heap(ExPolicy &&policy, Rng

&&rng, Comp &&comp =
Comp(), Proj &&proj = Proj())

Returns whether the range is max heap. That is, true if the range is max heap, false otherwise.
The function uses the given comparison function object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.
Note Complexity: Performs at most N applications of the comparison comp, at most 2 * N

applications of the projection proj, where N = last - first.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an random access iterator.

• Comp: The type of the function/function object to use (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument of
the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

2.9. API reference 487

HPX Documentation, 1.5.1

Return The is_heap algorithm returns a hpx::future<bool> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns bool otherwise. The is_heap al-
gorithm returns whether the range is max heap. That is, true if the range is max heap, false
otherwise.

template<typename ExPolicy, typename Rng, typename Comp = detail::less, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type is_heap_until(ExPolicy

&&pol-
icy,
Rng
&&rng,
Comp
&&comp
=
Comp(),
Proj
&&proj
=
Proj())

Returns the upper bound of the largest range beginning at first which is a max heap. That is, the
last iterator it for which range [first, it) is a max heap. The function uses the given comparison
function object comp (defaults to using operator<()).

comp has to induce a strict weak ordering on the values.
Note Complexity: Performs at most N applications of the comparison comp, at most 2 * N

applications of the projection proj, where N = last - first.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an random access iterator.

• Comp: The type of the function/function object to use (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument of
the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The is_heap_until algorithm returns a hpx::future<RandIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns RandIter otherwise. The
is_heap_until algorithm returns the upper bound of the largest range beginning at first which is
a max heap. That is, the last iterator it for which range [first, it) is a max heap.

488 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/container_algorithms/merge.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng1, typename Rng2, typename RandIter3, typename Comp = detail::less, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_tuple<tag::in1(typename

hpx::traits::range_iterator<Rng1>::type),
tag::in2

typename hpx::traits::range_iterator<Rng2>::type, tag::outRandIter3>>::type mergeExPolicy
&&policy, Rng1 &&rng1, Rng2 &&rng2, RandIter3 dest, Comp &&comp = Comp(), Proj1
&&proj1 = Proj1(), Proj2 &&proj2 = Proj2()Merges two sorted ranges [first1, last1) and [first2,
last2) into one sorted range beginning at dest. The order of equivalent elements in the each of
original two ranges is preserved. For equivalent elements in the original two ranges, the elements
from the first range precede the elements from the second range. The destination range cannot
overlap with either of the input ranges.

The assignments in the parallel merge algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs O(std::distance(first1, last1) + std::distance(first2, last2)) applica-

tions of the comparison comp and the each projection.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng1: The type of the first source range used (deduced). The iterators extracted from this
range type must meet the requirements of an random access iterator.

• Rng2: The type of the second source range used (deduced). The iterators extracted from
this range type must meet the requirements of an random access iterator.

• RandIter3: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an random access iterator.

• Comp: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of merge requires Comp to meet the requirements of CopyConstructible.
This defaults to std::less<>

• Proj1: The type of an optional projection function to be used for elements of the first range.
This defaults to util::projection_identity

• Proj2: The type of an optional projection function to be used for elements of the second
range. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng1: Refers to the first range of elements the algorithm will be applied to.
• rng2: Refers to the second range of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• comp: comp is a callable object which returns true if the first argument is less than the

second, and false otherwise. The signature of this comparison should be equivalent to:

2.9. API reference 489

HPX Documentation, 1.5.1

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types RandIter1 and
RandIter2 can be dereferenced and then implicitly converted to both Type1 and Type2

• proj1: Specifies the function (or function object) which will be invoked for each of the
elements of the first range as a projection operation before the actual comparison comp is
invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of the second range as a projection operation before the actual comparison comp is
invoked.

The assignments in the parallel merge algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Return The merge algorithm returns a hpx::future<tagged_tuple<tag::in1(RandIter1),
tag::in2(RandIter2), tag::out(RandIter3)> > if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns tagged_tuple<tag::in1(RandIter1),
tag::in2(RandIter2), tag::out(RandIter3)> otherwise. The merge algorithm returns the tuple
of the source iterator last1, the source iterator last2, the destination iterator to the end of the
dest range.

template<typename ExPolicy, typename Rng, typename RandIter, typename Comp = detail::less, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, RandIter>::type inplace_merge(ExPolicy &&pol-

icy, Rng &&rng,
RandIter middle,
Comp &&comp
= Comp(), Proj
&&proj = Proj())

Merges two consecutive sorted ranges [first, middle) and [middle, last) into one sorted range
[first, last). The order of equivalent elements in the each of original two ranges is preserved.
For equivalent elements in the original two ranges, the elements from the first range precede the
elements from the second range.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs O(std::distance(first, last)) applications of the comparison comp and

the each projection.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an random access iterator.

• RandIter: The type of the source iterators used (deduced). This iterator type must meet
the requirements of an random access iterator.

• Comp: The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of inplace_merge requires Comp to meet the requirements of
CopyConstructible. This defaults to std::less<>

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the range of elements the algorithm will be applied to.
• middle: Refers to the end of the first sorted range and the beginning of the second sorted

range the algorithm will be applied to.

490 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• comp: comp is a callable object which returns true if the first argument is less than the
second, and false otherwise. The signature of this comparison should be equivalent to:

bool comp(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types RandIter can be
dereferenced and then implicitly converted to both Type1 and Type2

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel inplace_merge algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The inplace_merge algorithm returns a hpx::future<RandIter> if the execution policy
is of type sequenced_task_policy or parallel_task_policy and returns RandIter otherwise. The
inplace_merge algorithm returns the source iterator last

Header hpx/parallel/container_algorithms/minmax.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng, typename Proj = util::projection_identity, typename F = detail::less>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng>::iterator_type>::type min_element(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f
=
F(),
Proj
&&proj
=
Proj())

Finds the smallest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel min_element algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

2.9. API reference 491

HPX Documentation, 1.5.1

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of min_element requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: The binary predicate which returns true if the the left argument is less than the right

element. The signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The comparisons in the parallel min_element algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The min_element algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
min_element algorithm returns the iterator to the smallest element in the range [first, last). If
several elements in the range are equivalent to the smallest element, returns the iterator to the
first such element. Returns last if the range is empty.

template<typename ExPolicy, typename Rng, typename Proj = util::projection_identity, typename F = detail::less>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng>::iterator_type>::type max_element(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f
=
F(),
Proj
&&proj
=
Proj())

Finds the greatest element in the range [first, last) using the given comparison function f.

The comparisons in the parallel max_element algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly max(N-1, 0) comparisons, where N = std::distance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of max_element requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity

492 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: The binary predicate which returns true if the This argument is optional and defaults to

std::less. the left argument is less than the right element. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The comparisons in the parallel max_element algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The max_element algorithm returns a hpx::future<FwdIter> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The
max_element algorithm returns the iterator to the smallest element in the range [first, last). If
several elements in the range are equivalent to the smallest element, returns the iterator to the
first such element. Returns last if the range is empty.

template<typename ExPolicy, typename Rng, typename Proj = util::projection_identity, typename F = detail::less>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::min(typename

hpx::traits::range_traits<Rng>::iterator_type),
tag::max

typename hpx::traits::range_traits<Rng>::iterator_type>>::type minmax_elementExPolicy
&&policy, Rng &&rng, F &&f = F(), Proj &&proj = Proj()Finds the greatest element in the
range [first, last) using the given comparison function f.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most max(floor(3/2*(N-1)), 0) applications of the predicate, where N =

std::distance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of minmax_element requires F to meet the requirements of CopyCon-
structible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: The binary predicate which returns true if the the left argument is less than the right

element. This argument is optional and defaults to std::less. The signature of the predicate
function should be equivalent to the following:

bool pred(const Type1 &a, const Type1 &b);

The signature does not need to have const &, but the function must not modify the objects

2.9. API reference 493

HPX Documentation, 1.5.1

passed to it. The type Type1 must be such that objects of type FwdIter can be dereferenced
and then implicitly converted to Type1.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The comparisons in the parallel minmax_element algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The minmax_element algorithm returns a hpx::future<tagged_pair<tag::min(FwdIter),
tag::max(FwdIter)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::min(FwdIter), tag::max(FwdIter)> otherwise.
The minmax_element algorithm returns a pair consisting of an iterator to the smallest el-
ement as the first element and an iterator to the greatest element as the second. Returns
std::make_pair(first, first) if the range is empty. If several elements are equivalent to the small-
est element, the iterator to the first such element is returned. If several elements are equivalent
to the largest element, the iterator to the last such element is returned.

Header hpx/parallel/container_algorithms/mismatch.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Pred = ranges::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, ranges::mismatch_result<FwdIter1, FwdIter2>>::type mismatch(ExPolicy

&&pol-
icy,
FwdIter1
first1,
FwdIter1
last1,
FwdIter2
first2,
FwdIter2
last2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Returns true if the range [first1, last1) is mismatch to the range [first2, last2), and false otherwise.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

494 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note Complexity: At most min(last1 - first1, last2 - first2) applications of the predicate f. If FwdIter1
and FwdIter2 meet the requirements of RandomAccessIterator and (last1 - first1) != (last2 - first2)
then no applications of the predicate f are made.

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Iter1: The type of the source iterators used for the first range (deduced). This iterator type
must meet the requirements of an forward iterator.

• Sent1: The type of the source iterators used for the end of the first range (deduced).
• Iter2: The type of the source iterators used for the second range (deduced). This iterator

type must meet the requirements of an forward iterator.
• Sent2: The type of the source iterators used for the end of the second range (deduced).
• Pred: The type of an optional function/function object to use. Unlike its sequential form, the

parallel overload of mismatch requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

• Proj1: The type of an optional projection function applied to the first range. This defaults to
util::projection_identity

• Proj2: The type of an optional projection function applied to the second range. This defaults
to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first1: Refers to the beginning of the sequence of elements of the first range the algorithm

will be applied to.
• last1: Refers to the end of the sequence of elements of the first range the algorithm will be

applied to.
• first2: Refers to the beginning of the sequence of elements of the second range the algorithm

will be applied to.
• last2: Refers to the end of the sequence of elements of the second range the algorithm will

be applied to.
• op: The binary predicate which returns true if the elements should be treated as mismatch. The

signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first range as a projection operation before the actual predicate is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the second range as a projection operation before the actual predicate is invoked.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Note The two ranges are considered mismatch if, for every iterator i in the range [first1,last1), *i
mismatchs *(first2 + (i - first1)). This overload of mismatch uses operator== to determine if two
elements are mismatch.

Return The mismatch algorithm returns a hpx::future<bool> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns bool otherwise. The mismatch algorithm
returns true if the elements in the two ranges are mismatch, otherwise it returns false. If the length
of the range [first1, last1) does not mismatch the length of the range [first2, last2), it returns false.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = ranges::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>

2.9. API reference 495

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, ranges::mimatch_result<FwdIter1, FwdIter2>>::type mismatch(ExPolicy
&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Returns std::pair with iterators to the first two non-equivalent elements.

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: At most last1 - first1 applications of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng1: The type of the first source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Rng2: The type of the second source range used (deduced). The iterators extracted from this
range type must meet the requirements of an forward iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form, the
parallel overload of mismatch requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

• Proj1: The type of an optional projection function applied to the first range. This defaults to
util::projection_identity

• Proj2: The type of an optional projection function applied to the second range. This defaults
to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng1: Refers to the first sequence of elements the algorithm will be applied to.
• rng2: Refers to the second sequence of elements the algorithm will be applied to.
• op: The binary predicate which returns true if the elements should be treated as mismatch. The

signature of the predicate function should be equivalent to the following:

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first range as a projection operation before the actual predicate is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the second range as a projection operation before the actual predicate is invoked.

496 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The comparison operations in the parallel mismatch algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The mismatch algorithm returns a hpx::future<std::pair<FwdIter1, FwdIter2> > if
the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
std::pair<FwdIter1, FwdIter2> otherwise. The mismatch algorithm returns the first mismatch-
ing pair of elements from two ranges: one defined by [first1, last1) and another defined by [first2,
last2).

Header hpx/parallel/container_algorithms/move.hpp

namespace hpx

Functions

template<typename ExPolicy, typename FwdIter1, typename Sent1, typename FwdIter>
util::detail::algorithm_result<ExPolicy, ranges::move_result<FwdIter1, FwdIter>>::type move(ExPolicy

&&pol-
icy,
FwdIter1
iter,
Sent1
sent,
FwdIter
dest)

Moves the elements in the range rng to another range beginning at dest. After this operation the elements
in the moved-from range will still contain valid values of the appropriate type, but not necessarily the same
values as before the move.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• FwdIter1: The type of the begin source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent1: The type of the end source iterators used (deduced). This iterator type must meet the
requirements of an sentinel for FwdIter1.

• FwdIter: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.

• last: Refers to the end of the sequence of elements the algorithm will be applied to.

• dest: Refers to the beginning of the destination range.

2.9. API reference 497

HPX Documentation, 1.5.1

The assignments in the parallel copy algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The move algorithm returns a hpx::future<ranges::move_result<iterator_t<Rng>, FwdIter2>>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
ranges::move_result<iterator_t<Rng>, FwdIter2> otherwise. The move algorithm returns the pair
of the input iterator last and the output iterator to the element in the destination range, one past the
last element moved.

template<typename ExPolicy, typename Rng, typename FwdIter>
util::detail::algorithm_result<ExPolicy, ranges::move_result<typename hpx::traits::range_traits<Rng>::iterator_type, FwdIter>>::type move(ExPolicy

&&pol-
icy,
Rng
&&rng,
FwdIter
dest)

Moves the elements in the range rng to another range beginning at dest. After this operation the elements
in the moved-from range will still contain valid values of the appropriate type, but not necessarily the same
values as before the move.

The assignments in the parallel copy algorithm invoked with an execution policy object of type se-
quenced_policy execute in sequential order in the calling thread.

Note Complexity: Performs exactly std::distance(begin(rng), end(rng)) assignments.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• FwdIter: The type of the iterator representing the destination range (deduced). This iterator
type must meet the requirements of an forward iterator.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• rng: Refers to the sequence of elements the algorithm will be applied to.

• dest: Refers to the beginning of the destination range.

The assignments in the parallel copy algorithm invoked with an execution policy object of type paral-
lel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified threads,
and indeterminately sequenced within each thread.

Return The move algorithm returns a hpx::future<ranges::move_result<iterator_t<Rng>, FwdIter2>>
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
ranges::move_result<iterator_t<Rng>, FwdIter2> otherwise. The move algorithm returns the pair
of the input iterator last and the output iterator to the element in the destination range, one past the
last element moved.

498 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/parallel/container_algorithms/partition.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type partition(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred,
Proj
&&proj
=
Proj())

Reorders the elements in the range rng in such a way that all elements for which the predicate
pred returns true precede the elements for which the predicate pred returns false. Relative order
of the elements is not preserved.

The assignments in the parallel partition algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs at most 2 * N swaps, exactly N applications of the predicate and

projection, where N = std::distance(begin(rng), end(rng)).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of partition requires Pred to meet the requirements of CopyCon-
structible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• pred: Specifies the function (or function object) which will be invoked for each of the ele-

ments in the sequence specified by the range rng. This is an unary predicate for partitioning
the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

2.9. API reference 499

HPX Documentation, 1.5.1

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel partition algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The partition algorithm returns a hpx::future<FwdIter> if the execution policy is of type
parallel_task_policy and returns FwdIter otherwise. The partition algorithm returns the iterator
to the first element of the second group.

template<typename ExPolicy, typename Rng, typename FwdIter2, typename FwdIter3, typename Pred, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_tuple<tag::in(typename

hpx::traits::range_iterator<Rng>::type),
tag::out1

FwdIter2, tag::out2FwdIter3>>::type partition_copyExPolicy &&policy, Rng &&rng,
FwdIter2 dest_true, FwdIter3 dest_false, Pred &&pred, Proj &&proj = Proj()Copies the ele-
ments in the range rng, to two different ranges depending on the value returned by the predicate
pred. The elements, that satisfy the predicate pred, are copied to the range beginning at dest_true.
The rest of the elements are copied to the range beginning at dest_false. The order of the elements
is preserved.

The assignments in the parallel partition_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than N assignments, exactly N applications of the predicate

pred, where N = std::distance(begin(rng), end(rng)).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range for the elements that
satisfy the predicate pred (deduced). This iterator type must meet the requirements of an
forward iterator.

• FwdIter3: The type of the iterator representing the destination range for the elements that
don’t satisfy the predicate pred (deduced). This iterator type must meet the requirements of
an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of partition_copy requires Pred to meet the requirements of CopyCon-
structible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest_true: Refers to the beginning of the destination range for the elements that satisfy

the predicate pred.
• dest_false: Refers to the beginning of the destination range for the elements that don’t

satisfy the predicate pred.
• pred: Specifies the function (or function object) which will be invoked for each of the ele-

ments in the sequence specified by the range rng. This is an unary predicate for partitioning
the source iterators. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced

500 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

and then implicitly converted to Type.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel partition_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The partition_copy algorithm returns a hpx::future<tagged_tuple<tag::in(InIter),
tag::out1(OutIter1), tag::out2(OutIter2)> > if the execution policy is of type par-
allel_task_policy and returns tagged_tuple<tag::in(InIter), tag::out1(OutIter1),
tag::out2(OutIter2)> otherwise. The partition_copy algorithm returns the tuple of the
source iterator last, the destination iterator to the end of the dest_true range, and the
destination iterator to the end of the dest_false range.

Header hpx/parallel/container_algorithms/reduce.hpp

namespace hpx

namespace ranges

Functions

template<typename ExPolicy, typename FwdIter, typename Sent, typename T, typename F>
util::detail::algorithm_result<ExPolicy, T>::type reduce(ExPolicy &&policy, FwdIter first, Sent

last, T init, F &&f)
Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source begin iterator used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent: The type of the source sentinel used (deduced). This iterator type must meet the re-
quirements of an forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• T: The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an object
of type FwdIterB can be dereferenced and then implicitly converted to any of those types.

2.9. API reference 501

HPX Documentation, 1.5.1

• init: The initial value for the generalized sum.
The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.
Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-

quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm re-
turns the result of the generalized sum over the elements given by the input range [first, last).

Note GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)),

where:
– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

template<typename ExPolicy, typename FwdIter, typename Sent, typename T>
util::detail::algorithm_result<ExPolicy, T>::type reduce(ExPolicy &&policy, FwdIter first, Sent

last, T init)
Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the operator+().
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source begin iterator used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent: The type of the source sentinel used (deduced). This iterator type must meet the re-
quirements of an forward iterator.

• T: The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.
• init: The initial value for the generalized sum.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.
Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-

quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm re-
turns the result of the generalized sum (applying operator+()) over the elements given by the input
range [first, last).

Note GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

template<typename ExPolicy, typename FwdIter, typename Sent>

502 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<FwdIter>::value_type>::type reduce(ExPolicy
&&pol-
icy,
FwdIter
first,
Sent
last)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the operator+().
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• FwdIter: The type of the source begin iterator used (deduced). This iterator type must meet
the requirements of an forward iterator.

• Sent: The type of the source sentinel used (deduced). This iterator type must meet the re-
quirements of an forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• first: Refers to the beginning of the sequence of elements the algorithm will be applied to.
• last: Refers to the end of the sequence of elements the algorithm will be applied to.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.
Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-

quenced_task_policy or parallel_task_policy and returns T otherwise (where T is the value_type
of FwdIterB). The reduce algorithm returns the result of the generalized sum (applying opera-
tor+()) over the elements given by the input range [first, last).

Note The type of the initial value (and the result type) T is determined from the value_type of the
used FwdIterB.

Note GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

template<typename ExPolicy, typename Rng, typename T, typename F>
util::detail::algorithm_result<ExPolicy, T>::type reduce(ExPolicy &&policy, Rng &&rng, T init,

F &&f)
Returns GENERALIZED_SUM(f, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

2.9. API reference 503

HPX Documentation, 1.5.1

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• T: The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements in

the sequence specified by [first, last). This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&. The types Type1 Ret must be such that an object
of type FwdIterB can be dereferenced and then implicitly converted to any of those types.

• init: The initial value for the generalized sum.
The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.
Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-

quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm re-
turns the result of the generalized sum over the elements given by the input range [first, last).

Note GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)),

where:
– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

template<typename ExPolicy, typename Rng, typename T>
util::detail::algorithm_result<ExPolicy, T>::type reduce(ExPolicy &&policy, Rng &&rng, T init)

Returns GENERALIZED_SUM(+, init, *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the operator+().
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• T: The type of the value to be used as initial (and intermediate) values (deduced).
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• init: The initial value for the generalized sum.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.

504 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise. The reduce algorithm re-
turns the result of the generalized sum (applying operator+()) over the elements given by the input
range [first, last).

Note GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

template<typename ExPolicy, typename Rng>
util::detail::algorithm_result<ExPolicy, typename std::iterator_traits<typename hpx::traits::range_traits<Rng>::iterator_type>::value_type>::type reduce(ExPolicy

&&pol-
icy,
Rng
&&rng)

Returns GENERALIZED_SUM(+, T(), *first, . . . , *(first + (last - first) - 1)).

The reduce operations in the parallel reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: O(last - first) applications of the operator+().
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.

The reduce operations in the parallel copy_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

The difference between reduce and accumulate is that the behavior of reduce may be non-deterministic
for non-associative or non-commutative binary predicate.
Return The reduce algorithm returns a hpx::future<T> if the execution policy is of type se-

quenced_task_policy or parallel_task_policy and returns T otherwise (where T is the value_type
of FwdIterB). The reduce algorithm returns the result of the generalized sum (applying opera-
tor+()) over the elements given by the input range [first, last).

Note The type of the initial value (and the result type) T is determined from the value_type of the
used FwdIterB.

Note GENERALIZED_SUM(+, a1, . . . , aN) is defined as follows:
• a1 when N is 1
• op(GENERALIZED_SUM(+, b1, . . . , bK), GENERALIZED_SUM(+, bM, . . . , bN)), where:

– b1, . . . , bN may be any permutation of a1, . . . , aN and
– 1 < K+1 = M <= N.

2.9. API reference 505

HPX Documentation, 1.5.1

Header hpx/parallel/container_algorithms/remove.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type remove(ExPolicy

&&pol-
icy,
Rng
&&rng,
T
const
&value,
Proj
&&proj
=
Proj())

Removes all elements satisfying specific criteria from the range [first, last) and returns a past-
the-end iterator for the new end of the range. This version removes all elements that are equal to
value.

The assignments in the parallel remove algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the operator==() and the projection proj.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• T: The type of the value to remove (deduced). This value type must meet the requirements
of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• value: Specifies the value of elements to remove.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel remove algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The remove algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The remove
algorithm returns the iterator to the new end of the range.

506 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename ExPolicy, typename Rng, typename Pred, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type remove_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred,
Proj
&&proj
=
Proj())

Removes all elements satisfying specific criteria from the range [first, last) and returns a past-the-
end iterator for the new end of the range. This version removes all elements for which predicate
pred returns true.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the predicate pred and the projection proj.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential
form, the parallel overload of remove_if requires Pred to meet the requirements of Copy-
Constructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• pred: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last).This is an unary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel remove_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The remove_if algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The re-
move_if algorithm returns the iterator to the new end of the range.

2.9. API reference 507

HPX Documentation, 1.5.1

Header hpx/parallel/container_algorithms/remove_copy.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng, typename OutIter, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, util::in_out_result<typename hpx::traits::range_traits<Rng>::iterator_type, OutIter>>::type remove_copy(ExPolicy

&&pol-
icy,
Rng
&&rng,
Out-
Iter
dest,
T
const
&val,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies
only the elements for which the comparison operator returns false when compare to val. The order
of the elements that are not removed is preserved.

Effects: Copies all the elements referred to by the iterator it in the range [first,last) for which the
following corresponding conditions do not hold: INVOKE(proj, *it) == value

The assignments in the parallel remove_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an output iterator.

• T: The type that the result of dereferencing InIter is compared to.
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• val: Value to be removed.

508 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel remove_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The remove_copy algorithm returns a hpx::future<tagged_pair<tag::in(InIter),
tag::out(OutIter)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(InIter), tag::out(OutIter)> otherwise. The
copy algorithm returns the pair of the input iterator forwarded to the first element after the last
in the input sequence and the output iterator to the element in the destination range, one past
the last element copied.

template<typename ExPolicy, typename Rng, typename OutIter, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, util::in_out_result<typename hpx::traits::range_traits<Rng>::iterator_type, OutIter>>::type remove_copy_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
Out-
Iter
dest,
F
&&f,
Proj
&&proj
=
Proj())

Copies the elements in the range, defined by [first, last), to another range beginning at dest. Copies
only the elements for which the predicate f returns false. The order of the elements that are not
removed is preserved.

Effects: Copies all the elements referred to by the iterator it in the range [first,last) for which the
following corresponding conditions do not hold: INVOKE(pred, INVOKE(proj, *it)) != false.

The assignments in the parallel remove_copy_if algorithm invoked with an execution policy ob-
ject of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than last - first assignments, exactly last - first applications

of the predicate f.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an output iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the

2.9. API reference 509

HPX Documentation, 1.5.1

elements to be removed. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type InIter can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel remove_copy_if algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fash-
ion in unspecified threads, and indeterminately sequenced within each thread.

Return The remove_copy_if algorithm returns a hpx::future<tagged_pair<tag::in(InIter),
tag::out(OutIter)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(InIter), tag::out(OutIter)> otherwise. The
copy algorithm returns the pair of the input iterator forwarded to the first element after the
last in the input sequence and the output iterator to the element in the destination range, one
past the last element copied.

Header hpx/parallel/container_algorithms/replace.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng, typename T1, typename T2, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng>::iterator_type>::type replace(ExPolicy

&&pol-
icy,
Rng
&&rng,
T1
const
&old_value,
T2
const
&new_value,
Proj
&&proj
=
Proj())

Replaces all elements satisfying specific criteria with new_value in the range [first, last).

Effects: Substitutes elements referred by the iterator it in the range [first,last) with new_value,
when the following corresponding conditions hold: INVOKE(proj, *i) == old_value
Note Complexity: Performs exactly last - first assignments.

510 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The assignments in the parallel replace algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of a forward iterator.

• T1: The type of the old value to replace (deduced).
• T2: The type of the new values to replace (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• old_value: Refers to the old value of the elements to replace.
• new_value: Refers to the new value to use as the replacement.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel replace algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The replace algorithm returns a hpx::future<void> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns void otherwise.

template<typename ExPolicy, typename Rng, typename F, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_traits<Rng>::iterator_type>::type replace_if(ExPolicy

&&pol-
icy,
Rng
&&rng,
F
&&f,
T
const
&new_value,
Proj
&&proj
=
Proj())

Replaces all elements satisfying specific criteria (for which predicate f returns true) with
new_value in the range [first, last).

Effects: Substitutes elements referred by the iterator it in the range [first, last) with new_value,
when the following corresponding conditions hold: INVOKE(f, INVOKE(proj, *it)) != false
Note Complexity: Performs exactly last - first applications of the predicate.
The assignments in the parallel replace_if algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of a forward iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form,

2.9. API reference 511

HPX Documentation, 1.5.1

the parallel overload of equal requires F to meet the requirements of CopyConstructible.
(deduced).

• T: The type of the new values to replace (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the
elements which need to replaced. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced
and then implicitly converted to Type.

• new_value: Refers to the new value to use as the replacement.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel replace_if algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The replace_if algorithm returns a hpx::future<FwdIter> if the execution policy is of
type sequenced_task_policy or parallel_task_policy and returns void otherwise. It returns last.

template<typename ExPolicy, typename Rng, typename OutIter, typename T1, typename T2, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(typename

hpx::traits::range_traits<Rng>::iterator_type),
tag::out

OutIter>>::type replace_copyExPolicy &&policy, Rng &&rng, OutIter dest, T1 const
&old_value, T2 const &new_value, Proj &&proj = Proj()Copies the all elements from the
range [first, last) to another range beginning at dest replacing all elements satisfying a specific
criteria with new_value.

Effects: Assigns to every iterator it in the range [result, result + (last - first)) either new_value
or *(first + (it - result)) depending on whether the following corresponding condition holds: IN-
VOKE(proj, *(first + (i - result))) == old_value

The assignments in the parallel replace_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first applications of the predicate.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an output iterator.

• T1: The type of the old value to replace (deduced).
• T2: The type of the new values to replace (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.

512 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• dest: Refers to the beginning of the destination range.
• old_value: Refers to the old value of the elements to replace.
• new_value: Refers to the new value to use as the replacement.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel replace_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The replace_copy algorithm returns a hpx::future<tagged_pair<tag::in(InIter),
tag::out(OutIter)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(InIter), tag::out(OutIter)> otherwise. The
copy algorithm returns the pair of the input iterator last and the output iterator to the element
in the destination range, one past the last element copied.

template<typename ExPolicy, typename Rng, typename OutIter, typename F, typename T, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(typename

hpx::traits::range_traits<Rng>::iterator_type),
tag::out

OutIter>>::type replace_copy_ifExPolicy &&policy, Rng &&rng, OutIter dest, F &&f,
T const &new_value, Proj &&proj = Proj()Copies the all elements from the range [first,
last) to another range beginning at dest replacing all elements satisfying a specific criteria with
new_value.

Effects: Assigns to every iterator it in the range [result, result + (last - first)) either new_value
or *(first + (it - result)) depending on whether the following corresponding condition holds: IN-
VOKE(f, INVOKE(proj, *(first + (i - result)))) != false

The assignments in the parallel replace_copy_if algorithm invoked with an execution policy ob-
ject of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first applications of the predicate.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an output iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of equal requires F to meet the requirements of CopyConstructible.
(deduced).

• T: The type of the new values to replace (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is an unary predicate which returns true for the
elements which need to replaced. The signature of this predicate should be equivalent to:

bool pred(const Type &a);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter can be dereferenced

2.9. API reference 513

HPX Documentation, 1.5.1

and then implicitly converted to Type.
• new_value: Refers to the new value to use as the replacement.
• proj: Specifies the function (or function object) which will be invoked for each of the

elements as a projection operation before the actual predicate is invoked.
The assignments in the parallel replace_copy_if algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fash-
ion in unspecified threads, and indeterminately sequenced within each thread.

Return The replace_copy_if algorithm returns a hpx::future<tagged_pair<tag::in(InIter),
tag::out(OutIter)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(InIter), tag::out(OutIter)> otherwise. The
replace_copy_if algorithm returns the input iterator last and the output iterator to the element
in the destination range, one past the last element copied.

Header hpx/parallel/container_algorithms/reverse.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type reverse(ExPolicy

&&pol-
icy,
Rng
&&rng)

Reverses the order of the elements in the range [first, last). Behaves as if applying std::iter_swap
to every pair of iterators first+i, (last-i) - 1 for each non-negative i < (last-first)/2.

The assignments in the parallel reverse algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Linear in the distance between first and last.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of a bidirectional iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.

The assignments in the parallel reverse algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The reverse algorithm returns a hpx::future<BidirIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns BidirIter otherwise. It returns last.

template<typename ExPolicy, typename Rng, typename OutIter>

514 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, util::in_out_result<typename hpx::traits::range_iterator<Rng>::type, OutIter>>::type reverse_copy(ExPolicy
&&pol-
icy,
Rng
&&rng,
Out-
Iter
dest_first)

Copies the elements from the range [first, last) to another range beginning at dest_first in such
a way that the elements in the new range are in reverse order. Behaves as if by executing the
assignment *(dest_first + (last - first) - 1 - i) = *(first + i) once for each non-negative i < (last -
first) If the source and destination ranges (that is, [first, last) and [dest_first, dest_first+(last-first))
respectively) overlap, the behavior is undefined.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of a bidirectional iterator.

• OutputIter: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an output iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest_first: Refers to the begin of the destination range.

The assignments in the parallel reverse_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The reverse_copy algorithm returns a hpx::future<in_out_result<BidirIter, OutIter> >
if the execution policy is of type sequenced_task_policy or parallel_task_policy and returns
in_out_result<BidirIter, OutIter> otherwise. The copy algorithm returns the pair of the input
iterator forwarded to the first element after the last in the input sequence and the output iterator
to the element in the destination range, one past the last element copied.

Header hpx/parallel/container_algorithms/rotate.hpp

namespace hpx

namespace parallel

namespace v1

2.9. API reference 515

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename Rng>
util::detail::algorithm_result<ExPolicy, util::in_out_result<typename hpx::traits::range_iterator<Rng>::type, typename hpx::traits::range_iterator<Rng>::type>>::type rotate(ExPolicy

&&pol-
icy,
Rng
&&rng,
typename
hpx::traits::range_iterator<Rng>::type
mid-
dle)

Performs a left rotation on a range of elements. Specifically, rotate swaps the elements in the
range [first, last) in such a way that the element new_first becomes the first element of the new
range and new_first - 1 becomes the last element.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Linear in the distance between first and last.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of a forward iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• middle: Refers to the element that should appear at the beginning of the rotated range.

The assignments in the parallel rotate algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in un-
specified threads, and indeterminately sequenced within each thread.

Note The type of dereferenced FwdIter must meet the requirements of MoveAssignable and
MoveConstructible.

Return The rotate algorithm returns a hpx::future<tagged_pair<tag::begin(FwdIter),
tag::end(FwdIter)> > if the execution policy is of type parallel_task_policy and returns
tagged_pair<tag::begin(FwdIter), tag::end(FwdIter)> otherwise. The rotate algorithm
returns the iterator equal to pair(first + (last - new_first), last).

template<typename ExPolicy, typename Rng, typename OutIter>
util::detail::algorithm_result<ExPolicy, util::in_out_result<typename hpx::traits::range_iterator<Rng>::type, OutIter>>::type rotate_copy(ExPolicy

&&pol-
icy,
Rng
&&rng,
typename
hpx::traits::range_iterator<Rng>::type
mid-
dle,
Out-
Iter
dest_first)

Copies the elements from the range [first, last), to another range beginning at dest_first in such
a way, that the element new_first becomes the first element of the new range and new_first - 1

516 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

becomes the last element.

The assignments in the parallel rotate_copy algorithm invoked with an execution policy object of
type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs exactly last - first assignments.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of a forward iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an output iterator.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• middle: Refers to the element that should appear at the beginning of the rotated range.
• dest_first: Refers to the begin of the destination range.

The assignments in the parallel rotate_copy algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The rotate_copy algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter),
tag::out(OutIter)> > if the execution policy is of type parallel_task_policy and returns
tagged_pair<tag::in(FwdIter), tag::out(OutIter)> otherwise. The rotate_copy algorithm re-
turns the output iterator to the element past the last element copied.

Header hpx/parallel/container_algorithms/search.hpp

namespace hpx

namespace parallel

namespace v1

2.9. API reference 517

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = detail::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng1>::type>::type search(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided
predicate to compare elements.

The comparison operations in the parallel search algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-

tance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng1: The type of the examine range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2: The type of the search range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of adjacent_find requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

• Proj1: The type of an optional projection function. This defaults to
util::projection_identity and is applied to the elements of Rng1.

• Proj2: The type of an optional projection function. This defaults to
util::projection_identity and is applied to the elements of Rng2.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng1: Refers to the sequence of elements the algorithm will be examining.
• rng2: Refers to the sequence of elements the algorithm will be searching for.
• op: Refers to the binary predicate which returns true if the elements should be treated as

equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and

518 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively
• proj1: Specifies the function (or function object) which will be invoked for each of the

elements of rng1 as a projection operation before the actual predicate is invoked.
• proj2: Specifies the function (or function object) which will be invoked for each of the

elements of rng2 as a projection operation before the actual predicate is invoked.
The comparison operations in the parallel search algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The search algorithm returns a hpx::future<FwdIter> if the execution policy is of type
task_execution_policy and returns FwdIter otherwise. The search algorithm returns an iterator
to the beginning of the first subsequence [s_first, s_last) in range [first, last). If the length of the
subsequence [s_first, s_last) is greater than the length of the range [first, last), last is returned.
Additionally if the size of the subsequence is empty first is returned. If no subsequence is
found, last is returned.

template<typename ExPolicy, typename Rng1, typename Rng2, typename Pred = detail::equal_to, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng1>::type>::type search_n(ExPolicy

&&pol-
icy,
Rng1
&&rng1,
std::size_t
count,
Rng2
&&rng2,
Pred
&&op
=
Pred(),
Proj1
&&proj1
=
Proj1(),
Proj2
&&proj2
=
Proj2())

Searches the range [first, last) for any elements in the range [s_first, s_last). Uses a provided
predicate to compare elements.

The comparison operations in the parallel search algorithm invoked with an execution policy
object of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: at most (S*N) comparisons where S = distance(s_first, s_last) and N = dis-

tance(first, last).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng1: The type of the examine range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2: The type of the search range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• Pred: The type of an optional function/function object to use. Unlike its sequential form,
the parallel overload of adjacent_find requires Pred to meet the requirements of CopyCon-

2.9. API reference 519

HPX Documentation, 1.5.1

structible. This defaults to std::equal_to<>
• Proj1: The type of an optional projection function. This defaults to

util::projection_identity and is applied to the elements of Rng1.
• Proj2: The type of an optional projection function. This defaults to

util::projection_identity and is applied to the elements of Rng2.
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng1: Refers to the sequence of elements the algorithm will be examining.
• count: The number of elements to apply the algorithm on.
• rng2: Refers to the sequence of elements the algorithm will be searching for.
• op: Refers to the binary predicate which returns true if the elements should be treated as

equal. the signature of the function should be equivalent to

bool pred(const Type1 &a, const Type2 &b);

The signature does not need to have const &, but the function must not modify the objects
passed to it. The types Type1 and Type2 must be such that objects of types FwdIter1 and
FwdIter2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively

• proj1: Specifies the function (or function object) which will be invoked for each of the
elements of rng1 as a projection operation before the actual predicate is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of rng2 as a projection operation before the actual predicate is invoked.

The comparison operations in the parallel search algorithm invoked with an execution policy
object of type parallel_policy or parallel_task_policy are permitted to execute in an unordered
fashion in unspecified threads, and indeterminately sequenced within each thread.

Return The search algorithm returns a hpx::future<FwdIter> if the execution policy is of type
task_execution_policy and returns FwdIter otherwise. The search algorithm returns an iterator
to the beginning of the first subsequence [s_first, s_last) in range [first, last). If the length of the
subsequence [s_first, s_last) is greater than the length of the range [first, last), last is returned.
Additionally if the size of the subsequence is empty first is returned. If no subsequence is
found, last is returned.

Header hpx/parallel/container_algorithms/sort.hpp

namespace hpx

namespace parallel

namespace rangev1

Functions

template<typename ExPolicy, typename Rng, typename Compare = v1::detail::less, typename Proj = util::projection_identity>

520 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type sort(ExPolicy
&&pol-
icy,
Rng
&&rng,
Com-
pare
&&comp
=
Com-
pare(),
Proj
&&proj
=
Proj())

Sorts the elements in the range rng in ascending order. The order of equal elements is not guar-
anteed to be preserved. The function uses the given comparison function object comp (defaults to
using operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i))
== false.
Note Complexity: O(Nlog(N)), where N = std::distance(begin(rng), end(rng)) comparisons.
comp has to induce a strict weak ordering on the values.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• Comp: The type of the function/function object to use (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

• proj: Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The sort algorithm returns a hpx::future<Iter> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns Iter otherwise. It returns last.

2.9. API reference 521

HPX Documentation, 1.5.1

Header hpx/parallel/container_algorithms/stable_sort.hpp

namespace hpx

namespace parallel

namespace rangev1

Functions

template<typename ExPolicy, typename Rng, typename Compare = v1::detail::less, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type stable_sort(ExPolicy

&&pol-
icy,
Rng
&&rng,
Com-
pare
&&comp
=
Com-
pare(),
Proj
&&proj
=
Proj())

Sorts the elements in the range [first, last) in ascending order. The relative order of equal elements
is preserved. The function uses the given comparison function object comp (defaults to using
operator<()).

A sequence is sorted with respect to a comparator comp and a projection proj if for every iterator i
pointing to the sequence and every non-negative integer n such that i + n is a valid iterator pointing
to an element of the sequence, and INVOKE(comp, INVOKE(proj, *(i + n)), INVOKE(proj, *i))
== false.
Note Complexity: O(Nlog(N)), where N = std::distance(first, last) comparisons.
comp has to induce a strict weak ordering on the values.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it applies
user-provided function objects.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• Comp: The type of the function/function object to use (deduced).
• Proj: The type of an optional projection function. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• comp: comp is a callable object. The return value of the INVOKE operation applied to an

object of type Comp, when contextually converted to bool, yields true if the first argument
of the call is less than the second, and false otherwise. It is assumed that comp will not apply
any non-constant function through the dereferenced iterator.

522 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• proj: Specifies the function (or function object) which will be invoked for each pair of
elements as a projection operation before the actual predicate comp is invoked.

The application of function objects in parallel algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

The application of function objects in parallel algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The stable_sort algorithm returns a hpx::future<RandomIt> if the execution policy is
of type sequenced_task_policy or parallel_task_policy and returns RandomIt otherwise. The
algorithm returns an iterator pointing to the first element after the last element in the input
sequence.

Header hpx/parallel/container_algorithms/transform.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng, typename OutIter, typename F, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(typename

hpx::traits::range_iterator<Rng>::type),
tag::out

OutIter>>::type transformExPolicy &&policy, Rng &&rng, OutIter dest, F &&f, Proj
&&proj = Proj()Applies the given function f to the given range rng and stores the result in another
range, beginning at dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly size(rng) applications of f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the invocations of f.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an output iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.

2.9. API reference 523

HPX Documentation, 1.5.1

• f: Specifies the function (or function object) which will be invoked for each of the elements
in the sequence specified by [first, last).This is an unary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type &a);

The signature does not need to have const&. The type Type must be such that an object of
type InIter can be dereferenced and then implicitly converted to Type. The type Ret must be
such that an object of type OutIter can be dereferenced and assigned a value of type Ret.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate f is invoked.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The transform algorithm returns a hpx::future<tagged_pair<tag::in(InIter),
tag::out(OutIter)> > if the execution policy is of type parallel_task_policy and returns
tagged_pair<tag::in(InIter), tag::out(OutIter)> otherwise. The transform algorithm returns a
tuple holding an iterator referring to the first element after the input sequence and the output
iterator to the element in the destination range, one past the last element copied.

template<typename ExPolicy, typename Rng, typename InIter2, typename OutIter, typename F, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_tuple<tag::in1(typename

hpx::traits::range_iterator<Rng>::type),
tag::in2

InIter2, tag::outOutIter>>::type transformExPolicy &&policy, Rng &&rng, InIter2 first2,
OutIter dest, F &&f, Proj1 &&proj1 = Proj1(), Proj2 &&proj2 = Proj2()Applies the given func-
tion f to pairs of elements from two ranges: one defined by rng and the other beginning at first2,
and stores the result in another range, beginning at dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly size(rng) applications of f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the invocations of f.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an input iterator.

• InIter2: The type of the source iterators for the second range used (deduced). This iterator
type must meet the requirements of an input iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an output iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj1: The type of an optional projection function to be used for elements of the first
sequence. This defaults to util::projection_identity

• Proj2: The type of an optional projection function to be used for elements of the second
sequence. This defaults to util::projection_identity

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• first2: Refers to the beginning of the second sequence of elements the algorithm will be

applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

524 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

in the sequence specified by [first, last).This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such that
objects of types InIter1 and InIter2 can be dereferenced and then implicitly converted to
Type1 and Type2 respectively. The type Ret must be such that an object of type OutIter can
be dereferenced and assigned a value of type Ret.

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first sequence as a projection operation before the actual predicate f is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate f is
invoked.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Return The transform algorithm returns a hpx::future<tagged_tuple<tag::in1(InIter1),
tag::in2(InIter2), tag::out(OutIter)> > if the execution policy is of type parallel_task_policy
and returns tagged_tuple<tag::in1(InIter1), tag::in2(InIter2), tag::out(OutIter)> otherwise.
The transform algorithm returns a tuple holding an iterator referring to the first element
after the first input sequence, an iterator referring to the first element after the second input
sequence, and the output iterator referring to the element in the destination range, one past the
last element copied.

template<typename ExPolicy, typename Rng1, typename Rng2, typename OutIter, typename F, typename Proj1 = util::projection_identity, typename Proj2 = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_tuple<tag::in1(typename

hpx::traits::range_iterator<Rng1>::type),
tag::in2

typename hpx::traits::range_iterator<Rng2>::type, tag::outOutIter>>::type
transformExPolicy &&policy, Rng1 &&rng1, Rng2 &&rng2, OutIter dest, F &&f,
Proj1 &&proj1 = Proj1(), Proj2 &&proj2 = Proj2()Applies the given function f to pairs of
elements from two ranges: one defined by [first1, last1) and the other beginning at first2, and
stores the result in another range, beginning at dest.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Exactly min(last2-first2, last1-first1) applications of f
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the invocations of f.

• Rng1: The type of the first source range used (deduced). The iterators extracted from this
range type must meet the requirements of an input iterator.

• Rng2: The type of the second source range used (deduced). The iterators extracted from
this range type must meet the requirements of an input iterator.

• OutIter: The type of the iterator representing the destination range (deduced). This itera-
tor type must meet the requirements of an output iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of transform requires F to meet the requirements of CopyConstructible.

• Proj1: The type of an optional projection function to be used for elements of the first
sequence. This defaults to util::projection_identity

• Proj2: The type of an optional projection function to be used for elements of the second
sequence. This defaults to util::projection_identity

Parameters

2.9. API reference 525

HPX Documentation, 1.5.1

• policy: The execution policy to use for the scheduling of the iterations.
• rng1: Refers to the first sequence of elements the algorithm will be applied to.
• rng2: Refers to the second sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• f: Specifies the function (or function object) which will be invoked for each of the elements

in the sequence specified by [first, last).This is a binary predicate. The signature of this
predicate should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&. The types Type1 and Type2 must be such that
objects of types InIter1 and InIter2 can be dereferenced and then implicitly converted to
Type1 and Type2 respectively. The type Ret must be such that an object of type OutIter can
be dereferenced and assigned a value of type Ret.

• proj1: Specifies the function (or function object) which will be invoked for each of the ele-
ments of the first sequence as a projection operation before the actual predicate f is invoked.

• proj2: Specifies the function (or function object) which will be invoked for each of the
elements of the second sequence as a projection operation before the actual predicate f is
invoked.

The invocations of f in the parallel transform algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion
in unspecified threads, and indeterminately sequenced within each thread.

Note The algorithm will invoke the binary predicate until it reaches the end of the shorter of the
two given input sequences

Return The transform algorithm returns a hpx::future<tagged_tuple<tag::in1(InIter1),
tag::in2(InIter2), tag::out(OutIter)> > if the execution policy is of type parallel_task_policy
and returns tagged_tuple<tag::in1(InIter1), tag::in2(InIter2), tag::out(OutIter)> otherwise.
The transform algorithm returns a tuple holding an iterator referring to the first element r the
first input sequence, an iterator referring to the first element after the second input sequence,
and the output iterator referring to the element in the destination range, one past the last
element copied.

Header hpx/parallel/container_algorithms/transform_reduce.hpp

namespace hpx

Functions

template<typename ExPolicy, typename Rng, typename T, typename Reduce, typename Convert>
util::detail::algorithm_result<ExPolicy, T>::type transform_reduce(ExPolicy &&policy, Rng

&&rng, T init, Re-
duce &&red_op, Convert
&&conv_op)

Returns GENERALIZED_SUM(red_op, init, conv_op(*first), . . . , conv_op(*(first + (last - first) - 1))).

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the predicates red_op and conv_op.

Template Parameters

526 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• F: The type of the function/function object to use (deduced). Unlike its sequential form, the
parallel overload of copy_if requires F to meet the requirements of CopyConstructible.

• T: The type of the value to be used as initial (and intermediate) values (deduced).

• Reduce: The type of the binary function object used for the reduction operation.

• Convert: The type of the unary function object used to transform the elements of the input
sequence before invoking the reduce function.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• rng: Refers to the sequence of elements the algorithm will be applied to.

• init: The initial value for the generalized sum.

• red_op: Specifies the function (or function object) which will be invoked for each of the values
returned from the invocation of conv_op. This is a binary predicate. The signature of this predicate
should be equivalent to:

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The types Type1, Type2, and Ret must be such that an object of a type as returned from
conv_op can be implicitly converted to any of those types.

• conv_op: Specifies the function (or function object) which will be invoked for each of the
elements in the sequence specified by [first, last). This is a unary predicate. The signature of this
predicate should be equivalent to:

R fun(const Type &a);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Type must be such that an object of type Iter can be dereferenced and then implicitly
converted to Type. The type R must be such that an object of this type can be implicitly converted
to T.

The reduce operations in the parallel transform_reduce algorithm invoked with an execution policy ob-
ject of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

The difference between transform_reduce and accumulate is that the behavior of transform_reduce may
be non-deterministic for non-associative or non-commutative binary predicate.

Return The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of type par-
allel_task_policy and returns T otherwise. The transform_reduce algorithm returns the result of the
generalized sum over the values returned from conv_op when applied to the elements given by the
input range [first, last).

Note GENERALIZED_SUM(op, a1, . . . , aN) is defined as follows:

• a1 when N is 1

• op(GENERALIZED_SUM(op, b1, . . . , bK), GENERALIZED_SUM(op, bM, . . . , bN)), where:

2.9. API reference 527

HPX Documentation, 1.5.1

– b1, . . . , bN may be any permutation of a1, . . . , aN and

– 1 < K+1 = M <= N.

template<typename ExPolicy, typename Rng1, typename FwdIter2, typename T>
util::detail::algorithm_result<ExPolicy, T>::type transform_reduce(ExPolicy &&policy, Rng1

&&rng1, FwdIter2 first2, T
init)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the predicate op2.

Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• Rng1: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• FwdIter2: The type of the second source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T: The type of the value to be used as return) values (deduced).

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• rng1: Refers to the sequence of elements the algorithm will be applied to.

• first2: Refers to the beginning of the second sequence of elements the result will be calculated
with.

• init: The initial value for the sum.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise.

template<typename ExPolicy, typename Rng1, typename FwdIter2, typename T, typename Reduce, typename Convert>
util::detail::algorithm_result<ExPolicy, T>::type transform_reduce(ExPolicy &&policy, Rng1

&&rng1, FwdIter2 first2,
T init, Reduce &&red_op,
Convert &&conv_op)

Returns the result of accumulating init with the inner products of the pairs formed by the elements of two
ranges starting at first1 and first2.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.

Note Complexity: O(last - first) applications of the predicate op2.

Template Parameters

528 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in which
the execution of the algorithm may be parallelized and the manner in which it executes the as-
signments.

• Rng1: The type of the source range used (deduced). The iterators extracted from this range type
must meet the requirements of an input iterator.

• FwdIter2: The type of the second source iterators used (deduced). This iterator type must meet
the requirements of an forward iterator.

• T: The type of the value to be used as return) values (deduced).

• Reduce: The type of the binary function object used for the multiplication operation.

• Convert: The type of the unary function object used to transform the elements of the input
sequence before invoking the reduce function.

Parameters

• policy: The execution policy to use for the scheduling of the iterations.

• rng1: Refers to the sequence of elements the algorithm will be applied to.

• first2: Refers to the beginning of the second sequence of elements the result will be calculated
with.

• init: The initial value for the sum.

• red_op: Specifies the function (or function object) which will be invoked for the initial value
and each of the return values of op2. This is a binary predicate. The signature of this predicate
should be equivalent to should be equivalent to:

Ret fun(const Type1 &a, const Type1 &b);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Ret must be such that it can be implicitly converted to a type of T.

• conv_op: Specifies the function (or function object) which will be invoked for each of the input
values of the sequence. This is a binary predicate. The signature of this predicate should be
equivalent to

Ret fun(const Type1 &a, const Type2 &b);

The signature does not need to have const&, but the function must not modify the objects passed
to it. The type Ret must be such that it can be implicitly converted to an object for the second
argument type of op1.

The operations in the parallel transform_reduce algorithm invoked with an execution policy object of type
parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in unspecified
threads, and indeterminately sequenced within each thread.

Return The transform_reduce algorithm returns a hpx::future<T> if the execution policy is of type se-
quenced_task_policy or parallel_task_policy and returns T otherwise.

2.9. API reference 529

HPX Documentation, 1.5.1

Header hpx/parallel/container_algorithms/unique.hpp

namespace hpx

namespace parallel

namespace v1

Functions

template<typename ExPolicy, typename Rng, typename Pred = detail::equal_to, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, typename hpx::traits::range_iterator<Rng>::type>::type unique(ExPolicy

&&pol-
icy,
Rng
&&rng,
Pred
&&pred
=
Pred(),
Proj
&&proj
=
Proj())

Eliminates all but the first element from every consecutive group of equivalent elements from the
range rng and returns a past-the-end iterator for the new logical end of the range.

The assignments in the parallel unique algorithm invoked with an execution policy object of type
sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than N assignments, exactly N - 1 applications of the

predicate pred and no more than twice as many applications of the projection proj, where N =
std::distance(begin(rng), end(rng)).

Template Parameters
• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in

which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of unique requires Pred to meet the requirements of CopyConstructible.
This defaults to std::equal_to<>

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• pred: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by [first, last). This is an binary predicate which returns
true for the required elements. The signature of this predicate should be equivalent to:

bool pred(const Type &a, const Type &b);

530 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel unique algorithm invoked with an execution policy object of
type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion in
unspecified threads, and indeterminately sequenced within each thread.

Return The unique algorithm returns a hpx::future<FwdIter> if the execution policy is of type
sequenced_task_policy or parallel_task_policy and returns FwdIter otherwise. The unique
algorithm returns the iterator to the new end of the range.

template<typename ExPolicy, typename Rng, typename FwdIter2, typename Pred = detail::equal_to, typename Proj = util::projection_identity>
util::detail::algorithm_result<ExPolicy, hpx::util::tagged_pair<tag::in(typename

hpx::traits::range_iterator<Rng>::type),
tag::out

FwdIter2>>::type unique_copyExPolicy &&policy, Rng &&rng, FwdIter2 dest, Pred
&&pred = Pred(), Proj &&proj = Proj()Copies the elements from the range rng, to another
range beginning at dest in such a way that there are no consecutive equal elements. Only the
first element of each group of equal elements is copied.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object
of type sequenced_policy execute in sequential order in the calling thread.
Note Complexity: Performs not more than N assignments, exactly N - 1 applications of the

predicate pred, where N = std::distance(begin(rng), end(rng)).
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the algorithm may be parallelized and the manner in which it executes
the assignments.

• Rng: The type of the source range used (deduced). The iterators extracted from this range
type must meet the requirements of an forward iterator.

• FwdIter2: The type of the iterator representing the destination range (deduced). This
iterator type must meet the requirements of an forward iterator.

• Pred: The type of the function/function object to use (deduced). Unlike its sequential form,
the parallel overload of unique_copy requires Pred to meet the requirements of CopyCon-
structible. This defaults to std::equal_to<>

• Proj: The type of an optional projection function. This defaults to util::projection_identity
Parameters

• policy: The execution policy to use for the scheduling of the iterations.
• rng: Refers to the sequence of elements the algorithm will be applied to.
• dest: Refers to the beginning of the destination range.
• pred: Specifies the function (or function object) which will be invoked for each of the

elements in the sequence specified by the range rng. This is an binary predicate which
returns true for the required elements. The signature of this predicate should be equivalent
to:

bool pred(const Type &a, const Type &b);

The signature does not need to have const&, but the function must not modify the objects
passed to it. The type Type must be such that an object of type FwdIter1 can be dereferenced
and then implicitly converted to Type.

• proj: Specifies the function (or function object) which will be invoked for each of the
elements as a projection operation before the actual predicate is invoked.

The assignments in the parallel unique_copy algorithm invoked with an execution policy object
of type parallel_policy or parallel_task_policy are permitted to execute in an unordered fashion

2.9. API reference 531

HPX Documentation, 1.5.1

in unspecified threads, and indeterminately sequenced within each thread.

Return The unique_copy algorithm returns a hpx::future<tagged_pair<tag::in(FwdIter1),
tag::out(FwdIter2)> > if the execution policy is of type sequenced_task_policy or paral-
lel_task_policy and returns tagged_pair<tag::in(FwdIter1), tag::out(FwdIter2)> otherwise.
The unique_copy algorithm returns the pair of the source iterator to last, and the destination
iterator to the end of the dest range.

Header hpx/parallel/container_memory.hpp

Header hpx/parallel/container_numeric.hpp

Header hpx/parallel/datapar.hpp

Header hpx/parallel/datapar/iterator_helpers.hpp

Header hpx/parallel/datapar/loop.hpp

Header hpx/parallel/datapar/transform_loop.hpp

Header hpx/parallel/datapar/zip_iterator.hpp

Header hpx/parallel/memory.hpp

Header hpx/parallel/numeric.hpp

Header hpx/parallel/spmd_block.hpp

namespace hpx

namespace lcos

namespace local

Functions

template<typename ExPolicy, typename F, typename ...Args, typename = typename std::enable_if<hpx::parallel::execution::is_async_execution_policy<ExPolicy>::value>::type>
std::vector<hpx::future<void>> define_spmd_block(ExPolicy &&policy, std::size_t

num_images, F &&f, Args&&...
args)

template<typename ExPolicy, typename F, typename ...Args, typename = typename std::enable_if<!hpx::parallel::execution::is_async_execution_policy<ExPolicy>::value>::type>
void define_spmd_block(ExPolicy &&policy, std::size_t num_images, F &&f, Args&&...

args)

template<typename F, typename ...Args>
void define_spmd_block(std::size_t num_images, F &&f, Args&&... args)

532 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

struct spmd_block
#include <spmd_block.hpp> The class spmd_block defines an interface for launching multi-
ple images while giving handles to each image to interact with the remaining images. The
define_spmd_block function templates create multiple images of a user-defined function (or
lambda) and launches them in a possibly separate thread. A temporary spmd block object is
created and diffused to each image. The constraint for the function (or lambda) given to the
define_spmd_block function is to accept a spmd_block as first parameter.

Public Functions

spmd_block(std::size_t num_images, std::size_t image_id, barrier_type &barrier, ta-
ble_type &barriers, mutex_type &mtx)

spmd_block(spmd_block&&)

spmd_block(spmd_block const&)

spmd_block &operator=(spmd_block&&)

spmd_block &operator=(spmd_block const&)

std::size_t get_num_images() const

std::size_t this_image() const

void sync_all() const

void sync_images(std::set<std::size_t> const &images) const

void sync_images(std::vector<std::size_t> const &input_images) const

template<typename Iterator>
std::enable_if<traits::is_input_iterator<Iterator>::value>::type sync_images(Iterator

begin, Iter-
ator end)
const

template<typename ...I>
std::enable_if<util::all_of<typename std::is_integral<I>::type...>::value>::type sync_images(I...

i)
const

Private Types

using barrier_type = hpx::lcos::local::barrier

using table_type = std::map<std::set<std::size_t>, std::shared_ptr<barrier_type>>

using mutex_type = hpx::lcos::local::mutex

2.9. API reference 533

HPX Documentation, 1.5.1

Private Members

std::size_t num_images_

std::size_t image_id_

std::reference_wrapper<barrier_type> barrier_

std::reference_wrapper<table_type> barriers_

std::reference_wrapper<mutex_type> mtx_

namespace parallel

namespace v2

Typedefs

using spmd_block = hpx::lcos::local::spmd_block
The class spmd_block defines an interface for launching multiple images while giving handles
to each image to interact with the remaining images. The define_spmd_block function templates
create multiple images of a user-defined function (or lambda) and launches them in a possibly
separate thread. A temporary spmd block object is created and diffused to each image. The
constraint for the function (or lambda) given to the define_spmd_block function is to accept a
spmd_block as first parameter.

Functions

template<typename ExPolicy, typename F, typename ...Args, typename = typename std::enable_if<hpx::parallel::execution::is_async_execution_policy<ExPolicy>::value>::type>
std::vector<hpx::future<void>> define_spmd_block(ExPolicy &&policy, std::size_t

num_images, F &&f, Args&&...
args)

template<typename ExPolicy, typename F, typename ...Args, typename = typename std::enable_if<!hpx::parallel::execution::is_async_execution_policy<ExPolicy>::value>::type>
void define_spmd_block(ExPolicy &&policy, std::size_t num_images, F &&f, Args&&...

args)

template<typename F, typename ...Args>
void define_spmd_block(std::size_t num_images, F &&f, Args&&... args)

Header hpx/parallel/tagspec.hpp

Header hpx/parallel/task_block.hpp

namespace hpx

namespace parallel

namespace v2

534 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename F>
util::detail::algorithm_result<ExPolicy>::type define_task_block(ExPolicy &&policy, F

&&f)
Constructs a task_block, tr, using the given execution policy policy,and invokes the expression
f(tr) on the user-provided object, f.

Postcondition: All tasks spawned from f have finished execution. A call to define_task_block
may return on a different thread than that on which it was called.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the task block may be parallelized.

• F: The type of the user defined function to invoke inside the define_task_block (deduced). F
shall be MoveConstructible.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• f: The user defined function to invoke inside the task block. Given an lvalue tr of type

task_block, the expression, (void)f(tr), shall be well-formed.

Note It is expected (but not mandated) that f will (directly or indirectly) call
tr.run(callable_object).

Exceptions
• An: exception_list, as specified in Exception Handling.

template<typename F>
void define_task_block(F &&f)

Constructs a task_block, tr, and invokes the expression f(tr) on the user-provided object, f. This
version uses parallel_policy for task scheduling.

Postcondition: All tasks spawned from f have finished execution. A call to define_task_block
may return on a different thread than that on which it was called.
Template Parameters

• F: The type of the user defined function to invoke inside the define_task_block (deduced). F
shall be MoveConstructible.

Parameters
• f: The user defined function to invoke inside the task block. Given an lvalue tr of type

task_block, the expression, (void)f(tr), shall be well-formed.

Note It is expected (but not mandated) that f will (directly or indirectly) call
tr.run(callable_object).

Exceptions
• An: exception_list, as specified in Exception Handling.

template<typename ExPolicy, typename F>
util::detail::algorithm_result<ExPolicy>::type define_task_block_restore_thread(ExPolicy

&&pol-
icy,
F
&&f)

Constructs a task_block, tr, and invokes the expression f(tr) on the user-provided object, f.

Postcondition: All tasks spawned from f have finished execution. A call to de-
fine_task_block_restore_thread always returns on the same thread as that on which it was called.
Template Parameters

• ExPolicy: The type of the execution policy to use (deduced). It describes the manner in
which the execution of the task block may be parallelized.

2.9. API reference 535

HPX Documentation, 1.5.1

• F: The type of the user defined function to invoke inside the define_task_block (deduced). F
shall be MoveConstructible.

Parameters
• policy: The execution policy to use for the scheduling of the iterations.
• f: The user defined function to invoke inside the define_task_block. Given an lvalue tr of

type task_block, the expression, (void)f(tr), shall be well-formed.
Exceptions

• An: exception_list, as specified in Exception Handling.

Note It is expected (but not mandated) that f will (directly or indirectly) call
tr.run(callable_object).

template<typename F>
void define_task_block_restore_thread(F &&f)

Constructs a task_block, tr, and invokes the expression f(tr) on the user-provided object, f. This
version uses parallel_policy for task scheduling.

Postcondition: All tasks spawned from f have finished execution. A call to de-
fine_task_block_restore_thread always returns on the same thread as that on which it was called.
Template Parameters

• F: The type of the user defined function to invoke inside the define_task_block (deduced). F
shall be MoveConstructible.

Parameters
• f: The user defined function to invoke inside the define_task_block. Given an lvalue tr of

type task_block, the expression, (void)f(tr), shall be well-formed.
Exceptions

• An: exception_list, as specified in Exception Handling.

Note It is expected (but not mandated) that f will (directly or indirectly) call
tr.run(callable_object).

template<typename ExPolicy = parallel::execution::parallel_policy>
class task_block

#include <task_block.hpp> The class task_block defines an interface for forking and joining par-
allel tasks. The define_task_block and define_task_block_restore_thread function templates cre-
ate an object of type task_block and pass a reference to that object to a user-provided callable
object.

An object of class task_block cannot be constructed, destroyed, copied, or moved except by the
implementation of the task region library. Taking the address of a task_block object via operator&
or addressof is ill formed. The result of obtaining its address by any other means is unspecified.

A task_block is active if it was created by the nearest enclosing task block, where “task block”
refers to an invocation of define_task_block or define_task_block_restore_thread and “nearest

enclosing” means the most recent invocation that has not yet completed. Code designated for
execution in another thread by means other than the facilities in this section (e.g., using thread or
async) are not enclosed in the task region and a task_block passed to (or captured by) such code
is not active within that code. Performing any operation on a task_block that is not active results
in undefined behavior.

The task_block that is active before a specific call to the run member function is not active within
the asynchronous function that invoked run. (The invoked function should not, therefore, capture
the task_block from the surrounding block.)

Example:
define_task_block([&](auto& tr) {

tr.run([&] {
(continues on next page)

536 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

tr.run([] { f(); }); // Error: tr is not
→˓active

define_task_block([&](auto& tr) { // Nested task block
tr.run(f); // OK: inner tr is

→˓active
/// ...

});
});
/// ...

});

Template Parameters
• ExPolicy: The execution policy an instance of a task_block was created with. This de-

faults to parallel_policy.

Public Types

typedef ExPolicy execution_policy
Refers to the type of the execution policy used to create the task_block.

Public Functions

execution_policy const &get_execution_policy() const
Return the execution policy instance used to create this task_block

template<typename F, typename ...Ts>
void run(F &&f, Ts&&... ts)

Causes the expression f() to be invoked asynchronously. The invocation of f is permitted to
run on an unspecified thread in an unordered fashion relative to the sequence of operations
following the call to run(f) (the continuation), or indeterminately sequenced within the same
thread as the continuation.

The call to run synchronizes with the invocation of f. The completion of f() synchronizes with
the next invocation of wait on the same task_block or completion of the nearest enclosing task
block (i.e., the define_task_block or define_task_block_restore_thread that created this task
block).

Requires: F shall be MoveConstructible. The expression, (void)f(), shall be well-formed.

Precondition: this shall be the active task_block.

Postconditions: A call to run may return on a different thread than that on which it was called.

Note The call to run is sequenced before the continuation as if run returns on the same thread.
The invocation of the user-supplied callable object f may be immediate or may be delayed
until compute resources are available. run might or might not return before invocation of f
completes.

Exceptions
• This: function may throw task_canceled_exception, as described in Exception Handling.

template<typename Executor, typename F, typename ...Ts>
void run(Executor &exec, F &&f, Ts&&... ts)

Causes the expression f() to be invoked asynchronously using the given executor. The invoca-
tion of f is permitted to run on an unspecified thread associated with the given executor and in

2.9. API reference 537

HPX Documentation, 1.5.1

an unordered fashion relative to the sequence of operations following the call to run(exec, f)
(the continuation), or indeterminately sequenced within the same thread as the continuation.

The call to run synchronizes with the invocation of f. The completion of f() synchronizes with
the next invocation of wait on the same task_block or completion of the nearest enclosing task
block (i.e., the define_task_block or define_task_block_restore_thread that created this task
block).

Requires: Executor shall be a type modeling the Executor concept. F shall be MoveCon-
structible. The expression, (void)f(), shall be well-formed.

Precondition: this shall be the active task_block.

Postconditions: A call to run may return on a different thread than that on which it was called.

Note The call to run is sequenced before the continuation as if run returns on the same thread.
The invocation of the user-supplied callable object f may be immediate or may be delayed
until compute resources are available. run might or might not return before invocation of f
completes.

Exceptions
• This: function may throw task_canceled_exception, as described in Exception Handling.

void wait()
Blocks until the tasks spawned using this task_block have finished.

Precondition: this shall be the active task_block.

Postcondition: All tasks spawned by the nearest enclosing task region have finished. A call to
wait may return on a different thread than that on which it was called.

Example:
define_task_block([&](auto& tr) {

tr.run([&]{ process(a, w, x); }); // Process a[w] through
→˓a[x]

if (y < x) tr.wait(); // Wait if overlap between [w, x)
→˓and [y, z)

process(a, y, z); // Process a[y] through a[z]
});

Note The call to wait is sequenced before the continuation as if wait returns on the same
thread.

Exceptions
• This: function may throw task_canceled_exception, as described in Exception Handling.

ExPolicy &policy()
Returns a reference to the execution policy used to construct this object.

Precondition: this shall be the active task_block.

ExPolicy const &policy() const
Returns a reference to the execution policy used to construct this object.

Precondition: this shall be the active task_block.

538 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Members

mutex_type mtx_

std::vector<hpx::future<void>> tasks_

parallel::exception_list errors_

threads::thread_id_type id_

ExPolicy policy_

class task_canceled_exception : public exception
#include <task_block.hpp> The class task_canceled_exception defines the type of objects thrown
by task_block::run or task_block::wait if they detect that an exception is pending within the cur-
rent parallel region.

Public Functions

task_canceled_exception()

Header hpx/parallel/util/cancellation_token.hpp

namespace hpx

namespace parallel

namespace util

template<typename T = detail::no_data, typename Pred = std::less_equal<T>>
class cancellation_token

#include <cancellation_token.hpp>

Public Functions

cancellation_token(T data)

bool was_cancelled(T data) const

void cancel(T data)

T get_data() const

2.9. API reference 539

HPX Documentation, 1.5.1

Private Types

typedef std::atomic<T> flag_type

Private Members

std::shared_ptr<flag_type> was_cancelled_

Header hpx/parallel/util/compare_projected.hpp

template<typename Compare>
struct compare_projected<Compare, util::projection_identity>

#include <compare_projected.hpp>

Public Functions

template<typename Compare_>
compare_projected(Compare_ &&comp, util::projection_identity)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

Public Members

Compare comp_

template<typename Compare, typename Proj2>
struct compare_projected<Compare, util::projection_identity, Proj2>

#include <compare_projected.hpp>

Public Functions

template<typename Compare_, typename Proj2_>
compare_projected(Compare_ &&comp, util::projection_identity, Proj2_ &&proj2)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

Public Members

Compare comp_

Proj2 proj2_

template<typename Compare, typename Proj1>
struct compare_projected<Compare, Proj1, util::projection_identity>

#include <compare_projected.hpp>

540 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<typename Compare_, typename Proj1_>
compare_projected(Compare_ &&comp, Proj1_ &&proj1, util::projection_identity)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

Public Members

Compare comp_

Proj1 proj1_

template<typename Compare>
struct compare_projected<Compare, util::projection_identity, util::projection_identity>

#include <compare_projected.hpp>

Public Functions

template<typename Compare_>
compare_projected(Compare_ &&comp, util::projection_identity, util::projection_identity)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

Public Members

Compare comp_

namespace hpx

namespace parallel

namespace util

template<typename Compare, typename Proj>
struct compare_projected<Compare, Proj>

#include <compare_projected.hpp>

Public Functions

template<typename Compare_, typename Proj_>
compare_projected(Compare_ &&comp, Proj_ &&proj)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

2.9. API reference 541

HPX Documentation, 1.5.1

Public Members

Compare comp_

Proj proj_

template<typename Compare, typename Proj1, typename Proj2>
struct compare_projected<Compare, Proj1, Proj2>

#include <compare_projected.hpp>

Public Functions

template<typename Compare_, typename Proj1_, typename Proj2_>
compare_projected(Compare_ &&comp, Proj1_ &&proj1, Proj2_ &&proj2)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

Public Members

Compare comp_

Proj1 proj1_

Proj2 proj2_

template<typename Compare, typename Proj1>
struct compare_projected<Compare, Proj1, util::projection_identity>

#include <compare_projected.hpp>

Public Functions

template<typename Compare_, typename Proj1_>
compare_projected(Compare_ &&comp, Proj1_ &&proj1, util::projection_identity)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

Public Members

Compare comp_

Proj1 proj1_

template<typename Compare>
struct compare_projected<Compare, util::projection_identity>

#include <compare_projected.hpp>

542 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<typename Compare_>
compare_projected(Compare_ &&comp, util::projection_identity)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

Public Members

Compare comp_

template<typename Compare, typename Proj2>
struct compare_projected<Compare, util::projection_identity, Proj2>

#include <compare_projected.hpp>

Public Functions

template<typename Compare_, typename Proj2_>
compare_projected(Compare_ &&comp, util::projection_identity, Proj2_ &&proj2)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

Public Members

Compare comp_

Proj2 proj2_

template<typename Compare>
struct compare_projected<Compare, util::projection_identity, util::projection_identity>

#include <compare_projected.hpp>

Public Functions

template<typename Compare_>
compare_projected(Compare_ &&comp, util::projection_identity,

util::projection_identity)

template<typename T1, typename T2>
constexpr bool operator()(T1 &&t1, T2 &&t2) const

2.9. API reference 543

HPX Documentation, 1.5.1

Public Members

Compare comp_

Header hpx/parallel/util/foreach_partitioner.hpp

Header hpx/parallel/util/invoke_projected.hpp

namespace hpx

namespace parallel

namespace util

template<typename Pred, typename Proj>
struct invoke_projected

#include <invoke_projected.hpp>

Public Types

typedef hpx::util::decay<Pred>::type pred_type

typedef hpx::util::decay<Proj>::type proj_type

Public Functions

template<typename Pred_, typename Proj_>
invoke_projected(Pred_ &&pred, Proj_ &&proj)

template<typename T>
auto operator()(T &&t)

Public Members

pred_type pred_

proj_type proj_

Header hpx/parallel/util/loop.hpp

namespace hpx

namespace parallel

namespace util

544 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename VecOnly, typename F, typename ...Iters>
std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, typename hpx::util::invoke_result<F, Iters...>::type>::type loop_step(VecOnly,

F
&&f,
Iters&...
its)

template<typename ExPolicy, typename Iter>
constexpr std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, bool>::type loop_optimization(Iter,

Iter)

template<typename ExPolicy, typename Begin, typename End, typename F>
constexpr Begin loop(ExPolicy&&, Begin begin, End end, F &&f)

template<typename ExPolicy, typename Begin, typename End, typename CancelToken, typename F>
constexpr Begin loop(ExPolicy&&, Begin begin, End end, CancelToken &tok, F &&f)

template<typename ExPolicy, typename VecOnly, typename Begin1, typename End1, typename Begin2, typename F>
constexpr std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, std::pair<Begin1, Begin2>>::type loop2(VecOnly,

Be-
gin1
be-
gin1,
End1
end1,
Be-
gin2
be-
gin2,
F
&&f)

template<typename ExPolicy, typename Iter, typename F>
constexpr std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, Iter>::type loop_n(Iter

it,
std::size_t
count,
F
&&f)

template<typename ExPolicy, typename Iter, typename CancelToken, typename F>
constexpr std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, Iter>::type loop_n(Iter

it,
std::size_t
count,
Can-
cel-
To-
ken
&tok,
F
&&f)

template<typename Iter, typename F, typename Cleanup>
constexpr Iter loop_with_cleanup(Iter it, Iter last, F &&f, Cleanup &&cleanup)

2.9. API reference 545

HPX Documentation, 1.5.1

template<typename Iter, typename FwdIter, typename F, typename Cleanup>
constexpr FwdIter loop_with_cleanup(Iter it, Iter last, FwdIter dest, F &&f, Cleanup

&&cleanup)

template<typename Iter, typename F, typename Cleanup>
constexpr Iter loop_with_cleanup_n(Iter it, std::size_t count, F &&f, Cleanup

&&cleanup)

template<typename Iter, typename FwdIter, typename F, typename Cleanup>
constexpr FwdIter loop_with_cleanup_n(Iter it, std::size_t count, FwdIter dest, F

&&f, Cleanup &&cleanup)

template<typename Iter, typename CancelToken, typename F, typename Cleanup>
constexpr Iter loop_with_cleanup_n_with_token(Iter it, std::size_t count, Can-

celToken &tok, F &&f, Cleanup
&&cleanup)

template<typename Iter, typename FwdIter, typename CancelToken, typename F, typename Cleanup>
constexpr FwdIter loop_with_cleanup_n_with_token(Iter it, std::size_t count,

FwdIter dest, CancelToken
&tok, F &&f, Cleanup
&&cleanup)

template<typename Iter, typename F>
constexpr Iter loop_idx_n(std::size_t base_idx, Iter it, std::size_t count, F &&f)

template<typename Iter, typename CancelToken, typename F>
constexpr Iter loop_idx_n(std::size_t base_idx, Iter it, std::size_t count, CancelToken

&tok, F &&f)

template<typename Iter, typename T, typename Pred>
T accumulate_n(Iter it, std::size_t count, T init, Pred &&f)

template<typename T, typename Iter, typename Reduce, typename Conv = util::projection_identity>
T accumulate(Iter first, Iter last, Reduce &&r, Conv &&conv = Conv())

template<typename T, typename Iter1, typename Iter2, typename Reduce, typename Conv>
T accumulate(Iter1 first1, Iter1 last1, Iter2 first2, Reduce &&r, Conv &&conv)

Header hpx/parallel/util/low_level.hpp

namespace hpx

namespace parallel

namespace util

546 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename Value, typename ...Args>
void construct_object(Value *ptr, Args&&... args)

create an object in the memory specified by ptr

Template Parameters
• Value: : typename of the object to create
• Args: : parameters for the constructor

Parameters
• [in] ptr: : pointer to the memory where to create the object
• [in] args: : arguments to the constructor

template<typename Value>
void destroy_object(Value *ptr)

destroy an object in the memory specified by ptr

Template Parameters
• Value: : typename of the object to create

Parameters
• [in] ptr: : pointer to the object to destroy

template<typename Iter, typename Sent>
void init(Iter first, Sent last, typename std::iterator_traits<Iter>::value_type &val)

Initialize a range of objects with the object val moving across them
Return range initialized
Parameters

• [in] r: : range of elements not initialized
• [in] val: : object used for the initialization

template<typename Value, typename ...Args>
void construct(Value *ptr, Args&&... args)

create an object in the memory specified by ptr

Template Parameters
• Value: : typename of the object to create
• Args: : parameters for the constructor

Parameters
• [in] ptr: : pointer to the memory where to create the object
• [in] args: : arguments to the constructor

template<typename Iter1, typename Sent1, typename Iter2>
Iter2 init_move(Iter2 it_dest, Iter1 first, Sent1 last)

Move objects.

Template Parameters
• Iter: : iterator to the elements
• Value: : typename of the object to create

Parameters
• [in] itdest: : iterator to the final place of the objects
• [in] R: : range to move

template<typename Iter, typename Sent, typename Value = typename std::iterator_traits<Iter>::value_type>
Value *uninit_move(Value *ptr, Iter first, Sent last)

Move objects to uninitialized memory.

Template Parameters
• Iter: : iterator to the elements

2.9. API reference 547

HPX Documentation, 1.5.1

• Value: : typename of the object to construct
Parameters

• [in] ptr: : pointer to the memory where to create the object
• [in] R: : range to move

template<typename Iter, typename Sent>
void destroy(Iter first, Sent last)

Move objects to uninitialized memory.

Template Parameters
• Iter: : iterator to the elements
• Value: : typename of the object to construct

Parameters
• [in] ptr: : pointer to the memory where to construct the object
• [in] R: : range to move

template<typename Iter1, typename Sent1, typename Iter2, typename Compare>
Iter2 full_merge(Iter1 buf1, Sent1 end_buf1, Iter1 buf2, Sent1 end_buf2, Iter2 buf_out, Com-

pare comp)
Merge two contiguous buffers pointed by buf1 and buf2 , and put in the buffer pointed by buf_out.

Parameters
• [in] buf1: : iterator to the first element in the first buffer
• [in] end_buf1: : final iterator of first buffer
• [in] buf2: : iterator to the first iterator to the second buffer
• [in] end_buf2: : final iterator of the second buffer
• [in] buf_out: : buffer where move the elements merged
• [in] comp: : comparison object

template<typename Iter, typename Sent, typename Value, typename Compare>
Value *uninit_full_merge(Iter first1, Sent last1, Iter first2, Sent last2, Value *it_out, Com-

pare comp)
Merge two contiguous buffers pointed by first1 and first2 , and put in the uninitialized buffer
pointed by it_out.

Parameters
• [in] first1: : iterator to the first element in the first buffer
• [in] last: : last iterator of the first buffer
• [in] first2: : iterator to the first element to the second buffer
• [in] last22: : final iterator of the second buffer
• [in] it_out: : uninitialized buffer where move the elements merged
• [in] comp: : comparison object

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Compare>
Iter2 half_merge(Iter1 buf1, Sent1 end_buf1, Iter2 buf2, Sent2 end_buf2, Iter2 buf_out, Com-

pare comp)
: Merge two buffers. The first buffer is in a separate memory. The second buffer have a empty
space before buf2 of the same size than the (end_buf1 - buf1)

Remark The elements pointed by Iter1 and Iter2 must be the same
Parameters

• [in] buf1: : iterator to the first element of the first buffer
• [in] end_buf1: : iterator to the last element of the first buffer
• [in] buf2: : iterator to the first element of the second buffer
• [in] end_buf2: : iterator to the last element of the second buffer
• [in] buf_out: : iterator to the first element to the buffer where put the result
• [in] comp: : object for Compare two elements of the type pointed by the Iter1 and Iter2

548 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3, typename Compare>
bool in_place_merge_uncontiguous(Iter1 src1, Sent1 end_src1, Iter2 src2, Sent2

end_src2, Iter3 aux, Compare comp)
Merge two non contiguous buffers, placing the results in the buffers for to do this use an auxiliary
buffer pointed by aux
Parameters

• [in] src1: : iterator to the first element of the first buffer
• [in] end_src1: : last iterator of the first buffer
• [in] src2: : iterator to the first element of the second buffer
• [in] end_src2: : last iterator of the second buffer
• [in] aux: : iterator to the first element of the auxiliary buffer
• [in] comp: : object for to Compare elements

Exceptions
•

template<typename Iter1, typename Sent1, typename Iter2, typename Compare>
bool in_place_merge(Iter1 src1, Iter1 src2, Sent1 end_src2, Iter2 buf, Compare comp)

: merge two contiguous buffers,using an auxiliary buffer pointed by buf

Parameters
• [in] src1: iterator to the first position of the first buffer
• [in] src2: final iterator of the first buffer and first iterator of the second buffer
• [in] end_src2: : final iterator of the second buffer
• [in] buf: : iterator to buffer used as auxiliary memory
• [in] comp: : object for to Compare elements

Exceptions
•

Header hpx/parallel/util/merge_four.hpp

namespace hpx

namespace parallel

namespace util

Functions

template<typename Iter, typename Sent, typename Compare>
bool less_range(Iter it1, std::uint32_t pos1, Sent it2, std::uint32_t pos2, Compare comp)

Compare the elements pointed by it1 and it2, and if they are equals, compare their position, doing
a stable comparison.

Return result of the comparison
Parameters

• [in] it1: : iterator to the first element
• [in] pos1: : position of the object pointed by it1
• [in] it2: : iterator to the second element
• [in] pos2: : position of the element pointed by it2
• [in] comp: : comparison object

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Compare>

2.9. API reference 549

HPX Documentation, 1.5.1

util::range<Iter1, Sent1> full_merge4(util::range<Iter1, Sent1> &rdest, util::range<Iter2,
Sent2> vrange_input[4], std::uint32_t nrange_input,
Compare comp)

Merge four ranges.

Return range with all the elements move with the size adjusted
Parameters

• [in] dest: range where move the elements merged. Their size must be greater or equal
than the sum of the sizes of the ranges in the array R

• [in] R: : array of ranges to merge
• [in] nrange_input: : number of ranges in R
• [in] comp: : comparison object

template<typename Value, typename Iter, typename Sent, typename Compare>
util::range<Value*> uninit_full_merge4(util::range<Value*> const &dest,

util::range<Iter, Sent> vrange_input[4],
std::uint32_t nrange_input, Compare comp)

Merge four ranges and put the result in uninitialized memory.

Return range with all the elements move with the size adjusted
Parameters

• [in] dest: range where create and move the elements merged. Their size must be greater
or equal than the sum of the sizes of the ranges in the array R

• [in] R: : array of ranges to merge
• [in] nrange_input: : number of ranges in vrange_input
• [in] comp: : comparison object

Header hpx/parallel/util/merge_vector.hpp

namespace hpx

namespace parallel

namespace util

Functions

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Compare>
void merge_level4(util::range<Iter1, Sent1> dest, std::vector<util::range<Iter2, Sent2>>

&v_input, std::vector<util::range<Iter1, Sent1>> &v_output, Compare
comp)

Merge the ranges in the vector v_input using full_merge4. The v_output vector is used as auxiliary
memory in the internal process The final results is in the dest range. All the ranges of v_output
are inside the range dest
Return range with all the elements moved
Parameters

• [in] dest: : range where move the elements merged
• [in] v_input: : vector of ranges to merge
• [in] v_output: : vector of ranges obtained
• [in] comp: : comparison object

template<typename Value, typename Iter, typename Sent, typename Compare>

550 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void uninit_merge_level4(util::range<Value*> dest, std::vector<util::range<Iter, Sent>>
&v_input, std::vector<util::range<Value*>> &v_output,
Compare comp)

Merge the ranges over uninitialized memory,in the vector v_input using full_merge4. The
v_output vector is used as auxiliary memory in the internal process. The final results is in the
dest range. All the ranges of v_output are inside the range dest
Return range with all the elements moved
Parameters

• [in] dest: : range where move the elements merged
• [in] v_input: : vector of ranges to merge
• [in] v_output: : vector of ranges obtained
• [in] comp: : comparison object

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Compare>
util::range<Iter2, Sent2> merge_vector4(util::range<Iter1, Sent1> range_input,

util::range<Iter2, Sent2> range_output,
std::vector<util::range<Iter1, Sent1>> &v_input,
std::vector<util::range<Iter2, Sent2>> &v_output,
Compare comp)

Merge the ranges in the vector v_input using merge_level4. The v_output vector is used as auxil-
iary memory in the internal process The final results is in the range_output range. All the ranges
of v_output are inside the range range_output All the ranges of v_input are inside the range
range_input
Parameters

• [in] range_input: : range including all the ranges of v_input
•

Header hpx/parallel/util/nbits.hpp

namespace hpx

namespace parallel

namespace util

Functions

constexpr std::uint32_t nbits32(std::uint32_t num)
Obtain the number of bits equal or greater than num.

Return Number of bits
Parameters

• [in] num: : Number to examine
Exceptions

• none:

constexpr std::uint32_t nbits64(std::uint64_t num)
Obtain the number of bits equal or greater than num.

Return Number of bits
Parameters

• [in] num: : Number to examine

2.9. API reference 551

HPX Documentation, 1.5.1

Exceptions
• none:

Variables

HPX_INLINE_CONSTEXPR_VARIABLE std::uint32_t const hpx::parallel::util::tmsb[256]= {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 8}

Header hpx/parallel/util/partitioner.hpp

Header hpx/parallel/util/partitioner_with_cleanup.hpp

Header hpx/parallel/util/prefetching.hpp

namespace hpx

namespace parallel

namespace util

Functions

template<typename Itr, typename ...Ts>
detail::prefetcher_context<Itr, Ts const...> make_prefetcher_context(Itr base_begin,

Itr base_end,
std::size_t
p_factor, Ts
const&...
rngs)

Header hpx/parallel/util/projection_identity.hpp

namespace hpx

namespace parallel

namespace util

struct projection_identity
#include <projection_identity.hpp>

552 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<typename T>
constexpr T &&operator()(T &&val) const

Header hpx/parallel/util/range.hpp

namespace hpx

namespace parallel

namespace util

Typedefs

using range = hpx::util::iterator_range<Iterator, Sentinel>

Functions

template<typename Iter, typename Sent>
range<Iter, Sent> concat(range<Iter, Sent> const &it1, range<Iter, Sent> const &it2)

concatenate two contiguous ranges

Return range resulting of the concatenation
Parameters

• [in] it1: : first range
• [in] it2: : second range

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2>
range<Iter2, Iter2> init_move(range<Iter2, Sent2> const &dest, range<Iter1, Sent1>

const &src)
Move objects from the range src to dest.

Return range with the objects moved and the size adjusted
Parameters

• [in] dest: : range where move the objects
• [in] src: : range from where move the objects

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2>
range<Iter2, Sent2> uninit_move(range<Iter2, Sent2> const &dest, range<Iter1, Sent1>

const &src)
Move objects from the range src creating them in dest.

Return range with the objects moved and the size adjusted
Parameters

• [in] dest: : range where move and create the objects
• [in] src: : range from where move the objects

template<typename Iter, typename Sent>
void destroy_range(range<Iter, Sent> r)

destroy a range of objects

Parameters

2.9. API reference 553

HPX Documentation, 1.5.1

• [in] r: : range to destroy

template<typename Iter, typename Sent>
range<Iter, Sent> init(range<Iter, Sent> const &r, typename

std::iterator_traits<Iter>::value_type &val)
initialize a range of objects with the object val moving across them

Return range initialized
Parameters

• [in] r: : range of elements not initialized
• [in] val: : object used for the initialization

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Compare>
bool is_mergeable(range<Iter1, Sent1> const &src1, range<Iter2, Sent2> const &src2,

Compare comp)
: indicate if two ranges have a possible merge

Parameters
• [in] src1: : first range
• [in] src2: : second range
• [in] comp: : object for to compare elements

Exceptions
•

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3, typename Sent3, typename Compare>
range<Iter3, Sent3> full_merge(range<Iter3, Sent3> const &dest, range<Iter1, Sent1>

const &src1, range<Iter2, Sent2> const &src2, Com-
pare comp)

Merge two contiguous ranges src1 and src2 , and put the result in the range dest, returning the
range merged.

Return range with the elements merged and the size adjusted
Parameters

• [in] dest: : range where locate the lements merged. the size of dest must be greater or
equal than the sum of the sizes of src1 and src2

• [in] src1: : first range to merge
• [in] src2: : second range to merge
• [in] comp: : comparison object

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Value, typename Compare>
range<Value*> uninit_full_merge(const range<Value*> &dest, range<Iter1, Sent1>

const &src1, range<Iter2, Sent2> const &src2,
Compare comp)

Merge two contiguous ranges src1 and src2 , and create and move the result in the uninitialized
range dest, returning the range merged.

Return range with the elements merged and the size adjusted
Parameters

• [in] dest: : range where locate the elements merged. the size of dest must be greater or
equal than the sum of the sizes of src1 and src2. Initially is uninitialize memory

• [in] src1: : first range to merge
• [in] src2: : second range to merge
• [in] comp: : comparison object

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Compare>
range<Iter2, Sent2> half_merge(range<Iter2, Sent2> const &dest, range<Iter1, Sent1>

const &src1, range<Iter2, Sent2> const &src2, Com-
pare comp)

554 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

: Merge two buffers. The first buffer is in a separate memory

Return : range with the two buffers merged
Parameters

• [in] dest: : range where finish the two buffers merged
• [in] src1: : first range to merge in a separate memory
• [in] src2: : second range to merge, in the final part of the range where deposit the final

results
• [in] comp: : object for compare two elements of the type pointed by the Iter1 and Iter2

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Iter3, typename Sent3, typename Compare>
bool in_place_merge_uncontiguous(range<Iter1, Sent1> const &src1, range<Iter2,

Sent2> const&src2, range<Iter3, Sent3> &aux,
Compare comp)

: merge two non contiguous buffers src1 , src2, using the range aux as auxiliary memory

Parameters
• [in] src1: : first range to merge
• [in] src2: : second range to merge
• [in] aux: : auxiliary range used in the merge
• [in] comp: : object for to compare elements

Exceptions
•

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Compare>
range<Iter1, Sent1> in_place_merge(range<Iter1, Sent1> const &src1, range<Iter1,

Sent1> const &src2, range<Iter2, Sent2> &buf,
Compare comp)

: merge two contiguous buffers (src1, src2) using buf as auxiliary memory

Parameters
• [in] src1: : first range to merge
• [in] src1: : second range to merge
• [in] buf: : auxiliary memory used in the merge
• [in] comp: : object for to compare elements

Exceptions
•

template<typename Iter1, typename Sent1, typename Iter2, typename Sent2, typename Compare>
void merge_flow(range<Iter1, Sent1> rng1, range<Iter2, Sent2> rbuf, range<Iter1, Sent1>

rng2, Compare cmp)
: merge two contiguous buffers

Template Parameters
• Iter: : iterator to the elements
• compare: : object for to compare two elements pointed by Iter iterators

Parameters
• [in] first: : iterator to the first element
• [in] last: : iterator to the element after the last in the range
• [in] comp: : object for to compare elements

Exceptions
•

2.9. API reference 555

HPX Documentation, 1.5.1

Header hpx/parallel/util/result_types.hpp

namespace hpx

namespace parallel

namespace util

template<typename I, typename F>
struct in_fun_result

#include <result_types.hpp>

Public Functions

template<typename I2, typename F2, typename Enable = typename std::enable_if<std::is_convertible<I const&, I2&>::value && std::is_convertible<F const&, F2&>::value>::type>
constexpr operator in_fun_result<I2, F2>() const &

template<typename I2, typename F2, typename Enable = typename std::enable_if<std::is_convertible<I, I2>::value && std::is_convertible<F, F2>::value>::type>
constexpr operator in_fun_result<I2, F2>() &&

template<typename Archive>
void serialize(Archive &ar, unsigned)

Public Members

HPX_NO_UNIQUE_ADDRESS I hpx::parallel::util::in_fun_result::in

HPX_NO_UNIQUE_ADDRESS F hpx::parallel::util::in_fun_result::fun

template<typename I1, typename I2>
struct in_in_result

#include <result_types.hpp>

Public Functions

template<typename II1, typename II2, typename Enable = typename std::enable_if<std::is_convertible<I1 const&, II1&>::value && std::is_convertible<I2 const&, II2&>::value>::type>
constexpr operator in_in_result<II1, II2>() const &

template<typename II1, typename II2, typename Enable = typename std::enable_if<std::is_convertible<I1, II1>::value && std::is_convertible<I2, II2>::value>::type>
constexpr operator in_in_result<II1, II2>() &&

template<typename Archive>
void serialize(Archive &ar, unsigned)

556 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

HPX_NO_UNIQUE_ADDRESS I1 hpx::parallel::util::in_in_result::in1

HPX_NO_UNIQUE_ADDRESS I2 hpx::parallel::util::in_in_result::in2

template<typename I, typename O>
struct in_out_result

#include <result_types.hpp>

Public Functions

template<typename I2, typename O2, typename Enable = typename std::enable_if<std::is_convertible<I const&, I2&>::value && std::is_convertible<O const&, O2&>::value>::type>
constexpr operator in_out_result<I2, O2>() const &

template<typename I2, typename O2, typename Enable = typename std::enable_if<std::is_convertible<I, I2>::value && std::is_convertible<O, O2>::value>::type>
constexpr operator in_out_result<I2, O2>() &&

template<typename Archive>
void serialize(Archive &ar, unsigned)

Public Members

HPX_NO_UNIQUE_ADDRESS I hpx::parallel::util::in_out_result::in

HPX_NO_UNIQUE_ADDRESS O hpx::parallel::util::in_out_result::out

Header hpx/parallel/util/scan_partitioner.hpp

Header hpx/parallel/util/tagged_pair.hpp

namespace hpx

namespace util

Functions

template<typename Tag1, typename Tag2, typename T1, typename T2>
hpx::future<tagged_pair<Tag1(typename decay<T1>::type), Tag2

typename decay<T2>::type>> make_tagged_pairhpx::future<std::pair<T1, T2>> &&f

template<typename Tag1, typename Tag2, typename ...Ts>
hpx::future<tagged_pair<Tag1(typename tuple_element<0, tuple<Ts...>>::type), Tag2

typename tuple_element<1, tuple<Ts...>>::type>> make_tagged_pairhpx::future<tuple<Ts...>>
&&f

2.9. API reference 557

HPX Documentation, 1.5.1

Header hpx/parallel/util/tagged_tuple.hpp

namespace hpx

namespace util

Functions

template<typename ...Tags, typename ...Ts>
hpx::future<typename detail::tagged_tuple_helper<tuple<Ts...>, typename util::make_index_pack<sizeof...(Tags)>::type, Tags...>::type> make_tagged_tuple(hpx::future<tuple<Ts...>>

&&f)

Header hpx/parallel/util/transfer.hpp

namespace hpx

namespace parallel

namespace util

Functions

template<typename InIter, typename Sent, typename OutIter>
in_out_result<InIter, OutIter> copy(InIter first, Sent last, OutIter dest)

template<typename InIter, typename OutIter>
in_out_result<InIter, OutIter> copy_n(InIter first, std::size_t count, OutIter dest)

template<typename InIter, typename OutIter>
void copy_synchronize(InIter const &first, OutIter const &dest)

template<typename InIter, typename Sent, typename OutIter>
in_out_result<InIter, OutIter> move(InIter first, Sent last, OutIter dest)

template<typename InIter, typename OutIter>
in_out_result<InIter, OutIter> move_n(InIter first, std::size_t count, OutIter dest)

Header hpx/parallel/util/transform_loop.hpp

namespace hpx

namespace parallel

namespace util

558 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename ExPolicy, typename Iter, typename OutIter, typename F>
std::pair<Iter, OutIter> transform_loop(ExPolicy&&, Iter it, Iter end, OutIter dest, F

&&f)

template<typename ExPolicy, typename InIter1, typename InIter2, typename OutIter, typename F>
std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, hpx::util::tuple<InIter1, InIter2, OutIter>>::type transform_binary_loop(InIter1

first1,
InIter1
last1,
InIter2
first2,
Out-
Iter
dest,
F
&&f)

template<typename ExPolicy, typename InIter1, typename InIter2, typename OutIter, typename F>
std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, hpx::util::tuple<InIter1, InIter2, OutIter>>::type transform_binary_loop(InIter1

first1,
InIter1
last1,
InIter2
first2,
InIter2
last2,
Out-
Iter
dest,
F
&&f)

template<typename ExPolicy, typename Iter, typename OutIter, typename F>
std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, std::pair<Iter, OutIter>>::type transform_loop_n(Iter

it,
std::size_t
count,
Out-
Iter
dest,
F
&&f)

template<typename ExPolicy, typename InIter1, typename InIter2, typename OutIter, typename F>

2.9. API reference 559

HPX Documentation, 1.5.1

std::enable_if<!execution::is_vectorpack_execution_policy<ExPolicy>::value, hpx::util::tuple<InIter1, InIter2, OutIter>>::type transform_binary_loop_n(InIter1
first1,
std::size_t
count,
InIter2
first2,
Out-
Iter
dest,
F
&&f)

Header hpx/parallel/util/zip_iterator.hpp

allocator_support

The contents of this module can be included with the header hpx/modules/allocator_support.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are
using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/allocator_support.hpp, not the particular header in which the
functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/allocator_support/allocator_deleter.hpp

namespace hpx

namespace util

template<typename Allocator>
struct allocator_deleter

#include <allocator_deleter.hpp>

Public Functions

template<typename SharedState>
void operator()(SharedState *state)

Public Members

Allocator alloc_

560 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/allocator_support/internal_allocator.hpp

namespace hpx

namespace util

Typedefs

using internal_allocator = std::allocator<T>

asio

The contents of this module can be included with the header hpx/modules/asio.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your own
risk. If you wish to use non-public functionality from a module we strongly suggest only including the module header
hpx/modules/asio.hpp, not the particular header in which the functionality you would like to use is defined.
See Public API for a list of names that are part of the public HPX API.

Header hpx/asio/asio_util.hpp

namespace hpx

namespace util

Functions

bool split_ip_address(std::string const &v, std::string &host, std::uint16_t &port)

Header hpx/asio/map_hostnames.hpp

namespace hpx

namespace util

struct map_hostnames
#include <map_hostnames.hpp>

2.9. API reference 561

HPX Documentation, 1.5.1

Public Types

typedef util::function_nonser<std::string(std::string const&)>
transform_function_type

Public Functions

map_hostnames(bool debug = false)

void use_suffix(std::string const &suffix)

void use_prefix(std::string const &prefix)

void use_transform(transform_function_type const &f)

std::string map(std::string host_name, std::uint16_t port) const

Private Members

transform_function_type transform_

std::string suffix_

std::string prefix_

bool debug_

assertion

The contents of this module can be included with the header hpx/modules/assertion.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/assertion.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/assert.hpp

Header hpx/assertion/current_function.hpp

Defines

HPX_ASSERT_CURRENT_FUNCTION

562 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/assertion/evaluate_assert.hpp

Header hpx/assertion/source_location.hpp

namespace hpx

namespace assertion

Functions

std::ostream &operator<<(std::ostream &os, source_location const &loc)

struct source_location
#include <source_location.hpp> This contains the location information where HPX_ASSERT has
been called

Public Members

const char *file_name

unsigned line_number

const char *function_name

Header hpx/modules/assertion.hpp

Defines

HPX_ASSERT(expr)
This macro asserts that expr evaluates to true.

If expr evaluates to false, The source location and msg is being printed along with the expression and
additional. Afterwards the program is being aborted. The assertion handler can be customized by calling
hpx::assertion::set_assertion_handler().

Parameters

• expr: The expression to assert on. This can either be an expression that’s convertible to bool or a
callable which returns bool

• msg: The optional message that is used to give further information if the assert fails. This should be
convertible to a std::string

Asserts are enabled if HPX_DEBUG is set. This is the default for CMAKE_BUILD_TYPE=Debug

HPX_ASSERT_MSG(expr, msg)

See HPX_ASSERT

namespace hpx

namespace assertion

2.9. API reference 563

HPX Documentation, 1.5.1

Typedefs

using assertion_handler = void (*)(source_location const &loc, const char *expr,
std::string const &msg)

The signature for an assertion handler.

Functions

void set_assertion_handler(assertion_handler handler)
Set the assertion handler to be used within a program. If the handler has been set already once, the
call to this function will be ignored.
Note This function is not thread safe

async_base

The contents of this module can be included with the header hpx/modules/async_base.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/async_base.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/async_base/apply.hpp

namespace hpx

Functions

template<typename F, typename ...Ts>
bool apply(F &&f, Ts&&... ts)

Header hpx/async_base/async.hpp

namespace hpx

Functions

template<typename F, typename ...Ts>
decltype(auto) async(F &&f, Ts&&... ts)

564 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/async_base/dataflow.hpp

namespace hpx

Functions

template<typename F, typename ...Ts>
auto dataflow(F &&f, Ts&&... ts)

template<typename Allocator, typename F, typename ...Ts>
auto dataflow_alloc(Allocator const &alloc, F &&f, Ts&&... ts)

Header hpx/async_base/launch_policy.hpp

namespace hpx

struct launch : public detail::policy_holder<>
#include <launch_policy.hpp> Launch policies for hpx::async etc.

Public Functions

constexpr launch()
Default constructor. This creates a launch policy representing all possible launch modes

Public Static Attributes

const detail::fork_policy fork
Predefined launch policy representing asynchronous execution.The new thread is executed in a pre-
ferred way

const detail::sync_policy sync
Predefined launch policy representing synchronous execution.

const detail::deferred_policy deferred
Predefined launch policy representing deferred execution.

const detail::apply_policy apply
Predefined launch policy representing fire and forget execution.

const detail::select_policy_generator select
Predefined launch policy representing delayed policy selection.

2.9. API reference 565

HPX Documentation, 1.5.1

Header hpx/async_base/sync.hpp

namespace hpx

Functions

template<typename F, typename ...Ts>
auto sync(F &&f, Ts&&... ts)

Header hpx/async_base/traits/is_launch_policy.hpp

async_combinators

The contents of this module can be included with the header hpx/modules/async_combinators.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are
using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/async_combinators.hpp, not the particular header in which the
functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/async_combinators/split_future.hpp

namespace hpx

Functions

template<typename ...Ts>
tuple<future<Ts>...> split_future(future<tuple<Ts...>> &&f)

The function split_future is an operator allowing to split a given future of a sequence of values (any tuple,
std::pair, or std::array) into an equivalent container of futures where each future represents one of the
values from the original future. In some sense this function provides the inverse operation of when_all.

Return Returns an equivalent container (same container type as passed as the argument) of futures, where
each future refers to the corresponding value in the input parameter. All of the returned futures become
ready once the input future has become ready. If the input future is exceptional, all output futures will
be exceptional as well.

Note The following cases are special:

tuple<future<void> > split_future(future<tuple<> > && f);
array<future<void>, 1> split_future(future<array<T, 0> > && f);

here the returned futures are directly representing the futures which were passed to the function.

Parameters

• f: [in] A future holding an arbitrary sequence of values stored in a tuple-like container. This
facility supports hpx::util::tuple<>, std::pair<T1, T2>, and std::array<T, N>

template<typename T>

566 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

std::vector<future<T>> split_future(future<std::vector<T>> &&f, std::size_t size)
The function split_future is an operator allowing to split a given future of a sequence of values (any
std::vector) into a std::vector of futures where each future represents one of the values from the origi-
nal std::vector. In some sense this function provides the inverse operation of when_all.

Return Returns a std::vector of futures, where each future refers to the corresponding value in the input
parameter. All of the returned futures become ready once the input future has become ready. If the
input future is exceptional, all output futures will be exceptional as well.

Parameters

• f: [in] A future holding an arbitrary sequence of values stored in a std::vector.

• size: [in] The number of elements the vector will hold once the input future has become ready

Header hpx/async_combinators/wait_all.hpp

namespace hpx

Functions

template<typename InputIter>
void wait_all(InputIter first, InputIter last)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note The function wait_all returns after all futures have become ready. All input futures are still valid
after wait_all returns.

Parameters

• first: The iterator pointing to the first element of a sequence of future or shared_future objects
for which wait_all should wait.

• last: The iterator pointing to the last element of a sequence of future or shared_future objects
for which wait_all should wait.

template<typename R>
void wait_all(std::vector<future<R>> &&futures)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note The function wait_all returns after all futures have become ready. All input futures are still valid
after wait_all returns.

Parameters

• futures: A vector or array holding an arbitrary amount of future or shared_future objects for
which wait_all should wait.

template<typename R, std::size_t N>
void wait_all(std::array<future<R>, N> &&futures)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

2.9. API reference 567

HPX Documentation, 1.5.1

Note The function wait_all returns after all futures have become ready. All input futures are still valid
after wait_all returns.

Parameters

• futures: A vector or array holding an arbitrary amount of future or shared_future objects for
which wait_all should wait.

template<typename ...T>
void wait_all(T&&... futures)

The function wait_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Note The function wait_all returns after all futures have become ready. All input futures are still valid
after wait_all returns.

Parameters

• futures: An arbitrary number of future or shared_future objects, possibly holding different
types for which wait_all should wait.

template<typename InputIter>
InputIter wait_all_n(InputIter begin, std::size_t count)

The function wait_all_n is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing.

Return The function wait_all_n will return an iterator referring to the first element in the input sequence
after the last processed element.

Note The function wait_all_n returns after all futures have become ready. All input futures are still valid
after wait_all_n returns.

Parameters

• begin: The iterator pointing to the first element of a sequence of future or shared_future objects
for which wait_all_n should wait.

• count: The number of elements in the sequence starting at first.

Header hpx/async_combinators/wait_any.hpp

namespace hpx

Functions

template<typename InputIter>
void wait_any(InputIter first, InputIter last, error_code &ec = throws)

The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note None of the futures in the input sequence are invalidated.

568 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_any should wait.

• last: [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which wait_any should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename R>
void wait_any(std::vector<future<R>> &futures, error_code &ec = throws)

The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note None of the futures in the input sequence are invalidated.

Parameters

• futures: [in] A vector holding an arbitrary amount of future or shared_future objects for which
wait_any should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename R, std:;size_t N>void hpx::wait_any(std::array< future< R >, N > & futures, error_code & ec = throws)
The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note None of the futures in the input sequence are invalidated.

Parameters

• futures: [in] Amn array holding an arbitrary amount of future or shared_future objects for
which wait_any should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename ...T>
void wait_any(error_code &ec, T&&... futures)

The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

2.9. API reference 569

HPX Documentation, 1.5.1

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note None of the futures in the input sequence are invalidated.

Parameters

• futures: [in] An arbitrary number of future or shared_future objects, possibly holding different
types for which wait_any should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename ...T>
void wait_any(T&&... futures)

The function wait_any is a non-deterministic choice operator. It OR-composes all future objects given and
returns after one future of that list finishes execution.

Note The function wait_any returns after at least one future has become ready. All input futures are still
valid after wait_any returns.

Note None of the futures in the input sequence are invalidated.

Parameters

• futures: [in] An arbitrary number of future or shared_future objects, possibly holding different
types for which wait_any should wait.

template<typename InputIter>
InputIter wait_any_n(InputIter first, std::size_t count, error_code &ec = throws)

The function wait_any_n is a non-deterministic choice operator. It OR-composes all future objects given
and returns after one future of that list finishes execution.

Note The function wait_any_n returns after at least one future has become ready. All input futures are
still valid after wait_any_n returns.

Return The function wait_all_n will return an iterator referring to the first element in the input sequence
after the last processed element.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note None of the futures in the input sequence are invalidated.

Parameters

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_any_n should wait.

• count: [in] The number of elements in the sequence starting at first.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

570 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/async_combinators/wait_each.hpp

namespace hpx

Functions

template<typename F, typename Future>
void wait_each(F &&f, std::vector<Future> &&futures)

The function wait_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns after they finished executing. Additionally, the supplied function is
called for each of the passed futures as soon as the future has become ready. wait_each returns after all
futures have been become ready.

Note This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t
is implicitly convertible to as the first parameter and the future as the second parameter. The first
parameter will correspond to the index of the current future in the collection.

Parameters

• f: The function which will be called for each of the input futures once the future has become
ready.

• futures: A vector holding an arbitrary amount of future or shared_future objects for which
wait_each should wait.

template<typename F, typename Iterator>
void wait_each(F &&f, Iterator begin, Iterator end)

The function wait_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns after they finished executing. Additionally, the supplied function is
called for each of the passed futures as soon as the future has become ready. wait_each returns after all
futures have been become ready.

Note This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t
is implicitly convertible to as the first parameter and the future as the second parameter. The first
parameter will correspond to the index of the current future in the collection.

Parameters

• f: The function which will be called for each of the input futures once the future has become
ready.

• begin: The iterator pointing to the first element of a sequence of future or shared_future objects
for which wait_each should wait.

• end: The iterator pointing to the last element of a sequence of future or shared_future objects for
which wait_each should wait.

template<typename F, typename ...T>
void wait_each(F &&f, T&&... futures)

The function wait_each is an operator allowing to join on the results of all given futures. It AND-composes
all future objects given and returns after they finished executing. Additionally, the supplied function is
called for each of the passed futures as soon as the future has become ready. wait_each returns after all
futures have been become ready.

2.9. API reference 571

HPX Documentation, 1.5.1

Note This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t
is implicitly convertible to as the first parameter and the future as the second parameter. The first
parameter will correspond to the index of the current future in the collection.

Parameters

• f: The function which will be called for each of the input futures once the future has become
ready.

• futures: An arbitrary number of future or shared_future objects, possibly holding different
types for which wait_each should wait.

template<typename F, typename Iterator>
void wait_each_n(F &&f, Iterator begin, std::size_t count)

The function wait_each is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns after they finished executing. Additionally, the supplied function is
called for each of the passed futures as soon as the future has become ready.

Note This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t
is implicitly convertible to as the first parameter and the future as the second parameter. The first
parameter will correspond to the index of the current future in the collection.

Parameters

• f: The function which will be called for each of the input futures once the future has become
ready.

• begin: The iterator pointing to the first element of a sequence of future or shared_future objects
for which wait_each_n should wait.

• count: The number of elements in the sequence starting at first.

Header hpx/async_combinators/wait_some.hpp

namespace hpx

Functions

template<typename InputIter>
future<vector<future<typename std::iterator_traits<InputIter>::value_type>>> wait_some(std::size_t

n, Itera-
tor first,
Iterator
last, er-
ror_code
&ec =
throws)

The function wait_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note The future returned by the function wait_some becomes ready when at least n argument futures have
become ready.

572 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return Returns a future holding the same list of futures as has been passed to wait_some.

• future<vector<future<R>>>: If the input cardinality is unknown at compile time and the futures
are all of the same type.

Note Calling this version of wait_some where first == last, returns a future with an empty vector that is
immediately ready. Each future and shared_future is waited upon and then copied into the collection
of the output (returned) future, maintaining the order of the futures in the input collection. The future
returned by wait_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which when_all should wait.

• last: [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which when_all should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename R>
void wait_some(std::size_t n, std::vector<future<R>> &&futures, error_code &ec = throws)

The function wait_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note The function wait_all returns after n futures have become ready. All input futures are still valid after
wait_all returns.

Note Each future and shared_future is waited upon and then copied into the collection of the output
(returned) future, maintaining the order of the futures in the input collection. The future returned by
wait_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• futures: [in] A vector holding an arbitrary amount of future or shared_future objects for which
wait_some should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename R, std::size_t N>
void wait_some(std::size_t n, std::array<future<R>, N> &&futures, error_code &ec = throws)

The function wait_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note The function wait_all returns after n futures have become ready. All input futures are still valid after
wait_all returns.

Note Each future and shared_future is waited upon and then copied into the collection of the output
(returned) future, maintaining the order of the futures in the input collection. The future returned by
wait_some will not throw an exception, but the futures held in the output collection may.

2.9. API reference 573

HPX Documentation, 1.5.1

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• futures: [in] An array holding an arbitrary amount of future or shared_future objects for which
wait_some should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename ...T>
void wait_some(std::size_t n, T&&... futures, error_code &ec = throws)

The function wait_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note The function wait_all returns after n futures have become ready. All input futures are still valid after
wait_all returns.

Note Calling this version of wait_some where first == last, returns a future with an empty vector that is
immediately ready. Each future and shared_future is waited upon and then copied into the collection
of the output (returned) future, maintaining the order of the futures in the input collection. The future
returned by wait_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• futures: [in] An arbitrary number of future or shared_future objects, possibly holding different
types for which wait_some should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename InputIter>
InputIter wait_some_n(std::size_t n, Iterator first, std::size_t count, error_code &ec = throws)

The function wait_some_n is an operator allowing to join on the result of all given futures. It AND-
composes all future objects given and returns a new future object representing the same list of futures after
n of them finished executing.

Note The function wait_all returns after n futures have become ready. All input futures are still valid after
wait_all returns.

Return This function returns an Iterator referring to the first element after the last processed input element.

Note Calling this version of wait_some_n where count == 0, returns a future with the same elements as the
arguments that is immediately ready. Possibly none of the futures in that vector are ready. Each future
and shared_future is waited upon and then copied into the collection of the output (returned) future,
maintaining the order of the futures in the input collection. The future returned by wait_some_n will
not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which when_all should wait.

574 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• count: [in] The number of elements in the sequence starting at first.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

Header hpx/async_combinators/when_all.hpp

namespace hpx

Functions

template<typename InputIter, typename Container = vector<future<typename std::iterator_traits<InputIter>::value_type>>>
future<Container> when_all(InputIter first, InputIter last)

The function when_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after they
finished executing.

Return Returns a future holding the same list of futures as has been passed to when_all.

• future<Container<future<R>>>: If the input cardinality is unknown at compile time and the fu-
tures are all of the same type. The order of the futures in the output container will be the same as
given by the input iterator.

Note Calling this version of when_all where first == last, returns a future with an empty container that is
immediately ready. Each future and shared_future is waited upon and then copied into the collection
of the output (returned) future, maintaining the order of the futures in the input collection. The future
returned by when_all will not throw an exception, but the futures held in the output collection may.

Parameters

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which when_all should wait.

• last: [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which when_all should wait.

template<typename Range>
future<Range> when_all(Range &&values)

The function when_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after they
finished executing.

Return Returns a future holding the same list of futures as has been passed to when_all.

• future<Container<future<R>>>: If the input cardinality is unknown at compile time and the fu-
tures are all of the same type.

Note Calling this version of when_all where the input container is empty, returns a future with an empty
container that is immediately ready. Each future and shared_future is waited upon and then copied
into the collection of the output (returned) future, maintaining the order of the futures in the input
collection. The future returned by when_all will not throw an exception, but the futures held in the
output collection may.

Parameters

• values: [in] A range holding an arbitrary amount of future or shared_future objects for which
when_all should wait.

2.9. API reference 575

HPX Documentation, 1.5.1

template<typename ...T>
future<tuple<future<T>...>> when_all(T&&... futures)

The function when_all is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after they
finished executing.

Return Returns a future holding the same list of futures as has been passed to when_all.

• future<tuple<future<T0>, future<T1>, future<T2>. . . >>: If inputs are fixed in number and are of
heterogeneous types. The inputs can be any arbitrary number of future objects.

• future<tuple<>> if when_all is called with zero arguments. The returned future will be initially
ready.

Note Each future and shared_future is waited upon and then copied into the collection of the output
(returned) future, maintaining the order of the futures in the input collection. The future returned by
when_all will not throw an exception, but the futures held in the output collection may.

Parameters

• futures: [in] An arbitrary number of future or shared_future objects, possibly holding different
types for which when_all should wait.

template<typename InputIter, typename Container = vector<future<typename std::iterator_traits<InputIter>::value_type>>>
future<Container> when_all_n(InputIter begin, std::size_t count)

The function when_all_n is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after they
finished executing.

Return Returns a future holding the same list of futures as has been passed to when_all_n.

• future<Container<future<R>>>: If the input cardinality is unknown at compile time and the fu-
tures are all of the same type. The order of the futures in the output vector will be the same as
given by the input iterator.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note None of the futures in the input sequence are invalidated.

Parameters

• begin: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which wait_all_n should wait.

• count: [in] The number of elements in the sequence starting at first.

Exceptions

• This: function will throw errors which are encountered while setting up the requested operation
only. Errors encountered while executing the operations delivering the results to be stored in the
futures are reported through the futures themselves.

576 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/async_combinators/when_any.hpp

namespace hpx

Functions

template<typename InputIter, typename Container = vector<future<typename std::iterator_traits<InputIter>::value_type>>>
future<when_any_result<Container>> when_any(InputIter first, InputIter last)

The function when_any is a non-deterministic choice operator. It OR-composes all future objects given
and returns a new future object representing the same list of futures after one future of that list finishes
execution.

Return Returns a when_any_result holding the same list of futures as has been passed to when_any and
an index pointing to a ready future.

• future<when_any_result<Container<future<R>>>>: If the input cardinality is unknown at com-
pile time and the futures are all of the same type. The order of the futures in the output container
will be the same as given by the input iterator.

Parameters

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which when_any should wait.

• last: [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which when_any should wait.

template<typename Range>
future<when_any_result<Range>> when_any(Range &values)

The function when_any is a non-deterministic choice operator. It OR-composes all future objects given
and returns a new future object representing the same list of futures after one future of that list finishes
execution.

Return Returns a when_any_result holding the same list of futures as has been passed to when_any and
an index pointing to a ready future.

• future<when_any_result<Container<future<R>>>>: If the input cardinality is unknown at com-
pile time and the futures are all of the same type. The order of the futures in the output container
will be the same as given by the input iterator.

Parameters

• values: [in] A range holding an arbitrary amount of futures or shared_future objects for which
when_any should wait.

template<typename ...T>
future<when_any_result<tuple<future<T>...>>> when_any(T&&... futures)

The function when_any is a non-deterministic choice operator. It OR-composes all future objects given
and returns a new future object representing the same list of futures after one future of that list finishes
execution.

Return Returns a when_any_result holding the same list of futures as has been passed to when_any and
an index pointing to a ready future..

• future<when_any_result<tuple<future<T0>, future<T1>. . . >>>: If inputs are fixed in number
and are of heterogeneous types. The inputs can be any arbitrary number of future objects.

2.9. API reference 577

HPX Documentation, 1.5.1

• future<when_any_result<tuple<>>> if when_any is called with zero arguments. The returned
future will be initially ready.

Parameters

• futures: [in] An arbitrary number of future or shared_future objects, possibly holding different
types for which when_any should wait.

template<typename InputIter, typename Container = vector<future<typename std::iterator_traits<InputIter>::value_type>>>
future<when_any_result<Container>> when_any_n(InputIter first, std::size_t count)

The function when_any_n is a non-deterministic choice operator. It OR-composes all future objects given
and returns a new future object representing the same list of futures after one future of that list finishes
execution.

Return Returns a when_any_result holding the same list of futures as has been passed to when_any and
an index pointing to a ready future.

• future<when_any_result<Container<future<R>>>>: If the input cardinality is unknown at com-
pile time and the futures are all of the same type. The order of the futures in the output container
will be the same as given by the input iterator.

Note None of the futures in the input sequence are invalidated.

Parameters

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which when_any_n should wait.

• count: [in] The number of elements in the sequence starting at first.

template<typename Sequence>
struct when_any_result

#include <when_any.hpp> Result type for when_any, contains a sequence of futures and an index pointing
to a ready future.

Public Members

std::size_t index
The index of a future which has become ready.

Sequence futures
The sequence of futures as passed to hpx::when_any.

Header hpx/async_combinators/when_each.hpp

namespace hpx

578 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename F, typename Future>
future<void> when_each(F &&f, std::vector<Future> &&futures)

The function when_each is an operator allowing to join on the results of all given futures. It AND-
composes all future objects given and returns a new future object representing the event of all those futures
having finished executing. It also calls the supplied callback for each of the futures which becomes ready.

Note This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t
is implicitly convertible to as the first parameter and the future as the second parameter. The first
parameter will correspond to the index of the current future in the collection.

Return Returns a future representing the event of all input futures being ready.

Parameters

• f: The function which will be called for each of the input futures once the future has become
ready.

• futures: A vector holding an arbitrary amount of future or shared_future objects for which
wait_each should wait.

template<typename F, typename Iterator>
future<Iterator> when_each(F &&f, Iterator begin, Iterator end)

The function when_each is an operator allowing to join on the results of all given futures. It AND-
composes all future objects given and returns a new future object representing the event of all those futures
having finished executing. It also calls the supplied callback for each of the futures which becomes ready.

Note This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t
is implicitly convertible to as the first parameter and the future as the second parameter. The first
parameter will correspond to the index of the current future in the collection.

Return Returns a future representing the event of all input futures being ready.

Parameters

• f: The function which will be called for each of the input futures once the future has become
ready.

• begin: The iterator pointing to the first element of a sequence of future or shared_future objects
for which wait_each should wait.

• end: The iterator pointing to the last element of a sequence of future or shared_future objects for
which wait_each should wait.

template<typename F, typename ...Ts>
future<void> when_each(F &&f, Ts&&... futures)

The function when_each is an operator allowing to join on the results of all given futures. It AND-
composes all future objects given and returns a new future object representing the event of all those futures
having finished executing. It also calls the supplied callback for each of the futures which becomes ready.

Note This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t
is implicitly convertible to as the first parameter and the future as the second parameter. The first
parameter will correspond to the index of the current future in the collection.

2.9. API reference 579

HPX Documentation, 1.5.1

Return Returns a future representing the event of all input futures being ready.

Parameters

• f: The function which will be called for each of the input futures once the future has become
ready.

• futures: An arbitrary number of future or shared_future objects, possibly holding different
types for which wait_each should wait.

template<typename F, typename Iterator>
future<Iterator> when_each_n(F &&f, Iterator begin, std::size_t count)

The function when_each is an operator allowing to join on the results of all given futures. It AND-
composes all future objects given and returns a new future object representing the event of all those futures
having finished executing. It also calls the supplied callback for each of the futures which becomes ready.

Note This function consumes the futures as they are passed on to the supplied function. The callback
should take one or two parameters, namely either a future to be processed or a type that std::size_t
is implicitly convertible to as the first parameter and the future as the second parameter. The first
parameter will correspond to the index of the current future in the collection.

Return Returns a future holding the iterator pointing to the first element after the last one.

Parameters

• f: The function which will be called for each of the input futures once the future has become
ready.

• begin: The iterator pointing to the first element of a sequence of future or shared_future objects
for which wait_each_n should wait.

• count: The number of elements in the sequence starting at first.

Header hpx/async_combinators/when_some.hpp

namespace hpx

Functions

template<typename InputIter, typename Container = vector<future<typename std::iterator_traits<InputIter>::value_type>>>
future<when_some_result<Container>> when_some(std::size_t n, Iterator first, Iterator last, er-

ror_code &ec = throws)
The function when_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note The future returned by the function when_some becomes ready when at least n argument futures
have become ready.

Return Returns a when_some_result holding the same list of futures as has been passed to when_some
and indices pointing to ready futures.

• future<when_some_result<Container<future<R>>>>: If the input cardinality is unknown at com-
pile time and the futures are all of the same type. The order of the futures in the output container
will be the same as given by the input iterator.

580 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note Calling this version of when_some where first == last, returns a future with an empty container that is
immediately ready. Each future and shared_future is waited upon and then copied into the collection
of the output (returned) future, maintaining the order of the futures in the input collection. The future
returned by when_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which when_all should wait.

• last: [in] The iterator pointing to the last element of a sequence of future or shared_future
objects for which when_all should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename Range>
future<when_some_result<Range>> when_some(std::size_t n, Range &&futures, error_code &ec =

throws)
The function when_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note The future returned by the function when_some becomes ready when at least n argument futures
have become ready.

Return Returns a when_some_result holding the same list of futures as has been passed to when_some
and indices pointing to ready futures.

• future<when_some_result<Container<future<R>>>>: If the input cardinality is unknown at com-
pile time and the futures are all of the same type. The order of the futures in the output container
will be the same as given by the input iterator.

Note Each future and shared_future is waited upon and then copied into the collection of the output
(returned) future, maintaining the order of the futures in the input collection. The future returned by
when_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• futures: [in] A container holding an arbitrary amount of future or shared_future objects for
which when_some should wait.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename ...T>
future<when_some_result<tuple<future<T>...>>> when_some(std::size_t n, error_code &ec, T&&...

futures)
The function when_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note The future returned by the function when_some becomes ready when at least n argument futures
have become ready.

2.9. API reference 581

HPX Documentation, 1.5.1

Return Returns a when_some_result holding the same list of futures as has been passed to when_some
and an index pointing to a ready future..

• future<when_some_result<tuple<future<T0>, future<T1>. . . >>>: If inputs are fixed in number
and are of heterogeneous types. The inputs can be any arbitrary number of future objects.

• future<when_some_result<tuple<>>> if when_some is called with zero arguments. The returned
future will be initially ready.

Note Each future and shared_future is waited upon and then copied into the collection of the output
(returned) future, maintaining the order of the futures in the input collection. The future returned by
when_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

• futures: [in] An arbitrary number of future or shared_future objects, possibly holding different
types for which when_some should wait.

template<typename ...T>
future<when_some_result<tuple<future<T>...>>> when_some(std::size_t n, T&&... futures)

The function when_some is an operator allowing to join on the result of all given futures. It AND-composes
all future objects given and returns a new future object representing the same list of futures after n of them
finished executing.

Note The future returned by the function when_some becomes ready when at least n argument futures
have become ready.

Return Returns a when_some_result holding the same list of futures as has been passed to when_some
and an index pointing to a ready future..

• future<when_some_result<tuple<future<T0>, future<T1>. . . >>>: If inputs are fixed in number
and are of heterogeneous types. The inputs can be any arbitrary number of future objects.

• future<when_some_result<tuple<>>> if when_some is called with zero arguments. The returned
future will be initially ready.

Note Each future and shared_future is waited upon and then copied into the collection of the output
(returned) future, maintaining the order of the futures in the input collection. The future returned by
when_some will not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• futures: [in] An arbitrary number of future or shared_future objects, possibly holding different
types for which when_some should wait.

template<typename InputIter, typename Container = vector<future<typename std::iterator_traits<InputIter>::value_type>>>
future<when_some_result<Container>> when_some_n(std::size_t n, Iterator first, std::size_t count, er-

ror_code &ec = throws)
The function when_some_n is an operator allowing to join on the result of all given futures. It AND-
composes all future objects given and returns a new future object representing the same list of futures after
n of them finished executing.

582 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note The future returned by the function when_some_n becomes ready when at least n argument futures
have become ready.

Return Returns a when_some_result holding the same list of futures as has been passed to when_some
and indices pointing to ready futures.

• future<when_some_result<Container<future<R>>>>: If the input cardinality is unknown at com-
pile time and the futures are all of the same type. The order of the futures in the output container
will be the same as given by the input iterator.

Note Calling this version of when_some_n where count == 0, returns a future with the same elements as
the arguments that is immediately ready. Possibly none of the futures in that container are ready. Each
future and shared_future is waited upon and then copied into the collection of the output (returned) fu-
ture, maintaining the order of the futures in the input collection. The future returned by when_some_n
will not throw an exception, but the futures held in the output collection may.

Parameters

• n: [in] The number of futures out of the arguments which have to become ready in order for the
returned future to get ready.

• first: [in] The iterator pointing to the first element of a sequence of future or shared_future
objects for which when_all should wait.

• count: [in] The number of elements in the sequence starting at first.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

template<typename Sequence>
struct when_some_result

#include <when_some.hpp> Result type for when_some, contains a sequence of futures and indices point-
ing to ready futures.

Public Members

std::vector<std::size_t> indices
List of indices of futures which became ready.

Sequence futures
The sequence of futures as passed to hpx::when_some.

async_cuda

The contents of this module can be included with the header hpx/modules/async_cuda.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/async_cuda.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

2.9. API reference 583

HPX Documentation, 1.5.1

Header hpx/async_cuda/cublas_executor.hpp

namespace hpx

namespace cuda

namespace experimental

Functions

cublasStatus_t check_cublas_error(cublasStatus_t err)

struct cublas_exception : public exception
#include <cublas_executor.hpp>

Public Functions

cublas_exception(const std::string &msg, cublasStatus_t err)

cublasStatus_t get_cublas_errorcode()

Protected Attributes

cublasStatus_t err_

struct cublas_executor : public hpx::cuda::experimental::cuda_executor
#include <cublas_executor.hpp>

Public Types

using handle_ptr = std::shared_ptr<struct cublasContext>

Public Functions

cublas_executor(std::size_t device, cublasPointerMode_t pointer_mode =
CUBLAS_POINTER_MODE_HOST, bool event_mode = false)

~cublas_executor()

template<typename F, typename ...Ts>
decltype(auto) post(F &&f, Ts&&... ts)

template<typename F, typename ...Ts>
decltype(auto) async_execute(F &&f, Ts&&... ts)

584 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Protected Functions

template<typename R, typename ...Params, typename ...Args>
std::enable_if<std::is_same<cublasStatus_t, R>::value, R>::type apply(R

(*cublas_function))Params...
, Args&&... args

template<typename R, typename ...Params, typename ...Args>
std::enable_if<std::is_same<cudaError_t, R>::value, void>::type apply(R

(*cuda_function))Params...
, Args&&... args

template<typename R, typename ...Params, typename ...Args>
hpx::future<typename std::enable_if<std::is_same<cublasStatus_t, R>::value, void>::type> async(R

(*cublas_function))Params...
, Args&&... args

template<typename R, typename ...Params, typename ...Args>
hpx::future<typename std::enable_if<std::is_same<cudaError_t, R>::value, void>::type> async(R

(*cuda_function))Params...
, Args&&... args

cublasHandle_t get_handle()

Protected Attributes

handle_ptr handle_

cublasPointerMode_t pointer_mode_

Header hpx/async_cuda/cuda_event.hpp

namespace hpx

namespace cuda

namespace experimental

struct cuda_event_pool
#include <cuda_event.hpp>

Public Functions

cuda_event_pool()

~cuda_event_pool()

bool pop(cudaEvent_t &event)

bool push(cudaEvent_t event)

2.9. API reference 585

HPX Documentation, 1.5.1

Public Static Functions

static cuda_event_pool &get_event_pool()

Public Static Attributes

constexpr int initial_events_in_pool = 128

Private Functions

void add_event_to_pool()

Private Members

boost::lockfree::stack<cudaEvent_t, boost::lockfree::fixed_sized<false>> free_list_

Header hpx/async_cuda/cuda_exception.hpp

namespace hpx

namespace cuda

namespace experimental

Functions

cudaError_t check_cuda_error(cudaError_t err)

struct cuda_exception : public exception
#include <cuda_exception.hpp>

Public Functions

cuda_exception(const std::string &msg, cudaError_t err)

cudaError_t get_cuda_errorcode()

Protected Attributes

cudaError_t err_

586 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/async_cuda/cuda_executor.hpp

namespace hpx

namespace cuda

namespace experimental

struct cuda_executor : public hpx::cuda::experimental::cuda_executor_base
#include <cuda_executor.hpp> Subclassed by hpx::cuda::experimental::cublas_executor

Public Functions

cuda_executor(std::size_t device, bool event_mode = true)

~cuda_executor()

template<typename F, typename ...Ts>
decltype(auto) post(F &&f, Ts&&... ts)

template<typename F, typename ...Ts>
decltype(auto) async_execute(F &&f, Ts&&... ts)

Protected Functions

template<typename R, typename ...Params, typename ...Args>
void apply(R (*cuda_function))Params...

, Args&&... args

template<typename R, typename ...Params, typename ...Args>
hpx::future<void> async(R (*cuda_kernel))Params...

, Args&&... args

struct cuda_executor_base
#include <cuda_executor.hpp> Subclassed by hpx::cuda::experimental::cuda_executor

Public Types

using future_type = hpx::future<void>

Public Functions

cuda_executor_base(std::size_t device, bool event_mode)

future_type get_future()

2.9. API reference 587

HPX Documentation, 1.5.1

Protected Attributes

int device_

bool event_mode_

cudaStream_t stream_

std::shared_ptr<hpx::cuda::experimental::target> target_

Header hpx/async_cuda/cuda_future.hpp

namespace hpx

namespace cuda

namespace experimental

Typedefs

using print_on = debug::enable_print<false>

using event_mode = std::true_type

using callback_mode = std::false_type

Functions

static constexpr print_on hpx::cuda::experimental::cud_debug("CUDAFUT")

struct enable_user_polling
#include <cuda_future.hpp>

Public Functions

enable_user_polling(std::string const &pool_name = "")

~enable_user_polling()

Private Members

std::string pool_name_

588 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/async_cuda/get_targets.hpp

namespace hpx

namespace cuda

namespace experimental

Functions

std::vector<target> get_local_targets()

void print_local_targets()

Header hpx/async_cuda/target.hpp

namespace hpx

namespace cuda

namespace experimental

Functions

target &get_default_target()

struct target
#include <target.hpp>

Public Functions

target()

target(int device)

target(target const &rhs)

target(target &&rhs)

target &operator=(target const &rhs)

target &operator=(target &&rhs)

native_handle_type &native_handle()

native_handle_type const &native_handle() const

void synchronize() const

hpx::future<void> get_future_with_event() const

2.9. API reference 589

HPX Documentation, 1.5.1

hpx::future<void> get_future_with_callback() const

template<typename Allocator>
hpx::future<void> get_future_with_event(Allocator const &alloc) const

template<typename Allocator>
hpx::future<void> get_future_with_callback(Allocator const &alloc) const

Public Static Functions

static std::vector<target> get_local_targets()

Private Members

native_handle_type handle_

Friends

bool operator==(target const &lhs, target const &rhs)

struct native_handle_type
#include <target.hpp>

Public Types

typedef hpx::lcos::local::spinlock mutex_type

Public Functions

native_handle_type(int device = 0)

~native_handle_type()

native_handle_type(native_handle_type const &rhs)

native_handle_type(native_handle_type &&rhs)

native_handle_type &operator=(native_handle_type const &rhs)

native_handle_type &operator=(native_handle_type &&rhs)

cudaStream_t get_stream() const

int get_device() const

std::size_t processing_units() const

std::size_t processor_family() const

std::string processor_name() const

void reset()

590 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

void init_processing_units()

Private Members

mutex_type mtx_

int device_

std::size_t processing_units_

std::size_t processor_family_

std::string processor_name_

cudaStream_t stream_

Friends

friend hpx::cuda::experimental::target

async_distributed

The contents of this module can be included with the header hpx/modules/async_distributed.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are
using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/async_distributed.hpp, not the particular header in which the
functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/async.hpp

Header hpx/async_distributed/applier/applier.hpp

Header hpx/async_distributed/applier/apply.hpp

namespace hpx

Functions

template<typename Action, typename ...Ts>
bool apply_p(naming::id_type const &id, threads::thread_priority priority, Ts&&... vs)

template<typename Action, typename Client, typename Stub, typename ...Ts>
bool apply_p(components::client_base<Client, Stub> const &c, threads::thread_priority priority,

Ts&&... vs)

template<typename Action, typename DistPolicy, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, bool>::type apply_p(DistPolicy

const &policy,
threads::thread_priority
priority,
Ts&&... vs)

2.9. API reference 591

HPX Documentation, 1.5.1

template<typename Action, typename ...Ts>
bool apply(naming::id_type const &id, Ts&&... vs)

template<typename Action, typename Client, typename Stub, typename ...Ts>
bool apply(components::client_base<Client, Stub> const &c, Ts&&... vs)

template<typename Action, typename DistPolicy, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, bool>::type apply(DistPolicy const

&policy, Ts&&...
vs)

template<typename Action, typename Continuation, typename ...Ts>
std::enable_if<traits::is_continuation<Continuation>::value, bool>::type apply_p(Continuation &&c,

naming::id_type
const &gid,
threads::thread_priority
priority, Ts&&...
vs)

template<typename Action, typename Continuation, typename Client, typename Stub, typename ...Ts>
std::enable_if<traits::is_continuation<Continuation>::value, bool>::type apply_p(Continuation

&&cont, compo-
nents::client_base<Client,
Stub> const &c,
threads::thread_priority
priority, Ts&&...
vs)

template<typename Action, typename Continuation, typename DistPolicy, typename ...Ts>
std::enable_if<traits::is_continuation<Continuation>::value && traits::is_distribution_policy<DistPolicy>::value, bool>::type apply_p(Continuation

&&c,
Dist-
Pol-
icy
const
&pol-
icy,
threads::thread_priority
pri-
or-
ity,
Ts&&...
vs)

template<typename Action, typename Continuation, typename ...Ts>
std::enable_if<traits::is_continuation<Continuation>::value, bool>::type apply(Continuation &&c,

naming::id_type
const &gid, Ts&&...
vs)

template<typename Action, typename Continuation, typename Client, typename Stub, typename ...Ts>
std::enable_if<traits::is_continuation<Continuation>::value, bool>::type apply(Continuation

&&cont, compo-
nents::client_base<Client,
Stub> const &c,
Ts&&... vs)

template<typename Action, typename Continuation, typename DistPolicy, typename ...Ts>

592 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

std::enable_if<traits::is_distribution_policy<DistPolicy>::value && traits::is_continuation<Continuation>::value, bool>::type apply(Continuation
&&c,
Dist-
Pol-
icy
const
&pol-
icy,
Ts&&...
vs)

template<typename Action, typename ...Ts>
bool apply_c_p(naming::id_type const &contgid, naming::id_type const &gid,

threads::thread_priority priority, Ts&&... vs)

template<typename Action, typename ...Ts>
bool apply_c(naming::id_type const &contgid, naming::id_type const &gid, Ts&&... vs)

template<typename Component, typename Signature, typename Derived, typename ...Ts>
bool apply_c(hpx::actions::basic_action<Component, Signature, Derived>, naming::id_type const

&contgid, naming::id_type const &gid, Ts&&... vs)

Header hpx/async_distributed/applier/apply_callback.hpp

namespace hpx

Functions

template<typename Action, typename Callback, typename ...Ts>
bool apply_p_cb(naming::id_type const &gid, threads::thread_priority priority, Callback &&cb,

Ts&&... vs)

template<typename Action, typename Callback, typename ...Ts>
bool apply_cb(naming::id_type const &gid, Callback &&cb, Ts&&... vs)

template<typename Component, typename Signature, typename Derived, typename Callback, typename ...Ts>
bool apply_cb(hpx::actions::basic_action<Component, Signature, Derived>, naming::id_type const

&gid, Callback &&cb, Ts&&... vs)

template<typename Action, typename DistPolicy, typename Callback, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, bool>::type apply_p_cb(DistPolicy

const
&policy,
threads::thread_priority
priority,
Callback
&&cb,
Ts&&...
vs)

template<typename Action, typename DistPolicy, typename Callback, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, bool>::type apply_cb(DistPolicy

const &pol-
icy, Call-
back &&cb,
Ts&&... vs)

2.9. API reference 593

HPX Documentation, 1.5.1

template<typename Component, typename Signature, typename Derived, typename DistPolicy, typename Callback, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, bool>::type apply_cb(hpx::actions::basic_action<Component,

Signature, De-
rived>, Dist-
Policy const
&policy, Call-
back &&cb,
Ts&&... vs)

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
bool apply_p_cb(Continuation &&c, naming::address &&addr, naming::id_type const &gid,

threads::thread_priority priority, Callback &&cb, Ts&&... vs)

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
bool apply_p_cb(Continuation &&c, naming::id_type const &gid, threads::thread_priority priority,

Callback &&cb, Ts&&... vs)

template<typename Action, typename Continuation, typename Callback, typename ...Ts>
bool apply_cb(Continuation &&c, naming::id_type const &gid, Callback &&cb, Ts&&... vs)

template<typename Component, typename Continuation, typename Signature, typename Derived, typename Callback, typename ...Ts>
bool apply_cb(Continuation &&c, hpx::actions::basic_action<Component, Signature, Derived>, nam-

ing::id_type const &gid, Callback &&cb, Ts&&... vs)

template<typename Action, typename Continuation, typename DistPolicy, typename Callback, typename ...Ts>
std::enable_if<traits::is_continuation<Continuation>::value && traits::is_distribution_policy<DistPolicy>::value, bool>::type apply_p_cb(Continuation

&&c,
Dist-
Pol-
icy
const
&pol-
icy,
threads::thread_priority
pri-
or-
ity,
Call-
back
&&cb,
Ts&&...
vs)

template<typename Action, typename Continuation, typename DistPolicy, typename Callback, typename ...Ts>
std::enable_if<traits::is_continuation<Continuation>::value && traits::is_distribution_policy<DistPolicy>::value, bool>::type apply_cb(Continuation

&&c,
Dist-
Pol-
icy
const
&pol-
icy,
Call-
back
&&cb,
Ts&&...
vs)

594 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename Component, typename Continuation, typename Signature, typename Derived, typename DistPolicy, typename Callback, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, bool>::type apply_cb(Continuation

&&c,
hpx::actions::basic_action<Component,
Signature, De-
rived>, Dist-
Policy const
&policy, Call-
back &&cb,
Ts&&... vs)

template<typename Action, typename Callback, typename ...Ts>
bool apply_c_p_cb(naming::id_type const &contgid, naming::id_type const &gid,

threads::thread_priority priority, Callback &&cb, Ts&&... vs)

template<typename Action, typename Callback, typename ...Ts>
bool apply_c_cb(naming::id_type const &contgid, naming::id_type const &gid, Callback &&cb,

Ts&&... vs)

template<typename Action, typename Callback, typename ...Ts>
bool apply_c_p_cb(naming::id_type const &contgid, naming::address &&addr, naming::id_type

const &gid, threads::thread_priority priority, Callback &&cb, Ts&&... vs)

template<typename Action, typename Callback, typename ...Ts>
bool apply_c_cb(naming::id_type const &contgid, naming::address &&addr, naming::id_type

const &gid, Callback &&cb, Ts&&... vs)

namespace functional

Functions

template<typename Action, typename Callback, typename ...Ts>
apply_c_p_cb_impl<Action, typename util::decay<Callback>::type, typename util::decay<Ts>::type...> apply_c_p_cb(naming::id_type

const
&con-
tid,
nam-
ing::address
&&addr,
nam-
ing::id_type
const
&id,
threads::thread_priority
p,
Call-
back
&&cb,
Ts&&...
vs)

template<typename Action, typename Callback, typename ...Ts>
struct apply_c_p_cb_impl

#include <apply_callback.hpp>

2.9. API reference 595

HPX Documentation, 1.5.1

Public Types

typedef util::tuple<Ts...> tuple_type

Public Functions

template<typename ...Ts_>
apply_c_p_cb_impl(naming::id_type const &contid, naming::address &&addr, nam-

ing::id_type const &id, threads::thread_priority p, Callback &&cb,
Ts_&&... vs)

apply_c_p_cb_impl(apply_c_p_cb_impl &&rhs)

apply_c_p_cb_impl &operator=(apply_c_p_cb_impl &&rhs)

void operator()()

Protected Functions

template<std::size_t... Is>
void apply_action(util::index_pack<Is...>)

Private Members

naming::id_type contid_

naming::address addr_

naming::id_type id_

threads::thread_priority p_

Callback cb_

tuple_type args_

Header hpx/async_distributed/applier/apply_continue.hpp

namespace hpx

Functions

template<typename Action, typename Cont, typename ...Ts>
bool apply_continue(Cont &&cont, naming::id_type const &gid, Ts&&... vs)

template<typename Component, typename Signature, typename Derived, typename Cont, typename ...Ts>
bool apply_continue(hpx::actions::basic_action<Component, Signature, Derived>, Cont &&cont,

naming::id_type const &gid, Ts&&... vs)

template<typename Action, typename ...Ts>
bool apply_continue(naming::id_type const &cont, naming::id_type const &gid, Ts&&... vs)

template<typename Component, typename Signature, typename Derived, typename ...Ts>
bool apply_continue(hpx::actions::basic_action<Component, Signature, Derived>, nam-

ing::id_type const &cont, naming::id_type const &gid, Ts&&... vs)

596 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/async_distributed/applier/apply_continue_callback.hpp

namespace hpx

Functions

template<typename Action, typename Cont, typename Callback, typename ...Ts>
bool apply_continue_cb(Cont &&cont, naming::id_type const &gid, Callback &&cb, Ts&&...

vs)

template<typename Component, typename Signature, typename Derived, typename Cont, typename Callback, typename ...Ts>
bool apply_continue_cb(hpx::actions::basic_action<Component, Signature, Derived>, Cont

&&cont, naming::id_type const &gid, Callback &&cb, Ts&&... vs)

template<typename Action, typename Callback, typename ...Ts>
bool apply_continue_cb(naming::id_type const &cont, naming::id_type const &gid, Callback

&&cb, Ts&&... vs)

template<typename Component, typename Signature, typename Derived, typename Callback, typename ...Ts>
bool apply_continue_cb(hpx::actions::basic_action<Component, Signature, Derived>, nam-

ing::id_type const &cont, naming::id_type const &gid, Callback
&&cb, Ts&&... vs)

Header hpx/async_distributed/applier/apply_continue_fwd.hpp

Header hpx/async_distributed/applier/apply_helper.hpp

namespace hpx

Functions

bool is_pre_startup()

Header hpx/async_distributed/applier/bind_naming_wrappers.hpp

namespace hpx

namespace applier

Functions

bool bind_gid_local(naming::gid_type const&, naming::address const&, error_code &ec
= throws)

void unbind_gid_local(naming::gid_type const&, error_code &ec = throws)

bool bind_range_local(naming::gid_type const&, std::size_t, naming::address const&,
std::size_t, error_code &ec = throws)

void unbind_range_local(naming::gid_type const&, std::size_t, error_code &ec = throws)

2.9. API reference 597

HPX Documentation, 1.5.1

Header hpx/async_distributed/applier/register_apply_colocated.hpp

Defines

HPX_REGISTER_APPLY_COLOCATED_DECLARATION(Action, Name)

HPX_REGISTER_APPLY_COLOCATED(action, name)

Header hpx/async_distributed/applier/trigger.hpp

namespace hpx

namespace applier

Functions

template<typename Arg0>
void trigger(naming::id_type const &k, Arg0 &&arg0)

void trigger(naming::id_type const &k)

void trigger_error(naming::id_type const &k, std::exception_ptr const &e)

void trigger_error(naming::id_type const &k, std::exception_ptr &&e)

Header hpx/async_distributed/applier_fwd.hpp

namespace hpx

namespace applier

Functions

applier &get_applier()
The function get_applier returns a reference to the (thread specific) applier instance.

applier *get_applier_ptr()
The function get_applier returns a pointer to the (thread specific) applier instance. The returned
pointer is NULL if the current thread is not known to HPX or if the runtime system is not active.

namespace applier
The namespace applier contains all definitions needed for the class hpx::applier::applier and its related func-
tionality. This namespace is part of the HPX core module.

598 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/async_distributed/apply.hpp

Header hpx/async_distributed/async.hpp

namespace hpx

Functions

template<typename Action, typename F, typename ...Ts>
auto async(F &&f, Ts&&... ts)

Header hpx/async_distributed/async_callback.hpp

namespace hpx

Functions

template<typename Action, typename F, typename ...Ts>
auto async_cb(F &&f, Ts&&... ts)

template<typename F, typename ...Ts>
auto async_cb(F &&f, Ts&&... ts)

Header hpx/async_distributed/async_callback_fwd.hpp

Header hpx/async_distributed/async_continue.hpp

namespace hpx

Functions

template<typename Action, typename Cont, typename ...Ts>
lcos::future<typename traits::promise_local_result<typename detail::result_of_async_continue<Action, Cont>::type>::type> async_continue(Cont

&&cont,
nam-
ing::id_type
const
&gid,
Ts&&...
vs)

template<typename Component, typename Signature, typename Derived, typename Cont, typename ...Ts>

2.9. API reference 599

HPX Documentation, 1.5.1

lcos::future<typename traits::promise_local_result<typename detail::result_of_async_continue<Derived, Cont>::type>::type> async_continue(hpx::actions::basic_action<Component,
Sig-
na-
ture,
De-
rived>,
Cont
&&cont,
nam-
ing::id_type
const
&gid,
Ts&&...
vs)

template<typename Action, typename Cont, typename DistPolicy, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, lcos::future<typename traits::promise_local_result<typename detail::result_of_async_continue<Action, Cont>::type>::type>>::type async_continue(Cont

&&cont,
Dist-
Pol-
icy
const
&pol-
icy,
Ts&&...
vs)

template<typename Component, typename Signature, typename Derived, typename Cont, typename DistPolicy, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, lcos::future<typename traits::promise_local_result<typename detail::result_of_async_continue<Derived, Cont>::type>::type>>::type async_continue(hpx::actions::basic_action<Component,

Sig-
na-
ture,
De-
rived>,
Cont
&&cont,
Dist-
Pol-
icy
const
&pol-
icy,
Ts&&...
vs)

600 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/async_distributed/async_continue_callback.hpp

namespace hpx

Functions

template<typename Action, typename Cont, typename Callback, typename ...Ts>
lcos::future<typename traits::promise_local_result<typename detail::result_of_async_continue<Action, Cont>::type>::type> async_continue_cb(Cont

&&cont,
nam-
ing::id_type
const
&gid,
Call-
back
&&cb,
Ts&&...
vs)

template<typename Component, typename Signature, typename Derived, typename Cont, typename Callback, typename ...Ts>
lcos::future<typename traits::promise_local_result<typename detail::result_of_async_continue<Derived, Cont>::type>::type> async_continue_cb(hpx::actions::basic_action<Component,

Sig-
na-
ture,
De-
rived>,
Cont
&&cont,
nam-
ing::id_type
const
&gid,
Call-
back
&&cb,
Ts&&...
vs)

template<typename Action, typename Cont, typename DistPolicy, typename Callback, typename ...Ts>
std::enable_if<traits::is_distribution_policy<DistPolicy>::value, lcos::future<typename traits::promise_local_result<typename detail::result_of_async_continue<Action, Cont>::type>::type>>::type async_continue_cb(Cont

&&cont,
Dist-
Pol-
icy
const
&pol-
icy,
Call-
back
&&cb,
Ts&&...
vs)

template<typename Component, typename Signature, typename Derived, typename Cont, typename DistPolicy, typename Callback, typename ...Ts>

2.9. API reference 601

HPX Documentation, 1.5.1

std::enable_if<traits::is_distribution_policy<DistPolicy>::value, lcos::future<typename traits::promise_local_result<typename detail::result_of_async_continue<Derived, Cont>::type>::type>>::type async_continue_cb(hpx::actions::basic_action<Component,
Sig-
na-
ture,
De-
rived>,
Cont
&&cont,
Dist-
Pol-
icy
const
&pol-
icy,
Call-
back
&&cb,
Ts&&...
vs)

Header hpx/async_distributed/async_continue_callback_fwd.hpp

Header hpx/async_distributed/async_continue_fwd.hpp

Header hpx/async_distributed/dataflow.hpp

namespace hpx

Functions

template<typename Action, typename T0, typename ...Ts, typename Enable = typename std::enable_if<traits::is_action<Action>::value>::type>
auto dataflow(T0 &&t0, Ts&&... ts)

template<typename Action, typename Allocator, typename T0, typename ...Ts, typename Enable = typename std::enable_if<traits::is_action<Action>::value>::type>
auto dataflow_alloc(Allocator const &alloc, T0 &&t0, Ts&&... ts)

Header hpx/async_distributed/sync.hpp

namespace hpx

Functions

template<typename Action, typename F, typename ...Ts>
auto sync(F &&f, Ts&&... ts)

602 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/modules/async_distributed.hpp

async_local

The contents of this module can be included with the header hpx/modules/async_local.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/async_local.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/async_local/apply.hpp

Header hpx/async_local/async.hpp

Header hpx/async_local/async_fwd.hpp

namespace hpx

Functions

template<typename Action, typename F, typename ...Ts>
auto async(F &&f, Ts&&... ts)

Header hpx/async_local/dataflow.hpp

Header hpx/async_local/sync.hpp

Header hpx/async_local/sync_fwd.hpp

namespace hpx

Functions

template<typename Action, typename F, typename ...Ts>
auto sync(F &&f, Ts&&... ts)

async_mpi

The contents of this module can be included with the header hpx/modules/async_mpi.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/async_mpi.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

2.9. API reference 603

HPX Documentation, 1.5.1

Header hpx/async_mpi/mpi_executor.hpp

namespace hpx

namespace mpi

namespace experimental

struct executor
#include <mpi_executor.hpp>

Public Types

using execution_category = parallel::execution::parallel_execution_tag

using executor_parameters_type = hpx::parallel::execution::static_chunk_size

Public Functions

constexpr executor(MPI_Comm communicator = MPI_COMM_WORLD)

template<typename F, typename ...Ts>
decltype(auto) async_execute(F &&f, Ts&&... ts) const

std::size_t in_flight_estimate() const

Private Members

MPI_Comm communicator_

Header hpx/async_mpi/mpi_future.hpp

namespace hpx

namespace mpi

namespace experimental

604 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Typedefs

using print_on = debug::enable_print<false>

Functions

static constexpr print_on hpx::mpi::experimental::mpi_debug("MPI_FUT")

void set_error_handler()

hpx::future<void> get_future(MPI_Request request)

void poll()

void wait()

template<typename F>
void wait(F &&f)

void init(bool init_mpi = false, std::string const &pool_name = "", bool init_errorhandler =
false)

void finalize(std::string const &pool_name = "")

template<typename ...Args>
void debug(Args&&... args)

struct enable_user_polling
#include <mpi_future.hpp>

Public Functions

enable_user_polling(std::string const &pool_name = "")

~enable_user_polling()

Private Members

std::string pool_name_

batch_environments

The contents of this module can be included with the header hpx/modules/batch_environments.hpp.
These headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You
are using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/batch_environments.hpp, not the particular header in which
the functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX
API.

2.9. API reference 605

HPX Documentation, 1.5.1

Header hpx/batch_environments/alps_environment.hpp

namespace hpx

namespace util

namespace batch_environments

struct alps_environment
#include <alps_environment.hpp>

Public Functions

alps_environment(std::vector<std::string> &nodelist, bool debug)

bool valid() const

std::size_t node_num() const

std::size_t num_threads() const

std::size_t num_localities() const

Private Members

std::size_t node_num_

std::size_t num_threads_

std::size_t num_localities_

bool valid_

Header hpx/batch_environments/batch_environment.hpp

namespace hpx

namespace util

struct batch_environment
#include <batch_environment.hpp>

606 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef std::map<boost::asio::ip::tcp::endpoint, std::pair<std::string, std::size_t>> node_map_type

Public Functions

batch_environment(std::vector<std::string> &nodelist, bool have_mpi = false, bool debug
= false, bool enable = true)

std::string init_from_nodelist(std::vector<std::string> const &nodes, std::string
const &agas_host)

std::size_t retrieve_number_of_threads() const

std::size_t retrieve_number_of_localities() const

std::size_t retrieve_node_number() const

std::string host_name() const

std::string host_name(std::string const &def_hpx_name) const

std::string agas_host_name(std::string const &def_agas) const

std::size_t agas_node() const

bool found_batch_environment() const

std::string get_batch_name() const

Public Members

std::string agas_node_

std::size_t agas_node_num_

std::size_t node_num_

std::size_t num_threads_

node_map_type nodes_

std::size_t num_localities_

std::string batch_name_

bool debug_

Header hpx/batch_environments/pbs_environment.hpp

namespace hpx

namespace util

namespace batch_environments

2.9. API reference 607

HPX Documentation, 1.5.1

struct pbs_environment
#include <pbs_environment.hpp>

Public Functions

pbs_environment(std::vector<std::string> &nodelist, bool have_mpi, bool debug)

bool valid() const

std::size_t node_num() const

std::size_t num_threads() const

std::size_t num_localities() const

Private Functions

void read_nodefile(std::vector<std::string> &nodelist, bool have_mpi, bool debug)

void read_nodelist(std::vector<std::string> &nodelist, bool debug)

Private Members

std::size_t node_num_

std::size_t num_localities_

std::size_t num_threads_

bool valid_

Header hpx/batch_environments/slurm_environment.hpp

namespace hpx

namespace util

namespace batch_environments

struct slurm_environment
#include <slurm_environment.hpp>

608 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

slurm_environment(std::vector<std::string> &nodelist, bool debug)

bool valid() const

std::size_t node_num() const

std::size_t num_threads() const

std::size_t num_localities() const

Private Functions

void retrieve_number_of_localities(bool debug)

void retrieve_number_of_tasks(bool debug)

void retrieve_nodelist(std::vector<std::string> &nodes, bool debug)

void retrieve_number_of_threads()

Private Members

std::size_t node_num_

std::size_t num_threads_

std::size_t num_tasks_

std::size_t num_localities_

bool valid_

cache

The contents of this module can be included with the header hpx/modules/cache.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your own
risk. If you wish to use non-public functionality from a module we strongly suggest only including the module header
hpx/modules/cache.hpp, not the particular header in which the functionality you would like to use is defined.
See Public API for a list of names that are part of the public HPX API.

Header hpx/cache/entries/entry.hpp

namespace hpx

namespace util

namespace cache

namespace entries

2.9. API reference 609

HPX Documentation, 1.5.1

template<typename Value, typename Derived>
class entry : private hpx::util::cache::entries::detail::less_than_comparable<detail::derived<Value, Derived>::type>

#include <hpx/cache/entries/entry.hpp>
Template Parameters

• Value: The data type to be stored in a cache. It has to be default constructible, copy
constructible and less_than_comparable.

• Derived: The (optional) type for which this type is used as a base class.

Public Types

typedef Value value_type

Public Functions

entry()
Any cache entry has to be default constructible.

entry(value_type const &val)
Construct a new instance of a cache entry holding the given value.

bool touch()
The function touch is called by a cache holding this instance whenever it has been requested
(touched).

Note It is possible to change the entry in a way influencing the sort criteria mandated by
the UpdatePolicy. In this case the function should return true to indicate this to the cache,
forcing to reorder the cache entries.

Note This function is part of the CacheEntry concept
Return This function should return true if the cache needs to update it’s internal heap.

Usually this is needed if the entry has been changed by touch() in a way influencing the
sort order as mandated by the cache’s UpdatePolicy

bool insert()
The function insert is called by a cache whenever it is about to be inserted into the cache.

Note This function is part of the CacheEntry concept
Return This function should return true if the entry should be added to the cache, otherwise

it should return false.

bool remove()
The function remove is called by a cache holding this instance whenever it is about to be
removed from the cache.

Note This function is part of the CacheEntry concept
Return The return value can be used to avoid removing this instance from the cache. If the

value is true it is ok to remove the entry, other wise it will stay in the cache.

std::size_t get_size() const
Return the ‘size’ of this entry. By default the size of each entry is just one (1), which is
sensible if the cache has a limit (capacity) measured in number of entries.

value_type &get()
Get a reference to the stored data value.

Note This function is part of the CacheEntry concept

value_type const &get() const

610 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Members

value_type value_

Friends

bool operator<(entry const &lhs, entry const &rhs)
Forwarding operator< allowing to compare entries instead of the values.

Header hpx/cache/entries/fifo_entry.hpp

namespace hpx

namespace util

namespace cache

namespace entries

template<typename Value>
class fifo_entry : public hpx::util::cache::entries::entry<Value, fifo_entry<Value>>

#include <hpx/cache/entries/fifo_entry.hpp> The fifo_entry type can be used to store arbitrary
values in a cache. Using this type as the cache’s entry type makes sure that the least recently
inserted entries are discarded from the cache first.

Note The fifo_entry conforms to the CacheEntry concept.
Note This type can be used to model a ‘last in first out’ cache policy if it is used with a

std::greater as the caches’ UpdatePolicy (instead of the default std::less).
Template Parameters

• Value: The data type to be stored in a cache. It has to be default constructible, copy
constructible and less_than_comparable.

Public Functions

fifo_entry()
Any cache entry has to be default constructible.

fifo_entry(Value const &val)
Construct a new instance of a cache entry holding the given value.

bool insert()
The function insert is called by a cache whenever it is about to be inserted into the cache.

Note This function is part of the CacheEntry concept
Return This function should return true if the entry should be added to the cache, otherwise

it should return false.

std::chrono::steady_clock::time_point const &get_creation_time() const

2.9. API reference 611

HPX Documentation, 1.5.1

Private Types

typedef entry<Value, fifo_entry<Value>> base_type

Private Members

std::chrono::steady_clock::time_point insertion_time_

Friends

bool operator<(fifo_entry const &lhs, fifo_entry const &rhs)
Compare the ‘age’ of two entries. An entry is ‘older’ than another entry if it has been created
earlier (FIFO).

Header hpx/cache/entries/lfu_entry.hpp

namespace hpx

namespace util

namespace cache

namespace entries

template<typename Value>
class lfu_entry : public hpx::util::cache::entries::entry<Value, lfu_entry<Value>>

#include <hpx/cache/entries/lfu_entry.hpp> The lfu_entry type can be used to store arbitrary
values in a cache. Using this type as the cache’s entry type makes sure that the least frequently
used entries are discarded from the cache first.

Note The lfu_entry conforms to the CacheEntry concept.
Note This type can be used to model a ‘most frequently used’ cache policy if it is used with a

std::greater as the caches’ UpdatePolicy (instead of the default std::less).
Template Parameters

• Value: The data type to be stored in a cache. It has to be default constructible, copy
constructible and less_than_comparable.

Public Functions

lfu_entry()
Any cache entry has to be default constructible.

lfu_entry(Value const &val)
Construct a new instance of a cache entry holding the given value.

bool touch()
The function touch is called by a cache holding this instance whenever it has been requested
(touched).

612 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

In the case of the LFU entry we store the reference count tracking the number of times this
entry has been requested. This which will be used to compare the age of an entry during the
invocation of the operator<().

Return This function should return true if the cache needs to update it’s internal heap.
Usually this is needed if the entry has been changed by touch() in a way influencing the
sort order as mandated by the cache’s UpdatePolicy

unsigned long const &get_access_count() const

Private Types

typedef entry<Value, lfu_entry<Value>> base_type

Private Members

unsigned long ref_count_

Friends

bool operator<(lfu_entry const &lhs, lfu_entry const &rhs)
Compare the ‘age’ of two entries. An entry is ‘older’ than another entry if it has been
accessed less frequently (LFU).

Header hpx/cache/entries/lru_entry.hpp

namespace hpx

namespace util

namespace cache

namespace entries

template<typename Value>
class lru_entry : public hpx::util::cache::entries::entry<Value, lru_entry<Value>>

#include <hpx/cache/entries/lru_entry.hpp> The lru_entry type can be used to store arbitrary
values in a cache. Using this type as the cache’s entry type makes sure that the least recently
used entries are discarded from the cache first.

Note The lru_entry conforms to the CacheEntry concept.
Note This type can be used to model a ‘most recently used’ cache policy if it is used with a

std::greater as the caches’ UpdatePolicy (instead of the default std::less).
Template Parameters

• Value: The data type to be stored in a cache. It has to be default constructible, copy
constructible and less_than_comparable.

2.9. API reference 613

HPX Documentation, 1.5.1

Public Functions

lru_entry()
Any cache entry has to be default constructible.

lru_entry(Value const &val)
Construct a new instance of a cache entry holding the given value.

bool touch()
The function touch is called by a cache holding this instance whenever it has been requested
(touched).

In the case of the LRU entry we store the time of the last access which will be used to
compare the age of an entry during the invocation of the operator<().

Return This function should return true if the cache needs to update it’s internal heap.
Usually this is needed if the entry has been changed by touch() in a way influencing the
sort order as mandated by the cache’s UpdatePolicy

std::chrono::steady_clock::time_point const &get_access_time() const
Returns the last access time of the entry.

Private Types

typedef entry<Value, lru_entry<Value>> base_type

Private Members

std::chrono::steady_clock::time_point access_time_

Friends

bool operator<(lru_entry const &lhs, lru_entry const &rhs)
Compare the ‘age’ of two entries. An entry is ‘older’ than another entry if it has been
accessed less recently (LRU).

Header hpx/cache/entries/size_entry.hpp

namespace hpx

namespace util

namespace cache

namespace entries

template<typename Value, typename Derived>

614 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

class size_entry : public hpx::util::cache::entries::entry<Value, detail::size_derived<Value, Derived>::type>
#include <hpx/cache/entries/size_entry.hpp> The size_entry type can be used to store values
in a cache which have a size associated (such as files, etc.). Using this type as the cache’s entry
type makes sure that the entries with the biggest size are discarded from the cache first.

Note The size_entry conforms to the CacheEntry concept.
Note This type can be used to model a ‘discard smallest first’ cache policy if it is used with a

std::greater as the caches’ UpdatePolicy (instead of the default std::less).
Template Parameters

• Value: The data type to be stored in a cache. It has to be default constructible, copy
constructible and less_than_comparable.

• Derived: The (optional) type for which this type is used as a base class.

Public Functions

size_entry()
Any cache entry has to be default constructible.

size_entry(Value const &val, std::size_t size)
Construct a new instance of a cache entry holding the given value.

std::size_t get_size() const
Return the ‘size’ of this entry.

Private Types

typedef detail::size_derived<Value, Derived>::type derived_type

typedef entry<Value, derived_type> base_type

Private Members

std::size_t size_

Friends

bool operator<(size_entry const &lhs, size_entry const &rhs)
Compare the ‘age’ of two entries. An entry is ‘older’ than another entry if it has a bigger
size.

Header hpx/cache/local_cache.hpp

namespace hpx

namespace util

namespace cache

template<typename Key, typename Entry, typename UpdatePolicy = std::less<Entry>, typename InsertPolicy = policies::always<Entry>, typename CacheStorage = std::map<Key, Entry>, typename Statistics = statistics::no_statistics>

2.9. API reference 615

HPX Documentation, 1.5.1

class local_cache
#include <hpx/cache/local_cache.hpp> The local_cache implements the basic functionality
needed for a local (non-distributed) cache.

Template Parameters
• Key: The type of the keys to use to identify the entries stored in the cache
• Entry: The type of the items to be held in the cache, must model the CacheEntry concept
• UpdatePolicy: A (optional) type specifying a (binary) function object used to sort the

cache entries based on their ‘age’. The ‘oldest’ entries (according to this sorting criteria)
will be discarded first if the maximum capacity of the cache is reached. The default is
std::less<Entry>. The function object will be invoked using 2 entry instances of the type
Entry. This type must model the UpdatePolicy model.

• InsertPolicy: A (optional) type specifying a (unary) function object used to allow
global decisions whether a particular entry should be added to the cache or not. The default
is policies::always, imposing no global insert related criteria on the cache. The function ob-
ject will be invoked using the entry instance to be inserted into the cache. This type must
model the InsertPolicy model.

• CacheStorage: A (optional) container type used to store the cache items. The container
must be an associative and STL compatible container.The default is a std::map<Key, Entry>.

• Statistics: A (optional) type allowing to collect some basic statistics about the oper-
ation of the cache instance. The type must conform to the CacheStatistics concept. The
default value is the type statistics::no_statistics which does not collect any numbers, but
provides empty stubs allowing the code to compile.

Public Types

typedef Key key_type

typedef Entry entry_type

typedef UpdatePolicy update_policy_type

typedef InsertPolicy insert_policy_type

typedef CacheStorage storage_type

typedef Statistics statistics_type

typedef entry_type::value_type value_type

typedef storage_type::size_type size_type

typedef storage_type::value_type storage_value_type

Public Functions

local_cache(size_type max_size = 0, update_policy_type const &up = up-
date_policy_type(), insert_policy_type const &ip = insert_policy_type())

Construct an instance of a local_cache.

Parameters
• max_size: [in] The maximal size this cache is allowed to reach any time. The default

is zero (no size limitation). The unit of this value is usually determined by the unit of the
values returned by the entry’s get_size function.

• up: [in] An instance of the UpdatePolicy to use for this cache. The default is to use a de-
fault constructed instance of the type as defined by the UpdatePolicy template parameter.

• ip: [in] An instance of the InsertPolicy to use for this cache. The default is to use a default
constructed instance of the type as defined by the InsertPolicy template parameter.

616 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

local_cache(local_cache &&other)

size_type size() const
Return current size of the cache.

Return The current size of this cache instance.

size_type capacity() const
Access the maximum size the cache is allowed to grow to.

Note The unit of this value is usually determined by the unit of the return values of the entry’s
function entry::get_size.

Return The maximum size this cache instance is currently allowed to reach. If this number is
zero the cache has no limitation with regard to a maximum size.

bool reserve(size_type max_size)
Change the maximum size this cache can grow to.

Return This function returns true if successful. It returns false if the new max_size is smaller
than the current limit and the cache could not be shrunk to the new maximum size.

Parameters
• max_size: [in] The new maximum size this cache will be allowed to grow to.

bool holds_key(key_type const &k) const
Check whether the cache currently holds an entry identified by the given key.

Note This function does not call the entry’s function entry::touch. It just checks if the cache
contains an entry corresponding to the given key.

Return This function returns true if the cache holds the referenced entry, otherwise it returns
false.

Parameters
• k: [in] The key for the entry which should be looked up in the cache.

bool get_entry(key_type const &k, key_type &realkey, entry_type &val)
Get a specific entry identified by the given key.

Note The function will call the entry’s entry::touch function if the value corresponding to the
provided key is found in the cache.

Return This function returns true if the cache holds the referenced entry, otherwise it returns
false.

Parameters
• k: [in] The key for the entry which should be retrieved from the cache.
• val: [out] If the entry indexed by the key is found in the cache this value on successful

return will be a copy of the corresponding entry.

bool get_entry(key_type const &k, entry_type &val)
Get a specific entry identified by the given key.

Note The function will call the entry’s entry::touch function if the value corresponding to the
provided key is found in the cache.

Return This function returns true if the cache holds the referenced entry, otherwise it returns
false.

Parameters
• k: [in] The key for the entry which should be retrieved from the cache.
• val: [out] If the entry indexed by the key is found in the cache this value on successful

return will be a copy of the corresponding entry.

bool get_entry(key_type const &k, value_type &val)
Get a specific entry identified by the given key.

2.9. API reference 617

HPX Documentation, 1.5.1

Note The function will call the entry’s entry::touch function if the value corresponding to the
provided is found in the cache.

Return This function returns true if the cache holds the referenced entry, otherwise it returns
false.

Parameters
• k: [in] The key for the entry which should be retrieved from the cache
• val: [out] If the entry indexed by the key is found in the cache this value on successful

return will be a copy of the corresponding value.

bool insert(key_type const &k, value_type const &val)
Insert a new element into this cache.

Note This function invokes both, the insert policy as provided to the constructor and the func-
tion entry::insert of the newly constructed entry instance. If either of these functions returns
false the key/value pair doesn’t get inserted into the cache and the insert function will return
false. Other reasons for this function to fail (return false) are a) the key/value pair is already
held in the cache or b) inserting the new value into the cache maxed out its capacity and it
was not possible to free any of the existing entries.

Return This function returns true if the entry has been successfully added to the cache, other-
wise it returns false.

Parameters
• k: [in] The key for the entry which should be added to the cache.
• value: [in] The value which should be added to the cache.

bool insert(key_type const &k, entry_type &e)
Insert a new entry into this cache.

Note This function invokes both, the insert policy as provided to the constructor and the func-
tion entry::insert of the provided entry instance. If either of these functions returns false the
key/value pair doesn’t get inserted into the cache and the insert function will return false.
Other reasons for this function to fail (return false) are a) the key/value pair is already held
in the cache or b) inserting the new value into the cache maxed out its capacity and it was
not possible to free any of the existing entries.

Return This function returns true if the entry has been successfully added to the cache, other-
wise it returns false.

Parameters
• k: [in] The key for the entry which should be added to the cache.
• value: [in] The entry which should be added to the cache.

bool update(key_type const &k, value_type const &val)
Update an existing element in this cache.

Note The function will call the entry’s entry::touch function if the indexed value is found in
the cache.

Note The difference to the other overload of the insert function is that this overload replaces
the cached value only, while the other overload replaces the whole cache entry, updating the
cache entry properties.

Return This function returns true if the entry has been successfully updated, otherwise it
returns false. If the entry currently is not held by the cache it is added and the return value
reflects the outcome of the corresponding insert operation.

Parameters
• k: [in] The key for the value which should be updated in the cache.
• value: [in] The value which should be used as a replacement for the existing value in

the cache. Any existing cache entry is not changed except for its value.

template<typename F>

618 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool update_if(key_type const &k, value_type const &val, F f)
Update an existing element in this cache.

Note The function will call the entry’s entry::touch function if the indexed value is found in
the cache.

Note The difference to the other overload of the insert function is that this overload replaces
the cached value only, while the other overload replaces the whole cache entry, updating the
cache entry properties.

Return This function returns true if the entry has been successfully updated, otherwise it
returns false. If the entry currently is not held by the cache it is added and the return value
reflects the outcome of the corresponding insert operation.

Parameters
• k: [in] The key for the value which should be updated in the cache.
• value: [in] The value which should be used as a replacement for the existing value in

the cache. Any existing cache entry is not changed except for its value.
• f: [in] A callable taking two arguments, k and the key found in the cache (in that order).

If f returns true, then the update will continue. If f returns false, then the update will not
succeed.

bool update(key_type const &k, entry_type &e)
Update an existing entry in this cache.

Note The function will call the entry’s entry::touch function if the indexed value is found in
the cache.

Note The difference to the other overload of the insert function is that this overload replaces
the whole cache entry, while the other overload retplaces the cached value only, leaving the
cache entry properties untouched.

Return This function returns true if the entry has been successfully updated, otherwise it
returns false. If the entry currently is not held by the cache it is added and the return value
reflects the outcome of the corresponding insert operation.

Parameters
• k: [in] The key for the entry which should be updated in the cache.
• value: [in] The entry which should be used as a replacement for the existing entry in the

cache. Any existing entry is first removed and then this entry is added.

template<typename Func>
size_type erase(Func const &ep = policies::always<storage_value_type>())

Remove stored entries from the cache for which the supplied function object returns true.

Return This function returns the overall size of the removed entries (which is the sum of the
values returned by the entry::get_size functions of the removed entries).

Parameters
• ep: [in] This parameter has to be a (unary) function object. It is invoked for each of the

entries currently held in the cache. An entry is considered for removal from the cache
whenever the value returned from this invocation is true. Even then the entry might not be
removed from the cache as its entry::remove function might return false.

size_type erase()
Remove all stored entries from the cache.

Note All entries are considered for removal, but in the end an entry might not be removed from
the cache as its entry::remove function might return false. This function is very useful for
instance in conjunction with an entry’s entry::remove function enforcing additional criteria
like entry expiration, etc.

Return This function returns the overall size of the removed entries (which is the sum of the
values returned by the entry::get_size functions of the removed entries).

2.9. API reference 619

HPX Documentation, 1.5.1

void clear()
Clear the cache.

Unconditionally removes all stored entries from the cache.

statistics_type const &get_statistics() const
Allow to access the embedded statistics instance.

Return This function returns a reference to the statistics instance embedded inside this cache

statistics_type &get_statistics()

Protected Functions

bool free_space(long num_free)

Private Types

typedef storage_type::iterator iterator

typedef storage_type::const_iterator const_iterator

typedef std::deque<iterator> heap_type

typedef heap_type::iterator heap_iterator

typedef adapt<UpdatePolicy, iterator> adapted_update_policy_type

typedef statistics_type::update_on_exit update_on_exit

Private Members

size_type max_size_

size_type current_size_

storage_type store_

heap_type entry_heap_

adapted_update_policy_type update_policy_

insert_policy_type insert_policy_

statistics_type statistics_

template<typename Func, typename Iterator>
struct adapt

620 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<>
adapt(Func f)

template<>
bool operator()(Iterator const &lhs, Iterator const &rhs) const

Public Members

template<>
Func f_

Header hpx/cache/lru_cache.hpp

namespace hpx

namespace util

namespace cache

template<typename Key, typename Entry, typename Statistics = statistics::no_statistics>
class lru_cache

#include <hpx/cache/lru_cache.hpp> The lru_cache implements the basic functionality needed
for a local (non-distributed) LRU cache.

Template Parameters
• Key: The type of the keys to use to identify the entries stored in the cache
• Entry: The type of the items to be held in the cache.
• Statistics: A (optional) type allowing to collect some basic statistics about the oper-

ation of the cache instance. The type must conform to the CacheStatistics concept. The
default value is the type statistics::no_statistics which does not collect any numbers, but
provides empty stubs allowing the code to compile.

Public Types

typedef Key key_type

typedef Entry entry_type

typedef Statistics statistics_type

typedef std::pair<key_type, entry_type> entry_pair

typedef std::list<entry_pair> storage_type

typedef std::map<Key, typename storage_type::iterator> map_type

typedef std::size_t size_type

2.9. API reference 621

HPX Documentation, 1.5.1

Public Functions

lru_cache(size_type max_size = 0)
Construct an instance of a lru_cache.

Parameters
• max_size: [in] The maximal size this cache is allowed to reach any time. The default

is zero (no size limitation). The unit of this value is usually determined by the unit of the
values returned by the entry’s get_size function.

lru_cache(lru_cache &&other)

size_type size() const
Return current size of the cache.

Return The current size of this cache instance.

size_type capacity() const
Access the maximum size the cache is allowed to grow to.

Note The unit of this value is usually determined by the unit of the return values of the entry’s
function entry::get_size.

Return The maximum size this cache instance is currently allowed to reach. If this number is
zero the cache has no limitation with regard to a maximum size.

void reserve(size_type max_size)
Change the maximum size this cache can grow to.

Parameters
• max_size: [in] The new maximum size this cache will be allowed to grow to.

bool holds_key(key_type const &key)
Check whether the cache currently holds an entry identified by the given key.

Note This function does not call the entry’s function entry::touch. It just checks if the cache
contains an entry corresponding to the given key.

Return This function returns true if the cache holds the referenced entry, otherwise it returns
false.

Parameters
• k: [in] The key for the entry which should be looked up in the cache.

bool get_entry(key_type const &key, key_type &realkey, entry_type &entry)
Get a specific entry identified by the given key.

Note The function will “touch” the entry and mark it as recently used if the key was found in
the cache.

Return This function returns true if the cache holds the referenced entry, otherwise it returns
false.

Parameters
• key: [in] The key for the entry which should be retrieved from the cache.
• entry: [out] If the entry indexed by the key is found in the cache this value on successful

return will be a copy of the corresponding entry.

bool get_entry(key_type const &key, entry_type &entry)
Get a specific entry identified by the given key.

Note The function will “touch” the entry and mark it as recently used if the key was found in
the cache.

622 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return This function returns true if the cache holds the referenced entry, otherwise it returns
false.

Parameters
• key: [in] The key for the entry which should be retrieved from the cache.
• entry: [out] If the entry indexed by the key is found in the cache this value on successful

return will be a copy of the corresponding entry.

bool insert(key_type const &key, entry_type const &entry)
Insert a new entry into this cache.

Note This function assumes that the entry is not in the cache already. Inserting an already
existing entry is considered undefined behavior

Parameters
• key: [in] The key for the entry which should be added to the cache.
• entry: [in] The entry which should be added to the cache.

void insert_nonexist(key_type const &key, entry_type const &entry)

void update(key_type const &key, entry_type const &entry)
Update an existing element in this cache.

Note The function will “touch” the entry and mark it as recently used if the key was found in
the cache.

Note The difference to the other overload of the insert function is that this overload replaces
the cached value only, while the other overload replaces the whole cache entry, updating the
cache entry properties.

Parameters
• key: [in] The key for the value which should be updated in the cache.
• entry: [in] The entry which should be used as a replacement for the existing value in

the cache. Any existing cache entry is not changed except for its value.

template<typename F>
bool update_if(key_type const &key, entry_type const &entry, F &&f)

Update an existing element in this cache.

Note The function will “touch” the entry and mark it as recently used if the key was found in
the cache.

Note The difference to the other overload of the insert function is that this overload replaces
the cached value only, while the other overload replaces the whole cache entry, updating the
cache entry properties.

Return This function returns true if the entry has been successfully updated, otherwise it
returns false. If the entry currently is not held by the cache it is added and the return value
reflects the outcome of the corresponding insert operation.

Parameters
• key: [in] The key for the value which should be updated in the cache.
• entry: [in] The value which should be used as a replacement for the existing value in

the cache. Any existing cache entry is not changed except for its value.
• f: [in] A callable taking two arguments, k and the key found in the cache (in that order).

If f returns true, then the update will continue. If f returns false, then the update will not
succeed.

template<typename Func>
size_type erase(Func const &ep)

Remove stored entries from the cache for which the supplied function object returns true.

Return This function returns the overall size of the removed entries (which is the sum of the
values returned by the entry::get_size functions of the removed entries).

2.9. API reference 623

HPX Documentation, 1.5.1

Parameters
• ep: [in] This parameter has to be a (unary) function object. It is invoked for each of the

entries currently held in the cache. An entry is considered for removal from the cache
whenever the value returned from this invocation is true.

size_type erase()
Remove all stored entries from the cache.

Return This function returns the overall size of the removed entries (which is the sum of the
values returned by the entry::get_size functions of the removed entries).

size_type clear()
Clear the cache.

Unconditionally removes all stored entries from the cache.

statistics_type const &get_statistics() const
Allow to access the embedded statistics instance.

Return This function returns a reference to the statistics instance embedded inside this cache

statistics_type &get_statistics()

Private Types

typedef statistics_type::update_on_exit update_on_exit

Private Functions

void touch(typename storage_type::iterator it)

void evict()

Private Members

size_type max_size_

size_type current_size_

storage_type storage_

map_type map_

statistics_type statistics_

Header hpx/cache/policies/always.hpp

namespace hpx

namespace util

namespace cache

624 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

namespace policies

template<typename Entry>
struct always

#include <always.hpp>

Public Functions

bool operator()(Entry const&)

Header hpx/cache/statistics/local_full_statistics.hpp

namespace hpx

namespace util

namespace cache

namespace statistics

class local_full_statistics : public hpx::util::cache::statistics::local_statistics
#include <local_full_statistics.hpp>

Public Functions

std::int64_t get_get_entry_count(bool reset)
The function get_get_entry_count returns the number of invocations of the get_entry() API
function of the cache.

std::int64_t get_insert_entry_count(bool reset)
The function get_insert_entry_count returns the number of invocations of the insert_entry()
API function of the cache.

std::int64_t get_update_entry_count(bool reset)
The function get_update_entry_count returns the number of invocations of the up-
date_entry() API function of the cache.

std::int64_t get_erase_entry_count(bool reset)
The function get_erase_entry_count returns the number of invocations of the erase() API
function of the cache.

std::int64_t get_get_entry_time(bool reset)
The function get_get_entry_time returns the overall time spent executing of the get_entry()
API function of the cache.

std::int64_t get_insert_entry_time(bool reset)
The function get_insert_entry_time returns the overall time spent executing of the in-
sert_entry() API function of the cache.

2.9. API reference 625

HPX Documentation, 1.5.1

std::int64_t get_update_entry_time(bool reset)
The function get_update_entry_time returns the overall time spent executing of the up-
date_entry() API function of the cache.

std::int64_t get_erase_entry_time(bool reset)
The function get_erase_entry_time returns the overall time spent executing of the erase()
API function of the cache.

Private Functions

std::int64_t get_and_reset_value(std::int64_t &value, bool reset)

Private Members

api_counter_data get_entry_

api_counter_data insert_entry_

api_counter_data update_entry_

api_counter_data erase_entry_

Friends

friend hpx::util::cache::statistics::update_on_exit

struct api_counter_data

Public Functions

api_counter_data()

Public Members

std::int64_t count_

std::int64_t time_

struct update_on_exit
#include <local_full_statistics.hpp> Helper class to update timings and counts on function
exit.

Public Functions

update_on_exit(local_full_statistics &stat, method m)

~update_on_exit()

626 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

std::int64_t started_at_

api_counter_data &data_

Private Static Functions

static api_counter_data &get_api_counter_data(local_full_statistics &stat,
method m)

static std::uint64_t now()

Header hpx/cache/statistics/local_statistics.hpp

namespace hpx

namespace util

namespace cache

namespace statistics

class local_statistics : public hpx::util::cache::statistics::no_statistics
#include <local_statistics.hpp> Subclassed by hpx::util::cache::statistics::local_full_statistics

Public Functions

local_statistics()

std::size_t get_and_reset(std::size_t &value, bool reset)

std::size_t hits() const

std::size_t misses() const

std::size_t insertions() const

std::size_t evictions() const

std::size_t hits(bool reset)

std::size_t misses(bool reset)

std::size_t insertions(bool reset)

std::size_t evictions(bool reset)

void got_hit()
The function got_hit will be called by a cache instance whenever a entry got touched.

2.9. API reference 627

HPX Documentation, 1.5.1

void got_miss()
The function got_miss will be called by a cache instance whenever a requested entry has not
been found in the cache.

void got_insertion()
The function got_insertion will be called by a cache instance whenever a new entry has been
inserted.

void got_eviction()
The function got_eviction will be called by a cache instance whenever an entry has been
removed from the cache because a new inserted entry let the cache grow beyond its capacity.

void clear()
Reset all statistics.

Private Members

std::size_t hits_

std::size_t misses_

std::size_t insertions_

std::size_t evictions_

Header hpx/cache/statistics/no_statistics.hpp

namespace hpx

namespace util

namespace cache

namespace statistics

Enums

enum method
Values:

method_get_entry = 0

method_insert_entry = 1

method_update_entry = 2

method_erase_entry = 3

class no_statistics
#include <no_statistics.hpp> Subclassed by hpx::util::cache::statistics::local_statistics

628 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

void got_hit()
The function got_hit will be called by a cache instance whenever a entry got touched.

void got_miss()
The function got_miss will be called by a cache instance whenever a requested entry has not
been found in the cache.

void got_insertion()
The function got_insertion will be called by a cache instance whenever a new entry has been
inserted.

void got_eviction()
The function got_eviction will be called by a cache instance whenever an entry has been
removed from the cache because a new inserted entry let the cache grow beyond its capacity.

void clear()
Reset all statistics.

std::int64_t get_get_entry_count(bool)
The function get_get_entry_count returns the number of invocations of the get_entry() API
function of the cache.

std::int64_t get_insert_entry_count(bool)
The function get_insert_entry_count returns the number of invocations of the insert_entry()
API function of the cache.

std::int64_t get_update_entry_count(bool)
The function get_update_entry_count returns the number of invocations of the up-
date_entry() API function of the cache.

std::int64_t get_erase_entry_count(bool)
The function get_erase_entry_count returns the number of invocations of the erase() API
function of the cache.

std::int64_t get_get_entry_time(bool)
The function get_get_entry_time returns the overall time spent executing of the get_entry()
API function of the cache.

std::int64_t get_insert_entry_time(bool)
The function get_insert_entry_time returns the overall time spent executing of the in-
sert_entry() API function of the cache.

std::int64_t get_update_entry_time(bool)
The function get_update_entry_time returns the overall time spent executing of the up-
date_entry() API function of the cache.

std::int64_t get_erase_entry_time(bool)
The function get_erase_entry_time returns the overall time spent executing of the erase()
API function of the cache.

struct update_on_exit
#include <no_statistics.hpp> Helper class to update timings and counts on function exit.

2.9. API reference 629

HPX Documentation, 1.5.1

Public Functions

update_on_exit(no_statistics const&, method)

checkpoint

The contents of this module can be included with the header hpx/modules/checkpoint.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/checkpoint.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/checkpoint/checkpoint.hpp

This header defines the save_checkpoint and restore_checkpoint functions. These functions are designed to help HPX
application developer’s checkpoint their applications. Save_checkpoint serializes one or more objects and saves them
as a byte stream. Restore_checkpoint converts the byte stream back into instances of the objects.

namespace hpx

namespace util

Functions

std::ostream &operator<<(std::ostream &ost, checkpoint const &ckp)
Operator<< Overload

This overload is the main way to write data from a checkpoint to an object such as a file. Inside the
function, the size of the checkpoint will be written to the stream before the checkpoint’s data. The
operator>> overload uses this to read the correct number of bytes. Be mindful of this additional write
and read when you use different facilities to write out or read in data to a checkpoint!
Parameters

• ost: Output stream to write to.
• ckp: Checkpoint to copy from.

Return Operator<< returns the ostream object.

std::istream &operator>>(std::istream &ist, checkpoint &ckp)
Operator>> Overload

This overload is the main way to read in data from an object such as a file to a checkpoint. It is
important to note that inside the function, the first variable to be read is the size of the checkpoint.
This size variable is written to the stream before the checkpoint’s data in the operator<< overload. Be
mindful of this additional read and write when you use different facilities to read in or write out data
from a checkpoint!
Parameters

• ist: Input stream to write from.
• ckp: Checkpoint to write to.

Return Operator>> returns the ostream object.

template<typename T, typename ...Ts, typename U = typename std::enable_if<!hpx::traits::is_launch_policy<T>::value && !std::is_same<typename std::decay<T>::type, checkpoint>::value>::type>

630 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

hpx::future<checkpoint> save_checkpoint(T &&t, Ts&&... ts)
Save_checkpoint

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it.
Most notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.
Template Parameters

• T: Containers passed to save_checkpoint to be serialized and placed into a checkpoint object.
• Ts: More containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
• U: This parameter is used to make sure that T is not a launch policy or a checkpoint. This forces

the compiler to choose the correct overload.
Parameters

• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

Return Save_checkpoint returns a future to a checkpoint with one exception: if you pass
hpx::launch::sync as the first argument. In this case save_checkpoint will simply return a check-
point.

template<typename T, typename ...Ts>
hpx::future<checkpoint> save_checkpoint(checkpoint &&c, T &&t, Ts&&... ts)

Save_checkpoint - Take a pre-initialized checkpoint

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it.
Most notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.
Template Parameters

• T: Containers passed to save_checkpoint to be serialized and placed into a checkpoint object.
• Ts: More containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
Parameters

• c: Takes a pre-initialized checkpoint to copy data into.
• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

Return Save_checkpoint returns a future to a checkpoint with one exception: if you pass
hpx::launch::sync as the first argument. In this case save_checkpoint will simply return a check-
point.

template<typename T, typename ...Ts, typename U = typename std::enable_if<!std::is_same<typename std::decay<T>::type, checkpoint>::value>::type>
hpx::future<checkpoint> save_checkpoint(hpx::launch p, T &&t, Ts&&... ts)

Save_checkpoint - Policy overload

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it.
Most notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.
Template Parameters

• T: Containers passed to save_checkpoint to be serialized and placed into a checkpoint object.

2.9. API reference 631

HPX Documentation, 1.5.1

• Ts: More containers passed to save_checkpoint to be serialized and placed into a checkpoint
object.

Parameters
• p: Takes an HPX launch policy. Allows the user to change the way the function is launched

i.e. async, sync, etc.
• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

Return Save_checkpoint returns a future to a checkpoint with one exception: if you pass
hpx::launch::sync as the first argument. In this case save_checkpoint will simply return a check-
point.

template<typename T, typename ...Ts>
hpx::future<checkpoint> save_checkpoint(hpx::launch p, checkpoint &&c, T &&t, Ts&&...

ts)
Save_checkpoint - Policy overload & pre-initialized checkpoint

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it.
Most notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.
Template Parameters

• T: Containers passed to save_checkpoint to be serialized and placed into a checkpoint object.
• Ts: More containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
Parameters

• p: Takes an HPX launch policy. Allows the user to change the way the function is launched
i.e. async, sync, etc.

• c: Takes a pre-initialized checkpoint to copy data into.
• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

Return Save_checkpoint returns a future to a checkpoint with one exception: if you pass
hpx::launch::sync as the first argument. In this case save_checkpoint will simply return a check-
point.

template<typename T, typename ...Ts, typename U = typename std::enable_if<!std::is_same<typename std::decay<T>::type, checkpoint>::value>::type>
checkpoint save_checkpoint(hpx::launch::sync_policy sync_p, T &&t, Ts&&... ts)

Save_checkpoint - Sync_policy overload

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it.
Most notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.
Template Parameters

• T: Containers passed to save_checkpoint to be serialized and placed into a checkpoint object.
• Ts: More containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
• U: This parameter is used to make sure that T is not a checkpoint. This forces the compiler to

choose the correct overload.
Parameters

• sync_p: hpx::launch::sync_policy
• t: A container to restore.

632 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ts: Other containers to restore Containers must be in the same order that they were inserted
into the checkpoint.

Return Save_checkpoint which is passed hpx::launch::sync_policy will return a checkpoint which
contains the serialized values checkpoint.

template<typename T, typename ...Ts>
checkpoint save_checkpoint(hpx::launch::sync_policy sync_p, checkpoint &&c, T &&t,

Ts&&... ts)
Save_checkpoint - Sync_policy overload & pre-init. checkpoint

Save_checkpoint takes any number of objects which a user may wish to store and returns a future to
a checkpoint object. This function can also store a component either by passing a shared_ptr to the
component or by passing a component’s client instance to save_checkpoint. Additionally the function
can take a policy as a first object which changes its behavior depending on the policy passed to it.
Most notably, if a sync policy is used save_checkpoint will simply return a checkpoint object.
Template Parameters

• T: Containers passed to save_checkpoint to be serialized and placed into a checkpoint object.
• Ts: More containers passed to save_checkpoint to be serialized and placed into a checkpoint

object.
Parameters

• sync_p: hpx::launch::sync_policy
• c: Takes a pre-initialized checkpoint to copy data into.
• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

Return Save_checkpoint which is passed hpx::launch::sync_policy will return a checkpoint which
contains the serialized values checkpoint.

template<typename T, typename ...Ts, typename U = typename std::enable_if<!hpx::traits::is_launch_policy<T>::value && !std::is_same<typename std::decay<T>::type, checkpoint>::value>::type>
hpx::future<checkpoint> prepare_checkpoint(T const &t, Ts const&... ts)

prepare_checkpoint

prepare_checkpoint takes the containers which have to be filled from the byte stream by a subsequent
restore_checkpoint invocation. prepare_checkpoint will calculate the necessary buffer size and will
return an appropriately sized checkpoint object.

Return prepare_checkpoint returns a properly resized checkpoint object that can be used for a sub-
sequent restore_checkpoint operation.

Template Parameters
• T: A container to restore.
• Ts: Other containers to restore. Containers must be in the same order that they were inserted

into the checkpoint.
Parameters

• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

template<typename T, typename ...Ts>
hpx::future<checkpoint> prepare_checkpoint(checkpoint &&c, T const &t, Ts const&...

ts)
prepare_checkpoint

prepare_checkpoint takes the containers which have to be filled from the byte stream by a subsequent
restore_checkpoint invocation. prepare_checkpoint will calculate the necessary buffer size and will
return an appropriately sized checkpoint object.

2.9. API reference 633

HPX Documentation, 1.5.1

Return prepare_checkpoint returns a properly resized checkpoint object that can be used for a sub-
sequent restore_checkpoint operation.

Template Parameters
• T: A container to restore.
• Ts: Other containers to restore. Containers must be in the same order that they were inserted

into the checkpoint.
Parameters

• c: Takes a pre-initialized checkpoint to prepare
• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

template<typename T, typename ...Ts, typename U = typename std::enable_if<!std::is_same<T , checkpoint>::value>::type>
hpx::future<checkpoint> prepare_checkpoint(hpx::launch p, T const &t, Ts const&... ts)

prepare_checkpoint

prepare_checkpoint takes the containers which have to be filled from the byte stream by a subsequent
restore_checkpoint invocation. prepare_checkpoint will calculate the necessary buffer size and will
return an appropriately sized checkpoint object.

Return prepare_checkpoint returns a properly resized checkpoint object that can be used for a sub-
sequent restore_checkpoint operation.

Template Parameters
• T: A container to restore.
• Ts: Other containers to restore. Containers must be in the same order that they were inserted

into the checkpoint.
Parameters

• p: Takes an HPX launch policy. Allows the user to change the way the function is launched
i.e. async, sync, etc.

• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

template<typename T, typename ...Ts>
hpx::future<checkpoint> prepare_checkpoint(hpx::launch p, checkpoint &&c, T const &t,

Ts const&... ts)
prepare_checkpoint

prepare_checkpoint takes the containers which have to be filled from the byte stream by a subsequent
restore_checkpoint invocation. prepare_checkpoint will calculate the necessary buffer size and will
return an appropriately sized checkpoint object.

Return prepare_checkpoint returns a properly resized checkpoint object that can be used for a sub-
sequent restore_checkpoint operation.

Template Parameters
• T: A container to restore.
• Ts: Other containers to restore. Containers must be in the same order that they were inserted

into the checkpoint.
Parameters

• p: Takes an HPX launch policy. Allows the user to change the way the function is launched
i.e. async, sync, etc.

• c: Takes a pre-initialized checkpoint to prepare
• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

template<typename T, typename ...Ts>

634 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void restore_checkpoint(checkpoint const &c, T &t, Ts&... ts)
Restore_checkpoint

Restore_checkpoint takes a checkpoint object as a first argument and the containers which will
be filled from the byte stream (in the same order as they were placed in save_checkpoint). Re-
store_checkpoint can resurrect a stored component in two ways: by passing in a instance of a compo-
nent’s shared_ptr or by passing in an instance of the component’s client.

Return Restore_checkpoint returns void.
Template Parameters

• T: A container to restore.
• Ts: Other containers to restore. Containers must be in the same order that they were inserted

into the checkpoint.
Parameters

• c: The checkpoint to restore.
• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

class checkpoint
#include <checkpoint.hpp> Checkpoint Object

Checkpoint is the container object which is produced by save_checkpoint and is consumed by a re-
store_checkpoint. A checkpoint may be moved into the save_checkpoint object to write the byte
stream to the pre-created checkpoint object.

Checkpoints are able to store all containers which are able to be serialized including components.

Public Types

using const_iterator = std::vector::const_iterator

Public Functions

checkpoint()

~checkpoint()

checkpoint(checkpoint const &c)

checkpoint(checkpoint &&c)

checkpoint(std::vector<char> const &vec)

checkpoint(std::vector<char> &&vec)

checkpoint &operator=(checkpoint const &c)

checkpoint &operator=(checkpoint &&c)

const_iterator begin() const

const_iterator end() const

std::size_t size() const

char *data()

char const *data() const

2.9. API reference 635

HPX Documentation, 1.5.1

Private Functions

template<typename Archive>
void serialize(Archive &arch, const unsigned int version)

Private Members

std::vector<char> data_

Friends

friend hpx::util::hpx::serialization::access

std::ostream &operator<<(std::ostream &ost, checkpoint const &ckp)
Operator<< Overload

This overload is the main way to write data from a checkpoint to an object such as a file. Inside the
function, the size of the checkpoint will be written to the stream before the checkpoint’s data. The
operator>> overload uses this to read the correct number of bytes. Be mindful of this additional
write and read when you use different facilities to write out or read in data to a checkpoint!
Parameters

• ost: Output stream to write to.
• ckp: Checkpoint to copy from.

Return Operator<< returns the ostream object.

std::istream &operator>>(std::istream &ist, checkpoint &ckp)
Operator>> Overload

This overload is the main way to read in data from an object such as a file to a checkpoint. It is
important to note that inside the function, the first variable to be read is the size of the checkpoint.
This size variable is written to the stream before the checkpoint’s data in the operator<< overload.
Be mindful of this additional read and write when you use different facilities to read in or write
out data from a checkpoint!
Parameters

• ist: Input stream to write from.
• ckp: Checkpoint to write to.

Return Operator>> returns the ostream object.

template<typename T, typename ...Ts>
void restore_checkpoint(checkpoint const &c, T &t, Ts&... ts)

Restore_checkpoint

Restore_checkpoint takes a checkpoint object as a first argument and the containers which will
be filled from the byte stream (in the same order as they were placed in save_checkpoint). Re-
store_checkpoint can resurrect a stored component in two ways: by passing in a instance of a
component’s shared_ptr or by passing in an instance of the component’s client.

Return Restore_checkpoint returns void.
Template Parameters

• T: A container to restore.
• Ts: Other containers to restore. Containers must be in the same order that they were inserted

into the checkpoint.
Parameters

• c: The checkpoint to restore.

636 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• t: A container to restore.
• ts: Other containers to restore Containers must be in the same order that they were inserted

into the checkpoint.

bool operator==(checkpoint const &lhs, checkpoint const &rhs)

bool operator!=(checkpoint const &lhs, checkpoint const &rhs)

checkpoint_base

The contents of this module can be included with the header hpx/modules/checkpoint_base.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/checkpoint_base.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/checkpoint_base/checkpoint_data.hpp

namespace hpx

namespace util

Functions

template<typename Container, typename ...Ts>
void save_checkpoint_data(Container &data, Ts&&... ts)

save_checkpoint_data

Save_checkpoint_data takes any number of objects which a user may wish to store in the given con-
tainer.
Template Parameters

• Container: Container used to store the check-pointed data.
• Ts: Types of variables to checkpoint

Parameters
• cont: Container instance used to store the checkpoint data
• ts: Variable instances to be inserted into the checkpoint.

template<typename ...Ts>
std::size_t prepare_checkpoint_data(Ts const&... ts)

prepare_checkpoint_data

prepare_checkpoint_data takes any number of objects which a user may wish to store in a subsequent
save_checkpoint_data operation. The function will return the number of bytes necessary to store the
data that will be produced.
Template Parameters

• Ts: Types of variables to checkpoint
Parameters

• ts: Variable instances to be inserted into the checkpoint.

template<typename Container, typename ...Ts>

2.9. API reference 637

HPX Documentation, 1.5.1

void restore_checkpoint_data(Container const &cont, Ts&... ts)
restore_checkpoint_data

restore_checkpoint_data takes any number of objects which a user may wish to restore from the given
container. The sequence of objects has to correspond to the sequence of objects for the corresponding
call to save_checkpoint_data that had used the given container instance.
Template Parameters

• Container: Container used to restore the check-pointed data.
• Ts: Types of variables to restore

Parameters
• cont: Container instance used to restore the checkpoint data
• ts: Variable instances to be restored from the container

collectives

The contents of this module can be included with the header hpx/modules/collectives.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/collectives.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/collectives/all_gather.hpp

namespace hpx

namespace lcos

Functions

template<typename T>
hpx::future<std::vector<T>> all_gather(char const *basename, hpx::future<T> &&result,

std::size_t num_sites = std::size_t(-1), std::size_t
generation = std::size_t(-1), std::size_t this_site =
std::size_t(-1), std::size_t root_site = 0)

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note Each all_gather operation has to be accompanied with a unique usage of the
HPX_REGISTER_ALLTOALL macro to define the necessary internal facilities used by all_gather.

Return This function returns a future holding a vector with all values send by all participating sites.
It will become ready once the all_gather operation has been completed.

Parameters
• basename: The base name identifying the all_gather operation
• local_result: A future referring to the value to transmit to all participating sites from this

call site.
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the all_gather

operation performed on the given base name. This is optional and needs to be supplied only if
the all_gather operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value
is optional and defaults to whatever hpx::get_locality_id() returns. root_site The site that is

638 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

responsible for creating the all_gather support object. This value is optional and defaults to ‘0’
(zero).

template<typename T>
hpx::future<std::vector<typename std::decay<T>::type>> all_gather(char const *base-

name, T &&result,
std::size_t num_sites
= std::size_t(-1),
std::size_t genera-
tion = std::size_t(-1),
std::size_t this_site
= std::size_t(-1),
std::size_t root_site =
0)

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note Each all_gather operation has to be accompanied with a unique usage of the
HPX_REGISTER_ALLTOALL macro to define the necessary internal facilities used by all_gather.

Return This function returns a future holding a vector with all values send by all participating sites.
It will become ready once the all_gather operation has been completed.

Parameters
• basename: The base name identifying the all_gather operation
• local_result: The value to transmit to all participating sites from this call site.
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the all_gather

operation performed on the given base name. This is optional and needs to be supplied only if
the all_gather operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value
is optional and defaults to whatever hpx::get_locality_id() returns. root_site The site that is
responsible for creating the all_gather support object. This value is optional and defaults to ‘0’
(zero).

Header hpx/collectives/all_reduce.hpp

namespace hpx

namespace lcos

Functions

template<typename T, typename F>
hpx::future<T> all_reduce(char const *basename, hpx::future<T> result, F &&op, std::size_t

num_sites = std::size_t(-1), std::size_t generation = std::size_t(-1),
std::size_t this_site = std::size_t(-1), std::size_t root_site = 0)

AllReduce a set of values from different call sites

This function receives a set of values that are the result of applying a given operator on values supplied
from all call sites operating on the given base name.

Note Each all_reduce operation has to be accompanied with a unique usage of the
HPX_REGISTER_ALLREDUCE macro to define the necessary internal facilities used by
all_reduce.

2.9. API reference 639

HPX Documentation, 1.5.1

Return This function returns a future holding a value calculated based on the values send by all
participating sites. It will become ready once the all_reduce operation has been completed.

Parameters
• basename: The base name identifying the all_reduce operation
• local_result: A future referring to the value to transmit to all participating sites from this

call site.
• op: Reduction operation to apply to all values supplied from all participating sites
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the all_reduce

operation performed on the given base name. This is optional and needs to be supplied only if
the all_reduce operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value
is optional and defaults to whatever hpx::get_locality_id() returns. root_site The site that is
responsible for creating the all_reduce support object. This value is optional and defaults to ‘0’
(zero).

template<typename T, typename F>
hpx::future<std::decay_t<T>> all_reduce(char const *basename, T &&result, F &&op,

std::size_t num_sites = std::size_t(-1), std::size_t
generation = std::size_t(-1), std::size_t this_site =
std::size_t(-1), std::size_t root_site = 0)

AllReduce a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note Each all_reduce operation has to be accompanied with a unique usage of the
HPX_REGISTER_ALLREDUCE macro to define the necessary internal facilities used by
all_reduce.

Return This function returns a future holding a vector with all values send by all participating sites.
It will become ready once the all_reduce operation has been completed.

Parameters
• basename: The base name identifying the all_reduce operation
• local_result: The value to transmit to all participating sites from this call site.
• op: Reduction operation to apply to all values supplied from all participating sites
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the all_reduce

operation performed on the given base name. This is optional and needs to be supplied only if
the all_reduce operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value
is optional and defaults to whatever hpx::get_locality_id() returns. root_site The site that is
responsible for creating the all_reduce support object. This value is optional and defaults to ‘0’
(zero).

Header hpx/collectives/all_to_all.hpp

namespace hpx

namespace lcos

640 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename T>
hpx::future<std::vector<T>> all_to_all(char const *basename, hpx::future<std::vector<T>>

&&result, std::size_t num_sites = std::size_t(-1),
std::size_t generation = std::size_t(-1), std::size_t
this_site = std::size_t(-1), std::size_t root_site = 0)

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note Each all_to_all operation has to be accompanied with a unique usage of the
HPX_REGISTER_ALLTOALL macro to define the necessary internal facilities used by all_to_all.

Return This function returns a future holding a vector with all values send by all participating sites.
It will become ready once the all_to_all operation has been completed.

Parameters
• basename: The base name identifying the all_to_all operation
• local_result: A future referring to the value to transmit to all participating sites from this

call site.
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the all_to_all

operation performed on the given base name. This is optional and needs to be supplied only if
the all_to_all operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value
is optional and defaults to whatever hpx::get_locality_id() returns. root_site The site that is
responsible for creating the all_to_all support object. This value is optional and defaults to ‘0’
(zero).

template<typename T>
hpx::future<std::vector<typename std::decay<T>::type>> all_to_all(char const *base-

name, T &&result,
std::size_t num_sites
= std::size_t(-1),
std::size_t genera-
tion = std::size_t(-1),
std::size_t this_site
= std::size_t(-1),
std::size_t root_site =
0)

AllToAll a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note Each all_to_all operation has to be accompanied with a unique usage of the
HPX_REGISTER_ALLTOALL macro to define the necessary internal facilities used by all_to_all.

Return This function returns a future holding a vector with all values send by all participating sites.
It will become ready once the all_to_all operation has been completed.

Parameters
• basename: The base name identifying the all_to_all operation
• local_result: The value to transmit to all participating sites from this call site.
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the all_to_all

operation performed on the given base name. This is optional and needs to be supplied only if
the all_to_all operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value
is optional and defaults to whatever hpx::get_locality_id() returns. root_site The site that is

2.9. API reference 641

HPX Documentation, 1.5.1

responsible for creating the all_to_all support object. This value is optional and defaults to ‘0’
(zero).

Header hpx/collectives/barrier.hpp

namespace hpx

namespace lcos

class barrier
#include <barrier.hpp> The barrier is an implementation performing a barrier over a number of par-
ticipating threads. The different threads don’t have to be on the same locality. This barrier can be
invoked in a distributed application.

For a local only barrier
See hpx::lcos::local::barrier.

Public Functions

barrier(std::string const &base_name)
Creates a barrier, rank is locality id, size is number of localities

A barrier base_name is created. It expects that hpx::get_num_localities() participate and the local
rank is hpx::get_locality_id().
Parameters

• base_name: The name of the barrier

barrier(std::string const &base_name, std::size_t num)
Creates a barrier with a given size, rank is locality id

A barrier base_name is created. It expects that num participate and the local rank is
hpx::get_locality_id().
Parameters

• base_name: The name of the barrier
• num: The number of participating threads

barrier(std::string const &base_name, std::size_t num, std::size_t rank)
Creates a barrier with a given size and rank

A barrier base_name is created. It expects that num participate and the local rank is rank.
Parameters

• base_name: The name of the barrier
• num: The number of participating threads
• rank: The rank of the calling site for this invocation

barrier(std::string const &base_name, std::vector<std::size_t> const &ranks, std::size_t
rank)

Creates a barrier with a vector of ranks

A barrier base_name is created. It expects that ranks.size() and the local rank is rank (must be
contained in ranks).
Parameters

• base_name: The name of the barrier
• ranks: Gives a list of participating ranks (this could be derived from a list of locality ids

642 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• rank: The rank of the calling site for this invocation

void wait()
Wait until each participant entered the barrier. Must be called by all participants

Return This function returns once all participants have entered the barrier (have called wait).

hpx::future<void> wait(hpx::launch::async_policy)
Wait until each participant entered the barrier. Must be called by all participants

Return a future that becomes ready once all participants have entered the barrier (have called
wait).

Public Static Functions

static void synchronize()
Perform a global synchronization using the default global barrier The barrier is created once at
startup and can be reused throughout the lifetime of an HPX application.

Note This function currently does not support dynamic connection and disconnection of locali-
ties.

Header hpx/collectives/broadcast.hpp

Header hpx/collectives/broadcast_direct.hpp

namespace hpx

namespace lcos

Functions

template<typename Action, typename ArgN, ...>hpx::future<std::vector<decltype(Action(hpx::id_type, ArgN, ...))> > hpx::lcos::broadcast(std::vector< hpx::id_type > const & ids, ArgN argN, ...)
Perform a distributed broadcast operation.

The function hpx::lcos::broadcast performs a distributed broadcast operation resulting in action invo-
cations on a given set of global identifiers. The action can be either a plain action (in which case the
global identifiers have to refer to localities) or a component action (in which case the global identifiers
have to refer to instances of a component type which exposes the action.

The given action is invoked asynchronously on all given identifiers, and the arguments ArgN are
passed along to those invocations.

Return This function returns a future representing the result of the overall reduction operation.
Note If decltype(Action(. . .)) is void, then the result of this function is future<void>.
Parameters

• ids: [in] A list of global identifiers identifying the target objects for which the given action
will be invoked.

• argN: [in] Any number of arbitrary arguments (passed by const reference) which will be for-
warded to the action invocation.

template<typename Action, typename ArgN, ...>void hpx::lcos::broadcast_apply(std::vector< hpx::id_type > const & ids, ArgN argN, ...)
Perform an asynchronous (fire&forget) distributed broadcast operation.

2.9. API reference 643

HPX Documentation, 1.5.1

The function hpx::lcos::broadcast_apply performs an asynchronous (fire&forget) distributed broad-
cast operation resulting in action invocations on a given set of global identifiers. The action can be
either a plain action (in which case the global identifiers have to refer to localities) or a component ac-
tion (in which case the global identifiers have to refer to instances of a component type which exposes
the action.

The given action is invoked asynchronously on all given identifiers, and the arguments ArgN are
passed along to those invocations.

Parameters
• ids: [in] A list of global identifiers identifying the target objects for which the given action

will be invoked.
• argN: [in] Any number of arbitrary arguments (passed by const reference) which will be for-

warded to the action invocation.

template<typename Action, typename ArgN, ...>hpx::future< std::vector<decltype(Action(hpx::id_type, ArgN, ..., std::size_t))> > hpx::lcos::broadcast_with_index(std::vector< hpx::id_type > const & ids, ArgN argN, ...)
Perform a distributed broadcast operation.

The function hpx::lcos::broadcast_with_index performs a distributed broadcast operation resulting in
action invocations on a given set of global identifiers. The action can be either a plain action (in which
case the global identifiers have to refer to localities) or a component action (in which case the global
identifiers have to refer to instances of a component type which exposes the action.

The given action is invoked asynchronously on all given identifiers, and the arguments ArgN are
passed along to those invocations.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

Return This function returns a future representing the result of the overall reduction operation.
Note If decltype(Action(. . .)) is void, then the result of this function is future<void>.
Parameters

• ids: [in] A list of global identifiers identifying the target objects for which the given action
will be invoked.

• argN: [in] Any number of arbitrary arguments (passed by const reference) which will be for-
warded to the action invocation.

template<typename Action, typename ArgN, ...>void hpx::lcos::broadcast_apply_with_index(std::vector< hpx::id_type > const & ids, ArgN argN, ...)
Perform an asynchronous (fire&forget) distributed broadcast operation.

The function hpx::lcos::broadcast_apply_with_index performs an asynchronous (fire&forget) dis-
tributed broadcast operation resulting in action invocations on a given set of global identifiers. The
action can be either a plain action (in which case the global identifiers have to refer to localities) or a
component action (in which case the global identifiers have to refer to instances of a component type
which exposes the action.

The given action is invoked asynchronously on all given identifiers, and the arguments ArgN are
passed along to those invocations.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

Parameters
• ids: [in] A list of global identifiers identifying the target objects for which the given action

will be invoked.
• argN: [in] Any number of arbitrary arguments (passed by const reference) which will be for-

warded to the action invocation.

644 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/collectives/fold.hpp

namespace hpx

namespace lcos

Functions

template<typename Action, typename FoldOp, typename Init, typename ArgN, ...>hpx::future<decltype(Action(hpx::id_type, ArgN, ...))> hpx::lcos::fold(std::vector< hpx::id_type > const & ids, FoldOp && fold_op, Init && init, ArgN argN, ...)
Perform a distributed fold operation.

The function hpx::lcos::fold performs a distributed folding operation over results returned from action
invocations on a given set of global identifiers. The action can be either a plain action (in which case
the global identifiers have to refer to localities) or a component action (in which case the global
identifiers have to refer to instances of a component type which exposes the action.

Note The type of the initial value must be convertible to the result type returned from the invoked
action.

Return This function returns a future representing the result of the overall folding operation.
Parameters

• ids: [in] A list of global identifiers identifying the target objects for which the given action
will be invoked.

• fold_op: [in] A binary function expecting two results as returned from the action invoca-
tions. The function (or function object) is expected to return the result of the folding operation
performed on its arguments.

• init: [in] The initial value to be used for the folding operation
• argN: [in] Any number of arbitrary arguments (passed by value, by const reference or by

rvalue reference) which will be forwarded to the action invocation.

template<typename Action, typename FoldOp, typename Init, typename ArgN, ...>hpx::future<decltype(Action(hpx::id_type, ArgN, ..., std::size_t))> hpx::lcos::fold_with_index(std::vector< hpx::id_type > const & ids, FoldOp && fold_op, Init && init, ArgN argN, ...)
Perform a distributed folding operation.

The function hpx::lcos::fold_with_index performs a distributed folding operation over results returned
from action invocations on a given set of global identifiers. The action can be either plain action (in
which case the global identifiers have to refer to localities) or a component action (in which case the
global identifiers have to refer to instances of a component type which exposes the action.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

Note The type of the initial value must be convertible to the result type returned from the invoked
action.

Return This function returns a future representing the result of the overall folding operation.
Parameters

• ids: [in] A list of global identifiers identifying the target objects for which the given action
will be invoked.

• fold_op: [in] A binary function expecting two results as returned from the action invoca-
tions. The function (or function object) is expected to return the result of the folding operation
performed on its arguments.

• init: [in] The initial value to be used for the folding operation
• argN: [in] Any number of arbitrary arguments (passed by value, by const reference or by

rvalue reference) which will be forwarded to the action invocation.

template<typename Action, typename FoldOp, typename Init, typename ArgN, ...>hpx::future<decltype(Action(hpx::id_type, ArgN, ...))> hpx::lcos::inverse_fold(std::vector< hpx::id_type > const & ids, FoldOp && fold_op, Init && init, ArgN argN, ...)
Perform a distributed inverse folding operation.

2.9. API reference 645

HPX Documentation, 1.5.1

The function hpx::lcos::inverse_fold performs an inverse distributed folding operation over results
returned from action invocations on a given set of global identifiers. The action can be either a plain
action (in which case the global identifiers have to refer to localities) or a component action (in which
case the global identifiers have to refer to instances of a component type which exposes the action.

Note The type of the initial value must be convertible to the result type returned from the invoked
action.

Return This function returns a future representing the result of the overall folding operation.
Parameters

• ids: [in] A list of global identifiers identifying the target objects for which the given action
will be invoked.

• fold_op: [in] A binary function expecting two results as returned from the action invoca-
tions. The function (or function object) is expected to return the result of the folding operation
performed on its arguments.

• init: [in] The initial value to be used for the folding operation
• argN: [in] Any number of arbitrary arguments (passed by value, by const reference or by

rvalue reference) which will be forwarded to the action invocation.

template<typename Action, typename FoldOp, typename Init, typename ArgN, ...>hpx::future<decltype(Action(hpx::id_type, ArgN, ..., std::size_t))> hpx::lcos::inverse_fold_with_index(std::vector< hpx::id_type > const & ids, FoldOp && fold_op, Init && init, ArgN argN, ...)
Perform a distributed inverse folding operation.

The function hpx::lcos::inverse_fold_with_index performs an inverse distributed folding operation
over results returned from action invocations on a given set of global identifiers. The action can be
either plain action (in which case the global identifiers have to refer to localities) or a component
action (in which case the global identifiers have to refer to instances of a component type which
exposes the action.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

Note The type of the initial value must be convertible to the result type returned from the invoked
action.

Return This function returns a future representing the result of the overall folding operation.
Parameters

• ids: [in] A list of global identifiers identifying the target objects for which the given action
will be invoked.

• fold_op: [in] A binary function expecting two results as returned from the action invoca-
tions. The function (or function object) is expected to return the result of the folding operation
performed on its arguments.

• init: [in] The initial value to be used for the folding operation
• argN: [in] Any number of arbitrary arguments (passed by value, by const reference or by

rvalue reference) which will be forwarded to the action invocation.

Header hpx/collectives/gather.hpp

namespace hpx

namespace lcos

646 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename T>
hpx::future<std::vector<T>> gather_here(char const *basename, hpx::future<T> result,

std::size_t num_sites = std::size_t(-1), std::size_t
generation = std::size_t(-1), std::size_t this_site =
std::size_t(-1))

Gather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note Each gather operation has to be accompanied with a unique usage of the
HPX_REGISTER_GATHER macro to define the necessary internal facilities used by gather_here
and gather_there

Return This function returns a future holding a vector with all gathered values. It will become ready
once the gather operation has been completed.

Parameters
• basename: The base name identifying the gather operation
• result: A future referring to the value to transmit to the central gather point from this call

site.
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the gather oper-

ation performed on the given base name. This is optional and needs to be supplied only if the
gather operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value is
optional and defaults to whatever hpx::get_locality_id() returns.

template<typename T>
hpx::future<std::vector<T>> gather_there(char const *basename, hpx::future<T> result,

std::size_t generation = std::size_t(-1), std::size_t
this_site = std::size_t(-1), std::size_t root_site = 0)

Gather a given value at the given call site

This function transmits the value given by result to a central gather site (where the corresponding
gather_here is executed)

Note Each gather operation has to be accompanied with a unique usage of the
HPX_REGISTER_GATHER macro to define the necessary internal facilities used by gather_here
and gather_there

Return This function returns a future holding a vector with all gathered values. It will become ready
once the gather operation has been completed.

Parameters
• basename: The base name identifying the gather operation
• result: A future referring to the value to transmit to the central gather point from this call

site.
• generation: The generational counter identifying the sequence number of the gather oper-

ation performed on the given base name. This is optional and needs to be supplied only if the
gather operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value is
optional and defaults to whatever hpx::get_locality_id() returns.

• root_site: The sequence number of the central gather point (usually the locality id). This
value is optional and defaults to 0.

template<typename T>

2.9. API reference 647

HPX Documentation, 1.5.1

hpx::future<std::vector<typename std::decay<T>::type>> gather_here(char const *base-
name, T &&result,
std::size_t num_sites
= std::size_t(-1),
std::size_t generation
= std::size_t(-1),
std::size_t this_site =
std::size_t(-1))

Gather a set of values from different call sites

This function receives a set of values from all call sites operating on the given base name.

Note Each gather operation has to be accompanied with a unique usage of the
HPX_REGISTER_GATHER macro to define the necessary internal facilities used by gather_here
and gather_there

Return This function returns a future holding a vector with all gathered values. It will become ready
once the gather operation has been completed.

Parameters
• basename: The base name identifying the gather operation
• result: The value to transmit to the central gather point from this call site.
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the gather oper-

ation performed on the given base name. This is optional and needs to be supplied only if the
gather operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value is
optional and defaults to whatever hpx::get_locality_id() returns.

template<typename T>
hpx::future<std::vector<typename std::decay<T>::type>> gather_there(char const *base-

name, T &&re-
sult, std::size_t
generation =
std::size_t(-1),
std::size_t this_site
= std::size_t(-1),
std::size_t root_site
= 0)

Gather a given value at the given call site

This function transmits the value given by result to a central gather site (where the corresponding
gather_here is executed)

Note Each gather operation has to be accompanied with a unique usage of the
HPX_REGISTER_GATHER macro to define the necessary internal facilities used by gather_here
and gather_there

Return This function returns a future holding a vector with all gathered values. It will become ready
once the gather operation has been completed.

Parameters
• basename: The base name identifying the gather operation
• result: The value to transmit to the central gather point from this call site.
• generation: The generational counter identifying the sequence number of the gather oper-

ation performed on the given base name. This is optional and needs to be supplied only if the
gather operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value is
optional and defaults to whatever hpx::get_locality_id() returns.

• root_site: The sequence number of the central gather point (usually the locality id). This
value is optional and defaults to 0.

648 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/collectives/latch.hpp

namespace hpx

namespace lcos

class latch : public components::client_base<latch, lcos::server::latch>
#include <latch.hpp>

Public Functions

latch()

latch(std::ptrdiff_t count)
Initialize the latch

Requires: count >= 0. Synchronization: None Postconditions: counter_ == count.

latch(naming::id_type const &id)
Extension: Create a client side representation for the existing server::latch instance with the given
global id id.

latch(hpx::future<naming::id_type> &&f)
Extension: Create a client side representation for the existing server::latch instance with the given
global id id.

latch(hpx::shared_future<naming::id_type> const &id)
Extension: Create a client side representation for the existing server::latch instance with the given
global id id.

latch(hpx::shared_future<naming::id_type> &&id)

void count_down_and_wait()
Decrements counter_ by 1 . Blocks at the synchronization point until counter_ reaches 0.

Requires: counter_ > 0.

Synchronization: Synchronizes with all calls that block on this latch and with all is_ready calls
on this latch that return true.

Exceptions
• Nothing.:

void count_down(std::ptrdiff_t n)
Decrements counter_ by n. Does not block.

Requires: counter_ >= n and n >= 0.

Synchronization: Synchronizes with all calls that block on this latch and with all is_ready calls
on this latch that return true .

Exceptions
• Nothing.:

bool is_ready() const
Returns: counter_ == 0. Does not block.

2.9. API reference 649

HPX Documentation, 1.5.1

Exceptions
• Nothing.:

void wait() const
If counter_ is 0, returns immediately. Otherwise, blocks the calling thread at the synchronization
point until counter_ reaches 0.

Exceptions
• Nothing.:

Private Types

typedef components::client_base<latch, lcos::server::latch> base_type

Header hpx/collectives/reduce.hpp

namespace hpx

namespace lcos

Functions

template<typename Action, typename ReduceOp, typename ArgN, ...>hpx::future<decltype(Action(hpx::id_type, ArgN, ...))> hpx::lcos::reduce(std::vector< hpx::id_type > const & ids, ReduceOp && reduce_op, ArgN argN, ...)
Perform a distributed reduction operation.

The function hpx::lcos::reduce performs a distributed reduction operation over results returned from
action invocations on a given set of global identifiers. The action can be either a plain action (in which
case the global identifiers have to refer to localities) or a component action (in which case the global
identifiers have to refer to instances of a component type which exposes the action.

Return This function returns a future representing the result of the overall reduction operation.
Parameters

• ids: [in] A list of global identifiers identifying the target objects for which the given action
will be invoked.

• reduce_op: [in] A binary function expecting two results as returned from the action in-
vocations. The function (or function object) is expected to return the result of the reduction
operation performed on its arguments.

• argN: [in] Any number of arbitrary arguments (passed by by const reference) which will be
forwarded to the action invocation.

template<typename Action, typename ReduceOp, typename ArgN, ...>hpx::future<decltype(Action(hpx::id_type, ArgN, ..., std::size_t))> hpx::lcos::reduce_with_index(std::vector< hpx::id_type > const & ids, ReduceOp && reduce_op, ArgN argN, ...)
Perform a distributed reduction operation.

The function hpx::lcos::reduce_with_index performs a distributed reduction operation over results
returned from action invocations on a given set of global identifiers. The action can be either plain
action (in which case the global identifiers have to refer to localities) or a component action (in which
case the global identifiers have to refer to instances of a component type which exposes the action.

The function passes the index of the global identifier in the given list of identifiers as the last argument
to the action.

Return This function returns a future representing the result of the overall reduction operation.
Parameters

• ids: [in] A list of global identifiers identifying the target objects for which the given action
will be invoked.

650 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• reduce_op: [in] A binary function expecting two results as returned from the action in-
vocations. The function (or function object) is expected to return the result of the reduction
operation performed on its arguments.

• argN: [in] Any number of arbitrary arguments (passed by by const reference) which will be
forwarded to the action invocation.

Header hpx/collectives/scatter.hpp

namespace hpx

namespace lcos

Functions

template<typename T>
hpx::future<T> scatter_from(char const *basename, std::size_t generation = std::size_t(-1),

std::size_t this_site = std::size_t(-1), std::size_t root_site = 0)
Scatter (receive) a set of values to different call sites

This function receives an element of a set of values operating on the given base name.

Scatter (receive) a set of values to different call sites
Note Each scatter operation has to be accompanied with a unique usage of the

HPX_REGISTER_SCATTER macro to define the necessary internal facilities used by scat-
ter_from and scatter_to

Return This function returns a future holding a the scattered value. It will become ready once the
scatter operation has been completed.

Parameters
• basename: The base name identifying the scatter operation
• result: A future referring to the value to transmit to the central scatter point from this call

site.
• generation: The generational counter identifying the sequence number of the scatter oper-

ation performed on the given base name. This is optional and needs to be supplied only if the
scatter operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value is
optional and defaults to whatever hpx::get_locality_id() returns.

• root_site: The sequence number of the central scatter point (usually the locality id). This
value is optional and defaults to 0.

This function receives an element of a set of values operating on the given base name.

Note Each scatter operation has to be accompanied with a unique usage of the
HPX_REGISTER_SCATTER macro to define the necessary internal facilities used by scat-
ter_from and scatter_to

Return This function returns a future holding a the scattered value. It will become ready once the
scatter operation has been completed.

Parameters
• basename: The base name identifying the scatter operation
• result: The value to transmit to the central scatter point from this call site.
• generation: The generational counter identifying the sequence number of the scatter oper-

ation performed on the given base name. This is optional and needs to be supplied only if the
scatter operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value is
optional and defaults to whatever hpx::get_locality_id() returns.

2.9. API reference 651

HPX Documentation, 1.5.1

• root_site: The sequence number of the central scatter point (usually the locality id). This
value is optional and defaults to 0.

template<typename T>
hpx::future<T> scatter_to(char const *basename, hpx::future<std::vector<T>> result,

std::size_t generation = std::size_t(-1), std::size_t this_site =
std::size_t(-1))

Scatter (send) a part of the value set at the given call site

This function transmits the value given by result to a central scatter site (where the corresponding
scatter_from is executed)

Note Each scatter operation has to be accompanied with a unique usage of the
HPX_REGISTER_SCATTER macro to define the necessary internal facilities used by scat-
ter_from and scatter_to

Return This function returns a future holding a the scattered value. It will become ready once the
scatter operation has been completed.

Parameters
• basename: The base name identifying the scatter operation
• result: A future referring to the value to transmit to the central scatter point from this call

site.
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the scatter oper-

ation performed on the given base name. This is optional and needs to be supplied only if the
scatter operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value is
optional and defaults to whatever hpx::get_locality_id() returns.

template<typename T>
hpx::future<T> scatter_to(char const *basename, std::vector<T> const &result, std::size_t

num_sites = std::size_t(-1), std::size_t generation = std::size_t(-1),
std::size_t this_site = std::size_t(-1))

Scatter (send) a part of the value set at the given call site

This function transmits the value given by result to a central scatter site (where the corresponding
scatter_from is executed)

Note Each scatter operation has to be accompanied with a unique usage of the
HPX_REGISTER_SCATTER macro to define the necessary internal facilities used by scat-
ter_from and scatter_to

Return This function returns a future holding a the scattered value. It will become ready once the
scatter operation has been completed.

Parameters
• basename: The base name identifying the scatter operation
• result: The value to transmit to the central scatter point from this call site.
• num_sites: The number of participating sites (default: all localities).
• generation: The generational counter identifying the sequence number of the scatter oper-

ation performed on the given base name. This is optional and needs to be supplied only if the
scatter operation on the given base name has to be performed more than once.

• this_site: The sequence number of this invocation (usually the locality id). This value is
optional and defaults to whatever hpx::get_locality_id() returns.

template<typename T>
hpx::future<T> scatter_to(char const *basename, std::vector<T> &&result, std::size_t

num_sites = std::size_t(-1), std::size_t generation = std::size_t(-1),
std::size_t this_site = std::size_t(-1))

652 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/collectives/spmd_block.hpp

namespace hpx

namespace lcos

Functions

template<typename F, typename ...Args>
hpx::future<void> define_spmd_block(std::string &&name, std::size_t images_per_locality, F

&&f, Args&&... args)

struct spmd_block
#include <spmd_block.hpp> The class spmd_block defines an interface for launching multiple images
while giving handles to each image to interact with the remaining images. The define_spmd_block
function templates create multiple images of a user-defined action and launches them in a possibly
separate thread. A temporary spmd block object is created and diffused to each image. The constraint
for the action given to the define_spmd_block function is to accept a spmd_block as first parameter.

Public Functions

spmd_block()

spmd_block(std::string const &name, std::size_t images_per_locality, std::size_t
num_images, std::size_t image_id)

std::size_t get_images_per_locality() const

std::size_t get_num_images() const

std::size_t this_image() const

void sync_all() const

hpx::future<void> sync_all(hpx::launch::async_policy const&) const

void sync_images(std::set<std::size_t> const &images) const

void sync_images(std::vector<std::size_t> const &input_images) const

template<typename Iterator>
std::enable_if<traits::is_input_iterator<Iterator>::value>::type sync_images(Iterator begin,

Iterator end)
const

template<typename ...I>
std::enable_if<util::all_of<typename std::is_integral<I>::type...>::value>::type sync_images(I...

i)

hpx::future<void> sync_images(hpx::launch::async_policy const &policy,
std::set<std::size_t> const &images) const

hpx::future<void> sync_images(hpx::launch::async_policy const &policy,
std::vector<std::size_t> const &input_images) const

template<typename Iterator>

2.9. API reference 653

HPX Documentation, 1.5.1

std::enable_if<traits::is_input_iterator<Iterator>::value, hpx::future<void>>::type sync_images(hpx::launch::async_policy
const
&pol-
icy,
It-
er-
a-
tor
be-
gin,
It-
er-
a-
tor
end)
const

template<typename ...I>
std::enable_if<util::all_of<typename std::is_integral<I>::type...>::value, hpx::future<void>>::type sync_images(hpx::launch::async_policy

const
&pol-
icy,
I...
i)
const

Private Types

using barrier_type = hpx::lcos::barrier

using table_type = std::map<std::set<std::size_t>, std::shared_ptr<barrier_type>>

Private Functions

template<typename Archive>
void serialize(Archive&, unsigned)

Private Members

std::string name_

std::size_t images_per_locality_

std::size_t num_images_

std::size_t image_id_

hpx::util::jenkins_hash hash_

std::shared_ptr<hpx::lcos::barrier> barrier_

table_type barriers_

654 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Friends

friend hpx::lcos::hpx::serialization::access

Header hpx/distributed/barrier.hpp

Header hpx/distributed/latch.hpp

command_line_handling

The contents of this module can be included with the header hpx/modules/command_line_handling.hpp.
These headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You
are using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest
only including the module header hpx/modules/command_line_handling.hpp, not the particular header in
which the functionality you would like to use is defined. See Public API for a list of names that are part of the public
HPX API.

Header hpx/command_line_handling/command_line_handling.hpp

namespace hpx

namespace util

Functions

std::size_t get_num_high_priority_queues(util::command_line_handling const &cfg,
std::size_t num_threads)

std::string get_affinity_domain(util::command_line_handling const &cfg)

std::size_t get_affinity_description(util::command_line_handling const &cfg,
std::string &affinity_desc)

std::size_t get_pu_offset(util::command_line_handling const &cfg)

std::size_t get_pu_step(util::command_line_handling const &cfg)

struct command_line_handling
#include <command_line_handling.hpp>

Public Functions

command_line_handling()

int call(hpx::program_options::options_description const &desc_cmdline, int argc, char
**argv, std::vector<std::shared_ptr<components::component_registry_base>> &com-
ponent_registries)

2.9. API reference 655

HPX Documentation, 1.5.1

Public Members

hpx::program_options::variables_map vm_

util::runtime_configuration rtcfg_

std::vector<std::string> ini_config_

util::function_nonser<int(hpx::program_options::variables_map &vm)> hpx_main_f_

std::size_t node_

std::size_t num_threads_

std::size_t num_cores_

std::size_t num_localities_

std::size_t pu_step_

std::size_t pu_offset_

std::string queuing_

std::string affinity_domain_

std::string affinity_bind_

std::size_t numa_sensitive_

bool use_process_mask_

bool cmd_line_parsed_

bool info_printed_

bool version_printed_

int parse_result_

Protected Functions

bool handle_arguments(util::manage_config &cfgmap, hpx::program_options::variables_map
&vm, std::vector<std::string> &ini_config, std::size_t &node,
bool initial = false)

void enable_logging_settings(hpx::program_options::variables_map &vm,
std::vector<std::string> &ini_config)

void store_command_line(int argc, char **argv)

void store_unregistered_options(std::string const &cmd_name,
std::vector<std::string> const &unregis-
tered_options)

bool handle_help_options(hpx::program_options::options_description const &help)

void handle_attach_debugger()

std::vector<std::string> preprocess_config_settings(int argc, char **argv)

656 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/command_line_handling/parse_command_line.hpp

namespace hpx

namespace util

Enums

enum commandline_error_mode
Values:

return_on_error

rethrow_on_error

allow_unregistered

report_missing_config_file = 0x80

Functions

bool parse_commandline(hpx::util::section const&rtcfg, hpx::program_options::options_description
const &app_options, std::string const &cmdline,
hpx::program_options::variables_map &vm, std::size_t node,
int error_mode = return_on_error, hpx::runtime_mode mode =
runtime_mode::default_, hpx::program_options::options_description
*visible = nullptr, std::vector<std::string> *unregistered_options =
nullptr)

bool parse_commandline(hpx::util::section const&rtcfg, hpx::program_options::options_description
const &app_options, std::string const
&arg0, std::vector<std::string> const &args,
hpx::program_options::variables_map &vm, std::size_t node,
int error_mode = return_on_error, hpx::runtime_mode mode =
runtime_mode::default_, hpx::program_options::options_description
*visible = nullptr, std::vector<std::string> *unregistered_options =
nullptr)

std::string reconstruct_command_line(hpx::program_options::variables_map const
&vm)

components_base

The contents of this module can be included with the header hpx/modules/components_base.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/components_base.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

2.9. API reference 657

HPX Documentation, 1.5.1

Header hpx/components_base/get_lva.hpp

template<typename Component>
struct get_lva<Component, typename std::enable_if<!traits::is_managed_component<Component>::value>::type>

#include <get_lva.hpp>

Public Static Functions

static Component *call(naming::address_type lva)

template<typename Component>
struct get_lva<Component, typename std::enable_if<traits::is_managed_component<Component>::value && !std::is_const<Component>::value>::type>

#include <get_lva.hpp>

Public Static Functions

static Component *call(naming::address_type lva)

template<typename Component>
struct get_lva<Component, typename std::enable_if<traits::is_managed_component<Component>::value && std::is_const<Component>::value>::type>

#include <get_lva.hpp>

Public Static Functions

static Component *call(naming::address_type lva)

namespace hpx

template<typename Component, typename Enable = void>
struct get_lva

#include <get_lva.hpp> The get_lva template is a helper structure allowing to convert a local virtual
address as stored in a local address (returned from the function resolver_client::resolve) to the address of
the component implementing the action.

The default implementation uses the template argument Component to deduce the type wrapping the com-
ponent implementing the action. This is used to get the needed address.

Template Parameters

• Component: This is the type of the component implementing the action to execute.

template<typename Component>
struct get_lva<Component, typename std::enable_if<!traits::is_managed_component<Component>::value>::type>

#include <get_lva.hpp>

658 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Static Functions

static Component *call(naming::address_type lva)

template<typename Component>
struct get_lva<Component, typename std::enable_if<traits::is_managed_component<Component>::value && !std::is_const<Component>::value>::type>

#include <get_lva.hpp>

Public Static Functions

static Component *call(naming::address_type lva)

template<typename Component>
struct get_lva<Component, typename std::enable_if<traits::is_managed_component<Component>::value && std::is_const<Component>::value>::type>

#include <get_lva.hpp>

Public Static Functions

static Component *call(naming::address_type lva)

Header hpx/components_base/pinned_ptr.hpp

template<typename Component>
struct create_helper<Component, typename std::enable_if<traits::component_decorates_action<Component>::value>::type>

Public Static Functions

static pinned_ptr call(naming::address_type lva)

namespace hpx

namespace components

class pinned_ptr
#include <pinned_ptr.hpp>

Public Functions

pinned_ptr()

pinned_ptr(pinned_ptr const &rhs)

pinned_ptr(pinned_ptr &&rhs)

pinned_ptr &operator=(pinned_ptr const &rhs)

pinned_ptr &operator=(pinned_ptr &&rhs)

2.9. API reference 659

HPX Documentation, 1.5.1

Public Static Functions

template<typename Component>
static pinned_ptr create(naming::address_type lva)

Private Functions

template<typename Component>
pinned_ptr(naming::address_type lva, id<Component>)

Private Members

std::unique_ptr<detail::pinned_ptr_base> data_

template<typename Component, typename Enable = void>
struct create_helper

Public Static Functions

static pinned_ptr call(naming::address_type)

template<typename Component>
struct create_helper<Component, typename std::enable_if<traits::component_decorates_action<Component>::value>::type>

Public Static Functions

static pinned_ptr call(naming::address_type lva)

Header hpx/components_base/traits/component_pin_support.hpp

namespace hpx

namespace traits

template<typename Component, typename Enable = void>
struct component_pin_support

#include <component_pin_support.hpp>

Public Static Functions

static constexpr void pin(Component *p)

static constexpr bool unpin(Component *p)

static constexpr std::uint32_t pin_count(Component *p)

660 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/components_base/traits/is_component.hpp

namespace hpx

namespace traits

template<typename Component>
struct is_fixed_component : public std::integral_constant<bool, std::is_base_of<traits::detail::fixed_component_tag, Component>::value>

#include <is_component.hpp> Subclassed by hpx::traits::is_fixed_component< Component const >

template<typename Component>
struct is_managed_component : public std::integral_constant<bool, std::is_base_of<traits::detail::managed_component_tag, Component>::value>

#include <is_component.hpp> Subclassed by hpx::traits::is_managed_component< Component const
>

compute

The contents of this module can be included with the header hpx/modules/compute.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/compute.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/compute/host.hpp

Header hpx/compute/host/block_allocator.hpp

namespace hpx

namespace compute

namespace host

template<typename T, typename Executor = hpx::parallel::execution::restricted_thread_pool_executor>
struct block_allocator : public hpx::compute::host::detail::policy_allocator<T , hpx::parallel::execution::parallel_policy_shim<block_executor<Executor>, block_executor<Executor>::executor_parameters_type>>

#include <block_allocator.hpp> The block_allocator allocates blocks of memory evenly divided
onto the passed vector of targets. This is done by using first touch memory placement.

This allocator can be used to write NUMA aware algorithms:

using allocator_type = hpx::compute::host::block_allocator<int>; using vector_type =
hpx::compute::vector<int, allocator_type>;

auto numa_nodes = hpx::compute::host::numa_domains(); std::size_t N = 2048; vector_type
v(N, allocator_type(numa_nodes));

2.9. API reference 661

HPX Documentation, 1.5.1

Public Types

template<>
using executor_type = block_executor<Executor>

template<>
using executor_parameters_type = typename executor_type::executor_parameters_type

template<>
using policy_type = hpx::parallel::execution::parallel_policy_shim<executor_type, executor_parameters_type>

template<>
using base_type = detail::policy_allocator<T, policy_type>

template<>
using target_type = std::vector<host::target>

Public Functions

block_allocator()

block_allocator(target_type const &targets)

block_allocator(target_type &&targets)

target_type const &target() const

Header hpx/compute/host/block_executor.hpp

template<typename Executor>
struct executor_execution_category<compute::host::block_executor<Executor>>

#include <block_executor.hpp>

Public Types

typedef parallel::execution::parallel_execution_tag type

namespace hpx

namespace compute

namespace host

template<typename Executor = hpx::parallel::execution::restricted_thread_pool_executor>
struct block_executor

#include <block_executor.hpp> The block executor can be used to build NUMA aware programs.
It will distribute work evenly across the passed targets

Template Parameters
• Executor: The underlying executor to use

662 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef hpx::parallel::execution::static_chunk_size executor_parameters_type

Public Functions

block_executor(std::vector<host::target> const&targets, threads::thread_priority pri-
ority = threads::thread_priority_high, threads::thread_stacksize stack-
size = threads::thread_stacksize_default, threads::thread_schedule_hint
schedulehint = {})

block_executor(std::vector<host::target> &&targets)

block_executor(block_executor const &other)

block_executor(block_executor &&other)

block_executor &operator=(block_executor const &other)

block_executor &operator=(block_executor &&other)

template<typename F, typename ...Ts>
void post(F &&f, Ts&&... ts)

template<typename F, typename ...Ts>
hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> async_execute(F

&&f,
Ts&&...
ts)

template<typename F, typename ...Ts>
hpx::util::detail::invoke_deferred_result<F, Ts...>::type sync_execute(F &&f, Ts&&...

ts)

template<typename F, typename Shape, typename ...Ts>
std::vector<hpx::future<typename parallel::execution::detail::bulk_function_result<F, Shape, Ts...>::type>> bulk_async_execute(F

&&f,
Shape
const
&shape,
Ts&&...
ts)

template<typename F, typename Shape, typename ...Ts>
parallel::execution::detail::bulk_execute_result<F, Shape, Ts...>::type bulk_sync_execute(F

&&f,
Shape
const
&shape,
Ts&&...
ts)

std::vector<host::target> const &targets() const

2.9. API reference 663

HPX Documentation, 1.5.1

Private Functions

void init_executors()

Private Members

std::vector<host::target> targets_

std::atomic<std::size_t> current_

std::vector<Executor> executors_

threads::thread_priority priority_ = threads::thread_priority_high

threads::thread_stacksize stacksize_ = threads::thread_stacksize_default

threads::thread_schedule_hint schedulehint_ = {}

namespace parallel

namespace execution

template<typename Executor>
struct executor_execution_category<compute::host::block_executor<Executor>>

#include <block_executor.hpp>

Public Types

typedef parallel::execution::parallel_execution_tag type

Header hpx/compute/host/get_targets.hpp

namespace hpx

namespace compute

namespace host

Functions

std::vector<target> get_local_targets()

hpx::future<std::vector<target>> get_targets(hpx::id_type const &locality)

664 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/compute/host/numa_allocator.hpp

namespace hpx

namespace parallel

namespace util

template<typename T, typename Executors>
class numa_allocator

#include <numa_allocator.hpp>

Public Types

typedef T value_type

typedef value_type *pointer

typedef value_type const *const_pointer

typedef value_type &reference

typedef value_type const &const_reference

typedef std::size_t size_type

typedef std::ptrdiff_t difference_type

Public Functions

numa_allocator(Executors const &executors, hpx::threads::topology &topo)

numa_allocator(numa_allocator const &rhs)

template<typename U>
numa_allocator(numa_allocator<U, Executors> const &rhs)

pointer address(reference r)

const_pointer address(const_reference r)

pointer allocate(size_type cnt, typename std::allocator<void>::const_pointer = nullptr)

void deallocate(pointer p, size_type cnt)

size_type max_size() const

void construct(pointer p, const T &t)

void destroy(pointer p)

2.9. API reference 665

HPX Documentation, 1.5.1

Private Types

typedef Executors::value_type executor_type

Private Members

Executors const &executors_

hpx::threads::topology &topo_

Friends

friend hpx::parallel::util::numa_allocator

bool operator==(numa_allocator const&, numa_allocator const&)

bool operator!=(numa_allocator const &l, numa_allocator const &r)

template<typename U>
struct rebind

#include <numa_allocator.hpp>

Public Types

template<>
typedef numa_allocator<U, Executors> other

Header hpx/compute/host/numa_binding_allocator.hpp

Defines

NUMA_BINDING_ALLOCATOR_DEBUG

namespace hpx

Functions

static hpx::debug::enable_print<NUMA_BINDING_ALLOCATOR_DEBUG> hpx::nba_deb("NUM_B_A")

namespace compute

namespace host

666 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Typedefs

using numa_binding_helper_ptr = std::shared_ptr<numa_binding_helper<T>>

template<typename T>
struct numa_binding_allocator

#include <numa_binding_allocator.hpp> The numa_binding_allocator allocates memory using
a policy based on hwloc flags for memory binding. This allocator can be used to request data that
is bound to one or more numa domains via the bitmap mask supplied

Public Types

typedef T value_type

typedef T *pointer

typedef const T *const_pointer

typedef T &reference

typedef T const &const_reference

typedef std::size_t size_type

typedef std::ptrdiff_t difference_type

template<>
using numa_binding_helper_ptr = std::shared_ptr<numa_binding_helper<T>>

Public Functions

numa_binding_allocator()

numa_binding_allocator(threads::hpx_hwloc_membind_policy policy, unsigned int
flags)

numa_binding_allocator(numa_binding_helper_ptr bind_func,
threads::hpx_hwloc_membind_policy policy, unsigned
int flags)

numa_binding_allocator(numa_binding_allocator const &rhs)

template<typename U>
numa_binding_allocator(numa_binding_allocator<U> const &rhs)

numa_binding_allocator(numa_binding_allocator &&rhs)

numa_binding_allocator &operator=(numa_binding_allocator const &rhs)

numa_binding_allocator &operator=(numa_binding_allocator &&rhs)

pointer address(reference x) const

const_pointer address(const_reference x) const

pointer allocate(size_type n)

void deallocate(pointer p, size_type n)

size_type max_size() const

2.9. API reference 667

HPX Documentation, 1.5.1

template<class U, class ...A>
void construct(U *const p, A&&... args)

template<class U>
void destroy(U *const p)

int get_numa_domain(void *page)

std::string get_page_numa_domains(void *addr, std::size_t len) const

void initialize_pages(pointer p, size_t n) const

std::string display_binding(pointer p, numa_binding_helper_ptr helper)

template<typename Binder>
std::shared_ptr<Binder> get_binding_helper_cast() const

Public Members

std::shared_ptr<numa_binding_helper<T>> binding_helper_

threads::hpx_hwloc_membind_policy policy_

unsigned int flags_

Protected Functions

std::vector<threads::hwloc_bitmap_ptr> create_nodesets(threads::hwloc_bitmap_ptr
bitmap) const

void touch_pages(pointer p, size_t n, numa_binding_helper_ptr helper, size_type
numa_domain, std::vector<threads::hwloc_bitmap_ptr> const
&nodesets) const

void bind_pages(pointer p, size_t n, numa_binding_helper_ptr helper, size_type
numa_domain, std::vector<threads::hwloc_bitmap_ptr> const &node-
sets) const

Private Members

std::mutex init_mutex

template<typename U>
struct rebind

#include <numa_binding_allocator.hpp>

668 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

template<>
typedef numa_binding_allocator<U> other

template<typename T>
struct numa_binding_helper

#include <numa_binding_allocator.hpp>

Public Functions

virtual std::size_t operator()(const T*const, const T*const, std::size_t
const, std::size_t const) const

virtual ~numa_binding_helper()

virtual const std::string &pool_name() const

virtual std::size_t memory_bytes() const

virtual std::size_t array_rank() const

virtual std::size_t array_size(std::size_t axis) const

virtual std::size_t memory_step(std::size_t axis) const

virtual std::size_t display_step(std::size_t axis) const

virtual std::string description() const

Public Members

std::string pool_name_ = "default"

namespace parallel

namespace execution

template<>
struct pool_numa_hint<numa_binding_allocator_tag>

#include <numa_binding_allocator.hpp>

Public Functions

int operator()(int const &domain) const

2.9. API reference 669

HPX Documentation, 1.5.1

Header hpx/compute/host/numa_domains.hpp

namespace hpx

namespace compute

namespace host

Functions

std::vector<target> numa_domains()

Header hpx/compute/host/target.hpp

namespace hpx

namespace compute

namespace host

struct target
#include <target.hpp>

Public Functions

target()

target(hpx::threads::mask_type mask)

native_handle_type &native_handle()

native_handle_type const &native_handle() const

std::pair<std::size_t, std::size_t> num_pus() const

void synchronize() const

hpx::future<void> get_future() const

Public Static Functions

static std::vector<target> get_local_targets()

static hpx::future<std::vector<target>> get_targets(hpx::id_type const &locality)

670 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

void serialize(serialization::input_archive &ar, const unsigned int)

void serialize(serialization::output_archive &ar, const unsigned int)

Private Members

native_handle_type handle_

Friends

friend hpx::compute::host::hpx::serialization::access

bool operator==(target const &lhs, target const &rhs)

struct native_handle_type
#include <target.hpp>

Public Functions

native_handle_type()

native_handle_type(hpx::threads::mask_type mask)

hpx::threads::mask_type &get_device()

hpx::threads::mask_type const &get_device() const

Private Members

hpx::threads::mask_type mask_

Friends

friend hpx::compute::host::target

Header hpx/compute/host/target_distribution_policy.hpp

Header hpx/compute/host/traits/access_target.hpp

template<>
struct access_target<host::target>

#include <access_target.hpp>

2.9. API reference 671

HPX Documentation, 1.5.1

Public Types

typedef host::target target_type

Public Static Functions

template<typename T>
static T const &read(target_type const &tgt, T const *t)

template<typename T>
static void write(target_type const &tgt, T *dst, T const *src)

template<>
struct access_target<std::vector<host::target>>

#include <access_target.hpp>

Public Types

typedef std::vector<host::target> target_type

Public Static Functions

template<typename T>
static T const &read(target_type const &tgt, T const *t)

template<typename T>
static void write(target_type const &tgt, T *dst, T const *src)

namespace hpx

namespace compute

namespace traits

template<>
struct access_target<host::target>

#include <access_target.hpp>

Public Types

typedef host::target target_type

672 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Static Functions

template<typename T>
static T const &read(target_type const &tgt, T const *t)

template<typename T>
static void write(target_type const &tgt, T *dst, T const *src)

template<>
struct access_target<std::vector<host::target>>

#include <access_target.hpp>

Public Types

typedef std::vector<host::target> target_type

Public Static Functions

template<typename T>
static T const &read(target_type const &tgt, T const *t)

template<typename T>
static void write(target_type const &tgt, T *dst, T const *src)

Header hpx/compute/serialization/vector.hpp

namespace hpx

namespace serialization

Functions

template<typename T, typename Allocator>
void serialize(input_archive &ar, compute::vector<T , Allocator> &v, unsigned)

template<typename T, typename Allocator>
void serialize(output_archive &ar, compute::vector<T , Allocator> const &v, unsigned)

Header hpx/compute/traits.hpp

Header hpx/compute/traits/access_target.hpp

Header hpx/compute/traits/allocator_traits.hpp

namespace hpx

namespace compute

2.9. API reference 673

HPX Documentation, 1.5.1

namespace traits

template<typename Allocator>
struct allocator_traits : public std::allocator_traits<Allocator>

#include <allocator_traits.hpp>

Public Types

typedef detail::get_reference_type<Allocator>::type reference

typedef detail::get_const_reference_type<Allocator>::type const_reference

typedef detail::get_target_traits<Allocator>::type access_target

typedef access_target::target_type target_type

Public Static Functions

static auto target(Allocator const &alloc)

template<typename ...Ts>
static void bulk_construct(Allocator &alloc, pointer p, size_type count, Ts&&... vs)

static void bulk_destroy(Allocator &alloc, pointer p, size_type count)

Private Types

typedef std::allocator_traits<Allocator> base_type

Header hpx/compute/vector.hpp

namespace hpx

namespace compute

Functions

template<typename T, typename Allocator>
void swap(vector<T , Allocator> &x, vector<T , Allocator> &y)

Effects: x.swap(y);.

template<typename T, typename Allocator = std::allocator<T>>
class vector

#include <vector.hpp>

674 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef T value_type
Member types (FIXME: add reference to std.

typedef Allocator allocator_type

typedef alloc_traits::access_target access_target

typedef std::size_t size_type

typedef std::ptrdiff_t difference_type

typedef alloc_traits::reference reference

typedef alloc_traits::const_reference const_reference

typedef alloc_traits::pointer pointer

typedef alloc_traits::const_pointer const_pointer

typedef detail::iterator<T, Allocator> iterator

typedef detail::iterator<T const, Allocator> const_iterator

typedef detail::reverse_iterator<T, Allocator> reverse_iterator

typedef detail::const_reverse_iterator<T, Allocator> const_reverse_iterator

Public Functions

vector(Allocator const &alloc = Allocator())

vector(size_type count, T const &value, Allocator const &alloc = Allocator())

vector(size_type count, Allocator const &alloc = Allocator())

template<typename InIter, typename Enable = typename std::enable_if<hpx::traits::is_input_iterator<InIter>::value>::type>
vector(InIter first, InIter last, Allocator const &alloc)

vector(vector const &other)

vector(vector const &other, Allocator const &alloc)

vector(vector &&other)

vector(vector &&other, Allocator const &alloc)

vector(std::initializer_list<T> init, Allocator const &alloc)

~vector()

vector &operator=(vector const &other)

vector &operator=(vector &&other)

allocator_type get_allocator() const
Returns the allocator associated with the container.

reference operator[](size_type pos)

const_reference operator[](size_type pos) const

2.9. API reference 675

HPX Documentation, 1.5.1

pointer data()
Returns pointer to the underlying array serving as element storage. The pointer is such that range
[data(); data() + size()) is always a valid range, even if the container is empty (data() is not
dereferenceable in that case).

const_pointer data() const
Returns pointer to the underlying array serving as element storage. The pointer is such that range
[data(); data() + size()) is always a valid range, even if the container is empty (data() is not
dereferenceable in that case).

T *device_data() const
Returns a raw pointer corresponding to the address of the data allocated on the device.

std::size_t size() const

std::size_t capacity() const

bool empty() const
Returns: size() == 0.

void resize(size_type size)
Effects: If size <= size(), equivalent to calling pop_back() size() - size times. If size() < size,
appends size - size() default-inserted elements to the sequence.

Requires: T shall be MoveInsertable and DefaultInsertable into *this.

Remarks: If an exception is thrown other than by the move constructor of a non-CopyInsertable
T there are no effects.

void resize(size_type size, T const &val)
Effects: If size <= size(), equivalent to calling pop_back() size() - size times. If size() < size,
appends size - size() copies of val to the sequence.

Requires: T shall be CopyInsertable into *this.

Remarks: If an exception is thrown there are no effects.

iterator begin()

iterator end()

const_iterator cbegin() const

const_iterator cend() const

const_iterator begin() const

const_iterator end() const

void swap(vector &other)
Effects: Exchanges the contents and capacity() of *this with that of x.

Complexity: Constant time.

void clear()
Effects: Erases all elements in the range [begin(),end()). Destroys all elements in a. Invalidates
all references, pointers, and iterators referring to the elements of a and may invalidate the past-
the-end iterator.

Post: a.empty() returns true.

Complexity: Linear.

676 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

typedef traits::allocator_traits<Allocator> alloc_traits

Private Members

size_type size_

size_type capacity_

allocator_type alloc_

pointer data_

compute_cuda

The contents of this module can be included with the header hpx/modules/compute_cuda.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/compute_cuda.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/compute/cuda.hpp

Header hpx/compute/cuda/allocator.hpp

Header hpx/compute/cuda/concurrent_executor.hpp

Header hpx/compute/cuda/concurrent_executor_parameters.hpp

Header hpx/compute/cuda/default_executor.hpp

Header hpx/compute/cuda/default_executor_parameters.hpp

Header hpx/compute/cuda/serialization/value_proxy.hpp

Header hpx/compute/cuda/target_distribution_policy.hpp

Header hpx/compute/cuda/target_ptr.hpp

Header hpx/compute/cuda/traits/access_target.hpp

Header hpx/compute/cuda/transfer.hpp

Header hpx/compute/cuda/value_proxy.hpp

2.9. API reference 677

HPX Documentation, 1.5.1

concepts

The contents of this module can be included with the header hpx/modules/concepts.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/concepts.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/concepts/concepts.hpp

Defines

HPX_CONCEPT_REQUIRES_(...)

HPX_CONCEPT_REQUIRES(...)

HPX_CONCEPT_ASSERT(...)

Header hpx/concepts/has_member_xxx.hpp

Defines

HPX_HAS_MEMBER_XXX_TRAIT_DEF(MEMBER)
This macro creates a boolean unary metafunction which result is true if and only if its parameter type has member
function with MEMBER name (no matter static it is or not). The generated trait ends up in a namespace where
the macro itself has been placed.

Header hpx/concepts/has_xxx.hpp

Defines

HPX_HAS_XXX_TRAIT_DEF(Name)
This macro creates a boolean unary metafunction such that for any type X, has_name<X>::value == true if and
only if X is a class type and has a nested type member x::name. The generated trait ends up in a namespace
where the macro itself has been placed.

concurrency

The contents of this module can be included with the header hpx/modules/concurrency.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/concurrency.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

678 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/concurrency/barrier.hpp

namespace hpx

namespace util

class barrier
#include <barrier.hpp>

Public Functions

barrier(std::size_t number_of_threads)

~barrier()

void wait()

Private Types

typedef std::mutex mutex_type

Private Members

std::size_t const number_of_threads_

std::size_t total_

mutex_type mtx_

std::condition_variable cond_

Private Static Attributes

constexpr std::size_t barrier_flag = static_cast<std::size_t>(1) << (CHAR_BIT * sizeof(std::size_t) - 1)

Header hpx/concurrency/cache_line_data.hpp

template<typename Data>
struct cache_aligned_data<Data, std::false_type>

#include <cache_line_data.hpp>

2.9. API reference 679

HPX Documentation, 1.5.1

Public Functions

cache_aligned_data()

cache_aligned_data(Data &&data)

cache_aligned_data(Data const &data)

Public Members

Data data_

template<typename Data>
struct cache_aligned_data_derived<Data, std::false_type> : public Data

#include <cache_line_data.hpp>

Public Functions

cache_aligned_data_derived()

cache_aligned_data_derived(Data &&data)

cache_aligned_data_derived(Data const &data)

namespace hpx

namespace threads

Functions

constexpr std::size_t get_cache_line_size()

namespace util

Typedefs

using cache_line_data = cache_aligned_data<Data>

template<typename Data, typename NeedsPadding = typename detail::needs_padding<Data>::type>
struct cache_aligned_data

#include <cache_line_data.hpp>

Public Functions

cache_aligned_data()

cache_aligned_data(Data &&data)

cache_aligned_data(Data const &data)

680 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

Data data_

template<>
char cacheline_pad[get_cache_line_padding_size(sizeof(Data))]

template<typename Data>
struct cache_aligned_data<Data, std::false_type>

#include <cache_line_data.hpp>

Public Functions

cache_aligned_data()

cache_aligned_data(Data &&data)

cache_aligned_data(Data const &data)

Public Members

Data data_

template<typename Data, typename NeedsPadding = typename detail::needs_padding<Data>::type>
struct cache_aligned_data_derived : public Data

#include <cache_line_data.hpp>

Public Functions

cache_aligned_data_derived()

cache_aligned_data_derived(Data &&data)

cache_aligned_data_derived(Data const &data)

Public Members

template<>
char cacheline_pad[get_cache_line_padding_size(sizeof(Data))]

template<typename Data>
struct cache_aligned_data_derived<Data, std::false_type> : public Data

#include <cache_line_data.hpp>

2.9. API reference 681

HPX Documentation, 1.5.1

Public Functions

cache_aligned_data_derived()

cache_aligned_data_derived(Data &&data)

cache_aligned_data_derived(Data const &data)

Header hpx/concurrency/concurrentqueue.hpp

Defines

MOODYCAMEL_THREADLOCAL

MOODYCAMEL_EXCEPTIONS_ENABLED

MOODYCAMEL_TRY

MOODYCAMEL_CATCH(...)

MOODYCAMEL_RETHROW

MOODYCAMEL_THROW(expr)

MOODYCAMEL_NOEXCEPT

MOODYCAMEL_NOEXCEPT_CTOR(type, valueType, expr)

MOODYCAMEL_NOEXCEPT_ASSIGN(type, valueType, expr)

MOODYCAMEL_DELETE_FUNCTION

namespace hpx

namespace concurrency

Functions

template<typename T, typename Traits>
void swap(typename ConcurrentQueue<T , Traits>::ImplicitProducerKVP &a, typename Con-

currentQueue<T , Traits>::ImplicitProducerKVP &b)

template<typename T, typename Traits>
void swap(ConcurrentQueue<T , Traits> &a, ConcurrentQueue<T , Traits> &b)

void swap(ProducerToken &a, ProducerToken &b)

void swap(ConsumerToken &a, ConsumerToken &b)

template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
class ConcurrentQueue

#include <concurrentqueue.hpp>

682 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef ::hpx::concurrency::ProducerToken producer_token_t

typedef ::hpx::concurrency::ConsumerToken consumer_token_t

typedef Traits::index_t index_t

typedef Traits::size_t size_t

Public Functions

ConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE)

ConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitPro-
ducers)

~ConcurrentQueue()

ConcurrentQueue(ConcurrentQueue const&)

ConcurrentQueue &operator=(ConcurrentQueue const&)

ConcurrentQueue(ConcurrentQueue &&other)

ConcurrentQueue &operator=(ConcurrentQueue &&other)

void swap(ConcurrentQueue &other)

bool enqueue(T const &item)

bool enqueue(T &&item)

bool enqueue(producer_token_t const &token, T const &item)

bool enqueue(producer_token_t const &token, T &&item)

template<typename It>
bool enqueue_bulk(It itemFirst, size_t count)

template<typename It>
bool enqueue_bulk(producer_token_t const &token, It itemFirst, size_t count)

bool try_enqueue(T const &item)

bool try_enqueue(T &&item)

bool try_enqueue(producer_token_t const &token, T const &item)

bool try_enqueue(producer_token_t const &token, T &&item)

template<typename It>
bool try_enqueue_bulk(It itemFirst, size_t count)

template<typename It>
bool try_enqueue_bulk(producer_token_t const &token, It itemFirst, size_t count)

template<typename U>
bool try_dequeue(U &item)

2.9. API reference 683

HPX Documentation, 1.5.1

template<typename U>
bool try_dequeue_non_interleaved(U &item)

template<typename U>
bool try_dequeue(consumer_token_t &token, U &item)

template<typename It>
size_t try_dequeue_bulk(It itemFirst, size_t max)

template<typename It>
size_t try_dequeue_bulk(consumer_token_t &token, It itemFirst, size_t max)

template<typename U>
bool try_dequeue_from_producer(producer_token_t const &producer, U &item)

template<typename It>
size_t try_dequeue_bulk_from_producer(producer_token_t const &producer, It

itemFirst, size_t max)

size_t size_approx() const

Public Static Functions

static bool is_lock_free()

Public Static Attributes

const size_t BLOCK_SIZE = static_cast<size_t>(Traits::BLOCK_SIZE)

const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = static_cast<size_t>(Traits::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD)

const size_t EXPLICIT_INITIAL_INDEX_SIZE = static_cast<size_t>(Traits::EXPLICIT_INITIAL_INDEX_SIZE)

const size_t IMPLICIT_INITIAL_INDEX_SIZE = static_cast<size_t>(Traits::IMPLICIT_INITIAL_INDEX_SIZE)

const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = static_cast<size_t>(Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE)

const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = static_cast<std::uint32_t>(Traits::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE)

const size_t hpx::concurrency::ConcurrentQueue::MAX_SUBQUEUE_SIZE = (details::const_numeric_max<size_t>::value - static_cast<size_t>(Traits::MAX_SUBQUEUE_SIZE) < BLOCK_SIZE) ? details::const_numeric_max<size_t>::value : ((static_cast<size_t>(Traits::MAX_SUBQUEUE_SIZE) + (BLOCK_SIZE - 1)) / BLOCK_SIZE * BLOCK_SIZE)

Private Types

enum AllocationMode
Values:

CanAlloc

CannotAlloc

enum InnerQueueContext
Values:

implicit_context = 0

explicit_context = 1

684 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

ConcurrentQueue &swap_internal(ConcurrentQueue &other)

template<AllocationMode canAlloc, typename U>
bool inner_enqueue(producer_token_t const &token, U &&element)

template<AllocationMode canAlloc, typename U>
bool inner_enqueue(U &&element)

template<AllocationMode canAlloc, typename It>
bool inner_enqueue_bulk(producer_token_t const &token, It itemFirst, size_t count)

template<AllocationMode canAlloc, typename It>
bool inner_enqueue_bulk(It itemFirst, size_t count)

bool update_current_producer_after_rotation(consumer_token_t &token)

void populate_initial_block_list(size_t blockCount)

Block *try_get_block_from_initial_pool()

void add_block_to_free_list(Block *block)

void add_blocks_to_free_list(Block *block)

Block *try_get_block_from_free_list()

template<AllocationMode canAlloc>
Block *requisition_block()

ProducerBase *recycle_or_create_producer(bool isExplicit)

ProducerBase *recycle_or_create_producer(bool isExplicit, bool &recycled)

ProducerBase *add_producer(ProducerBase *producer)

void reown_producers()

void populate_initial_implicit_producer_hash()

void swap_implicit_producer_hashes(ConcurrentQueue &other)

ImplicitProducer *get_or_add_implicit_producer()

Private Members

std::atomic<ProducerBase*> producerListTail

std::atomic<std::uint32_t> producerCount

std::atomic<size_t> initialBlockPoolIndex

Block *initialBlockPool

size_t initialBlockPoolSize

FreeList<Block> freeList

std::atomic<ImplicitProducerHash*> implicitProducerHash

2.9. API reference 685

HPX Documentation, 1.5.1

std::atomic<size_t> implicitProducerHashCount

ImplicitProducerHash initialImplicitProducerHash

std::array<ImplicitProducerKVP, INITIAL_IMPLICIT_PRODUCER_HASH_SIZE> initialImplicitProducerHashEntries

std::atomic_flag implicitProducerHashResizeInProgress

std::atomic<std::uint32_t> nextExplicitConsumerId

std::atomic<std::uint32_t> globalExplicitConsumerOffset

Private Static Functions

template<typename U>
static U *create_array(size_t count)

template<typename U>
static void destroy_array(U *p, size_t count)

template<typename U>
static U *create()

template<typename U, typename A1>
static U *create(A1 &&a1)

template<typename U>
static void destroy(U *p)

Friends

friend hpx::concurrency::ProducerToken

friend hpx::concurrency::ConsumerToken

friend hpx::concurrency::ExplicitProducer

friend hpx::concurrency::ImplicitProducer

friend hpx::concurrency::ConcurrentQueueTests

template<typename XT, typename XTraits>
void swap(typename ConcurrentQueue<XT , XTraits>::ImplicitProducerKVP&, typename

ConcurrentQueue<XT , XTraits>::ImplicitProducerKVP&)

struct Block

Public Functions

template<>
Block()

template<InnerQueueContext context>
bool is_empty() const

template<InnerQueueContext context>
bool set_empty(index_t i)

template<InnerQueueContext context>

686 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool set_many_empty(index_t i, size_t count)

template<InnerQueueContext context>
void set_all_empty()

template<InnerQueueContext context>
void reset_empty()

template<>
T *operator[](index_t idx)

template<>
T const *operator[](index_t idx) const

Public Members

template<>
char elements[sizeof(T) * BLOCK_SIZE]

template<>
details::max_align_t dummy

template<>
Block *next

template<>
std::atomic<size_t> elementsCompletelyDequeued

std::atomic<bool> hpx::concurrency::ConcurrentQueue< T, Traits >::Block::emptyFlags[BLOCK_SIZE<=EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD ? BLOCK_SIZE :1]

template<>
std::atomic<std::uint32_t> freeListRefs

template<>
std::atomic<Block*> freeListNext

template<>
std::atomic<bool> shouldBeOnFreeList

template<>
bool dynamicallyAllocated

Private Members

template<>
union hpx::concurrency::ConcurrentQueue::Block::[anonymous] [anonymous]

struct ExplicitProducer : public hpx::concurrency::ConcurrentQueue<T, Traits>::ProducerBase

2.9. API reference 687

HPX Documentation, 1.5.1

Public Functions

template<>
ExplicitProducer(ConcurrentQueue *parent)

template<>
~ExplicitProducer()

template<AllocationMode allocMode, typename U>
bool enqueue(U &&element)

template<typename U>
bool dequeue(U &element)

template<AllocationMode allocMode, typename It>
bool enqueue_bulk(It itemFirst, size_t count)

template<typename It>
size_t dequeue_bulk(It &itemFirst, size_t max)

Private Functions

template<>
bool new_block_index(size_t numberOfFilledSlotsToExpose)

Private Members

template<>
std::atomic<BlockIndexHeader*> blockIndex

template<>
size_t pr_blockIndexSlotsUsed

template<>
size_t pr_blockIndexSize

template<>
size_t pr_blockIndexFront

template<>
BlockIndexEntry *pr_blockIndexEntries

template<>
void *pr_blockIndexRaw

struct BlockIndexEntry

688 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

template<>
index_t base

template<>
Block *block

struct BlockIndexHeader

Public Members

template<>
size_t size

template<>
std::atomic<size_t> front

template<>
BlockIndexEntry *entries

template<>
void *prev

template<typename N>
struct FreeList

Public Functions

template<>
FreeList()

template<>
FreeList(FreeList &&other)

template<>
void swap(FreeList &other)

template<>
FreeList(FreeList const&)

template<>
FreeList &operator=(FreeList const&)

template<>
void add(N *node)

template<>
N *try_get()

template<>
N *head_unsafe() const

2.9. API reference 689

HPX Documentation, 1.5.1

Private Functions

template<>
void add_knowing_refcount_is_zero(N *node)

Private Members

template<>
std::atomic<N*> freeListHead

Private Static Attributes

template<>
const std::uint32_t REFS_MASK = 0x7FFFFFFF

template<>
const std::uint32_t SHOULD_BE_ON_FREELIST = 0x80000000

template<typename N>
struct FreeListNode

Public Functions

template<>
FreeListNode()

Public Members

template<>
std::atomic<std::uint32_t> freeListRefs

template<>
std::atomic<N*> freeListNext

struct ImplicitProducer : public hpx::concurrency::ConcurrentQueue<T, Traits>::ProducerBase

Public Functions

template<>
ImplicitProducer(ConcurrentQueue *parent)

template<>
~ImplicitProducer()

template<AllocationMode allocMode, typename U>
bool enqueue(U &&element)

template<typename U>
bool dequeue(U &element)

template<AllocationMode allocMode, typename It>
bool enqueue_bulk(It itemFirst, size_t count)

690 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename It>
size_t dequeue_bulk(It &itemFirst, size_t max)

Private Functions

template<AllocationMode allocMode>
bool insert_block_index_entry(BlockIndexEntry *&idxEntry, index_t blockStartIn-

dex)

template<>
void rewind_block_index_tail()

template<>
BlockIndexEntry *get_block_index_entry_for_index(index_t index) const

template<>
size_t get_block_index_index_for_index(index_t index, BlockIndexHeader *&lo-

calBlockIndex) const

template<>
bool new_block_index()

Private Members

template<>
size_t nextBlockIndexCapacity

template<>
std::atomic<BlockIndexHeader*> blockIndex

Private Static Attributes

template<>
const index_t INVALID_BLOCK_BASE = 1

struct BlockIndexEntry

Public Members

template<>
std::atomic<index_t> key

template<>
std::atomic<Block*> value

struct BlockIndexHeader

2.9. API reference 691

HPX Documentation, 1.5.1

Public Members

template<>
size_t capacity

template<>
std::atomic<size_t> tail

template<>
BlockIndexEntry *entries

template<>
BlockIndexEntry **index

template<>
BlockIndexHeader *prev

struct ImplicitProducerHash

Public Members

template<>
size_t capacity

template<>
ImplicitProducerKVP *entries

template<>
ImplicitProducerHash *prev

struct ImplicitProducerKVP

Public Functions

template<>
ImplicitProducerKVP()

template<>
ImplicitProducerKVP(ImplicitProducerKVP &&other)

template<>
ImplicitProducerKVP &operator=(ImplicitProducerKVP &&other)

template<>
void swap(ImplicitProducerKVP &other)

Public Members

template<>
std::atomic<details::thread_id_t> key

template<>
ImplicitProducer *value

struct ProducerBase : public hpx::concurrency::details::ConcurrentQueueProducerTypelessBase

692 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<>
ProducerBase(ConcurrentQueue *parent_, bool isExplicit_)

template<>
virtual ~ProducerBase()

template<typename U>
bool dequeue(U &element)

template<typename It>
size_t dequeue_bulk(It &itemFirst, size_t max)

template<>
ProducerBase *next_prod() const

template<>
size_t size_approx() const

template<>
index_t getTail() const

Public Members

template<>
bool isExplicit

template<>
ConcurrentQueue *parent

Protected Attributes

template<>
std::atomic<index_t> tailIndex

template<>
std::atomic<index_t> headIndex

template<>
std::atomic<index_t> dequeueOptimisticCount

template<>
std::atomic<index_t> dequeueOvercommit

template<>
Block *tailBlock

struct ConcurrentQueueDefaultTraits
#include <concurrentqueue.hpp>

2.9. API reference 693

HPX Documentation, 1.5.1

Public Types

typedef std::size_t size_t

typedef std::size_t index_t

Public Static Functions

static void *malloc(size_t size)

static void free(void *ptr)

Public Static Attributes

const size_t BLOCK_SIZE = 32

const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = 32

const size_t EXPLICIT_INITIAL_INDEX_SIZE = 32

const size_t IMPLICIT_INITIAL_INDEX_SIZE = 32

const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = 32

const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = 256

const size_t MAX_SUBQUEUE_SIZE = details::const_numeric_max<size_t>::value

struct ConsumerToken
#include <concurrentqueue.hpp>

Public Functions

template<typename T, typename Traits>
ConsumerToken(ConcurrentQueue<T , Traits> &q)

template<typename T, typename Traits>
ConsumerToken(BlockingConcurrentQueue<T , Traits> &q)

ConsumerToken(ConsumerToken &&other)

ConsumerToken &operator=(ConsumerToken &&other)

void swap(ConsumerToken &other)

ConsumerToken(ConsumerToken const&)

ConsumerToken &operator=(ConsumerToken const&)

694 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Members

std::uint32_t initialOffset

std::uint32_t lastKnownGlobalOffset

std::uint32_t itemsConsumedFromCurrent

details::ConcurrentQueueProducerTypelessBase *currentProducer

details::ConcurrentQueueProducerTypelessBase *desiredProducer

Friends

friend hpx::concurrency::ConcurrentQueue

friend hpx::concurrency::ConcurrentQueueTests

struct ProducerToken
#include <concurrentqueue.hpp>

Public Functions

template<typename T, typename Traits>
ProducerToken(ConcurrentQueue<T , Traits> &queue)

template<typename T, typename Traits>
ProducerToken(BlockingConcurrentQueue<T , Traits> &queue)

ProducerToken(ProducerToken &&other)

ProducerToken &operator=(ProducerToken &&other)

void swap(ProducerToken &other)

bool valid() const

~ProducerToken()

ProducerToken(ProducerToken const&)

ProducerToken &operator=(ProducerToken const&)

Protected Attributes

details::ConcurrentQueueProducerTypelessBase *producer

2.9. API reference 695

HPX Documentation, 1.5.1

Friends

friend hpx::concurrency::ConcurrentQueue

friend hpx::concurrency::ConcurrentQueueTests

namespace details

Typedefs

typedef std::uintptr_t thread_id_t

typedef std::max_align_t std_max_align_t

Functions

static thread_id_t thread_id()

static bool() hpx::concurrency::details::likely(bool x)

static bool() hpx::concurrency::details::unlikely(bool x)

static size_t hash_thread_id(thread_id_t id)

template<typename T>
static bool circular_less_than(T a, T b)

template<typename U>
static char *align_for(char *ptr)

template<typename T>
static T ceil_to_pow_2(T x)

template<typename T>
static void swap_relaxed(std::atomic<T> &left, std::atomic<T> &right)

template<typename T>
static T const &nomove(T const &x)

template<typename It>
static auto deref_noexcept(It &it)

Variables

const thread_id_t invalid_thread_id = 0

const thread_id_t invalid_thread_id2 = 1

template<bool use32>
struct _hash_32_or_64

#include <concurrentqueue.hpp>

696 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Static Functions

static std::uint32_t hash(std::uint32_t h)

template<>
struct _hash_32_or_64<1>

#include <concurrentqueue.hpp>

Public Static Functions

static std::uint64_t hash(std::uint64_t h)

struct ConcurrentQueueProducerTypelessBase
#include <concurrentqueue.hpp>

Public Functions

ConcurrentQueueProducerTypelessBase()

Public Members

ConcurrentQueueProducerTypelessBase *next

std::atomic<bool> inactive

ProducerToken *token

template<typename T>
struct const_numeric_max

#include <concurrentqueue.hpp>

Public Static Attributes

const T hpx::concurrency::details::const_numeric_max::value= std::numeric_limits<T>::is_signed ? (static_cast<T>(1) << (sizeof(T) * CHAR_BIT - 1)) - static_cast<T>(1) : static_cast<T>(-1)

union max_align_t
#include <concurrentqueue.hpp>

Public Members

std_max_align_t x

long long y

void *z

template<bool Enable>
struct nomove_if

#include <concurrentqueue.hpp>

2.9. API reference 697

HPX Documentation, 1.5.1

Public Static Functions

template<typename T>
static T const &eval(T const &x)

template<>
struct nomove_if<false>

#include <concurrentqueue.hpp>

Public Static Functions

template<typename U>
static auto eval(U &&x)

template<>
struct static_is_lock_free<bool>

#include <concurrentqueue.hpp>

Public Types

enum [anonymous]
Values:

value = ATOMIC_BOOL_LOCK_FREE

template<typename U>
struct static_is_lock_free<U*>

#include <concurrentqueue.hpp>

Public Types

enum [anonymous]
Values:

value = ATOMIC_POINTER_LOCK_FREE

template<typename T>
struct static_is_lock_free_num

#include <concurrentqueue.hpp>

Public Types

enum [anonymous]
Values:

value = 0

template<>
struct static_is_lock_free_num<int>

#include <concurrentqueue.hpp>

698 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

enum [anonymous]
Values:

value = ATOMIC_INT_LOCK_FREE

template<>
struct static_is_lock_free_num<long>

#include <concurrentqueue.hpp>

Public Types

enum [anonymous]
Values:

value = ATOMIC_LONG_LOCK_FREE

template<>
struct static_is_lock_free_num<long long>

#include <concurrentqueue.hpp>

Public Types

enum [anonymous]
Values:

value = ATOMIC_LLONG_LOCK_FREE

template<>
struct static_is_lock_free_num<short>

#include <concurrentqueue.hpp>

Public Types

enum [anonymous]
Values:

value = ATOMIC_SHORT_LOCK_FREE

template<>
struct static_is_lock_free_num<signed char>

#include <concurrentqueue.hpp>

Public Types

enum [anonymous]
Values:

value = ATOMIC_CHAR_LOCK_FREE

template<typename thread_id_t>
struct thread_id_converter

#include <concurrentqueue.hpp>

2.9. API reference 699

HPX Documentation, 1.5.1

Public Types

typedef thread_id_t thread_id_numeric_size_t

typedef thread_id_t thread_id_hash_t

Public Static Functions

static thread_id_hash_t prehash(thread_id_t const &x)

Header hpx/concurrency/deque.hpp

namespace boost

namespace lockfree

Enums

enum deque_status_type
Values:

stable

rpush

lpush

template<typename T, typename freelist_t = caching_freelist_t, typename Alloc = std::allocator<T>>
struct deque

#include <deque.hpp>

Public Types

template<>
using node = deque_node<T>

template<>
using node_pointer = typename node::pointer

template<>
using atomic_node_pointer = typename node::atomic_pointer

template<>
using tag_t = typename node::tag_t

template<>
using anchor = deque_anchor<T>

template<>
using anchor_pair = typename anchor::pair

template<>
using atomic_anchor_pair = typename anchor::atomic_pair

template<>
using node_allocator = typename std::allocator_traits<Alloc>::template rebind_alloc<node>

700 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<>
using pool = typename std::conditional<std::is_same<freelist_t, caching_freelist_t>::value, caching_freelist<node, node_allocator>, static_freelist<node, node_allocator>>::type

Public Functions

HPX_NON_COPYABLE(deque)

deque(std::size_t initial_nodes = 128)

~deque()

bool empty() const

bool is_lock_free() const

bool push_left(T const &data)

bool push_right(T const &data)

bool pop_left(T &r)

bool pop_left(T *r)

bool pop_right(T &r)

bool pop_right(T *r)

Private Functions

node *alloc_node(node *lptr, node *rptr, T const &v, tag_t ltag = 0, tag_t rtag = 0)

void dealloc_node(node *n)

void stabilize_left(anchor_pair &lrs)

void stabilize_right(anchor_pair &lrs)

void stabilize(anchor_pair &lrs)

Private Members

anchor anchor_

pool pool_

template<>
char padding[padding_size]

2.9. API reference 701

HPX Documentation, 1.5.1

Private Static Attributes

constexpr std::size_t padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(anchor)

template<typename T>
struct deque_anchor

#include <deque.hpp>

Public Types

template<>
using node = deque_node<T>

template<>
using node_pointer = typename node::pointer

template<>
using atomic_node_pointer = typename node::atomic_pointer

template<>
using tag_t = typename node::tag_t

template<>
using anchor = deque_anchor<T>

template<>
using pair = tagged_ptr_pair<node, node>

template<>
using atomic_pair = std::atomic<pair>

Public Functions

deque_anchor()

deque_anchor(deque_anchor const &p)

deque_anchor(pair const &p)

deque_anchor(node *lptr, node *rptr, tag_t status = stable, tag_t tag = 0)

pair lrs() volatile const

node *left() volatile const

node *right() volatile const

tag_t status() volatile const

tag_t tag() volatile const

bool cas(deque_anchor &expected, deque_anchor const &desired) volatile

bool cas(pair &expected, deque_anchor const &desired) volatile

bool cas(deque_anchor &expected, pair const &desired) volatile

bool cas(pair &expected, pair const &desired) volatile

702 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool operator==(volatile deque_anchor const &rhs) const

bool operator!=(volatile deque_anchor const &rhs) const

bool operator==(volatile pair const &rhs) const

bool operator!=(volatile pair const &rhs) const

bool is_lock_free() const

Private Members

atomic_pair pair_

template<typename T>
struct deque_node

#include <deque.hpp>

Public Types

typedef detail::tagged_ptr<deque_node> pointer

typedef std::atomic<pointer> atomic_pointer

typedef pointer::tag_t tag_t

Public Functions

deque_node()

deque_node(deque_node const &p)

deque_node(deque_node *lptr, deque_node *rptr, T const &v, tag_t ltag = 0, tag_t rtag =
0)

Public Members

atomic_pointer left

atomic_pointer right

T data

Header hpx/concurrency/spinlock.hpp

namespace hpx

namespace util

struct spinlock
#include <spinlock.hpp> boost::mutex-compatible spinlock class

2.9. API reference 703

HPX Documentation, 1.5.1

Public Types

typedef boost::detail::spinlock *native_handle_type

Public Functions

HPX_NON_COPYABLE(spinlock)

spinlock(char const* = nullptr)

~spinlock()

void lock()

bool try_lock()

void unlock()

native_handle_type native_handle()

Private Members

boost::detail::spinlock m = BOOST_DETAIL_SPINLOCK_INIT

Header hpx/concurrency/spinlock_pool.hpp

namespace hpx

namespace util

template<typename Tag, std::size_t N = HPX_HAVE_SPINLOCK_POOL_NUM>
class spinlock_pool

#include <spinlock_pool.hpp>

Public Static Functions

static boost::detail::spinlock &spinlock_for(void const *pv)

Private Static Attributes

cache_aligned_data<boost::detail::spinlock> pool_

class scoped_lock
#include <spinlock_pool.hpp>

704 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<>
HPX_NON_COPYABLE(scoped_lock)

template<>
scoped_lock(void const *pv)

template<>
~scoped_lock()

template<>
void lock()

template<>
void unlock()

Private Members

template<>
boost::detail::spinlock &sp_

config

The contents of this module can be included with the header hpx/modules/config.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/config.hpp, not the particular header in which the functionality you would like to use is
defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/config.hpp

Defines

HPX_INITIAL_IP_PORT
This is the default ip/port number used by the parcel subsystem.

HPX_CONNECTING_IP_PORT

HPX_INITIAL_IP_ADDRESS

HPX_RUNTIME_INSTANCE_LIMIT
This defines the maximum number of possible runtime instances in one executable

HPX_PARCEL_BOOTSTRAP
This defines the type of the parcelport to be used during application bootstrap. This value can be changed at
runtime by the configuration parameter:

hpx.parcel.bootstrap = . . .

(or by setting the corresponding environment variable HPX_PARCEL_BOOTSTRAP).

HPX_PARCEL_MAX_CONNECTIONS
This defines the number of outgoing (parcel-) connections kept alive (to all other localities). This value can be
changed at runtime by setting the configuration parameter:

2.9. API reference 705

HPX Documentation, 1.5.1

hpx.parcel.max_connections = . . .

(or by setting the corresponding environment variable HPX_PARCEL_MAX_CONNECTIONS).

HPX_PARCEL_IPC_DATA_BUFFER_CACHE_SIZE
This defines the number of outgoing ipc (parcel-) connections kept alive (to each of the other localities on the
same node). This value can be changed at runtime by setting the configuration parameter:

hpx.parcel.ipc.data_buffer_cache_size = . . .

(or by setting the corresponding environment variable HPX_PARCEL_IPC_DATA_BUFFER_CACHE_SIZE).

HPX_PARCEL_MPI_MAX_REQUESTS
This defines the number of MPI requests in flight This value can be changed at runtime by setting the configu-
ration parameter:

hpx.parcel.mpi.max_requests = . . .

(or by setting the corresponding environment variable HPX_PARCEL_MPI_MAX_REQUESTS).

HPX_PARCEL_MAX_CONNECTIONS_PER_LOCALITY
This defines the number of outgoing (parcel-) connections kept alive (to each of the other localities). This value
can be changed at runtime by setting the configuration parameter:

hpx.parcel.max_connections_per_locality = . . .

(or by setting the corresponding environment variable HPX_PARCEL_MAX_CONNECTIONS_PER_LOCALITY).

HPX_PARCEL_MAX_MESSAGE_SIZE
This defines the maximally allowed message size for messages transferred between localities. This value can be
changed at runtime by setting the configuration parameter:

hpx.parcel.max_message_size = . . .

(or by setting the corresponding environment variable HPX_PARCEL_MAX_MESSAGE_SIZE).

HPX_PARCEL_MAX_OUTBOUND_MESSAGE_SIZE
This defines the maximally allowed outbound message size for coalescing messages transferred between locali-
ties. This value can be changed at runtime by setting the configuration parameter:

hpx.parcel.max_outbound_message_size = . . .

(or by setting the corresponding environment variable HPX_PARCEL_MAX_OUTBOUND_MESSAGE_SIZE).

HPX_PARCEL_SERIALIZATION_OVERHEAD

HPX_AGAS_LOCAL_CACHE_SIZE
This defines the number of AGAS address translations kept in the local cache. This is just the initial size which
may be adjusted depending on the load of the system (not implemented yet), etc. It must be a minimum of 3 for
AGAS v3 bootstrapping.

This value can be changes at runtime by setting the configuration parameter:

hpx.agas.local_cache_size = . . .

(or by setting the corresponding environment variable HPX_AGAS_LOCAL_CACHE_SIZE)

HPX_INITIAL_AGAS_MAX_PENDING_REFCNT_REQUESTS

HPX_GLOBALCREDIT_INITIAL
This defines the initial global reference count associated with any created object.

HPX_NUM_IO_POOL_SIZE
This defines the default number of OS-threads created for the different internal thread pools

HPX_NUM_PARCEL_POOL_SIZE

706 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_NUM_TIMER_POOL_SIZE

HPX_SPINLOCK_DEADLOCK_DETECTION_LIMIT
By default, enable minimal thread deadlock detection in debug builds only.

HPX_COROUTINE_NUM_HEAPS
This defines the default number of coroutine heaps.

HPX_HAVE_THREAD_BACKTRACE_DEPTH
By default, enable storing the thread phase in debug builds only.

By default, enable storing the parent thread information in debug builds only.By default, enable storing the
thread description in debug builds only. By default, enable storing the target address of the data the thread is
accessing in debug builds only. By default we do not maintain stack back-traces on suspension. This is a pure
debugging aid to be able to see in the debugger where a suspended thread got stuck. By default we capture only
5 levels of stack back trace on suspension

HPX_MAX_NETWORK_RETRIES

HPX_NETWORK_RETRIES_SLEEP

HPX_INI_PATH_DELIMITER

HPX_PATH_DELIMITERS

HPX_SHARED_LIB_EXTENSION

HPX_EXECUTABLE_EXTENSION

HPX_MAKE_DLL_STRING(n)

HPX_MANGLE_NAME(n)

HPX_MANGLE_STRING(n)

HPX_COMPONENT_NAME_DEFAULT

HPX_COMPONENT_NAME

HPX_COMPONENT_STRING

HPX_PLUGIN_COMPONENT_PREFIX

HPX_PLUGIN_NAME_DEFAULT

HPX_PLUGIN_NAME

HPX_PLUGIN_STRING

HPX_PLUGIN_PLUGIN_PREFIX

HPX_APPLICATION_STRING

HPX_IDLE_LOOP_COUNT_MAX

HPX_BUSY_LOOP_COUNT_MAX

HPX_THREAD_QUEUE_MAX_THREAD_COUNT

HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_PENDING

HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_STAGED

HPX_THREAD_QUEUE_MIN_ADD_NEW_COUNT

HPX_THREAD_QUEUE_MAX_ADD_NEW_COUNT

HPX_THREAD_QUEUE_MIN_DELETE_COUNT

2.9. API reference 707

HPX Documentation, 1.5.1

HPX_THREAD_QUEUE_MAX_DELETE_COUNT

HPX_THREAD_QUEUE_MAX_TERMINATED_THREADS

HPX_IDLE_BACKOFF_TIME_MAX

HPX_WRAPPER_HEAP_STEP

HPX_INITIAL_GID_RANGE

HPX_CONTINUATION_MAX_RECURSION_DEPTH

HPX_AGAS_BOOTSTRAP_PREFIX

HPX_AGAS_NS_MSB

HPX_AGAS_PRIMARY_NS_MSB

HPX_AGAS_PRIMARY_NS_LSB

HPX_AGAS_COMPONENT_NS_MSB

HPX_AGAS_COMPONENT_NS_LSB

HPX_AGAS_SYMBOL_NS_MSB

HPX_AGAS_SYMBOL_NS_LSB

HPX_AGAS_LOCALITY_NS_MSB

HPX_AGAS_LOCALITY_NS_LSB

Header hpx/config/asio.hpp

Header hpx/config/attributes.hpp

Defines

HPX_NOINLINE
Function attribute to tell compiler not to inline the function.

HPX_NORETURN
Function attribute to tell compiler that the function does not return.

HPX_DEPRECATED(x)
Marks an entity as deprecated. The argument x specifies a custom message that is included in the compiler
warning. For more details see <>__.

HPX_FALLTHROUGH
Indicates that the fall through from the previous case label is intentional and should not be diagnosed by a
compiler that warns on fallthrough. For more details see <>__.

HPX_NODISCARD
If a function declared nodiscard or a function returning an enumeration or class declared nodiscard by value is
called from a discarded-value expression other than a cast to void, the compiler is encouraged to issue a warning.
For more details see __.

HPX_NO_UNIQUE_ADDRESS
Indicates that this data member need not have an address distinct from all other non-static data members of its
class. For more details see __.

708 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/config/autolink.hpp

Header hpx/config/branch_hints.hpp

Defines

HPX_LIKELY(expr)
Hint at the compiler that expr is likely to be true.

HPX_UNLIKELY(expr)
Hint at the compiler that expr is likely to be false.

Header hpx/config/compiler_fence.hpp

Defines

HPX_COMPILER_FENCE
Generates assembly that serves as a fence to the compiler CPU to disable optimization. Usually implemented in
the form of a memory barrier.

HPX_SMT_PAUSE
Generates assembly the executes a “pause” instruction. Useful in spinning loops.

Header hpx/config/compiler_native_tls.hpp

Defines

HPX_NATIVE_TLS
This macro is replaced with the compiler specific keyword attribute to mark a variable as thread local. For more
details see <__.

This macro is deprecated. It is always replaced with the thread_local keyword. Prefer using
thread_local directly instead.

Header hpx/config/compiler_specific.hpp

Defines

HPX_GCC_VERSION
Returns the GCC version HPX is compiled with. Only set if compiled with GCC.

HPX_CLANG_VERSION
Returns the Clang version HPX is compiled with. Only set if compiled with Clang.

HPX_INTEL_VERSION
Returns the Intel Compiler version HPX is compiled with. Only set if compiled with the Intel Compiler.

HPX_MSVC
This macro is set if the compilation is with MSVC.

HPX_MINGW
This macro is set if the compilation is with Mingw.

2.9. API reference 709

HPX Documentation, 1.5.1

HPX_WINDOWS
This macro is set if the compilation is for Windows.

HPX_NATIVE_MIC
This macro is set if the compilation is for Intel Knights Landing.

Header hpx/config/constexpr.hpp

Defines

HPX_CONSTEXPR
This macro evaluates to constexpr if the compiler supports it.

This macro is deprecated. It is always replaced with the constexpr keyword. Prefer using constexpr
directly instead.

HPX_CONSTEXPR_OR_CONST
This macro evaluates to constexpr if the compiler supports it, const otherwise.

This macro is deprecated. It is always replaced with the constexpr keyword. Prefer using constexpr
directly instead.

HPX_INLINE_CONSTEXPR_VARIABLE
This macro evaluates to inline constexpr if the compiler supports it, constexpr otherwise.

HPX_STATIC_CONSTEXPR
This macro evaluates to static constexpr if the compiler supports it, static const otherwise.

This macro is deprecated. It is always replaced with the static constexpr keyword. Prefer using static
constexpr directly instead.

Header hpx/config/debug.hpp

Defines

HPX_DEBUG
Defined if HPX is compiled in debug mode.

HPX_BUILD_TYPE
Evaluates to debug if compiled in debug mode, release otherwise.

Header hpx/config/deprecation.hpp

Defines

HPX_HAVE_DEPRECATION_WARNINGS_V1_4

HPX_DEPRECATED_V1_4(x)

HPX_HAVE_DEPRECATION_WARNINGS_V1_5

HPX_DEPRECATED_V1_5(x)

HPX_HAVE_DEPRECATION_WARNINGS_V1_6

HPX_DEPRECATED_V1_6(x)

HPX_DEPRECATED_V(major, minor, x)

710 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/config/emulate_deleted.hpp

Defines

HPX_NON_COPYABLE(cls)
Marks a class as non-copyable and non-movable.

Header hpx/config/export_definitions.hpp

Defines

HPX_EXPORT
Marks a class or function to be exported from HPX or imported if it is consumed.

Header hpx/config/forceinline.hpp

Defines

HPX_FORCEINLINE
Marks a function to be forced inline.

Header hpx/config/lambda_capture.hpp

Defines

HPX_CAPTURE_FORWARD(var)
Evaluates to var = std::forward<decltype(var)>(var) if the compiler supports C++14 Lambdas.
Defaults to var.

This macro is deprecated. Prefer using var = std::forward<decltype(var)>(var) directly in-
stead.

HPX_CAPTURE_MOVE(var)
Evaluates to var = std::move(var) if the compiler supports C++14 Lambdas. Defaults to var.

This macro is deprecated. Prefer using var = std::move(var) directly instead.

Header hpx/config/manual_profiling.hpp

Defines

HPX_SUPER_PURE

HPX_PURE

HPX_HOT

HPX_COLD

2.9. API reference 711

HPX Documentation, 1.5.1

Header hpx/config/threads_stack.hpp

Defines

HPX_THREADS_STACK_OVERHEAD

HPX_SMALL_STACK_SIZE

HPX_MEDIUM_STACK_SIZE

HPX_LARGE_STACK_SIZE

HPX_HUGE_STACK_SIZE

Header hpx/config/warnings_prefix.hpp

Header hpx/config/warnings_suffix.hpp

Header hpx/config/weak_symbol.hpp

Defines

HPX_WEAK_SYMBOL

config_registry

The contents of this module can be included with the header hpx/modules/config_registry.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/config_registry.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/modules/config_registry.hpp

namespace hpx

namespace config_registry

Functions

std::vector<module_config> const &get_module_configs()

void add_module_config(module_config const &config)

struct add_module_config_helper
#include <config_registry.hpp>

712 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

add_module_config_helper(module_config const &config)

struct module_config
#include <config_registry.hpp>

Public Members

std::string module_name

std::vector<std::string> config_entries

coroutines

The contents of this module can be included with the header hpx/modules/coroutines.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/coroutines.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/coroutines/coroutine.hpp

namespace hpx

namespace threads

namespace coroutines

class coroutine
#include <coroutine.hpp>

Public Types

using impl_type = detail::coroutine_impl

using thread_id_type = impl_type::thread_id_type

using result_type = impl_type::result_type

using arg_type = impl_type::arg_type

using functor_type = util::unique_function_nonser<result_type(arg_type)>

2.9. API reference 713

HPX Documentation, 1.5.1

Public Functions

coroutine(functor_type &&f, thread_id_type id, std::ptrdiff_t stack_size = de-
tail::default_stack_size)

coroutine(coroutine const &src)

coroutine &operator=(coroutine const &src)

coroutine(coroutine &&src)

coroutine &operator=(coroutine &&src)

thread_id_type get_thread_id() const

std::size_t get_thread_data() const

std::size_t set_thread_data(std::size_t data)

void rebind(functor_type &&f, thread_id_type id)

result_type operator()(arg_type arg = arg_type())

bool is_ready() const

std::ptrdiff_t get_available_stack_space()

impl_type *impl()

Private Members

impl_type impl_

Header hpx/coroutines/coroutine_fwd.hpp

Header hpx/coroutines/stackless_coroutine.hpp

namespace hpx

namespace threads

namespace coroutines

class stackless_coroutine
#include <stackless_coroutine.hpp>

714 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

using thread_id_type = hpx::threads::thread_id

using result_type = std::pair<thread_state_enum, thread_id_type>

using arg_type = thread_state_ex_enum

using functor_type = util::unique_function_nonser<result_type(arg_type)>

Public Functions

stackless_coroutine(functor_type &&f, thread_id_type id, std::ptrdiff_t = de-
fault_stack_size)

~stackless_coroutine()

stackless_coroutine(stackless_coroutine const &src)

stackless_coroutine &operator=(stackless_coroutine const &src)

stackless_coroutine(stackless_coroutine &&src)

stackless_coroutine &operator=(stackless_coroutine &&src)

thread_id_type get_thread_id() const

std::size_t get_thread_data() const

std::size_t set_thread_data(std::size_t data)

void rebind(functor_type &&f, thread_id_type id)

void reset_tss()

void reset()

stackless_coroutine::result_type operator()(arg_type arg = arg_type())

operator bool() const

bool is_ready() const

std::ptrdiff_t get_available_stack_space()

std::size_t &get_continuation_recursion_count()

Protected Attributes

functor_type f_

context_state state_

thread_id_type id_

std::size_t thread_data_

std::size_t continuation_recursion_count_

2.9. API reference 715

HPX Documentation, 1.5.1

Private Types

enum context_state
Values:

ctx_running

ctx_ready

ctx_exited

Private Functions

bool running() const

bool exited() const

Private Static Attributes

constexpr std::ptrdiff_t default_stack_size = -1

Friends

friend hpx::threads::coroutines::reset_on_exit

struct reset_on_exit

Public Functions

reset_on_exit(stackless_coroutine &this__)

~reset_on_exit()

Public Members

stackless_coroutine &this_

Header hpx/coroutines/thread_enums.hpp

namespace hpx

namespace threads

716 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Enums

enum thread_state_enum
The thread_state_enum enumerator encodes the current state of a thread instance

Values:

unknown = 0

active = 1
thread is currently active (running, has resources)

pending = 2
thread is pending (ready to run, but no hardware resource available)

suspended = 3
thread has been suspended (waiting for synchronization event, but still known and under control
of the thread-manager)

depleted = 4
thread has been depleted (deeply suspended, it is not known to the thread-manager)

terminated = 5
thread has been stopped an may be garbage collected

staged = 6
this is not a real thread state, but allows to reference staged task descriptions, which eventually
will be converted into thread objects

pending_do_not_schedule = 7

pending_boost = 8

enum thread_priority
This enumeration lists all possible thread-priorities for HPX threads.

Values:

thread_priority_unknown = -1

thread_priority_default = 0
Will assign the priority of the task to the default (normal) priority.

thread_priority_low = 1
Task goes onto a special low priority queue and will not be executed until all high/normal priority
tasks are done, even if they are added after the low priority task.

thread_priority_normal = 2
Task will be executed when it is taken from the normal priority queue, this is usually a first in-
first-out ordering of tasks (depending on scheduler choice). This is the default priority.

thread_priority_high_recursive = 3
The task is a high priority task and any child tasks spawned by this task will be made high priority
as well - unless they are specifically flagged as non default priority.

thread_priority_boost = 4
Same as thread_priority_high except that the thread will fall back to thread_priority_normal if
resumed after being suspended.

thread_priority_high = 5
Task goes onto a special high priority queue and will be executed before normal/low priority tasks
are taken (some schedulers modify the behavior slightly and the documentation for those should
be consulted).

2.9. API reference 717

HPX Documentation, 1.5.1

thread_priority_bound = 6
Task goes onto a special high priority queue and will never be stolen by another thread after initial
assignment. This should be used for thread placement tasks such as OpenMP type for loops.

enum thread_state_ex_enum
The thread_state_ex_enum enumerator encodes the reason why a thread is being restarted

Values:

wait_unknown = 0

wait_signaled = 1
The thread has been signaled.

wait_timeout = 2
The thread has been reactivated after a timeout

wait_terminate = 3
The thread needs to be terminated.

wait_abort = 4
The thread needs to be aborted.

enum thread_stacksize
A thread_stacksize references any of the possible stack-sizes for HPX threads.

Values:

thread_stacksize_unknown = -1

thread_stacksize_small = 1
use small stack size

thread_stacksize_medium = 2
use medium sized stack size

thread_stacksize_large = 3
use large stack size

thread_stacksize_huge = 4
use very large stack size

thread_stacksize_nostack = 5
this thread does not suspend (does not need a stack)

thread_stacksize_current = 6
use size of current thread’s stack

thread_stacksize_default = thread_stacksize_small
use default stack size

thread_stacksize_minimal = thread_stacksize_small
use minimally stack size

thread_stacksize_maximal = thread_stacksize_huge
use maximally stack size

enum thread_schedule_hint_mode
The type of hint given when creating new tasks.

Values:

thread_schedule_hint_mode_none = 0

thread_schedule_hint_mode_thread = 1

718 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

thread_schedule_hint_mode_numa = 2

Functions

char const *get_thread_state_name(thread_state_enum state)
Returns the name of the given state.

Get the readable string representing the name of the given thread_state constant.

Parameters
• state: this represents the thread state.

char const *get_thread_priority_name(thread_priority priority)
Return the thread priority name.

Get the readable string representing the name of the given thread_priority constant.

Parameters
• this: represents the thread priority.

char const *get_thread_state_ex_name(thread_state_ex_enum state)
Get the readable string representing the name of the given thread_state_ex_enum constant.

char const *get_thread_state_name(thread_state state)
Get the readable string representing the name of the given thread_state constant.

char const *get_stack_size_enum_name(thread_stacksize size)
Returns the stack size name.

Get the readable string representing the given stack size constant.

Parameters
• size: this represents the stack size

struct thread_schedule_hint
#include <thread_enums.hpp>

Public Functions

constexpr thread_schedule_hint()

constexpr thread_schedule_hint(std::int16_t thread_hint)

constexpr thread_schedule_hint(thread_schedule_hint_mode mode, std::int16_t
hint)

bool operator==(thread_schedule_hint const &rhs) const

bool operator!=(thread_schedule_hint const &rhs) const

2.9. API reference 719

HPX Documentation, 1.5.1

Public Members

thread_schedule_hint_mode mode

std::int16_t hint

Header hpx/coroutines/thread_id_type.hpp

namespace hpx

namespace threads

Variables

constexpr thread_id invalid_thread_id

struct thread_id
#include <thread_id_type.hpp>

Public Functions

constexpr thread_id()

constexpr thread_id(thread_id_repr thrd)

thread_id(thread_id const&)

thread_id &operator=(thread_id const&)

thread_id(thread_id &&rhs)

thread_id &operator=(thread_id &&rhs)

constexpr operator bool() const

constexpr thread_id_repr get() const

constexpr void reset()

Private Types

using thread_id_repr = void*

Private Members

thread_id_repr thrd_

720 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Friends

constexpr bool operator==(std::nullptr_t, thread_id const &rhs)

constexpr bool operator!=(std::nullptr_t, thread_id const &rhs)

constexpr bool operator==(thread_id const &lhs, std::nullptr_t)

constexpr bool operator!=(thread_id const &lhs, std::nullptr_t)

constexpr bool operator==(thread_id const &lhs, thread_id const &rhs)

constexpr bool operator!=(thread_id const &lhs, thread_id const &rhs)

constexpr bool operator<(thread_id const &lhs, thread_id const &rhs)

constexpr bool operator>(thread_id const &lhs, thread_id const &rhs)

constexpr bool operator<=(thread_id const &lhs, thread_id const &rhs)

constexpr bool operator>=(thread_id const &lhs, thread_id const &rhs)

template<typename Char, typename Traits>
std::basic_ostream<Char, Traits> &operator<<(std::basic_ostream<Char, Traits> &os,

thread_id const &id)

datastructures

The contents of this module can be included with the header hpx/modules/datastructures.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/datastructures.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/datastructures/any.hpp

template<>
class basic_any<void, void, void, std::true_type>

#include <any.hpp>

Public Functions

constexpr basic_any()

basic_any(basic_any const &x)

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_copy_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

~basic_any()

basic_any &operator=(basic_any const &x)

2.9. API reference 721

HPX Documentation, 1.5.1

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_copy_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Functions

basic_any &assign(basic_any const &x)

Private Members

detail::any::fxn_ptr_table<void, void, void, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

template<typename Char>
class basic_any<void, void, Char, std::true_type>

#include <any.hpp>

Public Functions

constexpr basic_any()

basic_any(basic_any const &x)

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_copy_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

~basic_any()

basic_any &operator=(basic_any const &x)

722 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_copy_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Functions

basic_any &assign(basic_any const &x)

Private Members

detail::any::fxn_ptr_table<void, void, Char, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

template<>
class basic_any<void, void, void, std::false_type>

#include <any.hpp>

Public Functions

constexpr basic_any()

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_move_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

basic_any(basic_any const &x)

basic_any &operator=(basic_any const &x)

~basic_any()

2.9. API reference 723

HPX Documentation, 1.5.1

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_move_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Members

detail::any::fxn_ptr_table<void, void, void, std::false_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

template<typename Char>
class basic_any<void, void, Char, std::false_type>

#include <any.hpp>

Public Functions

constexpr basic_any()

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_move_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

basic_any(basic_any const &x)

basic_any &operator=(basic_any const &x)

~basic_any()

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_move_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

724 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Members

detail::any::fxn_ptr_table<void, void, Char, std::false_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

namespace hpx

namespace util

Typedefs

using any_nonser = basic_any<void, void, void, std::true_type>

using streamable_any_nonser = basic_any<void, void, char, std::true_type>

using streamable_wany_nonser = basic_any<void, void, wchar_t, std::true_type>

using unique_any_nonser = basic_any<void, void, void, std::false_type>

using streamable_unique_any_nonser = basic_any<void, void, char, std::false_type>

using streamable_unique_wany_nonser = basic_any<void, void, wchar_t, std::false_type>

Functions

template<typename IArch, typename OArch, typename Char, typename Copyable, typename Enable = typename std::enable_if<!std::is_void<Char>::value>::type>
std::basic_istream<Char> &operator>>(std::basic_istream<Char> &i, basic_any<IArch, OArch,

Char, Copyable> &obj)

template<typename IArch, typename OArch, typename Char, typename Copyable, typename Enable = typename std::enable_if<!std::is_void<Char>::value>::type>
std::basic_ostream<Char> &operator<<(std::basic_ostream<Char> &o, basic_any<IArch,

OArch, Char, Copyable> const &obj)

template<typename IArch, typename OArch, typename Char, typename Copyable>

2.9. API reference 725

HPX Documentation, 1.5.1

void swap(basic_any<IArch, OArch, Char, Copyable> &lhs, basic_any<IArch, OArch, Char, Copy-
able> &rhs)

template<typename T, typename IArch, typename OArch, typename Char, typename Copyable>
T *any_cast(basic_any<IArch, OArch, Char, Copyable> *operand)

template<typename T, typename IArch, typename OArch, typename Char, typename Copyable>
T const *any_cast(basic_any<IArch, OArch, Char, Copyable> const *operand)

template<typename T, typename IArch, typename OArch, typename Char, typename Copyable>
T any_cast(basic_any<IArch, OArch, Char, Copyable> &operand)

template<typename T, typename IArch, typename OArch, typename Char, typename Copyable>
T const &any_cast(basic_any<IArch, OArch, Char, Copyable> const &operand)

template<typename T>
basic_any<void, void, void, std::true_type> make_any_nonser(T &&t)

template<typename T, typename Char>
basic_any<void, void, Char, std::true_type> make_streamable_any_nonser(T &&t)

template<typename T>
basic_any<void, void, void, std::false_type> make_unique_any_nonser(T &&t)

template<typename T, typename Char>
basic_any<void, void, Char, std::false_type> make_streamable_unique_any_nonser(T

&&t)

struct bad_any_cast : public bad_cast
#include <any.hpp>

Public Functions

bad_any_cast(std::type_info const &src, std::type_info const &dest)

const char *what() const

Public Members

const char *from

const char *to

template<typename Char>
class basic_any<void, void, Char, std::false_type>

#include <any.hpp>

726 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

constexpr basic_any()

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_move_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

basic_any(basic_any const &x)

basic_any &operator=(basic_any const &x)

~basic_any()

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_move_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Members

detail::any::fxn_ptr_table<void, void, Char, std::false_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

template<typename Char>
class basic_any<void, void, Char, std::true_type>

#include <any.hpp>

2.9. API reference 727

HPX Documentation, 1.5.1

Public Functions

constexpr basic_any()

basic_any(basic_any const &x)

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_copy_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

~basic_any()

basic_any &operator=(basic_any const &x)

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_copy_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Functions

basic_any &assign(basic_any const &x)

Private Members

detail::any::fxn_ptr_table<void, void, Char, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

template<>
class basic_any<void, void, void, std::false_type>

#include <any.hpp>

728 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

constexpr basic_any()

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_move_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

basic_any(basic_any const &x)

basic_any &operator=(basic_any const &x)

~basic_any()

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_move_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Members

detail::any::fxn_ptr_table<void, void, void, std::false_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

template<>
class basic_any<void, void, void, std::true_type>

#include <any.hpp>

2.9. API reference 729

HPX Documentation, 1.5.1

Public Functions

constexpr basic_any()

basic_any(basic_any const &x)

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_copy_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

~basic_any()

basic_any &operator=(basic_any const &x)

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_copy_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Functions

basic_any &assign(basic_any const &x)

Private Members

detail::any::fxn_ptr_table<void, void, void, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

730 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/datastructures/member_pack.hpp

template<std::size_t... Is, typename ...Ts>
struct member_pack<util::index_pack<Is...>, Ts...> : public hpx::util::detail::member_leaf<Is, Ts>

#include <member_pack.hpp>

Public Functions

member_pack()

template<typename ...Us>
constexpr member_pack(std::piecewise_construct_t, Us&&... us)

template<std::size_t I>
decltype(auto) constexpr get() &

template<std::size_t I>
decltype(auto) constexpr get() const &

template<std::size_t I>
decltype(auto) constexpr get() &&

template<std::size_t I>
decltype(auto) constexpr get() const &&

namespace hpx

namespace serialization

Functions

template<typename Archive, std::size_t... Is, typename ...Ts>
void serialize(Archive &ar, ::hpx::util::member_pack<util::index_pack<Is...>, Ts...> &mp, un-

signed int const = 0)

namespace util

Typedefs

using member_pack_for = member_pack<typename util::make_index_pack<sizeof...(Ts)>::type, Ts...>

Variables

template<typename Is, typename ...Ts>
struct HPX_EMPTY_BASES member_pack

template<std::size_t... Is, typename ...Ts>
struct member_pack<util::index_pack<Is...>, Ts...> : public hpx::util::detail::member_leaf<Is, Ts>

#include <member_pack.hpp>

2.9. API reference 731

HPX Documentation, 1.5.1

Public Functions

member_pack()

template<typename ...Us>
constexpr member_pack(std::piecewise_construct_t, Us&&... us)

template<std::size_t I>
decltype(auto) constexpr get() &

template<std::size_t I>
decltype(auto) constexpr get() const &

template<std::size_t I>
decltype(auto) constexpr get() &&

template<std::size_t I>
decltype(auto) constexpr get() const &&

Header hpx/datastructures/optional.hpp

template<typename T>
struct hash<hpx::util::optional<T>>

#include <optional.hpp>

Public Functions

constexpr std::size_t operator()(::hpx::util::optional<T> const &arg) const

namespace hpx

namespace util

Functions

template<typename T>
constexpr bool operator==(optional<T> const &lhs, optional<T> const &rhs)

template<typename T>
constexpr bool operator!=(optional<T> const &lhs, optional<T> const &rhs)

template<typename T>
constexpr bool operator<(optional<T> const &lhs, optional<T> const &rhs)

template<typename T>
constexpr bool operator>=(optional<T> const &lhs, optional<T> const &rhs)

template<typename T>
constexpr bool operator>(optional<T> const &lhs, optional<T> const &rhs)

template<typename T>
constexpr bool operator<=(optional<T> const &lhs, optional<T> const &rhs)

template<typename T>

732 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

constexpr bool operator==(optional<T> const &opt, nullopt_t)

template<typename T>
constexpr bool operator==(nullopt_t, optional<T> const &opt)

template<typename T>
constexpr bool operator!=(optional<T> const &opt, nullopt_t)

template<typename T>
constexpr bool operator!=(nullopt_t, optional<T> const &opt)

template<typename T>
constexpr bool operator<(optional<T> const &opt, nullopt_t)

template<typename T>
constexpr bool operator<(nullopt_t, optional<T> const &opt)

template<typename T>
constexpr bool operator>=(optional<T> const &opt, nullopt_t)

template<typename T>
constexpr bool operator>=(nullopt_t, optional<T> const &opt)

template<typename T>
constexpr bool operator>(optional<T> const &opt, nullopt_t)

template<typename T>
constexpr bool operator>(nullopt_t, optional<T> const &opt)

template<typename T>
constexpr bool operator<=(optional<T> const &opt, nullopt_t)

template<typename T>
constexpr bool operator<=(nullopt_t, optional<T> const &opt)

template<typename T>
constexpr bool operator==(optional<T> const &opt, T const &value)

template<typename T>
constexpr bool operator==(T const &value, optional<T> const &opt)

template<typename T>
constexpr bool operator!=(optional<T> const &opt, T const &value)

template<typename T>
constexpr bool operator!=(T const &value, optional<T> const &opt)

template<typename T>
constexpr bool operator<(optional<T> const &opt, T const &value)

template<typename T>
constexpr bool operator<(T const &value, optional<T> const &opt)

template<typename T>
constexpr bool operator>=(optional<T> const &opt, T const &value)

template<typename T>
constexpr bool operator>=(T const &value, optional<T> const &opt)

2.9. API reference 733

HPX Documentation, 1.5.1

template<typename T>
constexpr bool operator>(optional<T> const &opt, T const &value)

template<typename T>
constexpr bool operator>(T const &value, optional<T> const &opt)

template<typename T>
constexpr bool operator<=(optional<T> const &opt, T const &value)

template<typename T>
constexpr bool operator<=(T const &value, optional<T> const &opt)

template<typename T>
void swap(optional<T> &x, optional<T> &y)

template<typename T>
constexpr optional<typename std::decay<T>::type> make_optional(T &&v)

template<typename T, typename ...Ts>
constexpr optional<T> make_optional(Ts&&... ts)

template<typename T, typename U, typename ...Ts>
constexpr optional<T> make_optional(std::initializer_list<U> il, Ts&&... ts)

Variables

constexpr nullopt_t nullopt = {nullopt_t::init()}

class bad_optional_access : public logic_error
#include <optional.hpp>

Public Functions

bad_optional_access(std::string const &what_arg)

bad_optional_access(char const *what_arg)

struct nullopt_t
#include <optional.hpp>

Public Functions

constexpr nullopt_t(nullopt_t::init)

template<typename T>
class optional

#include <optional.hpp>

734 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

template<>
using value_type = T

Public Functions

constexpr optional()

constexpr optional(nullopt_t)

optional(optional const &other)

optional(optional &&other)

optional(T const &val)

optional(T &&val)

template<typename ...Ts>
optional(in_place_t, Ts&&... ts)

template<typename U, typename ...Ts>
optional(in_place_t, std::initializer_list<U> il, Ts&&... ts)

~optional()

optional &operator=(optional const &other)

optional &operator=(optional &&other)

optional &operator=(T const &other)

optional &operator=(T &&other)

optional &operator=(nullopt_t)

constexpr T const *operator->() const

T *operator->()

constexpr T const &operator*() const

T &operator*()

constexpr operator bool() const

constexpr bool has_value() const

T &value()

T const &value() const

template<typename U>
constexpr T value_or(U &&value) const

template<typename ...Ts>
void emplace(Ts&&... ts)

2.9. API reference 735

HPX Documentation, 1.5.1

void swap(optional &other)

void reset()

Private Members

std::aligned_storage<sizeof(T), alignof(T)>::type storage_

bool empty_

namespace _optional_swap

Functions

template<typename T>
void check_swap()

namespace std

template<typename T>
struct hash<hpx::util::optional<T>>

#include <optional.hpp>

Public Functions

constexpr std::size_t operator()(::hpx::util::optional<T> const &arg) const

Header hpx/datastructures/tagged.hpp

Defines

HPX_DEFINE_TAG_SPECIFIER(NAME)

namespace hpx

namespace util

template<typename Base, typename ...Tags>
struct tagged : public Base, public detail::getters::collect<tagged<Base, Tags...>, Tags...>

#include <tagged.hpp>

736 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<typename ...Ts>
tagged(Ts&&... ts)

template<typename Other>
tagged(tagged<Other, Tags...> &&rhs)

template<typename Other>
tagged(tagged<Other, Tags...> const &rhs)

template<typename Other>
tagged &operator=(tagged<Other, Tags...> &&rhs)

template<typename Other>
tagged &operator=(tagged<Other, Tags...> const &rhs)

template<typename U>
tagged &operator=(U &&u)

void swap(tagged &other)

Friends

void swap(tagged &x, tagged &y)

Header hpx/datastructures/tagged_pair.hpp

namespace hpx

namespace util

Functions

template<typename Tag1, typename Tag2, typename T1, typename T2>
constexpr tagged_pair<Tag1(typename decay<T1>::type), Tag2

typename decay<T2>::type> make_tagged_pairstd::pair<T1, T2> &&p

template<typename Tag1, typename Tag2, typename T1, typename T2>
constexpr tagged_pair<Tag1(typename decay<T1>::type), Tag2

typename decay<T2>::type> make_tagged_pairstd::pair<T1, T2> const &p

template<typename Tag1, typename Tag2, typename ...Ts>
constexpr tagged_pair<Tag1(typename tuple_element<0, tuple<Ts...>>::type), Tag2

typename tuple_element<1, tuple<Ts...>>::type> make_tagged_pairtuple<Ts...> &&p

template<typename Tag1, typename Tag2, typename ...Ts>
constexpr tagged_pair<Tag1(typename tuple_element<0, tuple<Ts...>>::type), Tag2

typename tuple_element<1, tuple<Ts...>>::type> make_tagged_pairtuple<Ts...> const &p

template<typename Tag1, typename Tag2, typename T1, typename T2>
constexpr tagged_pair<Tag1(typename decay<T1>::type), Tag2

typename decay<T2>::type> make_tagged_pairT1 &&t1, T2 &&t2

2.9. API reference 737

HPX Documentation, 1.5.1

template<typename F, typename S>
struct tagged_pair : public hpx::util::tagged<std::pair<detail::tag_elem<F>::type, detail::tag_elem<S>::type>, detail::tag_spec<F>::type, detail::tag_spec<S>::type>

#include <tagged_pair.hpp>

Public Types

typedef tagged<std::pair<typename detail::tag_elem<F>::type, typename detail::tag_elem<S>::type>, typename detail::tag_spec<F>::type, typename detail::tag_spec<S>::type> base_type

Public Functions

template<typename ...Ts>
tagged_pair(Ts&&... ts)

Header hpx/datastructures/tagged_tuple.hpp

namespace hpx

namespace util

Functions

template<typename ...Tags, typename ...Ts>
constexpr tagged_tuple<typename detail::tagged_type<Tags, Ts>::type...> make_tagged_tuple(Ts&&...

ts)

template<typename ...Tags, typename ...Ts>
constexpr tagged_tuple<typename detail::tagged_type<Tags, Ts>::type...> make_tagged_tuple(tuple<Ts...>

&&t)

template<typename ...Ts>
struct tagged_tuple : public hpx::util::tagged<tuple<detail::tag_elem<Ts>::type...>, detail::tag_spec<Ts>::type...>

#include <tagged_tuple.hpp>

Public Types

typedef tagged<tuple<typename detail::tag_elem<Ts>::type...>, typename detail::tag_spec<Ts>::type...> base_type

Public Functions

template<typename ...Ts_>
tagged_tuple(Ts_&&... ts)

738 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/datastructures/traits/is_tuple_like.hpp

namespace hpx

namespace traits

template<typename T>
struct is_tuple_like : public hpx::traits::detail::is_tuple_like_impl<std::remove_cv<T>::type>

#include <is_tuple_like.hpp> Deduces to a true type if the given parameter T has a specific tuple like
size.

Header hpx/datastructures/traits/supports_streaming_with_any.hpp

Header hpx/datastructures/tuple.hpp

template<typename T0, typename T1>
struct tuple_element<0, std::pair<T0, T1>>

#include <tuple.hpp>

Public Types

template<>
using type = T0

Public Static Functions

static constexpr type &get(std::pair<T0, T1> &tuple)

static constexpr type const &get(std::pair<T0, T1> const &tuple)

template<typename T0, typename T1>
struct tuple_element<1, std::pair<T0, T1>>

#include <tuple.hpp>

Public Types

template<>
using type = T1

Public Static Functions

static constexpr type &get(std::pair<T0, T1> &tuple)

static constexpr type const &get(std::pair<T0, T1> const &tuple)

template<std::size_t I, typename Type, std::size_t Size>
struct tuple_element<I, std::array<Type, Size>>

#include <tuple.hpp>

2.9. API reference 739

HPX Documentation, 1.5.1

Public Types

template<>
using type = Type

Public Static Functions

static constexpr type &get(std::array<Type, Size> &tuple)

static constexpr type const &get(std::array<Type, Size> const &tuple)

namespace hpx

namespace util

Functions

template<typename ...Ts>
constexpr tuple<typename decay_unwrap<Ts>::type...> make_tuple(Ts&&... vs)

template<typename ...Ts>
tuple<Ts&&...> forward_as_tuple(Ts&&... vs)

template<typename ...Ts>
tuple<Ts&...> tie(Ts&... vs)

template<typename ...Tuples>
constexpr auto tuple_cat(Tuples&&... tuples)

template<typename ...Ts, typename ...Us>
constexpr std::enable_if<sizeof...(Ts) == sizeof...(Us), bool>::type operator==(tuple<Ts...>

const &t,
tuple<Us...>
const &u)

template<typename ...Ts, typename ...Us>
constexpr std::enable_if<sizeof...(Ts) == sizeof...(Us), bool>::type operator!=(tuple<Ts...>

const &t,
tuple<Us...>
const &u)

template<typename ...Ts, typename ...Us>
constexpr std::enable_if<sizeof...(Ts) == sizeof...(Us), bool>::type operator<(tuple<Ts...>

const &t,
tuple<Us...>
const &u)

template<typename ...Ts, typename ...Us>
constexpr std::enable_if<sizeof...(Ts) == sizeof...(Us), bool>::type operator>(tuple<Ts...>

const &t,
tuple<Us...>
const &u)

template<typename ...Ts, typename ...Us>

740 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

constexpr std::enable_if<sizeof...(Ts) == sizeof...(Us), bool>::type operator<=(tuple<Ts...>
const &t,
tuple<Us...>
const &u)

template<typename ...Ts, typename ...Us>
constexpr std::enable_if<sizeof...(Ts) == sizeof...(Us), bool>::type operator>=(tuple<Ts...>

const &t,
tuple<Us...>
const &u)

template<typename ...Ts>
void swap(tuple<Ts...> &x, tuple<Ts...> &y)

Variables

detail::ignore_type const ignore = {}

template<typename ...Ts>
class tuple

#include <tuple.hpp>

Public Functions

template<typename Dependent = void, typename Enable = typename std::enable_if<util::all_of<std::is_constructible<Ts>...>::value, Dependent>::type>
constexpr tuple()

constexpr tuple(Ts const&... vs)

template<typename U, typename ...Us, typename Enable = typename std::enable_if<!std::is_same<tuple, typename std::decay<U>::type>::value || util::pack<Us...>::size != 0>::type, typename EnableCompatible = typename std::enable_if<detail::are_tuples_compatible<tuple, tuple<U, Us...>>::value>::type>
constexpr tuple(U &&v, Us&&... vs)

tuple(tuple const&)

tuple(tuple&&)

template<typename UTuple, typename Enable = typename std::enable_if<!std::is_same<tuple, typename std::decay<UTuple>::type>::value>::type, typename EnableCompatible = typename std::enable_if<detail::are_tuples_compatible<tuple, UTuple>::value>::type>
constexpr tuple(UTuple &&other)

tuple &operator=(tuple const &other)

tuple &operator=(tuple &&other)

template<typename UTuple>
tuple &operator=(UTuple &&other)

void swap(tuple &other)

template<std::size_t I>
util::at_index<I, Ts...>::type &get()

template<std::size_t I>
util::at_index<I, Ts...>::type const &get() const

2.9. API reference 741

HPX Documentation, 1.5.1

Private Types

template<>
using index_pack = typename util::make_index_pack<sizeof...(Ts)>::type

Private Functions

template<std::size_t... Is, typename UTuple>
constexpr tuple(util::index_pack<Is...>, UTuple &&other)

template<std::size_t... Is>
void assign_(util::index_pack<Is...>, tuple const &other)

template<std::size_t... Is>
void assign_(util::index_pack<Is...>, tuple &&other)

template<std::size_t... Is, typename UTuple>
void assign_(util::index_pack<Is...>, UTuple &&other)

template<std::size_t... Is>
void swap_(util::index_pack<Is...>, tuple &other)

Private Members

util::member_pack_for<Ts...> _members

template<>
class tuple<>

#include <tuple.hpp>

Public Functions

constexpr tuple()

constexpr tuple(tuple const&)

constexpr tuple(tuple&&)

tuple &operator=(tuple const&)

tuple &operator=(tuple&&)

void swap(tuple&)

template<typename T0, typename T1>
struct tuple_element<0, std::pair<T0, T1>>

#include <tuple.hpp>

742 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

template<>
using type = T0

Public Static Functions

static constexpr type &get(std::pair<T0, T1> &tuple)

static constexpr type const &get(std::pair<T0, T1> const &tuple)

template<typename T0, typename T1>
struct tuple_element<1, std::pair<T0, T1>>

#include <tuple.hpp>

Public Types

template<>
using type = T1

Public Static Functions

static constexpr type &get(std::pair<T0, T1> &tuple)

static constexpr type const &get(std::pair<T0, T1> const &tuple)

template<std::size_t I, typename Type, std::size_t Size>
struct tuple_element<I, std::array<Type, Size>>

#include <tuple.hpp>

Public Types

template<>
using type = Type

Public Static Functions

static constexpr type &get(std::array<Type, Size> &tuple)

static constexpr type const &get(std::array<Type, Size> const &tuple)

template<std::size_t I, typename ...Ts>
struct tuple_element<I, tuple<Ts...>>

#include <tuple.hpp>

2.9. API reference 743

HPX Documentation, 1.5.1

Public Types

template<>
using type = typename util::at_index::type

Public Static Functions

static constexpr type &get(tuple<Ts...> &tuple)

static constexpr type const &get(tuple<Ts...> const &tuple)

template<class T>
struct tuple_size

#include <tuple.hpp> Subclassed by hpx::util::tuple_size< const T >, hpx::util::tuple_size< const
volatile T >, hpx::util::tuple_size< volatile T >

namespace adl_barrier

Functions

template<std::size_t I, typename Tuple, typename Enable = typename util::always_void<typename util::tuple_element<I, Tuple>::type>::type>
constexpr util::tuple_element<I, Tuple>::type &get(Tuple &t)

template<std::size_t I, typename Tuple, typename Enable = typename util::always_void<typename util::tuple_element<I, Tuple>::type>::type>
constexpr util::tuple_element<I, Tuple>::type const &get(Tuple const &t)

template<std::size_t I, typename Tuple, typename Enable = typename util::always_void<typename util::tuple_element<I, typename std::decay<Tuple>::type>::type>::type>
constexpr util::tuple_element<I, Tuple>::type &&get(Tuple &&t)

template<std::size_t I, typename Tuple, typename Enable = typename util::always_void<typename util::tuple_element<I, Tuple>::type>::type>
constexpr util::tuple_element<I, Tuple>::type const &&get(Tuple const &&t)

namespace std_adl_barrier

Functions

template<std::size_t I, typename ...Ts>
constexpr util::tuple_element<I, util::tuple<Ts...>>::type &get(util::tuple<Ts...> &t)

template<std::size_t I, typename ...Ts>
constexpr util::tuple_element<I, util::tuple<Ts...>>::type const &get(util::tuple<Ts...>

const &t)

template<std::size_t I, typename ...Ts>
constexpr util::tuple_element<I, util::tuple<Ts...>>::type &&get(util::tuple<Ts...> &&t)

template<std::size_t I, typename ...Ts>
constexpr util::tuple_element<I, util::tuple<Ts...>>::type const &&get(util::tuple<Ts...>

const &&t)

744 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/datastructures/variant_helper.hpp

debugging

The contents of this module can be included with the header hpx/modules/debugging.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/debugging.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/debugging/attach_debugger.hpp

namespace hpx

namespace util

Functions

void attach_debugger()
Tries to break an attached debugger, if not supported a loop is invoked which gives enough time to
attach a debugger manually.

Header hpx/debugging/backtrace.hpp

namespace hpx

namespace util

Functions

std::string trace(std::size_t frames_no = HPX_HAVE_THREAD_BACKTRACE_DEPTH)

Header hpx/debugging/backtrace/backtrace.hpp

namespace hpx

namespace util

2.9. API reference 745

HPX Documentation, 1.5.1

Functions

template<typename E>
details::trace_manip trace(E const &e)

namespace details

Functions

std::ostream &operator<<(std::ostream &out, details::trace_manip const &t)

class trace_manip
#include <backtrace.hpp>

Public Functions

trace_manip(backtrace const *tr)

std::ostream &write(std::ostream &out) const

Private Members

backtrace const *tr_

namespace stack_trace

Functions

std::size_t trace(void **addresses, std::size_t size)

void write_symbols(void *const *addresses, std::size_t size, std::ostream&)

std::string get_symbol(void *address)

std::string get_symbols(void *const *address, std::size_t size)

Header hpx/debugging/demangle_helper.hpp

namespace hpx

namespace util

namespace debug

746 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Typedefs

using cxxabi_demangle_helper = demangle_helper<T>

using cxx_type_id = type_id<T>

Functions

template<typename T = void>
std::string print_type(const char *delim = "")

template<>
std::string print_type(const char*)

template<typename T, typename ...Args>
std::enable_if<sizeof...(Args) != 0, std::string>::type print_type(const char *delim = "")

template<typename T>
struct demangle_helper

#include <demangle_helper.hpp>

Public Functions

char const *type_id() const

template<typename T>
struct type_id

#include <demangle_helper.hpp>

Public Static Attributes

demangle_helper<T> typeid_ = demangle_helper<T>()

Header hpx/debugging/print.hpp

Defines

HPX_DP_LAZY(Expr, printer)

Variables

char **environ

2.9. API reference 747

HPX Documentation, 1.5.1

errors

The contents of this module can be included with the header hpx/modules/errors.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/errors.hpp, not the particular header in which the functionality you would like to use is
defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/errors/error.hpp

namespace hpx

Enums

enum error
Possible error conditions.

This enumeration lists all possible error conditions which can be reported from any of the API functions.

Values:

success = 0
The operation was successful.

no_success = 1
The operation did failed, but not in an unexpected manner.

not_implemented = 2
The operation is not implemented.

out_of_memory = 3
The operation caused an out of memory condition.

bad_action_code = 4

bad_component_type = 5
The specified component type is not known or otherwise invalid.

network_error = 6
A generic network error occurred.

version_too_new = 7
The version of the network representation for this object is too new.

version_too_old = 8
The version of the network representation for this object is too old.

version_unknown = 9
The version of the network representation for this object is unknown.

unknown_component_address = 10

duplicate_component_address = 11
The given global id has already been registered.

invalid_status = 12
The operation was executed in an invalid status.

bad_parameter = 13
One of the supplied parameters is invalid.

748 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

internal_server_error = 14

service_unavailable = 15

bad_request = 16

repeated_request = 17

lock_error = 18

duplicate_console = 19
There is more than one console locality.

no_registered_console = 20
There is no registered console locality available.

startup_timed_out = 21

uninitialized_value = 22

bad_response_type = 23

deadlock = 24

assertion_failure = 25

null_thread_id = 26
Attempt to invoke a API function from a non-HPX thread.

invalid_data = 27

yield_aborted = 28
The yield operation was aborted.

dynamic_link_failure = 29

commandline_option_error = 30
One of the options given on the command line is erroneous.

serialization_error = 31
There was an error during serialization of this object.

unhandled_exception = 32
An unhandled exception has been caught.

kernel_error = 33
The OS kernel reported an error.

broken_task = 34
The task associated with this future object is not available anymore.

task_moved = 35
The task associated with this future object has been moved.

task_already_started = 36
The task associated with this future object has already been started.

future_already_retrieved = 37
The future object has already been retrieved.

promise_already_satisfied = 38
The value for this future object has already been set.

future_does_not_support_cancellation = 39
The future object does not support cancellation.

2.9. API reference 749

HPX Documentation, 1.5.1

future_can_not_be_cancelled = 40
The future can’t be canceled at this time.

no_state = 41
The future object has no valid shared state.

broken_promise = 42
The promise has been deleted.

thread_resource_error = 43

future_cancelled = 44

thread_cancelled = 45

thread_not_interruptable = 46

duplicate_component_id = 47
The component type has already been registered.

unknown_error = 48
An unknown error occurred.

bad_plugin_type = 49
The specified plugin type is not known or otherwise invalid.

filesystem_error = 50
The specified file does not exist or other filesystem related error.

bad_function_call = 51
equivalent of std::bad_function_call

task_canceled_exception = 52
parallel::v2::task_canceled_exception

task_block_not_active = 53
task_region is not active

out_of_range = 54
Equivalent to std::out_of_range.

length_error = 55
Equivalent to std::length_error.

migration_needs_retry = 56
migration failed because of global race, retry

Header hpx/errors/error_code.hpp

namespace hpx

750 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Unnamed Group

error_code make_error_code(error e, throwmode mode = plain)
Returns a new error_code constructed from the given parameters.

error_code make_error_code(error e, char const *func, char const *file, long line, throwmode
mode = plain)

error_code make_error_code(error e, char const *msg, throwmode mode = plain)
Returns error_code(e, msg, mode).

error_code make_error_code(error e, char const *msg, char const *func, char const *file, long
line, throwmode mode = plain)

error_code make_error_code(error e, std::string const &msg, throwmode mode = plain)
Returns error_code(e, msg, mode).

error_code make_error_code(error e, std::string const &msg, char const *func, char const
*file, long line, throwmode mode = plain)

error_code make_error_code(std::exception_ptr const &e)

Functions

boost::system::error_category const &get_hpx_category()
Returns generic HPX error category used for new errors.

boost::system::error_category const &get_hpx_rethrow_category()
Returns generic HPX error category used for errors re-thrown after the exception has been de-serialized.

error_code make_success_code(throwmode mode = plain)
Returns error_code(hpx::success, “success”, mode).

class error_code : public error_code
#include <error_code.hpp> A hpx::error_code represents an arbitrary error condition.

The class hpx::error_code describes an object used to hold error code values, such as those originating
from the operating system or other low-level application program interfaces.

Note Class hpx::error_code is an adjunct to error reporting by exception

Public Functions

error_code(throwmode mode = plain)
Construct an object of type error_code.

Parameters
• mode: The parameter mode specifies whether the constructed hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions
• nothing:

error_code(error e, throwmode mode = plain)
Construct an object of type error_code.

Parameters

2.9. API reference 751

HPX Documentation, 1.5.1

• e: The parameter e holds the hpx::error code the new exception should encapsulate.
• mode: The parameter mode specifies whether the constructed hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions
• nothing:

error_code(error e, char const *func, char const *file, long line, throwmode mode = plain)
Construct an object of type error_code.

Parameters
• e: The parameter e holds the hpx::error code the new exception should encapsulate.
• func: The name of the function where the error was raised.
• file: The file name of the code where the error was raised.
• line: The line number of the code line where the error was raised.
• mode: The parameter mode specifies whether the constructed hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions
• nothing:

error_code(error e, char const *msg, throwmode mode = plain)
Construct an object of type error_code.

Parameters
• e: The parameter e holds the hpx::error code the new exception should encapsulate.
• msg: The parameter msg holds the error message the new exception should encapsulate.
• mode: The parameter mode specifies whether the constructed hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions
• std::bad_alloc: (if allocation of a copy of the passed string fails).

error_code(error e, char const *msg, char const *func, char const *file, long line, throw-
mode mode = plain)

Construct an object of type error_code.

Parameters
• e: The parameter e holds the hpx::error code the new exception should encapsulate.
• msg: The parameter msg holds the error message the new exception should encapsulate.
• func: The name of the function where the error was raised.
• file: The file name of the code where the error was raised.
• line: The line number of the code line where the error was raised.
• mode: The parameter mode specifies whether the constructed hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions
• std::bad_alloc: (if allocation of a copy of the passed string fails).

error_code(error e, std::string const &msg, throwmode mode = plain)
Construct an object of type error_code.

Parameters
• e: The parameter e holds the hpx::error code the new exception should encapsulate.
• msg: The parameter msg holds the error message the new exception should encapsulate.
• mode: The parameter mode specifies whether the constructed hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category

752 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

hpx_category_rethrow (if mode is rethrow).
Exceptions

• std::bad_alloc: (if allocation of a copy of the passed string fails).

error_code(error e, std::string const &msg, char const *func, char const *file, long line,
throwmode mode = plain)

Construct an object of type error_code.

Parameters
• e: The parameter e holds the hpx::error code the new exception should encapsulate.
• msg: The parameter msg holds the error message the new exception should encapsulate.
• func: The name of the function where the error was raised.
• file: The file name of the code where the error was raised.
• line: The line number of the code line where the error was raised.
• mode: The parameter mode specifies whether the constructed hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

Exceptions
• std::bad_alloc: (if allocation of a copy of the passed string fails).

std::string get_message() const
Return a reference to the error message stored in the hpx::error_code.

Exceptions
• nothing:

void clear()
Clear this error_code object. The postconditions of invoking this method are.

• value() == hpx::success and category() == hpx::get_hpx_category()

error_code(error_code const &rhs)
Copy constructor for error_code

Note This function maintains the error category of the left hand side if the right hand side is a success
code.

error_code &operator=(error_code const &rhs)
Assignment operator for error_code

Note This function maintains the error category of the left hand side if the right hand side is a success
code.

Private Functions

error_code(int err, hpx::exception const &e)

error_code(std::exception_ptr const &e)

2.9. API reference 753

HPX Documentation, 1.5.1

Private Members

std::exception_ptr exception_

Friends

friend hpx::exception

error_code make_error_code(std::exception_ptr const &e)

Header hpx/errors/exception.hpp

namespace hpx

Typedefs

using custom_exception_info_handler_type = std::function<hpx::exception_info(std::string
const&,
std::string
const&,
long,
std::string
const&)>

using pre_exception_handler_type = std::function<void()>

Functions

void set_custom_exception_info_handler(custom_exception_info_handler_type f)

void set_pre_exception_handler(pre_exception_handler_type f)

std::string get_error_what(exception_info const &xi)
Return the error message of the thrown exception.

The function hpx::get_error_what can be used to extract the diagnostic information element representing
the error message as stored in the given exception instance.

Return The error message stored in the exception If the exception instance does not hold this information,
the function will return an empty string.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error() hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

754 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• std::bad_alloc: (if one of the required allocations fails)

error get_error(hpx::exception const &e)
Return the error code value of the exception thrown.

The function hpx::get_error can be used to extract the diagnostic information element representing the
error value code as stored in the given exception instance.

Return The error value code of the locality where the exception was thrown. If the exception instance
does not hold this information, the function will return hpx::naming::invalid_locality_id.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• e: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception, hpx::error_code, or std::exception_ptr.

Exceptions

• nothing:

error get_error(hpx::error_code const &e)
Return the error code value of the exception thrown.

The function hpx::get_error can be used to extract the diagnostic information element representing the
error value code as stored in the given exception instance.

Return The error value code of the locality where the exception was thrown. If the exception instance
does not hold this information, the function will return hpx::naming::invalid_locality_id.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• e: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception, hpx::error_code, or std::exception_ptr.

Exceptions

• nothing:

std::string get_error_function_name(hpx::exception_info const &xi)
Return the function name from which the exception was thrown.

The function hpx::get_error_function_name can be used to extract the diagnostic information element
representing the name of the function as stored in the given exception instance.

Return The name of the function from which the exception was thrown. If the exception instance does
not hold this information, the function will return an empty string.

2.9. API reference 755

HPX Documentation, 1.5.1

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id()
hpx::get_error_file_name(), hpx::get_error_line_number(), hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if one of the required allocations fails)

std::string get_error_file_name(hpx::exception_info const &xi)
Return the (source code) file name of the function from which the exception was thrown.

The function hpx::get_error_file_name can be used to extract the diagnostic information element repre-
senting the name of the source file as stored in the given exception instance.

Return The name of the source file of the function from which the exception was thrown. If the exception
instance does not hold this information, the function will return an empty string.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_line_number(), hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if one of the required allocations fails)

long get_error_line_number(hpx::exception_info const &xi)
Return the line number in the (source code) file of the function from which the exception was thrown.

The function hpx::get_error_line_number can be used to extract the diagnostic information element repre-
senting the line number as stored in the given exception instance.

Return The line number of the place where the exception was thrown. If the exception instance does not
hold this information, the function will return -1.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name() hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

756 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Exceptions

• nothing:

class exception : public system_error
#include <exception.hpp> A hpx::exception is the main exception type used by HPX to report errors.

The hpx::exception type is the main exception type used by HPX to report errors. Any exceptions thrown
by functions in the HPX library are either of this type or of a type derived from it. This implies that it is
always safe to use this type only in catch statements guarding HPX library calls.

Subclassed by hpx::exception_list

Public Functions

exception(error e = success)
Construct a hpx::exception from a hpx::error.

Parameters
• e: The parameter e holds the hpx::error code the new exception should encapsulate.

exception(boost::system::system_error const &e)
Construct a hpx::exception from a boost::system_error.

exception(boost::system::error_code const &e)
Construct a hpx::exception from a boost::system::error_code (this is new for Boost V1.69). This
constructor is required to compensate for the changes introduced as a resolution to LWG3162 (https:
//cplusplus.github.io/LWG/issue3162).

exception(error e, char const *msg, throwmode mode = plain)
Construct a hpx::exception from a hpx::error and an error message.

Parameters
• e: The parameter e holds the hpx::error code the new exception should encapsulate.
• msg: The parameter msg holds the error message the new exception should encapsulate.
• mode: The parameter mode specifies whether the returned hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

exception(error e, std::string const &msg, throwmode mode = plain)
Construct a hpx::exception from a hpx::error and an error message.

Parameters
• e: The parameter e holds the hpx::error code the new exception should encapsulate.
• msg: The parameter msg holds the error message the new exception should encapsulate.
• mode: The parameter mode specifies whether the returned hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

~exception()
Destruct a hpx::exception

Exceptions
• nothing:

error get_error() const
The function get_error() returns the hpx::error code stored in the referenced instance of a
hpx::exception. It returns the hpx::error code this exception instance was constructed from.

2.9. API reference 757

https://cplusplus.github.io/LWG/issue3162
https://cplusplus.github.io/LWG/issue3162

HPX Documentation, 1.5.1

Exceptions
• nothing:

error_code get_error_code(throwmode mode = plain) const
The function get_error_code() returns a hpx::error_code which represents the same error condition as
this hpx::exception instance.

Parameters
• mode: The parameter mode specifies whether the returned hpx::error_code belongs to

the error category hpx_category (if mode is plain, this is the default) or to the category
hpx_category_rethrow (if mode is rethrow).

struct thread_interrupted : public exception
#include <exception.hpp> A hpx::thread_interrupted is the exception type used by HPX to interrupt a
running HPX thread.

The hpx::thread_interrupted type is the exception type used by HPX to interrupt a running thread.

A running thread can be interrupted by invoking the interrupt() member function of the corresponding
hpx::thread object. When the interrupted thread next executes one of the specified interruption points (or
if it is currently blocked whilst executing one) with interruption enabled, then a hpx::thread_interrupted
exception will be thrown in the interrupted thread. If not caught, this will cause the execution of the
interrupted thread to terminate. As with any other exception, the stack will be unwound, and destructors
for objects of automatic storage duration will be executed.

If a thread wishes to avoid being interrupted, it can create an instance of
hpx::this_thread::disable_interruption. Objects of this class disable interruption for the thread that
created them on construction, and restore the interruption state to whatever it was before on destruction.

void f()
{

// interruption enabled here
{

hpx::this_thread::disable_interruption di;
// interruption disabled
{

hpx::this_thread::disable_interruption di2;
// interruption still disabled

} // di2 destroyed, interruption state restored
// interruption still disabled

} // di destroyed, interruption state restored
// interruption now enabled

}

The effects of an instance of hpx::this_thread::disable_interruption can be temporarily re-
versed by constructing an instance of hpx::this_thread::restore_interruption, passing in the
hpx::this_thread::disable_interruption object in question. This will restore the interruption state to what it
was when the hpx::this_thread::disable_interruption object was constructed, and then disable interruption
again when the hpx::this_thread::restore_interruption object is destroyed.

void g()
{

// interruption enabled here
{

hpx::this_thread::disable_interruption di;
// interruption disabled
{

hpx::this_thread::restore_interruption ri(di);

(continues on next page)

758 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

// interruption now enabled
} // ri destroyed, interruption disable again

} // di destroyed, interruption state restored
// interruption now enabled

}

At any point, the interruption state for the current thread can be queried by calling
hpx::this_thread::interruption_enabled().

Header hpx/errors/exception_fwd.hpp

namespace hpx

Enums

enum throwmode
Encode error category for new error_code.

Values:

plain = 0

rethrow = 1

lightweight = 0x80

Variables

error_code throws
Predefined error_code object used as “throw on error” tag.

The predefined hpx::error_code object hpx::throws is supplied for use as a “throw on error” tag.

Functions that specify an argument in the form ‘error_code& ec=throws’ (with appropriate namespace
qualifiers), have the following error handling semantics:

If &ec != &throws and an error occurred: ec.value() returns the implementation specific error number for
the particular error that occurred and ec.category() returns the error_category for ec.value().

If &ec != &throws and an error did not occur, ec.clear().

If an error occurs and &ec == &throws, the function throws an exception of type hpx::exception or
of a type derived from it. The exception’s get_errorcode() member function returns a reference to an
hpx::error_code object with the behavior as specified above.

2.9. API reference 759

HPX Documentation, 1.5.1

Header hpx/errors/exception_info.hpp

Defines

HPX_DEFINE_ERROR_INFO(NAME, TYPE)

namespace hpx

Functions

template<typename E>HPX_NORETURN void hpx::throw_with_info(E && e, exception_info && xi = exception_info ())

template<typename E>HPX_NORETURN void hpx::throw_with_info(E && e, exception_info const & xi)

template<typename E>
exception_info *get_exception_info(E &e)

template<typename E>
exception_info const *get_exception_info(E const &e)

template<typename E, typename F>
auto invoke_with_exception_info(E const &e, F &&f)

template<typename F>
auto invoke_with_exception_info(std::exception_ptr const &p, F &&f)

template<typename F>
auto invoke_with_exception_info(hpx::error_code const &ec, F &&f)

template<typename Tag, typename Type>
struct error_info

#include <exception_info.hpp>

Public Types

template<>
using tag = Tag

template<>
using type = Type

Public Functions

error_info(Type const &value)

error_info(Type &&value)

760 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

Type _value

class exception_info
#include <exception_info.hpp> Subclassed by hpx::detail::exception_with_info_base

Public Functions

exception_info()

exception_info(exception_info const &other)

exception_info(exception_info &&other)

exception_info &operator=(exception_info const &other)

exception_info &operator=(exception_info &&other)

virtual ~exception_info()

template<typename ...ErrorInfo>
exception_info &set(ErrorInfo&&... tagged_values)

template<typename Tag>
Tag::type const *get() const

Private Types

using node_ptr = std::shared_ptr<detail::exception_info_node_base>

Private Members

node_ptr _data

Header hpx/errors/exception_list.hpp

namespace hpx

class exception_list : public hpx::exception
#include <exception_list.hpp> The class exception_list is a container of exception_ptr objects parallel
algorithms may use to communicate uncaught exceptions encountered during parallel execution to the
caller of the algorithm

The type exception_list::const_iterator fulfills the requirements of a forward iterator.

2.9. API reference 761

HPX Documentation, 1.5.1

Public Types

typedef exception_list_type::const_iterator iterator
bidirectional iterator

Public Functions

std::size_t size() const
The number of exception_ptr objects contained within the exception_list.

Note Complexity: Constant time.

exception_list_type::const_iterator begin() const
An iterator referring to the first exception_ptr object contained within the exception_list.

exception_list_type::const_iterator end() const
An iterator which is the past-the-end value for the exception_list.

Private Types

typedef boost::detail::spinlock mutex_type

typedef std::list<std::exception_ptr> exception_list_type

Private Members

exception_list_type exceptions_

mutex_type mtx_

Header hpx/errors/throw_exception.hpp

Defines

HPX_THROW_EXCEPTION(errcode, f, msg)
Throw a hpx::exception initialized from the given parameters.

The macro HPX_THROW_EXCEPTION can be used to throw a hpx::exception. The purpose of this macro
is to prepend the source file name and line number of the position where the exception is thrown to the error
message. Moreover, this associates additional diagnostic information with the exception, such as file name and
line number, locality id and thread id, and stack backtrace from the point where the exception was thrown.

The parameter errcode holds the hpx::error code the new exception should encapsulate. The parameter f
is expected to hold the name of the function exception is thrown from and the parameter msg holds the error
message the new exception should encapsulate.

void raise_exception()
{

// Throw a hpx::exception initialized from the given parameters.
// Additionally associate with this exception some detailed
// diagnostic information about the throw-site.
HPX_THROW_EXCEPTION(hpx::no_success, "raise_exception", "simulated error");

}

762 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Example:

HPX_THROWS_IF(ec, errcode, f, msg)
Either throw a hpx::exception or initialize hpx::error_code from the given parameters.

The macro HPX_THROWS_IF can be used to either throw a hpx::exception or to initialize a hpx::error_code
from the given parameters. If &ec == &hpx::throws, the semantics of this macro are equivalent to
HPX_THROW_EXCEPTION. If &ec != &hpx::throws, the hpx::error_code instance ec is initialized instead.

The parameter errcode holds the hpx::error code from which the new exception should be initialized. The
parameter f is expected to hold the name of the function exception is thrown from and the parameter msg holds
the error message the new exception should encapsulate.

Header hpx/exception.hpp

Header hpx/system_error.hpp

execution

The contents of this module can be included with the header hpx/modules/execution.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/execution.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/execution/execution.hpp

Header hpx/execution/executor_parameters.hpp

Header hpx/execution/executors/auto_chunk_size.hpp

namespace hpx

namespace parallel

namespace execution

struct auto_chunk_size
#include <auto_chunk_size.hpp> Loop iterations are divided into pieces and then assigned to
threads. The number of loop iterations combined is determined based on measurements of how
long the execution of 1% of the overall number of iterations takes. This executor parameters type
makes sure that as many loop iterations are combined as necessary to run for the amount of time
specified.

2.9. API reference 763

HPX Documentation, 1.5.1

Public Functions

constexpr auto_chunk_size(std::uint64_t num_iters_for_timing = 0)
Construct an auto_chunk_size executor parameters object

Note Default constructed auto_chunk_size executor parameter types will use 80 microseconds
as the minimal time for which any of the scheduled chunks should run.

auto_chunk_size(hpx::util::steady_duration const &rel_time, std::uint64_t
num_iters_for_timing = 0)

Construct an auto_chunk_size executor parameters object

Parameters
• rel_time: [in] The time duration to use as the minimum to decide how many loop

iterations should be combined.

Header hpx/execution/executors/dynamic_chunk_size.hpp

namespace hpx

namespace parallel

namespace execution

struct dynamic_chunk_size
#include <dynamic_chunk_size.hpp> Loop iterations are divided into pieces of size chunk_size
and then dynamically scheduled among the threads; when a thread finishes one chunk, it is dy-
namically assigned another If chunk_size is not specified, the default chunk size is 1.

Note This executor parameters type is equivalent to OpenMP’s DYNAMIC scheduling directive.

Public Functions

constexpr dynamic_chunk_size(std::size_t chunk_size = 1)
Construct a dynamic_chunk_size executor parameters object

Parameters
• chunk_size: [in] The optional chunk size to use as the number of loop iterations to

schedule together. The default chunk size is 1.

Header hpx/execution/executors/execution.hpp

Header hpx/execution/executors/execution_information.hpp

Header hpx/execution/executors/execution_information_fwd.hpp

Header hpx/execution/executors/execution_parameters.hpp

namespace hpx

764 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

namespace parallel

namespace execution

Functions

template<typename ...Params>
executor_parameters_join<Params...>::type join_executor_parameters(Params&&...

params)

template<typename Param>
Param &&join_executor_parameters(Param &¶m)

template<typename ...Params>
struct executor_parameters_join

#include <execution_parameters.hpp>

Public Types

template<>
using type = detail::executor_parameters<typename hpx::util::decay<Params>::type...>

template<typename Param>
struct executor_parameters_join<Param>

#include <execution_parameters.hpp>

Public Types

template<>
using type = Param

Header hpx/execution/executors/execution_parameters_fwd.hpp

Header hpx/execution/executors/fused_bulk_execute.hpp

Header hpx/execution/executors/guided_chunk_size.hpp

namespace hpx

namespace parallel

namespace execution

struct guided_chunk_size
#include <guided_chunk_size.hpp> Iterations are dynamically assigned to threads in blocks as
threads request them until no blocks remain to be assigned. Similar to dynamic_chunk_size ex-
cept that the block size decreases each time a number of loop iterations is given to a thread.

2.9. API reference 765

HPX Documentation, 1.5.1

The size of the initial block is proportional to number_of_iterations / number_of_cores. Subse-
quent blocks are proportional to number_of_iterations_remaining / number_of_cores. The op-
tional chunk size parameter defines the minimum block size. The default chunk size is 1.

Note This executor parameters type is equivalent to OpenMP’s GUIDED scheduling directive.

Public Functions

constexpr guided_chunk_size(std::size_t min_chunk_size = 1)
Construct a guided_chunk_size executor parameters object

Parameters
• min_chunk_size: [in] The optional minimal chunk size to use as the minimal number

of loop iterations to schedule together. The default minimal chunk size is 1.

Header hpx/execution/executors/persistent_auto_chunk_size.hpp

namespace hpx

namespace parallel

namespace execution

struct persistent_auto_chunk_size
#include <persistent_auto_chunk_size.hpp> Loop iterations are divided into pieces and then as-
signed to threads. The number of loop iterations combined is determined based on measurements
of how long the execution of 1% of the overall number of iterations takes. This executor parame-
ters type makes sure that as many loop iterations are combined as necessary to run for the amount
of time specified.

Public Functions

constexpr persistent_auto_chunk_size(std::uint64_t num_iters_for_timing =
0)

Construct an persistent_auto_chunk_size executor parameters object

Note Default constructed persistent_auto_chunk_size executor parameter types will use 0 mi-
croseconds as the execution time for each chunk and 80 microseconds as the minimal time
for which any of the scheduled chunks should run.

persistent_auto_chunk_size(hpx::util::steady_duration const &time_cs,
std::uint64_t num_iters_for_timing = 0)

Construct an persistent_auto_chunk_size executor parameters object

Parameters
• time_cs: The execution time for each chunk.

persistent_auto_chunk_size(hpx::util::steady_duration const &time_cs,
hpx::util::steady_duration const &rel_time,
std::uint64_t num_iters_for_timing = 0)

Construct an persistent_auto_chunk_size executor parameters object

Parameters

766 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• rel_time: [in] The time duration to use as the minimum to decide how many loop
iterations should be combined.

• time_cs: The execution time for each chunk.

Header hpx/execution/executors/polymorphic_executor.hpp

namespace hpx

namespace parallel

namespace execution

template<typename R, typename ...Ts>
class polymorphic_executor<R(Ts...)> : private

hpx::parallel::execution::detail::polymorphic_executor_base
#include <polymorphic_executor.hpp>

Public Types

template<>
using future_type = hpx::future<R>

Public Functions

constexpr polymorphic_executor()

polymorphic_executor(polymorphic_executor const &other)

polymorphic_executor(polymorphic_executor &&other)

polymorphic_executor &operator=(polymorphic_executor const &other)

polymorphic_executor &operator=(polymorphic_executor &&other)

template<typename Exec, typename PE = typename std::decay<Exec>::type, typename Enable = typename std::enable_if<!std::is_same<PE, polymorphic_executor>::value>::type>
polymorphic_executor(Exec &&exec)

template<typename Exec, typename PE = typename std::decay<Exec>::type, typename Enable = typename std::enable_if<!std::is_same<PE, polymorphic_executor>::value>::type>
polymorphic_executor &operator=(Exec &&exec)

void reset()

template<typename F>
void post(F &&f, Ts... ts) const

template<typename F>
R sync_execute(F &&f, Ts... ts) const

template<typename F>
hpx::future<R> async_execute(F &&f, Ts... ts) const

template<typename F, typename Future>

2.9. API reference 767

HPX Documentation, 1.5.1

hpx::future<R> then_execute(F &&f, Future &&predecessor, Ts&&... ts) const

template<typename F, typename Shape>
std::vector<R> bulk_sync_execute(F &&f, Shape const &s, Ts&&... ts) const

template<typename F, typename Shape>
std::vector<hpx::future<R>> bulk_async_execute(F &&f, Shape const &s, Ts&&...

ts) const

template<typename F, typename Shape>
hpx::future<std::vector<R>> bulk_then_execute(F &&f, Shape const &s,

hpx::shared_future<void> const
&predecessor, Ts&&... ts) const

Private Types

template<>
using base_type = detail::polymorphic_executor_base

template<>
using vtable = detail::polymorphic_executor_vtable<R(Ts...)>

Private Functions

void assign(std::nullptr_t)

template<typename Exec>
void assign(Exec &&exec)

Private Static Functions

static constexpr vtable const *get_empty_vtable()

template<typename T>
static constexpr vtable const *get_vtable()

Header hpx/execution/executors/rebind_executor.hpp

namespace hpx

namespace parallel

namespace execution

template<typename ExecutionPolicy, typename Executor, typename Parameters>
struct rebind_executor

#include <rebind_executor.hpp> Rebind the type of executor used by an execution policy. The
execution category of Executor shall not be weaker than that of ExecutionPolicy.

768 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef ExecutionPolicy::template rebind<executor_type, parameters_type>::type type
The type of the rebound execution policy.

Header hpx/execution/executors/static_chunk_size.hpp

namespace hpx

namespace parallel

namespace execution

struct static_chunk_size
#include <static_chunk_size.hpp> Loop iterations are divided into pieces of size chunk_size and
then assigned to threads. If chunk_size is not specified, the iterations are evenly (if possible)
divided contiguously among the threads.

Note This executor parameters type is equivalent to OpenMP’s STATIC scheduling directive.

Public Functions

constexpr static_chunk_size()
Construct a static_chunk_size executor parameters object

Note By default the number of loop iterations is determined from the number of available
cores and the overall number of loop iterations to schedule.

constexpr static_chunk_size(std::size_t chunk_size)
Construct a static_chunk_size executor parameters object

Parameters
• chunk_size: [in] The optional chunk size to use as the number of loop iterations to run

on a single thread.

Header hpx/execution/traits/executor_traits.hpp

namespace hpx

namespace parallel

namespace execution

2.9. API reference 769

HPX Documentation, 1.5.1

Typedefs

using executor_future_t = typename executor_future<Executor, T, Ts...>::type

template<typename Executor>
struct executor_context

#include <executor_traits.hpp>

Public Types

template<>
using type = typename std::decay::type

template<typename Executor>
struct executor_execution_category

#include <executor_traits.hpp>

Public Types

template<>
using type = hpx::util::detected_or_t<unsequenced_execution_tag, execution_category, Executor>

Private Types

template<>
using execution_category = typename T::execution_category

template<typename Executor>
struct executor_index

#include <executor_traits.hpp>

Public Types

template<>
using type = hpx::util::detected_or_t<typename executor_shape<Executor>::type, index_type, Executor>

Private Types

template<>
using index_type = typename T::index_type

template<typename Executor>
struct executor_parameters_type

#include <executor_traits.hpp>

770 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

template<>
using type = hpx::util::detected_or_t<parallel::execution::static_chunk_size, parameters_type, Executor>

Private Types

template<>
using parameters_type = typename T::parameters_type

template<typename Executor>
struct executor_shape

#include <executor_traits.hpp>

Public Types

template<>
using type = hpx::util::detected_or_t<std::size_t, shape_type, Executor>

Private Types

template<>
using shape_type = typename T::shape_type

namespace traits

Typedefs

using executor_context_t = typename executor_context<Executor>::type

using executor_execution_category_t = typename executor_execution_category<Executor>::type

using executor_shape_t = typename executor_shape<Executor>::type

using executor_index_t = typename executor_index<Executor>::type

using executor_future_t = typename executor_future<Executor, T, Ts...>::type

using executor_parameters_type_t = typename executor_parameters_type<Executor>::type

Header hpx/execution/traits/future_then_result_exec.hpp

Header hpx/execution/traits/is_execution_policy.hpp

namespace hpx

namespace parallel

namespace execution

template<typename T>

2.9. API reference 771

HPX Documentation, 1.5.1

struct is_async_execution_policy : public execution::detail::is_async_execution_policy<hpx::util::decay<T>::type>
#include <is_execution_policy.hpp> Extension: Detect whether given execution policy makes
algorithms asynchronous

1. The type is_async_execution_policy can be used to detect asynchronous execution policies for
the purpose of excluding function signatures from otherwise ambiguous overload resolution
participation.

2. If T is the type of a standard or implementation-defined execution policy,
is_async_execution_policy<T> shall be publicly derived from integral_constant<bool,
true>, otherwise from integral_constant<bool, false>.

3. The behavior of a program that adds specializations for is_async_execution_policy is unde-
fined.

template<typename T>
struct is_execution_policy : public execution::detail::is_execution_policy<hpx::util::decay<T>::type>

#include <is_execution_policy.hpp>
1. The type is_execution_policy can be used to detect execution policies for the purpose of ex-

cluding function signatures from otherwise ambiguous overload resolution participation.
2. If T is the type of a standard or implementation-defined execution policy,

is_execution_policy<T> shall be publicly derived from integral_constant<bool, true>,
otherwise from integral_constant<bool, false>.

3. The behavior of a program that adds specializations for is_execution_policy is undefined.

template<typename T>
struct is_parallel_execution_policy : public execution::detail::is_parallel_execution_policy<hpx::util::decay<T>::type>

#include <is_execution_policy.hpp> Extension: Detect whether given execution policy enables
parallelization

1. The type is_parallel_execution_policy can be used to detect parallel execution policies for
the purpose of excluding function signatures from otherwise ambiguous overload resolution
participation.

2. If T is the type of a standard or implementation-defined execution policy,
is_parallel_execution_policy<T> shall be publicly derived from integral_constant<bool,
true>, otherwise from integral_constant<bool, false>.

3. The behavior of a program that adds specializations for is_parallel_execution_policy is unde-
fined.

template<typename T>
struct is_sequenced_execution_policy : public execution::detail::is_sequenced_execution_policy<hpx::util::decay<T>::type>

#include <is_execution_policy.hpp> Extension: Detect whether given execution policy does not
enable parallelization

1. The type is_sequenced_execution_policy can be used to detect non-parallel execution policies
for the purpose of excluding function signatures from otherwise ambiguous overload resolution
participation.

2. If T is the type of a standard or implementation-defined execution policy,
is_sequenced_execution_policy<T> shall be publicly derived from integral_constant<bool,
true>, otherwise from integral_constant<bool, false>.

3. The behavior of a program that adds specializations for is_sequenced_execution_policy is un-
defined.

772 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/execution/traits/is_executor.hpp

namespace hpx

namespace parallel

namespace execution

Typedefs

using is_one_way_executor_t = typename is_one_way_executor<T>::type

using is_never_blocking_one_way_executor_t = typename is_never_blocking_one_way_executor<T>::type

using is_bulk_one_way_executor_t = typename is_bulk_one_way_executor<T>::type

using is_two_way_executor_t = typename is_two_way_executor<T>::type

using is_bulk_two_way_executor_t = typename is_bulk_two_way_executor<T>::type

namespace traits

Typedefs

using is_one_way_executor_t = typename is_one_way_executor<T>::type

using is_never_blocking_one_way_executor_t = typename is_never_blocking_one_way_executor<T>::type

using is_bulk_one_way_executor_t = typename is_bulk_one_way_executor<T>::type

using is_two_way_executor_t = typename is_two_way_executor<T>::type

using is_bulk_two_way_executor_t = typename is_bulk_two_way_executor<T>::type

using is_executor_any_t = typename is_executor_any<T>::type

Header hpx/execution/traits/is_executor_parameters.hpp

template<typename Executor>
struct extract_executor_parameters<Executor, typename hpx::util::always_void<typename Executor::executor_parameters_type>::type>

#include <is_executor_parameters.hpp>

Public Types

template<>
using type = typename Executor::executor_parameters_type

template<typename Parameters>
struct extract_has_variable_chunk_size<Parameters, typename hpx::util::always_void<typename Parameters::has_variable_chunk_size>::type>

#include <is_executor_parameters.hpp>

2.9. API reference 773

HPX Documentation, 1.5.1

Public Types

template<>
using type = typename Parameters::has_variable_chunk_size

namespace hpx

namespace parallel

namespace execution

Typedefs

using is_executor_parameters_t = typename is_executor_parameters<T>::type

template<typename Executor, typename Enable = void>
struct extract_executor_parameters

#include <is_executor_parameters.hpp>

Public Types

template<>
using type = sequential_executor_parameters

template<typename Executor>
struct extract_executor_parameters<Executor, typename hpx::util::always_void<typename Executor::executor_parameters_type>::type>

#include <is_executor_parameters.hpp>

Public Types

template<>
using type = typename Executor::executor_parameters_type

template<typename Parameters, typename Enable = void>
struct extract_has_variable_chunk_size

#include <is_executor_parameters.hpp>

Public Types

template<>
using type = std::false_type

template<typename Parameters>
struct extract_has_variable_chunk_size<Parameters, typename hpx::util::always_void<typename Parameters::has_variable_chunk_size>::type>

#include <is_executor_parameters.hpp>

774 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

template<>
using type = typename Parameters::has_variable_chunk_size

namespace traits

Typedefs

using is_executor_parameters_t = typename is_executor_parameters<T>::type

Header hpx/execution/traits/vector_pack_alignment_size.hpp

Header hpx/execution/traits/vector_pack_count_bits.hpp

namespace hpx

namespace parallel

namespace traits

Functions

std::size_t count_bits(bool value)

Header hpx/execution/traits/vector_pack_load_store.hpp

Header hpx/execution/traits/vector_pack_type.hpp

execution_base

The contents of this module can be included with the header hpx/modules/execution_base.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/execution_base.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/execution_base/agent_base.hpp

namespace hpx

namespace execution_base

struct agent_base
#include <agent_base.hpp>

2.9. API reference 775

HPX Documentation, 1.5.1

Public Functions

virtual ~agent_base()

virtual std::string description() const = 0

virtual context_base const &context() const = 0

virtual void yield(char const *desc) = 0

virtual void yield_k(std::size_t k, char const *desc) = 0

virtual void suspend(char const *desc) = 0

virtual void resume(char const *desc) = 0

virtual void abort(char const *desc) = 0

virtual void sleep_for(hpx::util::steady_duration const &sleep_duration, char const
*desc) = 0

virtual void sleep_until(hpx::util::steady_time_point const&sleep_time, char const
*desc) = 0

Header hpx/execution_base/agent_ref.hpp

namespace hpx

namespace execution_base

class agent_ref
#include <agent_ref.hpp>

Public Functions

constexpr agent_ref()

constexpr agent_ref(agent_base *impl)

constexpr agent_ref(agent_ref const&)

constexpr agent_ref &operator=(agent_ref const&)

constexpr agent_ref(agent_ref &&)

constexpr agent_ref &operator=(agent_ref &&)

constexpr operator bool() const

void reset(agent_base *impl = nullptr)

void yield(char const *desc = "hpx::execution_base::agent_ref::yield")

void yield_k(std::size_t k, char const *desc = "hpx::execution_base::agent_ref::yield_k")

void suspend(char const *desc = "hpx::execution_base::agent_ref::suspend")

776 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void resume(char const *desc = "hpx::execution_base::agent_ref::resume")

void abort(char const *desc = "hpx::execution_base::agent_ref::abort")

template<typename Rep, typename Period>
void sleep_for(std::chrono::duration<Rep, Period> const &sleep_duration, char const

*desc = "hpx::execution_base::agent_ref::sleep_for")

template<typename Clock, typename Duration>
void sleep_until(std::chrono::time_point<Clock, Duration> const &sleep_time, char

const *desc = "hpx::execution_base::agent_ref::sleep_until")

agent_base &ref()

Private Functions

void sleep_for(hpx::util::steady_duration const &sleep_duration, char const *desc)

void sleep_until(hpx::util::steady_time_point const &sleep_time, char const *desc)

Private Members

agent_base *impl_

Friends

constexpr bool operator==(agent_ref const &lhs, agent_ref const &rhs)

constexpr bool operator!=(agent_ref const &lhs, agent_ref const &rhs)

std::ostream &operator<<(std::ostream&, agent_ref const&)

Header hpx/execution_base/context_base.hpp

namespace hpx

namespace execution_base

struct context_base
#include <context_base.hpp>

Public Functions

virtual ~context_base()

virtual resource_base const &resource() const = 0

2.9. API reference 777

HPX Documentation, 1.5.1

Header hpx/execution_base/execution.hpp

namespace hpx

namespace parallel

namespace execution

struct parallel_execution_tag
#include <execution.hpp> Function invocations executed by a group of parallel execution agents
execute in unordered fashion. Any such invocations executing in the same thread are indetermi-
nately sequenced with respect to each other.

Note parallel_execution_tag is weaker than sequenced_execution_tag.

struct sequenced_execution_tag
#include <execution.hpp> Function invocations executed by a group of sequential execution
agents execute in sequential order.

struct unsequenced_execution_tag
#include <execution.hpp> Function invocations executed by a group of vector execution agents
are permitted to execute in unordered fashion when executed in different threads, and un-
sequenced with respect to one another when executed in the same thread.

Note unsequenced_execution_tag is weaker than parallel_execution_tag.

Header hpx/execution_base/register_locks.hpp

namespace hpx

namespace util

Functions

constexpr bool register_lock(void const*, util::register_lock_data* = nullptr)

constexpr bool unregister_lock(void const*)

constexpr void verify_no_locks()

constexpr void force_error_on_lock()

constexpr void enable_lock_detection()

constexpr void disable_lock_detection()

constexpr void trace_depth_lock_detection(std::size_t)

constexpr void ignore_lock(void const*)

constexpr void reset_ignored(void const*)

constexpr void ignore_all_locks()

778 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

constexpr void reset_ignored_all()

std::unique_ptr<held_locks_data> get_held_locks_data()

constexpr void set_held_locks_data(std::unique_ptr<held_locks_data>&&)

struct ignore_all_while_checking
#include <register_locks.hpp>

Public Functions

ignore_all_while_checking()

template<typename Lock, typename Enable>
struct ignore_while_checking

#include <register_locks.hpp>

Public Functions

ignore_while_checking(void const*)

Header hpx/execution_base/resource_base.hpp

namespace hpx

namespace execution_base

struct resource_base
#include <resource_base.hpp> TODO: implement, this is currently just a dummy.

Public Functions

virtual ~resource_base()

Header hpx/execution_base/this_thread.hpp

namespace hpx

namespace execution_base

namespace this_thread

2.9. API reference 779

HPX Documentation, 1.5.1

Functions

hpx::execution_base::agent_ref agent()

void yield(char const *desc = "hpx::execution_base::this_thread::yield")

void yield_k(std::size_t k, char const *desc = "hpx::execution_base::this_thread::yield_k")

void suspend(char const *desc = "hpx::execution_base::this_thread::suspend")

template<typename Rep, typename Period>
void sleep_for(std::chrono::duration<Rep, Period> const &sleep_duration, char const

*desc = "hpx::execution_base::this_thread::sleep_for")

template<class Clock, class Duration>
void sleep_until(std::chrono::time_point<Clock, Duration> const &sleep_time, char

const *desc = "hpx::execution_base::this_thread::sleep_for")

struct reset_agent
#include <this_thread.hpp>

Public Functions

reset_agent(detail::agent_storage*, agent_base &impl)

reset_agent(agent_base &impl)

~reset_agent()

Public Members

detail::agent_storage *storage_

agent_base *old_

namespace util

Functions

template<typename Predicate>
void yield_while(Predicate &&predicate, const char *thread_name = nullptr, bool al-

low_timed_suspension = true)

executors

The contents of this module can be included with the header hpx/modules/executors.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/executors.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

780 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/executors/apply.hpp

Header hpx/executors/async.hpp

Header hpx/executors/current_executor.hpp

namespace hpx

namespace parallel

namespace execution

Typedefs

using current_executor = parallel::execution::thread_pool_executor

namespace this_thread

Functions

parallel::execution::current_executor get_executor(error_code &ec = throws)
Returns a reference to the executor which was used to create the current thread.

Exceptions
• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-

ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

namespace threads

Functions

parallel::execution::current_executor get_executor(thread_id_type const &id, error_code
&ec = throws)

Returns a reference to the executor which was used to create the given thread.

Exceptions
• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-

ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

2.9. API reference 781

HPX Documentation, 1.5.1

Header hpx/executors/dataflow.hpp

Header hpx/executors/datapar/execution_policy.hpp

Header hpx/executors/datapar/execution_policy_fwd.hpp

Header hpx/executors/exception_list.hpp

Header hpx/executors/execution_policy.hpp

namespace hpx

namespace parallel

namespace execution

Variables

constexpr task_policy_tag task
Default sequential execution policy object.

constexpr sequenced_policy seq
Default sequential execution policy object.

constexpr parallel_policy par
Default parallel execution policy object.

constexpr parallel_unsequenced_policy par_unseq
Default vector execution policy object.

struct parallel_policy
#include <execution_policy.hpp> The class parallel_policy is an execution policy type used as a
unique type to disambiguate parallel algorithm overloading and indicate that a parallel algorithm’s
execution may be parallelized.

Subclassed by hpx::parallel::execution::parallel_policy_shim< Executor, Parameters >

Public Types

typedef parallel_executor executor_type
The type of the executor associated with this execution policy.

typedef execution::extract_executor_parameters<executor_type>::type executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef parallel_execution_tag execution_category
The category of the execution agents created by this execution policy.

782 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

constexpr parallel_task_policy operator()(task_policy_tag) const
Create a new parallel_policy referencing a chunk size.

Return The new parallel_policy
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor>
rebind_executor<parallel_policy, Executor, executor_parameters_type>::type on(Executor

&&exec)
const

Create a new parallel_policy referencing an executor and a chunk size.

Return The new parallel_policy
Parameters

• exec: [in] The executor to use for the execution of the parallel algorithm the returned
execution policy is used with

template<typename ...Parameters, typename ParametersType = typename executor_parameters_join<Parameters...>::type>
rebind_executor<parallel_policy, executor_type, ParametersType>::type with(Parameters&&...

params)
const

Create a new parallel_policy from the given execution parameters

Note Requires: is_executor_parameters<Parameters>::value is true
Return The new parallel_policy
Template Parameters

• Parameters: The type of the executor parameters to associate with this execution pol-
icy.

Parameters
• params: [in] The executor parameters to use for the execution of the parallel algorithm

the returned execution policy is used with.

executor_type &executor()
Return the associated executor object.

constexpr executor_type const &executor() const
Return the associated executor object.

executor_parameters_type ¶meters()
Return the associated executor parameters object.

constexpr executor_parameters_type const ¶meters() const
Return the associated executor parameters object.

Private Functions

template<typename Archive>
void serialize(Archive &ar, const unsigned int version)

2.9. API reference 783

HPX Documentation, 1.5.1

Private Members

executor_type exec_

executor_parameters_type params_

Friends

friend hpx::parallel::execution::hpx::serialization::access

template<typename Executor_, typename Parameters_>
struct rebind

#include <execution_policy.hpp> Rebind the type of executor used by this execution policy.
The execution category of Executor shall not be weaker than that of this execution policy

Public Types

typedef parallel_policy_shim<Executor_, Parameters_> type
The type of the rebound execution policy.

template<typename Executor, typename Parameters>
struct parallel_policy_shim : public hpx::parallel::execution::parallel_policy

#include <execution_policy.hpp> The class parallel_policy_shim is an execution policy type used
as a unique type to disambiguate parallel algorithm overloading and indicate that a parallel algo-
rithm’s execution may be parallelized.

Public Types

typedef Executor executor_type
The type of the executor associated with this execution policy.

typedef Parameters executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef hpx::traits::executor_execution_category<executor_type>::type execution_category
The category of the execution agents created by this execution policy.

Public Functions

constexpr parallel_task_policy_shim<Executor, Parameters> operator()(task_policy_tag
tag)
const

Create a new parallel_policy referencing a chunk size.

Return The new parallel_policy
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor_>
rebind_executor<parallel_policy_shim, Executor_, executor_parameters_type>::type on(Executor_

&&exec)
const

Create a new parallel_policy from the given executor

784 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note Requires: is_executor<Executor>::value is true
Return The new parallel_policy
Template Parameters

• Executor: The type of the executor to associate with this execution policy.
Parameters

• exec: [in] The executor to use for the execution of the parallel algorithm the returned
execution policy is used with.

template<typename ...Parameters_, typename ParametersType = typename executor_parameters_join<Parameters_...>::type>
rebind_executor<parallel_policy_shim, executor_type, ParametersType>::type with(Parameters_&&...

params)
const

Create a new parallel_policy_shim from the given execution parameters

Note Requires: is_executor_parameters<Parameters>::value is true
Return The new parallel_policy_shim
Template Parameters

• Parameters: The type of the executor parameters to associate with this execution pol-
icy.

Parameters
• params: [in] The executor parameters to use for the execution of the parallel algorithm

the returned execution policy is used with.

Executor &executor()
Return the associated executor object.

constexpr Executor const &executor() const
Return the associated executor object.

Parameters ¶meters()
Return the associated executor parameters object.

constexpr Parameters const ¶meters() const
Return the associated executor parameters object.

template<typename Executor_, typename Parameters_>
struct rebind

#include <execution_policy.hpp> Rebind the type of executor used by this execution policy.
The execution category of Executor shall not be weaker than that of this execution policy

Public Types

template<>
typedef parallel_policy_shim<Executor_, Parameters_> type

The type of the rebound execution policy.

struct parallel_task_policy
#include <execution_policy.hpp> Extension: The class parallel_task_policy is an execution pol-
icy type used as a unique type to disambiguate parallel algorithm overloading and indicate that a
parallel algorithm’s execution may be parallelized.

The algorithm returns a future representing the result of the corresponding algorithm when in-
voked with the parallel_policy.

Subclassed by hpx::parallel::execution::parallel_task_policy_shim< Executor, Parameters >

2.9. API reference 785

HPX Documentation, 1.5.1

Public Types

typedef parallel_executor executor_type
The type of the executor associated with this execution policy.

typedef execution::extract_executor_parameters<executor_type>::type executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef parallel_execution_tag execution_category
The category of the execution agents created by this execution policy.

Public Functions

constexpr parallel_task_policy operator()(task_policy_tag) const
Create a new parallel_task_policy from itself

Return The new parallel_task_policy
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor>
rebind_executor<parallel_task_policy, Executor, executor_parameters_type>::type on(Executor

&&exec)
const

Create a new parallel_task_policy from given executor

Note Requires: is_executor<Executor>::value is true
Return The new parallel_task_policy
Template Parameters

• Executor: The type of the executor to associate with this execution policy.
Parameters

• exec: [in] The executor to use for the execution of the parallel algorithm the returned
execution policy is used with.

template<typename ...Parameters, typename ParametersType = typename executor_parameters_join<Parameters...>::type>
rebind_executor<parallel_task_policy, executor_type, ParametersType>::type with(Parameters&&...

params)
const

Create a new parallel_policy_shim from the given execution parameters

Note Requires: all parameters are executor_parameters, different parameter types can’t be
duplicated

Return The new parallel_policy_shim
Template Parameters

• Parameters: The type of the executor parameters to associate with this execution pol-
icy.

Parameters
• params: [in] The executor parameters to use for the execution of the parallel algorithm

the returned execution policy is used with.

executor_type &executor()
Return the associated executor object.

constexpr executor_type const &executor() const
Return the associated executor object.

786 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

executor_parameters_type ¶meters()
Return the associated executor parameters object.

constexpr executor_parameters_type const ¶meters() const
Return the associated executor parameters object.

Private Functions

template<typename Archive>
void serialize(Archive &ar, const unsigned int version)

Private Members

executor_type exec_

executor_parameters_type params_

Friends

friend hpx::parallel::execution::hpx::serialization::access

template<typename Executor_, typename Parameters_>
struct rebind

#include <execution_policy.hpp> Rebind the type of executor used by this execution policy.
The execution category of Executor shall not be weaker than that of this execution policy

Public Types

typedef parallel_task_policy_shim<Executor_, Parameters_> type
The type of the rebound execution policy.

template<typename Executor, typename Parameters>
struct parallel_task_policy_shim : public hpx::parallel::execution::parallel_task_policy

#include <execution_policy.hpp> Extension: The class parallel_task_policy_shim is an execu-
tion policy type used as a unique type to disambiguate parallel algorithm overloading based on
combining a underlying parallel_task_policy and an executor and indicate that a parallel algo-
rithm’s execution may be parallelized.

Public Types

typedef Executor executor_type
The type of the executor associated with this execution policy.

typedef Parameters executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef hpx::traits::executor_execution_category<executor_type>::type execution_category
The category of the execution agents created by this execution policy.

2.9. API reference 787

HPX Documentation, 1.5.1

Public Functions

constexpr parallel_task_policy_shim operator()(task_policy_tag tag) const
Create a new parallel_task_policy_shim from itself

Return The new sequenced_task_policy
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor_>
rebind_executor<parallel_task_policy_shim, Executor_, executor_parameters_type>::type on(Executor_

&&exec)
const

Create a new parallel_task_policy from the given executor

Note Requires: is_executor<Executor>::value is true
Return The new parallel_task_policy
Template Parameters

• Executor: The type of the executor to associate with this execution policy.
Parameters

• exec: [in] The executor to use for the execution of the parallel algorithm the returned
execution policy is used with.

template<typename ...Parameters_, typename ParametersType = typename executor_parameters_join<Parameters_...>::type>
rebind_executor<parallel_task_policy_shim, executor_type, ParametersType>::type with(Parameters_&&...

params)
const

Create a new parallel_policy_shim from the given execution parameters

Note Requires: all parameters are executor_parameters, different parameter types can’t be
duplicated

Return The new parallel_policy_shim
Template Parameters

• Parameters: The type of the executor parameters to associate with this execution pol-
icy.

Parameters
• params: [in] The executor parameters to use for the execution of the parallel algorithm

the returned execution policy is used with.

Executor &executor()
Return the associated executor object.

constexpr Executor const &executor() const
Return the associated executor object.

Parameters ¶meters()
Return the associated executor parameters object.

constexpr Parameters const ¶meters() const
Return the associated executor parameters object.

template<typename Executor_, typename Parameters_>
struct rebind

#include <execution_policy.hpp> Rebind the type of executor used by this execution policy.
The execution category of Executor shall not be weaker than that of this execution policy

788 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

template<>
typedef parallel_task_policy_shim<Executor_, Parameters_> type

The type of the rebound execution policy.

struct parallel_unsequenced_policy
#include <execution_policy.hpp> The class parallel_unsequenced_policy is an execution policy
type used as a unique type to disambiguate parallel algorithm overloading and indicate that a
parallel algorithm’s execution may be vectorized.

Public Types

typedef parallel_executor executor_type
The type of the executor associated with this execution policy.

typedef execution::extract_executor_parameters<executor_type>::type executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef parallel_execution_tag execution_category
The category of the execution agents created by this execution policy.

Public Functions

parallel_unsequenced_policy operator()(task_policy_tag) const
Create a new parallel_unsequenced_policy from itself

Return The new parallel_unsequenced_policy
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

executor_type &executor()
Return the associated executor object.

constexpr executor_type const &executor() const
Return the associated executor object.

executor_parameters_type ¶meters()
Return the associated executor parameters object.

constexpr executor_parameters_type const ¶meters() const
Return the associated executor parameters object.

Private Functions

template<typename Archive>
void serialize(Archive &ar, const unsigned int version)

2.9. API reference 789

HPX Documentation, 1.5.1

Private Members

executor_type exec_

executor_parameters_type params_

Friends

friend hpx::parallel::execution::hpx::serialization::access

struct sequenced_policy
#include <execution_policy.hpp> The class sequenced_policy is an execution policy type used
as a unique type to disambiguate parallel algorithm overloading and require that a parallel algo-
rithm’s execution may not be parallelized.

Subclassed by hpx::parallel::execution::sequenced_policy_shim< Executor, Parameters >

Public Types

typedef sequenced_executor executor_type
The type of the executor associated with this execution policy.

typedef execution::extract_executor_parameters<executor_type>::type executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef sequenced_execution_tag execution_category
The category of the execution agents created by this execution policy.

Public Functions

constexpr sequenced_task_policy operator()(task_policy_tag) const
Create a new sequenced_task_policy.

Return The new sequenced_task_policy
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor>
rebind_executor<sequenced_policy, Executor, executor_parameters_type>::type on(Executor

&&exec)
const

Create a new sequenced_policy from the given executor

Note Requires: is_executor<Executor>::value is true
Return The new sequenced_policy
Template Parameters

• Executor: The type of the executor to associate with this execution policy.
Parameters

• exec: [in] The executor to use for the execution of the parallel algorithm the returned
execution policy is used with.

template<typename ...Parameters, typename ParametersType = typename executor_parameters_join<Parameters...>::type>

790 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

rebind_executor<sequenced_policy, executor_type, ParametersType>::type with(Parameters&&...
params)
const

Create a new sequenced_policy from the given execution parameters

Note Requires: all parameters are executor_parameters, different parameter types can’t be
duplicated

Return The new sequenced_policy
Template Parameters

• Parameters: The type of the executor parameters to associate with this execution pol-
icy.

Parameters
• params: [in] The executor parameters to use for the execution of the parallel algorithm

the returned execution policy is used with.

executor_type &executor()
Return the associated executor object. Return the associated executor object.

constexpr executor_type const &executor() const
Return the associated executor object.

executor_parameters_type ¶meters()
Return the associated executor parameters object.

constexpr executor_parameters_type const ¶meters() const
Return the associated executor parameters object.

Private Functions

template<typename Archive>
void serialize(Archive &ar, const unsigned int version)

Private Members

executor_type exec_

executor_parameters_type params_

Friends

friend hpx::parallel::execution::hpx::serialization::access

template<typename Executor_, typename Parameters_>
struct rebind

#include <execution_policy.hpp> Rebind the type of executor used by this execution policy.
The execution category of Executor shall not be weaker than that of this execution policy

2.9. API reference 791

HPX Documentation, 1.5.1

Public Types

typedef sequenced_policy_shim<Executor_, Parameters_> type
The type of the rebound execution policy.

template<typename Executor, typename Parameters>
struct sequenced_policy_shim : public hpx::parallel::execution::sequenced_policy

#include <execution_policy.hpp> The class sequenced_policy is an execution policy type used
as a unique type to disambiguate parallel algorithm overloading and require that a parallel algo-
rithm’s execution may not be parallelized.

Public Types

typedef Executor executor_type
The type of the executor associated with this execution policy.

typedef Parameters executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef hpx::traits::executor_execution_category<executor_type>::type execution_category
The category of the execution agents created by this execution policy.

Public Functions

constexpr sequenced_task_policy_shim<Executor, Parameters> operator()(task_policy_tag
tag)
const

Create a new sequenced_task_policy.

Return The new sequenced_task_policy_shim
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor_>
rebind_executor<sequenced_policy_shim, Executor_, executor_parameters_type>::type on(Executor_

&&exec)
const

Create a new sequenced_policy from the given executor

Note Requires: is_executor<Executor>::value is true
Return The new sequenced_policy
Template Parameters

• Executor: The type of the executor to associate with this execution policy.
Parameters

• exec: [in] The executor to use for the execution of the parallel algorithm the returned
execution policy is used with.

template<typename ...Parameters_, typename ParametersType = typename executor_parameters_join<Parameters_...>::type>
rebind_executor<sequenced_policy_shim, executor_type, ParametersType>::type with(Parameters_&&...

params)
const

Create a new sequenced_policy_shim from the given execution parameters

Note Requires: all parameters are executor_parameters, different parameter types can’t be
duplicated

Return The new sequenced_policy_shim

792 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Template Parameters
• Parameters: The type of the executor parameters to associate with this execution pol-

icy.
Parameters

• params: [in] The executor parameters to use for the execution of the parallel algorithm
the returned execution policy is used with.

Executor &executor()
Return the associated executor object.

constexpr Executor const &executor() const
Return the associated executor object.

Parameters ¶meters()
Return the associated executor parameters object.

constexpr Parameters const ¶meters() const
Return the associated executor parameters object.

template<typename Executor_, typename Parameters_>
struct rebind

#include <execution_policy.hpp> Rebind the type of executor used by this execution policy.
The execution category of Executor shall not be weaker than that of this execution policy

Public Types

template<>
typedef sequenced_policy_shim<Executor_, Parameters_> type

The type of the rebound execution policy.

struct sequenced_task_policy
#include <execution_policy.hpp> Extension: The class sequenced_task_policy is an execution
policy type used as a unique type to disambiguate parallel algorithm overloading and indicate that
a parallel algorithm’s execution may not be parallelized (has to run sequentially).

The algorithm returns a future representing the result of the corresponding algorithm when in-
voked with the sequenced_policy.

Subclassed by hpx::parallel::execution::sequenced_task_policy_shim< Executor, Parameters >

Public Types

typedef sequenced_executor executor_type
The type of the executor associated with this execution policy.

typedef execution::extract_executor_parameters<executor_type>::type executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef sequenced_execution_tag execution_category
The category of the execution agents created by this execution policy.

2.9. API reference 793

HPX Documentation, 1.5.1

Public Functions

constexpr sequenced_task_policy operator()(task_policy_tag) const
Create a new sequenced_task_policy from itself

Return The new sequenced_task_policy
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor>
rebind_executor<sequenced_task_policy, Executor, executor_parameters_type>::type on(Executor

&&exec)
const

Create a new sequenced_task_policy from the given executor

Note Requires: is_executor<Executor>::value is true
Return The new sequenced_task_policy
Template Parameters

• Executor: The type of the executor to associate with this execution policy.
Parameters

• exec: [in] The executor to use for the execution of the parallel algorithm the returned
execution policy is used with.

template<typename ...Parameters, typename ParametersType = typename executor_parameters_join<Parameters...>::type>
rebind_executor<sequenced_task_policy, executor_type, ParametersType>::type with(Parameters&&...

params)
const

Create a new sequenced_task_policy from the given execution parameters

Note Requires: all parameters are executor_parameters, different parameter types can’t be
duplicated

Return The new sequenced_task_policy
Template Parameters

• Parameters: The type of the executor parameters to associate with this execution pol-
icy.

Parameters
• params: [in] The executor parameters to use for the execution of the parallel algorithm

the returned execution policy is used with.

executor_type &executor()
Return the associated executor object.

constexpr executor_type const &executor() const
Return the associated executor object.

executor_parameters_type ¶meters()
Return the associated executor parameters object.

constexpr executor_parameters_type const ¶meters() const
Return the associated executor parameters object.

794 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

template<typename Archive>
void serialize(Archive &ar, const unsigned int version)

Private Members

executor_type exec_

executor_parameters_type params_

Friends

friend hpx::parallel::execution::hpx::serialization::access

template<typename Executor_, typename Parameters_>
struct rebind

#include <execution_policy.hpp> Rebind the type of executor used by this execution policy.
The execution category of Executor shall not be weaker than that of this execution policy

Public Types

typedef sequenced_task_policy_shim<Executor_, Parameters_> type
The type of the rebound execution policy.

template<typename Executor, typename Parameters>
struct sequenced_task_policy_shim : public hpx::parallel::execution::sequenced_task_policy

#include <execution_policy.hpp> Extension: The class sequenced_task_policy_shim is an exe-
cution policy type used as a unique type to disambiguate parallel algorithm overloading based
on combining a underlying sequenced_task_policy and an executor and indicate that a parallel
algorithm’s execution may not be parallelized (has to run sequentially).

The algorithm returns a future representing the result of the corresponding algorithm when in-
voked with the sequenced_policy.

Public Types

typedef Executor executor_type
The type of the executor associated with this execution policy.

typedef Parameters executor_parameters_type
The type of the associated executor parameters object which is associated with this execution
policy

typedef hpx::traits::executor_execution_category<executor_type>::type execution_category
The category of the execution agents created by this execution policy.

2.9. API reference 795

HPX Documentation, 1.5.1

Public Functions

constexpr sequenced_task_policy_shim const &operator()(task_policy_tag tag)
const

Create a new sequenced_task_policy from itself

Return The new sequenced_task_policy
Parameters

• tag: [in] Specify that the corresponding asynchronous execution policy should be used

template<typename Executor_>
rebind_executor<sequenced_task_policy_shim, Executor_, executor_parameters_type>::type on(Executor_

&&exec)
const

Create a new sequenced_task_policy from the given executor

Note Requires: is_executor<Executor>::value is true
Return The new sequenced_task_policy
Template Parameters

• Executor: The type of the executor to associate with this execution policy.
Parameters

• exec: [in] The executor to use for the execution of the parallel algorithm the returned
execution policy is used with.

template<typename ...Parameters_, typename ParametersType = typename executor_parameters_join<Parameters_...>::type>
rebind_executor<sequenced_task_policy_shim, executor_type, ParametersType>::type with(Parameters_&&...

params)
const

Create a new sequenced_task_policy_shim from the given execution parameters

Note Requires: all parameters are executor_parameters, different parameter types can’t be
duplicated

Return The new sequenced_task_policy_shim
Template Parameters

• Parameters: The type of the executor parameters to associate with this execution pol-
icy.

Parameters
• params: [in] The executor parameters to use for the execution of the parallel algorithm

the returned execution policy is used with.

Executor &executor()
Return the associated executor object.

constexpr Executor const &executor() const
Return the associated executor object.

Parameters ¶meters()
Return the associated executor parameters object.

constexpr Parameters const ¶meters() const
Return the associated executor parameters object.

template<typename Executor_, typename Parameters_>
struct rebind

#include <execution_policy.hpp> Rebind the type of executor used by this execution policy.
The execution category of Executor shall not be weaker than that of this execution policy

796 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

template<>
typedef sequenced_task_policy_shim<Executor_, Parameters_> type

The type of the rebound execution policy.

Header hpx/executors/execution_policy_fwd.hpp

Header hpx/executors/guided_pool_executor.hpp

Defines

GUIDED_POOL_EXECUTOR_DEBUG

namespace hpx

Functions

static hpx::debug::enable_print<GUIDED_POOL_EXECUTOR_DEBUG> hpx::gpx_deb("GP_EXEC")

namespace parallel

namespace execution

template<typename Hint>
struct executor_execution_category<guided_pool_executor<Hint>>

#include <guided_pool_executor.hpp>

Public Types

typedef parallel::execution::parallel_execution_tag type

template<typename Hint>
struct executor_execution_category<guided_pool_executor_shim<Hint>>

#include <guided_pool_executor.hpp>

Public Types

typedef parallel::execution::parallel_execution_tag type

template<typename Tag>
struct guided_pool_executor<pool_numa_hint<Tag>>

#include <guided_pool_executor.hpp>

2.9. API reference 797

HPX Documentation, 1.5.1

Public Functions

guided_pool_executor(threads::thread_pool_base *pool, bool hp_sync = false)

guided_pool_executor(threads::thread_pool_base *pool, threads::thread_stacksize
stacksize, bool hp_sync = false)

guided_pool_executor(threads::thread_pool_base *pool, threads::thread_priority
priority, threads::thread_stacksize stacksize =
threads::thread_stacksize_default, bool hp_sync = false)

template<typename F, typename ...Ts>
future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> async_execute(F

&&f,
Ts&&...
ts)

template<typename F, typename Future, typename ...Ts, typename = detail::enable_if_t<hpx::traits::is_future<Future>::value>>
auto then_execute(F &&f, Future &&predecessor, Ts&&... ts)

template<typename F, template<typename> class OuterFuture, typename ...InnerFutures, typename ...Ts, typename = detail::enable_if_t<detail::is_future_of_tuple_of_futures<OuterFuture<hpx::util::tuple<InnerFutures...>>>::value>, typename = detail::enable_if_t<hpx::traits::is_future_tuple<hpx::util::tuple<InnerFutures...>>::value>>
auto then_execute(F &&f, OuterFuture<hpx::util::tuple<InnerFutures...>> &&predeces-

sor, Ts&&... ts)

template<typename F, typename ...InnerFutures, typename = detail::enable_if_t<hpx::traits::is_future_tuple<hpx::util::tuple<InnerFutures...>>::value>>
auto async_execute(F &&f, hpx::util::tuple<InnerFutures...> &&predecessor)

Private Members

threads::thread_pool_base *pool_

threads::thread_priority priority_

threads::thread_stacksize stacksize_

pool_numa_hint<Tag> hint_

bool hp_sync_

Friends

friend hpx::parallel::execution::guided_pool_executor_shim

template<typename H>
struct guided_pool_executor_shim

#include <guided_pool_executor.hpp>

798 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

guided_pool_executor_shim(bool guided, threads::thread_pool_base *pool, bool
hp_sync = false)

guided_pool_executor_shim(bool guided, threads::thread_pool_base *pool,
threads::thread_stacksize stacksize, bool hp_sync =
false)

guided_pool_executor_shim(bool guided, threads::thread_pool_base
*pool, threads::thread_priority prior-
ity, threads::thread_stacksize stacksize =
threads::thread_stacksize_default, bool hp_sync =
false)

template<typename F, typename ...Ts>
future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> async_execute(F

&&f,
Ts&&...
ts)

template<typename F, typename Future, typename ...Ts, typename = detail::enable_if_t<hpx::traits::is_future<Future>::value>>
auto then_execute(F &&f, Future &&predecessor, Ts&&... ts)

Public Members

bool guided_

guided_pool_executor<H> guided_exec_

Header hpx/executors/limiting_executor.hpp

namespace hpx

namespace execution

namespace experimental

Typedefs

using print_on = hpx::debug::enable_print<false>

Functions

static constexpr print_on hpx::execution::experimental::lim_debug("LIMEXEC")

template<typename BaseExecutor>
struct limiting_executor

#include <limiting_executor.hpp>

2.9. API reference 799

HPX Documentation, 1.5.1

Public Types

template<>
using execution_category = typename BaseExecutor::execution_category

template<>
using executor_parameters_type = typename BaseExecutor::executor_parameters_type

Public Functions

limiting_executor(BaseExecutor &ex, std::size_t lower, std::size_t upper, bool
block_on_destruction = true)

limiting_executor(std::size_t lower, std::size_t upper, bool block_on_destruction =
true)

~limiting_executor()

limiting_executor const &context() const

template<typename F, typename ...Ts>
decltype(auto) sync_execute(F &&f, Ts&&... ts) const

template<typename F, typename ...Ts>
decltype(auto) async_execute(F &&f, Ts&&... ts)

template<typename F, typename Future, typename ...Ts>
decltype(auto) then_execute(F &&f, Future &&predecessor, Ts&&... ts)

template<typename F, typename ...Ts>
void post(F &&f, Ts&&... ts)

template<typename F, typename S, typename ...Ts>
decltype(auto) bulk_async_execute(F &&f, S const &shape, Ts&&... ts)

template<typename F, typename S, typename Future, typename ...Ts>
decltype(auto) bulk_then_execute(F &&f, S const &shape, Future &&predecessor,

Ts&&... ts)

void wait()

void wait_all()

void set_threshold(std::size_t lower, std::size_t upper)

Private Functions

void count_up()

void count_down() const

void set_and_wait(std::size_t lower, std::size_t upper)

800 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Members

BaseExecutor executor_

std::atomic<std::size_t> count_

std::size_t lower_threshold_

std::size_t upper_threshold_

bool block_

struct on_exit
#include <limiting_executor.hpp>

Public Functions

template<>
on_exit(limiting_executor const &this_e)

template<>
~on_exit()

Public Members

template<>
limiting_executor const &executor_

template<typename F, typename B = BaseExecutor, typename Enable = void>
struct throttling_wrapper

#include <limiting_executor.hpp>

Public Functions

template<>
throttling_wrapper(limiting_executor &lim, BaseExecutor const &base, F &&f)

template<typename ...Ts>
decltype(auto) operator()(Ts&&... ts)

template<>
bool exceeds_upper()

template<>
bool exceeds_lower()

2.9. API reference 801

HPX Documentation, 1.5.1

Public Members

template<>
limiting_executor &limiting_

template<>
F f_

Header hpx/executors/parallel_executor.hpp

namespace hpx

namespace parallel

namespace execution

Typedefs

using parallel_executor = parallel_policy_executor<hpx::launch>

template<typename Policy>
struct parallel_policy_executor

#include <parallel_executor.hpp> A parallel_executor creates groups of parallel execution
agents which execute in threads implicitly created by the executor. This executor prefers con-
tinuing with the creating thread first before executing newly created threads.

This executor conforms to the concepts of a TwoWayExecutor, and a BulkTwoWayExecutor

Public Types

typedef parallel_execution_tag execution_category
Associate the parallel_execution_tag executor tag type as a default with this executor.

typedef static_chunk_size executor_parameters_type
Associate the static_chunk_size executor parameters type as a default with this executor.

Public Functions

constexpr parallel_policy_executor(threads::thread_priority priority =
threads::thread_priority_default,
threads::thread_stacksize stacksize
= threads::thread_stacksize_default,
threads::thread_schedule_hint sched-
ulehint = {}, Policy l = de-
tail::get_default_policy<Policy>::call(),
std::size_t spread = 4, std::size_t tasks =
std::size_t(-1))

Create a new parallel executor.

802 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

constexpr parallel_policy_executor(threads::thread_stacksize stack-
size, threads::thread_schedule_hint
schedulehint = {}, Policy l = de-
tail::get_default_policy<Policy>::call(),
std::size_t spread = 4, std::size_t tasks =
std::size_t(-1))

constexpr parallel_policy_executor(threads::thread_schedule_hint
schedulehint, Policy l = de-
tail::get_default_policy<Policy>::call(),
std::size_t spread = 4, std::size_t tasks =
std::size_t(-1))

constexpr parallel_policy_executor(Policy l, std::size_t spread = 4, std::size_t
tasks = std::size_t(-1))

Header hpx/executors/parallel_executor_aggregated.hpp

template<>
struct parallel_policy_executor_aggregated<hpx::launch>

#include <parallel_executor_aggregated.hpp>

Public Types

template<>
using execution_category = parallel_execution_tag

Associate the parallel_execution_tag executor tag type as a default with this executor.

template<>
using executor_parameters_type = static_chunk_size

Associate the static_chunk_size executor parameters type as a default with this executor.

Public Functions

constexpr parallel_policy_executor_aggregated(hpx::launch l =
hpx::launch::async_policy{},
std::size_t spread = 4, std::size_t
tasks = std::size_t(-1))

Create a new parallel executor.

template<typename F, typename S, typename ...Ts>
std::vector<hpx::future<void>> bulk_async_execute(F &&f, S const &shape, Ts&&... ts)

const
namespace hpx

namespace parallel

namespace execution

2.9. API reference 803

HPX Documentation, 1.5.1

Typedefs

using parallel_executor_aggregated = parallel_policy_executor_aggregated<hpx::launch::async_policy>

template<typename Policy = hpx::launch::async_policy>
struct parallel_policy_executor_aggregated

#include <parallel_executor_aggregated.hpp> A parallel_executor_aggregated creates groups
of parallel execution agents that execute in threads implicitly created by the executor. This execu-
tor prefers continuing with the creating thread first before executing newly created threads.

This executor conforms to the concepts of a TwoWayExecutor, and a BulkTwoWayExecutor

Public Types

template<>
using execution_category = parallel_execution_tag

Associate the parallel_execution_tag executor tag type as a default with this executor.

template<>
using executor_parameters_type = static_chunk_size

Associate the static_chunk_size executor parameters type as a default with this executor.

Public Functions

constexpr parallel_policy_executor_aggregated(std::size_t spread =
4, std::size_t tasks =
std::size_t(-1))

Create a new parallel executor.

template<typename F, typename S, typename ...Ts>
std::vector<hpx::future<void>> bulk_async_execute(F &&f, S const &shape,

Ts&&... ts) const

template<>
struct parallel_policy_executor_aggregated<hpx::launch>

#include <parallel_executor_aggregated.hpp>

Public Types

template<>
using execution_category = parallel_execution_tag

Associate the parallel_execution_tag executor tag type as a default with this executor.

template<>
using executor_parameters_type = static_chunk_size

Associate the static_chunk_size executor parameters type as a default with this executor.

804 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

constexpr parallel_policy_executor_aggregated(hpx::launch l =
hpx::launch::async_policy{},
std::size_t spread =
4, std::size_t tasks =
std::size_t(-1))

Create a new parallel executor.

template<typename F, typename S, typename ...Ts>
std::vector<hpx::future<void>> bulk_async_execute(F &&f, S const &shape,

Ts&&... ts) const

Header hpx/executors/restricted_thread_pool_executor.hpp

namespace hpx

namespace parallel

namespace execution

class restricted_thread_pool_executor
#include <restricted_thread_pool_executor.hpp>

Public Types

typedef parallel_execution_tag execution_category
Associate the parallel_execution_tag executor tag type as a default with this executor.

typedef static_chunk_size executor_parameters_type
Associate the static_chunk_size executor parameters type as a default with this executor.

Public Functions

restricted_thread_pool_executor(std::size_t first_thread = 0, std::size_t
num_threads = 1, threads::thread_priority
priority = threads::thread_priority_default,
threads::thread_stacksize stacksize
= threads::thread_stacksize_default,
threads::thread_schedule_hint schedule-
hint = {}, std::size_t hierarchical_threshold =
hierarchical_threshold_default_)

Create a new parallel executor.

restricted_thread_pool_executor(restricted_thread_pool_executor const
&other)

2.9. API reference 805

HPX Documentation, 1.5.1

Private Members

threads::thread_pool_base *pool_ = nullptr

threads::thread_priority priority_ = threads::thread_priority_default

threads::thread_stacksize stacksize_ = threads::thread_stacksize_default

threads::thread_schedule_hint schedulehint_ = {}

std::size_t hierarchical_threshold_ = hierarchical_threshold_default_

std::size_t first_thread_

std::size_t num_threads_

std::atomic<std::size_t> os_thread_

Private Static Attributes

constexpr std::size_t hierarchical_threshold_default_ = 6

Header hpx/executors/sequenced_executor.hpp

namespace hpx

namespace parallel

namespace execution

struct sequenced_executor
#include <sequenced_executor.hpp> A sequential_executor creates groups of sequential execu-
tion agents which execute in the calling thread. The sequential order is given by the lexicograph-
ical order of indices in the index space.

Header hpx/executors/service_executors.hpp

Header hpx/executors/sync.hpp

Header hpx/executors/thread_pool_attached_executors.hpp

Header hpx/executors/thread_pool_executor.hpp

namespace hpx

namespace parallel

namespace execution

806 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

class thread_pool_executor
#include <thread_pool_executor.hpp> A thread_pool_executor creates groups of parallel execu-
tion agents which execute in threads implicitly created by the executor. This executor prefers
continuing with the creating thread first before executing newly created threads.

This executor conforms to the concepts of a TwoWayExecutor, and a BulkTwoWayExecutor

Public Types

typedef parallel_execution_tag execution_category
Associate the parallel_execution_tag executor tag type as a default with this executor.

typedef static_chunk_size executor_parameters_type
Associate the static_chunk_size executor parameters type as a default with this executor.

Public Functions

thread_pool_executor(threads::thread_priority priority =
threads::thread_priority_default, threads::thread_stacksize
stacksize = threads::thread_stacksize_default,
threads::thread_schedule_hint schedulehint = {}, std::size_t
hierarchical_threshold = hierarchical_threshold_default_)

Create a new parallel executor.

thread_pool_executor(threads::policies::scheduler_base *sched-
uler, threads::thread_priority priority =
threads::thread_priority_default, threads::thread_stacksize
stacksize = threads::thread_stacksize_default,
threads::thread_schedule_hint schedulehint = {}, std::size_t
hierarchical_threshold = hierarchical_threshold_default_)

thread_pool_executor(threads::thread_pool_base *pool, threads::thread_priority
priority = threads::thread_priority_default,
threads::thread_stacksize stacksize
= threads::thread_stacksize_default,
threads::thread_schedule_hint schedulehint = {}, std::size_t
hierarchical_threshold = hierarchical_threshold_default_)

Private Members

threads::thread_pool_base *pool_ = nullptr

threads::thread_priority priority_ = threads::thread_priority_default

threads::thread_stacksize stacksize_ = threads::thread_stacksize_default

threads::thread_schedule_hint schedulehint_ = {}

std::size_t hierarchical_threshold_ = hierarchical_threshold_default_

2.9. API reference 807

HPX Documentation, 1.5.1

Private Static Attributes

constexpr std::size_t hierarchical_threshold_default_ = 6

executors_distributed

The contents of this module can be included with the header hpx/modules/executors_distributed.hpp.
These headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You
are using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest
only including the module header hpx/modules/executors_distributed.hpp, not the particular header in
which the functionality you would like to use is defined. See Public API for a list of names that are part of the public
HPX API.

Header hpx/executors_distributed/distribution_policy_executor.hpp

filesystem

The contents of this module can be included with the header hpx/modules/filesystem.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/filesystem.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/modules/filesystem.hpp

This file provides a compatibility layer using Boost.Filesystem for the C++17 filesystem library. It is not intended to
be a complete compatibility layer. It only contains functions required by the HPX codebase. It also provides some
functions only available in Boost.Filesystem when using C++17 filesystem.

namespace hpx

namespace filesystem

Functions

path initial_path()

std::string basename(path const &p)

path canonical(path const &p, path const &base)

path canonical(path const &p, path const &base, error_code &ec)

808 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

format

The contents of this module can be included with the header hpx/modules/format.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/format.hpp, not the particular header in which the functionality you would like to use is
defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/format.hpp

Header hpx/modules/format.hpp

Defines

DECL_TYPE_SPECIFIER(Type, Spec)

namespace hpx

namespace util

Functions

template<typename ...Args>
std::string format(boost::string_ref format_str, Args const&... args)

template<typename ...Args>
std::ostream &format_to(std::ostream &os, boost::string_ref format_str, Args const&... args)

Header hpx/util/bad_lexical_cast.hpp

namespace hpx

namespace util

class bad_lexical_cast : public bad_cast
#include <bad_lexical_cast.hpp>

Public Functions

bad_lexical_cast()

const char *what() const

virtual ~bad_lexical_cast()

bad_lexical_cast(std::type_info const &source_type_arg, std::type_info const &tar-
get_type_arg)

std::type_info const &source_type() const

std::type_info const &target_type() const

2.9. API reference 809

HPX Documentation, 1.5.1

Private Members

std::type_info const *source

std::type_info const *target

Header hpx/util/from_string.hpp

namespace hpx

namespace util

Functions

template<typename T>
T from_string(std::string const &v)

template<typename T, typename U>
T from_string(std::string const &v, U &&default_value)

Header hpx/util/to_string.hpp

namespace hpx

namespace util

Functions

template<typename T>
std::string to_string(T const &v)

functional

The contents of this module can be included with the header hpx/modules/functional.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/functional.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

810 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/functional/bind.hpp

namespace hpx

namespace serialization

Functions

template<typename Archive, typename F, typename ...Ts>
void serialize(Archive &ar, ::hpx::util::detail::bound<F, Ts...> &bound, unsigned int const

version = 0)

template<typename Archive, std::size_t I>
void serialize(Archive &ar, ::hpx::util::detail::placeholder<I>&, unsigned int const = 0)

namespace util

Functions

template<typename F, typename ...Ts, typename Enable = typename std::enable_if<!traits::is_action<typename std::decay<F>::type>::value>::type>
constexpr detail::bound<typename std::decay<F>::type, typename util::make_index_pack<sizeof...(Ts)>::type, typename util::decay_unwrap<Ts>::type...> bind(F

&&f,
Ts&&...
vs)

namespace placeholders

Variables

constexpr detail::placeholder<1> _1 = {}

constexpr detail::placeholder<2> _2 = {}

constexpr detail::placeholder<3> _3 = {}

constexpr detail::placeholder<4> _4 = {}

constexpr detail::placeholder<5> _5 = {}

constexpr detail::placeholder<6> _6 = {}

constexpr detail::placeholder<7> _7 = {}

constexpr detail::placeholder<8> _8 = {}

constexpr detail::placeholder<9> _9 = {}

2.9. API reference 811

HPX Documentation, 1.5.1

Header hpx/functional/bind_back.hpp

namespace hpx

namespace serialization

Functions

template<typename Archive, typename F, typename ...Ts>
void serialize(Archive &ar, ::hpx::util::detail::bound_back<F, Ts...> &bound, unsigned int

const version = 0)

namespace util

Functions

template<typename F, typename ...Ts>
constexpr detail::bound_back<typename std::decay<F>::type, typename util::make_index_pack<sizeof...(Ts)>::type, typename util::decay_unwrap<Ts>::type...> bind_back(F

&&f,
Ts&&...
vs)

template<typename F>
constexpr std::decay<F>::type bind_back(F &&f)

Header hpx/functional/bind_front.hpp

namespace hpx

namespace serialization

Functions

template<typename Archive, typename F, typename ...Ts>
void serialize(Archive &ar, ::hpx::util::detail::bound_front<F, Ts...> &bound, unsigned int

const version = 0)

namespace util

Functions

template<typename F, typename ...Ts>
constexpr detail::bound_front<typename std::decay<F>::type, typename util::make_index_pack<sizeof...(Ts)>::type, typename util::decay_unwrap<Ts>::type...> bind_front(F

&&f,
Ts&&...
vs)

template<typename F>
constexpr std::decay<F>::type bind_front(F &&f)

812 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/functional/deferred_call.hpp

namespace hpx

namespace serialization

Functions

template<typename Archive, typename F, typename ...Ts>
void serialize(Archive &ar, ::hpx::util::detail::deferred<F, Ts...> &d, unsigned int const ver-

sion = 0)

namespace util

Functions

template<typename F, typename ...Ts>
detail::deferred<typename std::decay<F>::type, typename util::make_index_pack<sizeof...(Ts)>::type, typename util::decay_unwrap<Ts>::type...> deferred_call(F

&&f,
Ts&&...
vs)

template<typename F>
std::decay<F>::type deferred_call(F &&f)

Header hpx/functional/first_argument.hpp

Header hpx/functional/function.hpp

Defines

HPX_UTIL_REGISTER_FUNCTION_DECLARATION(Sig, F, Name)

HPX_UTIL_REGISTER_FUNCTION(Sig, F, Name)

namespace hpx

namespace util

Typedefs

using function_nonser = function<Sig, false>

template<typename R, typename ...Ts, bool Serializable>
class function<R(Ts...), Serializable> : public detail::basic_function<R

Ts..., true, Serializable> #include <function.hpp>

2.9. API reference 813

HPX Documentation, 1.5.1

Public Types

typedef R result_type

Public Functions

constexpr function(std::nullptr_t = nullptr)

function(function const&)

function(function&&)

function &operator=(function const&)

function &operator=(function&&)

template<typename F, typename FD = typename std::decay<F>::type, typename Enable1 = typename std::enable_if<!std::is_same<FD, function>::value>::type, typename Enable2 = typename std::enable_if<traits::is_invocable_r<R, FD&, Ts...>::value>::type>
function(F &&f)

template<typename F, typename FD = typename std::decay<F>::type, typename Enable1 = typename std::enable_if<!std::is_same<FD, function>::value>::type, typename Enable2 = typename std::enable_if<traits::is_invocable_r<R, FD&, Ts...>::value>::type>
function &operator=(F &&f)

Private Types

template<>
using base_type = detail::basic_function<R(Ts...), true, Serializable>

Header hpx/functional/function_ref.hpp

namespace hpx

namespace util

template<typename R, typename ...Ts>
class function_ref<R(Ts...)>

#include <function_ref.hpp>

Public Functions

template<typename F, typename FD = typename std::decay<F>::type, typename Enable = typename std::enable_if<!std::is_same<FD, function_ref >::value && traits::is_invocable_r<R, F&, Ts...>::value>::type>
function_ref(F &&f)

function_ref(function_ref const &other)

template<typename F, typename FD = typename std::decay<F>::type, typename Enable = typename std::enable_if<!std::is_same<FD, function_ref>::value && traits::is_invocable_r<R, F&, Ts...>::value>::type>
function_ref &operator=(F &&f)

function_ref &operator=(function_ref const &other)

template<typename F, typename T = typename std::remove_reference<F>::type, typename Enable = typename std::enable_if<!std::is_pointer<T>::value>::type>
void assign(F &&f)

814 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename T>
void assign(std::reference_wrapper<T> f_ref)

template<typename T>
void assign(T *f_ptr)

void swap(function_ref &f)

R operator()(Ts... vs) const

std::size_t get_function_address() const

char const *get_function_annotation() const

util::itt::string_handle get_function_annotation_itt() const

Protected Attributes

template<>
R (*vptr)(void*, Ts&&...)

void *object

Private Types

template<>
using VTable = detail::function_ref_vtable<R(Ts...)>

Private Static Functions

template<typename T>
static VTable const *get_vtable()

Header hpx/functional/invoke.hpp

Defines

HPX_INVOKE(F, ...)

HPX_INVOKE_R(R, F, ...)

namespace hpx

namespace util

2.9. API reference 815

HPX Documentation, 1.5.1

Functions

template<typename F, typename ...Ts>
constexpr util::invoke_result<F, Ts...>::type invoke(F &&f, Ts&&... vs)

Invokes the given callable object f with the content of the argument pack vs

Return The result of the callable object when it’s called with the given argument types.
Note This function is similar to std::invoke (C++17)
Parameters

• f: Requires to be a callable object. If f is a member function pointer, the first argument in the
pack will be treated as the callee (this object).

• vs: An arbitrary pack of arguments
Exceptions

• std::exception: like objects thrown by call to object f with the argument types vs.

template<typename R, typename F, typename ...Ts>
constexpr R invoke_r(F &&f, Ts&&... vs)

Invokes the given callable object f with the content of the argument pack vs

Return The result of the callable object when it’s called with the given argument types.
Note This function is similar to std::invoke (C++17)
Parameters

• f: Requires to be a callable object. If f is a member function pointer, the first argument in the
pack will be treated as the callee (this object).

• vs: An arbitrary pack of arguments
Exceptions

• std::exception: like objects thrown by call to object f with the argument types vs.
Template Parameters

• R: The result type of the function when it’s called with the content of the given argument types
vs.

namespace functional

struct invoke
#include <invoke.hpp>

Public Functions

template<typename F, typename ...Ts>
constexpr util::invoke_result<F, Ts...>::type operator()(F &&f, Ts&&... vs) const

template<typename R>
struct invoke_r

#include <invoke.hpp>

816 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<typename F, typename ...Ts>
constexpr R operator()(F &&f, Ts&&... vs) const

Header hpx/functional/invoke_fused.hpp

namespace hpx

namespace util

Functions

template<typename F, typename Tuple>
constexpr detail::invoke_fused_result<F, Tuple>::type invoke_fused(F &&f, Tuple &&t)

Invokes the given callable object f with the content of the sequenced type t (tuples, pairs)

Return The result of the callable object when it’s called with the content of the given sequenced type.
Note This function is similar to std::apply (C++17)
Parameters

• f: Must be a callable object. If f is a member function pointer, the first argument in the
sequenced type will be treated as the callee (this object).

• t: A type which is content accessible through a call to hpx::util::get.
Exceptions

• std::exception: like objects thrown by call to object f with the arguments contained in
the sequenceable type t.

template<typename R, typename F, typename Tuple>
constexpr R invoke_fused_r(F &&f, Tuple &&t)

Invokes the given callable object f with the content of the sequenced type t (tuples, pairs)

Return The result of the callable object when it’s called with the content of the given sequenced type.
Note This function is similar to std::apply (C++17)
Parameters

• f: Must be a callable object. If f is a member function pointer, the first argument in the
sequenced type will be treated as the callee (this object).

• t: A type which is content accessible through a call to hpx::util::get.
Exceptions

• std::exception: like objects thrown by call to object f with the arguments contained in
the sequenceable type t.

Template Parameters
• R: The result type of the function when it’s called with the content of the given sequenced type.

2.9. API reference 817

HPX Documentation, 1.5.1

Header hpx/functional/invoke_result.hpp

namespace hpx

namespace util

Functions

template<typename T>struct hpx::util::HPX_DEPRECATED_V(1, 5, "result_of is deprecated, use invoke_result instead.")

Header hpx/functional/mem_fn.hpp

namespace hpx

namespace util

Functions

template<typename M, typename C>
constexpr detail::mem_fn<M C::*> mem_fn(M C::* pm)

template<typename R, typename C, typename ...Ps>
constexpr detail::mem_fn<R (C::*)(Ps...)> mem_fn

R (C::* pm)Ps...

template<typename R, typename C, typename ...Ps>
constexpr detail::mem_fn<R (C::*)(Ps...) const> mem_fn

R (C::* pm)Ps... const

Header hpx/functional/one_shot.hpp

namespace hpx

namespace serialization

Functions

template<typename Archive, typename F>
void serialize(Archive &ar, ::hpx::util::detail::one_shot_wrapper<F> &one_shot_wrapper, un-

signed int const version = 0)

namespace util

818 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename F>
constexpr detail::one_shot_wrapper<typename std::decay<F>::type> one_shot(F &&f)

Header hpx/functional/protect.hpp

namespace hpx

namespace util

Functions

template<typename T>
std::enable_if<traits::is_bind_expression<typename std::decay<T>::type>::value, detail::protected_bind<typename std::decay<T>::type>>::type protect(T

&&f)

template<typename T>
std::enable_if<!traits::is_bind_expression<typename std::decay<T>::type>::value, T>::type protect(T

&&v)

Header hpx/functional/serialization/serializable_function.hpp

Header hpx/functional/serialization/serializable_unique_function.hpp

Header hpx/functional/tag_invoke.hpp

namespace hpx

namespace functional

Typedefs

using tag_invoke_result = invoke_result<decltype(tag_invoke), Tag, Args...>
hpx::functional::tag_invoke_result<Tag, Args...> is the trait returning the re-
sult type of the call hpx::functioanl::tag_invoke. This can be used in a SFINAE context.

using tag_invoke_result_t = typename tag_invoke_result<Tag, Args...>::type
hpx::functional::tag_invoke_result_t<Tag, Args...> evaluates to
hpx::functional::tag_invoke_result_t<Tag, Args...>::type

2.9. API reference 819

HPX Documentation, 1.5.1

Variables

template<typename Tag, typename ...Args>
constexpr bool is_tag_invocable_v = is_tag_invocable<Tag, Args...>::value

hpx::functional::is_tag_invocable_v<Tag, Args...> evaluates to
hpx::functional::is_tag_invocable<Tag, Args...>::value

template<typename Tag, typename ...Args>
constexpr bool is_nothrow_tag_invocable_v = is_nothrow_tag_invocable<Tag, Args...>::value

hpx::functional::is_tag_invocable_v<Tag, Args...> evaluates to
hpx::functional::is_tag_invocable<Tag, Args...>::value

template<typename Tag, typename ...Args>
struct is_nothrow_tag_invocable

#include <tag_invoke.hpp> hpx::functional::is_nothrow_tag_invocable<Tag,
Args...> is std::true_type if an overload of tag_invoke(tag, args...) can be found via
ADL and is noexcept.

template<typename Tag, typename ...Args>
struct is_tag_invocable

#include <tag_invoke.hpp> hpx::functional::is_tag_invocable<Tag, Args...> is
std::true_type if an overload of tag_invoke(tag, args...) can be found via ADL.

template<typename Tag>
struct tag

#include <tag_invoke.hpp> hpx::functional::tag<Tag> defines a base class that imple-
ments the necessary tag dispatching functionality for a given type Tag

namespace unspecified

Variables

constexpr unspecified tag_invoke = unspecified
The hpx::functional::tag_invoke name defines a constexpr object that is invocable
with one or more arguments. The first argument is a ‘tag’ (typically a CPO). It is only invocable
if an overload of tag_invoke() that accepts the same arguments could be found via ADL.

The evaluation of the expression hpx::tag_invoke(tag, args...) is equiv-
alent to evaluating the unqualified call to tag_invoke(decay-copy(tag),
std::forward<Args>(args)...).

hpx::functional::tag_invoke is implemented against P1895.

Example: Defining a new customization point foo:

namespace mylib {
inline constexpr

struct foo_fn final : hpx::functional::tag<foo_fn>
{
} foo{};

}

Defining an object bar which customizes foo:

struct bar
{

int x = 42;

(continues on next page)

820 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

(continued from previous page)

friend constexpr int tag_invoke(mylib::foo_fn, bar const& x)
{

return b.x;
}

};

Using the customization point:

static_assert(42 == mylib::foo(bar{}), "The answer is 42");

Header hpx/functional/traits/get_action_name.hpp

Header hpx/functional/traits/get_function_address.hpp

template<typename R, typename Obj, typename ...Ts>
struct get_function_address<R (Obj::*)(Ts...)>

#include <get_function_address.hpp>

Public Static Functions

static std::size_t call(R (Obj::* f))Ts...

template<typename R, typename Obj, typename ...Ts>
struct get_function_address<R (Obj::*)(Ts...) const>

#include <get_function_address.hpp>

Public Static Functions

static std::size_t call(R (Obj::* f))Ts...
const

namespace hpx

namespace traits

template<typename F, typename Enable = void>
struct get_function_address

#include <get_function_address.hpp>

2.9. API reference 821

HPX Documentation, 1.5.1

Public Static Functions

static std::size_t call(F const &f)

template<typename R, typename ...Ts>
struct get_function_address<R (*)(Ts...)>

#include <get_function_address.hpp>

Public Static Functions

static std::size_t call(R (*f))Ts...

template<typename R, typename Obj, typename ...Ts>
struct get_function_address<R (Obj::*)(Ts...) const>

#include <get_function_address.hpp>

Public Static Functions

static std::size_t call(R (Obj::* f))Ts...
const

template<typename R, typename Obj, typename ...Ts>
struct get_function_address<R (Obj::*)(Ts...)>

#include <get_function_address.hpp>

Public Static Functions

static std::size_t call(R (Obj::* f))Ts...

Header hpx/functional/traits/get_function_annotation.hpp

namespace hpx

namespace traits

template<typename F, typename Enable = void>
struct get_function_annotation

#include <get_function_annotation.hpp>

Public Static Functions

static char const *call(F const&)

822 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/functional/traits/is_action.hpp

Header hpx/functional/traits/is_bind_expression.hpp

namespace hpx

namespace traits

template<typename T>
struct is_bind_expression : public std::is_bind_expression<T>

#include <is_bind_expression.hpp> Subclassed by hpx::traits::is_bind_expression< T const >

Header hpx/functional/traits/is_invocable.hpp

namespace hpx

namespace traits

Functions

template<typename T, typename R = void>struct hpx::traits::HPX_DEPRECATED_V(1, 5, "is_callable is deprecated, use is_invocable instead.")

Header hpx/functional/traits/is_placeholder.hpp

namespace hpx

namespace traits

template<typename T>
struct is_placeholder

#include <is_placeholder.hpp> If T is a standard, Boost, or HPX placeholder (_1, _2,
_3, . . .) then this template is derived from std::integral_constant<int, 1>,
std::integral_constant<int, 2>, std::integral_constant<int, 3>, respec-
tively. Otherwise it is derived from , std::integral_constant<int, 0>.

Header hpx/functional/unique_function.hpp

Defines

HPX_UTIL_REGISTER_UNIQUE_FUNCTION_DECLARATION(Sig, F, Name)

HPX_UTIL_REGISTER_UNIQUE_FUNCTION(Sig, F, Name)

namespace hpx

namespace util

2.9. API reference 823

HPX Documentation, 1.5.1

Typedefs

using unique_function_nonser = unique_function<Sig, false>

template<typename R, typename ...Ts, bool Serializable>
class unique_function<R(Ts...), Serializable> : public detail::basic_function<R

Ts..., false, Serializable> #include <unique_function.hpp>

Public Types

typedef R result_type

Public Functions

constexpr unique_function(std::nullptr_t = nullptr)

unique_function(unique_function&&)

unique_function &operator=(unique_function&&)

template<typename F, typename FD = typename std::decay<F>::type, typename Enable1 = typename std::enable_if<!std::is_same<FD, unique_function>::value>::type, typename Enable2 = typename std::enable_if<traits::is_invocable_r<R, FD&, Ts...>::value>::type>
unique_function(F &&f)

template<typename F, typename FD = typename std::decay<F>::type, typename Enable1 = typename std::enable_if<!std::is_same<FD, unique_function>::value>::type, typename Enable2 = typename std::enable_if<traits::is_invocable_r<R, FD&, Ts...>::value>::type>
unique_function &operator=(F &&f)

Private Types

template<>
using base_type = detail::basic_function<R(Ts...), false, Serializable>

futures

The contents of this module can be included with the header hpx/modules/futures.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/futures.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/futures/future.hpp

Defines

HPX_MAKE_EXCEPTIONAL_FUTURE(T, errorcode, f, msg)

namespace hpx

namespace lcos

824 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename R, typename U>
hpx::lcos::future<R> make_future(hpx::lcos::future<U> &&f)

template<typename R, typename U, typename Conv>
hpx::lcos::future<R> make_future(hpx::lcos::future<U> &&f, Conv &&conv)

template<typename R, typename U>
hpx::lcos::future<R> make_future(hpx::lcos::shared_future<U> f)

template<typename R, typename U, typename Conv>
hpx::lcos::future<R> make_future(hpx::lcos::shared_future<U> const &f, Conv &&conv)

template<typename R>
hpx::lcos::shared_future<R> make_shared_future(hpx::lcos::future<R> &&f)

template<typename R>
hpx::lcos::shared_future<R> &make_shared_future(hpx::lcos::shared_future<R> &f)

template<typename R>
hpx::lcos::shared_future<R> &&make_shared_future(hpx::lcos::shared_future<R> &&f)

template<typename R>
hpx::lcos::shared_future<R> const &make_shared_future(hpx::lcos::shared_future<R>

const &f)

template<typename T, typename Allocator, typename ...Ts>
std::enable_if<std::is_constructible<T , Ts&&...>::value || std::is_void<T>::value, future<T>>::type make_ready_future_alloc(Allocator

const
&a,
Ts&&...
ts)

template<typename T, typename ...Ts>
std::enable_if<std::is_constructible<T , Ts&&...>::value || std::is_void<T>::value, future<T>>::type make_ready_future(Ts&&...

ts)

template<int DeductionGuard = 0, typename Allocator, typename T>
future<typename hpx::util::decay_unwrap<T>::type> make_ready_future_alloc(Allocator

const
&a, T
&&init)

template<int DeductionGuard = 0, typename T>
future<typename hpx::util::decay_unwrap<T>::type> make_ready_future(T &&init)

template<typename T>
future<T> make_exceptional_future(std::exception_ptr const &e)

template<typename T, typename E>
future<T> make_exceptional_future(E e)

template<int DeductionGuard = 0, typename T>
future<typename hpx::util::decay_unwrap<T>::type> make_ready_future_at(hpx::util::steady_time_point

const
&abs_time,
T &&init)

2.9. API reference 825

HPX Documentation, 1.5.1

template<int DeductionGuard = 0, typename T>
future<typename hpx::util::decay_unwrap<T>::type> make_ready_future_after(hpx::util::steady_duration

const
&rel_time,
T
&&init)

template<typename Allocator>
future<void> make_ready_future_alloc(Allocator const &a)

std::enable_if<std::is_void<T>::value, future<void>>::type make_ready_future()

std::enable_if<std::is_void<T>::value, future<void>>::type make_ready_future_at(hpx::util::steady_time_point
const
&abs_time)

std::enable_if<std::is_void<T>::value, future<void>>::type make_ready_future_after(hpx::util::steady_duration
const
&rel_time)

template<typename R>
class future : public hpx::lcos::detail::future_base<future<R>, R>

#include <future.hpp>

Public Types

typedef R result_type

typedef base_type::shared_state_type shared_state_type

Public Functions

future()

future(future &&other)

future(future<future> &&other)

future(future<shared_future<R>> &&other)

template<typename T>
future(future<T> &&other, typename std::enable_if<std::is_void<R>::value &&

!traits::is_future<T>::value, T>::type* = nullptr)

~future()

future &operator=(future &&other)

shared_future<R> share()

hpx::traits::future_traits<future>::result_type get()

hpx::traits::future_traits<future>::result_type get(error_code &ec)

template<typename F>
decltype(auto) then(F &&f, error_code &ec = throws)

template<typename T0, typename F>

826 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

decltype(auto) then(T0 &&t0, F &&f, error_code &ec = throws)

template<typename Allocator, typename F>
auto then_alloc(Allocator const &alloc, F &&f, error_code &ec = throws)

Private Types

typedef detail::future_base<future<R>, R> base_type

Private Functions

future(hpx::intrusive_ptr<shared_state_type> const &state)

future(hpx::intrusive_ptr<shared_state_type> &&state)

template<typename SharedState>
future(hpx::intrusive_ptr<SharedState> const &state)

Friends

friend hpx::lcos::hpx::traits::future_access

struct invalidate

Public Functions

template<>
invalidate(future &f)

template<>
~invalidate()

Public Members

template<>
future &f_

template<typename R>
class shared_future : public hpx::lcos::detail::future_base<shared_future<R>, R>

#include <future.hpp>

Public Types

typedef R result_type

typedef base_type::shared_state_type shared_state_type

2.9. API reference 827

HPX Documentation, 1.5.1

Public Functions

shared_future()

shared_future(shared_future const &other)

shared_future(shared_future &&other)

shared_future(future<R> &&other)

shared_future(future<shared_future> &&other)

template<typename T>
shared_future(shared_future<T> const &other, typename

std::enable_if<std::is_void<R>::value && !traits::is_future<T>::value,
T>::type* = nullptr)

~shared_future()

shared_future &operator=(shared_future const &other)

shared_future &operator=(shared_future &&other)

hpx::traits::future_traits<shared_future>::result_type get() const

hpx::traits::future_traits<shared_future>::result_type get(error_code &ec) const

template<typename F>
decltype(auto) then(F &&f, error_code &ec = throws) const

template<typename T0, typename F>
decltype(auto) then(T0 &&t0, F &&f, error_code &ec = throws) const

template<typename Allocator, typename F>
auto then_alloc(Allocator const &alloc, F &&f, error_code &ec = throws)

Private Types

typedef detail::future_base<shared_future<R>, R> base_type

Private Functions

shared_future(hpx::intrusive_ptr<shared_state_type> const &state)

shared_future(hpx::intrusive_ptr<shared_state_type> &&state)

template<typename SharedState>
shared_future(hpx::intrusive_ptr<SharedState> const &state)

828 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Friends

friend hpx::lcos::hpx::traits::future_access

namespace serialization

Functions

template<typename Archive, typename T>
void serialize(Archive &ar, ::hpx::lcos::future<T> &f, unsigned version)

template<typename Archive, typename T>
void serialize(Archive &ar, ::hpx::lcos::shared_future<T> &f, unsigned version)

Header hpx/futures/future_fwd.hpp

Header hpx/futures/futures_factory.hpp

namespace hpx

namespace lcos

namespace local

template<typename Result, bool Cancelable>
class futures_factory<Result(), Cancelable>

#include <futures_factory.hpp>

Public Functions

futures_factory()

template<typename Executor, typename F>
futures_factory(Executor &exec, F &&f)

template<typename Executor>
futures_factory(Executor &exec, Result (*f))

template<typename F, typename Enable = typename std::enable_if<!std::is_same<typename hpx::util::decay<F>::type, futures_factory>::value>::type>
futures_factory(F &&f)

futures_factory(Result (*f))

~futures_factory()

futures_factory(futures_factory const &rhs)

futures_factory &operator=(futures_factory const &rhs)

futures_factory(futures_factory &&rhs)

2.9. API reference 829

HPX Documentation, 1.5.1

futures_factory &operator=(futures_factory &&rhs)

void operator()() const

threads::thread_id_type apply(const char *annotation = "futures_factory::apply", launch
policy = launch::async, threads::thread_priority priority =
threads::thread_priority_default, threads::thread_stacksize
stacksize = threads::thread_stacksize_default,
threads::thread_schedule_hint schedulehint =
threads::thread_schedule_hint(), error_code &ec = throws)
const

threads::thread_id_type apply(threads::thread_pool_base *pool, const char *an-
notation = "futures_factory::apply", launch policy
= launch::async, threads::thread_priority priority =
threads::thread_priority_default, threads::thread_stacksize
stacksize = threads::thread_stacksize_default,
threads::thread_schedule_hint schedulehint =
threads::thread_schedule_hint(), error_code &ec = throws)
const

lcos::future<Result> get_future(error_code &ec = throws)

bool valid() const

void set_exception(std::exception_ptr const &e)

Protected Types

typedef lcos::detail::task_base<Result> task_impl_type

Protected Attributes

hpx::intrusive_ptr<task_impl_type> task_

bool future_obtained_

Header hpx/futures/packaged_continuation.hpp

Header hpx/futures/traits/acquire_future.hpp

namespace hpx

namespace traits

struct acquire_future_disp
#include <acquire_future.hpp>

830 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<typename T>
acquire_future<T>::type operator()(T &&t) const

Header hpx/futures/traits/acquire_shared_state.hpp

namespace hpx

namespace traits

struct acquire_shared_state_disp
#include <acquire_shared_state.hpp>

Public Functions

template<typename T>
acquire_shared_state<T>::type operator()(T &&t) const

Header hpx/futures/traits/future_access.hpp

template<typename R>
struct future_access<lcos::future<R>>

#include <future_access.hpp>

Public Static Functions

template<typename SharedState>
static lcos::future<R> create(hpx::intrusive_ptr<SharedState> const &shared_state)

template<typename T = void>
static lcos::future<R> create(typename detail::shared_state_ptr_for<lcos::future<lcos::future<R>>>::type

const &shared_state)

template<typename SharedState>
static lcos::future<R> create(hpx::intrusive_ptr<SharedState> &&shared_state)

template<typename T = void>
static lcos::future<R> create(typename detail::shared_state_ptr_for<lcos::future<lcos::future<R>>>::type

&&shared_state)

template<typename SharedState>
static lcos::future<R> create(SharedState *shared_state, bool addref = true)

static traits::detail::shared_state_ptr<R>::type const &get_shared_state(lcos::future<R>
const &f)

static traits::detail::shared_state_ptr<R>::type::element_type *detach_shared_state(lcos::future<R>
&&f)

template<typename R>

2.9. API reference 831

HPX Documentation, 1.5.1

struct future_access<lcos::shared_future<R>>
#include <future_access.hpp>

Public Static Functions

template<typename SharedState>
static lcos::shared_future<R> create(hpx::intrusive_ptr<SharedState> const &shared_state)

template<typename T = void>
static lcos::shared_future<R> create(typename detail::shared_state_ptr_for<lcos::shared_future<lcos::future<R>>>::type

const &shared_state)

template<typename SharedState>
static lcos::shared_future<R> create(hpx::intrusive_ptr<SharedState> &&shared_state)

template<typename T = void>
static lcos::shared_future<R> create(typename detail::shared_state_ptr_for<lcos::shared_future<lcos::future<R>>>::type

&&shared_state)

template<typename SharedState>
static lcos::shared_future<R> create(SharedState *shared_state, bool addref = true)

static traits::detail::shared_state_ptr<R>::type const &get_shared_state(lcos::shared_future<R>
const &f)

static traits::detail::shared_state_ptr<R>::type::element_type *detach_shared_state(lcos::shared_future<R>
const
&f)

namespace hpx

namespace traits

template<typename R>
struct future_access<lcos::future<R>>

#include <future_access.hpp>

Public Static Functions

template<typename SharedState>
static lcos::future<R> create(hpx::intrusive_ptr<SharedState> const &shared_state)

template<typename T = void>
static lcos::future<R> create(typename detail::shared_state_ptr_for<lcos::future<lcos::future<R>>>::type

const &shared_state)

template<typename SharedState>
static lcos::future<R> create(hpx::intrusive_ptr<SharedState> &&shared_state)

template<typename T = void>
static lcos::future<R> create(typename detail::shared_state_ptr_for<lcos::future<lcos::future<R>>>::type

&&shared_state)

template<typename SharedState>
static lcos::future<R> create(SharedState *shared_state, bool addref = true)

832 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

static traits::detail::shared_state_ptr<R>::type const &get_shared_state(lcos::future<R>
const
&f)

static traits::detail::shared_state_ptr<R>::type::element_type *detach_shared_state(lcos::future<R>
&&f)

template<typename R>
struct future_access<lcos::shared_future<R>>

#include <future_access.hpp>

Public Static Functions

template<typename SharedState>
static lcos::shared_future<R> create(hpx::intrusive_ptr<SharedState> const

&shared_state)

template<typename T = void>
static lcos::shared_future<R> create(typename detail::shared_state_ptr_for<lcos::shared_future<lcos::future<R>>>::type

const &shared_state)

template<typename SharedState>
static lcos::shared_future<R> create(hpx::intrusive_ptr<SharedState> &&shared_state)

template<typename T = void>
static lcos::shared_future<R> create(typename detail::shared_state_ptr_for<lcos::shared_future<lcos::future<R>>>::type

&&shared_state)

template<typename SharedState>
static lcos::shared_future<R> create(SharedState *shared_state, bool addref = true)

static traits::detail::shared_state_ptr<R>::type const &get_shared_state(lcos::shared_future<R>
const
&f)

static traits::detail::shared_state_ptr<R>::type::element_type *detach_shared_state(lcos::shared_future<R>
const
&f)

Header hpx/futures/traits/future_then_result.hpp

Header hpx/futures/traits/future_traits.hpp

template<typename R>
struct future_traits<lcos::future<R>>

#include <future_traits.hpp>

2.9. API reference 833

HPX Documentation, 1.5.1

Public Types

typedef R type

typedef R result_type

template<typename R>
struct future_traits<lcos::shared_future<R>>

#include <future_traits.hpp>

Public Types

typedef R type

typedef R const &result_type

template<>
struct future_traits<lcos::shared_future<void>>

#include <future_traits.hpp>

Public Types

typedef void type

typedef void result_type

namespace hpx

namespace traits

template<typename R>
struct future_traits<lcos::future<R>>

#include <future_traits.hpp>

Public Types

typedef R type

typedef R result_type

template<typename R>
struct future_traits<lcos::shared_future<R>>

#include <future_traits.hpp>

834 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef R type

typedef R const &result_type

template<>
struct future_traits<lcos::shared_future<void>>

#include <future_traits.hpp>

Public Types

typedef void type

typedef void result_type

Header hpx/futures/traits/get_remote_result.hpp

namespace hpx

namespace traits

template<typename Result, typename RemoteResult, typename Enable = void>
struct get_remote_result

#include <get_remote_result.hpp>

Public Static Functions

static Result call(RemoteResult const &rhs)

static Result call(RemoteResult &&rhs)

template<typename Result>
struct get_remote_result<Result, Result>

#include <get_remote_result.hpp>

Public Static Functions

static Result const &call(Result const &rhs)

static Result &&call(Result &&rhs)

2.9. API reference 835

HPX Documentation, 1.5.1

Header hpx/futures/traits/is_future.hpp

namespace hpx

namespace traits

template<typename Future>
struct is_future : public hpx::traits::detail::is_future_customization_point<Future>

#include <is_future.hpp> Subclassed by hpx::traits::is_ref_wrapped_future<
std::reference_wrapper< Future > >

Header hpx/futures/traits/is_future_range.hpp

namespace hpx

namespace traits

template<typename R>
struct future_range_traits<R, true>

#include <is_future_range.hpp>

Public Types

typedef range_traits<R>::value_type future_type

Header hpx/futures/traits/is_future_tuple.hpp

Header hpx/futures/traits/promise_local_result.hpp

template<>
struct promise_local_result<util::unused_type>

#include <promise_local_result.hpp>

Public Types

typedef void type

namespace hpx

namespace traits

template<typename Result, typename Enable = void>
struct promise_local_result

#include <promise_local_result.hpp>

836 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef Result type

template<>
struct promise_local_result<util::unused_type>

#include <promise_local_result.hpp>

Public Types

typedef void type

Header hpx/futures/traits/promise_remote_result.hpp

namespace hpx

namespace traits

template<typename Result, typename Enable = void>
struct promise_remote_result

#include <promise_remote_result.hpp>

Public Types

typedef Result type

template<>
struct promise_remote_result<void>

#include <promise_remote_result.hpp>

Public Types

typedef hpx::util::unused_type type

hardware

The contents of this module can be included with the header hpx/modules/hardware.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/hardware.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

2.9. API reference 837

HPX Documentation, 1.5.1

Header hpx/hardware/bit_manipulation.hpp

namespace hpx

namespace util

namespace hardware

Functions

template<typename T, typename U>
bool has_bit_set(T value, U bit)

template<std::size_t N, typename T>
T unbounded_shl(T x)

template<std::size_t N, typename T>
T unbounded_shr(T x)

template<std::size_t Low, std::size_t High, typename Result, typename T>
Result get_bit_range(T x)

template<std::size_t Low, typename Result, typename T>
Result pack_bits(T x)

template<std::size_t N, typename T>
struct unbounded_shifter

#include <bit_manipulation.hpp>

Public Static Functions

static T shl(T x)

static T shr(T x)

template<typename T>
struct unbounded_shifter<0, T>

#include <bit_manipulation.hpp>

Public Static Functions

static T shl(T x)

static T shr(T x)

838 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/hardware/cpuid.hpp

Header hpx/hardware/cpuid/linux_x86.hpp

namespace hpx

namespace util

namespace hardware

Functions

void cpuid(std::uint32_t (&cpuinfo)[4], std::uint32_t eax)

void cpuidex(std::uint32_t (&cpuinfo)[4], std::uint32_t eax, std::uint32_t ecx)

struct cpuid_register
#include <linux_x86.hpp>

Public Types

enum info
Values:

eax = 0

ebx = 1

ecx = 2

edx = 3

Header hpx/hardware/cpuid/msvc.hpp

Header hpx/hardware/timestamp.hpp

Header hpx/hardware/timestamp/bgq.hpp

Header hpx/hardware/timestamp/linux_generic.hpp

Header hpx/hardware/timestamp/linux_x86_32.hpp

namespace hpx

namespace util

namespace hardware

2.9. API reference 839

HPX Documentation, 1.5.1

Functions

std::uint64_t timestamp()

Header hpx/hardware/timestamp/linux_x86_64.hpp

Header hpx/hardware/timestamp/msvc.hpp

hashing

The contents of this module can be included with the header hpx/modules/hashing.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/hashing.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/hashing/fibhash.hpp

namespace hpx

namespace util

Functions

template<std::uint64_t N>
constexpr std::uint64_t fibhash(std::uint64_t i)

Header hpx/hashing/jenkins_hash.hpp

namespace hpx

namespace util

class jenkins_hash
#include <jenkins_hash.hpp> The jenkins_hash class encapsulates a hash calculation function pub-
lished by Bob Jenkins here: http://burtleburtle.net/bob/hash

Public Types

enum seedenum
The seedenum is used as a dummy parameter to distinguish the different constructors

Values:

seed = 1

typedef std::uint32_t size_type
this is the type representing the result of this hash

840 Chapter 2. What’s so special about HPX?

http://burtleburtle.net/bob/hash

HPX Documentation, 1.5.1

Public Functions

jenkins_hash()
constructors and destructor

jenkins_hash(size_type size)

jenkins_hash(size_type seedval, seedenum)

~jenkins_hash()

size_type operator()(std::string const &key) const
calculate the hash value for the given key

size_type operator()(char const *key) const

bool reset(size_type size)
re-seed the hash generator

void set_seed(size_type seedval)
initialize the hash generator to a specific seed

void swap(jenkins_hash &rhs)
support for std::swap

Protected Functions

size_type hash(const char *k, std::size_t length) const

Private Members

size_type seed_

include

The contents of this module can be included with the header hpx/modules/include.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/include.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/algorithm.hpp

Header hpx/any.hpp

Header hpx/barrier.hpp

Header hpx/channel.hpp

Header hpx/chrono.hpp

2.9. API reference 841

HPX Documentation, 1.5.1

Header hpx/distributed/future.hpp

Header hpx/distributed/runtime.hpp

Header hpx/execution.hpp

Header hpx/functional.hpp

Header hpx/future.hpp

Header hpx/hpx.hpp

Header hpx/include/actions.hpp

Header hpx/include/agas.hpp

Header hpx/include/applier.hpp

Header hpx/include/apply.hpp

Header hpx/include/async.hpp

Header hpx/include/bind.hpp

Header hpx/include/client.hpp

Header hpx/include/components.hpp

Header hpx/include/compression.hpp

Header hpx/include/compression_registration.hpp

Header hpx/include/compute.hpp

Header hpx/include/dataflow.hpp

Header hpx/include/datapar.hpp

Header hpx/include/future.hpp

Header hpx/include/lcos.hpp

Header hpx/include/lcos_local.hpp

Header hpx/include/naming.hpp

842 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/include/parallel_adjacent_difference.hpp

Header hpx/include/parallel_adjacent_find.hpp

Header hpx/include/parallel_algorithm.hpp

Header hpx/include/parallel_all_any_none_of.hpp

Header hpx/include/parallel_container_algorithm.hpp

Header hpx/include/parallel_copy.hpp

Header hpx/include/parallel_count.hpp

Header hpx/include/parallel_destroy.hpp

Header hpx/include/parallel_equal.hpp

Header hpx/include/parallel_exception_list.hpp

Header hpx/include/parallel_execution.hpp

Header hpx/include/parallel_execution_policy.hpp

Header hpx/include/parallel_executor_information.hpp

Header hpx/include/parallel_executor_parameters.hpp

Header hpx/include/parallel_executors.hpp

Header hpx/include/parallel_fill.hpp

Header hpx/include/parallel_find.hpp

Header hpx/include/parallel_for_each.hpp

Header hpx/include/parallel_for_loop.hpp

Header hpx/include/parallel_generate.hpp

Header hpx/include/parallel_is_heap.hpp

Header hpx/include/parallel_is_partitioned.hpp

Header hpx/include/parallel_is_sorted.hpp

2.9. API reference 843

HPX Documentation, 1.5.1

Header hpx/include/parallel_lexicographical_compare.hpp

Header hpx/include/parallel_memory.hpp

Header hpx/include/parallel_merge.hpp

Header hpx/include/parallel_minmax.hpp

Header hpx/include/parallel_mismatch.hpp

Header hpx/include/parallel_move.hpp

Header hpx/include/parallel_numeric.hpp

Header hpx/include/parallel_partition.hpp

Header hpx/include/parallel_reduce.hpp

Header hpx/include/parallel_remove.hpp

Header hpx/include/parallel_remove_copy.hpp

Header hpx/include/parallel_replace.hpp

Header hpx/include/parallel_reverse.hpp

Header hpx/include/parallel_rotate.hpp

Header hpx/include/parallel_scan.hpp

Header hpx/include/parallel_search.hpp

Header hpx/include/parallel_set_operations.hpp

Header hpx/include/parallel_sort.hpp

Header hpx/include/parallel_swap_ranges.hpp

Header hpx/include/parallel_task_block.hpp

Header hpx/include/parallel_transform.hpp

Header hpx/include/parallel_transform_reduce.hpp

Header hpx/include/parallel_transform_scan.hpp

844 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/include/parallel_uninitialized_copy.hpp

Header hpx/include/parallel_uninitialized_default_construct.hpp

Header hpx/include/parallel_uninitialized_fill.hpp

Header hpx/include/parallel_uninitialized_move.hpp

Header hpx/include/parallel_uninitialized_value_construct.hpp

Header hpx/include/parallel_unique.hpp

Header hpx/include/parcel_coalescing.hpp

Header hpx/include/parcelset.hpp

Header hpx/include/performance_counters.hpp

Header hpx/include/plain_actions.hpp

Header hpx/include/resource_partitioner.hpp

Header hpx/include/run_as.hpp

Header hpx/include/runtime.hpp

Header hpx/include/serialization.hpp

Header hpx/include/sync.hpp

Header hpx/include/thread_executors.hpp

Header hpx/include/threadmanager.hpp

Header hpx/include/threads.hpp

Header hpx/include/traits.hpp

Header hpx/include/util.hpp

Header hpx/latch.hpp

Header hpx/local/execution.hpp

Header hpx/local/future.hpp

2.9. API reference 845

HPX Documentation, 1.5.1

Header hpx/local/runtime.hpp

Header hpx/memory.hpp

Header hpx/numeric.hpp

Header hpx/optional.hpp

Header hpx/runtime.hpp

Header hpx/task_block.hpp

namespace hpx

Typedefs

using task_cancelled_exception = hpx::parallel::task_canceled_exception

Header hpx/tuple.hpp

Header hpx/type_traits.hpp

init_runtime

The contents of this module can be included with the header hpx/modules/init_runtime.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/init_runtime.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/hpx_finalize.hpp

namespace hpx

Functions

int finalize(double shutdown_timeout, double localwait = -1.0, error_code &ec = throws)
Main function to gracefully terminate the HPX runtime system.

The function hpx::finalize is the main way to (gracefully) exit any HPX application. It should be called
from one locality only (usually the console) and it will notify all connected localities to finish execution.
Only after all other localities have exited this function will return, allowing to exit the console locality as
well.

During the execution of this function the runtime system will invoke all registered shutdown functions (see
hpx::init) on all localities.

The default value (-1.0) will try to find a globally set timeout value (can be set as the configuration
parameter hpx.shutdown_timeout), and if that is not set or -1.0 as well, it will disable any timeout,
each connected locality will wait for all existing HPX-threads to terminate.

846 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters

• shutdown_timeout: This parameter allows to specify a timeout (in microseconds), specify-
ing how long any of the connected localities should wait for pending tasks to be executed. After
this timeout, all suspended HPX-threads will be aborted. Note, that this function will not abort
any running HPX-threads. In any case the shutdown will not proceed as long as there is at least
one pending/running HPX-thread.

The default value (-1.0) will try to find a globally set wait time value (can be set as the configuration
parameter “hpx.finalize_wait_time”), and if this is not set or -1.0 as well, it will disable any addition
local wait time before proceeding.

Parameters

• localwait: This parameter allows to specify a local wait time (in microseconds) before the
connected localities will be notified and the overall shutdown process starts.

This function will block and wait for all connected localities to exit before returning to the caller. It should
be the last HPX-function called by any application.

Return This function will always return zero.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

Using this function is an alternative to hpx::disconnect, these functions do not need to be called both.

int finalize(error_code &ec = throws)
Main function to gracefully terminate the HPX runtime system.

The function hpx::finalize is the main way to (gracefully) exit any HPX application. It should be called
from one locality only (usually the console) and it will notify all connected localities to finish execution.
Only after all other localities have exited this function will return, allowing to exit the console locality as
well.

During the execution of this function the runtime system will invoke all registered shutdown functions (see
hpx::init) on all localities.

This function will block and wait for all connected localities to exit before returning to the caller. It should
be the last HPX-function called by any application.

Return This function will always return zero.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

Using this function is an alternative to hpx::disconnect, these functions do not need to be called both.

HPX_NORETURN void hpx::terminate()
Terminate any application non-gracefully.

The function hpx::terminate is the non-graceful way to exit any application immediately. It can be called
from any locality and will terminate all localities currently used by the application.

2.9. API reference 847

HPX Documentation, 1.5.1

Note This function will cause HPX to call std::terminate() on all localities associated with this
application. If the function is called not from an HPX thread it will fail and return an error using the
argument ec.

int disconnect(double shutdown_timeout, double localwait = -1.0, error_code &ec = throws)
Disconnect this locality from the application.

The function hpx::disconnect can be used to disconnect a locality from a running HPX application.

During the execution of this function the runtime system will invoke all registered shutdown functions (see
hpx::init) on this locality. The default value (-1.0) will try to find a globally set timeout value (can be
set as the configuration parameter “hpx.shutdown_timeout”), and if that is not set or -1.0 as well, it will
disable any timeout, each connected locality will wait for all existing HPX-threads to terminate.

Parameters

• shutdown_timeout: This parameter allows to specify a timeout (in microseconds), specify-
ing how long this locality should wait for pending tasks to be executed. After this timeout, all
suspended HPX-threads will be aborted. Note, that this function will not abort any running HPX-
threads. In any case the shutdown will not proceed as long as there is at least one pending/running
HPX-thread.

The default value (-1.0) will try to find a globally set wait time value (can be set as the configuration
parameter hpx.finalize_wait_time), and if this is not set or -1.0 as well, it will disable any
addition local wait time before proceeding.

Parameters

• localwait: This parameter allows to specify a local wait time (in microseconds) before the
connected localities will be notified and the overall shutdown process starts.

This function will block and wait for this locality to finish executing before returning to the caller. It should
be the last HPX-function called by any locality being disconnected.

Return This function will always return zero.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

int disconnect(error_code &ec = throws)
Disconnect this locality from the application.

The function hpx::disconnect can be used to disconnect a locality from a running HPX application.

During the execution of this function the runtime system will invoke all registered shutdown functions (see
hpx::init) on this locality.

This function will block and wait for this locality to finish executing before returning to the caller. It should
be the last HPX-function called by any locality being disconnected.

Return This function will always return zero.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

848 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

int stop(error_code &ec = throws)
Stop the runtime system.

This function will block and wait for this locality to finish executing before returning to the caller. It should
be the last HPX-function called on every locality. This function should be used only if the runtime system
was started using hpx::start.

Return The function returns the value, which has been returned from the user supplied main HPX function
(usually hpx_main).

Header hpx/hpx_init.hpp

namespace hpx

Functions

int init(util::function_nonser<int)hpx::program_options::variables_map&
> const &f, int argc, char **argv, init_params const ¶ms = init_params()Main entry point for
launching the HPX runtime system.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread. This overload will not call hpx_main.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread.

Return The function returns the value, which has been returned from the user supplied f.

Note If the parameter mode is not given (defaulted), the created runtime system instance will be exe-
cuted in console or worker mode depending on the command line arguments passed in argc/argv.
Otherwise it will be executed as specified by the parametermode.

Parameters

• f: [in] The function to be scheduled as an HPX thread. Usually this function represents the main
entry point of any HPX application. If f is nullptr the HPX runtime environment will be
started without invoking f.

• argc: [in] The number of command line arguments passed in argv. This is usually the un-
changed value as passed by the operating system (to main()).

• argv: [in] The command line arguments for this application, usually that is the value as passed
by the operating system (to main()).

• params: [in] The parameters to the hpx::init function (See documentation of hpx::init_params)

int init(util::function_nonser<int)int, char**
> const &f, int argc, char **argv, init_params const ¶ms = init_params()Main entry point for
launching the HPX runtime system.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread. This overload will not call hpx_main.

2.9. API reference 849

HPX Documentation, 1.5.1

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread.

Return The function returns the value, which has been returned from the user supplied f.

Note If the parameter mode is not given (defaulted), the created runtime system instance will be exe-
cuted in console or worker mode depending on the command line arguments passed in argc/argv.
Otherwise it will be executed as specified by the parametermode.

Parameters

• f: [in] The function to be scheduled as an HPX thread. Usually this function represents the main
entry point of any HPX application. If f is nullptr the HPX runtime environment will be
started without invoking f.

• argc: [in] The number of command line arguments passed in argv. This is usually the un-
changed value as passed by the operating system (to main()).

• argv: [in] The command line arguments for this application, usually that is the value as passed
by the operating system (to main()).

• params: [in] The parameters to the hpx::init function (See documentation of hpx::init_params)

int init(int argc, char **argv, init_params const ¶ms = init_params())
Main entry point for launching the HPX runtime system.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread. This overload will not call hpx_main.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread.

Return The function returns the value, which has been returned from the user supplied f.

Note If the parameter mode is not given (defaulted), the created runtime system instance will be exe-
cuted in console or worker mode depending on the command line arguments passed in argc/argv.
Otherwise it will be executed as specified by the parametermode.

Parameters

• argc: [in] The number of command line arguments passed in argv. This is usually the un-
changed value as passed by the operating system (to main()).

• argv: [in] The command line arguments for this application, usually that is the value as passed
by the operating system (to main()).

• params: [in] The parameters to the hpx::init function (See documentation of hpx::init_params)

int init(std::nullptr_t f, int argc, char **argv, init_params const ¶ms = init_params())
Main entry point for launching the HPX runtime system.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread. This overload will not call hpx_main.

This is the main entry point for any HPX application. This function (or one of its overloads below) should
be called from the users main() function. It will set up the HPX runtime environment and schedule the
function given by f as a HPX thread.

Return The function returns the value, which has been returned from the user supplied f.

850 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note If the parameter mode is not given (defaulted), the created runtime system instance will be exe-
cuted in console or worker mode depending on the command line arguments passed in argc/argv.
Otherwise it will be executed as specified by the parametermode.

Parameters

• f: [in] The function to be scheduled as an HPX thread. Usually this function represents the main
entry point of any HPX application. If f is nullptr the HPX runtime environment will be
started without invoking f.

• argc: [in] The number of command line arguments passed in argv. This is usually the un-
changed value as passed by the operating system (to main()).

• argv: [in] The command line arguments for this application, usually that is the value as passed
by the operating system (to main()).

• params: [in] The parameters to the hpx::init function (See documentation of hpx::init_params)

int init(init_params const ¶ms = init_params())
Main entry point for launching the HPX runtime system.

This is a simplified main entry point, which can be used to set up the runtime for an HPX application (the
runtime system will be set up in console mode or worker mode depending on the command line settings).

This is a simplified main entry point, which can be used to set up the runtime for an HPX application (the
runtime system will be set up in console mode or worker mode depending on the command line settings).

Return The function returns the value, which has been returned from hpx_main (or 0 when executed in
worker mode).

Note The created runtime system instance will be executed in console or worker mode depending on the
command line arguments passed in argc/argv. If not command line arguments are passed, console
mode is assumed.

Note If no command line arguments are passed the HPX runtime system will not support any of the default
command line options as described in the section ‘HPX Command Line Options’.

Parameters

• params: [in] The parameters to the hpx::init function (See documentation of hpx::init_params)

Header hpx/hpx_init_impl.hpp

Header hpx/hpx_init_params.hpp

namespace hpx

struct init_params
#include <hpx_init_params.hpp> Parameters used to initialize the HPX runtime through hpx::init and
hpx::start.

2.9. API reference 851

HPX Documentation, 1.5.1

Public Members

std::reference_wrapper<hpx::program_options::options_description const> desc_cmdline = detail::default_desc

std::vector<std::string> cfg

startup_function_type startup

shutdown_function_type shutdown

hpx::runtime_mode mode = ::hpx::runtime_mode::default_

hpx::resource::partitioner_mode rp_mode = ::hpx::resource::mode_default

hpx::resource::rp_callback_type rp_callback

Header hpx/hpx_main_winsocket.hpp

Header hpx/hpx_start.hpp

namespace hpx

Functions

bool start(util::function_nonser<int)hpx::program_options::variables_map&
> const &f, int argc, char **argv, init_params const ¶ms = init_params()Main non-blocking
entry point for launching the HPX runtime system.

This is the main, non-blocking entry point for any HPX application. This function (or one of its over-
loads below) should be called from the users main() function. It will set up the HPX runtime environ-
ment and schedule the function given by f as a HPX thread. It will return immediately after that. Use
hpx::wait and hpx::stop to synchronize with the runtime system’s execution. This overload will
not call hpx_main.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Return The function returns true if command line processing succeeded and the runtime system was
started successfully. It will return false otherwise.

Note If the parameter mode is not given (defaulted), the created runtime system instance will be exe-
cuted in console or worker mode depending on the command line arguments passed in argc/argv.
Otherwise it will be executed as specified by the parametermode.

Parameters

• f: [in] The function to be scheduled as an HPX thread. Usually this function represents the main
entry point of any HPX application. If f is nullptr the HPX runtime environment will be
started without invoking f.

• argc: [in] The number of command line arguments passed in argv. This is usually the un-
changed value as passed by the operating system (to main()).

• argv: [in] The command line arguments for this application, usually that is the value as passed
by the operating system (to main()).

• params: [in] The parameters to the hpx::start function (See documentation of hpx::init_params)

852 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool start(util::function_nonser<int)int, char**
> const &f, int argc, char **argv, init_params const ¶ms = init_params()Main non-blocking
entry point for launching the HPX runtime system.

This is the main, non-blocking entry point for any HPX application. This function (or one of its over-
loads below) should be called from the users main() function. It will set up the HPX runtime environ-
ment and schedule the function given by f as a HPX thread. It will return immediately after that. Use
hpx::wait and hpx::stop to synchronize with the runtime system’s execution. This overload will
not call hpx_main.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Return The function returns true if command line processing succeeded and the runtime system was
started successfully. It will return false otherwise.

Note If the parameter mode is not given (defaulted), the created runtime system instance will be exe-
cuted in console or worker mode depending on the command line arguments passed in argc/argv.
Otherwise it will be executed as specified by the parametermode.

Parameters

• f: [in] The function to be scheduled as an HPX thread. Usually this function represents the main
entry point of any HPX application. If f is nullptr the HPX runtime environment will be
started without invoking f.

• argc: [in] The number of command line arguments passed in argv. This is usually the un-
changed value as passed by the operating system (to main()).

• argv: [in] The command line arguments for this application, usually that is the value as passed
by the operating system (to main()).

• params: [in] The parameters to the hpx::start function (See documentation of hpx::init_params)

bool start(int argc, char **argv, init_params const ¶ms = init_params())
Main non-blocking entry point for launching the HPX runtime system.

This is the main, non-blocking entry point for any HPX application. This function (or one of its over-
loads below) should be called from the users main() function. It will set up the HPX runtime environ-
ment and schedule the function given by f as a HPX thread. It will return immediately after that. Use
hpx::wait and hpx::stop to synchronize with the runtime system’s execution. This overload will
not call hpx_main.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Return The function returns true if command line processing succeeded and the runtime system was
started successfully. It will return false otherwise.

Note If the parameter mode is not given (defaulted), the created runtime system instance will be exe-
cuted in console or worker mode depending on the command line arguments passed in argc/argv.
Otherwise it will be executed as specified by the parametermode.

Parameters

• argc: [in] The number of command line arguments passed in argv. This is usually the un-
changed value as passed by the operating system (to main()).

2.9. API reference 853

HPX Documentation, 1.5.1

• argv: [in] The command line arguments for this application, usually that is the value as passed
by the operating system (to main()).

• params: [in] The parameters to the hpx::start function (See documentation of hpx::init_params)

bool start(std::nullptr_t f, int argc, char **argv, init_params const ¶ms = init_params())
Main non-blocking entry point for launching the HPX runtime system.

This is the main, non-blocking entry point for any HPX application. This function (or one of its over-
loads below) should be called from the users main() function. It will set up the HPX runtime environ-
ment and schedule the function given by f as a HPX thread. It will return immediately after that. Use
hpx::wait and hpx::stop to synchronize with the runtime system’s execution. This overload will
not call hpx_main.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Return The function returns true if command line processing succeeded and the runtime system was
started successfully. It will return false otherwise.

Note If the parameter mode is not given (defaulted), the created runtime system instance will be exe-
cuted in console or worker mode depending on the command line arguments passed in argc/argv.
Otherwise it will be executed as specified by the parametermode.

Parameters

• f: [in] The function to be scheduled as an HPX thread. Usually this function represents the main
entry point of any HPX application. If f is nullptr the HPX runtime environment will be
started without invoking f.

• argc: [in] The number of command line arguments passed in argv. This is usually the un-
changed value as passed by the operating system (to main()).

• argv: [in] The command line arguments for this application, usually that is the value as passed
by the operating system (to main()).

• params: [in] The parameters to the hpx::start function (See documentation of hpx::init_params)

bool start(init_params const ¶ms = init_params())
Main non-blocking entry point for launching the HPX runtime system.

This is a simplified main, non-blocking entry point, which can be used to set up the runtime for an HPX
application (the runtime system will be set up in console mode or worker mode depending on the command
line settings). It will return immediately after that. Use hpx::wait and hpx::stop to synchronize
with the runtime system’s execution.

This is the main, non-blocking entry point for any HPX application. This function (or one of its overloads
below) should be called from the users main() function. It will set up the HPX runtime environment and
schedule the function given by f as an HPX thread. It will return immediately after that. Use hpx::wait
and hpx::stop to synchronize with the runtime system’s execution.

Return The function returns true if command line processing succeeded and the runtime system was
started successfully. It will return false otherwise.

Note The created runtime system instance will be executed in console or worker mode depending on the
command line arguments passed in argc/argv. If not command line arguments are passed, console
mode is assumed.

Note If no command line arguments are passed the HPX runtime system will not support any of the default
command line options as described in the section ‘HPX Command Line Options’.

854 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters

• params: [in] The parameters to the hpx::start function (See documentation of hpx::init_params)

Header hpx/hpx_start_impl.hpp

Header hpx/hpx_suspend.hpp

namespace hpx

Functions

int suspend(error_code &ec = throws)
Suspend the runtime system.

The function hpx::suspend is used to suspend the HPX runtime system. It can only be used when running
HPX on a single locality. It will block waiting for all thread pools to be empty. This function only be
called when the runtime is running, or already suspended in which case this function will do nothing.

Return This function will always return zero.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

int resume(error_code &ec = throws)
Resume the HPX runtime system.

The function hpx::resume is used to resume the HPX runtime system. It can only be used when running
HPX on a single locality. It will block waiting for all thread pools to be resumed. This function only be
called when the runtime suspended, or already running in which case this function will do nothing.

Return This function will always return zero.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

2.9. API reference 855

HPX Documentation, 1.5.1

Header hpx/hpx_user_main_config.hpp

namespace hpx_startup

Functions

std::vector<std::string> user_main_config(std::vector<std::string> const &cfg)

Variables

std::vector<std::string> (*user_main_config_function)(std::vector<std::string> const&)

Header hpx/init.hpp

io_service

The contents of this module can be included with the header hpx/modules/io_service.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/io_service.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/io_service/io_service_pool.hpp

namespace hpx

namespace util

class io_service_pool
#include <io_service_pool.hpp> A pool of io_service objects.

Public Functions

HPX_NON_COPYABLE(io_service_pool)

io_service_pool(std::size_t pool_size = 2, threads::policies::callback_notifier const
¬ifier = threads::policies::callback_notifier(), char const
*pool_name = "", char const *name_postfix = "")

Construct the io_service pool.

Parameters
• pool_size: [in] The number of threads to run to serve incoming requests
• start_thread: [in]

io_service_pool(threads::policies::callback_notifier const ¬ifier, char const
*pool_name = "", char const *name_postfix = "")

Construct the io_service pool.

Parameters

856 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• start_thread: [in]

~io_service_pool()

bool run(bool join_threads = true, barrier *startup = nullptr)
Run all io_service objects in the pool. If join_threads is true this will also wait for all threads to
complete

bool run(std::size_t num_threads, bool join_threads = true, barrier *startup = nullptr)
Run all io_service objects in the pool. If join_threads is true this will also wait for all threads to
complete

void stop()
Stop all io_service objects in the pool.

void join()
Join all io_service threads in the pool.

void clear()
Clear all internal data structures.

void wait()
Wait for all work to be done.

bool stopped()

boost::asio::io_service &get_io_service(int index = -1)
Get an io_service to use.

std::thread &get_os_thread_handle(std::size_t thread_num)
access underlying thread handle

std::size_t size() const
Get number of threads associated with this I/O service.

void thread_run(std::size_t index, barrier *startup = nullptr)
Activate the thread index for this thread pool.

char const *get_name() const
Return name of this pool.

Protected Functions

bool run_locked(std::size_t num_threads, bool join_threads, barrier *startup)

void stop_locked()

void join_locked()

void clear_locked()

void wait_locked()

2.9. API reference 857

HPX Documentation, 1.5.1

Private Types

using io_service_ptr = std::unique_ptr<boost::asio::io_service>

using work_type = boost::asio::io_service::work

Private Functions

work_type initialize_work(boost::asio::io_service &io_service)

Private Members

std::mutex mtx_

std::vector<io_service_ptr> io_services_
The pool of io_services.

std::vector<std::thread> threads_

std::vector<work_type> work_
The work that keeps the io_services running.

std::size_t next_io_service_
The next io_service to use for a connection.

bool stopped_
set to true if stopped

std::size_t pool_size_
initial number of OS threads to execute in this pool

threads::policies::callback_notifier const ¬ifier_
call this for each thread start/stop

char const *pool_name_

char const *pool_name_postfix_

bool waiting_
Set to true if waiting for work to finish.

barrier wait_barrier_

barrier continue_barrier_

Header hpx/io_service/io_service_thread_pool.hpp

iterator_support

The contents of this module can be included with the header hpx/modules/iterator_support.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are
using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/iterator_support.hpp, not the particular header in which the
functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

858 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/iterator_support/counting_iterator.hpp

template<typename Incrementable, typename CategoryOrTraversal, typename Difference>
class counting_iterator<Incrementable, CategoryOrTraversal, Difference, typename std::enable_if<std::is_integral<Incrementable>::value>::type> : public hpx::util::iterator_adaptor<counting_iterator<Incrementable, CategoryOrTraversal, Difference>, Incrementable, Incrementable, traversal, Incrementable const&, difference>

#include <counting_iterator.hpp>

Public Functions

counting_iterator()

counting_iterator(counting_iterator const &rhs)

counting_iterator(Incrementable x)

Private Types

template<>
using base_type = typename detail::counting_iterator_base<Incrementable, CategoryOrTraversal, Difference>::type

Private Functions

template<typename Iterator>
bool equal(Iterator const &rhs) const

void increment()

void decrement()

template<typename Distance>
void advance(Distance n)

base_type::reference dereference() const

template<typename OtherIncrementable>
base_type::difference_type distance_to(counting_iterator<OtherIncrementable, CategoryOrTraver-

sal, Difference> const &y) const

Friends

friend iterator_core_access

namespace hpx

namespace util

2.9. API reference 859

HPX Documentation, 1.5.1

Functions

template<typename Incrementable>
counting_iterator<Incrementable> make_counting_iterator(Incrementable x)

template<typename Incrementable, typename CategoryOrTraversal, typename Difference, typename Enable>
class counting_iterator : public hpx::util::iterator_adaptor<counting_iterator<Incrementable, CategoryOrTraversal, Difference>, Incrementable, Incrementable, traversal, Incrementable const&, difference>

#include <counting_iterator.hpp>

Public Functions

counting_iterator()

counting_iterator(counting_iterator const &rhs)

counting_iterator(Incrementable x)

Private Types

template<>
using base_type = typename detail::counting_iterator_base<Incrementable, CategoryOrTraversal, Difference>::type

Private Functions

base_type::reference dereference() const

Friends

friend hpx::util::iterator_core_access

template<typename Incrementable, typename CategoryOrTraversal, typename Difference>
class counting_iterator<Incrementable, CategoryOrTraversal, Difference, typename std::enable_if<std::is_integral<Incrementable>::value>::type> : public hpx::util::iterator_adaptor<counting_iterator<Incrementable, CategoryOrTraversal, Difference>, Incrementable, Incrementable, traversal, Incrementable const&, difference>

#include <counting_iterator.hpp>

Public Functions

counting_iterator()

counting_iterator(counting_iterator const &rhs)

counting_iterator(Incrementable x)

860 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

template<>
using base_type = typename detail::counting_iterator_base<Incrementable, CategoryOrTraversal, Difference>::type

Private Functions

template<typename Iterator>
bool equal(Iterator const &rhs) const

void increment()

void decrement()

template<typename Distance>
void advance(Distance n)

base_type::reference dereference() const

template<typename OtherIncrementable>
base_type::difference_type distance_to(counting_iterator<OtherIncrementable, Category-

OrTraversal, Difference> const &y) const

Friends

friend hpx::util::iterator_core_access

Header hpx/iterator_support/iterator_adaptor.hpp

namespace hpx

namespace util

template<typename Derived, typename Base, typename Value = void, typename Category = void, typename Reference = void, typename Difference = void, typename Pointer = void>
class iterator_adaptor : public hpx::util::iterator_facade<Derived, value_type, iterator_category, reference_type, difference_type, Pointer>

#include <iterator_adaptor.hpp> Subclassed by hpx::util::counting_iterator< Incrementable, Cat-
egoryOrTraversal, Difference, Enable >, hpx::util::counting_iterator< Incrementable, CategoryOr-
Traversal, Difference, typename std::enable_if< std::is_integral< Incrementable >::value >::type >,
hpx::util::transform_iterator< Iterator, Transformer, Reference, Value, Category, Difference >

Public Types

typedef Base base_type

2.9. API reference 861

HPX Documentation, 1.5.1

Public Functions

iterator_adaptor()

iterator_adaptor(Base const &iter)

Base const &base() const

Protected Types

typedef hpx::util::detail::iterator_adaptor_base<Derived, Base, Value, Category, Reference, Difference, Pointer>::type base_adaptor_type

typedef iterator_adaptor<Derived, Base, Value, Category, Reference, Difference, Pointer> iterator_adaptor_

Protected Functions

Base const &base_reference() const

Base &base_reference()

Private Functions

base_adaptor_type::reference dereference() const

template<typename OtherDerived, typename OtherIterator, typename V, typename C, typename R, typename D, typename P>
bool equal(iterator_adaptor<OtherDerived, OtherIterator, V , C, R, D, P> const&x) const

template<typename DifferenceType>
void advance(DifferenceType n)

void increment()

template<typename Iterator = Base, typename Enable = typename std::enable_if<traits::is_bidirectional_iterator<Iterator>::value>::type>
void decrement()

template<typename OtherDerived, typename OtherIterator, typename V, typename C, typename R, typename D, typename P>
base_adaptor_type::difference_type distance_to(iterator_adaptor<OtherDerived, OtherIt-

erator, V , C, R, D, P> const &y)
const

Private Members

Base iterator_

862 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Friends

friend hpx::util::hpx::util::iterator_core_access

Header hpx/iterator_support/iterator_facade.hpp

Defines

HPX_UTIL_ITERATOR_FACADE_INTEROP_HEAD(prefix, op, result_type)

namespace hpx

namespace util

Functions

template<typename Derived, typename T, typename Category, typename Reference, typename Distance, typename Pointer>
util::detail::postfix_increment_result<Derived, typename Derived::value_type, typename Derived::reference>::type operator++(iterator_facade<Derived,

T ,
Cat-
e-
gory,
Ref-
er-
ence,
Dis-
tance,
Pointer>
&i,
int)

hpx::util::HPX_UTIL_ITERATOR_FACADE_INTEROP_HEAD(inline, bool)

hpx::util::HPX_UTIL_ITERATOR_FACADE_INTEROP_HEAD(inline, !, bool)

hpx::util::HPX_UTIL_ITERATOR_FACADE_INTEROP_HEAD(inline)

hpx::util::HPX_UTIL_ITERATOR_FACADE_INTEROP_HEAD(inline, <=, bool)

hpx::util::HPX_UTIL_ITERATOR_FACADE_INTEROP_HEAD(inline, >=, bool)

hpx::util::HPX_UTIL_ITERATOR_FACADE_INTEROP_HEAD(inline, -, typename std::iterator_traits< Derived2 >::difference_type)

template<typename Derived, typename T, typename Category, typename Reference, typename Distance, typename Pointer>
Derived operator+(iterator_facade<Derived, T , Category, Reference, Distance, Pointer> const

&it, typename Derived::difference_type n)

template<typename Derived, typename T, typename Category, typename Reference, typename Distance, typename Pointer>
Derived operator+(typename Derived::difference_type n, iterator_facade<Derived, T , Cate-

gory, Reference, Distance, Pointer> const &it)

class iterator_core_access
#include <iterator_facade.hpp>

2.9. API reference 863

HPX Documentation, 1.5.1

Public Static Functions

template<typename Iterator1, typename Iterator2>
static bool equal(Iterator1 const &lhs, Iterator2 const &rhs)

template<typename Iterator>
static void increment(Iterator &it)

template<typename Iterator>
static void decrement(Iterator &it)

template<typename Reference, typename Iterator>
static Reference dereference(Iterator const &it)

template<typename Iterator, typename Distance>
static void advance(Iterator &it, Distance n)

template<typename Iterator1, typename Iterator2>
static std::iterator_traits<Iterator1>::difference_type distance_to(Iterator1 const

&lhs, Iterator2
const &rhs)

template<typename Derived, typename T, typename Category, typename Reference = T&, typename Distance = std::ptrdiff_t, typename Pointer = void>
struct iterator_facade : public hpx::util::detail::iterator_facade_base<Derived, T , Category, Reference, Distance, Pointer>

#include <iterator_facade.hpp> Subclassed by hpx::util::iterator_adaptor< Derived, Base, Value,
Category, Reference, Difference, Pointer >

Public Functions

iterator_facade()

Protected Types

typedef iterator_facade<Derived, T, Category, Reference, Distance, Pointer> iterator_adaptor_

Private Types

typedef detail::iterator_facade_base<Derived, T, Category, Reference, Distance, Pointer> base_type

Header hpx/iterator_support/iterator_range.hpp

namespace hpx

namespace util

864 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename Range, typename Iterator = typename traits::range_iterator<Range>::type, typename Sentinel = typename traits::range_iterator<Range>::type>
std::enable_if<traits::is_range<Range>::value, iterator_range<Iterator, Sentinel>>::type make_iterator_range(Range

&r)

template<typename Range, typename Iterator = typename traits::range_iterator<Range const>::type, typename Sentinel = typename traits::range_iterator<Range const>::type>
std::enable_if<traits::is_range<Range>::value, iterator_range<Iterator, Sentinel>>::type make_iterator_range(Range

const
&r)

template<typename Iterator, typename Sentinel = Iterator>
std::enable_if<traits::is_iterator<Iterator>::value, iterator_range<Iterator, Sentinel>>::type make_iterator_range(Iterator

it-
er-
a-
tor,
Sen-
tinel
sen-
tinel)

template<typename Iterator, typename Sentinel = Iterator>
class iterator_range

#include <iterator_range.hpp>

Public Functions

iterator_range()

iterator_range(Iterator iterator, Sentinel sentinel)

Iterator begin() const

Iterator end() const

std::ptrdiff_t size() const

bool empty() const

Private Members

Iterator _iterator

Sentinel _sentinel

2.9. API reference 865

HPX Documentation, 1.5.1

Header hpx/iterator_support/range.hpp

namespace hpx

namespace util

namespace range_adl

Functions

template<typename C, typename Iterator = typename detail::iterator<C>::type>
constexpr Iterator begin(C &c)

template<typename C, typename Iterator = typename detail::iterator<C const>::type>
constexpr Iterator begin(C const &c)

template<typename C, typename Sentinel = typename detail::sentinel<C>::type>
constexpr Sentinel end(C &c)

template<typename C, typename Sentinel = typename detail::sentinel<C const>::type>
constexpr Sentinel end(C const &c)

template<typename C, typename Iterator = typename detail::iterator<C const>::type, typename Sentinel = typename detail::sentinel<C const>::type>
constexpr std::size_t size(C const &c)

template<typename C, typename Iterator = typename detail::iterator<C const>::type, typename Sentinel = typename detail::sentinel<C const>::type>
constexpr bool empty(C const &c)

Header hpx/iterator_support/traits/is_iterator.hpp

Header hpx/iterator_support/traits/is_range.hpp

namespace hpx

namespace traits

template<typename R>
struct range_traits<R, true> : public std::iterator_traits<util::detail::iterator<R>::type>

#include <is_range.hpp>

866 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef util::detail::iterator<R>::type iterator_type

typedef util::detail::sentinel<R>::type sentinel_type

Header hpx/iterator_support/traits/is_sentinel_for.hpp

namespace hpx

namespace traits

Variables

template<typename Sent, typename Iter>HPX_INLINE_CONSTEXPR_VARIABLE bool hpx::traits::disable_sized_sentinel_for = false

Header hpx/iterator_support/transform_iterator.hpp

namespace hpx

namespace util

Functions

template<typename Transformer, typename Iterator>
transform_iterator<Iterator, Transformer> make_transform_iterator(Iterator const &it,

Transformer const
&f)

template<typename Transformer, typename Iterator>
transform_iterator<Iterator, Transformer> make_transform_iterator(Iterator const &it)

template<typename Iterator, typename Transformer, typename Reference, typename Value, typename Category, typename Difference>
class transform_iterator : public hpx::util::iterator_adaptor<transform_iterator<Iterator, Transformer, Reference, Value, Category, Difference>, Iterator, value_type, iterator_category, reference_type, difference_type>

#include <transform_iterator.hpp>

Public Functions

transform_iterator()

transform_iterator(Iterator const &it)

transform_iterator(Iterator const &it, Transformer const &f)

template<typename OtherIterator, typename OtherTransformer, typename OtherReference, typename OtherValue, typename OtherCategory, typename OtherDifference>

2.9. API reference 867

HPX Documentation, 1.5.1

transform_iterator(transform_iterator<OtherIterator, OtherTransformer, OtherRefer-
ence, OtherValue, OtherCategory, OtherDifference> const &t,
typename std::enable_if<std::is_convertible<OtherIterator,
Iterator>::value && std::is_convertible<OtherTransformer,
Transformer>::value && std::is_convertible<OtherCategory,
Category>::value && std::is_convertible<OtherDifference, Differ-
ence>::value>::type* = nullptr)

Transformer const &transformer() const

Private Types

typedef detail::transform_iterator_base<Iterator, Transformer, Reference, Value, Category, Difference>::type base_type

Private Functions

base_type::reference dereference() const

Private Members

Transformer transformer_

Friends

friend hpx::util::hpx::util::iterator_core_access

Header hpx/iterator_support/zip_iterator.hpp

template<typename F, typename ...Ts>
struct lift_zipped_iterators<F, util::zip_iterator<Ts...>>

#include <zip_iterator.hpp>

Public Types

typedef util::zip_iterator<Ts...>::iterator_tuple_type tuple_type

typedef util::tuple<typename element_result_of<typename F::template apply<Ts>, Ts>::type...> result_type

Public Static Functions

template<std::size_t... Is, typename ...Ts_>
static result_type call(util::index_pack<Is...>, util::tuple<Ts_...> const &t)

template<typename ...Ts_>
static result_type call(util::zip_iterator<Ts_...> const &iter)

namespace hpx

868 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

namespace traits

namespace functional

template<typename F, typename ...Ts>
struct lift_zipped_iterators<F, util::zip_iterator<Ts...>>

#include <zip_iterator.hpp>

Public Types

typedef util::zip_iterator<Ts...>::iterator_tuple_type tuple_type

typedef util::tuple<typename element_result_of<typename F::template apply<Ts>, Ts>::type...> result_type

Public Static Functions

template<std::size_t... Is, typename ...Ts_>
static result_type call(util::index_pack<Is...>, util::tuple<Ts_...> const &t)

template<typename ...Ts_>
static result_type call(util::zip_iterator<Ts_...> const &iter)

namespace util

Functions

template<typename ...Ts>
zip_iterator<typename decay<Ts>::type...> make_zip_iterator(Ts&&... vs)

template<typename ...Ts>
class zip_iterator : public hpx::util::detail::zip_iterator_base<tuple<Ts...>, zip_iterator<Ts...>>

#include <zip_iterator.hpp>

Public Functions

zip_iterator()

zip_iterator(Ts const&... vs)

zip_iterator(tuple<Ts...> &&t)

zip_iterator(zip_iterator const &other)

zip_iterator(zip_iterator &&other)

zip_iterator &operator=(zip_iterator const &other)

zip_iterator &operator=(zip_iterator &&other)

template<typename ...Ts_>
std::enable_if<std::is_assignable<typename zip_iterator::iterator_tuple_type&, typename zip_iterator<Ts_...>::iterator_tuple_type&&>::value, zip_iterator&>::type operator=(zip_iterator<Ts_...>

const
&other)

2.9. API reference 869

HPX Documentation, 1.5.1

template<typename ...Ts_>
std::enable_if<std::is_assignable<typename zip_iterator::iterator_tuple_type&, typename zip_iterator<Ts_...>::iterator_tuple_type&&>::value, zip_iterator&>::type operator=(zip_iterator<Ts_...>

&&other)

Private Types

typedef detail::zip_iterator_base<tuple<Ts...>, zip_iterator<Ts...>> base_type

template<typename ...Ts>
class zip_iterator<tuple<Ts...>> : public hpx::util::detail::zip_iterator_base<tuple<Ts...>, zip_iterator<tuple<Ts...>>>

#include <zip_iterator.hpp>

Public Functions

zip_iterator()

zip_iterator(Ts const&... vs)

zip_iterator(tuple<Ts...> &&t)

zip_iterator(zip_iterator const &other)

zip_iterator(zip_iterator &&other)

zip_iterator &operator=(zip_iterator const &other)

zip_iterator &operator=(zip_iterator &&other)

template<typename ...Ts_>
std::enable_if<std::is_assignable<typename zip_iterator::iterator_tuple_type&, typename zip_iterator<Ts_...>::iterator_tuple_type&&>::value, zip_iterator&>::type operator=(zip_iterator<Ts_...>

const
&other)

template<typename ...Ts_>
std::enable_if<std::is_assignable<typename zip_iterator::iterator_tuple_type&, typename zip_iterator<Ts_...>::iterator_tuple_type&&>::value, zip_iterator&>::type operator=(zip_iterator<Ts_...>

&&other)

Private Types

typedef detail::zip_iterator_base<tuple<Ts...>, zip_iterator<tuple<Ts...>>> base_type

itt_notify

The contents of this module can be included with the header hpx/modules/itt_notify.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/itt_notify.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

870 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/itt_notify/thread_name.hpp

Header hpx/modules/itt_notify.hpp

Defines

HPX_ITT_SYNC_CREATE(obj, type, name)

HPX_ITT_SYNC_RENAME(obj, name)

HPX_ITT_SYNC_PREPARE(obj)

HPX_ITT_SYNC_CANCEL(obj)

HPX_ITT_SYNC_ACQUIRED(obj)

HPX_ITT_SYNC_RELEASING(obj)

HPX_ITT_SYNC_RELEASED(obj)

HPX_ITT_SYNC_DESTROY(obj)

HPX_ITT_STACK_CREATE(ctx)

HPX_ITT_STACK_CALLEE_ENTER(ctx)

HPX_ITT_STACK_CALLEE_LEAVE(ctx)

HPX_ITT_STACK_DESTROY(ctx)

HPX_ITT_FRAME_BEGIN(frame, id)

HPX_ITT_FRAME_END(frame, id)

HPX_ITT_MARK_CREATE(mark, name)

HPX_ITT_MARK_OFF(mark)

HPX_ITT_MARK(mark, parameter)

HPX_ITT_THREAD_SET_NAME(name)

HPX_ITT_THREAD_IGNORE()

HPX_ITT_TASK_BEGIN(domain, name)

HPX_ITT_TASK_BEGIN_ID(domain, id, name)

HPX_ITT_TASK_END(domain)

HPX_ITT_DOMAIN_CREATE(name)

HPX_ITT_STRING_HANDLE_CREATE(name)

HPX_ITT_MAKE_ID(addr, extra)

HPX_ITT_ID_CREATE(domain, id)

HPX_ITT_ID_DESTROY(id)

HPX_ITT_HEAP_FUNCTION_CREATE(name, domain)

HPX_ITT_HEAP_ALLOCATE_BEGIN(f, size, initialized)

HPX_ITT_HEAP_ALLOCATE_END(f, addr, size, initialized)

HPX_ITT_HEAP_FREE_BEGIN(f, addr)

HPX_ITT_HEAP_FREE_END(f, addr)

2.9. API reference 871

HPX Documentation, 1.5.1

HPX_ITT_HEAP_REALLOCATE_BEGIN(f, addr, new_size, initialized)

HPX_ITT_HEAP_REALLOCATE_END(f, addr, new_addr, new_size, initialized)

HPX_ITT_HEAP_INTERNAL_ACCESS_BEGIN()

HPX_ITT_HEAP_INTERNAL_ACCESS_END()

HPX_ITT_COUNTER_CREATE(name, domain)

HPX_ITT_COUNTER_CREATE_TYPED(name, domain, type)

HPX_ITT_COUNTER_SET_VALUE(id, value_ptr)

HPX_ITT_COUNTER_DESTROY(id)

HPX_ITT_METADATA_ADD(domain, id, key, data)

Typedefs

typedef void *__itt_heap_function

Functions

void itt_sync_create(void*, const char*, const char*)

void itt_sync_rename(void*, const char*)

void itt_sync_prepare(void*)

void itt_sync_acquired(void*)

void itt_sync_cancel(void*)

void itt_sync_releasing(void*)

void itt_sync_released(void*)

void itt_sync_destroy(void*)

___itt_caller *itt_stack_create()

void itt_stack_enter(___itt_caller*)

void itt_stack_leave(___itt_caller*)

void itt_stack_destroy(___itt_caller*)

void itt_frame_begin(___itt_domain const*, ___itt_id*)

void itt_frame_end(___itt_domain const*, ___itt_id*)

int itt_mark_create(char const*)

void itt_mark_off(int)

void itt_mark(int, char const*)

void itt_thread_set_name(char const*)

void itt_thread_ignore()

void itt_task_begin(___itt_domain const*, ___itt_string_handle*)

void itt_task_begin(___itt_domain const*, ___itt_id*, ___itt_string_handle*)

void itt_task_end(___itt_domain const*)

872 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

___itt_domain *itt_domain_create(char const*)

___itt_string_handle *itt_string_handle_create(char const*)

___itt_id *itt_make_id(void*, unsigned long)

void itt_id_create(___itt_domain const*, ___itt_id*)

void itt_id_destroy(___itt_id*)

__itt_heap_function itt_heap_function_create(const char*, const char*)

void itt_heap_allocate_begin(__itt_heap_function, std::size_t, int)

void itt_heap_allocate_end(__itt_heap_function, void**, std::size_t, int)

void itt_heap_free_begin(__itt_heap_function, void*)

void itt_heap_free_end(__itt_heap_function, void*)

void itt_heap_reallocate_begin(__itt_heap_function, void*, std::size_t, int)

void itt_heap_reallocate_end(__itt_heap_function, void*, void**, std::size_t, int)

void itt_heap_internal_access_begin()

void itt_heap_internal_access_end()

___itt_counter *itt_counter_create(char const*, char const*)

___itt_counter *itt_counter_create_typed(char const*, char const*, int)

void itt_counter_destroy(___itt_counter*)

void itt_counter_set_value(___itt_counter*, void*)

int itt_event_create(char const*, int)

int itt_event_start(int)

int itt_event_end(int)

void itt_metadata_add(___itt_domain*, ___itt_id*, ___itt_string_handle*, std::uint64_t const&)

void itt_metadata_add(___itt_domain*, ___itt_id*, ___itt_string_handle*, double const&)

void itt_metadata_add(___itt_domain*, ___itt_id*, ___itt_string_handle*, char const*)

void itt_metadata_add(___itt_domain*, ___itt_id*, ___itt_string_handle*, void const*)

namespace hpx

namespace util

namespace itt

2.9. API reference 873

HPX Documentation, 1.5.1

Functions

void event_tick(event const&)

struct caller_context
#include <itt_notify.hpp>

Public Functions

caller_context(stack_context&)

~caller_context()

struct counter
#include <itt_notify.hpp>

Public Functions

counter(char const*, char const*)

~counter()

struct domain
#include <itt_notify.hpp> Subclassed by hpx::util::itt::thread_domain

Public Functions

HPX_NON_COPYABLE(domain)

domain(char const*)

domain()

struct event
#include <itt_notify.hpp>

Public Functions

event(char const*)

struct frame_context
#include <itt_notify.hpp>

874 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

frame_context(domain const&, id* = nullptr)

~frame_context()

struct heap_allocate
#include <itt_notify.hpp>

Public Functions

template<typename T>
heap_allocate(heap_function&, T**, std::size_t, int)

~heap_allocate()

struct heap_free
#include <itt_notify.hpp>

Public Functions

heap_free(heap_function&, void*)

~heap_free()

struct heap_function
#include <itt_notify.hpp>

Public Functions

heap_function(char const*, char const*)

~heap_function()

struct heap_internal_access
#include <itt_notify.hpp>

Public Functions

heap_internal_access()

~heap_internal_access()

struct id
#include <itt_notify.hpp>

2.9. API reference 875

HPX Documentation, 1.5.1

Public Functions

id(domain const&, void*, unsigned long = 0)

~id()

struct mark_context
#include <itt_notify.hpp>

Public Functions

mark_context(char const*)

~mark_context()

struct mark_event
#include <itt_notify.hpp>

Public Functions

mark_event(event const&)

~mark_event()

struct stack_context
#include <itt_notify.hpp>

Public Functions

stack_context()

~stack_context()

struct string_handle
#include <itt_notify.hpp>

Public Functions

string_handle(char const* = nullptr)

struct task
#include <itt_notify.hpp>

876 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

task(domain const&, string_handle const&, std::uint64_t)

task(domain const&, string_handle const&)

~task()

struct thread_domain : public hpx::util::itt::domain
#include <itt_notify.hpp>

Public Functions

HPX_NON_COPYABLE(thread_domain)

thread_domain()

struct undo_frame_context
#include <itt_notify.hpp>

Public Functions

undo_frame_context(frame_context const&)

~undo_frame_context()

struct undo_mark_context
#include <itt_notify.hpp>

Public Functions

undo_mark_context(mark_context const&)

~undo_mark_context()

lcos_distributed

The contents of this module can be included with the header hpx/modules/lcos_distributed.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are
using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/lcos_distributed.hpp, not the particular header in which the
functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

2.9. API reference 877

HPX Documentation, 1.5.1

Header hpx/distributed/channel.hpp

Header hpx/lcos_distributed/channel.hpp

namespace hpx

namespace lcos

template<typename T>
class channel : public components::client_base<channel<T>, lcos::server::channel<T>>

#include <channel.hpp>

Public Types

typedef T value_type

Public Functions

channel()

channel(naming::id_type const &loc)

channel(hpx::future<naming::id_type> &&id)

channel(hpx::shared_future<naming::id_type> &&id)

channel(hpx::shared_future<naming::id_type> const &id)

hpx::future<T> get(launch::async_policy, std::size_t generation = default_generation) const

hpx::future<T> get(std::size_t generation = default_generation) const

T get(launch::sync_policy, std::size_t generation = default_generation, hpx::error_code &ec =
hpx::throws) const

T get(launch::sync_policy, hpx::error_code &ec, std::size_t generation = default_generation)
const

template<typename U, typename U2 = T>
std::enable_if<!std::is_void<U2>::value, bool>::type set(launch::apply_policy, U val,

std::size_t generation = de-
fault_generation)

template<typename U, typename U2 = T>
std::enable_if<!std::is_void<U2>::value, hpx::future<void>>::type set(launch::async_policy,

U val, std::size_t
generation = de-
fault_generation)

template<typename U, typename U2 = T>
std::enable_if<!std::is_void<U2>::value>::type set(launch::sync_policy, U val, std::size_t

generation = default_generation)

template<typename U, typename U2 = T>

878 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

std::enable_if<!std::is_void<U2>::value && !traits::is_launch_policy<U>::value>::type set(U
val,
std::size_t
gen-
er-
a-
tion
=
de-
fault_generation)

template<typename U = T>
std::enable_if<std::is_void<U>::value, bool>::type set(launch::apply_policy, std::size_t gen-

eration = default_generation)

template<typename U = T>
std::enable_if<std::is_void<U>::value, hpx::future<void>>::type set(launch::async_policy,

std::size_t generation =
default_generation)

template<typename U = T>
std::enable_if<std::is_void<U>::value>::type set(launch::sync_policy, std::size_t generation =

default_generation)

template<typename U = T>
std::enable_if<std::is_void<U>::value>::type set(std::size_t generation = default_generation)

void close(launch::apply_policy, bool force_delete_entries = false)

hpx::future<std::size_t> close(launch::async_policy, bool force_delete_entries = false)

std::size_t close(launch::sync_policy, bool force_delete_entries = false)

std::size_t close(bool force_delete_entries = false)

channel_iterator<T, channel<T>> begin() const

channel_iterator<T, channel<T>> end() const

channel_iterator<T, channel<T>> rbegin() const

channel_iterator<T, channel<T>> rend() const

Private Types

typedef components::client_base<channel<T>, lcos::server::channel<T>> base_type

Private Static Attributes

constexpr std::size_t default_generation = std::size_t(-1)

template<typename T, typename Channel>
class channel_iterator : public hpx::util::iterator_facade<channel_iterator<T , Channel>, T const, std::input_iterator_tag>

#include <channel.hpp>

2.9. API reference 879

HPX Documentation, 1.5.1

Public Functions

channel_iterator()

channel_iterator(Channel const &c)

Private Types

typedef hpx::util::iterator_facade<channel_iterator<T, Channel>, T const, std::input_iterator_tag> base_type

Private Functions

std::pair<T, bool> get_checked() const

bool equal(channel_iterator const &rhs) const

void increment()

base_type::reference dereference() const

Private Members

Channel const *channel_

std::pair<T, bool> data_

Friends

friend hpx::lcos::hpx::util::iterator_core_access

template<typename Channel>
class channel_iterator<void, Channel> : public hpx::util::iterator_facade<channel_iterator<void, Channel>, util::unused_type const, std::input_iterator_tag>

#include <channel.hpp>

Public Functions

channel_iterator()

channel_iterator(Channel const &c)

Private Types

typedef hpx::util::iterator_facade<channel_iterator<void, Channel>, util::unused_type const, std::input_iterator_tag> base_type

880 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

bool get_checked()

bool equal(channel_iterator const &rhs) const

void increment()

base_type::reference dereference() const

Private Members

Channel const *channel_

bool data_

Friends

friend hpx::lcos::hpx::util::iterator_core_access

template<typename T>
class receive_channel : public components::client_base<receive_channel<T>, lcos::server::channel<T>>

#include <channel.hpp>

Public Types

typedef T value_type

Public Functions

receive_channel()

receive_channel(channel<T> const &c)

receive_channel(hpx::future<naming::id_type> &&id)

receive_channel(hpx::shared_future<naming::id_type> &&id)

receive_channel(hpx::shared_future<naming::id_type> const &id)

hpx::future<T> get(launch::async_policy, std::size_t generation = default_generation) const

hpx::future<T> get(std::size_t generation = default_generation) const

T get(launch::sync_policy, std::size_t generation = default_generation, hpx::error_code &ec =
hpx::throws) const

T get(launch::sync_policy, hpx::error_code &ec, std::size_t generation = default_generation)
const

channel_iterator<T, channel<T>> begin() const

channel_iterator<T, channel<T>> end() const

channel_iterator<T, channel<T>> rbegin() const

channel_iterator<T, channel<T>> rend() const

2.9. API reference 881

HPX Documentation, 1.5.1

Private Types

typedef components::client_base<receive_channel<T>, lcos::server::channel<T>> base_type

Private Static Attributes

constexpr std::size_t default_generation = std::size_t(-1)

template<typename T>
class send_channel : public components::client_base<send_channel<T>, lcos::server::channel<T>>

#include <channel.hpp>

Public Types

typedef T value_type

Public Functions

send_channel()

send_channel(channel<T> const &c)

send_channel(hpx::future<naming::id_type> &&id)

send_channel(hpx::shared_future<naming::id_type> &&id)

send_channel(hpx::shared_future<naming::id_type> const &id)

template<typename U, typename U2 = T>
std::enable_if<!std::is_void<U2>::value, bool>::type set(launch::apply_policy, U val,

std::size_t generation = de-
fault_generation)

template<typename U, typename U2 = T>
std::enable_if<!std::is_void<U2>::value, hpx::future<void>>::type set(launch::async_policy,

U val, std::size_t
generation = de-
fault_generation)

template<typename U, typename U2 = T>
std::enable_if<!std::is_void<U2>::value>::type set(launch::sync_policy, U val, std::size_t

generation = default_generation)

template<typename U, typename U2 = T>
std::enable_if<!std::is_void<U2>::value && !traits::is_launch_policy<U>::value>::type set(U

val,
std::size_t
gen-
er-
a-
tion
=
de-
fault_generation)

882 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename U = T>
std::enable_if<std::is_void<U>::value, bool>::type set(launch::apply_policy, std::size_t gen-

eration = default_generation)

template<typename U = T>
std::enable_if<std::is_void<U>::value, hpx::future<void>>::type set(launch::async_policy,

std::size_t generation =
default_generation)

template<typename U = T>
std::enable_if<std::is_void<U>::value>::type set(launch::sync_policy, std::size_t generation =

default_generation)

template<typename U = T>
std::enable_if<std::is_void<U>::value>::type set(std::size_t generation = default_generation)

void close(launch::apply_policy, bool force_delete_entries = false)

hpx::future<std::size_t> close(launch::async_policy, bool force_delete_entries = false)

std::size_t close(launch::sync_policy, bool force_delete_entries = false)

std::size_t close(bool force_delete_entries = false)

Private Types

typedef components::client_base<send_channel<T>, lcos::server::channel<T>> base_type

Private Static Attributes

constexpr std::size_t default_generation = std::size_t(-1)

Header hpx/lcos_distributed/server/channel.hpp

Defines

HPX_REGISTER_CHANNEL_DECLARATION(...)

HPX_REGISTER_CHANNEL_DECLARATION_(...)

HPX_REGISTER_CHANNEL_DECLARATION_1(type)

HPX_REGISTER_CHANNEL_DECLARATION_2(type, name)

HPX_REGISTER_CHANNEL(...)

HPX_REGISTER_CHANNEL_(...)

HPX_REGISTER_CHANNEL_1(type)

HPX_REGISTER_CHANNEL_2(type, name)

namespace hpx

namespace lcos

2.9. API reference 883

HPX Documentation, 1.5.1

namespace server

template<typename T, typename RemoteType>
class channel : public lcos::base_lco_with_value<T , RemoteType, traits::detail::component_tag>, public components::component_base<channel<T , RemoteType>>

#include <channel.hpp>

Public Types

typedef lcos::base_lco_with_value<T, RemoteType, traits::detail::component_tag> base_type_holder

typedef base_type::wrapping_type wrapping_type

Public Functions

channel()

void set_value(RemoteType &&result)

void set_exception(std::exception_ptr const&)

result_type get_value()

result_type get_value(error_code &ec)

hpx::future<T> get_generation(std::size_t generation)

HPX_DEFINE_COMPONENT_DIRECT_ACTION(channel, get_generation)

void set_generation(RemoteType &&value, std::size_t generation)

HPX_DEFINE_COMPONENT_DIRECT_ACTION(channel, set_generation)

std::size_t close(bool force_delete_entries)

HPX_DEFINE_COMPONENT_ACTION(channel, close)

Public Static Functions

static components::component_type get_component_type()

static void set_component_type(components::component_type type)

Private Types

typedef components::component_base<channel> base_type

typedef std::conditional<std::is_void<T>::value, util::unused_type, T>::type result_type

884 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Members

lcos::local::channel<result_type> channel_

lcos_local

The contents of this module can be included with the header hpx/modules/lcos_local.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/lcos_local.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/lcos_local/and_gate.hpp

namespace hpx

namespace lcos

namespace local

struct and_gate : public hpx::lcos::local::base_and_gate<no_mutex>
#include <and_gate.hpp>

Public Functions

and_gate(std::size_t count = 0)

and_gate(and_gate &&rhs)

and_gate &operator=(and_gate &&rhs)

template<typename Lock>
future<void> get_future(Lock &l, std::size_t count = std::size_t(-1), std::size_t *genera-

tion_value = nullptr, error_code &ec = hpx::throws)

template<typename Lock>
shared_future<void> get_shared_future(Lock &l, std::size_t count = std::size_t(-1),

std::size_t *generation_value = nullptr, er-
ror_code &ec = hpx::throws)

template<typename Lock>
bool set(std::size_t which, Lock &l, error_code &ec = throws)

template<typename Lock>
void synchronize(std::size_t generation_value, Lock &l, char const *function_name =

"and_gate::synchronize", error_code &ec = throws)

2.9. API reference 885

HPX Documentation, 1.5.1

Private Types

typedef base_and_gate<no_mutex> base_type

template<typename Mutex = lcos::local::spinlock>
struct base_and_gate

#include <and_gate.hpp>

Public Functions

base_and_gate(std::size_t count = 0)
This constructor initializes the base_and_gate object from the the number of participants to
synchronize the control flow with.

base_and_gate(base_and_gate &&rhs)

base_and_gate &operator=(base_and_gate &&rhs)

future<void> get_future(std::size_t count = std::size_t(-1), std::size_t *generation_value
= nullptr, error_code &ec = hpx::throws)

shared_future<void> get_shared_future(std::size_t count = std::size_t(-1), std::size_t
*generation_value = nullptr, error_code &ec
= hpx::throws)

bool set(std::size_t which, error_code &ec = throws)

void synchronize(std::size_t generation_value, char const *function_name =
"base_and_gate<>::synchronize", error_code &ec = throws)

Wait for the generational counter to reach the requested stage.

std::size_t next_generation()

std::size_t generation() const

Protected Types

typedef Mutex mutex_type

Protected Functions

bool trigger_conditions(error_code &ec = throws)

template<typename OuterLock>
future<void> get_future(OuterLock &outer_lock, std::size_t count = std::size_t(-1),

std::size_t *generation_value = nullptr, error_code &ec =
hpx::throws)

get a future allowing to wait for the gate to fire

template<typename OuterLock>
shared_future<void> get_shared_future(OuterLock &outer_lock, std::size_t count =

std::size_t(-1), std::size_t *generation_value
= nullptr, error_code &ec = hpx::throws)

get a shared future allowing to wait for the gate to fire

886 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename OuterLock>
bool set(std::size_t which, OuterLock &outer_lock, error_code &ec = throws)

Set the data which has to go into the segment which.

bool test_condition(std::size_t generation_value)

template<typename Lock>
void synchronize(std::size_t generation_value, Lock &l, char const *function_name =

"base_and_gate<>::synchronize", error_code &ec = throws)

template<typename OuterLock, typename Lock>
void init_locked(OuterLock &outer_lock, Lock &l, std::size_t count, error_code &ec =

throws)

Private Types

typedef std::list<conditional_trigger*> condition_list_type

Private Members

mutex_type mtx_

boost::dynamic_bitset received_segments_

lcos::local::promise<void> promise_

std::size_t generation_

condition_list_type conditions_

struct manage_condition
#include <and_gate.hpp>

Public Functions

template<>
manage_condition(base_and_gate &gate, conditional_trigger &cond)

template<>
~manage_condition()

template<typename Condition>
future<void> get_future(Condition &&func, error_code &ec = hpx::throws)

Public Members

template<>
base_and_gate &this_

template<>
condition_list_type::iterator it_

2.9. API reference 887

HPX Documentation, 1.5.1

Header hpx/lcos_local/channel.hpp

namespace hpx

namespace lcos

namespace local

template<typename T>
class channel : protected hpx::lcos::local::detail::channel_base<T>

#include <channel.hpp>

Public Types

typedef T value_type

Public Functions

channel()

Private Types

typedef detail::channel_base<T> base_type

Friends

friend hpx::lcos::local::channel_iterator< T >

friend hpx::lcos::local::receive_channel< T >

friend hpx::lcos::local::send_channel< T >

template<>
class channel<void> : protected hpx::lcos::local::detail::channel_base<void>

#include <channel.hpp>

Public Types

typedef void value_type

888 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

channel()

Private Types

typedef detail::channel_base<void> base_type

Friends

friend hpx::lcos::local::channel_iterator< void >

friend hpx::lcos::local::receive_channel< void >

friend hpx::lcos::local::send_channel< void >

template<typename T>
class channel_async_iterator : public hpx::util::iterator_facade<channel_async_iterator<T>, hpx::future<T>, std::input_iterator_tag, hpx::future<T>>

#include <channel.hpp>

Public Functions

channel_async_iterator()

channel_async_iterator(detail::channel_base<T> const *c)

Private Types

typedef hpx::util::iterator_facade<channel_async_iterator<T>, hpx::future<T>, std::input_iterator_tag, hpx::future<T>> base_type

Private Functions

std::pair<hpx::future<T>, bool> get_checked() const

bool equal(channel_async_iterator const &rhs) const

void increment()

base_type::reference dereference() const

Private Members

hpx::intrusive_ptr<detail::channel_impl_base<T>> channel_

std::pair<hpx::future<T>, bool> data_

2.9. API reference 889

HPX Documentation, 1.5.1

Friends

friend hpx::lcos::local::hpx::util::iterator_core_access

template<typename T>
class channel_iterator : public hpx::util::iterator_facade<channel_iterator<T>, T const, std::input_iterator_tag>

#include <channel.hpp>

Public Functions

channel_iterator()

channel_iterator(detail::channel_base<T> const *c)

channel_iterator(receive_channel<T> const *c)

Private Types

typedef hpx::util::iterator_facade<channel_iterator<T>, T const, std::input_iterator_tag> base_type

Private Functions

std::pair<T, bool> get_checked() const

bool equal(channel_iterator const &rhs) const

void increment()

base_type::reference dereference() const

Private Members

hpx::intrusive_ptr<detail::channel_impl_base<T>> channel_

std::pair<T, bool> data_

Friends

friend hpx::lcos::local::hpx::util::iterator_core_access

template<>
class channel_iterator<void> : public hpx::util::iterator_facade<channel_iterator<void>, util::unused_type const, std::input_iterator_tag>

#include <channel.hpp>

890 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

channel_iterator()

channel_iterator(detail::channel_base<void> const *c)

channel_iterator(receive_channel<void> const *c)

Private Types

typedef hpx::util::iterator_facade<channel_iterator<void>, util::unused_type const, std::input_iterator_tag> base_type

Private Functions

bool get_checked()

bool equal(channel_iterator const &rhs) const

void increment()

base_type::reference dereference() const

Private Members

hpx::intrusive_ptr<detail::channel_impl_base<util::unused_type>> channel_

bool data_

Friends

friend hpx::lcos::local::hpx::util::iterator_core_access

template<typename T>
class one_element_channel : protected hpx::lcos::local::detail::channel_base<T>

#include <channel.hpp>

Public Types

typedef T value_type

Public Functions

one_element_channel()

2.9. API reference 891

HPX Documentation, 1.5.1

Private Types

typedef detail::channel_base<T> base_type

Friends

friend hpx::lcos::local::channel_iterator< T >

friend hpx::lcos::local::receive_channel< T >

friend hpx::lcos::local::send_channel< T >

template<>
class one_element_channel<void> : protected hpx::lcos::local::detail::channel_base<void>

#include <channel.hpp>

Public Types

typedef void value_type

Public Functions

one_element_channel()

Private Types

typedef detail::channel_base<void> base_type

Friends

friend hpx::lcos::local::channel_iterator< void >

friend hpx::lcos::local::receive_channel< void >

friend hpx::lcos::local::send_channel< void >

template<typename T>
class receive_channel : protected hpx::lcos::local::detail::channel_base<T>

#include <channel.hpp>

Public Functions

receive_channel(channel<T> const &c)

receive_channel(one_element_channel<T> const &c)

892 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

typedef detail::channel_base<T> base_type

Friends

friend hpx::lcos::local::channel_iterator< T >

friend hpx::lcos::local::send_channel< T >

template<>
class receive_channel<void> : protected hpx::lcos::local::detail::channel_base<void>

#include <channel.hpp>

Public Functions

receive_channel(channel<void> const &c)

receive_channel(one_element_channel<void> const &c)

Private Types

typedef detail::channel_base<void> base_type

Friends

friend hpx::lcos::local::channel_iterator< void >

friend hpx::lcos::local::send_channel< void >

template<typename T>
class send_channel : private hpx::lcos::local::detail::channel_base<T>

#include <channel.hpp>

Public Functions

send_channel(channel<T> const &c)

send_channel(one_element_channel<T> const &c)

Private Types

typedef detail::channel_base<T> base_type

template<>
class send_channel<void> : private hpx::lcos::local::detail::channel_base<void>

#include <channel.hpp>

2.9. API reference 893

HPX Documentation, 1.5.1

Public Functions

send_channel(channel<void> const &c)

send_channel(one_element_channel<void> const &c)

Private Types

typedef detail::channel_base<void> base_type

Header hpx/lcos_local/composable_guard.hpp

namespace hpx

namespace lcos

namespace local

Functions

void run_guarded(guard &guard, detail::guard_function task)
Conceptually, a guard acts like a mutex on an asynchronous task. The mutex is locked before the
task runs, and unlocked afterwards.

template<typename F, typename ...Args>
void run_guarded(guard &guard, F &&f, Args&&... args)

void run_guarded(guard_set &guards, detail::guard_function task)
Conceptually, a guard_set acts like a set of mutexes on an asynchronous task. The mutexes are
locked before the task runs, and unlocked afterwards.

template<typename F, typename ...Args>
void run_guarded(guard_set &guards, F &&f, Args&&... args)

class guard : public hpx::lcos::local::detail::debug_object
#include <composable_guard.hpp>

Public Functions

guard()

~guard()

894 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

detail::guard_atomic task

class guard_set : public hpx::lcos::local::detail::debug_object
#include <composable_guard.hpp>

Public Functions

guard_set()

~guard_set()

std::shared_ptr<guard> get(std::size_t i)

void add(std::shared_ptr<guard> const &guard_ptr)

std::size_t size()

Private Functions

void sort()

Private Members

std::vector<std::shared_ptr<guard>> guards

bool sorted

Friends

void run_guarded(guard_set &guards, detail::guard_function task)
Conceptually, a guard_set acts like a set of mutexes on an asynchronous task. The mutexes are
locked before the task runs, and unlocked afterwards.

Header hpx/lcos_local/conditional_trigger.hpp

namespace hpx

namespace lcos

namespace local

struct conditional_trigger
#include <conditional_trigger.hpp>

2.9. API reference 895

HPX Documentation, 1.5.1

Public Functions

conditional_trigger()

conditional_trigger(conditional_trigger &&rhs)

conditional_trigger &operator=(conditional_trigger &&rhs)

template<typename Condition>
future<void> get_future(Condition &&func, error_code &ec = hpx::throws)

get a future allowing to wait for the trigger to fire

void reset()

bool set(error_code &ec = throws)
Trigger this object.

Private Members

lcos::local::promise<void> promise_

util::function_nonser<bool()> cond_

Header hpx/lcos_local/packaged_task.hpp

namespace hpx

namespace lcos

namespace local

template<typename R, typename ...Ts>
class packaged_task<R(Ts...)>

#include <packaged_task.hpp>

Public Functions

packaged_task()

template<typename F, typename FD = typename std::decay<F>::type, typename Enable = typename std::enable_if<!std::is_same<FD, packaged_task>::value && traits::is_invocable_r<R, FD&, Ts...>::value>::type>
packaged_task(F &&f)

template<typename Allocator, typename F, typename FD = typename std::decay<F>::type, typename Enable = typename std::enable_if<!std::is_same<FD, packaged_task>::value && traits::is_invocable_r<R, FD&, Ts...>::value>::type>
packaged_task(std::allocator_arg_t, Allocator const &a, F &&f)

packaged_task(packaged_task &&rhs)

packaged_task &operator=(packaged_task &&rhs)

void swap(packaged_task &rhs)

void operator()(Ts... vs)

896 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

lcos::future<R> get_future(error_code &ec = throws)

bool valid() const

void reset(error_code &ec = throws)

void set_exception(std::exception_ptr const &e)

Private Types

typedef util::unique_function_nonser<R(Ts...)> function_type

Private Functions

template<typename ...Vs>
void invoke_impl(std::false_type, Vs&&... vs)

template<typename ...Vs>
void invoke_impl(std::true_type, Vs&&... vs)

Private Members

function_type function_

local::promise<R> promise_

Header hpx/lcos_local/promise.hpp

namespace hpx

namespace lcos

namespace local

Functions

template<typename R>
void swap(promise<R> &x, promise<R> &y)

template<typename R>
class promise : public hpx::lcos::local::detail::promise_base<R>

#include <promise.hpp>

2.9. API reference 897

HPX Documentation, 1.5.1

Public Functions

promise()

template<typename Allocator>
promise(std::allocator_arg_t, Allocator const &a)

promise(promise &&other)

~promise()

promise &operator=(promise &&other)

void swap(promise &other)

bool valid() const

void set_value(R const &r)

void set_value(R &&r)

template<typename ...Ts>
void set_value(Ts&&... ts)

void set_exception(std::exception_ptr e)

Private Types

typedef detail::promise_base<R> base_type

template<typename R>
class promise<R&> : public hpx::lcos::local::detail::promise_base<R&>

#include <promise.hpp>

Public Functions

promise()

template<typename Allocator>
promise(std::allocator_arg_t, Allocator const &a)

promise(promise &&other)

~promise()

promise &operator=(promise &&other)

void swap(promise &other)

bool valid() const

void set_value(R &r)

void set_exception(std::exception_ptr e)

898 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

typedef detail::promise_base<R&> base_type

template<>
class promise<void> : public hpx::lcos::local::detail::promise_base<void>

#include <promise.hpp>

Public Functions

promise()

template<typename Allocator>
promise(std::allocator_arg_t, Allocator const &a)

promise(promise &&other)

~promise()

promise &operator=(promise &&other)

void swap(promise &other)

bool valid() const

void set_value()

void set_exception(std::exception_ptr e)

Private Types

typedef detail::promise_base<void> base_type

Header hpx/lcos_local/receive_buffer.hpp

namespace hpx

namespace lcos

namespace local

template<typename T, typename Mutex = lcos::local::spinlock>
struct receive_buffer

#include <receive_buffer.hpp>

2.9. API reference 899

HPX Documentation, 1.5.1

Public Functions

receive_buffer()

receive_buffer(receive_buffer &&other)

~receive_buffer()

receive_buffer &operator=(receive_buffer &&other)

hpx::future<T> receive(std::size_t step)

bool try_receive(std::size_t step, hpx::future<T> *f = nullptr)

template<typename Lock = hpx::lcos::local::no_mutex>
void store_received(std::size_t step, T &&val, Lock *lock = nullptr)

bool empty() const

std::size_t cancel_waiting(std::exception_ptr const &e, bool force_delete_entries =
false)

Protected Types

typedef Mutex mutex_type

typedef hpx::lcos::local::promise<T> buffer_promise_type

typedef std::map<std::size_t, std::shared_ptr<entry_data>> buffer_map_type

typedef buffer_map_type::iterator iterator

Protected Functions

iterator get_buffer_entry(std::size_t step)

Private Members

mutex_type mtx_

buffer_map_type buffer_map_

struct entry_data
#include <receive_buffer.hpp>

Public Functions

template<>
HPX_NON_COPYABLE(entry_data)

template<>
entry_data()

template<>
hpx::future<T> get_future()

900 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename Val>
void set_value(Val &&val)

template<>
bool cancel(std::exception_ptr const &e)

Public Members

template<>
buffer_promise_type promise_

template<>
bool can_be_deleted_

template<>
bool value_set_

struct erase_on_exit
#include <receive_buffer.hpp>

Public Functions

template<>
erase_on_exit(buffer_map_type &buffer_map, iterator it)

template<>
~erase_on_exit()

Public Members

template<>
buffer_map_type &buffer_map_

template<>
iterator it_

template<typename Mutex>
struct receive_buffer<void, Mutex>

#include <receive_buffer.hpp>

Public Functions

receive_buffer()

receive_buffer(receive_buffer &&other)

~receive_buffer()

receive_buffer &operator=(receive_buffer &&other)

hpx::future<void> receive(std::size_t step)

bool try_receive(std::size_t step, hpx::future<void> *f = nullptr)

template<typename Lock = hpx::lcos::local::no_mutex>

2.9. API reference 901

HPX Documentation, 1.5.1

void store_received(std::size_t step, Lock *lock = nullptr)

bool empty() const

std::size_t cancel_waiting(std::exception_ptr const &e, bool force_delete_entries =
false)

Protected Types

typedef Mutex mutex_type

typedef hpx::lcos::local::promise<void> buffer_promise_type

typedef std::map<std::size_t, std::shared_ptr<entry_data>> buffer_map_type

typedef buffer_map_type::iterator iterator

Protected Functions

iterator get_buffer_entry(std::size_t step)

Private Members

mutex_type mtx_

buffer_map_type buffer_map_

template<>
struct entry_data

#include <receive_buffer.hpp>

Public Functions

template<>
HPX_NON_COPYABLE(entry_data)

template<>
entry_data()

template<>
hpx::future<void> get_future()

template<>
void set_value()

template<>
bool cancel(std::exception_ptr const &e)

902 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

template<>
buffer_promise_type promise_

template<>
bool can_be_deleted_

template<>
bool value_set_

template<>
struct erase_on_exit

#include <receive_buffer.hpp>

Public Functions

template<>
erase_on_exit(buffer_map_type &buffer_map, iterator it)

template<>
~erase_on_exit()

Public Members

template<>
buffer_map_type &buffer_map_

template<>
iterator it_

Header hpx/lcos_local/trigger.hpp

namespace hpx

namespace lcos

namespace local

template<typename Mutex = lcos::local::spinlock>
struct base_trigger

#include <trigger.hpp>

2.9. API reference 903

HPX Documentation, 1.5.1

Public Functions

base_trigger()

base_trigger(base_trigger &&rhs)

base_trigger &operator=(base_trigger &&rhs)

future<void> get_future(std::size_t *generation_value = nullptr, error_code &ec =
hpx::throws)

get a future allowing to wait for the trigger to fire

bool set(error_code &ec = throws)
Trigger this object.

void synchronize(std::size_t generation_value, char const *function_name =
"base_and_gate<>::synchronize", error_code &ec = throws)

Wait for the generational counter to reach the requested stage.

std::size_t next_generation()

std::size_t generation() const

Protected Types

typedef Mutex mutex_type

Protected Functions

bool trigger_conditions(error_code &ec = throws)

template<typename Lock>
void synchronize(std::size_t generation_value, Lock &l, char const *function_name =

"base_and_gate<>::synchronize", error_code &ec = throws)

Private Types

typedef std::list<conditional_trigger*> condition_list_type

Private Functions

bool test_condition(std::size_t generation_value)

Private Members

mutex_type mtx_

lcos::local::promise<void> promise_

std::size_t generation_

condition_list_type conditions_

struct manage_condition

904 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<>
manage_condition(base_trigger &gate, conditional_trigger &cond)

template<>
~manage_condition()

template<typename Condition>
future<void> get_future(Condition &&func, error_code &ec = hpx::throws)

Public Members

template<>
base_trigger &this_

template<>
condition_list_type::iterator it_

struct trigger : public hpx::lcos::local::base_trigger<no_mutex>
#include <trigger.hpp>

Public Functions

trigger()

trigger(trigger &&rhs)

trigger &operator=(trigger &&rhs)

template<typename Lock>
void synchronize(std::size_t generation_value, Lock &l, char const *function_name =

"trigger::synchronize", error_code &ec = throws)

Private Types

typedef base_trigger<no_mutex> base_type

Header hpx/local/channel.hpp

logging

The contents of this module can be included with the header hpx/modules/logging.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/logging.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

2.9. API reference 905

HPX Documentation, 1.5.1

Header hpx/logging/format/destinations.hpp

namespace hpx

namespace util

namespace logging

namespace destination
Destination is a manipulator. It contains a place where the message, after being formatted, is to
be written to.

Some viable destinations are : the console, a file, a socket, etc.

struct cerr : public hpx::util::logging::destination::manipulator
#include <destinations.hpp> Writes the string to cerr.

Public Functions

~cerr()

Public Static Functions

static std::unique_ptr<cerr> make()

Protected Functions

cerr()

struct cout : public hpx::util::logging::destination::manipulator
#include <destinations.hpp> Writes the string to console.

Public Functions

~cout()

Public Static Functions

static std::unique_ptr<cout> make()

906 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Protected Functions

cout()

struct dbg_window : public hpx::util::logging::destination::manipulator
#include <destinations.hpp> Writes the string to output debug window.

For non-Windows systems, this is the console.

Public Functions

~dbg_window()

Public Static Functions

static std::unique_ptr<dbg_window> make()

Protected Functions

dbg_window()

struct file : public hpx::util::logging::destination::manipulator
#include <destinations.hpp> Writes the string to a file.

Public Functions

~file()

Public Static Functions

static std::unique_ptr<file> make(std::string const&file_name, file_settings set = {})
constructs the file destination

Parameters
• file_name: name of the file
• set: [optional] file settings - see file_settings class, and dealing_with_flags

Protected Functions

file(std::string const &file_name, file_settings set)

2.9. API reference 907

HPX Documentation, 1.5.1

Protected Attributes

std::string name

file_settings settings

struct file_settings
#include <destinations.hpp> settings for when constructing a file class. To see how it’s used,
see dealing_with_flags.

Public Functions

file_settings()

Public Members

bool flush_each_time : 1
if true (default), flushes after each write

bool initial_overwrite : 1

bool do_append : 1

std::ios_base::openmode extra_flags
just in case you have some extra flags to pass, when opening the file

struct stream : public hpx::util::logging::destination::manipulator
#include <destinations.hpp> writes to stream.

Note : The stream must outlive this object! Or, clear() the stream, before the stream is deleted.

Public Functions

~stream()

void set_stream(std::ostream *stream_ptr)
resets the stream. Further output will be written to this stream

void clear()
clears the stream. Further output will be ignored

Public Static Functions

static std::unique_ptr<stream> make(std::ostream *stream_ptr)

908 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Protected Functions

stream(std::ostream *stream_ptr)

Protected Attributes

std::ostream *ptr

Header hpx/logging/format/formatters.hpp

namespace hpx

namespace util

namespace logging

namespace formatter
Formatter is a manipulator. It allows you to format the message before writing it to the destina-
tion(s)

Examples of formatters are : prepend the time, prepend high-precision time, prepend the index of
the message, etc.

struct high_precision_time : public hpx::util::logging::formatter::manipulator
#include <formatters.hpp> Prefixes the message with a high-precision time (. You pass the
format string at construction.

#include <hpx/logging/format/formatter/high_precision_time.hpp>

Internally, it uses hpx::util::date_time::microsec_time_clock. So, our precision matches this
class.

The format can contain escape sequences: $dd - day, 2 digits $MM - month, 2 digits $yy - year,
2 digits $yyyy - year, 4 digits $hh - hour, 2 digits $mm - minute, 2 digits $ss - second, 2 digits
$mili - milliseconds $micro - microseconds (if the high precision clock allows; otherwise, it
pads zeros) $nano - nanoseconds (if the high precision clock allows; otherwise, it pads zeros)

Example:

high_precision_time("$mm:$ss:$micro");

Parameters
• convert: [optional] In case there needs to be a conversion between std::(w)string and

the string that holds your logged message. See convert_format.

2.9. API reference 909

HPX Documentation, 1.5.1

Public Functions

~high_precision_time()

Public Static Functions

static std::unique_ptr<high_precision_time> make(std::string const &format)

Protected Functions

high_precision_time(std::string const &format)

struct idx : public hpx::util::logging::formatter::manipulator
#include <formatters.hpp> prefixes each message with an index.

Example:

L_ << "my message";
L_ << "my 2nd message";

This will output something similar to:

[1] my message
[2] my 2nd message

Public Functions

~idx()

Public Static Functions

static std::unique_ptr<idx> make()

Protected Functions

idx()

struct thread_id : public hpx::util::logging::formatter::manipulator
#include <formatters.hpp> Writes the thread_id to the log.

Parameters
• convert: [optional] In case there needs to be a conversion between std::(w)string and

the string that holds your logged message. See convert_format.

910 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

~thread_id()

Public Static Functions

static std::unique_ptr<thread_id> make()

Protected Functions

thread_id()

Header hpx/logging/format/named_write.hpp

namespace hpx

namespace util

namespace logging

namespace writer

struct named_write
#include <named_write.hpp> Composed of a named formatter and a named destinations.
Thus, you can specify the formatting and destinations as strings.

#include <hpx/logging/format/named_write.hpp>

Contains a very easy interface for using formatters and destinations:
• at construction, specify 2 params: the formatter string and the destinations string
Setting the formatters and destinations to write to is extremely simple:

// Set the formatters (first param) and destinatins (second step) in
→˓one step
g_l()->writer().write("%time%($hh:$mm.$ss.$mili) [%idx%] |\n",
"cout file(out.txt) debug");

// set the formatter(s)
g_l()->writer().format("%time%($hh:$mm.$ss.$mili) [%idx%] |\n");

// set the destination(s)
g_l()->writer().destination("cout file(out.txt) debug");

2.9. API reference 911

HPX Documentation, 1.5.1

Public Functions

named_write()

void format(std::string const &format_str)
sets the format string: what should be before, and what after the original message, separated
by “|”

Example: “[%idx%] |\n” - this writes “[%idx%] ” before the message, and “\n” after the
message

If “|” is not present, the whole message is prepended to the message

void destination(std::string const &destination_str)
sets the destinations string - where should logged messages be outputted

void write(std::string const &format_str, std::string const &destination_str)
Specifies the formats and destinations in one step.

void operator()(message const &msg) const

template<typename Formatter>
void set_formatter(std::string const &name, Formatter fmt)

Replaces a formatter from the named formatter.

You can use this, for instance, when you want to share a formatter between multiple named
writers.

template<typename Formatter, typename ...Args>
void set_formatter(std::string const &name, Args&&... args)

template<typename Destination>
void set_destination(std::string const &name, Destination dest)

Replaces a destination from the named destination.

You can use this, for instance, when you want to share a destination between multiple named
writers.

template<typename Destination, typename ...Args>
void set_destination(std::string const &name, Args&&... args)

Private Functions

void configure_formatter(std::string const &format)

void configure_destination(std::string const &format)

Private Members

detail::named_formatters m_format

detail::named_destinations m_destination

std::string m_format_str

std::string m_destination_str

912 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/logging/level.hpp

namespace hpx

namespace util

namespace logging

Enums

enum level
Handling levels - classes that can hold and/or deal with levels.

• filters and level holders

By default we have these levels:

- debug (smallest level),
- info,
- warning ,
- error ,
- fatal (highest level)

Depending on which level is enabled for your application, some messages will reach the log: those
messages having at least that level. For instance, if info level is enabled, all logged messages will
reach the log. If warning level is enabled, all messages are logged, but the warnings. If debug
level is enabled, messages that have levels debug, error, fatal will be logged.

Values:

disable_all = static_cast<unsigned int>(-1)

enable_all = 0

debug = 1000

info = 2000

warning = 3000

error = 4000

fatal = 5000

always = 6000

Functions

void format_value(std::ostream &os, boost::string_ref spec, level value)

2.9. API reference 913

HPX Documentation, 1.5.1

Header hpx/logging/logging.hpp

Include this file when you’re using the logging lib, but don’t necessarily want to use formatters and destinations. If
you want to use formatters and destinations, then you can include this one instead:

#include <hpx/logging/format.hpp>

Header hpx/logging/manipulator.hpp

namespace hpx

namespace util

namespace logging

namespace destination
Destination is a manipulator. It contains a place where the message, after being formatted, is to
be written to.

Some viable destinations are : the console, a file, a socket, etc.

struct manipulator
#include <manipulator.hpp> What to use as base class, for your destination classes.

Subclassed by hpx::util::logging::destination::cerr, hpx::util::logging::destination::cout,
hpx::util::logging::destination::dbg_window, hpx::util::logging::destination::file,
hpx::util::logging::destination::stream

Public Functions

virtual void operator()(message const &val) = 0

virtual void configure(std::string const&)
Override this if you want to allow configuration through scripting.

That is, this allows configuration of your manipulator at run-time.

virtual ~manipulator()

Protected Functions

manipulator()

namespace formatter
Formatter is a manipulator. It allows you to format the message before writing it to the destina-
tion(s)

Examples of formatters are : prepend the time, prepend high-precision time, prepend the index of
the message, etc.

914 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

struct manipulator
#include <manipulator.hpp> What to use as base class, for your formatter classes.

Subclassed by hpx::util::logging::formatter::high_precision_time,
hpx::util::logging::formatter::idx, hpx::util::logging::formatter::thread_id

Public Functions

virtual void operator()(std::ostream &to) const = 0

virtual void configure(std::string const&)
Override this if you want to allow configuration through scripting.

That is, this allows configuration of your manipulator at run-time.

virtual ~manipulator()

Protected Functions

manipulator()

Friends

void format_value(std::ostream &os, boost::string_ref, manipulator const &value)

Header hpx/logging/message.hpp

namespace hpx

namespace util

namespace logging

class message
#include <message.hpp> Optimizes the formatting for prepending and/or appending strings to
the original message.

It keeps all the modified message in one string. Useful if some formatter needs to access the
whole string at once.

reserve() - the size that is reserved for prepending (similar to string::reserve function)

Note : as strings are prepended, reserve() shrinks.

2.9. API reference 915

HPX Documentation, 1.5.1

Public Functions

message()

message(std::stringstream msg)
Parameters

• msg: - the message that is originally cached

message(message &&other)

template<typename T>
message &operator<<(T &&v)

template<typename ...Args>
message &format(boost::string_ref format_str, Args const&... args)

std::string const &full_string() const
returns the full string

bool empty() const

Private Members

std::stringstream m_str

bool m_full_msg_computed

std::string m_full_msg

Friends

std::ostream &operator<<(std::ostream &os, message const &value)

Header hpx/modules/logging.hpp

Defines

LAGAS_(lvl)

LPT_(lvl)

LTIM_(lvl)

LPROGRESS_

LHPX_(lvl, cat)

LAPP_(lvl)

LDEB_

LTM_(lvl)

LRT_(lvl)

LOSH_(lvl)

LERR_(lvl)

916 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

LLCO_(lvl)

LPCS_(lvl)

LAS_(lvl)

LBT_(lvl)

LFATAL_

LAGAS_CONSOLE_(lvl)

LPT_CONSOLE_(lvl)

LTIM_CONSOLE_(lvl)

LHPX_CONSOLE_(lvl)

LAPP_CONSOLE_(lvl)

LDEB_CONSOLE_

LAGAS_ENABLED(lvl)

LPT_ENABLED(lvl)

LTIM_ENABLED(lvl)

LHPX_ENABLED(lvl)

LAPP_ENABLED(lvl)

LDEB_ENABLED

Functions

template<typename T>
bootstrap_logging const &operator<<(bootstrap_logging const &l, T&&)

Variables

constexpr bootstrap_logging lbt_

struct bootstrap_logging
#include <logging.hpp>

Public Functions

constexpr bootstrap_logging()

2.9. API reference 917

HPX Documentation, 1.5.1

memory

The contents of this module can be included with the header hpx/modules/memory.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/memory.hpp, not the particular header in which the functionality you would like to use is
defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/memory/intrusive_ptr.hpp

template<typename T>
struct hash<hpx::memory::intrusive_ptr<T>>

#include <intrusive_ptr.hpp>

Public Types

template<>
using result_type = std::size_t

Public Functions

result_type operator()(hpx::memory::intrusive_ptr<T> const &p) const

namespace hpx

namespace memory

Functions

template<typename T, typename U>
bool operator==(intrusive_ptr<T> const &a, intrusive_ptr<U> const &b)

template<typename T, typename U>
bool operator!=(intrusive_ptr<T> const &a, intrusive_ptr<U> const &b)

template<typename T, typename U>
bool operator==(intrusive_ptr<T> const &a, U *b)

template<typename T, typename U>
bool operator!=(intrusive_ptr<T> const &a, U *b)

template<typename T, typename U>
bool operator==(T *a, intrusive_ptr<U> const &b)

template<typename T, typename U>
bool operator!=(T *a, intrusive_ptr<U> const &b)

template<typename T>
bool operator==(intrusive_ptr<T> const &p, std::nullptr_t)

template<typename T>
bool operator==(std::nullptr_t, intrusive_ptr<T> const &p)

918 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename T>
bool operator!=(intrusive_ptr<T> const &p, std::nullptr_t)

template<typename T>
bool operator!=(std::nullptr_t, intrusive_ptr<T> const &p)

template<typename T>
bool operator<(intrusive_ptr<T> const &a, intrusive_ptr<T> const &b)

template<typename T>
void swap(intrusive_ptr<T> &lhs, intrusive_ptr<T> &rhs)

template<typename T>
T *get_pointer(intrusive_ptr<T> const &p)

template<typename T, typename U>
intrusive_ptr<T> static_pointer_cast(intrusive_ptr<U> const &p)

template<typename T, typename U>
intrusive_ptr<T> const_pointer_cast(intrusive_ptr<U> const &p)

template<typename T, typename U>
intrusive_ptr<T> dynamic_pointer_cast(intrusive_ptr<U> const &p)

template<typename T, typename U>
intrusive_ptr<T> static_pointer_cast(intrusive_ptr<U> &&p)

template<typename T, typename U>
intrusive_ptr<T> const_pointer_cast(intrusive_ptr<U> &&p)

template<typename T, typename U>
intrusive_ptr<T> dynamic_pointer_cast(intrusive_ptr<U> &&p)

template<typename Y>
std::ostream &operator<<(std::ostream &os, intrusive_ptr<Y> const &p)

template<typename T>
class intrusive_ptr

#include <intrusive_ptr.hpp>

Public Types

template<>
using element_type = T

Public Functions

constexpr intrusive_ptr()

intrusive_ptr(T *p, bool add_ref = true)

template<typename U, typename Enable = typename std::enable_if<memory::detail::sp_convertible<U, T>::value>::type>
intrusive_ptr(intrusive_ptr<U> const &rhs)

intrusive_ptr(intrusive_ptr const &rhs)

~intrusive_ptr()

2.9. API reference 919

HPX Documentation, 1.5.1

template<typename U>
intrusive_ptr &operator=(intrusive_ptr<U> const &rhs)

intrusive_ptr(intrusive_ptr &&rhs)

intrusive_ptr &operator=(intrusive_ptr &&rhs)

template<typename U, typename Enable = typename std::enable_if<memory::detail::sp_convertible<U, T>::value>::type>
intrusive_ptr(intrusive_ptr<U> &&rhs)

template<typename U>
intrusive_ptr &operator=(intrusive_ptr<U> &&rhs)

intrusive_ptr &operator=(intrusive_ptr const &rhs)

intrusive_ptr &operator=(T *rhs)

void reset()

void reset(T *rhs)

void reset(T *rhs, bool add_ref)

T *get() const

T *detach()

T &operator*() const

T *operator->() const

operator bool() const

void swap(intrusive_ptr &rhs)

Private Types

template<>
using this_type = intrusive_ptr

Private Members

T *px

Friends

friend hpx::memory::intrusive_ptr

namespace std

template<typename T>
struct hash<hpx::memory::intrusive_ptr<T>>

#include <intrusive_ptr.hpp>

920 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

template<>
using result_type = std::size_t

Public Functions

result_type operator()(hpx::memory::intrusive_ptr<T> const &p) const

Header hpx/memory/serialization/intrusive_ptr.hpp

namespace hpx

namespace serialization

Functions

template<typename T>
void load(input_archive &ar, hpx::intrusive_ptr<T> &ptr, unsigned)

template<typename T>
void save(output_archive &ar, hpx::intrusive_ptr<T> const &ptr, unsigned)

hpx::serialization::HPX_SERIALIZATION_SPLIT_FREE_TEMPLATE((template< typename T >), (hpx::intrusive_ptr < T >))

mpi_base

The contents of this module can be included with the header hpx/modules/mpi_base.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/mpi_base.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/mpi_base/mpi.hpp

Header hpx/mpi_base/mpi_environment.hpp

namespace hpx

namespace util

struct mpi_environment
#include <mpi_environment.hpp>

2.9. API reference 921

HPX Documentation, 1.5.1

Public Static Functions

static bool check_mpi_environment(runtime_configuration const &cfg)

naming_base

The contents of this module can be included with the header hpx/modules/naming_base.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/naming_base.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/modules/naming_base.hpp

namespace hpx

namespace naming

Typedefs

using component_type = std::int32_t

using address_type = std::uint64_t

Variables

constexpr std::uint32_t invalid_locality_id = ~static_cast<std::uint32_t>(0)

pack_traversal

The contents of this module can be included with the header hpx/modules/pack_traversal.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/pack_traversal.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/pack_traversal/pack_traversal.hpp

namespace hpx

namespace util

922 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename Mapper, typename... T><unspecified> hpx::util::map_pack(Mapper && mapper, T &&... pack)
Maps the pack with the given mapper.

This function tries to visit all plain elements which may be wrapped in:
• homogeneous containers (std::vector, std::list)
• heterogeneous containers (hpx::tuple, std::pair, std::array) and re-assembles the

pack with the result of the mapper. Mapping from one type to a different one is supported.
Elements that aren’t accepted by the mapper are routed through and preserved through the hierarchy.

// Maps all integers to floats
map_pack([](int value) {

return float(value);
},
1, hpx::util::make_tuple(2, std::vector<int>{3, 4}), 5);

Return The mapped element or in case the pack contains multiple elements, the pack is wrapped into
a hpx::tuple.

Exceptions
• std::exception: like objects which are thrown by an invocation to the mapper.

Parameters
• mapper: A callable object, which accept an arbitrary type and maps it to another type or the

same one.
• pack: An arbitrary variadic pack which may contain any type.

Header hpx/pack_traversal/pack_traversal_async.hpp

namespace hpx

namespace util

Functions

template<typename Visitor, typename ...T>
auto traverse_pack_async(Visitor &&visitor, T&&... pack)

Traverses the pack with the given visitor in an asynchronous way.

This function works in the same way as traverse_pack, however, we are able to suspend and
continue the traversal at later time. Thus we require a visitor callable object which provides three
operator() overloads as depicted by the code sample below:

struct my_async_visitor
{

template <typename T>
bool operator()(async_traverse_visit_tag, T&& element)
{

return true;
}

template <typename T, typename N>
void operator()(async_traverse_detach_tag, T&& element, N&& next)
{

(continues on next page)

2.9. API reference 923

HPX Documentation, 1.5.1

(continued from previous page)

}

template <typename T>
void operator()(async_traverse_complete_tag, T&& pack)
{
}

};

See traverse_pack for a detailed description about the traversal behavior and capabilities.
Return A hpx::intrusive_ptr that references an instance of the given visitor object.
Parameters

• visitor: A visitor object which provides the three operator() overloads that were
described above. Additionally the visitor must be compatible for referencing it from a
hpx::intrusive_ptr. The visitor should must have a virtual destructor!

• pack: The arbitrary parameter pack which is traversed asynchronously. Nested objects inside
containers and tuple like types are traversed recursively.

template<typename Allocator, typename Visitor, typename ...T>
auto traverse_pack_async_allocator(Allocator const &alloc, Visitor &&visitor,

T&&... pack)
Traverses the pack with the given visitor in an asynchronous way.

This function works in the same way as traverse_pack, however, we are able to suspend and
continue the traversal at later time. Thus we require a visitor callable object which provides three
operator() overloads as depicted by the code sample below:

struct my_async_visitor
{

template <typename T>
bool operator()(async_traverse_visit_tag, T&& element)
{

return true;
}

template <typename T, typename N>
void operator()(async_traverse_detach_tag, T&& element, N&& next)
{
}

template <typename T>
void operator()(async_traverse_complete_tag, T&& pack)
{
}

};

See traverse_pack for a detailed description about the traversal behavior and capabilities.
Return A hpx::intrusive_ptr that references an instance of the given visitor object.
Parameters

• visitor: A visitor object which provides the three operator() overloads that were
described above. Additionally the visitor must be compatible for referencing it from a
hpx::intrusive_ptr. The visitor should must have a virtual destructor!

• pack: The arbitrary parameter pack which is traversed asynchronously. Nested objects inside
containers and tuple like types are traversed recursively.

• alloc: Allocator instance to use to create the traversal frame.

924 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/pack_traversal/traits/pack_traversal_rebind_container.hpp

template<typename NewType, typename OldType, typename OldAllocator>
struct pack_traversal_rebind_container<NewType, std::vector<OldType, OldAllocator>>

#include <pack_traversal_rebind_container.hpp>

Public Types

template<>
using NewAllocator = typename std::allocator_traits<OldAllocator>::template rebind_alloc<NewType>

Public Static Functions

static std::vector<NewType, NewAllocator> call(std::vector<OldType, OldAllocator> const
&container)

template<typename NewType, typename OldType, typename OldAllocator>
struct pack_traversal_rebind_container<NewType, std::list<OldType, OldAllocator>>

#include <pack_traversal_rebind_container.hpp>

Public Types

template<>
using NewAllocator = typename std::allocator_traits<OldAllocator>::template rebind_alloc<NewType>

Public Static Functions

static std::list<NewType, NewAllocator> call(std::list<OldType, OldAllocator> const &con-
tainer)

template<typename NewType, typename OldType, std::size_t N>
struct pack_traversal_rebind_container<NewType, std::array<OldType, N>>

#include <pack_traversal_rebind_container.hpp>

Public Static Functions

static std::array<NewType, N> call(std::array<OldType, N> const&)

namespace hpx

namespace traits

template<typename NewType, typename OldType, std::size_t N>
struct pack_traversal_rebind_container<NewType, std::array<OldType, N>>

#include <pack_traversal_rebind_container.hpp>

2.9. API reference 925

HPX Documentation, 1.5.1

Public Static Functions

static std::array<NewType, N> call(std::array<OldType, N> const&)

template<typename NewType, typename OldType, typename OldAllocator>
struct pack_traversal_rebind_container<NewType, std::list<OldType, OldAllocator>>

#include <pack_traversal_rebind_container.hpp>

Public Types

template<>
using NewAllocator = typename std::allocator_traits<OldAllocator>::template rebind_alloc<NewType>

Public Static Functions

static std::list<NewType, NewAllocator> call(std::list<OldType, OldAllocator> const
&container)

template<typename NewType, typename OldType, typename OldAllocator>
struct pack_traversal_rebind_container<NewType, std::vector<OldType, OldAllocator>>

#include <pack_traversal_rebind_container.hpp>

Public Types

template<>
using NewAllocator = typename std::allocator_traits<OldAllocator>::template rebind_alloc<NewType>

Public Static Functions

static std::vector<NewType, NewAllocator> call(std::vector<OldType, OldAllocator>
const &container)

Header hpx/pack_traversal/unwrap.hpp

namespace hpx

namespace util

Functions

template<typename ...Args>
auto unwrap(Args&&... args)

A helper function for retrieving the actual result of any hpx::lcos::future like type which is wrapped
in an arbitrary way.

Unwraps the given pack of arguments, so that any hpx::lcos::future object is replaced by its future
result type in the argument pack:

• hpx::future<int> -> int
• hpx::future<std::vector<float>> -> std::vector<float>

926 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• std::vector<future<float>> -> std::vector<float>
The function is capable of unwrapping hpx::lcos::future like objects that are wrapped inside any con-
tainer or tuple like type, see hpx::util::map_pack() for a detailed description about which surrounding
types are supported. Non hpx::lcos::future like types are permitted as arguments and passed through.

// Single arguments
int i1 = hpx:util::unwrap(hpx::lcos::make_ready_future(0));

// Multiple arguments
hpx::tuple<int, int> i2 =

hpx:util::unwrap(hpx::lcos::make_ready_future(1),
hpx::lcos::make_ready_future(2));

Note This function unwraps the given arguments until the first traversed nested hpx::lcos::future
which corresponds to an unwrapping depth of one. See hpx::util::unwrap_n() for a function
which unwraps the given arguments to a particular depth or hpx::util::unwrap_all() that unwraps
all future like objects recursively which are contained in the arguments.

Return Depending on the count of arguments this function returns a hpx::util::tuple containing the
unwrapped arguments if multiple arguments are given. In case the function is called with a single
argument, the argument is unwrapped and returned.

Parameters
• args: the arguments that are unwrapped which may contain any arbitrary future or non future

type.
Exceptions

• std::exception: like objects in case any of the given wrapped hpx::lcos::future objects
were resolved through an exception. See hpx::lcos::future::get() for details.

template<std::size_t Depth, typename ...Args>
auto unwrap_n(Args&&... args)

An alterntive version of hpx::util::unwrap(), which unwraps the given arguments to a certain depth of
hpx::lcos::future like objects.

See unwrap for a detailed description.
Template Parameters

• Depth: The count of hpx::lcos::future like objects which are unwrapped maximally.

template<typename ...Args>
auto unwrap_all(Args&&... args)

An alterntive version of hpx::util::unwrap(), which unwraps the given arguments recursively so that
all contained hpx::lcos::future like objects are replaced by their actual value.

See hpx::util::unwrap() for a detailed description.

template<typename T>
auto unwrapping(T &&callable)

Returns a callable object which unwraps its arguments upon invocation using the hpx::util::unwrap()
function and then passes the result to the given callable object.

auto callable = hpx::util::unwrapping([](int left, int right) {
return left + right;

});

int i1 = callable(hpx::lcos::make_ready_future(1),
hpx::lcos::make_ready_future(2));

See hpx::util::unwrap() for a detailed description.

Parameters

2.9. API reference 927

HPX Documentation, 1.5.1

• callable: the callable object which which is called with the result of the corresponding
unwrap function.

template<std::size_t Depth, typename T>
auto unwrapping_n(T &&callable)

Returns a callable object which unwraps its arguments upon invocation using the
hpx::util::unwrap_n() function and then passes the result to the given callable object.

See hpx::util::unwrapping() for a detailed description.

template<typename T>
auto unwrapping_all(T &&callable)

Returns a callable object which unwraps its arguments upon invocation using the
hpx::util::unwrap_all() function and then passes the result to the given callable object.

See hpx::util::unwrapping() for a detailed description.

namespace functional

struct unwrap
#include <unwrap.hpp> A helper function object for functionally invoking
hpx::util::unwrap. For more information please refer to its documentation.

struct unwrap_all
#include <unwrap.hpp> A helper function object for functionally invoking
hpx::util::unwrap_all. For more information please refer to its documentation.

template<std::size_t Depth>
struct unwrap_n

#include <unwrap.hpp> A helper function object for functionally invoking
hpx::util::unwrap_n. For more information please refer to its documentation.

performance_counters

The contents of this module can be included with the header hpx/modules/performance_counters.hpp.
These headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You
are using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/performance_counters.hpp, not the particular header in which
the functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX
API.

Header hpx/performance_counters/apex_sample_value.hpp

Header hpx/performance_counters/base_performance_counter.hpp

namespace hpx

namespace performance_counters

template<typename Derived>
class base_performance_counter : public hpx::performance_counters::server::base_performance_counter, public hpx::components::component_base<Derived>

#include <base_performance_counter.hpp>

928 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef Derived type_holder

typedef hpx::performance_counters::server::base_performance_counter base_type_holder

Public Functions

base_performance_counter()

base_performance_counter(hpx::performance_counters::counter_info const &info)

void finalize()

Private Types

typedef hpx::components::component_base<Derived> base_type

Header hpx/performance_counters/counter_creators.hpp

namespace hpx

namespace performance_counters

Functions

bool default_counter_discoverer(counter_info const&, discover_counter_func
const&, discover_counters_mode, error_code&)

Default discovery function for performance counters; to be registered with the counter types. It will
pass the counter_info and the error_code to the supplied function.

bool locality_counter_discoverer(counter_info const&, discover_counter_func
const&, discover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>(locality#<locality_id>/total)/<instancename>

bool locality_pool_counter_discoverer(counter_info const&, dis-
cover_counter_func const&, dis-
cover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>(locality#<locality_id>/pool#<pool_name>/total)/<instancename>

bool locality0_counter_discoverer(counter_info const&, discover_counter_func
const&, discover_counters_mode, error_code&)

Default discoverer function for AGAS performance counters; to be registered with the counter types.
It is suitable to be used for all counters following the naming scheme:

/<objectname>{locality#0/total}/<instancename>

2.9. API reference 929

HPX Documentation, 1.5.1

bool locality_thread_counter_discoverer(counter_info const&, dis-
cover_counter_func const&, dis-
cover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>(locality#<locality_id>/worker-thread#<threadnum>)/<instancename>

bool locality_pool_thread_counter_discoverer(counter_info const &info, dis-
cover_counter_func const &f,
discover_counters_mode mode,
error_code &ec)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>{locality#<locality_id>/pool#<poolname>/thread#<threadnum>}/<instancename>

total is not* supported* bool hpx::performance_counters::locality_pool_thread_no_total_counter_discoverer(counter_info const & info, discover_counter_func const & f, discover_counters_mode mode, error_code & ec)
Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>{locality#<locality_id>/pool#<poolname>/thread#<threadnum>}/<instancename>

This is essentially the same as above just that locality#

bool locality_numa_counter_discoverer(counter_info const&, dis-
cover_counter_func const&, dis-
cover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/<objectname>(locality#<locality_id>/numa-node#<threadnum>)/<instancename>

naming::gid_type locality_raw_counter_creator(counter_info const&,
hpx::util::function_nonser<std::int64_t)bool

> const&, error_code&Creation function for raw counters. The passed function is encapsulating
the actual value to monitor. This function checks the validity of the supplied counter name, it has to
follow the scheme:

/<objectname>(locality#<locality_id>/total)/<instancename>

naming::gid_type locality_raw_values_counter_creator(counter_info const&,
hpx::util::function_nonser<std::vector<std::int64_t>)bool

> const&, error_code&

naming::gid_type agas_raw_counter_creator(counter_info const&, error_code&, char
const*const)

Creation function for raw counters. The passed function is encapsulating the actual value to monitor.
This function checks the validity of the supplied counter name, it has to follow the scheme:

/agas(<objectinstance>/total)/<instancename>

bool agas_counter_discoverer(counter_info const&, discover_counter_func const&,
discover_counters_mode, error_code&)

Default discoverer function for performance counters; to be registered with the counter types. It is
suitable to be used for all counters following the naming scheme:

/agas(<objectinstance>/total)/<instancename>

naming::gid_type local_action_invocation_counter_creator(counter_info
const&, er-
ror_code&)

930 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool local_action_invocation_counter_discoverer(counter_info const&, dis-
cover_counter_func const&,
discover_counters_mode,
error_code&)

Header hpx/performance_counters/counter_parser.hpp

namespace hpx

namespace performance_counters

Functions

bool parse_counter_name(std::string const &name, path_elements &elements)

struct instance_elements
#include <counter_parser.hpp>

Public Members

instance_name parent_

instance_name child_

instance_name subchild_

struct instance_name
#include <counter_parser.hpp>

Public Members

std::string name_

std::string index_

bool basename_ = false

struct path_elements
#include <counter_parser.hpp>

Public Members

std::string object_

instance_elements instance_

std::string counter_

std::string parameters_

2.9. API reference 931

HPX Documentation, 1.5.1

Header hpx/performance_counters/counters.hpp

namespace hpx

namespace performance_counters

Typedefs

typedef hpx::util::function_nonser<naming::gid_type(counter_info const&, error_code&)>
create_counter_func

This declares the type of a function, which will be called by HPX whenever a new performance
counter instance of a particular type needs to be created.

typedef hpx::util::function_nonser<bool(counter_info const&, error_code&)>
discover_counter_func

This declares a type of a function, which will be passed to a discover_counters_func in order to be
called for each discovered performance counter instance.

typedef hpx::util::function_nonser<bool(counter_info const&, discover_counter_func
const&, discover_counters_mode, error_code&)>
discover_counters_func

This declares the type of a function, which will be called by HPX whenever it needs to discover all
performance counter instances of a particular type.

Enums

enum counter_type
Values:

counter_text
counter_text shows a variable-length text string. It does not deliver calculated values.

Formula: None Average: None Type: Text

counter_raw
counter_raw shows the last observed value only. It does not deliver an average.

Formula: None. Shows raw data as collected. Average: None Type: Instantaneous

counter_monotonically_increasing

counter_average_base
counter_average_base is used as the base data (denominator) in the computation of time or count
averages for the counter_average_count and counter_average_timer counter types. This counter
type collects the last observed value only.

Formula: None. This counter uses raw data in factional calculations without delivering an output.
Average: SUM (N) / x Type: Instantaneous

counter_average_count
counter_average_count shows how many items are processed, on average, during an operation.
Counters of this type display a ratio of the items processed (such as bytes sent) to the number of
operations completed. The ratio is calculated by comparing the number of items processed during
the last interval to the number of operations completed during the last interval.

932 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Formula: (N1 - N0) / (D1 - D0), where the numerator (N) represents the number of items pro-
cessed during the last sample interval, and the denominator (D) represents the number of oper-
ations completed during the last two sample intervals. Average: (Nx - N0) / (Dx - D0) Type:
Average

counter_aggregating
counter_aggregating applies a function to an embedded counter instance. The embedded counter
is usually evaluated repeatedly after a fixed (but configurable) time interval.

Formula: F(Nx)

counter_average_timer
counter_average_timer measures the average time it takes to complete a process or operation.
Counters of this type display a ratio of the total elapsed time of the sample interval to the number
of processes or operations completed during that time. This counter type measures time in ticks
of the system clock. The variable F represents the number of ticks per second. The value of F is
factored into the equation so that the result is displayed in seconds.

Formula: ((N1 - N0) / F) / (D1 - D0), where the numerator (N) represents the number of ticks
counted during the last sample interval, the variable F represents the frequency of the ticks, and the
denominator (D) represents the number of operations completed during the last sample interval.
Average: ((Nx - N0) / F) / (Dx - D0) Type: Average

counter_elapsed_time
counter_elapsed_time shows the total time between when the component or process started and
the time when this value is calculated. The variable F represents the number of time units that
elapse in one second. The value of F is factored into the equation so that the result is displayed in
seconds.

Formula: (D0 - N0) / F, where the nominator (D) represents the current time, the numerator (N)
represents the time the object was started, and the variable F represents the number of time units
that elapse in one second. Average: (Dx - N0) / F Type: Difference

counter_histogram
counter_histogram exposes a histogram of the measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

The first three values in the returned array represent the lower and upper boundaries, and the size
of the histogram buckets. All remaining values in the returned array represent the number of
measurements for each of the buckets in the histogram.

counter_raw_values
counter_raw_values exposes an array of measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

counter_text
counter_text shows a variable-length text string. It does not deliver calculated values.

Formula: None Average: None Type: Text

counter_raw
counter_raw shows the last observed value only. It does not deliver an average.

Formula: None. Shows raw data as collected. Average: None Type: Instantaneous

counter_monotonically_increasing

2.9. API reference 933

HPX Documentation, 1.5.1

counter_average_base
counter_average_base is used as the base data (denominator) in the computation of time or count
averages for the counter_average_count and counter_average_timer counter types. This counter
type collects the last observed value only.

Formula: None. This counter uses raw data in factional calculations without delivering an output.
Average: SUM (N) / x Type: Instantaneous

counter_average_count
counter_average_count shows how many items are processed, on average, during an operation.
Counters of this type display a ratio of the items processed (such as bytes sent) to the number of
operations completed. The ratio is calculated by comparing the number of items processed during
the last interval to the number of operations completed during the last interval.

Formula: (N1 - N0) / (D1 - D0), where the numerator (N) represents the number of items pro-
cessed during the last sample interval, and the denominator (D) represents the number of oper-
ations completed during the last two sample intervals. Average: (Nx - N0) / (Dx - D0) Type:
Average

counter_aggregating
counter_aggregating applies a function to an embedded counter instance. The embedded counter
is usually evaluated repeatedly after a fixed (but configurable) time interval.

Formula: F(Nx)

counter_average_timer
counter_average_timer measures the average time it takes to complete a process or operation.
Counters of this type display a ratio of the total elapsed time of the sample interval to the number
of processes or operations completed during that time. This counter type measures time in ticks
of the system clock. The variable F represents the number of ticks per second. The value of F is
factored into the equation so that the result is displayed in seconds.

Formula: ((N1 - N0) / F) / (D1 - D0), where the numerator (N) represents the number of ticks
counted during the last sample interval, the variable F represents the frequency of the ticks, and the
denominator (D) represents the number of operations completed during the last sample interval.
Average: ((Nx - N0) / F) / (Dx - D0) Type: Average

counter_elapsed_time
counter_elapsed_time shows the total time between when the component or process started and
the time when this value is calculated. The variable F represents the number of time units that
elapse in one second. The value of F is factored into the equation so that the result is displayed in
seconds.

Formula: (D0 - N0) / F, where the nominator (D) represents the current time, the numerator (N)
represents the time the object was started, and the variable F represents the number of time units
that elapse in one second. Average: (Dx - N0) / F Type: Difference

counter_histogram
counter_histogram exposes a histogram of the measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

The first three values in the returned array represent the lower and upper boundaries, and the size
of the histogram buckets. All remaining values in the returned array represent the number of
measurements for each of the buckets in the histogram.

counter_raw_values
counter_raw_values exposes an array of measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a

934 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

enum counter_status
Status and error codes used by the functions related to performance counters.

Values:

status_valid_data
No error occurred, data is valid.

status_new_data
Data is valid and different from last call.

status_invalid_data
Some error occurred, data is not value.

status_already_defined
The type or instance already has been defined.

status_counter_unknown
The counter instance is unknown.

status_counter_type_unknown
The counter type is unknown.

status_generic_error
A unknown error occurred.

status_valid_data
No error occurred, data is valid.

status_new_data
Data is valid and different from last call.

status_invalid_data
Some error occurred, data is not value.

status_already_defined
The type or instance already has been defined.

status_counter_unknown
The counter instance is unknown.

status_counter_type_unknown
The counter type is unknown.

status_generic_error
A unknown error occurred.

Functions

std::string &ensure_counter_prefix(std::string &name)

std::string ensure_counter_prefix(std::string const &counter)

std::string &remove_counter_prefix(std::string &name)

std::string remove_counter_prefix(std::string const &counter)

char const *get_counter_type_name(counter_type state)
Return the readable name of a given counter type.

2.9. API reference 935

HPX Documentation, 1.5.1

bool status_is_valid(counter_status s)

counter_status add_counter_type(counter_info const &info, error_code &ec)

naming::id_type get_counter(std::string const &name, error_code &ec)

naming::id_type get_counter(counter_info const &info, error_code &ec)

Variables

constexpr char const counter_prefix[] = "/counters"

constexpr std::size_t counter_prefix_len = (sizeof(counter_prefix) / sizeof(counter_prefix[0])) - 1

struct counter_info
#include <counters.hpp>

Public Functions

counter_info(counter_type type = counter_raw)

counter_info(std::string const &name)

counter_info(counter_type type, std::string const &name, std::string const &help-
text = "", std::uint32_t version = HPX_PERFORMANCE_COUNTER_V1,
std::string const &uom = "")

Public Members

counter_type type_
The type of the described counter.

std::uint32_t version_
The version of the described counter using the 0xMMmmSSSS scheme

counter_status status_
The status of the counter object.

std::string fullname_
The full name of this counter.

std::string helptext_
The full descriptive text for this counter.

std::string unit_of_measure_
The unit of measure for this counter.

936 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

void serialize(serialization::output_archive &ar, const unsigned int)

void serialize(serialization::input_archive &ar, const unsigned int)

Friends

friend hpx::performance_counters::hpx::serialization::access

struct counter_path_elements : public hpx::performance_counters::counter_type_path_elements
#include <counters.hpp> A counter_path_elements holds the elements of a full name for a counter
instance. Generally, a full name of a counter instance has the structure:

/objectname{parentinstancename::parentindex/instancename#instanceindex} /counter-
name#parameters

i.e. /queue{localityprefix/thread#2}/length

Public Types

typedef counter_type_path_elements base_type

Public Functions

counter_path_elements()

counter_path_elements(std::string const &objectname, std::string const &coun-
tername, std::string const ¶meters, std::string const
&parentname, std::string const &instancename, std::int64_t
parentindex = -1, std::int64_t instanceindex = -1, bool parentin-
stance_is_basename = false)

counter_path_elements(std::string const &objectname, std::string const &coun-
tername, std::string const ¶meters, std::string const
&parentname, std::string const &instancename, std::string
const &subinstancename, std::int64_t parentindex = -1,
std::int64_t instanceindex = -1, std::int64_t subinstanceindex =
-1, bool parentinstance_is_basename = false)

Public Members

std::string parentinstancename_
the name of the parent instance

std::string instancename_
the name of the object instance

std::string subinstancename_
the name of the object sub-instance

std::int64_t parentinstanceindex_
the parent instance index

2.9. API reference 937

HPX Documentation, 1.5.1

std::int64_t instanceindex_
the instance index

std::int64_t subinstanceindex_
the sub-instance index

bool parentinstance_is_basename_
the parentinstancename_

Private Functions

void serialize(serialization::output_archive &ar, const unsigned int)

void serialize(serialization::input_archive &ar, const unsigned int)

Friends

friend hpx::performance_counters::hpx::serialization::access
member holds a base counter name

struct counter_type_path_elements
#include <counters.hpp> A counter_type_path_elements holds the elements of a full name for a
counter type. Generally, a full name of a counter type has the structure:

/objectname/countername

i.e. /queue/length

Subclassed by hpx::performance_counters::counter_path_elements

Public Functions

counter_type_path_elements()

counter_type_path_elements(std::string const &objectname, std::string const
&countername, std::string const ¶meters)

Public Members

std::string objectname_
the name of the performance object

std::string countername_
contains the counter name

std::string parameters_
optional parameters for the counter instance

938 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Protected Functions

void serialize(serialization::output_archive &ar, const unsigned int)

void serialize(serialization::input_archive &ar, const unsigned int)

Friends

friend hpx::performance_counters::hpx::serialization::access

Header hpx/performance_counters/counters_fwd.hpp

Defines

HPX_PERFORMANCE_COUNTER_V1

namespace hpx

namespace performance_counters

Enums

enum counter_type
Values:

counter_text
counter_text shows a variable-length text string. It does not deliver calculated values.

Formula: None Average: None Type: Text

counter_raw
counter_raw shows the last observed value only. It does not deliver an average.

Formula: None. Shows raw data as collected. Average: None Type: Instantaneous

counter_monotonically_increasing

counter_average_base
counter_average_base is used as the base data (denominator) in the computation of time or count
averages for the counter_average_count and counter_average_timer counter types. This counter
type collects the last observed value only.

Formula: None. This counter uses raw data in factional calculations without delivering an output.
Average: SUM (N) / x Type: Instantaneous

counter_average_count
counter_average_count shows how many items are processed, on average, during an operation.
Counters of this type display a ratio of the items processed (such as bytes sent) to the number of
operations completed. The ratio is calculated by comparing the number of items processed during
the last interval to the number of operations completed during the last interval.

Formula: (N1 - N0) / (D1 - D0), where the numerator (N) represents the number of items pro-
cessed during the last sample interval, and the denominator (D) represents the number of oper-
ations completed during the last two sample intervals. Average: (Nx - N0) / (Dx - D0) Type:
Average

2.9. API reference 939

HPX Documentation, 1.5.1

counter_aggregating
counter_aggregating applies a function to an embedded counter instance. The embedded counter
is usually evaluated repeatedly after a fixed (but configurable) time interval.

Formula: F(Nx)

counter_average_timer
counter_average_timer measures the average time it takes to complete a process or operation.
Counters of this type display a ratio of the total elapsed time of the sample interval to the number
of processes or operations completed during that time. This counter type measures time in ticks
of the system clock. The variable F represents the number of ticks per second. The value of F is
factored into the equation so that the result is displayed in seconds.

Formula: ((N1 - N0) / F) / (D1 - D0), where the numerator (N) represents the number of ticks
counted during the last sample interval, the variable F represents the frequency of the ticks, and the
denominator (D) represents the number of operations completed during the last sample interval.
Average: ((Nx - N0) / F) / (Dx - D0) Type: Average

counter_elapsed_time
counter_elapsed_time shows the total time between when the component or process started and
the time when this value is calculated. The variable F represents the number of time units that
elapse in one second. The value of F is factored into the equation so that the result is displayed in
seconds.

Formula: (D0 - N0) / F, where the nominator (D) represents the current time, the numerator (N)
represents the time the object was started, and the variable F represents the number of time units
that elapse in one second. Average: (Dx - N0) / F Type: Difference

counter_histogram
counter_histogram exposes a histogram of the measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

The first three values in the returned array represent the lower and upper boundaries, and the size
of the histogram buckets. All remaining values in the returned array represent the number of
measurements for each of the buckets in the histogram.

counter_raw_values
counter_raw_values exposes an array of measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

counter_text
counter_text shows a variable-length text string. It does not deliver calculated values.

Formula: None Average: None Type: Text

counter_raw
counter_raw shows the last observed value only. It does not deliver an average.

Formula: None. Shows raw data as collected. Average: None Type: Instantaneous

counter_monotonically_increasing

counter_average_base
counter_average_base is used as the base data (denominator) in the computation of time or count
averages for the counter_average_count and counter_average_timer counter types. This counter
type collects the last observed value only.

940 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Formula: None. This counter uses raw data in factional calculations without delivering an output.
Average: SUM (N) / x Type: Instantaneous

counter_average_count
counter_average_count shows how many items are processed, on average, during an operation.
Counters of this type display a ratio of the items processed (such as bytes sent) to the number of
operations completed. The ratio is calculated by comparing the number of items processed during
the last interval to the number of operations completed during the last interval.

Formula: (N1 - N0) / (D1 - D0), where the numerator (N) represents the number of items pro-
cessed during the last sample interval, and the denominator (D) represents the number of oper-
ations completed during the last two sample intervals. Average: (Nx - N0) / (Dx - D0) Type:
Average

counter_aggregating
counter_aggregating applies a function to an embedded counter instance. The embedded counter
is usually evaluated repeatedly after a fixed (but configurable) time interval.

Formula: F(Nx)

counter_average_timer
counter_average_timer measures the average time it takes to complete a process or operation.
Counters of this type display a ratio of the total elapsed time of the sample interval to the number
of processes or operations completed during that time. This counter type measures time in ticks
of the system clock. The variable F represents the number of ticks per second. The value of F is
factored into the equation so that the result is displayed in seconds.

Formula: ((N1 - N0) / F) / (D1 - D0), where the numerator (N) represents the number of ticks
counted during the last sample interval, the variable F represents the frequency of the ticks, and the
denominator (D) represents the number of operations completed during the last sample interval.
Average: ((Nx - N0) / F) / (Dx - D0) Type: Average

counter_elapsed_time
counter_elapsed_time shows the total time between when the component or process started and
the time when this value is calculated. The variable F represents the number of time units that
elapse in one second. The value of F is factored into the equation so that the result is displayed in
seconds.

Formula: (D0 - N0) / F, where the nominator (D) represents the current time, the numerator (N)
represents the time the object was started, and the variable F represents the number of time units
that elapse in one second. Average: (Dx - N0) / F Type: Difference

counter_histogram
counter_histogram exposes a histogram of the measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

The first three values in the returned array represent the lower and upper boundaries, and the size
of the histogram buckets. All remaining values in the returned array represent the number of
measurements for each of the buckets in the histogram.

counter_raw_values
counter_raw_values exposes an array of measured values instead of a single value as many
of the other counter types. Counters of this type expose a counter_value_array instead of a
counter_value. Those will also not implement the get_counter_value() functionality. The results
are exposed through a separate get_counter_values_array() function.

enum counter_status
Values:

2.9. API reference 941

HPX Documentation, 1.5.1

status_valid_data
No error occurred, data is valid.

status_new_data
Data is valid and different from last call.

status_invalid_data
Some error occurred, data is not value.

status_already_defined
The type or instance already has been defined.

status_counter_unknown
The counter instance is unknown.

status_counter_type_unknown
The counter type is unknown.

status_generic_error
A unknown error occurred.

status_valid_data
No error occurred, data is valid.

status_new_data
Data is valid and different from last call.

status_invalid_data
Some error occurred, data is not value.

status_already_defined
The type or instance already has been defined.

status_counter_unknown
The counter instance is unknown.

status_counter_type_unknown
The counter type is unknown.

status_generic_error
A unknown error occurred.

enum discover_counters_mode
Values:

discover_counters_minimal

discover_counters_full

Functions

counter_status get_counter_type_name(counter_type_path_elements const &path,
std::string &result, error_code &ec = throws)

Create a full name of a counter type from the contents of the given counter_type_path_elements
instance.The generated counter type name will not contain any parameters.

counter_status get_full_counter_type_name(counter_type_path_elements const &path,
std::string &result, error_code &ec =
throws)

Create a full name of a counter type from the contents of the given counter_type_path_elements
instance. The generated counter type name will contain all parameters.

942 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

counter_status get_counter_name(counter_path_elements const &path, std::string &result,
error_code &ec = throws)

Create a full name of a counter from the contents of the given counter_path_elements instance.

counter_status get_counter_instance_name(counter_path_elements const &path,
std::string &result, error_code &ec = throws)

Create a name of a counter instance from the contents of the given counter_path_elements instance.

counter_status get_counter_type_path_elements(std::string const &name,
counter_type_path_elements &path,
error_code &ec = throws)

Fill the given counter_type_path_elements instance from the given full name of a counter type.

counter_status get_counter_path_elements(std::string const &name,
counter_path_elements &path, error_code
&ec = throws)

Fill the given counter_path_elements instance from the given full name of a counter.

counter_status get_counter_name(std::string const &name, std::string &countername, er-
ror_code &ec = throws)

Return the canonical counter instance name from a given full instance name.

counter_status get_counter_type_name(std::string const &name, std::string &type_name,
error_code &ec = throws)

Return the canonical counter type name from a given (full) instance name.

counter_status complement_counter_info(counter_info &info, counter_info const
&type_info, error_code &ec = throws)

Complement the counter info if parent instance name is missing.

counter_status complement_counter_info(counter_info &info, error_code &ec = throws)

counter_status add_counter_type(counter_info const &info, create_counter_func const
&create_counter, discover_counters_func const &dis-
cover_counters, error_code &ec = throws)

counter_status discover_counter_types(discover_counter_func const &dis-
cover_counter, discover_counters_mode mode
= discover_counters_minimal, error_code &ec =
throws)

Call the supplied function for each registered counter type.

counter_status discover_counter_types(std::vector<counter_info> &counters,
discover_counters_mode mode = dis-
cover_counters_minimal, error_code &ec =
throws)

Return a list of all available counter descriptions.

counter_status discover_counter_type(std::string const &name, dis-
cover_counter_func const &discover_counter,
discover_counters_mode mode = dis-
cover_counters_minimal, error_code &ec =
throws)

Call the supplied function for the given registered counter type.

counter_status discover_counter_type(counter_info const &info, dis-
cover_counter_func const &discover_counter,
discover_counters_mode mode = dis-
cover_counters_minimal, error_code &ec =
throws)

2.9. API reference 943

HPX Documentation, 1.5.1

counter_status discover_counter_type(std::string const &name,
std::vector<counter_info> &counters,
discover_counters_mode mode = dis-
cover_counters_minimal, error_code &ec =
throws)

Return a list of matching counter descriptions for the given registered counter type.

counter_status discover_counter_type(counter_info const &info,
std::vector<counter_info> &counters,
discover_counters_mode mode = dis-
cover_counters_minimal, error_code &ec =
throws)

bool expand_counter_info(counter_info const&, discover_counter_func const&, er-
ror_code&)

call the supplied function will all expanded versions of the supplied counter info.

This function expands all locality#* and worker-thread#* wild cards only.

counter_status remove_counter_type(counter_info const &info, error_code &ec = throws)
Remove an existing counter type from the (local) registry.

Note This doesn’t remove existing counters of this type, it just inhibits defining new counters using
this type.

counter_status get_counter_type(std::string const &name, counter_info &info, error_code
&ec = throws)

Retrieve the counter type for the given counter name from the (local) registry.

lcos::future<naming::id_type> get_counter_async(std::string name, error_code &ec =
throws)

Get the global id of an existing performance counter, if the counter does not exist yet, the function
attempts to create the counter based on the given counter name.

lcos::future<naming::id_type> get_counter_async(counter_info const &info, error_code
&ec = throws)

Get the global id of an existing performance counter, if the counter does not exist yet, the function
attempts to create the counter based on the given counter info.

void get_counter_infos(counter_info const &info, counter_type &type, std::string &help-
text, std::uint32_t &version, error_code &ec = throws)

Retrieve the meta data specific for the given counter instance.

void get_counter_infos(std::string name, counter_type &type, std::string &helptext,
std::uint32_t &version, error_code &ec = throws)

Retrieve the meta data specific for the given counter instance.

struct counter_value
#include <counters_fwd.hpp>

944 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

counter_value(std::int64_t value = 0, std::int64_t scaling = 1, bool scale_inverse = false)

template<typename T>
T get_value(error_code &ec = throws) const

Retrieve the ‘real’ value of the counter_value, converted to the requested type T.

Public Members

std::uint64_t time_
The local time when data was collected.

std::uint64_t count_
The invocation counter for the data.

std::int64_t value_
The current counter value.

std::int64_t scaling_
The scaling of the current counter value.

counter_status status_
The status of the counter value.

bool scale_inverse_
If true, value_ needs to be divided by scaling_, otherwise it has to be multiplied.

Private Functions

void serialize(serialization::output_archive &ar, const unsigned int)

void serialize(serialization::input_archive &ar, const unsigned int)

Friends

friend hpx::performance_counters::hpx::serialization::access

struct counter_values_array
#include <counters_fwd.hpp>

Public Functions

counter_values_array(std::int64_t scaling = 1, bool scale_inverse = false)

counter_values_array(std::vector<std::int64_t> &&values, std::int64_t scaling = 1, bool
scale_inverse = false)

counter_values_array(std::vector<std::int64_t> const &values, std::int64_t scaling =
1, bool scale_inverse = false)

template<typename T>
T get_value(std::size_t index, error_code &ec = throws) const

Retrieve the ‘real’ value of the counter_value, converted to the requested type T.

2.9. API reference 945

HPX Documentation, 1.5.1

Public Members

std::uint64_t time_
The local time when data was collected.

std::uint64_t count_
The invocation counter for the data.

std::vector<std::int64_t> values_
The current counter values.

std::int64_t scaling_
The scaling of the current counter values.

counter_status status_
The status of the counter value.

bool scale_inverse_
If true, value_ needs to be divided by scaling_, otherwise it has to be multiplied.

Private Functions

void serialize(serialization::output_archive &ar, const unsigned int)

void serialize(serialization::input_archive &ar, const unsigned int)

Friends

friend hpx::performance_counters::hpx::serialization::access

Header hpx/performance_counters/manage_counter.hpp

namespace hpx

namespace performance_counters

Functions

void install_counter(naming::id_type const &id, counter_info const &info, error_code
&ec = throws)

Install a new performance counter in a way, which will uninstall it automatically during shutdown.

Header hpx/performance_counters/manage_counter_type.hpp

namespace hpx

namespace performance_counters

946 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

counter_status install_counter_type(std::string const &name,
hpx::util::function_nonser<std::int64_t)bool

> const &counter_value, std::string const &helptext = "", std::string const &uom = "",
counter_type type = counter_raw, error_code &ec = throwsInstall a new generic performance counter
type in a way, which will uninstall it automatically during shutdown.

The function install_counter_type will register a new generic counter type based on the provided
function. The counter type will be automatically unregistered during system shutdown. Any consumer
querying any instance of this this counter type will cause the provided function to be called and the
returned value to be exposed as the counter value.

The counter type is registered such that there can be one counter instance per locality. The ex-
pected naming scheme for the counter instances is: '/objectname{locality#<*>/total}/
countername' where ‘<*>’ is a zero based integer identifying the locality the counter is created
on.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Return If successful, this function returns status_valid_data, otherwise it will either throw an excep-
tion or return an error_code from the enum counter_status (also, see note related to parameter
ec).

Note The counter type registry is a locality based service. You will have to register each counter type
on every locality where a corresponding performance counter will be created.

Parameters
• name: [in] The global virtual name of the counter type. This name is expected to have the

format /objectname/countername.
• counter_value: [in] The function to call whenever the counter value is requested by a

consumer.
• helptext: [in, optional] A longer descriptive text shown to the user to explain the nature of

the counters created from this type.
• uom: [in] The unit of measure for the new performance counter type.
• type: [in] Type for the new performance counter type.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

counter_status install_counter_type(std::string const &name,
hpx::util::function_nonser<std::vector<std::int64_t>)bool

> const &counter_value, std::string const &helptext = "", std::string const &uom = "", er-
ror_code &ec = throwsInstall a new generic performance counter type returning an array of values in
a way, that will uninstall it automatically during shutdown.

The function install_counter_type will register a new generic counter type that returns an array of
values based on the provided function. The counter type will be automatically unregistered during
system shutdown. Any consumer querying any instance of this this counter type will cause the pro-
vided function to be called and the returned array value to be exposed as the counter value.

The counter type is registered such that there can be one counter instance per locality. The ex-
pected naming scheme for the counter instances is: '/objectname{locality#<*>/total}/
countername' where ‘<*>’ is a zero based integer identifying the locality the counter is created
on.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Return If successful, this function returns status_valid_data, otherwise it will either throw an excep-
tion or return an error_code from the enum counter_status (also, see note related to parameter

2.9. API reference 947

HPX Documentation, 1.5.1

ec).
Note The counter type registry is a locality based service. You will have to register each counter type

on every locality where a corresponding performance counter will be created.
Parameters

• name: [in] The global virtual name of the counter type. This name is expected to have the
format /objectname/countername.

• counter_value: [in] The function to call whenever the counter value (array of values) is
requested by a consumer.

• helptext: [in, optional] A longer descriptive text shown to the user to explain the nature of
the counters created from this type.

• uom: [in] The unit of measure for the new performance counter type.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

void install_counter_type(std::string const &name, counter_type type, error_code &ec =
throws)

Install a new performance counter type in a way, which will uninstall it automatically during shut-
down.

The function install_counter_type will register a new counter type based on the provided
counter_type_info. The counter type will be automatically unregistered during system shutdown.

Return If successful, this function returns status_valid_data, otherwise it will either throw an excep-
tion or return an error_code from the enum counter_status (also, see note related to parameter
ec).

Note The counter type registry is a locality based service. You will have to register each counter type
on every locality where a corresponding performance counter will be created.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• name: [in] The global virtual name of the counter type. This name is expected to have the

format /objectname/countername.
• type: [in] The type of the counters of this counter_type.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

counter_status install_counter_type(std::string const &name, counter_type
type, std::string const &helptext, std::string
const &uom = "", std::uint32_t version =
HPX_PERFORMANCE_COUNTER_V1, er-
ror_code &ec = throws)

Install a new performance counter type in a way, which will uninstall it automatically during shut-
down.

The function install_counter_type will register a new counter type based on the provided
counter_type_info. The counter type will be automatically unregistered during system shutdown.

Return If successful, this function returns status_valid_data, otherwise it will either throw an excep-
tion or return an error_code from the enum counter_status (also, see note related to parameter
ec).

Note The counter type registry is a locality based service. You will have to register each counter type
on every locality where a corresponding performance counter will be created.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• name: [in] The global virtual name of the counter type. This name is expected to have the

format /objectname/countername.

948 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• type: [in] The type of the counters of this counter_type.
• helptext: [in] A longer descriptive text shown to the user to explain the nature of the coun-

ters created from this type.
• uom: [in] The unit of measure for the new performance counter type.
• version: [in] The version of the counter type. This is currently expected to be set to

HPX_PERFORMANCE_COUNTER_V1.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

counter_status install_counter_type(std::string const &name, counter_type type,
std::string const &helptext, create_counter_func
const &create_counter, discover_counters_func
const &discover_counters, std::uint32_t version =
HPX_PERFORMANCE_COUNTER_V1, std::string
const &uom = "", error_code &ec = throws)

Install a new generic performance counter type in a way, which will uninstall it automatically during
shutdown.

The function install_counter_type will register a new generic counter type based on the provided
counter_type_info. The counter type will be automatically unregistered during system shutdown.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Return If successful, this function returns status_valid_data, otherwise it will either throw an excep-
tion or return an error_code from the enum counter_status (also, see note related to parameter
ec).

Note The counter type registry is a locality based service. You will have to register each counter type
on every locality where a corresponding performance counter will be created.

Parameters
• name: [in] The global virtual name of the counter type. This name is expected to have the

format /objectname/countername.
• type: [in] The type of the counters of this counter_type.
• helptext: [in] A longer descriptive text shown to the user to explain the nature of the coun-

ters created from this type.
• version: [in] The version of the counter type. This is currently expected to be set to

HPX_PERFORMANCE_COUNTER_V1.
• create_counter: [in] The function which will be called to create a new instance of this

counter type.
• discover_counters: [in] The function will be called to discover counter instances which

can be created.
• uom: [in] The unit of measure of the counter type (default: “”)
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

Header hpx/performance_counters/parcels/data_point.hpp

namespace hpx

namespace performance_counters

namespace parcels

2.9. API reference 949

HPX Documentation, 1.5.1

struct data_point
#include <data_point.hpp> A data_point collects all timing and statistical information for a sin-
gle parcel (either sent or received).

Public Functions

data_point()

Public Members

std::size_t bytes_
number of bytes on the wire for this parcel (possibly compressed)

std::int64_t time_
during processing holds start timestamp after processing holds elapsed time

std::int64_t serialization_time_
during processing holds start serialization timestamp after processing holds elapsed serializa-
tion time

std::size_t num_parcels_
The number of parcels processed by this message.

std::size_t raw_bytes_
number of bytes processed for the action in this parcel (uncompressed)

std::int64_t buffer_allocate_time_
The time spent for allocating buffers.

Header hpx/performance_counters/parcels/gatherer.hpp

namespace hpx

namespace performance_counters

namespace parcels

Typedefs

using gatherer = detail::gatherer<lcos::local::spinlock>

using gatherer_nolock = detail::gatherer<lcos::local::no_mutex>

950 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/performance_counters/performance_counter.hpp

namespace hpx

namespace performance_counters

Functions

std::vector<performance_counter> discover_counters(std::string const&name, error_code
&ec = throws)

struct performance_counter : public components::client_base<performance_counter, server::base_performance_counter>
#include <performance_counter.hpp>

Public Types

using base_type = components::client_base<performance_counter, server::base_performance_counter>

Public Functions

performance_counter()

performance_counter(std::string const &name)

performance_counter(std::string const &name, hpx::id_type const &locality)

performance_counter(id_type const &id)

performance_counter(future<id_type> &&id)

performance_counter(hpx::future<performance_counter> &&c)

future<counter_info> get_info() const

counter_info get_info(launch::sync_policy, error_code &ec = throws) const

future<counter_value> get_counter_value(bool reset = false)

counter_value get_counter_value(launch::sync_policy, bool reset = false, error_code
&ec = throws)

future<counter_value> get_counter_value() const

counter_value get_counter_value(launch::sync_policy, error_code &ec = throws)
const

future<counter_values_array> get_counter_values_array(bool reset = false)

counter_values_array get_counter_values_array(launch::sync_policy, bool reset =
false, error_code &ec = throws)

future<counter_values_array> get_counter_values_array() const

counter_values_array get_counter_values_array(launch::sync_policy, error_code
&ec = throws) const

2.9. API reference 951

HPX Documentation, 1.5.1

future<bool> start()

bool start(launch::sync_policy, error_code &ec = throws)

future<bool> stop()

bool stop(launch::sync_policy, error_code &ec = throws)

future<void> reset()

void reset(launch::sync_policy, error_code &ec = throws)

future<void> reinit(bool reset = true)

void reinit(launch::sync_policy, bool reset = true, error_code &ec = throws)

future<std::string> get_name() const

std::string get_name(launch::sync_policy, error_code &ec = throws) const

template<typename T>
future<T> get_value(bool reset = false)

template<typename T>
T get_value(launch::sync_policy, bool reset = false, error_code &ec = throws)

template<typename T>
future<T> get_value() const

template<typename T>
T get_value(launch::sync_policy, error_code &ec = throws) const

Private Static Functions

template<typename T>
static T extract_value(future<counter_value> &&value)

Header hpx/performance_counters/performance_counter_base.hpp

namespace hpx

namespace performance_counters

struct performance_counter_base
#include <performance_counter_base.hpp> Subclassed by hpx::performance_counters::server::base_performance_counter

952 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

virtual ~performance_counter_base()
Destructor, needs to be virtual to allow for clean destruction of derived objects

virtual counter_info get_counter_info() const = 0

virtual counter_value get_counter_value(bool reset = false) = 0

virtual counter_values_array get_counter_values_array(bool reset = false) = 0

virtual void reset_counter_value() = 0

virtual void set_counter_value(counter_value const&) = 0

virtual bool start() = 0

virtual bool stop() = 0

virtual void reinit(bool reset) = 0

Header hpx/performance_counters/performance_counter_set.hpp

namespace hpx

namespace performance_counters

class performance_counter_set
#include <performance_counter_set.hpp>

Public Functions

performance_counter_set(bool print_counters_locally = false)
Create an empty set of performance counters.

performance_counter_set(std::string const &names, bool reset = false)
Create a set of performance counters from a name, possibly containing wild-card characters

performance_counter_set(std::vector<std::string> const &names, bool reset = false)

void add_counters(std::string const&names, bool reset = false, error_code &ec = throws)
Add more performance counters to the set based on the given name, possibly containing wild-card
characters

void add_counters(std::vector<std::string> const &names, bool reset = false, error_code
&ec = throws)

std::vector<counter_info> get_counter_infos() const
Retrieve the counter infos for all counters in this set.

std::vector<hpx::future<counter_value>> get_counter_values(bool reset = false)
const

Retrieve the values for all counters in this set supporting this operation

2.9. API reference 953

HPX Documentation, 1.5.1

std::vector<counter_value> get_counter_values(launch::sync_policy, bool reset = false,
error_code &ec = throws) const

std::vector<hpx::future<counter_values_array>> get_counter_values_array(bool
reset =
false)
const

Retrieve the array-values for all counters in this set supporting this operation

std::vector<counter_values_array> get_counter_values_array(launch::sync_policy,
bool reset = false,
error_code &ec =
throws) const

std::vector<hpx::future<void>> reset()
Reset all counters in this set.

void reset(launch::sync_policy, error_code &ec = throws)

std::vector<hpx::future<bool>> start()
Start all counters in this set.

bool start(launch::sync_policy, error_code &ec = throws)

std::vector<hpx::future<bool>> stop()
Stop all counters in this set.

bool stop(launch::sync_policy, error_code &ec = throws)

std::vector<hpx::future<void>> reinit(bool reset = true)
Re-initialize all counters in this set.

void reinit(launch::sync_policy, bool reset = true, error_code &ec = throws)

void release()
Release all references to counters in the set.

std::size_t size() const
Return the number of counters in this set.

template<typename T>
hpx::future<std::vector<T>> get_values(bool reset = false) const

template<typename T>
std::vector<T> get_values(launch::sync_policy, bool reset = false, error_code &ec =

throws) const

std::size_t get_invocation_count() const

Protected Functions

bool find_counter(counter_info const &info, bool reset, error_code &ec)

954 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Protected Static Functions

template<typename T>
static std::vector<T> extract_values(std::vector<hpx::future<counter_value>>

&&values)

Private Types

typedef lcos::local::spinlock mutex_type

Private Members

mutex_type mtx_

std::vector<counter_info> infos_

std::vector<naming::id_type> ids_

std::vector<std::uint8_t> reset_

std::uint64_t invocation_count_

bool print_counters_locally_

Header hpx/performance_counters/registry.hpp

namespace hpx

namespace performance_counters

class registry
#include <registry.hpp>

Public Functions

registry()

counter_status add_counter_type(counter_info const &info, create_counter_func
const &create_counter, discover_counters_func
const &discover_counters, error_code &ec =
throws)

Add a new performance counter type to the (local) registry.

counter_status discover_counter_types(discover_counter_func discover_counter, dis-
cover_counters_mode mode, error_code &ec =
throws)

Call the supplied function for all registered counter types.

counter_status discover_counter_type(std::string const &fullname, dis-
cover_counter_func discover_counter, dis-
cover_counters_mode mode, error_code &ec =
throws)

Call the supplied function for the given registered counter type.

2.9. API reference 955

HPX Documentation, 1.5.1

counter_status discover_counter_type(counter_info const &info, dis-
cover_counter_func const &f, dis-
cover_counters_mode mode, error_code
&ec = throws)

counter_status get_counter_create_function(counter_info const &info, cre-
ate_counter_func &create_counter,
error_code &ec = throws) const

Retrieve the counter creation function which is associated with a given counter type.

counter_status get_counter_discovery_function(counter_info const &info, dis-
cover_counters_func &func, er-
ror_code &ec) const

Retrieve the counter discovery function which is associated with a given counter type.

counter_status remove_counter_type(counter_info const &info, error_code &ec =
throws)

Remove an existing counter type from the (local) registry.

Note This doesn’t remove existing counters of this type, it just inhibits defining new counters
using this type.

counter_status create_raw_counter_value(counter_info const &info, std::int64_t
*countervalue, naming::gid_type &id, er-
ror_code &ec = throws)

Create a new performance counter instance of type raw_counter based on given counter value.

counter_status create_raw_counter(counter_info const &info,
hpx::util::function_nonser<std::int64_t)

> const &f naming::gid_type &id, error_code &ec = throwsCreate a new performance counter
instance of type raw_counter based on given function returning the counter value.

counter_status create_raw_counter(counter_info const &info,
hpx::util::function_nonser<std::int64_t)bool

> const &f, naming::gid_type &id, error_code &ec = throwsCreate a new performance counter
instance of type raw_counter based on given function returning the counter value.

counter_status create_raw_counter(counter_info const &info,
hpx::util::function_nonser<std::vector<std::int64_t>)

> const &f naming::gid_type &id, error_code &ec = throwsCreate a new performance counter
instance of type raw_counter based on given function returning the counter value.

counter_status create_raw_counter(counter_info const &info,
hpx::util::function_nonser<std::vector<std::int64_t>)bool

> const &f, naming::gid_type &id, error_code &ec = throwsCreate a new performance counter
instance of type raw_counter based on given function returning the counter value.

counter_status create_counter(counter_info const &info, naming::gid_type &id, er-
ror_code &ec = throws)

Create a new performance counter instance based on given counter info.

counter_status create_statistics_counter(counter_info const &info, std::string
const &base_counter_name,
std::vector<std::size_t> const ¶m-
eters, naming::gid_type &id, error_code
&ec = throws)

Create a new statistics performance counter instance based on given base counter name and given
base time interval (milliseconds).

956 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

counter_status create_arithmetics_counter(counter_info const &info,
std::vector<std::string> const
&base_counter_names, nam-
ing::gid_type &id, error_code &ec
= throws)

Create a new arithmetics performance counter instance based on given base counter names.

counter_status create_arithmetics_counter_extended(counter_info
const &info,
std::vector<std::string>
const
&base_counter_names,
naming::gid_type &id,
error_code &ec = throws)

Create a new extended arithmetics performance counter instance based on given base counter
names.

counter_status add_counter(naming::id_type const &id, counter_info const &info, er-
ror_code &ec = throws)

Add an existing performance counter instance to the registry.

counter_status remove_counter(counter_info const &info, naming::id_type const &id,
error_code &ec = throws)

remove the existing performance counter from the registry

counter_status get_counter_type(std::string const &name, counter_info &info, er-
ror_code &ec = throws)

Retrieve counter type information for given counter name.

Protected Functions

counter_type_map_type::iterator locate_counter_type(std::string const &type_name)

counter_type_map_type::const_iterator locate_counter_type(std::string const
&type_name) const

Private Types

typedef std::map<std::string, counter_data> counter_type_map_type

Private Members

counter_type_map_type countertypes_

struct counter_data

2.9. API reference 957

HPX Documentation, 1.5.1

Public Functions

counter_data(counter_info const &info, create_counter_func const &cre-
ate_counter, discover_counters_func const &discover_counters)

Public Members

counter_info info_

create_counter_func create_counter_

discover_counters_func discover_counters_

Header hpx/performance_counters/server/arithmetics_counter.hpp

namespace hpx

namespace performance_counters

namespace server

template<typename Operation>
class arithmetics_counter : public hpx::performance_counters::server::base_performance_counter, public hpx::components::component_base<arithmetics_counter<Operation>>

#include <arithmetics_counter.hpp>

Public Types

typedef arithmetics_counter type_holder

typedef base_performance_counter base_type_holder

Public Functions

arithmetics_counter()

arithmetics_counter(counter_info const &info, std::vector<std::string> const
&base_counter_names)

hpx::performance_counters::counter_value get_counter_value(bool reset = false)
Overloads from the base_counter base class.

bool start()

bool stop()

void reset_counter_value()
the following functions are not implemented by default, they will just throw

void finalize()

958 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

typedef components::component_base<arithmetics_counter<Operation>> base_type

Private Members

performance_counter_set counters_

Header hpx/performance_counters/server/arithmetics_counter_extended.hpp

namespace hpx

namespace performance_counters

namespace server

template<typename Statistic>
class arithmetics_counter_extended : public hpx::performance_counters::server::base_performance_counter, public hpx::components::component_base<arithmetics_counter_extended<Statistic>>

#include <arithmetics_counter_extended.hpp>

Public Types

typedef arithmetics_counter_extended type_holder

typedef base_performance_counter base_type_holder

Public Functions

arithmetics_counter_extended()

arithmetics_counter_extended(counter_info const &info,
std::vector<std::string> const
&base_counter_names)

hpx::performance_counters::counter_value get_counter_value(bool reset = false)
Overloads from the base_counter base class.

bool start()

bool stop()

void reset_counter_value()
the following functions are not implemented by default, they will just throw

void finalize()

2.9. API reference 959

HPX Documentation, 1.5.1

Private Types

typedef components::component_base<arithmetics_counter_extended<Statistic>> base_type

Private Members

performance_counter_set counters_

Header hpx/performance_counters/server/base_performance_counter.hpp

namespace hpx

namespace performance_counters

namespace server

class base_performance_counter : public hpx::performance_counters::performance_counter_base, public component_tag
#include <base_performance_counter.hpp> Subclassed by hpx::performance_counters::base_performance_counter<
Derived >, hpx::performance_counters::server::arithmetics_counter< Oper-
ation >, hpx::performance_counters::server::arithmetics_counter_extended<
Statistic >, hpx::performance_counters::server::elapsed_time_counter,
hpx::performance_counters::server::raw_counter, hpx::performance_counters::server::raw_values_counter,
hpx::performance_counters::server::statistics_counter< Statistic >

Public Types

typedef components::component<base_performance_counter> wrapping_type

typedef base_performance_counter base_type_holder

Public Functions

base_performance_counter()

base_performance_counter(counter_info const &info)

void finalize()
finalize() will be called just before the instance gets destructed

counter_info get_counter_info_nonvirt() const

counter_value get_counter_value_nonvirt(bool reset)

counter_values_array get_counter_values_array_nonvirt(bool reset)

void set_counter_value_nonvirt(counter_value const &info)

void reset_counter_value_nonvirt()

bool start_nonvirt()

960 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool stop_nonvirt()

void reinit_nonvirt(bool reset)

HPX_DEFINE_COMPONENT_ACTION(base_performance_counter,
get_counter_info_nonvirt,
get_counter_info_action)

Each of the exposed functions needs to be encapsulated into an action type, allowing to gen-
erate all required boilerplate code for threads, serialization, etc. The get_counter_info_action
retrieves a performance counters information.

HPX_DEFINE_COMPONENT_ACTION(base_performance_counter,
get_counter_value_nonvirt,
get_counter_value_action)

The get_counter_value_action queries the value of a performance counter.

HPX_DEFINE_COMPONENT_ACTION(base_performance_counter,
get_counter_values_array_nonvirt,
get_counter_values_array_action)

The get_counter_value_action queries the value of a performance counter.

HPX_DEFINE_COMPONENT_ACTION(base_performance_counter,
set_counter_value_nonvirt,
set_counter_value_action)

The set_counter_value_action.

HPX_DEFINE_COMPONENT_ACTION(base_performance_counter, re-
set_counter_value_nonvirt, re-
set_counter_value_action)

The reset_counter_value_action.

HPX_DEFINE_COMPONENT_ACTION(base_performance_counter, start_nonvirt,
start_action)

The start_action.

HPX_DEFINE_COMPONENT_ACTION(base_performance_counter, stop_nonvirt,
stop_action)

The stop_action.

HPX_DEFINE_COMPONENT_ACTION(base_performance_counter, reinit_nonvirt,
reinit_action)

The reinit_action.

Public Static Functions

static components::component_type get_component_type()

static void set_component_type(components::component_type t)

2.9. API reference 961

HPX Documentation, 1.5.1

Protected Functions

virtual void reset_counter_value()
the following functions are not implemented by default, they will just throw

virtual void set_counter_value(counter_value const&)

virtual counter_value get_counter_value(bool)

virtual counter_values_array get_counter_values_array(bool)

virtual bool start()

virtual bool stop()

virtual void reinit(bool)

virtual counter_info get_counter_info() const

Protected Attributes

hpx::performance_counters::counter_info info_

util::atomic_count invocation_count_

Header hpx/performance_counters/server/elapsed_time_counter.hpp

namespace hpx

namespace performance_counters

namespace server

class elapsed_time_counter : public hpx::performance_counters::server::base_performance_counter, public hpx::components::component_base<elapsed_time_counter>
#include <elapsed_time_counter.hpp>

Public Types

typedef elapsed_time_counter type_holder

typedef base_performance_counter base_type_holder

Public Functions

elapsed_time_counter()

elapsed_time_counter(counter_info const &info)

hpx::performance_counters::counter_value get_counter_value(bool reset)

void reset_counter_value()
the following functions are not implemented by default, they will just throw

962 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool start()

bool stop()

void finalize()
finalize() will be called just before the instance gets destructed

Private Types

typedef components::component_base<elapsed_time_counter> base_type

Header hpx/performance_counters/server/raw_counter.hpp

namespace hpx

namespace performance_counters

namespace server

class raw_counter : public hpx::performance_counters::server::base_performance_counter, public hpx::components::component_base<raw_counter>
#include <raw_counter.hpp>

Public Types

typedef raw_counter type_holder

typedef base_performance_counter base_type_holder

Public Functions

raw_counter()

raw_counter(counter_info const &info, hpx::util::function_nonser<std::int64_t)bool
> f

hpx::performance_counters::counter_value get_counter_value(bool reset = false)

void reset_counter_value()
the following functions are not implemented by default, they will just throw

void finalize()
finalize() will be called just before the instance gets destructed

2.9. API reference 963

HPX Documentation, 1.5.1

Private Types

typedef components::component_base<raw_counter> base_type

Private Members

hpx::util::function_nonser<std::int64_t(bool)> f_

bool reset_

Header hpx/performance_counters/server/raw_values_counter.hpp

namespace hpx

namespace performance_counters

namespace server

class raw_values_counter : public hpx::performance_counters::server::base_performance_counter, public hpx::components::component_base<raw_values_counter>
#include <raw_values_counter.hpp>

Public Types

typedef raw_values_counter type_holder

typedef base_performance_counter base_type_holder

Public Functions

raw_values_counter()

raw_values_counter(counter_info const&info, hpx::util::function_nonser<std::vector<std::int64_t>)bool
> f

hpx::performance_counters::counter_values_array get_counter_values_array(bool
reset
=
false)

void reset_counter_value()
the following functions are not implemented by default, they will just throw

void finalize()
finalize() will be called just before the instance gets destructed

964 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

typedef components::component_base<raw_values_counter> base_type

Private Members

hpx::util::function_nonser<std::vector<std::int64_t>bool)> hpx::performance_counters::server::raw_values_counter::f_

bool reset_

Header hpx/performance_counters/server/statistics_counter.hpp

namespace hpx

namespace performance_counters

namespace server

template<typename Statistic>
class statistics_counter : public hpx::performance_counters::server::base_performance_counter, public hpx::components::component_base<statistics_counter<Statistic>>

#include <statistics_counter.hpp>

Public Types

typedef statistics_counter type_holder

typedef base_performance_counter base_type_holder

Public Functions

statistics_counter()

statistics_counter(counter_info const &info, std::string const
&base_counter_name, std::size_t parameter1, std::size_t
parameter2, bool reset_base_counter)

hpx::performance_counters::counter_value get_counter_value(bool reset = false)
Overloads from the base_counter base class.

bool start()

bool stop()

void reset_counter_value()
the following functions are not implemented by default, they will just throw

void on_terminate()

void finalize()
finalize() will be called just before the instance gets destructed

2.9. API reference 965

HPX Documentation, 1.5.1

Protected Functions

bool evaluate_base_counter(counter_value &value)

bool evaluate()

bool ensure_base_counter()

Private Types

typedef components::component_base<statistics_counter<Statistic>> base_type

typedef lcos::local::spinlock mutex_type

Private Functions

statistics_counter *this_()

Private Members

mutex_type mtx_

hpx::util::interval_timer timer_
base time interval in milliseconds

std::string base_counter_name_
name of base counter to be queried

naming::id_type base_counter_id_

std::unique_ptr<detail::counter_type_from_statistic_base> value_

counter_value prev_value_

bool has_prev_value_

std::size_t parameter1_

std::size_t parameter2_

bool reset_base_counter_

plugin

The contents of this module can be included with the header hpx/modules/plugin.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/plugin.hpp, not the particular header in which the functionality you would like to use is
defined. See Public API for a list of names that are part of the public HPX API.

966 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/modules/plugin.hpp

Header hpx/plugin/abstract_factory.hpp

Header hpx/plugin/concrete_factory.hpp

Header hpx/plugin/config.hpp

Defines

HPX_PLUGIN_EXPORT_API

HPX_PLUGIN_API

HPX_PLUGIN_ARGUMENT_LIMIT

HPX_PLUGIN_SYMBOLS_PREFIX_DYNAMIC

HPX_PLUGIN_SYMBOLS_PREFIX

HPX_PLUGIN_SYMBOLS_PREFIX_DYNAMIC_STR

HPX_PLUGIN_SYMBOLS_PREFIX_STR

namespace hpx

namespace util

namespace plugin

Typedefs

using shared_ptr = boost::shared_ptr<T>

Header hpx/plugin/dll.hpp

Defines

HPX_HAS_DLOPEN

Header hpx/plugin/export_plugin.hpp

Defines

HPX_PLUGIN_NAME_2(name1, name2)

HPX_PLUGIN_NAME_3(name, base, cname)

HPX_PLUGIN_LIST_NAME_(prefix, name, base)

HPX_PLUGIN_EXPORTER_NAME_(prefix, name, base, cname)

HPX_PLUGIN_EXPORTER_INSTANCE_NAME_(prefix, name, base, cname)

2.9. API reference 967

HPX Documentation, 1.5.1

HPX_PLUGIN_FORCE_LOAD_NAME_(prefix, name, base)

HPX_PLUGIN_LIST_NAME(name, base)

HPX_PLUGIN_EXPORTER_NAME(name, base, cname)

HPX_PLUGIN_EXPORTER_INSTANCE_NAME(name, base, cname)

HPX_PLUGIN_FORCE_LOAD_NAME(name, base)

HPX_PLUGIN_LIST_NAME_DYNAMIC(name, base)

HPX_PLUGIN_EXPORTER_NAME_DYNAMIC(name, base, cname)

HPX_PLUGIN_EXPORTER_INSTANCE_NAME_DYNAMIC(name, base, cname)

HPX_PLUGIN_FORCE_LOAD_NAME_DYNAMIC(name, base)

HPX_PLUGIN_EXPORT_(prefix, name, BaseType, ActualType, actualname, classname)

HPX_PLUGIN_EXPORT(name, BaseType, ActualType, actualname, classname)

HPX_PLUGIN_EXPORT_DYNAMIC(name, BaseType, ActualType, actualname, classname)

HPX_PLUGIN_EXPORT_LIST_(prefix, name, classname)

HPX_PLUGIN_EXPORT_LIST(name, classname)

HPX_PLUGIN_EXPORT_LIST_DYNAMIC(name, classname)

Header hpx/plugin/plugin_factory.hpp

namespace hpx

namespace util

namespace plugin

template<class BasePlugin>
struct plugin_factory : public hpx::util::plugin::detail::plugin_factory_item<BasePlugin, detail::plugin_factory_item_base, virtual_constructor<BasePlugin>::type>

#include <plugin_factory.hpp>

Public Functions

plugin_factory(dll &d, std::string const &basename)

Private Types

template<>
using base_type = detail::plugin_factory_item<BasePlugin, detail::plugin_factory_item_base, typename virtual_constructor<BasePlugin>::type>

template<class BasePlugin>
struct static_plugin_factory : public hpx::util::plugin::detail::static_plugin_factory_item<BasePlugin, detail::static_plugin_factory_item_base, virtual_constructor<BasePlugin>::type>

#include <plugin_factory.hpp>

968 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

static_plugin_factory(get_plugins_list_type const &f)

Private Types

template<>
using base_type = detail::static_plugin_factory_item<BasePlugin, detail::static_plugin_factory_item_base, typename virtual_constructor<BasePlugin>::type>

Header hpx/plugin/plugin_wrapper.hpp

namespace hpx

namespace util

namespace plugin

template<typename Wrapped, typename ...Parameters>
struct plugin_wrapper : public hpx::util::plugin::detail::dll_handle_holder, public Wrapped

#include <plugin_wrapper.hpp>

Public Functions

plugin_wrapper(dll_handle dll, Parameters... parameters)

Header hpx/plugin/traits/plugin_config_data.hpp

namespace hpx

namespace traits

template<typename Plugin, typename Enable = void>
struct plugin_config_data

#include <plugin_config_data.hpp>

Public Static Functions

static char const *call()

2.9. API reference 969

HPX Documentation, 1.5.1

Header hpx/plugin/virtual_constructor.hpp

namespace hpx

namespace util

namespace plugin

Typedefs

using exported_plugins_type = std::map<std::string, hpx::util::any_nonser>

typedef exported_plugins_type*(HPX_PLUGIN_API* hpx::util::plugin::get_plugins_list_type) ()

typedef exported_plugins_type* HPX_PLUGIN_API hpx::util::plugin::get_plugins_list_np()

using dll_handle = shared_ptr<get_plugins_list_np>

template<typename BasePlugin>
struct virtual_constructor

#include <virtual_constructor.hpp>

Public Types

template<>
using type = hpx::util::pack<>

prefix

The contents of this module can be included with the header hpx/modules/prefix.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/prefix.hpp, not the particular header in which the functionality you would like to use is
defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/prefix/find_prefix.hpp

Defines

HPX_BASE_DIR_NAME

HPX_DEFAULT_INI_PATH

HPX_DEFAULT_INI_FILE

HPX_DEFAULT_COMPONENT_PATH

namespace hpx

namespace util

970 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

void set_hpx_prefix(const char *prefix)

char const *hpx_prefix()

std::string find_prefix(std::string const &library = "hpx")

std::string find_prefixes(std::string const &suffix, std::string const &library = "hpx")

std::string get_executable_filename(char const *argv0 = nullptr)

std::string get_executable_prefix(char const *argv0 = nullptr)

preprocessor

The contents of this module can be included with the header hpx/modules/preprocessor.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/preprocessor.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/preprocessor/cat.hpp

Defines

HPX_PP_CAT(A, B)
Concatenates the tokens A and B into a single token. Evaluates to AB

Parameters

• A: First token

• B: Second token

Header hpx/preprocessor/expand.hpp

Defines

HPX_PP_EXPAND(X)
The HPX_PP_EXPAND macro performs a double macro-expansion on its argument. This macro can be used
to produce a delayed preprocessor expansion.

Parameters

• X: Token to be expanded twice

Example:

#define MACRO(a, b, c) (a)(b)(c)
#define ARGS() (1, 2, 3)

HPX_PP_EXPAND(MACRO ARGS()) // expands to (1)(2)(3)

2.9. API reference 971

HPX Documentation, 1.5.1

Header hpx/preprocessor/nargs.hpp

Defines

HPX_PP_NARGS(...)
Expands to the number of arguments passed in

Example Usage:

HPX_PP_NARGS(hpx, pp, nargs)
HPX_PP_NARGS(hpx, pp)
HPX_PP_NARGS(hpx)

Parameters

• ...: The variadic number of arguments

Expands to:

3
2
1

Header hpx/preprocessor/stringize.hpp

Defines

HPX_PP_STRINGIZE(X)
The HPX_PP_STRINGIZE macro stringizes its argument after it has been expanded.

The passed argument X will expand to "X". Note that the stringizing operator (#) prevents arguments from
expanding. This macro circumvents this shortcoming.

Parameters

• X: The text to be converted to a string literal

Header hpx/preprocessor/strip_parens.hpp

Defines

HPX_PP_STRIP_PARENS(X)
For any symbol X, this macro returns the same symbol from which potential outer parens have been removed. If
no outer parens are found, this macros evaluates to X itself without error.

The original implementation of this macro is from Steven Watanbe as shown in http://boost.2283326.n4.nabble.
com/preprocessor-removing-parentheses-td2591973.html#a2591976

HPX_PP_STRIP_PARENS(no_parens)
HPX_PP_STRIP_PARENS((with_parens))

Example Usage:

Parameters

972 Chapter 2. What’s so special about HPX?

http://boost.2283326.n4.nabble.com/preprocessor-removing-parentheses-td2591973.html#a2591976
http://boost.2283326.n4.nabble.com/preprocessor-removing-parentheses-td2591973.html#a2591976

HPX Documentation, 1.5.1

• X: Symbol to strip parens from

This produces the following output

no_parens
with_parens

program_options

The contents of this module can be included with the header hpx/modules/program_options.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/program_options.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/modules/program_options.hpp

Header hpx/program_options.hpp

Header hpx/program_options/cmdline.hpp

namespace hpx

namespace program_options

namespace command_line_style

Enums

enum style_t
Various possible styles of options.

There are “long” options, which start with “–” and “short”, which start with either “-” or “/”. Both
kinds can be allowed or disallowed, see allow_long and allow_short. The allowed character for
short options is also configurable.

Option’s value can be specified in the same token as name (“–foo=bar”), or in the next token.

It’s possible to introduce long options by the same character as short options, see al-
low_long_disguise.

Finally, guessing (specifying only prefix of option) and case insensitive processing are supported.

Values:

allow_long = 1
Allow “–long_name” style.

allow_short = allow_long << 1
Allow “-<single character” style.

allow_dash_for_short = allow_short << 1
Allow “-” in short options.

2.9. API reference 973

HPX Documentation, 1.5.1

allow_slash_for_short = allow_dash_for_short << 1
Allow “/” in short options.

long_allow_adjacent = allow_slash_for_short << 1
Allow option parameter in the same token for long option, like in

--foo=10

long_allow_next = long_allow_adjacent << 1
Allow option parameter in the next token for long options.

short_allow_adjacent = long_allow_next << 1
Allow option parameter in the same token for short options.

short_allow_next = short_allow_adjacent << 1
Allow option parameter in the next token for short options.

allow_sticky = short_allow_next << 1
Allow to merge several short options together, so that “-s -k” become “-sk”. All of the options
but last should accept no parameter. For example, if “-s” accept a parameter, then “k” will be
taken as parameter, not another short option. Dos-style short options cannot be sticky.

allow_guessing = allow_sticky << 1
Allow abbreviated spellings for long options, if they unambiguously identify long option. No
long option name should be prefix of other long option name if guessing is in effect.

long_case_insensitive = allow_guessing << 1
Ignore the difference in case for long options.

short_case_insensitive = long_case_insensitive << 1
Ignore the difference in case for short options.

case_insensitive = (long_case_insensitive | short_case_insensitive)
Ignore the difference in case for all options.

allow_long_disguise = short_case_insensitive << 1
Allow long options with single option starting character, e.g -foo=10

unix_style = (allow_short | short_allow_adjacent | short_allow_next | allow_long | long_allow_adjacent | long_allow_next | allow_sticky | allow_guessing | allow_dash_for_short)
The more-or-less traditional unix style.

default_style = unix_style
The default style.

Header hpx/program_options/config.hpp

namespace hpx

namespace program_options

974 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Typedefs

using any = hpx::util::any_nonser

using optional = hpx::util::optional<T>

Header hpx/program_options/environment_iterator.hpp

namespace hpx

namespace program_options

class environment_iterator : public hpx::program_options::eof_iterator<environment_iterator, std::pair<std::string, std::string>>
#include <environment_iterator.hpp>

Public Functions

environment_iterator(char **environment)

environment_iterator()

void get()

Private Members

char **m_environment

Header hpx/program_options/eof_iterator.hpp

namespace hpx

namespace program_options

template<class Derived, class ValueType>
class eof_iterator : public util::iterator_facade<Derived, ValueType const, std::forward_iterator_tag>

#include <eof_iterator.hpp> The ‘eof_iterator’ class is useful for constructing forward iterators in
cases where iterator extract data from some source and it’s easy to detect ‘eof’ – i.e. the situation
where there’s no data. One apparent example is reading lines from a file.

Implementing such iterators using ‘iterator_facade’ directly would require to create class with three
core operation, a couple of constructors. When using ‘eof_iterator’, the derived class should define
only one method to get new value, plus a couple of constructors.

The basic idea is that iterator has ‘eof’ bit. Two iterators are equal only if both have their ‘eof’ bits
set. The ‘get’ method either obtains the new value or sets the ‘eof’ bit.

Specifically, derived class should define:

1. A default constructor, which creates iterator with ‘eof’ bit set. The constructor body should call
‘found_eof’ method defined here.

2.9. API reference 975

HPX Documentation, 1.5.1

2. Some other constructor. It should initialize some ‘data pointer’ used in iterator operation and then
call ‘get’.

3. The ‘get’ method. It should operate this way:
• look at some ‘data pointer’ to see if new element is available; if not, it should call ‘found_eof’.
• extract new element and store it at location returned by the ‘value’ method.
• advance the data pointer.

Essentially, the ‘get’ method has the functionality of both ‘increment’ and ‘dereference’. It’s very
good for the cases where data extraction implicitly moves data pointer, like for stream operation.

Public Functions

eof_iterator()

Protected Functions

ValueType &value()
Returns the reference which should be used by derived class to store the next value.

void found_eof()
Should be called by derived class to indicate that it can’t produce next element.

Private Functions

void increment()

bool equal(const eof_iterator &other) const

const ValueType &dereference() const

Private Members

bool m_at_eof

ValueType m_value

Friends

friend hpx::program_options::hpx::util::iterator_core_access

Header hpx/program_options/errors.hpp

namespace hpx

namespace program_options

976 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

std::string strip_prefixes(const std::string &text)

class ambiguous_option : public hpx::program_options::error_with_no_option_name
#include <errors.hpp> Class thrown when there’s ambiguity among several possible options.

Public Functions

ambiguous_option(const std::vector<std::string> &xalternatives)

~ambiguous_option()

const std::vector<std::string> &alternatives() const

Protected Functions

void substitute_placeholders(const std::string &error_template) const
Makes all substitutions using the template

Private Members

std::vector<std::string> m_alternatives

class error : public logic_error
#include <errors.hpp> Base class for all errors in the library.

Subclassed by hpx::program_options::duplicate_option_error, hpx::program_options::error_with_option_name,
hpx::program_options::invalid_command_line_style, hpx::program_options::reading_file,
hpx::program_options::too_many_positional_options_error

Public Functions

error(const std::string &xwhat)

class error_with_no_option_name : public hpx::program_options::error_with_option_name
#include <errors.hpp> Base class of un-parsable options, when the desired option cannot be identi-
fied.

It makes no sense to have an option name, when we can’t match an option to the parameter

Having this a part of the error_with_option_name hierarchy makes error handling a lot easier, even if
the name indicates some sort of conceptual dissonance!

Subclassed by hpx::program_options::ambiguous_option, hpx::program_options::unknown_option

2.9. API reference 977

HPX Documentation, 1.5.1

Public Functions

error_with_no_option_name(const std::string &template_, const std::string &orig-
inal_token = "")

void set_option_name(const std::string&)
Does NOT set option name, because no option name makes sense

~error_with_no_option_name()

class error_with_option_name : public hpx::program_options::error
#include <errors.hpp> Base class for most exceptions in the library.

Substitutes the values for the parameter name placeholders in the template to create the human read-
able error message

Placeholders are surrounded by % signs: example% Poor man’s version of boost::format

If a parameter name is absent, perform default substitutions instead so ugly placeholders are never left
in-place.

Options are displayed in “canonical” form This is the most unambiguous form of the parsed op-
tion name and would correspond to option_description::format_name() i.e. what is shown by
print_usage()

The “canonical” form depends on whether the option is specified in short or long form, using dashes
or slashes or without a prefix (from a configuration file)

Subclassed by hpx::program_options::error_with_no_option_name,
hpx::program_options::invalid_syntax, hpx::program_options::multiple_occurrences,
hpx::program_options::multiple_values, hpx::program_options::required_option,
hpx::program_options::validation_error

Public Functions

error_with_option_name(const std::string &template_, const std::string &op-
tion_name = "", const std::string &original_token = "", int
option_style = 0)

~error_with_option_name()
gcc says that throw specification on dtor is loosened without this line

void set_substitute(const std::string ¶meter_name, const std::string &value)
Substitute parameter_name->value to create the error message from the error template

void set_substitute_default(const std::string ¶meter_name, const std::string
&from, const std::string &to)

If the parameter is missing, then make the from->to substitution instead

void add_context(const std::string &option_name, const std::string &original_token, int
option_style)

Add context to an exception

void set_prefix(int option_style)

virtual void set_option_name(const std::string &option_name)
Overridden in error_with_no_option_name

std::string get_option_name() const

978 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void set_original_token(const std::string &original_token)

const char *what() const
Creates the error_message on the fly Currently a thin wrapper for substitute_placeholders()

Public Members

std::string m_error_template
template with placeholders

Protected Types

using string_pair = std::pair<std::string, std::string>

Protected Functions

virtual void substitute_placeholders(const std::string &error_template)
const

Makes all substitutions using the template

void replace_token(const std::string &from, const std::string &to) const

std::string get_canonical_option_name() const
Construct option name in accordance with the appropriate prefix style: i.e. long dash or short
slash etc

std::string get_canonical_option_prefix() const

Protected Attributes

int m_option_style
can be 0 = no prefix (config file options) allow_long allow_dash_for_short allow_slash_for_short
allow_long_disguise

std::map<std::string, std::string> m_substitutions
substitutions from placeholders to values

std::map<std::string, string_pair> m_substitution_defaults

std::string m_message
Used to hold the error text returned by what()

class invalid_bool_value : public hpx::program_options::validation_error
#include <errors.hpp> Class thrown if there is an invalid bool value given

2.9. API reference 979

HPX Documentation, 1.5.1

Public Functions

invalid_bool_value(const std::string &value)

class invalid_command_line_style : public hpx::program_options::error
#include <errors.hpp> Class thrown when there are programming error related to style

Public Functions

invalid_command_line_style(const std::string &msg)

class invalid_command_line_syntax : public hpx::program_options::invalid_syntax
#include <errors.hpp> Class thrown when there are syntax errors in given command line

Public Functions

invalid_command_line_syntax(kind_t kind, const std::string &option_name = "",
const std::string &original_token = "", int op-
tion_style = 0)

~invalid_command_line_syntax()

class invalid_config_file_syntax : public hpx::program_options::invalid_syntax
#include <errors.hpp>

Public Functions

invalid_config_file_syntax(const std::string &invalid_line, kind_t kind)

~invalid_config_file_syntax()

std::string tokens() const
Convenience functions for backwards compatibility

class invalid_option_value : public hpx::program_options::validation_error
#include <errors.hpp> Class thrown if there is an invalid option value given

Public Functions

invalid_option_value(const std::string &value)

invalid_option_value(const std::wstring &value)

class invalid_syntax : public hpx::program_options::error_with_option_name
#include <errors.hpp> Class thrown when there’s syntax error either for command line or config file
options. See derived children for concrete classes.

Subclassed by hpx::program_options::invalid_command_line_syntax,
hpx::program_options::invalid_config_file_syntax

980 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

enum kind_t
Values:

long_not_allowed = 30

long_adjacent_not_allowed

short_adjacent_not_allowed

empty_adjacent_parameter

missing_parameter

extra_parameter

unrecognized_line

Public Functions

invalid_syntax(kind_t kind, const std::string &option_name = "", const std::string
&original_token = "", int option_style = 0)

~invalid_syntax()

kind_t kind() const

virtual std::string tokens() const
Convenience functions for backwards compatibility

Protected Functions

std::string get_template(kind_t kind)
Used to convert kind_t to a related error text

Protected Attributes

kind_t m_kind

class multiple_occurrences : public hpx::program_options::error_with_option_name
#include <errors.hpp> Class thrown when there are several occurrences of an option, but user called
a method which cannot return them all.

Public Functions

multiple_occurrences()

~multiple_occurrences()

class multiple_values : public hpx::program_options::error_with_option_name
#include <errors.hpp> Class thrown when there are several option values, but user called a method
which cannot return them all.

2.9. API reference 981

HPX Documentation, 1.5.1

Public Functions

multiple_values()

~multiple_values()

class reading_file : public hpx::program_options::error
#include <errors.hpp> Class thrown if config file can not be read

Public Functions

reading_file(const char *filename)

class required_option : public hpx::program_options::error_with_option_name
#include <errors.hpp> Class thrown when a required/mandatory option is missing

Public Functions

required_option(const std::string &option_name)

~required_option()

class too_many_positional_options_error : public hpx::program_options::error
#include <errors.hpp> Class thrown when there are too many positional options. This is a program-
ming error.

Public Functions

too_many_positional_options_error()

class unknown_option : public hpx::program_options::error_with_no_option_name
#include <errors.hpp> Class thrown when option name is not recognized.

Public Functions

unknown_option(const std::string &original_token = "")

~unknown_option()

class validation_error : public hpx::program_options::error_with_option_name
#include <errors.hpp> Class thrown when value of option is incorrect.

Subclassed by hpx::program_options::invalid_bool_value, hpx::program_options::invalid_option_value

982 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

enum kind_t
Values:

multiple_values_not_allowed = 30

at_least_one_value_required

invalid_bool_value

invalid_option_value

invalid_option

Public Functions

validation_error(kind_t kind, const std::string &option_name = "", const std::string
&original_token = "", int option_style = 0)

~validation_error()

kind_t kind() const

Protected Functions

std::string get_template(kind_t kind)
Used to convert kind_t to a related error text

Protected Attributes

kind_t m_kind

Header hpx/program_options/option.hpp

namespace hpx

namespace program_options

Typedefs

using option = basic_option<char>

using woption = basic_option<wchar_t>

template<class Char>
class basic_option

#include <option.hpp> Option found in input source. Contains a key and a value. The key, in turn,
can be a string (name of an option), or an integer (position in input source) – in case no name is
specified. The latter is only possible for command line. The template parameter specifies the type of
char used for storing the option’s value.

2.9. API reference 983

HPX Documentation, 1.5.1

Public Functions

basic_option()

basic_option(const std::string &xstring_key, const std::vector<std::string> &xvalue)

Public Members

std::string string_key
String key of this option. Intentionally independent of the template parameter.

int position_key
Position key of this option. All options without an explicit name are sequentially numbered
starting from 0. If an option has explicit name, ‘position_key’ is equal to -1. It is possible that
both position_key and string_key is specified, in case name is implicitly added.

std::vector<std::basic_string<Char>> value
Option’s value

std::vector<std::basic_string<Char>> original_tokens
The original unchanged tokens this option was created from.

bool unregistered
True if option was not recognized. In that case, ‘string_key’ and ‘value’ are results of purely
syntactic parsing of source. The original tokens can be recovered from the “original_tokens”
member.

bool case_insensitive
True if string_key has to be handled case insensitive.

Header hpx/program_options/options_description.hpp

namespace hpx

namespace program_options

class duplicate_option_error : public hpx::program_options::error
#include <options_description.hpp> Class thrown when duplicate option description is found.

Public Functions

duplicate_option_error(const std::string &xwhat)

class option_description
#include <options_description.hpp> Describes one possible command line/config file option. There
are two kinds of properties of an option. First describe it syntactically and are used only to validate
input. Second affect interpretation of the option, for example default value for it or function that
should be called when the value is finally known. Routines which perform parsing never use second
kind of properties – they are side effect free.
See options_description

984 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

enum match_result
Values:

no_match

full_match

approximate_match

Public Functions

option_description()

option_description(const char *name, const value_semantic *s)
Initializes the object with the passed data.

Note: it would be nice to make the second parameter auto_ptr, to explicitly pass owner-
ship. Unfortunately, it’s often needed to create objects of types derived from ‘value_semantic’:
options_description d; d.add_options()(“a”, parameter<int>(“n”)->default_value(1)); Here, the
static type returned by ‘parameter’ should be derived from value_semantic.

Alas, derived->base conversion for auto_ptr does not really work, see http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2000/n1232.pdf http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_
defects.html#84

So, we have to use plain old pointers. Besides, users are not expected to use the constructor
directly.

The ‘name’ parameter is interpreted by the following rules:
• if there’s no “,” character in ‘name’, it specifies long name
• otherwise, the part before “,” specifies long name and the part after – short name.

option_description(const char *name, const value_semantic *s, const char *de-
scription)

Initializes the class with the passed data.

virtual ~option_description()

match_result match(const std::string &option, bool approx, bool long_ignore_case, bool
short_ignore_case) const

Given ‘option’, specified in the input source, returns ‘true’ if ‘option’ specifies *this.

const std::string &key(const std::string &option) const
Returns the key that should identify the option, in particular in the variables_map class. The
‘option’ parameter is the option spelling from the input source. If option name contains ‘*’,
returns ‘option’. If long name was specified, it’s the long name, otherwise it’s a short name with
pre-pended ‘-‘.

std::string canonical_display_name(int canonical_option_style = 0) const
Returns the canonical name for the option description to enable the user to recognized a matching
option. 1) For short options (‘-‘, ‘/’), returns the short name prefixed. 2) For long options (‘’ / ‘-‘)
returns the first long name prefixed 3) All other cases, returns the first long name (if present) or
the short name, un-prefixed.

const std::string &long_name() const

const std::pair<const std::string*, std::size_t> long_names() const

2.9. API reference 985

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2000/n1232.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2000/n1232.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#84
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#84

HPX Documentation, 1.5.1

const std::string &description() const
Explanation of this option.

std::shared_ptr<const value_semantic> semantic() const
Semantic of option’s value.

std::string format_name() const
Returns the option name, formatted suitably for usage message.

std::string format_parameter() const
Returns the parameter name and properties, formatted suitably for usage message.

Private Functions

option_description &set_names(const char *name)

Private Members

std::string m_short_name
a one-character “switch” name - with its prefix, so that this is either empty or has length 2 (e.g.
“-c”

std::vector<std::string> m_long_names
one or more names by which this option may be specified on a command-line or in a config file,
which are not a single-letter switch. The names here are without any prefix.

std::string m_description

std::shared_ptr<const value_semantic> m_value_semantic

class options_description
#include <options_description.hpp> A set of option descriptions. This provides convenient interface
for adding new option (the add_options) method, and facilities to search for options by name.

See here for option adding interface discussion.
See option_description

Public Functions

options_description(unsigned line_length = m_default_line_length, unsigned
min_description_length = m_default_line_length / 2)

Creates the instance.

options_description(const std::string &caption, unsigned line_length =
m_default_line_length, unsigned min_description_length =
m_default_line_length / 2)

Creates the instance. The ‘caption’ parameter gives the name of this ‘options_description’ in-
stance. Primarily useful for output. The ‘description_length’ specifies the number of columns
that should be reserved for the description text; if the option text encroaches into this, then the
description will start on the next line.

void add(std::shared_ptr<option_description> desc)
Adds new variable description. Throws duplicate_variable_error if either short or long name
matches that of already present one.

986 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

options_description &add(const options_description &desc)
Adds a group of option description. This has the same effect as adding all option_descriptions in
‘desc’ individually, except that output operator will show a separate group. Returns *this.

std::size_t get_option_column_width() const
Find the maximum width of the option column, including options in groups.

options_description_easy_init add_options()
Returns an object of implementation-defined type suitable for adding options to op-
tions_description. The returned object will have overloaded operator() with parameter
type matching ‘option_description’ constructors. Calling the operator will create new op-
tion_description instance and add it.

const option_description &find(const std::string &name, bool approx, bool
long_ignore_case = false, bool short_ignore_case =
false) const

const option_description *find_nothrow(const std::string &name, bool approx,
bool long_ignore_case = false, bool
short_ignore_case = false) const

const std::vector<std::shared_ptr<option_description>> &options() const

void print(std::ostream &os, std::size_t width = 0) const
Outputs ‘desc’ to the specified stream, calling ‘f’ to output each option_description element.

Public Static Attributes

const unsigned m_default_line_length

Private Types

using name2index_iterator = std::map<std::string, int>::const_iterator

using approximation_range = std::pair<name2index_iterator, name2index_iterator>

Private Members

std::string m_caption

std::size_t const m_line_length

std::size_t const m_min_description_length

std::vector<std::shared_ptr<option_description>> m_options

std::vector<char> belong_to_group

std::vector<std::shared_ptr<options_description>> groups

2.9. API reference 987

HPX Documentation, 1.5.1

Friends

std::ostream &operator<<(std::ostream &os, const options_description &desc)
Produces a human readable output of ‘desc’, listing options, their descriptions and allowed pa-
rameters. Other options_description instances previously passed to add will be output separately.

class options_description_easy_init
#include <options_description.hpp> Class which provides convenient creation syntax to op-
tion_description.

Public Functions

options_description_easy_init(options_description *owner)

options_description_easy_init &operator()(const char *name, const char *description)

options_description_easy_init &operator()(const char *name, const value_semantic
*s)

options_description_easy_init &operator()(const char *name, const value_semantic *s,
const char *description)

Private Members

options_description *owner

Header hpx/program_options/parsers.hpp

namespace hpx

namespace program_options

Typedefs

using parsed_options = basic_parsed_options<char>

using wparsed_options = basic_parsed_options<wchar_t>

using ext_parser = std::function<std::pair<std::string, std::string>(const std::string&)>
Augments basic_parsed_options<wchar_t> with conversion from ‘parsed_options’

using command_line_parser = basic_command_line_parser<char>

using wcommand_line_parser = basic_command_line_parser<wchar_t>

988 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Enums

enum collect_unrecognized_mode
Controls if the ‘collect_unregistered’ function should include positional options, or not.

Values:

include_positional

exclude_positional

Functions

template<class Char>
basic_parsed_options<Char> parse_command_line(int argc, const Char *const argv[],

const options_description&, int style
= 0, std::function<std::pair<std::string,
std::string>)const std::string&

> ext = ext_parser()Creates instance of ‘command_line_parser’, passes parameters to it, and returns
the result of calling the ‘run’ method.

template<class Char>
basic_parsed_options<Char> parse_config_file(std::basic_istream<Char>&, const

options_description&, bool al-
low_unregistered = false)

Parse a config file.

Read from given stream.

template<class Char = char>
basic_parsed_options<Char> parse_config_file(const char *filename, const

options_description&, bool al-
low_unregistered = false)

Parse a config file.

Read from file with the given name. The character type is passed to the file stream.

template<class Char>
std::vector<std::basic_string<Char>> collect_unrecognized(const

std::vector<basic_option<Char>>
&options, enum col-
lect_unrecognized_mode
mode)

Collects the original tokens for all named options with ‘unregistered’ flag set. If ‘mode’ is ‘in-
clude_positional’ also collects all positional options. Returns the vector of origianl tokens for all
collected options.

parsed_options parse_environment(const options_description&, const
std::function<std::string)std::string

> &name_mapperParse environment.

For each environment variable, the ‘name_mapper’ function is called to obtain the option name. If it
returns empty string, the variable is ignored.

This is done since naming of environment variables is typically different from the naming of command
line options.

2.9. API reference 989

HPX Documentation, 1.5.1

parsed_options parse_environment(const options_description&, const std::string &pre-
fix)

Parse environment.

Takes all environment variables which start with ‘prefix’. The option name is obtained from variable
name by removing the prefix and converting the remaining string into lower case.

parsed_options parse_environment(const options_description&, const char *prefix)
This is an overloaded member function, provided for convenience. It differs from the above function
only in what argument(s) it accepts. This function exists to resolve ambiguity between the two above
functions when second argument is of ‘char*’ type. There’s implicit conversion to both std::function
and string.

std::vector<std::string> split_unix(const std::string &cmdline)
Splits a given string to a collection of single strings which can be passed to command_line_parser.
The second parameter is used to specify a collection of possible separator chars used for splitting. The
separator is defaulted to space ” “. Splitting is done in a unix style way, with respect to quotes ‘”’ and
escape characters ‘'

std::vector<std::wstring> split_unix(const std::wstring &cmdline)
This is an overloaded member function, provided for convenience. It differs from the above function
only in what argument(s) it accepts.

template<class Char>
class basic_command_line_parser : private cmdline

#include <parsers.hpp> Command line parser.

The class allows one to specify all the information needed for parsing and to parse the command line.
It is primarily needed to emulate named function parameters – a regular function with 5 parameters
will be hard to use and creating overloads with a smaller number of parameters will be confusing.

For the most common case, the function parse_command_line is a better alternative.

There are two typedefs – command_line_parser and wcommand_line_parser, for charT == char and
charT == wchar_t cases.

Public Functions

basic_command_line_parser(const std::vector<std::basic_string<Char>> &args)
Creates a command line parser for the specified arguments list. The ‘args’ parameter should not
include program name.

basic_command_line_parser(int argc, const Char *const argv[])
Creates a command line parser for the specified arguments list. The parameters should be the
same as passed to ‘main’.

basic_command_line_parser &options(const options_description &desc)
Sets options descriptions to use.

basic_command_line_parser &positional(const positional_options_description &desc)
Sets positional options description to use.

basic_command_line_parser &style(int)
Sets the command line style.

basic_command_line_parser &extra_parser(ext_parser)
Sets the extra parsers.

990 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

basic_parsed_options<Char> run()
Parses the options and returns the result of parsing. Throws on error.

basic_command_line_parser &allow_unregistered()
Specifies that unregistered options are allowed and should be passed though. For each command
like token that looks like an option but does not contain a recognized name, an instance of ba-
sic_option<charT> will be added to result, with ‘unrecognized’ field set to ‘true’. It’s possible to
collect all unrecognized options with the ‘collect_unrecognized’ function.

basic_command_line_parser &extra_style_parser(style_parser s)

Private Members

const options_description *m_desc

template<class Char>
class basic_parsed_options

#include <parsers.hpp> Results of parsing an input source. The primary use of this class is passing
information from parsers component to value storage component. This class does not makes much
sense itself.

Public Functions

basic_parsed_options(const options_description *xdescription, int options_prefix =
0)

Public Members

std::vector<basic_option<Char>> options
Options found in the source.

const options_description *description
Options description that was used for parsing. Parsers should return pointer to the instance of
option_description passed to them, and issues of lifetime are up to the caller. Can be NULL.

int m_options_prefix
Mainly used for the diagnostic messages in exceptions. The canonical option prefix for the parser
which generated these results, depending on the settings for basic_command_line_parser::style()
or cmdline::style(). In order of precedence of command_line_style enums: allow_long al-
low_long_disguise allow_dash_for_short allow_slash_for_short

template<>
class basic_parsed_options<wchar_t>

#include <parsers.hpp> Specialization of basic_parsed_options which:
• provides convenient conversion from basic_parsed_options<char>
• stores the passed char-based options for later use.

2.9. API reference 991

HPX Documentation, 1.5.1

Public Functions

basic_parsed_options(const basic_parsed_options<char> &po)
Constructs wrapped options from options in UTF8 encoding.

Public Members

std::vector<basic_option<wchar_t>> options

const options_description *description

basic_parsed_options<char> utf8_encoded_options
Stores UTF8 encoded options that were passed to constructor, to avoid reverse conversion in some
cases.

int m_options_prefix
Mainly used for the diagnostic messages in exceptions. The canonical option prefix for the parser
which generated these results, depending on the settings for basic_command_line_parser::style()
or cmdline::style(). In order of precedence of command_line_style enums: allow_long al-
low_long_disguise allow_dash_for_short allow_slash_for_short

Header hpx/program_options/positional_options.hpp

namespace hpx

namespace program_options

class positional_options_description
#include <positional_options.hpp> Describes positional options.

The class allows to guess option names for positional options, which are specified on the command
line and are identified by the position. The class uses the information provided by the user to associate
a name with every positional option, or tell that no name is known.

The primary assumption is that only the relative order of the positional options themselves matters,
and that any interleaving ordinary options don’t affect interpretation of positional options.

The user initializes the class by specifying that first N positional options should be given the name
X1, following M options should be given the name X2 and so on.

Public Functions

positional_options_description()

positional_options_description &add(const char *name, int max_count)
Species that up to ‘max_count’ next positional options should be given the ‘name’. The value of
‘-1’ means ‘unlimited’. No calls to ‘add’ can be made after call with ‘max_value’ equal to ‘-1’.

unsigned max_total_count() const
Returns the maximum number of positional options that can be present. Can return (nu-
meric_limits<unsigned>::max)() to indicate unlimited number.

992 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

const std::string &name_for_position(unsigned position) const
Returns the name that should be associated with positional options at ‘position’. Precondition:
position < max_total_count()

Private Members

std::vector<std::string> m_names

std::string m_trailing

Header hpx/program_options/value_semantic.hpp

namespace hpx

namespace program_options

Functions

template<class T>
typed_value<T> *value()

Creates a typed_value<T> instance. This function is the primary method to create value_semantic
instance for a specific type, which can later be passed to ‘option_description’ constructor. The second
overload is used when it’s additionally desired to store the value of option into program variable.

template<class T>
typed_value<T> *value(T *v)

This is an overloaded member function, provided for convenience. It differs from the above function
only in what argument(s) it accepts.

template<class T>
typed_value<T , wchar_t> *wvalue()

Creates a typed_value<T> instance. This function is the primary method to create value_semantic
instance for a specific type, which can later be passed to ‘option_description’ constructor.

template<class T>
typed_value<T , wchar_t> *wvalue(T *v)

This is an overloaded member function, provided for convenience. It differs from the above function
only in what argument(s) it accepts.

typed_value<bool> *bool_switch()
Works the same way as the ‘value<bool>’ function, but the created value_semantic won’t accept any
explicit value. So, if the option is present on the command line, the value will be ‘true’.

typed_value<bool> *bool_switch(bool *v)
This is an overloaded member function, provided for convenience. It differs from the above function
only in what argument(s) it accepts.

template<class T, class Char = char>
class typed_value : public hpx::program_options::value_semantic_codecvt_helper<Char>, public hpx::program_options::typed_value_base

#include <value_semantic.hpp> Class which handles value of a specific type.

2.9. API reference 993

HPX Documentation, 1.5.1

Public Functions

typed_value(T *store_to)
Ctor. The ‘store_to’ parameter tells where to store the value when it’s known. The parameter can
be NULL.

typed_value *default_value(const T &v)
Specifies default value, which will be used if none is explicitly specified. The type ‘T’ should
provide operator<< for ostream.

typed_value *default_value(const T &v, const std::string &textual)
Specifies default value, which will be used if none is explicitly specified. Unlike the above over-
load, the type ‘T’ need not provide operator<< for ostream, but textual representation of default
value must be provided by the user.

typed_value *implicit_value(const T &v)
Specifies an implicit value, which will be used if the option is given, but without an adjacent
value. Using this implies that an explicit value is optional,

typed_value *value_name(const std::string &name)
Specifies the name used to to the value in help message.

typed_value *implicit_value(const T &v, const std::string &textual)
Specifies an implicit value, which will be used if the option is given, but without an adjacent value.
Using this implies that an explicit value is optional, but if given, must be strictly adjacent to the
option, i.e.: ‘-ovalue’ or ‘option=value’. Giving ‘-o’ or ‘option’ will cause the implicit value to
be applied. Unlike the above overload, the type ‘T’ need not provide operator<< for ostream, but
textual representation of default value must be provided by the user.

typed_value *notifier(std::function<void)const T&
> f Specifies a function to be called when the final value is determined.

typed_value *composing()
Specifies that the value is composing. See the ‘is_composing’ method for explanation.

typed_value *multitoken()
Specifies that the value can span multiple tokens.

typed_value *zero_tokens()
Specifies that no tokens may be provided as the value of this option, which means that only
presence of the option is significant. For such option to be useful, either the ‘validate’ function
should be specialized, or the ‘implicit_value’ method should be also used. In most cases, you can
use the ‘bool_switch’ function instead of using this method.

typed_value *required()
Specifies that the value must occur.

std::string name() const

bool is_composing() const

unsigned min_tokens() const

unsigned max_tokens() const

bool is_required() const

994 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void xparse(hpx::util::any_nonser &value_store, const std::vector<std::basic_string<Char>>
&new_tokens) const

Creates an instance of the ‘validator’ class and calls its operator() to perform the actual conversion.

virtual bool apply_default(hpx::util::any_nonser &value_store) const
If default value was specified via previous call to ‘default_value’, stores that value into
‘value_store’. Returns true if default value was stored.

void notify(const hpx::util::any_nonser &value_store) const
If an address of variable to store value was specified when creating *this, stores the value there.
Otherwise, does nothing.

const std::type_info &value_type() const

Private Members

T *m_store_to

std::string m_value_name

hpx::util::any_nonser m_default_value

std::string m_default_value_as_text

hpx::util::any_nonser m_implicit_value

std::string m_implicit_value_as_text

bool m_composing

bool m_implicit

bool m_multitoken

bool m_zero_tokens

bool m_required

std::function<void(const T&)> m_notifier

class typed_value_base
#include <value_semantic.hpp> Base class for all option that have a fixed type, and are willing to
announce this type to the outside world. Any ‘value_semantics’ for which you want to find out the
type can be dynamic_cast-ed to typed_value_base. If conversion succeeds, the ‘type’ method can be
called.

Subclassed by hpx::program_options::typed_value< T, Char >

Public Functions

virtual const std::type_info &value_type() const = 0

virtual ~typed_value_base()

class untyped_value : public hpx::program_options::value_semantic_codecvt_helper<char>
#include <value_semantic.hpp> Class which specifies a simple handling of a value: the value will
have string type and only one token is allowed.

2.9. API reference 995

HPX Documentation, 1.5.1

Public Functions

untyped_value(bool zero_tokens = false)

std::string name() const
Returns the name of the option. The name is only meaningful for automatic help message.

unsigned min_tokens() const
The minimum number of tokens for this option that should be present on the command line.

unsigned max_tokens() const
The maximum number of tokens for this option that should be present on the command line.

bool is_composing() const
Returns true if values from different sources should be composed. Otherwise, value from the first
source is used and values from other sources are discarded.

bool is_required() const
Returns true if value must be given. Non-optional value

void xparse(hpx::util::any_nonser &value_store, const std::vector<std::string>
&new_tokens) const

If ‘value_store’ is already initialized, or new_tokens has more than one elements, throws. Other-
wise, assigns the first string from ‘new_tokens’ to ‘value_store’, without any modifications.

bool apply_default(hpx::util::any_nonser&) const
Does nothing.

void notify(const hpx::util::any_nonser&) const
Does nothing.

Private Members

bool m_zero_tokens

class value_semantic
#include <value_semantic.hpp> Class which specifies how the option’s value is to be parsed and
converted into C++ types.

Subclassed by hpx::program_options::value_semantic_codecvt_helper< char >,
hpx::program_options::value_semantic_codecvt_helper< wchar_t >

Public Functions

virtual std::string name() const = 0
Returns the name of the option. The name is only meaningful for automatic help message.

virtual unsigned min_tokens() const = 0
The minimum number of tokens for this option that should be present on the command line.

virtual unsigned max_tokens() const = 0
The maximum number of tokens for this option that should be present on the command line.

virtual bool is_composing() const = 0
Returns true if values from different sources should be composed. Otherwise, value from the first
source is used and values from other sources are discarded.

996 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

virtual bool is_required() const = 0
Returns true if value must be given. Non-optional value

virtual void parse(hpx::util::any_nonser &value_store, const std::vector<std::string>
&new_tokens, bool utf8) const = 0

Parses a group of tokens that specify a value of option. Stores the result in ‘value_store’, using
whatever representation is desired. May be be called several times if value of the same option is
specified more than once.

virtual bool apply_default(hpx::util::any_nonser &value_store) const = 0
Called to assign default value to ‘value_store’. Returns true if default value is assigned, and false
if no default value exists.

virtual void notify(const hpx::util::any_nonser &value_store) const = 0
Called when final value of an option is determined.

virtual ~value_semantic()

template<class Char>
class value_semantic_codecvt_helper

#include <value_semantic.hpp> Helper class which perform necessary character conversions in the
‘parse’ method and forwards the data further.

Subclassed by hpx::program_options::typed_value< T, Char >

template<>
class value_semantic_codecvt_helper<char> : public hpx::program_options::value_semantic

#include <value_semantic.hpp> Helper conversion class for values that accept ascii strings as in-
put. Overrides the ‘parse’ method and defines new ‘xparse’ method taking std::string. Depending
on whether input to parse is ascii or UTF8, will pass it to xparse unmodified, or with UTF8->ascii
conversion.

Subclassed by hpx::program_options::untyped_value

Protected Functions

virtual void xparse(hpx::util::any_nonser &value_store, const std::vector<std::string>
&new_tokens) const = 0

Private Functions

void parse(hpx::util::any_nonser &value_store, const std::vector<std::string> &new_tokens,
bool utf8) const

Parses a group of tokens that specify a value of option. Stores the result in ‘value_store’, using
whatever representation is desired. May be be called several times if value of the same option is
specified more than once.

template<>
class value_semantic_codecvt_helper<wchar_t> : public hpx::program_options::value_semantic

#include <value_semantic.hpp> Helper conversion class for values that accept ascii strings as input.
Overrides the ‘parse’ method and defines new ‘xparse’ method taking std::wstring. Depending on
whether input to parse is ascii or UTF8, will recode input to Unicode, or pass it unmodified.

2.9. API reference 997

HPX Documentation, 1.5.1

Protected Functions

virtual void xparse(hpx::util::any_nonser &value_store, const std::vector<std::wstring>
&new_tokens) const = 0

Private Functions

void parse(hpx::util::any_nonser &value_store, const std::vector<std::string> &new_tokens,
bool utf8) const

Parses a group of tokens that specify a value of option. Stores the result in ‘value_store’, using
whatever representation is desired. May be be called several times if value of the same option is
specified more than once.

Header hpx/program_options/variables_map.hpp

namespace hpx

namespace program_options

Functions

void store(const basic_parsed_options<char> &options, variables_map &m, bool utf8 = false)
Stores in ‘m’ all options that are defined in ‘options’. If ‘m’ already has a non-defaulted value of an
option, that value is not changed, even if ‘options’ specify some value.

void store(const basic_parsed_options<wchar_t> &options, variables_map &m)
Stores in ‘m’ all options that are defined in ‘options’. If ‘m’ already has a non-defaulted value of an
option, that value is not changed, even if ‘options’ specify some value. This is wide character variant.

void notify(variables_map &m)
Runs all ‘notify’ function for options in ‘m’.

class abstract_variables_map
#include <variables_map.hpp> Implements string->string mapping with convenient value casting
facilities.

Subclassed by hpx::program_options::variables_map

Public Functions

abstract_variables_map()

abstract_variables_map(const abstract_variables_map *next)

virtual ~abstract_variables_map()

const variable_value &operator[](const std::string &name) const
Obtains the value of variable ‘name’, from *this and possibly from the chain of variable maps.

• if there’s no value in *this.
– if there’s next variable map, returns value from it
– otherwise, returns empty value

998 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• if there’s defaulted value
– if there’s next variable map, which has a non-defaulted value, return that
– otherwise, return value from *this

• if there’s a non-defaulted value, returns it.

void next(abstract_variables_map *next)
Sets next variable map, which will be used to find variables not found in *this.

Private Functions

virtual const variable_value &get(const std::string &name) const = 0
Returns value of variable ‘name’ stored in *this, or empty value otherwise.

Private Members

const abstract_variables_map *m_next

class variable_value
#include <variables_map.hpp> Class holding value of option. Contains details about how the value
is set and allows to conveniently obtain the value.

Public Functions

variable_value()

variable_value(const hpx::util::any_nonser &xv, bool xdefaulted)

template<class T>
const T &as() const

If stored value if of type T, returns that value. Otherwise, throws boost::bad_any_cast exception.

template<class T>
T &as()

This is an overloaded member function, provided for convenience. It differs from the above
function only in what argument(s) it accepts.

bool empty() const
Returns true if no value is stored.

bool defaulted() const
Returns true if the value was not explicitly given, but has default value.

const hpx::util::any_nonser &value() const
Returns the contained value.

hpx::util::any_nonser &value()
Returns the contained value.

2.9. API reference 999

HPX Documentation, 1.5.1

Private Members

hpx::util::any_nonser v

bool m_defaulted

std::shared_ptr<const value_semantic> m_value_semantic

Friends

friend hpx::program_options::variables_map

void store(const basic_parsed_options<char> &options, variables_map &m, bool utf8)
Stores in ‘m’ all options that are defined in ‘options’. If ‘m’ already has a non-defaulted value of
an option, that value is not changed, even if ‘options’ specify some value.

class variables_map : public hpx::program_options::abstract_variables_map, public std::map<std::string, variable_value>
#include <variables_map.hpp> Concrete variables map which store variables in real map.

This class is derived from std::map<std::string, variable_value>, so you can use all map operators to
examine its content.

Public Functions

variables_map()

variables_map(const abstract_variables_map *next)

const variable_value &operator[](const std::string &name) const

void clear()

void notify()

Private Functions

const variable_value &get(const std::string &name) const
Implementation of abstract_variables_map::get which does ‘find’ in *this.

Private Members

std::set<std::string> m_final
Names of option with ‘final’ values – which should not be changed by subsequence assignments.

std::map<std::string, std::string> m_required
Names of required options, filled by parser which has access to options_description. The map val-
ues are the “canonical” names for each corresponding option. This is useful in creating diagnostic
messages when the option is absent.

1000 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Friends

void store(const basic_parsed_options<char> &options, variables_map &xm, bool utf8)
Stores in ‘m’ all options that are defined in ‘options’. If ‘m’ already has a non-defaulted value of
an option, that value is not changed, even if ‘options’ specify some value.

Header hpx/program_options/version.hpp

Defines

HPX_PROGRAM_OPTIONS_VERSION
The version of the source interface. The value will be incremented whenever a change is made which might
cause compilation errors for existing code.

HPX_PROGRAM_OPTIONS_IMPLICIT_VALUE_NEXT_TOKEN

resiliency

The contents of this module can be included with the header hpx/modules/resiliency.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/resiliency.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/resiliency/async_replay.hpp

namespace hpx

namespace resiliency

namespace experimental

Functions

template<typename Pred, typename F, typename ...Ts>
hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> tag_invoke(async_replay_validate_t,

std::size_t
n,
Pred
&&pred,
F
&&f,
Ts&&...
ts)

template<typename F, typename ...Ts>

2.9. API reference 1001

HPX Documentation, 1.5.1

hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> tag_invoke(async_replay_t,
std::size_t
n,
F
&&f,
Ts&&...
ts)

Header hpx/resiliency/async_replay_executor.hpp

namespace hpx

namespace resiliency

namespace experimental

Functions

template<typename Executor, typename Pred, typename F, typename ...Ts>
decltype(auto) tag_invoke(async_replay_validate_t, Executor &&exec, std::size_t n, Pred

&&pred, F &&f, Ts&&... ts)

template<typename Executor, typename F, typename ...Ts>
decltype(auto) tag_invoke(async_replay_t, Executor &&exec, std::size_t n, F &&f, Ts&&...

ts)

Header hpx/resiliency/async_replicate.hpp

namespace hpx

namespace resiliency

namespace experimental

Functions

template<typename Vote, typename Pred, typename F, typename ...Ts>
hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> tag_invoke(async_replicate_vote_validate_t,

std::size_t
n,
Vote
&&vote,
Pred
&&pred,
F
&&f,
Ts&&...
ts)

1002 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename Vote, typename F, typename ...Ts>
hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> tag_invoke(async_replicate_vote_t,

std::size_t
n,
Vote
&&vote,
F
&&f,
Ts&&...
ts)

template<typename Pred, typename F, typename ...Ts>
hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> tag_invoke(async_replicate_validate_t,

std::size_t
n,
Pred
&&pred,
F
&&f,
Ts&&...
ts)

template<typename F, typename ...Ts>
hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> tag_invoke(async_replicate_t,

std::size_t
n,
F
&&f,
Ts&&...
ts)

Header hpx/resiliency/async_replicate_executor.hpp

namespace hpx

namespace resiliency

namespace experimental

Functions

template<typename Executor, typename Vote, typename Pred, typename F, typename ...Ts>
decltype(auto) tag_invoke(async_replicate_vote_validate_t, Executor &&exec, std::size_t n,

Vote &&vote, Pred &&pred, F &&f, Ts&&... ts)

template<typename Executor, typename Vote, typename F, typename ...Ts>
decltype(auto) tag_invoke(async_replicate_vote_t, Executor &&exec, std::size_t n, Vote

&&vote, F &&f, Ts&&... ts)

template<typename Executor, typename Pred, typename F, typename ...Ts>
decltype(auto) tag_invoke(async_replicate_validate_t, Executor &&exec, std::size_t n, Pred

&&pred, F &&f, Ts&&... ts)

2.9. API reference 1003

HPX Documentation, 1.5.1

template<typename Executor, typename F, typename ...Ts>
decltype(auto) tag_invoke(async_replicate_t, Executor &&exec, std::size_t n, F &&f,

Ts&&... ts)

Header hpx/resiliency/config.hpp

Header hpx/resiliency/replay_executor.hpp

namespace hpx

namespace resiliency

namespace experimental

Functions

template<typename BaseExecutor, typename Validate>
replay_executor<BaseExecutor, typename std::decay<Validate>::type> make_replay_executor(BaseExecutor

&exec,
std::size_t
n,
Val-
i-
date
&&val-
i-
date)

template<typename BaseExecutor>
replay_executor<BaseExecutor, detail::replay_validator> make_replay_executor(BaseExecutor

&exec,
std::size_t
n)

template<typename BaseExecutor, typename Validate>
class replay_executor

#include <replay_executor.hpp>

Public Types

template<>
using execution_category = typename BaseExecutor::execution_category

template<>
using executor_parameters_type = typename BaseExecutor::executor_parameters_type

template<>
using future_type = typename hpx::parallel::execution::executor_future<BaseExecutor, Result>::type

1004 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<typename F>
replay_executor(BaseExecutor &exec, std::size_t n, F &&f)

bool operator==(replay_executor const &rhs) const

bool operator!=(replay_executor const &rhs) const

replay_executor const &context() const

template<typename F, typename ...Ts>
decltype(auto) async_execute(F &&f, Ts&&... ts) const

template<typename F, typename S, typename ...Ts>
decltype(auto) bulk_async_execute(F &&f, S const &shape, Ts&&... ts) const

Public Static Attributes

constexpr int num_spread = 4

constexpr int num_tasks = 128

Private Members

BaseExecutor &exec_

std::size_t replay_count_

Validate validator_

Header hpx/resiliency/replicate_executor.hpp

namespace hpx

namespace resiliency

namespace experimental

Functions

template<typename BaseExecutor, typename Voter, typename Validate>

2.9. API reference 1005

HPX Documentation, 1.5.1

replicate_executor<BaseExecutor, typename std::decay<Voter>::type, typename std::decay<Validate>::type> make_replicate_executor(BaseExecutor
&exec,
std::size_t
n,
Voter
&&voter,
Val-
i-
date
&&val-
i-
date)

template<typename BaseExecutor, typename Validate>
replicate_executor<BaseExecutor, detail::replicate_voter, typename std::decay<Validate>::type> make_replicate_executor(BaseExecutor

&exec,
std::size_t
n,
Val-
i-
date
&&val-
i-
date)

template<typename BaseExecutor>
replicate_executor<BaseExecutor, detail::replicate_voter, detail::replicate_validator> make_replicate_executor(BaseExecutor

&exec,
std::size_t
n)

template<typename BaseExecutor, typename Vote, typename Validate>
class replicate_executor

#include <replicate_executor.hpp>

Public Types

template<>
using execution_category = typename BaseExecutor::execution_category

template<>
using executor_parameters_type = typename BaseExecutor::executor_parameters_type

template<>
using future_type = typename hpx::parallel::execution::executor_future<BaseExecutor, Result>::type

1006 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

template<typename V, typename F>
replicate_executor(BaseExecutor &exec, std::size_t n, V &&v, F &&f)

bool operator==(replicate_executor const &rhs) const

bool operator!=(replicate_executor const &rhs) const

replicate_executor const &context() const

template<typename F, typename ...Ts>
decltype(auto) async_execute(F &&f, Ts&&... ts) const

template<typename F, typename S, typename ...Ts>
decltype(auto) bulk_async_execute(F &&f, S const &shape, Ts&&... ts) const

Public Static Attributes

constexpr int num_spread = 4

constexpr int num_tasks = 128

Private Members

BaseExecutor &exec_

std::size_t replicate_count_

Vote voter_

Validate validator_

Header hpx/resiliency/resiliency.hpp

Header hpx/resiliency/resiliency_cpos.hpp

namespace hpx

namespace resiliency

namespace experimental

2.9. API reference 1007

HPX Documentation, 1.5.1

Variables

hpx::resiliency::experimental::async_replay_validate_t async_replay_validate

hpx::resiliency::experimental::async_replay_t async_replay

hpx::resiliency::experimental::dataflow_replay_validate_t dataflow_replay_validate

hpx::resiliency::experimental::dataflow_replay_t dataflow_replay

hpx::resiliency::experimental::async_replicate_vote_validate_t async_replicate_vote_validate

hpx::resiliency::experimental::async_replicate_vote_t async_replicate_vote

hpx::resiliency::experimental::async_replicate_validate_t async_replicate_validate

hpx::resiliency::experimental::async_replicate_t async_replicate

hpx::resiliency::experimental::dataflow_replicate_vote_validate_t dataflow_replicate_vote_validate

hpx::resiliency::experimental::dataflow_replicate_vote_t dataflow_replicate_vote

hpx::resiliency::experimental::dataflow_replicate_validate_t dataflow_replicate_validate

hpx::resiliency::experimental::dataflow_replicate_t dataflow_replicate

struct async_replay_t : public hpx::functional::tag<async_replay_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching given func-
tion f repeatedly. Repeat launching on error exactly n times (except if abort_replay_exception is
thrown).

struct async_replay_validate_t : public hpx::functional::tag<async_replay_validate_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f. repeatedly. Verify the result of those invocations using the given predicate pred.
Repeat launching on error exactly n times (except if abort_replay_exception is thrown).

struct async_replicate_t : public hpx::functional::tag<async_replicate_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f exactly n times concurrently. Verify the result of those invocations by checking for
exception. Return the first valid result.

struct async_replicate_validate_t : public hpx::functional::tag<async_replicate_validate_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f exactly n times concurrently. Verify the result of those invocations using the given
predicate pred. Return the first valid result.

struct async_replicate_vote_t : public hpx::functional::tag<async_replicate_vote_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f exactly n times concurrently. Verify the result of those invocations using the given
predicate pred. Run all the valid results against a user provided voting function. Return the valid
output.

struct async_replicate_vote_validate_t : public hpx::functional::tag<async_replicate_vote_validate_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f exactly n times concurrently. Verify the result of those invocations using the given
predicate pred. Run all the valid results against a user provided voting function. Return the valid
output.

struct dataflow_replay_t : public hpx::resiliency::experimental::tag_deferred<dataflow_replay_t, async_replay_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f. repeatedly. Repeat launching on error exactly n times.

1008 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Delay the invocation of f if any of the arguments to f are futures.

struct dataflow_replay_validate_t : public hpx::resiliency::experimental::tag_deferred<dataflow_replay_validate_t, async_replay_validate_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f. repeatedly. Verify the result of those invocations using the given predicate pred.
Repeat launching on error exactly n times.

Delay the invocation of f if any of the arguments to f are futures.

struct dataflow_replicate_t : public hpx::resiliency::experimental::tag_deferred<dataflow_replicate_t, async_replicate_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f exactly n times concurrently. Return the first valid result.

Delay the invocation of f if any of the arguments to f are futures.

struct dataflow_replicate_validate_t : public hpx::resiliency::experimental::tag_deferred<dataflow_replicate_validate_t, async_replicate_validate_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f exactly n times concurrently. Verify the result of those invocations using the given
predicate pred. Return the first valid result.

Delay the invocation of f if any of the arguments to f are futures.

struct dataflow_replicate_vote_t : public hpx::resiliency::experimental::tag_deferred<dataflow_replicate_vote_t, async_replicate_vote_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f exactly n times concurrently. Run all the valid results against a user provided vot-
ing function. Return the valid output.

Delay the invocation of f if any of the arguments to f are futures.

struct dataflow_replicate_vote_validate_t : public hpx::resiliency::experimental::tag_deferred<dataflow_replicate_vote_validate_t, async_replicate_vote_validate_t>
#include <resiliency_cpos.hpp> Customization point for asynchronously launching the given
function f exactly n times concurrently. Run all the valid results against a user provided vot-
ing function. Return the valid output.

Delay the invocation of f if any of the arguments to f are futures.

template<typename Tag, typename BaseTag>
struct tag_deferred : public hpx::functional::tag<Tag>

#include <resiliency_cpos.hpp>

Friends

template<typename ...Args>
auto tag_invoke(Tag, Args&&... args)

Header hpx/resiliency/version.hpp

Defines

HPX_RESILIENCY_VERSION_FULL

HPX_RESILIENCY_VERSION_MAJOR

HPX_RESILIENCY_VERSION_MINOR

HPX_RESILIENCY_VERSION_SUBMINOR

HPX_RESILIENCY_VERSION_DATE

2.9. API reference 1009

HPX Documentation, 1.5.1

namespace hpx

namespace resiliency

namespace experimental

Functions

unsigned int major_version()

unsigned int minor_version()

unsigned int subminor_version()

unsigned long full_version()

std::string full_version_str()

resource_partitioner

The contents of this module can be included with the header hpx/modules/resource_partitioner.hpp.
These headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You
are using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/resource_partitioner.hpp, not the particular header in which
the functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX
API.

Header hpx/resource_partitioner/partitioner.hpp

namespace hpx

namespace resource

class core
#include <partitioner.hpp>

Public Functions

core(std::size_t id = invalid_core_id, numa_domain *domain = nullptr)

std::vector<pu> const &pus() const

std::size_t id() const

1010 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

std::vector<core> cores_sharing_numa_domain()

Private Members

std::size_t id_

numa_domain *domain_

std::vector<pu> pus_

Private Static Attributes

constexpr const std::size_t invalid_core_id = std::size_t(-1)

Friends

friend hpx::resource::pu

friend hpx::resource::numa_domain

class numa_domain
#include <partitioner.hpp>

Public Functions

numa_domain(std::size_t id = invalid_numa_domain_id)

std::vector<core> const &cores() const

std::size_t id() const

Private Members

std::size_t id_

std::vector<core> cores_

Private Static Attributes

constexpr const std::size_t invalid_numa_domain_id = std::size_t(-1)

2.9. API reference 1011

HPX Documentation, 1.5.1

Friends

friend hpx::resource::pu

friend hpx::resource::core

class partitioner
#include <partitioner.hpp>

Public Functions

void create_thread_pool(std::string const &name, scheduling_policy
sched = scheduling_policy::unspecified,
hpx::threads::policies::scheduler_mode =
hpx::threads::policies::scheduler_mode::default_mode)

void create_thread_pool(std::string const &name, scheduler_function sched-
uler_creation)

void set_default_pool_name(std::string const &name)

const std::string &get_default_pool_name() const

void add_resource(hpx::resource::pu const &p, std::string const &pool_name,
std::size_t num_threads = 1)

void add_resource(hpx::resource::pu const &p, std::string const &pool_name, bool ex-
clusive, std::size_t num_threads = 1)

void add_resource(std::vector<hpx::resource::pu> const &pv, std::string const
&pool_name, bool exclusive = true)

void add_resource(hpx::resource::core const &c, std::string const &pool_name, bool
exclusive = true)

void add_resource(std::vector<hpx::resource::core> &cv, std::string const &pool_name,
bool exclusive = true)

void add_resource(hpx::resource::numa_domain const &nd, std::string const
&pool_name, bool exclusive = true)

void add_resource(std::vector<hpx::resource::numa_domain> const &ndv, std::string
const &pool_name, bool exclusive = true)

std::vector<numa_domain> const &numa_domains() const

std::size_t get_number_requested_threads()

hpx::threads::topology const &get_topology() const

util::command_line_handling &get_command_line_switches()

void configure_pools()

int parse_result() const

1012 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

partitioner(util::function_nonser<int)hpx::program_options::variables_map &vm
> const &f, hpx::program_options::options_description const &desc_cmdline, int argc, char
**argv, std::vector<std::string> ini_config, resource::partitioner_mode rpmode, runtime_mode
mode, bool check, std::vector<std::shared_ptr<components::component_registry_base>> &com-
ponent_registries, int *result

Private Members

detail::partitioner &partitioner_

class pu
#include <partitioner.hpp>

Public Functions

pu(std::size_t id = invalid_pu_id, core *core = nullptr, std::size_t thread_occupancy = 0)

std::size_t id() const

Private Functions

std::vector<pu> pus_sharing_core()

std::vector<pu> pus_sharing_numa_domain()

Private Members

std::size_t id_

core *core_

std::size_t thread_occupancy_

std::size_t thread_occupancy_count_

Private Static Attributes

constexpr const std::size_t invalid_pu_id = std::size_t(-1)

Friends

friend hpx::resource::core

friend hpx::resource::numa_domain

2.9. API reference 1013

HPX Documentation, 1.5.1

Header hpx/resource_partitioner/partitioner_fwd.hpp

namespace hpx

namespace resource

Typedefs

using scheduler_function = util::function_nonser<std::unique_ptr<hpx::threads::thread_pool_base>(hpx::threads::thread_pool_init_parameters,
hpx::threads::policies::thread_queue_init_parameters)>

Enums

enum partitioner_mode
This enumeration describes the modes available when creating a resource partitioner.

Values:

mode_default = 0
Default mode.

mode_allow_oversubscription = 1
Allow processing units to be oversubscribed, i.e. multiple worker threads to share a single pro-
cessing unit.

mode_allow_dynamic_pools = 2
Allow worker threads to be added and removed from thread pools.

enum scheduling_policy
This enumeration lists the available scheduling policies (or schedulers) when creating thread pools.

Values:

user_defined = -2

unspecified = -1

local = 0

local_priority_fifo = 1

local_priority_lifo = 2

static_ = 3

static_priority = 4

abp_priority_fifo = 5

abp_priority_lifo = 6

shared_priority = 7

1014 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

detail::partitioner &get_partitioner()
May be used anywhere in code and returns a reference to the single, global resource partitioner.

bool is_partitioner_valid()
Returns true if the resource partitioner has been initialized. Returns false otherwise.

runtime_configuration

The contents of this module can be included with the header hpx/modules/runtime_configuration.hpp.
These headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You
are using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest
only including the module header hpx/modules/runtime_configuration.hpp, not the particular header in
which the functionality you would like to use is defined. See Public API for a list of names that are part of the public
HPX API.

Header hpx/runtime_configuration/agas_service_mode.hpp

namespace hpx

namespace agas

Enums

enum service_mode
Values:

service_mode_invalid = -1

service_mode_bootstrap = 0

service_mode_hosted = 1

Header hpx/runtime_configuration/component_registry_base.hpp

Defines

HPX_REGISTER_COMPONENT_REGISTRY(RegistryType, componentname)
This macro is used to register the given component factory with Hpx.Plugin. This macro has to be used for each
of the components.

HPX_REGISTER_COMPONENT_REGISTRY_DYNAMIC(RegistryType, componentname)

HPX_REGISTER_REGISTRY_MODULE()
This macro is used to define the required Hpx.Plugin entry points. This macro has to be used in exactly one
compilation unit of a component module.

HPX_REGISTER_REGISTRY_MODULE_DYNAMIC()

namespace hpx

2.9. API reference 1015

HPX Documentation, 1.5.1

namespace components

struct component_registry_base
#include <component_registry_base.hpp> The component_registry_base has to be used as a base
class for all component registries.

Public Functions

virtual ~component_registry_base()

virtual bool get_component_info(std::vector<std::string> &fillini, std::string const
&filepath, bool is_static = false) = 0

Return the ini-information for all contained components.

Return Returns true if the parameter fillini has been successfully initialized with the registry data
of all implemented in this module.

Parameters
• fillini: [in, out] The module is expected to fill this vector with the ini-information (one

line per vector element) for all components implemented in this module.

virtual void register_component_type() = 0
Return the unique identifier of the component type this factory is responsible for.

Return Returns the unique identifier of the component type this factory instance is responsible
for. This function throws on any error.

Parameters
• locality: [in] The id of the locality this factory is responsible for.
• agas_client: [in] The AGAS client to use for component id registration (if needed).

Header hpx/runtime_configuration/ini.hpp

Defines

HPX_SECTION_VERSION

namespace hpx

namespace util

class section
#include <ini.hpp> Subclassed by hpx::util::runtime_configuration

1016 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef util::function_nonser<void(std::string const&, std::string const&)>
entry_changed_func

typedef std::pair<std::string, entry_changed_func> entry_type

typedef std::map<std::string, entry_type> entry_map

typedef std::map<std::string, section> section_map

Public Functions

section()

section(std::string const &filename, section *root = nullptr)

section(section const &in)

~section()

section &operator=(section const &rhs)

void parse(std::string const &sourcename, std::vector<std::string> const &lines, bool ver-
ify_existing = true, bool weed_out_comments = true, bool replace_existing = true)

void parse(std::string const &sourcename, std::string const &line, bool verify_existing =
true, bool weed_out_comments = true, bool replace_existing = true)

void read(std::string const &filename)

void merge(std::string const &second)

void merge(section &second)

void dump(int ind = 0, std::ostream &strm = std::cout) const

void add_section(std::string const &sec_name, section &sec, section *root = nullptr)

section *add_section_if_new(std::string const &sec_name)

bool has_section(std::string const &sec_name) const

section *get_section(std::string const &sec_name)

section const *get_section(std::string const &sec_name) const

section_map &get_sections()

section_map const &get_sections() const

void add_entry(std::string const &key, entry_type const &val)

void add_entry(std::string const &key, std::string const &val)

bool has_entry(std::string const &key) const

std::string get_entry(std::string const &key) const

std::string get_entry(std::string const &key, std::string const &dflt) const

2.9. API reference 1017

HPX Documentation, 1.5.1

template<typename T>
std::string get_entry(std::string const &key, T dflt) const

void add_notification_callback(std::string const &key, entry_changed_func
const &callback)

entry_map const &get_entries() const

std::string expand(std::string const &str) const

void expand(std::string &str, std::string::size_type len) const

void set_root(section *r, bool recursive = false)

section *get_root() const

std::string get_name() const

std::string get_parent_name() const

std::string get_full_name() const

void set_name(std::string const &name)

Protected Functions

void line_msg(std::string msg, std::string const &file, int lnum = 0, std::string const &line
= "")

section &clone_from(section const &rhs, section *root = nullptr)

Private Types

using mutex_type = util::spinlock

Private Functions

section *this_()

template<typename Archive>
void save(Archive &ar, const unsigned int version) const

template<typename Archive>
void load(Archive &ar, const unsigned int version)

void add_section(std::unique_lock<mutex_type> &l, std::string const&sec_name, section
&sec, section *root = nullptr)

bool has_section(std::unique_lock<mutex_type> &l, std::string const &sec_name)
const

section *get_section(std::unique_lock<mutex_type> &l, std::string const &sec_name)

section const *get_section(std::unique_lock<mutex_type> &l, std::string const
&sec_name) const

section *add_section_if_new(std::unique_lock<mutex_type> &l, std::string const
&sec_name)

1018 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void add_entry(std::unique_lock<mutex_type> &l, std::string const &fullkey, std::string
const &key, std::string val)

void add_entry(std::unique_lock<mutex_type> &l, std::string const &fullkey, std::string
const &key, entry_type const &val)

bool has_entry(std::unique_lock<mutex_type> &l, std::string const &key) const

std::string get_entry(std::unique_lock<mutex_type> &l, std::string const &key) const

std::string get_entry(std::unique_lock<mutex_type> &l, std::string const &key, std::string
const &dflt) const

void add_notification_callback(std::unique_lock<mutex_type> &l, std::string
const &key, entry_changed_func const &call-
back)

std::string expand(std::unique_lock<mutex_type> &l, std::string in) const

void expand(std::unique_lock<mutex_type> &l, std::string&, std::string::size_type) const

void expand_bracket(std::unique_lock<mutex_type> &l, std::string&,
std::string::size_type) const

void expand_brace(std::unique_lock<mutex_type> &l, std::string&, std::string::size_type)
const

std::string expand_only(std::unique_lock<mutex_type> &l, std::string in, std::string const
&expand_this) const

void expand_only(std::unique_lock<mutex_type> &l, std::string&, std::string::size_type,
std::string const &expand_this) const

void expand_bracket_only(std::unique_lock<mutex_type> &l, std::string&,
std::string::size_type, std::string const &expand_this)
const

void expand_brace_only(std::unique_lock<mutex_type> &l, std::string&,
std::string::size_type, std::string const &expand_this)
const

Private Members

section *root_

entry_map entries_

section_map sections_

std::string name_

std::string parent_name_

mutex_type mtx_

2.9. API reference 1019

HPX Documentation, 1.5.1

Friends

friend hpx::util::hpx::serialization::access

Header hpx/runtime_configuration/init_ini_data.hpp

namespace hpx

namespace util

Functions

bool handle_ini_file(section &ini, std::string const &loc)

bool handle_ini_file_env(section &ini, char const *env_var, char const *file_suffix =
nullptr)

bool init_ini_data_base(section &ini, std::string &hpx_ini_file)

std::vector<std::shared_ptr<components::component_registry_base>> load_component_factory_static(util::section
&ini,
std::string
name,
hpx::util::plugin::get_plugins_list_type
get_factory,
er-
ror_code
&ec
=
throws)

void merge_component_inis(section &ini)

std::vector<std::shared_ptr<plugins::plugin_registry_base>> init_ini_data_default(std::string
const
&libs,
sec-
tion
&ini,
std::map<std::string,
filesys-
tem::path>
&base-
names,
std::map<std::string,
hpx::util::plugin::dll>
&mod-
ules,
std::vector<std::shared_ptr<components::component_registry_base>>
&com-
po-
nent_registries)

1020 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/runtime_configuration/plugin_registry_base.hpp

Defines

HPX_REGISTER_PLUGIN_BASE_REGISTRY(PluginType, name)
This macro is used to register the given component factory with Hpx.Plugin. This macro has to be used for each
of the components.

HPX_REGISTER_PLUGIN_REGISTRY_MODULE()
This macro is used to define the required Hpx.Plugin entry points. This macro has to be used in exactly one
compilation unit of a component module.

HPX_REGISTER_PLUGIN_REGISTRY_MODULE_DYNAMIC()

namespace hpx

namespace plugins

struct plugin_registry_base
#include <plugin_registry_base.hpp> The plugin_registry_base has to be used as a base class for all
plugin registries.

Public Functions

virtual ~plugin_registry_base()

virtual bool get_plugin_info(std::vector<std::string> &fillini) = 0
Return the configuration information for any plugin implemented by this module

Return Returns true if the parameter fillini has been successfully initialized with the registry data
of all implemented in this module.

Parameters
• fillini: [in, out] The module is expected to fill this vector with the ini-information (one

line per vector element) for all plugins implemented in this module.

virtual void init(int*, char***, util::runtime_configuration&)

Header hpx/runtime_configuration/runtime_configuration.hpp

namespace hpx

namespace util

class runtime_configuration : public hpx::util::section
#include <runtime_configuration.hpp>

2.9. API reference 1021

HPX Documentation, 1.5.1

Public Functions

runtime_configuration(char const *argv0, runtime_mode mode)

void reconfigure(std::string const &ini_file)

void reconfigure(std::vector<std::string> const &ini_defs)

std::vector<std::shared_ptr<plugins::plugin_registry_base>> load_modules(std::vector<std::shared_ptr<components::component_registry_base>>
&compo-
nent_registries)

void load_components_static(std::vector<components::static_factory_load_data_type>
const &static_modules)

agas::service_mode get_agas_service_mode() const

std::uint32_t get_num_localities() const

void set_num_localities(std::uint32_t)

bool enable_networking() const

std::uint32_t get_first_used_core() const

void set_first_used_core(std::uint32_t)

std::size_t get_ipc_data_buffer_cache_size() const

std::size_t get_agas_local_cache_size(std::size_t dflt =
HPX_AGAS_LOCAL_CACHE_SIZE)
const

bool get_agas_caching_mode() const

bool get_agas_range_caching_mode() const

std::size_t get_agas_max_pending_refcnt_requests() const

bool load_application_configuration(char const *filename, error_code &ec =
throws)

bool get_itt_notify_mode() const

bool enable_lock_detection() const

bool enable_global_lock_detection() const

bool enable_minimal_deadlock_detection() const

bool enable_spinlock_deadlock_detection() const

std::size_t get_spinlock_deadlock_detection_limit() const

std::size_t trace_depth() const

std::size_t get_os_thread_count() const

std::string get_cmd_line() const

std::ptrdiff_t get_default_stack_size() const

1022 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

std::ptrdiff_t get_stack_size(threads::thread_stacksize stacksize) const

std::size_t get_thread_pool_size(char const *poolname) const

std::string get_endian_out() const

std::uint64_t get_max_inbound_message_size() const

std::uint64_t get_max_outbound_message_size() const

std::map<std::string, hpx::util::plugin::dll> &modules()

Public Members

runtime_mode mode_

Private Functions

std::ptrdiff_t init_stack_size(char const *entryname, char const *defaultvaluestr,
std::ptrdiff_t defaultvalue) const

std::ptrdiff_t init_small_stack_size() const

std::ptrdiff_t init_medium_stack_size() const

std::ptrdiff_t init_large_stack_size() const

std::ptrdiff_t init_huge_stack_size() const

void pre_initialize_ini()

void post_initialize_ini(std::string &hpx_ini_file, std::vector<std::string> const
&cmdline_ini_defs)

void pre_initialize_logging_ini()

void reconfigure()

void load_component_paths(std::vector<std::shared_ptr<plugins::plugin_registry_base>>
&plugin_registries, std::vector<std::shared_ptr<components::component_registry_base>>
&component_registries, std::string const &com-
ponent_base_paths, std::string const &compo-
nent_path_suffixes, std::set<std::string> &compo-
nent_paths, std::map<std::string, filesystem::path> &base-
names)

void load_component_path(std::vector<std::shared_ptr<plugins::plugin_registry_base>>
&plugin_registries, std::vector<std::shared_ptr<components::component_registry_base>>
&component_registries, std::string const
&path, std::set<std::string> &component_paths,
std::map<std::string, filesystem::path> &basenames)

2.9. API reference 1023

HPX Documentation, 1.5.1

Private Members

std::string hpx_ini_file

std::vector<std::string> cmdline_ini_defs

std::uint32_t num_localities

std::ptrdiff_t small_stacksize

std::ptrdiff_t medium_stacksize

std::ptrdiff_t large_stacksize

std::ptrdiff_t huge_stacksize

bool need_to_call_pre_initialize

std::map<std::string, hpx::util::plugin::dll> modules_

Header hpx/runtime_configuration/runtime_configuration_fwd.hpp

Header hpx/runtime_configuration/runtime_mode.hpp

namespace hpx

Enums

enum runtime_mode
A HPX runtime can be executed in two different modes: console mode and worker mode.

Values:

invalid = -1

console = 0
The runtime is the console locality.

worker = 1
The runtime is a worker locality.

connect = 2
The runtime is a worker locality connecting late

local = 3
The runtime is fully local.

default_ = 4
The runtime mode will be determined based on the command line arguments

last

1024 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

char const *get_runtime_mode_name(runtime_mode state)
Get the readable string representing the name of the given runtime_mode constant.

runtime_mode get_runtime_mode_from_name(std::string const &mode)
Returns the internal representation (runtime_mode constant) from the readable string representing the
name.

This represents the internal representation from the readable string representing the name.

Parameters

• mode: this represents the runtime mode

Header hpx/runtime_configuration/static_factory_data.hpp

Defines

HPX_DECLARE_FACTORY_STATIC(name, base)

HPX_DEFINE_FACTORY_STATIC(module, name, base)

HPX_INIT_REGISTRY_MODULE_STATIC(name, base)

HPX_INIT_REGISTRY_FACTORY_STATIC(name, componentname, base)

HPX_INIT_REGISTRY_COMMANDLINE_STATIC(name, base)

HPX_INIT_REGISTRY_STARTUP_SHUTDOWN_STATIC(name, base)

namespace hpx

namespace components

Functions

void init_registry_module(static_factory_load_data_type const&)

void init_registry_factory(static_factory_load_data_type const&)

void init_registry_commandline(static_factory_load_data_type const&)

void init_registry_startup_shutdown(static_factory_load_data_type const&)

struct static_factory_load_data_type
#include <static_factory_data.hpp>

2.9. API reference 1025

HPX Documentation, 1.5.1

Public Members

char const *name

hpx::util::plugin::get_plugins_list_type get_factory

runtime_local

The contents of this module can be included with the header hpx/modules/runtime_local.hpp. These head-
ers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/runtime_local.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/runtime_local/config_entry.hpp

namespace hpx

Functions

std::string get_config_entry(std::string const &key, std::string const &dflt)
Retrieve the string value of a configuration entry given by key.

std::string get_config_entry(std::string const &key, std::size_t dflt)
Retrieve the integer value of a configuration entry given by key.

void set_config_entry(std::string const &key, std::string const &value)
Set the string value of a configuration entry given by key.

void set_config_entry(std::string const &key, std::size_t value)
Set the integer value of a configuration entry given by key.

void set_config_entry_callback(std::string const&key, util::function_nonser<void)std::string
const&, std::string const&

> const &callbackSet the string value of a configuration entry given by key.

Header hpx/runtime_local/custom_exception_info.hpp

namespace hpx

Functions

std::string diagnostic_information(exception_info const &xi)
Extract the diagnostic information embedded in the given exception and return a string holding a formatted
message.

The function hpx::diagnostic_information can be used to extract all diagnostic information stored in the
given exception instance as a formatted string. This simplifies debug output as it composes the diagnostics
into one, easy to use function call. This includes the name of the source file and line number, the sequence
number of the OS-thread and the HPX-thread id, the locality id and the stack backtrace of the point where
the original exception was thrown.

1026 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return The formatted string holding all of the available diagnostic information stored in the given excep-
tion instance.

See hpx::get_error_locality_id(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error(), hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(),
hpx::get_error_config(), hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for all diagnostic information elements which have been
stored at the point where the exception was thrown. This parameter can be one of the following
types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if any of the required allocation operations fail)

std::uint32_t get_error_locality_id(hpx::exception_info const &xi)
Return the locality id where the exception was thrown.

The function hpx::get_error_locality_id can be used to extract the diagnostic information element repre-
senting the locality id as stored in the given exception instance.

Return The locality id of the locality where the exception was thrown. If the exception instance does not
hold this information, the function will return hpx::naming::invalid_locality_id.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error(), hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(),
hpx::get_error_config(), hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• nothing:

std::string get_error_host_name(hpx::exception_info const &xi)
Return the hostname of the locality where the exception was thrown.

The function hpx::get_error_host_name can be used to extract the diagnostic information element repre-
senting the host name as stored in the given exception instance.

Return The hostname of the locality where the exception was thrown. If the exception instance does not
hold this information, the function will return and empty string.

See hpx::diagnostic_information() hpx::get_error_process_id(), hpx::get_error_function_name(),
hpx::get_error_file_name(), hpx::get_error_line_number(), hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error()
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

2.9. API reference 1027

HPX Documentation, 1.5.1

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if one of the required allocations fails)

std::int64_t get_error_process_id(hpx::exception_info const &xi)
Return the (operating system) process id of the locality where the exception was thrown.

The function hpx::get_error_process_id can be used to extract the diagnostic information element repre-
senting the process id as stored in the given exception instance.

Return The process id of the OS-process which threw the exception If the exception instance does not
hold this information, the function will return 0.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_function_name(),
hpx::get_error_file_name(), hpx::get_error_line_number(), hpx::get_error_os_thread(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• nothing:

std::string get_error_env(hpx::exception_info const &xi)
Return the environment of the OS-process at the point the exception was thrown.

The function hpx::get_error_env can be used to extract the diagnostic information element representing
the environment of the OS-process collected at the point the exception was thrown.

Return The environment from the point the exception was thrown. If the exception instance does not hold
this information, the function will return an empty string.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error(), hpx::get_error_backtrace(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if one of the required allocations fails)

1028 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

std::string get_error_backtrace(hpx::exception_info const &xi)
Return the stack backtrace from the point the exception was thrown.

The function hpx::get_error_backtrace can be used to extract the diagnostic information element repre-
senting the stack backtrace collected at the point the exception was thrown.

Return The stack back trace from the point the exception was thrown. If the exception instance does not
hold this information, the function will return an empty string.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_thread_description(),
hpx::get_error(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if one of the required allocations fails)

std::size_t get_error_os_thread(hpx::exception_info const &xi)
Return the sequence number of the OS-thread used to execute HPX-threads from which the exception was
thrown.

The function hpx::get_error_os_thread can be used to extract the diagnostic information element repre-
senting the sequence number of the OS-thread as stored in the given exception instance.

Return The sequence number of the OS-thread used to execute the HPX-thread from which the exception
was thrown. If the exception instance does not hold this information, the function will return std::size(-
1).

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_thread_id(), hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• nothing:

std::size_t get_error_thread_id(hpx::exception_info const &xi)
Return the unique thread id of the HPX-thread from which the exception was thrown.

The function hpx::get_error_thread_id can be used to extract the diagnostic information element repre-
senting the HPX-thread id as stored in the given exception instance.

Return The unique thread id of the HPX-thread from which the exception was thrown. If the exception
instance does not hold this information, the function will return std::size_t(0).

2.9. API reference 1029

HPX Documentation, 1.5.1

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread() hpx::get_error_thread_description(), hpx::get_error(),
hpx::get_error_backtrace(), hpx::get_error_env(), hpx::get_error_what(), hpx::get_error_config(),
hpx::get_error_state()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• nothing:

std::string get_error_thread_description(hpx::exception_info const &xi)
Return any additionally available thread description of the HPX-thread from which the exception was
thrown.

The function hpx::get_error_thread_description can be used to extract the diagnostic information element
representing the additional thread description as stored in the given exception instance.

Return Any additionally available thread description of the HPX-thread from which the exception was
thrown. If the exception instance does not hold this information, the function will return an empty
string.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_backtrace(),
hpx::get_error_env(), hpx::get_error(), hpx::get_error_state(), hpx::get_error_what(),
hpx::get_error_config()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if one of the required allocations fails)

std::string get_error_config(hpx::exception_info const &xi)
Return the HPX configuration information point from which the exception was thrown.

The function hpx::get_error_config can be used to extract the HPX configuration information element
representing the full HPX configuration information as stored in the given exception instance.

Return Any additionally available HPX configuration information the point from which the exception
was thrown. If the exception instance does not hold this information, the function will return an
empty string.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_backtrace(),
hpx::get_error_env(), hpx::get_error(), hpx::get_error_state() hpx::get_error_what(),
hpx::get_error_thread_description()

Parameters

1030 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if one of the required allocations fails)

std::string get_error_state(hpx::exception_info const &xi)
Return the HPX runtime state information at which the exception was thrown.

The function hpx::get_error_state can be used to extract the HPX runtime state information element rep-
resenting the state the runtime system is currently in as stored in the given exception instance.

Return The point runtime state at the point at which the exception was thrown. If the exception instance
does not hold this information, the function will return an empty string.

See hpx::diagnostic_information(), hpx::get_error_host_name(), hpx::get_error_process_id(),
hpx::get_error_function_name(), hpx::get_error_file_name(), hpx::get_error_line_number(),
hpx::get_error_os_thread(), hpx::get_error_thread_id(), hpx::get_error_backtrace(),
hpx::get_error_env(), hpx::get_error(), hpx::get_error_what(), hpx::get_error_thread_description()

Parameters

• xi: The parameter e will be inspected for the requested diagnostic information elements which
have been stored at the point where the exception was thrown. This parameter can be one of the
following types: hpx::exception_info, hpx::error_code, std::exception, or std::exception_ptr.

Exceptions

• std::bad_alloc: (if one of the required allocations fails)

Header hpx/runtime_local/debugging.hpp

namespace hpx

namespace util

Functions

void may_attach_debugger(std::string const &category)
Attaches a debugger if category is equal to the configuration entry hpx.attach-debugger.

Header hpx/runtime_local/get_locality_id.hpp

namespace hpx

2.9. API reference 1031

HPX Documentation, 1.5.1

Functions

std::uint32_t get_locality_id(error_code &ec = throws)
Return the number of the locality this function is being called from.

This function returns the id of the current locality.

Note The returned value is zero based and its maximum value is smaller than the overall number of
localities the current application is running on (as returned by get_num_localities()).

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Note This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

Header hpx/runtime_local/get_num_localities.hpp

namespace hpx

Functions

std::uint32_t get_initial_num_localities()
Return the number of localities which were registered at startup for the running application.

The function get_initial_num_localities returns the number of localities which were connected to the con-
sole at application startup.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

See hpx::find_all_localities, hpx::get_num_localities

lcos::future<std::uint32_t> get_num_localities()
Asynchronously return the number of localities which are currently registered for the running application.

The function get_num_localities asynchronously returns the number of localities currently connected to
the console. The returned future represents the actual result.

Note This function will return meaningful results only if called from an HPX-thread. It will return 0
otherwise.

See hpx::find_all_localities, hpx::get_num_localities

std::uint32_t get_num_localities(launch::sync_policy, error_code &ec = throws)
Return the number of localities which are currently registered for the running application.

The function get_num_localities returns the number of localities currently connected to the console.

Note This function will return meaningful results only if called from an HPX-thread. It will return 0
otherwise.

1032 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the result
code using the parameter ec. Otherwise it throws an instance of hpx::exception.

See hpx::find_all_localities, hpx::get_num_localities

Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

lcos::future<std::uint32_t> get_num_localities(components::component_type t)
Asynchronously return the number of localities which are currently registered for the running application.

The function get_num_localities asynchronously returns the number of localities currently connected to
the console which support the creation of the given component type. The returned future represents the
actual result.

Note This function will return meaningful results only if called from an HPX-thread. It will return 0
otherwise.

See hpx::find_all_localities, hpx::get_num_localities

Parameters

• t: The component type for which the number of connected localities should be retrieved.

std::uint32_t get_num_localities(launch::sync_policy, components::component_type t, er-
ror_code &ec = throws)

Synchronously return the number of localities which are currently registered for the running application.

The function get_num_localities returns the number of localities currently connected to the console which
support the creation of the given component type. The returned future represents the actual result.

Note This function will return meaningful results only if called from an HPX-thread. It will return 0
otherwise.

See hpx::find_all_localities, hpx::get_num_localities

Parameters

• t: The component type for which the number of connected localities should be retrieved.

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

Header hpx/runtime_local/get_os_thread_count.hpp

namespace hpx

2.9. API reference 1033

HPX Documentation, 1.5.1

Functions

std::size_t get_os_thread_count()
Return the number of OS-threads running in the runtime instance the current HPX-thread is associated
with.

std::size_t get_os_thread_count(threads::executor const &exec)
Return the number of worker OS- threads used by the given executor to execute HPX threads.

This function returns the number of cores used to execute HPX threads for the given executor. If the
function is called while no HPX runtime system is active, it will return zero. If the executor is not valid,
this function will fall back to retrieving the number of OS threads used by HPX.

Parameters

• exec: [in] The executor to be used.

Header hpx/runtime_local/get_thread_name.hpp

namespace hpx

Functions

std::string get_thread_name()
Return the name of the calling thread.

This function returns the name of the calling thread. This name uniquely identifies the thread in the context
of HPX. If the function is called while no HPX runtime system is active, the result will be “<unknown>”.

Header hpx/runtime_local/get_worker_thread_num.hpp

Header hpx/runtime_local/interval_timer.hpp

namespace hpx

namespace util

class interval_timer
#include <interval_timer.hpp>

Public Functions

HPX_NON_COPYABLE(interval_timer)

interval_timer()

interval_timer(util::function_nonser<bool)
> const &f std::int64_t microsecs, std::string const &description = "", bool pre_shutdown =
false

1034 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

interval_timer(util::function_nonser<bool)
> const &f util::function_nonser<void> const &on_termstd::int64_t microsecs, std::string
const &description = "", bool pre_shutdown = false

interval_timer(util::function_nonser<bool)
> const &f util::steady_duration const &rel_time, char const *description = "", bool
pre_shutdown = false

interval_timer(util::function_nonser<bool)
> const &f util::function_nonser<void> const &on_termutil::steady_duration const
&rel_time, char const *description = "", bool pre_shutdown = false

~interval_timer()

bool start(bool evaluate = true)

bool stop(bool terminate = false)

bool restart(bool evaluate = true)

bool is_started() const

bool is_terminated() const

std::int64_t get_interval() const

void change_interval(std::int64_t new_interval)

void change_interval(util::steady_duration const &new_interval)

Private Members

std::shared_ptr<detail::interval_timer> timer_

Header hpx/runtime_local/os_thread_type.hpp

namespace hpx

namespace runtime_local

Enums

enum os_thread_type
Types of kernel threads registered with the runtime.

Values:

unknown = -1

main_thread = 0
kernel thread represents main thread

worker_thread
kernel thread is used to schedule HPX threads

2.9. API reference 1035

HPX Documentation, 1.5.1

io_thread
kernel thread can be used for IO operations

timer_thread
kernel is used by timer operations

parcel_thread
kernel is used by networking operations

custom_thread
kernel is registered by the application

Functions

std::string get_os_thread_type_name(os_thread_type type)
Return a human-readable name representing one of the kernel thread types.

struct os_thread_data
#include <os_thread_type.hpp> Registration data for kernel threads that is maintained by the runtime
internally

Public Members

std::string label_
name used for thread registration

std::thread::id id_
thread id of corresponding kernel thread

std::uint64_t native_handle_
the threads native handle

os_thread_type type_
HPX thread type.

Header hpx/runtime_local/pool_executor.hpp

Header hpx/runtime_local/report_error.hpp

namespace hpx

Functions

void report_error(std::size_t num_thread, std::exception_ptr const &e)
The function report_error reports the given exception to the console.

void report_error(std::exception_ptr const &e)
The function report_error reports the given exception to the console.

1036 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/runtime_local/run_as_hpx_thread.hpp

namespace hpx

namespace threads

Functions

template<typename F, typename ...Ts>
util::invoke_result<F, Ts...>::type run_as_hpx_thread(F const &f, Ts&&... vs)

Header hpx/runtime_local/run_as_os_thread.hpp

namespace hpx

namespace threads

Functions

template<typename F, typename ...Ts>
hpx::future<typename util::invoke_result<F, Ts...>::type> run_as_os_thread(F &&f,

Ts&&... vs)

Header hpx/runtime_local/runtime_handlers.hpp

Header hpx/runtime_local/runtime_local.hpp

namespace hpx

class runtime
#include <runtime_local.hpp>

Public Types

using notification_policy_type = threads::policies::callback_notifier
Generate a new notification policy instance for the given thread name prefix

using hpx_main_function_type = int()
The hpx_main_function_type is the default function type usable as the main HPX thread function.

using hpx_errorsink_function_type = void(std::uint32_t, std::string const&)

2.9. API reference 1037

HPX Documentation, 1.5.1

Public Functions

virtual notification_policy_type get_notification_policy(char const *prefix, run-
time_local::os_thread_type
type)

state get_state() const

void set_state(state s)

runtime(util::runtime_configuration &rtcfg, bool initialize = true)
Construct a new HPX runtime instance.

virtual ~runtime()
The destructor makes sure all HPX runtime services are properly shut down before exiting.

void on_exit(util::function_nonser<void)
> const &f Manage list of functions to call on exit.

void starting()
Manage runtime ‘stopped’ state.

void stopping()
Call all registered on_exit functions.

bool stopped() const
This accessor returns whether the runtime instance has been stopped.

util::runtime_configuration &get_config()
access configuration information

util::runtime_configuration const &get_config() const

std::size_t get_instance_number() const

util::thread_mapper &get_thread_mapper()
Return a reference to the internal PAPI thread manager.

threads::topology const &get_topology() const

virtual int run(util::function_nonser<hpx_main_function_type> const &func)
Run the HPX runtime system, use the given function for the main thread and block waiting for all
threads to finish.

Note The parameter func is optional. If no function is supplied, the runtime system will simply wait
for the shutdown action without explicitly executing any main thread.

Return This function will return the value as returned as the result of the invocation of the function
object given by the parameter func.

Parameters
• func: [in] This is the main function of an HPX application. It will be scheduled for execution

by the thread manager as soon as the runtime has been initialized. This function is expected to
expose an interface as defined by the typedef hpx_main_function_type. This parameter is op-
tional and defaults to none main thread function, in which case all threads have to be scheduled
explicitly.

virtual int run()
Run the HPX runtime system, initially use the given number of (OS) threads in the thread-manager
and block waiting for all threads to finish.

1038 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Return This function will always return 0 (zero).

virtual void rethrow_exception()
Rethrow any stored exception (to be called after stop())

virtual int start(util::function_nonser<hpx_main_function_type> const &func, bool block-
ing = false)

Start the runtime system.

Return If a blocking is a true, this function will return the value as returned as the result of the
invocation of the function object given by the parameter func. Otherwise it will return zero.

Parameters
• func: [in] This is the main function of an HPX application. It will be scheduled for execution

by the thread manager as soon as the runtime has been initialized. This function is expected to
expose an interface as defined by the typedef hpx_main_function_type.

• blocking: [in] This allows to control whether this call blocks until the runtime system has
been stopped. If this parameter is true the function runtime::start will call runtime::wait inter-
nally.

virtual int start(bool blocking = false)
Start the runtime system.

Return If a blocking is a true, this function will return the value as returned as the result of the
invocation of the function object given by the parameter func. Otherwise it will return zero.

Parameters
• blocking: [in] This allows to control whether this call blocks until the runtime system has

been stopped. If this parameter is true the function runtime::start will call runtime::wait inter-
nally .

virtual int wait()
Wait for the shutdown action to be executed.

Return This function will return the value as returned as the result of the invocation of the function
object given by the parameter func.

virtual void stop(bool blocking = true)
Initiate termination of the runtime system.

Parameters
• blocking: [in] This allows to control whether this call blocks until the runtime system has

been fully stopped. If this parameter is false then this call will initiate the stop action but will
return immediately. Use a second call to stop with this parameter set to true to wait for all
internal work to be completed.

virtual int suspend()
Suspend the runtime system.

virtual int resume()
Resume the runtime system.

virtual int finalize(double)

virtual bool is_networking_enabled()
Return true if networking is enabled.

virtual hpx::threads::threadmanager &get_thread_manager()
Allow access to the thread manager instance used by the HPX runtime.

2.9. API reference 1039

HPX Documentation, 1.5.1

virtual std::string here() const
Returns a string of the locality endpoints (usable in debug output)

virtual bool report_error(std::size_t num_thread, std::exception_ptr const &e, bool ter-
minate_all = true)

Report a non-recoverable error to the runtime system.

Parameters
• num_thread: [in] The number of the operating system thread the error has been detected in.
• e: [in] This is an instance encapsulating an exception which lead to this function call.

virtual bool report_error(std::exception_ptr const &e, bool terminate_all = true)
Report a non-recoverable error to the runtime system.

Note This function will retrieve the number of the current shepherd thread and forward to the re-
port_error function above.

Parameters
• e: [in] This is an instance encapsulating an exception which lead to this function call.

virtual void add_pre_startup_function(startup_function_type f)
Add a function to be executed inside a HPX thread before hpx_main but guaranteed to be executed
before any startup function registered with add_startup_function.

Note The difference to a startup function is that all pre-startup functions will be (system-wide) exe-
cuted before any startup function.

Parameters
• f: The function ‘f’ will be called from inside a HPX thread before hpx_main is executed. This

is very useful to setup the runtime environment of the application (install performance counters,
etc.)

virtual void add_startup_function(startup_function_type f)
Add a function to be executed inside a HPX thread before hpx_main

Parameters
• f: The function ‘f’ will be called from inside a HPX thread before hpx_main is executed. This

is very useful to setup the runtime environment of the application (install performance counters,
etc.)

virtual void add_pre_shutdown_function(shutdown_function_type f)
Add a function to be executed inside a HPX thread during hpx::finalize, but guaranteed before any of
the shutdown functions is executed.

Note The difference to a shutdown function is that all pre-shutdown functions will be (system-wide)
executed before any shutdown function.

Parameters
• f: The function ‘f’ will be called from inside a HPX thread while hpx::finalize is executed. This

is very useful to tear down the runtime environment of the application (uninstall performance
counters, etc.)

virtual void add_shutdown_function(shutdown_function_type f)
Add a function to be executed inside a HPX thread during hpx::finalize

Parameters
• f: The function ‘f’ will be called from inside a HPX thread while hpx::finalize is executed. This

is very useful to tear down the runtime environment of the application (uninstall performance
counters, etc.)

virtual hpx::util::io_service_pool *get_thread_pool(char const *name)
Access one of the internal thread pools (io_service instances) HPX is using to perform specific tasks.

1040 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

The three possible values for the argument name are “main_pool”, “io_pool”, “parcel_pool”, and
“timer_pool”. For any other argument value the function will return zero.

virtual bool register_thread(char const *name, std::size_t num = 0, bool service_thread
= true, error_code &ec = throws)

Register an external OS-thread with HPX.

This function should be called from any OS-thread which is external to HPX (not created by HPX),
but which needs to access HPX functionality, such as setting a value on a promise or similar.

‘main’, ‘io’, ‘timer’, ‘parcel’, ‘worker’
Note The function will compose a thread name of the form ‘<name>-thread#<num>’ which is used

to register the thread. It is the user’s responsibility to ensure that each (composed) thread name is
unique. HPX internally uses the following names for the threads it creates, do not reuse those:

Parameters
• name: [in] The name to use for thread registration.
• num: [in] The sequence number to use for thread registration. The default for this parameter is

zero.
• service_thread: [in] The thread should be registered as a service thread. The default for

this parameter is ‘true’. Any service threads will be pinned to cores not currently used by any
of the HPX worker threads.

Note This function should be called for each thread exactly once. It will fail if it is called more than
once.

Return This function will return whether the requested operation succeeded or not.

virtual bool unregister_thread()
Unregister an external OS-thread with HPX.

This function will unregister any external OS-thread from HPX.

Note This function should be called for each thread exactly once. It will fail if it is called more than
once. It will fail as well if the thread has not been registered before (see register_thread).

Return This function will return whether the requested operation succeeded or not.

virtual runtime_local::os_thread_data get_os_thread_data(std::string const &label)
const

Access data for a given OS thread that was previously registered by register_thread.

virtual bool enumerate_os_threads(util::function_nonser<bool)runtime_local::os_thread_data
const&

> const &f constEnumerate all OS threads that have registered with the runtime.

notification_policy_type::on_startstop_type on_start_func() const

notification_policy_type::on_startstop_type on_stop_func() const

notification_policy_type::on_error_type on_error_func() const

notification_policy_type::on_startstop_type on_start_func(notification_policy_type::on_startstop_type&&)

notification_policy_type::on_startstop_type on_stop_func(notification_policy_type::on_startstop_type&&)

notification_policy_type::on_error_type on_error_func(notification_policy_type::on_error_type&&)

virtual std::uint32_t get_locality_id(error_code &ec) const

virtual std::size_t get_num_worker_threads() const

virtual std::uint32_t get_num_localities(hpx::launch::sync_policy, error_code &ec)
const

2.9. API reference 1041

HPX Documentation, 1.5.1

virtual std::uint32_t get_initial_num_localities() const

virtual lcos::future<std::uint32_t> get_num_localities() const

Public Static Functions

static std::uint64_t get_system_uptime()
Return the system uptime measure on the thread executing this call.

Protected Types

using on_exit_type = std::vector<util::function_nonser<void()>>

Protected Functions

runtime(util::runtime_configuration &rtcfg, notification_policy_type &¬ifier, notifica-
tion_policy_type &&main_pool_notifier, bool initialize)

void init()
Common initialization for different constructors.

void init_tss()

void deinit_tss()

threads::thread_result_type run_helper(util::function_nonser<runtime::hpx_main_function_type>
const &func, int &result, bool call_startup_functions)

void wait_helper(std::mutex &mtx, std::condition_variable &cond, bool &running)

Protected Attributes

on_exit_type on_exit_functions_

std::mutex mtx_

util::runtime_configuration ini_

long instance_number_

std::unique_ptr<util::thread_mapper> thread_support_

threads::topology &topology_

std::atomic<state> state_

notification_policy_type::on_startstop_type on_start_func_

notification_policy_type::on_startstop_type on_stop_func_

notification_policy_type::on_error_type on_error_func_

int result_

std::exception_ptr exception_

notification_policy_type main_pool_notifier_

util::io_service_pool main_pool_

1042 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

notification_policy_type notifier_

std::unique_ptr<hpx::threads::threadmanager> thread_manager_

Protected Static Attributes

std::atomic<int> instance_number_counter_

Private Functions

void stop_helper(bool blocking, std::condition_variable &cond, std::mutex &mtx)
Helper function to stop the runtime.

Parameters
• blocking: [in] This allows to control whether this call blocks until the runtime system has

been fully stopped. If this parameter is false then this call will initiate the stop action but will
return immediately. Use a second call to stop with this parameter set to true to wait for all
internal work to be completed.

void deinit_tss_helper(char const *context, std::size_t num)

void init_tss_ex(char const *context, runtime_local::os_thread_type type, std::size_t lo-
cal_thread_num, std::size_t global_thread_num, char const *pool_name,
char const *postfix, bool service_thread, error_code &ec)

void init_tss_helper(char const *context, runtime_local::os_thread_type type, std::size_t
local_thread_num, std::size_t global_thread_num, char const
*pool_name, char const *postfix, bool service_thread)

void notify_finalize()

void wait_finalize()

runtime *This()

void call_startup_functions(bool pre_startup)

Private Members

std::list<startup_function_type> pre_startup_functions_

std::list<startup_function_type> startup_functions_

std::list<shutdown_function_type> pre_shutdown_functions_

std::list<shutdown_function_type> shutdown_functions_

bool stop_called_

bool stop_done_

std::condition_variable wait_condition_

namespace threads

2.9. API reference 1043

HPX Documentation, 1.5.1

Functions

char const *get_stack_size_name(std::ptrdiff_t size)
Returns the stack size name.

Get the readable string representing the given stack size constant.

Parameters
• size: this represents the stack size

namespace util

Functions

bool retrieve_commandline_arguments(hpx::program_options::options_description
const &app_options,
hpx::program_options::variables_map &vm)

bool retrieve_commandline_arguments(std::string const &appname,
hpx::program_options::variables_map &vm)

Header hpx/runtime_local/runtime_local_fwd.hpp

namespace hpx

Functions

bool register_thread(runtime *rt, char const *name, error_code &ec = throws)
Register the current kernel thread with HPX, this should be done once for each external OS-thread intended
to invoke HPX functionality. Calling this function more than once will return false.

void unregister_thread(runtime *rt)
Unregister the thread from HPX, this should be done once in the end before the external thread exists.

runtime_local::os_thread_data get_os_thread_data(std::string const &label)
Access data for a given OS thread that was previously registered by register_thread. This function must
be called from a thread that was previously registered with the runtime.

bool enumerate_os_threads(util::function_nonser<bool)os_thread_data const&
> const &f Enumerate all OS threads that have registered with the runtime.

std::size_t get_runtime_instance_number()
Return the runtime instance number associated with the runtime instance the current thread is running in.

bool register_on_exit(util::function_nonser<void)
> const&Register a function to be called during system shutdown.

bool is_starting()
Test whether the runtime system is currently being started.

This function returns whether the runtime system is currently being started or not, e.g. whether the current
state of the runtime system is hpx::state_startup

Note This function needs to be executed on a HPX-thread. It will return false otherwise.

1044 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool tolerate_node_faults()
Test if HPX runs in fault-tolerant mode.

This function returns whether the runtime system is running in fault-tolerant mode

bool is_running()
Test whether the runtime system is currently running.

This function returns whether the runtime system is currently running or not, e.g. whether the current state
of the runtime system is hpx::state_running

Note This function needs to be executed on a HPX-thread. It will return false otherwise.

bool is_stopped()
Test whether the runtime system is currently stopped.

This function returns whether the runtime system is currently stopped or not, e.g. whether the current state
of the runtime system is hpx::state_stopped

Note This function needs to be executed on a HPX-thread. It will return false otherwise.

bool is_stopped_or_shutting_down()
Test whether the runtime system is currently being shut down.

This function returns whether the runtime system is currently being shut down or not, e.g. whether the
current state of the runtime system is hpx::state_stopped or hpx::state_shutdown

Note This function needs to be executed on a HPX-thread. It will return false otherwise.

std::size_t get_num_worker_threads()
Return the number of worker OS- threads used to execute HPX threads.

This function returns the number of OS-threads used to execute HPX threads. If the function is called
while no HPX runtime system is active, it will return zero.

std::uint64_t get_system_uptime()
Return the system uptime measure on the thread executing this call.

This function returns the system uptime measured in nanoseconds for the thread executing this call. If the
function is called while no HPX runtime system is active, it will return zero.

Header hpx/runtime_local/service_executors.hpp

namespace hpx

namespace parallel

namespace execution

2.9. API reference 1045

HPX Documentation, 1.5.1

Enums

enum service_executor_type
Values:

io_thread_pool
Selects creating a service executor using the I/O pool of threads

parcel_thread_pool
Selects creating a service executor using the parcel pool of threads

timer_thread_pool
Selects creating a service executor using the timer pool of threads

main_thread
Selects creating a service executor using the main thread

struct io_pool_executor : public service_executor
#include <service_executors.hpp>

Public Functions

io_pool_executor()

struct main_pool_executor : public service_executor
#include <service_executors.hpp>

Public Functions

main_pool_executor()

struct parcel_pool_executor : public service_executor
#include <service_executors.hpp>

Public Functions

parcel_pool_executor(char const *name_suffix = "-tcp")

struct service_executor : public service_executor
#include <service_executors.hpp>

Public Functions

service_executor(service_executor_type t, char const *name_suffix = "")

struct timer_pool_executor : public service_executor
#include <service_executors.hpp>

1046 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

timer_pool_executor()

Header hpx/runtime_local/shutdown_function.hpp

namespace hpx

Typedefs

typedef util::unique_function_nonser<void()> shutdown_function_type
The type of a function which is registered to be executed as a shutdown or pre-shutdown function.

Functions

void register_pre_shutdown_function(shutdown_function_type f)
Add a function to be executed by a HPX thread during hpx::finalize() but guaranteed before any shutdown
function is executed (system-wide)

Any of the functions registered with register_pre_shutdown_function are guaranteed to be executed by an
HPX thread during the execution of hpx::finalize() before any of the registered shutdown functions are
executed (see: hpx::register_shutdown_function()).

Note If this function is called while the pre-shutdown functions are being executed, or after that point, it
will raise a invalid_status exception.

See hpx::register_shutdown_function()

Parameters

• f: [in] The function to be registered to run by an HPX thread as a pre-shutdown function.

void register_shutdown_function(shutdown_function_type f)
Add a function to be executed by a HPX thread during hpx::finalize() but guaranteed after any pre-
shutdown function is executed (system-wide)

Any of the functions registered with register_shutdown_function are guaranteed to be executed by an
HPX thread during the execution of hpx::finalize() after any of the registered pre-shutdown functions are
executed (see: hpx::register_pre_shutdown_function()).

Note If this function is called while the shutdown functions are being executed, or after that point, it will
raise a invalid_status exception.

See hpx::register_pre_shutdown_function()

Parameters

• f: [in] The function to be registered to run by an HPX thread as a shutdown function.

2.9. API reference 1047

HPX Documentation, 1.5.1

Header hpx/runtime_local/startup_function.hpp

namespace hpx

Typedefs

typedef util::unique_function_nonser<void()> startup_function_type
The type of a function which is registered to be executed as a startup or pre-startup function.

Functions

void register_pre_startup_function(startup_function_type f)
Add a function to be executed by a HPX thread before hpx_main but guaranteed before any startup function
is executed (system-wide).

Any of the functions registered with register_pre_startup_function are guaranteed to be exe-
cuted by an HPX thread before any of the registered startup functions are executed (see
hpx::register_startup_function()).

This function is one of the few API functions which can be called before the runtime system has been
fully initialized. It will automatically stage the provided startup function to the runtime system during its
initialization (if necessary).

Note If this function is called while the pre-startup functions are being executed or after that point, it will
raise a invalid_status exception.

Parameters

• f: [in] The function to be registered to run by an HPX thread as a pre-startup function.

See hpx::register_startup_function()

void register_startup_function(startup_function_type f)
Add a function to be executed by a HPX thread before hpx_main but guaranteed after any pre-startup
function is executed (system-wide).

Any of the functions registered with register_startup_function are guaranteed to be exe-
cuted by an HPX thread after any of the registered pre-startup functions are executed (see:
hpx::register_pre_startup_function()), but before hpx_main is being called.

This function is one of the few API functions which can be called before the runtime system has been
fully initialized. It will automatically stage the provided startup function to the runtime system during its
initialization (if necessary).

Note If this function is called while the startup functions are being executed or after that point, it will raise
a invalid_status exception.

Parameters

• f: [in] The function to be registered to run by an HPX thread as a startup function.

See hpx::register_pre_startup_function()

1048 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/runtime_local/state.hpp

namespace hpx

namespace threads

Functions

bool threadmanager_is(state st)

bool threadmanager_is_at_least(state st)

Header hpx/runtime_local/thread_hooks.hpp

namespace hpx

Functions

threads::policies::callback_notifier::on_startstop_type get_thread_on_start_func()
Retrieve the currently installed start handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered start function chains into the previous one (see
register_thread_on_start_func).

Return The currently installed error handler function.

Note This function can be called before the HPX runtime is initialized.

threads::policies::callback_notifier::on_startstop_type get_thread_on_stop_func()
Retrieve the currently installed stop handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered stop function chains into the previous one (see
register_thread_on_stop_func).

Return The currently installed error handler function.

Note This function can be called before the HPX runtime is initialized.

threads::policies::callback_notifier::on_error_type get_thread_on_error_func()
Retrieve the currently installed error handler function. This is a function that will be called by HPX for
each newly created thread that is made known to the runtime. HPX stores exactly one such function
reference, thus the caller needs to make sure any newly registered error function chains into the previous
one (see register_thread_on_error_func).

Return The currently installed error handler function.

Note This function can be called before the HPX runtime is initialized.

2.9. API reference 1049

HPX Documentation, 1.5.1

threads::policies::callback_notifier::on_startstop_type register_thread_on_start_func(threads::policies::callback_notifier::on_startstop_type
&&f)

Set the currently installed start handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered start function chains into the previous one (see
get_thread_on_start_func).

Return The previously registered function of this category. It is the user’s responsibility to call that
function if the callback is invoked by HPX.

Note This function can be called before the HPX runtime is initialized.

Parameters

• f: The function to install as the new start handler.

threads::policies::callback_notifier::on_startstop_type register_thread_on_stop_func(threads::policies::callback_notifier::on_startstop_type
&&f)

Set the currently installed stop handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered stop function chains into the previous one (see
get_thread_on_stop_func).

Return The previously registered function of this category. It is the user’s responsibility to call that
function if the callback is invoked by HPX.

Note This function can be called before the HPX runtime is initialized.

Parameters

• f: The function to install as the new stop handler.

threads::policies::callback_notifier::on_error_type register_thread_on_error_func(threads::policies::callback_notifier::on_error_type
&&f)

Set the currently installed error handler function. This is a function that will be called by HPX for each
newly created thread that is made known to the runtime. HPX stores exactly one such function reference,
thus the caller needs to make sure any newly registered error function chains into the previous one (see
get_thread_on_error_func).

Return The previously registered function of this category. It is the user’s responsibility to call that
function if the callback is invoked by HPX.

Note This function can be called before the HPX runtime is initialized.

Parameters

• f: The function to install as the new error handler.

Header hpx/runtime_local/thread_mapper.hpp

namespace hpx

namespace util

class thread_mapper
#include <thread_mapper.hpp>

1050 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

using callback_type = detail::thread_mapper_callback_type

Public Functions

HPX_NON_COPYABLE(thread_mapper)

thread_mapper()

~thread_mapper()

std::uint32_t register_thread(char const *label, runtime_local::os_thread_type type)

bool unregister_thread()

std::uint32_t get_thread_index(std::string const &label) const

std::uint32_t get_thread_count() const

bool register_callback(std::uint32_t tix, callback_type const&)

bool revoke_callback(std::uint32_t tix)

std::thread::id get_thread_id(std::uint32_t tix) const

std::uint64_t get_thread_native_handle(std::uint32_t tix) const

std::string const &get_thread_label(std::uint32_t tix) const

runtime_local::os_thread_type get_thread_type(std::uint32_t tix) const

bool enumerate_os_threads(util::function_nonser<bool)os_thread_data const&
> const &f const

os_thread_data get_os_thread_data(std::string const &label) const

Public Static Attributes

constexpr std::uint32_t invalid_index = std::uint32_t(-1)

constexpr std::uint64_t invalid_tid = std::uint64_t(-1)

Private Types

using mutex_type = hpx::lcos::local::spinlock

using thread_map_type = std::vector<detail::os_thread_data>

using label_map_type = std::map<std::string, std::size_t>

2.9. API reference 1051

HPX Documentation, 1.5.1

Private Members

mutex_type mtx_

thread_map_type thread_map_

label_map_type label_map_

Header hpx/runtime_local/thread_pool_helpers.hpp

namespace hpx

namespace resource

Functions

std::size_t get_num_thread_pools()
Return the number of thread pools currently managed by the resource_partitioner

std::size_t get_num_threads()
Return the number of threads in all thread pools currently managed by the resource_partitioner

std::size_t get_num_threads(std::string const &pool_name)
Return the number of threads in the given thread pool currently managed by the resource_partitioner

std::size_t get_num_threads(std::size_t pool_index)
Return the number of threads in the given thread pool currently managed by the resource_partitioner

std::size_t get_pool_index(std::string const &pool_name)
Return the internal index of the pool given its name.

std::string const &get_pool_name(std::size_t pool_index)
Return the name of the pool given its internal index.

threads::thread_pool_base &get_thread_pool(std::string const &pool_name)
Return the name of the pool given its name.

threads::thread_pool_base &get_thread_pool(std::size_t pool_index)
Return the thread pool given its internal index.

bool pool_exists(std::string const &pool_name)
Return true if the pool with the given name exists.

bool pool_exists(std::size_t pool_index)
Return true if the pool with the given index exists.

namespace threads

1052 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

std::int64_t get_thread_count(thread_state_enum state = unknown)
The function get_thread_count returns the number of currently known threads.

Note If state == unknown this function will not only return the number of currently existing threads,
but will add the number of registered task descriptions (which have not been converted into
threads yet).

Parameters
• state: [in] This specifies the thread-state for which the number of threads should be retrieved.

std::int64_t get_thread_count(thread_priority priority, thread_state_enum state = unknown)
The function get_thread_count returns the number of currently known threads.

Note If state == unknown this function will not only return the number of currently existing threads,
but will add the number of registered task descriptions (which have not been converted into
threads yet).

Parameters
• priority: [in] This specifies the thread-priority for which the number of threads should be

retrieved.
• state: [in] This specifies the thread-state for which the number of threads should be retrieved.

std::int64_t get_idle_core_count()
The function get_idle_core_count returns the number of currently idling threads (cores).

mask_type get_idle_core_mask()
The function get_idle_core_mask returns a bit-mask representing the currently idling threads (cores).

bool enumerate_threads(util::function_nonser<bool)thread_id_type
> const &f, thread_state_enum state = unknownThe function enumerate_threads will invoke the
given function f for each thread with a matching thread state.

Parameters
• f: [in] The function which should be called for each matching thread. Returning ‘false’ from

this function will stop the enumeration process.
• state: [in] This specifies the thread-state for which the threads should be enumerated.

Header hpx/runtime_local/thread_stacktrace.hpp

namespace hpx

namespace util

namespace debug

2.9. API reference 1053

HPX Documentation, 1.5.1

Functions

std::vector<hpx::threads::thread_id_type> get_task_ids(hpx::threads::thread_state_enum
state = hpx::threads::suspended)

std::vector<hpx::threads::thread_data*> get_task_data(hpx::threads::thread_state_enum
state = hpx::threads::suspended)

std::string suspended_task_backtraces()

Header hpx/util/thread_aware_timer.hpp

schedulers

The contents of this module can be included with the header hpx/modules/schedulers.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/schedulers.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/modules/schedulers.hpp

Header hpx/schedulers/deadlock_detection.hpp

Header hpx/schedulers/local_priority_queue_scheduler.hpp

namespace hpx

namespace threads

namespace policies

Typedefs

using default_local_priority_queue_scheduler_terminated_queue = lockfree_fifo

template<typename Mutex = std::mutex, typename PendingQueuing = lockfree_fifo, typename StagedQueuing = lockfree_fifo, typename TerminatedQueuing = default_local_priority_queue_scheduler_terminated_queue>
class local_priority_queue_scheduler : public scheduler_base

#include <local_priority_queue_scheduler.hpp> The local_priority_queue_scheduler maintains
exactly one queue of work items (threads) per OS thread, where this OS thread pulls its next work
from. Additionally it maintains separate queues: several for high priority threads and one for low
priority threads. High priority threads are executed by the first N OS threads before any other
work is executed. Low priority threads are executed by the last OS thread whenever no other
work is available.

1054 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef std::false_type has_periodic_maintenance

typedef thread_queue<Mutex, PendingQueuing, StagedQueuing, TerminatedQueuing> thread_queue_type

typedef init_parameter init_parameter_type

Public Functions

local_priority_queue_scheduler(init_parameter_type const &init, bool de-
ferred_initialization = true)

~local_priority_queue_scheduler()

void abort_all_suspended_threads()

bool cleanup_terminated(bool delete_all)

bool cleanup_terminated(std::size_t num_thread, bool delete_all)

void create_thread(thread_init_data &data, thread_id_type *id, error_code &ec)

bool get_next_thread(std::size_t num_thread, bool running, threads::thread_data
*&thrd, bool enable_stealing)

Return the next thread to be executed, return false if none is available

void schedule_thread(threads::thread_data *thrd, threads::thread_schedule_hint sched-
ulehint, bool allow_fallback = false, thread_priority priority =
thread_priority_normal)

Schedule the passed thread.

void schedule_thread_last(threads::thread_data *thrd,
threads::thread_schedule_hint schedulehint, bool
allow_fallback = false, thread_priority priority =
thread_priority_normal)

void destroy_thread(threads::thread_data *thrd)
Destroy the passed thread as it has been terminated.

std::int64_t get_queue_length(std::size_t num_thread = std::size_t(-1)) const

std::int64_t get_thread_count(thread_state_enum state = unknown, thread_priority pri-
ority = thread_priority_default, std::size_t num_thread =
std::size_t(-1), bool reset = false) const

bool is_core_idle(std::size_t num_thread) const

bool enumerate_threads(util::function_nonser<bool)thread_id_type
> const &f, thread_state_enum state = unknown const

bool wait_or_add_new(std::size_t num_thread, bool running, std::int64_t
&idle_loop_count, bool enable_stealing, std::size_t &added)

This is a function which gets called periodically by the thread manager to allow for maintenance
tasks to be executed in the scheduler. Returns true if the OS thread calling this function has to
be terminated (i.e. no more work has to be done).

void on_start_thread(std::size_t num_thread)

2.9. API reference 1055

HPX Documentation, 1.5.1

void on_stop_thread(std::size_t num_thread)

void on_error(std::size_t num_thread, std::exception_ptr const &e)

void reset_thread_distribution()

Public Static Functions

static std::string get_scheduler_name()

Protected Attributes

std::atomic<std::size_t> curr_queue_

detail::affinity_data const &affinity_data_

std::size_t const num_queues_

std::size_t const num_high_priority_queues_

thread_queue_type low_priority_queue_

std::vector<util::cache_line_data<thread_queue_type*>> queues_

std::vector<util::cache_line_data<thread_queue_type*>> high_priority_queues_

std::vector<util::cache_line_data<std::vector<std::size_t>>> victim_threads_

struct init_parameter
#include <local_priority_queue_scheduler.hpp>

Public Functions

template<>
init_parameter(std::size_t num_queues, detail::affinity_data const &affin-

ity_data, std::size_t num_high_priority_queues = std::size_t(-1),
thread_queue_init_parameters thread_queue_init = {}, char const
*description = "local_priority_queue_scheduler")

template<>
init_parameter(std::size_t num_queues, detail::affinity_data const &affinity_data,

char const *description)

Public Members

template<>
std::size_t num_queues_

template<>
std::size_t num_high_priority_queues_

template<>
thread_queue_init_parameters thread_queue_init_

template<>
detail::affinity_data const &affinity_data_

1056 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<>
char const *description_

Header hpx/schedulers/local_queue_scheduler.hpp

Header hpx/schedulers/lockfree_queue_backends.hpp

namespace hpx

namespace threads

namespace policies

struct concurrentqueue_fifo
#include <lockfree_queue_backends.hpp>

template<typename T>
struct apply

#include <lockfree_queue_backends.hpp>

Public Types

template<>
using type = moodycamel_fifo_backend<T>

struct lockfree_fifo
#include <lockfree_queue_backends.hpp>

template<typename T>
struct apply

#include <lockfree_queue_backends.hpp>

Public Types

template<>
using type = lockfree_fifo_backend<T>

template<typename T>
struct lockfree_fifo_backend

#include <lockfree_queue_backends.hpp>

2.9. API reference 1057

HPX Documentation, 1.5.1

Public Types

template<>
using container_type = boost::lockfree::queue<T>

template<>
using value_type = T

template<>
using reference = T&

template<>
using const_reference = T const&

template<>
using size_type = std::uint64_t

Public Functions

lockfree_fifo_backend(size_type initial_size = 0, size_type num_thread = size_type(-
1))

bool push(const_reference val, bool = false)

bool pop(reference val, bool steal = true)

bool empty()

Private Members

container_type queue_

template<typename T>
struct moodycamel_fifo_backend

#include <lockfree_queue_backends.hpp>

Public Types

template<>
using container_type = hpx::concurrency::ConcurrentQueue<T>

template<>
using value_type = T

template<>
using reference = T&

template<>
using const_reference = T const&

template<>
using rval_reference = T&&

template<>
using size_type = std::uint64_t

1058 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

moodycamel_fifo_backend(size_type initial_size = 0, size_type num_thread =
size_type(-1))

bool push(rval_reference val, bool = false)

bool push(const_reference val, bool = false)

bool pop(reference val, bool steal = true)

bool empty()

Private Members

container_type queue_

Header hpx/schedulers/maintain_queue_wait_times.hpp

Header hpx/schedulers/queue_helpers.hpp

Header hpx/schedulers/queue_holder_numa.hpp

Defines

QUEUE_HOLDER_NUMA_DEBUG

namespace hpx

Functions

static hpx::debug::enable_print<QUEUE_HOLDER_NUMA_DEBUG> hpx::nq_deb("QH_NUMA")

namespace threads

namespace policies

template<typename QueueType>
struct queue_holder_numa

#include <queue_holder_numa.hpp>

Public Types

template<>
using ThreadQueue = queue_holder_thread<QueueType>

template<>
using mutex_type = typename QueueType::mutex_type

2.9. API reference 1059

HPX Documentation, 1.5.1

Public Functions

queue_holder_numa()

~queue_holder_numa()

void init(std::size_t domain, std::size_t queues)

std::size_t size() const

ThreadQueue *thread_queue(std::size_t id) const

bool get_next_thread_HP(std::size_t qidx, threads::thread_data *&thrd, bool stealing,
bool core_stealing)

bool get_next_thread(std::size_t qidx, threads::thread_data *&thrd, bool stealing, bool
core_stealing)

bool add_new_HP(ThreadQueue *receiver, std::size_t qidx, std::size_t &added, bool steal-
ing, bool allow_stealing)

bool add_new(ThreadQueue *receiver, std::size_t qidx, std::size_t &added, bool stealing,
bool allow_stealing)

std::size_t get_new_tasks_queue_length() const

std::int64_t get_thread_count(thread_state_enum state = unknown, thread_priority pri-
ority = thread_priority_default) const

void abort_all_suspended_threads()

bool enumerate_threads(util::function_nonser<bool)thread_id_type
> const &f, thread_state_enum state const

void increment_num_pending_misses(std::size_t num = 1)

void increment_num_pending_accesses(std::size_t num = 1)

void increment_num_stolen_from_pending(std::size_t num = 1)

void increment_num_stolen_from_staged(std::size_t num = 1)

void increment_num_stolen_to_pending(std::size_t num = 1)

void increment_num_stolen_to_staged(std::size_t num = 1)

bool dump_suspended_threads(std::size_t num_thread, std::int64_t &idle_loop_count,
bool running)

void debug_info()

void on_start_thread(std::size_t num_thread)

void on_stop_thread(std::size_t num_thread)

void on_error(std::size_t num_thread, std::exception_ptr const &e)

1060 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

std::size_t num_queues_

std::size_t domain_

std::vector<ThreadQueue*> queues_

Header hpx/schedulers/queue_holder_thread.hpp

Defines

QUEUE_HOLDER_THREAD_DEBUG

namespace hpx

Functions

static hpx::debug::enable_print<QUEUE_HOLDER_THREAD_DEBUG> hpx::tq_deb("QH_THRD")

namespace threads

namespace policies

Enums

enum [anonymous]
Values:

max_thread_count = 1000

enum [anonymous]
Values:

round_robin_rollover = 1

Functions

std::size_t fast_mod(std::size_t const input, std::size_t const ceil)

template<typename QueueType>
struct queue_holder_thread

#include <queue_holder_thread.hpp>

2.9. API reference 1061

HPX Documentation, 1.5.1

Public Types

template<>
using thread_holder_type = queue_holder_thread<QueueType>

template<>
using mutex_type = std::mutex

typedef std::unique_lock<mutex_type> scoped_lock

template<>
using thread_heap_type = std::list<thread_id_type, util::internal_allocator<thread_id_type>>

template<>
using task_description = thread_init_data

template<>
using thread_map_type = std::unordered_set<thread_id_type, std::hash<thread_id_type>, std::equal_to<thread_id_type>, util::internal_allocator<thread_id_type>>

template<>
using terminated_items_type = lockfree_fifo::apply<thread_data*>::type

Public Functions

queue_holder_thread(QueueType *bp_queue, QueueType *hp_queue, Queue-
Type *np_queue, QueueType *lp_queue, std::size_t domain,
std::size_t queue, std::size_t thread_num, std::size_t owner,
const thread_queue_init_parameters &init)

~queue_holder_thread()

bool owns_bp_queue() const

bool owns_hp_queue() const

bool owns_np_queue() const

bool owns_lp_queue() const

std::size_t worker_next(std::size_t const workers) const

void schedule_thread(threads::thread_data *thrd, thread_priority priority, bool
other_end = false)

bool cleanup_terminated(std::size_t thread_num, bool delete_all)

void create_thread(thread_init_data &data, thread_id_type *tid, std::size_t
thread_num, error_code &ec)

void create_thread_object(threads::thread_id_type &tid, threads::thread_init_data
&data)

void recycle_thread(thread_id_type tid)

void add_to_thread_map(threads::thread_id_type tid)

void remove_from_thread_map(threads::thread_id_type tid, bool dealloc)

bool get_next_thread_HP(threads::thread_data *&thrd, bool stealing, bool
check_new)

1062 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool get_next_thread(threads::thread_data *&thrd, bool stealing)

std::size_t add_new_HP(std::int64_t add_count, thread_holder_type *addfrom, bool steal-
ing)

std::size_t add_new(std::int64_t add_count, thread_holder_type *addfrom, bool stealing)

std::size_t get_queue_length()

std::size_t get_thread_count_staged(thread_priority priority) const

std::size_t get_thread_count_pending(thread_priority priority) const

std::size_t get_thread_count(thread_state_enum state = unknown, thread_priority pri-
ority = thread_priority_default) const

void destroy_thread(threads::thread_data *thrd, std::size_t thread_num, bool xthread)
Destroy the passed thread as it has been terminated.

void abort_all_suspended_threads()

bool enumerate_threads(util::function_nonser<bool)thread_id_type
> const &f, thread_state_enum state = unknown const

void debug_info()

void debug_queues(const char *prefix)

Public Members

QueueType *const bp_queue_

QueueType *const hp_queue_

QueueType *const np_queue_

QueueType *const lp_queue_

const std::size_t domain_index_

const std::size_t queue_index_

const std::size_t thread_num_

const std::size_t owner_mask_

util::cache_line_data<mutex_type> thread_map_mtx_

thread_heap_type thread_heap_small_

thread_heap_type thread_heap_medium_

thread_heap_type thread_heap_large_

thread_heap_type thread_heap_huge_

thread_heap_type thread_heap_nostack_

util::cache_line_data<std::tuple<std::size_t, std::size_t>> rollover_counters_

thread_map_type thread_map_

util::cache_line_data<std::atomic<std::int32_t>> thread_map_count_

terminated_items_type terminated_items_

2.9. API reference 1063

HPX Documentation, 1.5.1

util::cache_line_data<std::atomic<std::int32_t>> terminated_items_count_

thread_queue_init_parameters parameters_

Public Static Functions

static void deallocate(threads::thread_data *p)

Public Static Attributes

util::internal_allocator<threads::thread_data> thread_alloc_

struct queue_data_print
#include <queue_holder_thread.hpp>

Public Functions

template<>
queue_data_print(const queue_holder_thread *q)

Public Members

template<>
const queue_holder_thread *q_

Friends

std::ostream &operator<<(std::ostream &os, const queue_data_print &d)

struct queue_mc_print
#include <queue_holder_thread.hpp>

Public Functions

template<>
queue_mc_print(const QueueType *const q)

Public Members

template<>
const QueueType *const q_

1064 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Friends

std::ostream &operator<<(std::ostream &os, const queue_mc_print &d)

Header hpx/schedulers/shared_priority_queue_scheduler.hpp

Defines

SHARED_PRIORITY_SCHEDULER_DEBUG

SHARED_PRIORITY_QUEUE_SCHEDULER_API

namespace hpx

Typedefs

using print_onoff = hpx::debug::enable_print<SHARED_PRIORITY_SCHEDULER_DEBUG>

using print_on = hpx::debug::enable_print<false>

Functions

static print_onoff hpx::spq_deb("SPQUEUE")

static print_on hpx::spq_arr("SPQUEUE")

namespace threads

namespace policies

Typedefs

using default_shared_priority_queue_scheduler_terminated_queue = lockfree_fifo

struct core_ratios
#include <shared_priority_queue_scheduler.hpp>

Public Functions

core_ratios(std::size_t high_priority, std::size_t normal_priority, std::size_t
low_priority)

2.9. API reference 1065

HPX Documentation, 1.5.1

Public Members

std::size_t high_priority

std::size_t normal_priority

std::size_t low_priority

template<typename Mutex = std::mutex, typename PendingQueuing = concurrentqueue_fifo, typename TerminatedQueuing = default_shared_priority_queue_scheduler_terminated_queue>
class shared_priority_queue_scheduler : public scheduler_base

#include <shared_priority_queue_scheduler.hpp> The shared_priority_queue_scheduler main-
tains a set of high, normal, and low priority queues. For each priority level there is a core/queue
ratio which determines how many cores share a single queue. If the high priority core/queue ratio
is 4 the first 4 cores will share a single high priority queue, the next 4 will share another one
and so on. In addition, the shared_priority_queue_scheduler is NUMA-aware and takes NUMA
scheduling hints into account when creating and scheduling work.

Warning: PendingQueuing lifo causes lockup on termination

Public Types

template<>
using has_periodic_maintenance = std::false_type

template<>
using thread_queue_type = thread_queue_mc<Mutex, PendingQueuing, PendingQueuing, TerminatedQueuing>

template<>
using thread_holder_type = queue_holder_thread<thread_queue_type>

typedef init_parameter init_parameter_type

Public Functions

shared_priority_queue_scheduler(init_parameter const &init)

virtual ~shared_priority_queue_scheduler()

void set_scheduler_mode(scheduler_mode mode)

void abort_all_suspended_threads()

std::size_t local_thread_number()

bool cleanup_terminated(bool delete_all)

bool cleanup_terminated(std::size_t thread_num, bool delete_all)

void create_thread(thread_init_data &data, thread_id_type *thrd, error_code &ec)

template<typename T>
bool steal_by_function(std::size_t domain, std::size_t q_index, bool steal_numa, bool

steal_core, thread_holder_type *origin, T &var, const char
*prefix, util::function_nonser<bool)std::size_t, std::size_t,
thread_holder_type*, T&, bool, bool

> operation_HP, util::function_nonser<boolstd::size_t, std::size_t, thread_holder_type*, T&,
bool, bool> operation

1066 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

virtual bool get_next_thread(std::size_t thread_num, bool running,
threads::thread_data *&thrd, bool enable_stealing)

Return the next thread to be executed, return false if none available.

virtual bool wait_or_add_new(std::size_t thread_num, bool running, std::int64_t
&idle_loop_count, bool, std::size_t &added)

Return the next thread to be executed, return false if none available.

void schedule_thread(threads::thread_data *thrd, threads::thread_schedule_hint
schedulehint, bool allow_fallback, thread_priority priority =
thread_priority_normal)

Schedule the passed thread.

void schedule_thread_last(threads::thread_data *thrd,
threads::thread_schedule_hint schedulehint,
bool allow_fallback, thread_priority priority =
thread_priority_normal)

Put task on the back of the queue : not yet implemented just put it on the normal queue for now

void destroy_thread(threads::thread_data *thrd)

std::int64_t get_queue_length(std::size_t thread_num = std::size_t(-1)) const

std::int64_t get_thread_count(thread_state_enum state = unknown, thread_priority pri-
ority = thread_priority_default, std::size_t thread_num =
std::size_t(-1), bool reset = false) const

bool is_core_idle(std::size_t num_thread) const

bool enumerate_threads(util::function_nonser<bool)thread_id_type
> const &f, thread_state_enum state = unknown const

void on_start_thread(std::size_t local_thread)

void on_stop_thread(std::size_t thread_num)

void on_error(std::size_t thread_num, std::exception_ptr const &e)

Public Static Functions

static std::string get_scheduler_name()

Protected Types

typedef queue_holder_numa<thread_queue_type> numa_queues

Protected Attributes

std::array<std::size_t, HPX_HAVE_MAX_NUMA_DOMAIN_COUNT> q_counts_

std::array<std::size_t, HPX_HAVE_MAX_NUMA_DOMAIN_COUNT> q_offset_

std::array<numa_queues, HPX_HAVE_MAX_NUMA_DOMAIN_COUNT> numa_holder_

std::array<std::size_t, HPX_HAVE_MAX_CPU_COUNT> d_lookup_

std::array<std::size_t, HPX_HAVE_MAX_CPU_COUNT> q_lookup_

2.9. API reference 1067

HPX Documentation, 1.5.1

core_ratios cores_per_queue_

bool round_robin_

bool steal_hp_first_

bool numa_stealing_

bool core_stealing_

std::size_t num_workers_

std::size_t num_domains_

detail::affinity_data const &affinity_data_

const thread_queue_init_parameters queue_parameters_

std::mutex init_mutex

volatile bool initialized_

volatile bool debug_init_

volatile std::size_t thread_init_counter_

std::size_t pool_index_

struct init_parameter
#include <shared_priority_queue_scheduler.hpp>

Public Functions

template<>
init_parameter(std::size_t num_worker_threads, const core_ratios

&cores_per_queue, detail::affinity_data const &affinity_data,
const thread_queue_init_parameters &thread_queue_init, char
const *description = "shared_priority_queue_scheduler")

template<>
init_parameter(std::size_t num_worker_threads, const core_ratios

&cores_per_queue, detail::affinity_data const &affinity_data,
char const *description)

Public Members

template<>
std::size_t num_worker_threads_

template<>
core_ratios cores_per_queue_

template<>
thread_queue_init_parameters thread_queue_init_

template<>
detail::affinity_data const &affinity_data_

template<>
char const *description_

1068 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/schedulers/static_priority_queue_scheduler.hpp

Header hpx/schedulers/static_queue_scheduler.hpp

Header hpx/schedulers/thread_queue.hpp

namespace hpx

namespace threads

namespace policies

template<typename Mutex, typename PendingQueuing, typename StagedQueuing, typename TerminatedQueuing>
class thread_queue

#include <thread_queue.hpp>

Public Functions

bool cleanup_terminated_locked(bool delete_all = false)
This function makes sure all threads which are marked for deletion (state is terminated) are
properly destroyed.

This returns ‘true’ if there are no more terminated threads waiting to be deleted.

bool cleanup_terminated(bool delete_all = false)

thread_queue(std::size_t queue_num = std::size_t(-1), thread_queue_init_parameters pa-
rameters = {})

~thread_queue()

std::int64_t get_queue_length(std::memory_order order =
std::memory_order_acquire) const

std::int64_t get_pending_queue_length(std::memory_order order =
std::memory_order_acquire) const

std::int64_t get_staged_queue_length(std::memory_order order =
std::memory_order_acquire) const

constexpr void increment_num_pending_misses(std::size_t num = 1)

constexpr void increment_num_pending_accesses(std::size_t num = 1)

constexpr void increment_num_stolen_from_pending(std::size_t num = 1)

constexpr void increment_num_stolen_from_staged(std::size_t num = 1)

constexpr void increment_num_stolen_to_pending(std::size_t num = 1)

constexpr void increment_num_stolen_to_staged(std::size_t num = 1)

void create_thread(thread_init_data &data, thread_id_type *id, error_code &ec)

void move_work_items_from(thread_queue *src, std::int64_t count)

2.9. API reference 1069

HPX Documentation, 1.5.1

void move_task_items_from(thread_queue *src, std::int64_t count)

bool get_next_thread(threads::thread_data *&thrd, bool allow_stealing = false, bool
steal = false)

Return the next thread to be executed, return false if none is available

void schedule_thread(threads::thread_data *thrd, bool other_end = false)
Schedule the passed thread.

void destroy_thread(threads::thread_data *thrd)
Destroy the passed thread as it has been terminated.

std::int64_t get_thread_count(thread_state_enum state = unknown) const
Return the number of existing threads with the given state.

void abort_all_suspended_threads()

bool enumerate_threads(util::function_nonser<bool)thread_id_type
> const &f, thread_state_enum state = unknown const

bool wait_or_add_new(bool, std::size_t &added)
This is a function which gets called periodically by the thread manager to allow for maintenance
tasks to be executed in the scheduler. Returns true if the OS thread calling this function has to
be terminated (i.e. no more work has to be done).

bool wait_or_add_new(bool running, std::size_t &added, thread_queue *addfrom, bool
steal = false)

bool dump_suspended_threads(std::size_t num_thread, std::int64_t &idle_loop_count,
bool running)

void on_start_thread(std::size_t num_thread)

void on_stop_thread(std::size_t num_thread)

void on_error(std::size_t num_thread, std::exception_ptr const &e)

Public Static Functions

static void deallocate(threads::thread_data *p)

Protected Functions

template<typename Lock>
void create_thread_object(threads::thread_id_type &thrd, threads::thread_init_data

&data, Lock &lk)

std::size_t add_new(std::int64_t add_count, thread_queue *addfrom,
std::unique_lock<mutex_type> &lk, bool steal = false)

bool add_new_always(std::size_t &added, thread_queue *addfrom,
std::unique_lock<mutex_type> &lk, bool steal = false)

void recycle_thread(thread_id_type thrd)

1070 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Protected Static Attributes

util::internal_allocator<typename thread_queue<Mutex, PendingQueuing, StagedQueuing, TerminatedQueuing>::task_description> task_description_alloc_

Private Types

template<>
using mutex_type = Mutex

template<>
using thread_map_type = std::unordered_set<thread_id_type, std::hash<thread_id_type>, std::equal_to<thread_id_type>, util::internal_allocator<thread_id_type>>

template<>
using thread_heap_type = std::list<thread_id_type, util::internal_allocator<thread_id_type>>

template<>
using thread_description = thread_data

template<>
using work_items_type = typename PendingQueuing::template apply<thread_description*>::type

template<>
using task_items_type = typename StagedQueuing::template apply<task_description*>::type

template<>
using terminated_items_type = typename TerminatedQueuing::template apply<thread_data*>::type

Private Members

thread_queue_init_parameters parameters_

mutex_type mtx_

thread_map_type thread_map_

std::atomic<std::int64_t> thread_map_count_

work_items_type work_items_

terminated_items_type terminated_items_

std::atomic<std::int64_t> terminated_items_count_

task_items_type new_tasks_

thread_heap_type thread_heap_small_

thread_heap_type thread_heap_medium_

thread_heap_type thread_heap_large_

thread_heap_type thread_heap_huge_

thread_heap_type thread_heap_nostack_

util::cache_line_data<std::atomic<std::int64_t>> new_tasks_count_

util::cache_line_data<std::atomic<std::int64_t>> work_items_count_

struct task_description

2.9. API reference 1071

HPX Documentation, 1.5.1

Public Members

template<>
thread_init_data data

Header hpx/schedulers/thread_queue_mc.hpp

Defines

THREAD_QUEUE_MC_DEBUG

namespace hpx

Functions

static hpx::debug::enable_print<THREAD_QUEUE_MC_DEBUG> hpx::tqmc_deb("_TQ_MC_")

namespace threads

namespace policies

template<typename Mutex, typename PendingQueuing, typename StagedQueuing, typename TerminatedQueuing>
class thread_queue_mc

#include <thread_queue_mc.hpp>

Public Types

typedef Mutex mutex_type

template<>
using thread_queue_type = thread_queue_mc<Mutex, PendingQueuing, StagedQueuing, TerminatedQueuing>

template<>
using thread_heap_type = std::list<thread_id_type, util::internal_allocator<thread_id_type>>

template<>
using task_description = thread_init_data

template<>
using thread_description = thread_data

typedef PendingQueuing::template apply<thread_description*>::type work_items_type

typedef concurrentqueue_fifo::apply<task_description>::type task_items_type

1072 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

std::size_t add_new(std::int64_t add_count, thread_queue_type *addfrom, bool stealing)

thread_queue_mc(const thread_queue_init_parameters ¶meters, std::size_t
queue_num = std::size_t(-1))

void set_holder(queue_holder_thread<thread_queue_type> *holder)

~thread_queue_mc()

std::int64_t get_queue_length() const

std::int64_t get_queue_length_pending() const

std::int64_t get_queue_length_staged(std::memory_order order =
std::memory_order_seq_cst) const

std::int64_t get_thread_count() const

void create_thread(thread_init_data &data, thread_id_type *id, error_code &ec)

bool get_next_thread(threads::thread_data *&thrd, bool other_end, bool check_new =
false)

Return the next thread to be executed, return false if none is available

void schedule_work(threads::thread_data *thrd, bool other_end)
Schedule the passed thread (put it on the ready work queue)

void on_start_thread(std::size_t num_thread)

void on_stop_thread(std::size_t num_thread)

void on_error(std::size_t num_thread, std::exception_ptr const &e)

Public Members

thread_queue_init_parameters parameters_

int const queue_index_

queue_holder_thread<thread_queue_type> *holder_

task_items_type new_task_items_

work_items_type work_items_

util::cache_line_data<std::atomic<std::int32_t>> new_tasks_count_

util::cache_line_data<std::atomic<std::int32_t>> work_items_count_

2.9. API reference 1073

HPX Documentation, 1.5.1

segmented_algorithms

The contents of this module can be included with the header hpx/modules/segmented_algorithms.hpp.
These headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You
are using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/segmented_algorithms.hpp, not the particular header in which
the functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX
API.

Header hpx/parallel/segmented_algorithm.hpp

Header hpx/parallel/segmented_algorithms/adjacent_difference.hpp

Header hpx/parallel/segmented_algorithms/adjacent_find.hpp

Header hpx/parallel/segmented_algorithms/all_any_none.hpp

Header hpx/parallel/segmented_algorithms/count.hpp

Header hpx/parallel/segmented_algorithms/exclusive_scan.hpp

Header hpx/parallel/segmented_algorithms/fill.hpp

Header hpx/parallel/segmented_algorithms/find.hpp

Header hpx/parallel/segmented_algorithms/for_each.hpp

Header hpx/parallel/segmented_algorithms/generate.hpp

Header hpx/parallel/segmented_algorithms/inclusive_scan.hpp

Header hpx/parallel/segmented_algorithms/minmax.hpp

Header hpx/parallel/segmented_algorithms/reduce.hpp

Header hpx/parallel/segmented_algorithms/traits/zip_iterator.hpp

Header hpx/parallel/segmented_algorithms/transform.hpp

Header hpx/parallel/segmented_algorithms/transform_exclusive_scan.hpp

Header hpx/parallel/segmented_algorithms/transform_inclusive_scan.hpp

Header hpx/parallel/segmented_algorithms/transform_reduce.hpp

1074 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

serialization

The contents of this module can be included with the header hpx/modules/serialization.hpp. These head-
ers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/serialization.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/serialization.hpp

Header hpx/serialization/access.hpp

template<typename T>
struct serialize_non_intrusive<T , typename std::enable_if<has_serialize_adl<T>::value>::type>

#include <access.hpp>

Public Static Functions

template<typename Archive>
static void call(Archive &ar, T &t, unsigned)

namespace hpx

namespace serialization

class access
#include <access.hpp>

Public Static Functions

template<class Archive, class T>
static void serialize(Archive &ar, T &t, unsigned)

template<typename Archive, typename T>
static void save_base_object(Archive &ar, T const &t, unsigned)

template<typename Archive, typename T>
static void load_base_object(Archive &ar, T &t, unsigned)

template<typename T>
static std::string get_name(T const *t)

template<class T>
class has_serialize

2.9. API reference 1075

HPX Documentation, 1.5.1

Public Static Attributes

constexpr bool value = decltype(test<T>(0))::value

Private Static Functions

template<class T1>
static std::false_type test(...)

template<class T1, class = decltype(std::declval<typename std::remove_const<T1>::type&>().serialize(std::declval<output_archive&>(), 0u))>
static std::true_type test(int)

template<class T>
class serialize_dispatcher

Public Types

template<>
using type = typename std::conditional::type

struct empty

Public Static Functions

template<class Archive>
static void call(Archive&, T&, unsigned)

struct intrusive_polymorphic

Public Static Functions

template<>
static void call(hpx::serialization::input_archive &ar, T &t, unsigned)

template<>
static void call(hpx::serialization::output_archive &ar, T const &t, unsigned)

struct intrusive_usual

Public Static Functions

template<class Archive>
static void call(Archive &ar, T &t, unsigned)

struct non_intrusive

1076 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Static Functions

template<class Archive>
static void call(Archive &ar, T &t, unsigned)

template<typename T>
class has_serialize_adl

#include <access.hpp>

Public Static Attributes

constexpr bool value = decltype(test<T>(0))::value

Private Static Functions

template<typename T1>
static std::false_type test(...)

template<typename T1, typename = decltype(serialize(std::declval<hpx::serialization::output_archive&>(), std::declval<typename std::remove_const<T1>::type&>(), 0u))>
static std::true_type test(int)

template<typename T>
struct serialize_non_intrusive<T , typename std::enable_if<has_serialize_adl<T>::value>::type>

#include <access.hpp>

Public Static Functions

template<typename Archive>
static void call(Archive &ar, T &t, unsigned)

Header hpx/serialization/array.hpp

namespace hpx

namespace serialization

Functions

template<class T>
array<T> make_array(T *begin, std::size_t size)

template<typename Archive, typename T, std::size_t N>
void serialize(Archive &ar, std::array<T , N> &a, const unsigned int)

template<typename T>
output_archive &operator<<(output_archive &ar, array<T> t)

template<typename T>
input_archive &operator>>(input_archive &ar, array<T> t)

2.9. API reference 1077

HPX Documentation, 1.5.1

template<typename T>
output_archive &operator&(output_archive &ar, array<T> t)

template<typename T>
input_archive &operator&(input_archive &ar, array<T> t)

template<typename T, std::size_t N>
output_archive &operator<<(output_archive &ar, T (&t)[N])

template<typename T, std::size_t N>
input_archive &operator>>(input_archive &ar, T (&t)[N])

template<typename T, std::size_t N>
output_archive &operator&(output_archive &ar, T (&t)[N])

template<typename T, std::size_t N>
input_archive &operator&(input_archive &ar, T (&t)[N])

template<class T>
class array

#include <array.hpp>

Public Types

template<>
using value_type = T

Public Functions

array(value_type *t, std::size_t s)

value_type *address() const

std::size_t count() const

template<class Archive>
void serialize_optimized(Archive &ar, unsigned int, std::false_type)

void serialize_optimized(output_archive &ar, unsigned int, std::true_type)

void serialize_optimized(input_archive &ar, unsigned int, std::true_type)

template<class Archive>
void serialize(Archive &ar, unsigned int v)

Private Members

value_type *m_t

std::size_t m_element_count

1078 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/serialization/base_object.hpp

template<typename Derived, typename Base>
struct base_object_type<Derived, Base, std::true_type>

#include <base_object.hpp>

Public Functions

base_object_type(Derived &d)

template<class Archive>
void save(Archive &ar, unsigned) const

template<class Archive>
void load(Archive &ar, unsigned)

HPX_SERIALIZATION_SPLIT_MEMBER()

Public Members

Derived &d_

namespace hpx

namespace serialization

Functions

template<typename Base, typename Derived>
base_object_type<Derived, Base> base_object(Derived &d)

template<typename D, typename B>
output_archive &operator<<(output_archive &ar, base_object_type<D, B> t)

template<typename D, typename B>
input_archive &operator>>(input_archive &ar, base_object_type<D, B> t)

template<typename D, typename B>
output_archive &operator&(output_archive &ar, base_object_type<D, B> t)

template<typename D, typename B>
input_archive &operator&(input_archive &ar, base_object_type<D, B> t)

template<typename Derived, typename Base, typename Enable = typename hpx::traits::is_intrusive_polymorphic<Derived>::type>
struct base_object_type

#include <base_object.hpp>

2.9. API reference 1079

HPX Documentation, 1.5.1

Public Functions

base_object_type(Derived &d)

template<typename Archive>
void serialize(Archive &ar, unsigned)

Public Members

Derived &d_

template<typename Derived, typename Base>
struct base_object_type<Derived, Base, std::true_type>

#include <base_object.hpp>

Public Functions

base_object_type(Derived &d)

template<class Archive>
void save(Archive &ar, unsigned) const

template<class Archive>
void load(Archive &ar, unsigned)

HPX_SERIALIZATION_SPLIT_MEMBER()

Public Members

Derived &d_

Header hpx/serialization/basic_archive.hpp

namespace hpx

namespace serialization

Enums

enum archive_flags
Values:

no_archive_flags = 0x00000000

enable_compression = 0x00002000

endian_big = 0x00004000

endian_little = 0x00008000

disable_array_optimization = 0x00010000

disable_data_chunking = 0x00020000

1080 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

all_archive_flags = 0x0003e000

Functions

void reverse_bytes(std::size_t size, char *address)

template<typename Archive>
void save_binary(Archive &ar, void const *address, std::size_t count)

template<typename Archive>
void load_binary(Archive &ar, void *address, std::size_t count)

template<typename Archive>
std::size_t current_pos(const Archive &ar)

template<typename Archive>
struct basic_archive

#include <basic_archive.hpp>

Public Functions

virtual ~basic_archive()

template<typename T>
void invoke(T &t)

bool enable_compression() const

bool endian_big() const

bool endian_little() const

bool disable_array_optimization() const

bool disable_data_chunking() const

std::uint32_t flags() const

bool is_preprocessing() const

std::size_t current_pos() const

void save_binary(void const *address, std::size_t count)

void load_binary(void *address, std::size_t count)

void reset()

template<typename T>
T &get_extra_data()

template<typename T>
T *try_get_extra_data()

2.9. API reference 1081

HPX Documentation, 1.5.1

Public Static Attributes

const std::uint64_t npos = std::uint64_t(-1)

Protected Functions

basic_archive(std::uint32_t flags)

basic_archive(basic_archive const&)

basic_archive &operator=(basic_archive const&)

Protected Attributes

std::uint32_t flags_

std::size_t size_

detail::extra_archive_data extra_data_

Header hpx/serialization/binary_filter.hpp

namespace hpx

namespace serialization

struct binary_filter
#include <binary_filter.hpp>

Public Functions

virtual void set_max_length(std::size_t size) = 0

virtual void save(void const *src, std::size_t src_count) = 0

virtual bool flush(void *dst, std::size_t dst_count, std::size_t &written) = 0

virtual std::size_t init_data(char const *buffer, std::size_t size, std::size_t buffer_size)
= 0

virtual void load(void *dst, std::size_t dst_count) = 0

template<class T>
void serialize(T&, unsigned)

HPX_SERIALIZATION_POLYMORPHIC_ABSTRACT(binary_filter)

virtual ~binary_filter()

1082 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/serialization/bitset.hpp

namespace hpx

namespace serialization

Functions

template<std::size_t N>
void serialize(input_archive &ar, std::bitset<N> &d, unsigned)

template<std::size_t N>
void serialize(output_archive &ar, std::bitset<N> const &bs, unsigned)

Header hpx/serialization/boost_variant.hpp

Header hpx/serialization/brace_initializable.hpp

Header hpx/serialization/brace_initializable_fwd.hpp

Header hpx/serialization/complex.hpp

namespace hpx

namespace serialization

Functions

template<typename T>
void serialize(input_archive &ar, std::complex<T> &c, unsigned)

template<typename T>
void serialize(output_archive &ar, std::complex<T> const &c, unsigned)

Header hpx/serialization/container.hpp

namespace hpx

namespace serialization

struct erased_input_container
#include <container.hpp> Subclassed by hpx::serialization::input_container< Container >

2.9. API reference 1083

HPX Documentation, 1.5.1

Public Functions

virtual ~erased_input_container()

virtual bool is_preprocessing() const

virtual void set_filter(binary_filter *filter) = 0

virtual void load_binary(void *address, std::size_t count) = 0

virtual void load_binary_chunk(void *address, std::size_t count) = 0

struct erased_output_container
#include <container.hpp> Subclassed by hpx::serialization::output_container< Container, Chunker
>

Public Functions

virtual ~erased_output_container()

virtual bool is_preprocessing() const

virtual void set_filter(binary_filter *filter) = 0

virtual void save_binary(void const *address, std::size_t count) = 0

virtual std::size_t save_binary_chunk(void const *address, std::size_t count) = 0

virtual void reset() = 0

virtual std::size_t get_num_chunks() const = 0

virtual void flush() = 0

Header hpx/serialization/datapar.hpp

Header hpx/serialization/deque.hpp

namespace hpx

namespace serialization

Functions

template<typename T, typename Allocator>
void serialize(input_archive &ar, std::deque<T , Allocator> &d, unsigned)

template<typename T, typename Allocator>
void serialize(output_archive &ar, std::deque<T , Allocator> const &d, unsigned)

1084 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/serialization/dynamic_bitset.hpp

Header hpx/serialization/exception_ptr.hpp

namespace hpx

namespace serialization

Functions

template<typename Archive>
void save(Archive &ar, std::exception_ptr const &e, unsigned int)

template<typename Archive>
void load(Archive &ar, std::exception_ptr &e, unsigned int)

namespace util

Enums

enum exception_type
Values:

unknown_exception = 0

std_runtime_error = 1

std_invalid_argument = 2

std_out_of_range = 3

std_logic_error = 4

std_bad_alloc = 5

std_bad_cast = 6

std_bad_typeid = 7

std_bad_exception = 8

std_exception = 9

boost_system_error = 10

hpx_exception = 11

hpx_thread_interrupted_exception = 12

2.9. API reference 1085

HPX Documentation, 1.5.1

Header hpx/serialization/input_archive.hpp

namespace hpx

namespace serialization

struct input_archive : public hpx::serialization::basic_archive<input_archive>
#include <input_archive.hpp>

Public Types

using base_type = basic_archive<input_archive>

Public Functions

template<typename Container>
input_archive(Container &buffer, std::size_t inbound_data_size = 0, const

std::vector<serialization_chunk> *chunks = nullptr)

template<typename T>
void invoke_impl(T &t)

template<typename T>
std::enable_if<!std::is_integral<T>::value && !std::is_enum<T>::value>::type load(T &t)

template<typename T>
std::enable_if<std::is_integral<T>::value || std::is_enum<T>::value>::type load(T &t)

void load(float &f)

void load(double &d)

void load(char &c)

void load(bool &b)

std::size_t bytes_read() const

std::size_t current_pos() const

Private Functions

template<typename T>
void load_bitwise(T &t, std::false_type)

template<typename T>
void load_bitwise(T &t, std::true_type)

template<class T>
void load_nonintrusively_polymorphic(T &t, std::false_type)

template<class T>
void load_nonintrusively_polymorphic(T &t, std::true_type)

1086 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename T>
void load_integral(T &val, std::false_type)

template<typename T>
void load_integral(T &val, std::true_type)

template<class Promoted>
void load_integral_impl(Promoted &l)

void load_binary(void *address, std::size_t count)

void load_binary_chunk(void *address, std::size_t count)

Private Members

std::unique_ptr<erased_input_container> buffer_

Friends

friend hpx::serialization::basic_archive< input_archive >

friend hpx::serialization::array

Header hpx/serialization/input_container.hpp

namespace hpx

namespace serialization

template<typename Container>
struct input_container : public hpx::serialization::erased_input_container

#include <input_container.hpp>

Public Functions

input_container(Container const &cont, std::size_t inbound_data_size)

input_container(Container const &cont, std::vector<serialization_chunk> const
*chunks, std::size_t inbound_data_size)

void set_filter(binary_filter *filter)

void load_binary(void *address, std::size_t count)

void load_binary_chunk(void *address, std::size_t count)

2.9. API reference 1087

HPX Documentation, 1.5.1

Public Members

Container const &cont_

std::size_t current_

std::unique_ptr<binary_filter> filter_

std::size_t decompressed_size_

std::vector<serialization_chunk> const *chunks_

std::size_t current_chunk_

std::size_t current_chunk_size_

Private Types

template<>
using access_traits = traits::serialization_access_data<Container>

Private Functions

std::size_t get_chunk_size(std::size_t chunk) const

std::uint8_t get_chunk_type(std::size_t chunk) const

chunk_data get_chunk_data(std::size_t chunk) const

std::size_t get_num_chunks() const

Header hpx/serialization/intrusive_ptr.hpp

Header hpx/serialization/list.hpp

namespace hpx

namespace serialization

Functions

template<typename T, typename Allocator>
void serialize(input_archive &ar, std::list<T , Allocator> &ls, unsigned)

template<typename T, typename Allocator>
void serialize(output_archive &ar, const std::list<T , Allocator> &ls, unsigned)

1088 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/serialization/map.hpp

namespace hpx

namespace serialization

Functions

template<typename Key, typename Value>
void serialize(input_archive &ar, std::pair<Key, Value> &t, unsigned)

template<typename Key, typename Value>
void serialize(output_archive &ar, const std::pair<Key, Value> &t, unsigned)

template<typename Key, typename Value, typename Comp, typename Alloc>
void serialize(input_archive &ar, std::map<Key, Value, Comp, Alloc> &t, unsigned)

template<typename Key, typename Value, typename Comp, typename Alloc>
void serialize(output_archive &ar, std::map<Key, Value, Comp, Alloc> const &t, unsigned)

Header hpx/serialization/multi_array.hpp

Header hpx/serialization/optional.hpp

namespace hpx

namespace serialization

Functions

template<typename T>
void save(output_archive &ar, hpx::util::optional<T> const &o, unsigned)

template<typename T>
void load(input_archive &ar, hpx::util::optional<T> &o, unsigned)

hpx::serialization::HPX_SERIALIZATION_SPLIT_FREE_TEMPLATE((template< typename T >), (hpx::util::optional< T >))

Header hpx/serialization/output_archive.hpp

namespace hpx

namespace serialization

struct output_archive : public hpx::serialization::basic_archive<output_archive>
#include <output_archive.hpp>

2.9. API reference 1089

HPX Documentation, 1.5.1

Public Types

using base_type = basic_archive<output_archive>

Public Functions

template<typename Container>
output_archive(Container &buffer, std::uint32_t flags = 0U,

std::vector<serialization_chunk> *chunks = nullptr, binary_filter *filter =
nullptr)

std::size_t bytes_written() const

std::size_t get_num_chunks() const

std::size_t current_pos() const

void reset()

void flush()

bool is_preprocessing() const

Protected Functions

template<typename T>
void invoke_impl(T const &t)

template<typename T>
std::enable_if<!std::is_integral<T>::value && !std::is_enum<T>::value>::type save(T const

&t)

template<typename T>
std::enable_if<std::is_integral<T>::value || std::is_enum<T>::value>::type save(T t)

void save(float f)

void save(double d)

void save(char c)

void save(bool b)

template<typename T>
void save_bitwise(T const &t, std::false_type)

template<typename T>
void save_bitwise(T const &t, std::true_type)

template<typename T>
void save_nonintrusively_polymorphic(T const &t, std::false_type)

template<typename T>
void save_nonintrusively_polymorphic(T const &t, std::true_type)

template<typename T>
void save_integral(T val, std::false_type)

1090 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename T>
void save_integral(T val, std::true_type)

template<class Promoted>
void save_integral_impl(Promoted l)

void save_binary(void const *address, std::size_t count)

void save_binary_chunk(void const *address, std::size_t count)

Protected Attributes

std::unique_ptr<erased_output_container> buffer_

Private Static Functions

static std::uint32_t make_flags(std::uint32_t flags, std::vector<serialization_chunk>
*chunks)

Friends

friend hpx::serialization::basic_archive< output_archive >

friend hpx::serialization::array

Header hpx/serialization/output_container.hpp

namespace hpx

namespace serialization

template<typename Container, typename Chunker>
struct filtered_output_container : public hpx::serialization::output_container<Container, Chunker>

#include <output_container.hpp>

Public Types

template<>
using access_traits = traits::serialization_access_data<Container>

template<>
using base_type = output_container<Container, Chunker>

2.9. API reference 1091

HPX Documentation, 1.5.1

Public Functions

filtered_output_container(Container &cont, std::vector<serialization_chunk>
*chunks = nullptr)

~filtered_output_container()

void flush()

void set_filter(binary_filter *filter)

void save_binary(void const *address, std::size_t count)

std::size_t save_binary_chunk(void const *address, std::size_t count)

Protected Attributes

std::size_t start_compressing_at_

binary_filter *filter_

template<typename Container, typename Chunker>
struct output_container : public hpx::serialization::erased_output_container

#include <output_container.hpp> Subclassed by hpx::serialization::filtered_output_container< Con-
tainer, Chunker >

Public Types

template<>
using access_traits = traits::serialization_access_data<Container>

Public Functions

output_container(Container &cont, std::vector<serialization_chunk> *chunks = nullptr)

~output_container()

void flush()

std::size_t get_num_chunks() const

void reset()

void set_filter(binary_filter *filter)

void save_binary(void const *address, std::size_t count)

std::size_t save_binary_chunk(void const *address, std::size_t count)

bool is_preprocessing() const

1092 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Protected Attributes

Container &cont_

std::size_t current_

Chunker chunker_

Header hpx/serialization/serializable_any.hpp

template<typename IArch, typename OArch, typename Char>
class basic_any<IArch, OArch, Char, std::true_type>

#include <serializable_any.hpp>

Public Functions

constexpr basic_any()

basic_any(basic_any const &x)

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_copy_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

~basic_any()

basic_any &operator=(basic_any const &x)

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_copy_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

2.9. API reference 1093

HPX Documentation, 1.5.1

Private Functions

basic_any &assign(basic_any const &x)

void load(IArch &ar, const unsigned version)

void save(OArch &ar, const unsigned version) const

HPX_SERIALIZATION_SPLIT_MEMBER()

Private Members

detail::any::fxn_ptr_table<IArch, OArch, Char, std::true_type> *table

void *object

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

Friends

friend hpx::serialization::access

namespace hpx

namespace util

Typedefs

using any = basic_any<serialization::input_archive, serialization::output_archive, char, std::true_type>

using wany = basic_any<serialization::input_archive, serialization::output_archive, wchar_t, std::true_type>

Functions

template<typename T, typename Char>
basic_any<serialization::input_archive, serialization::output_archive, Char> make_any(T &&t)

template<typename IArch, typename OArch, typename Char>
class basic_any<IArch, OArch, Char, std::true_type>

#include <serializable_any.hpp>

1094 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

constexpr basic_any()

basic_any(basic_any const &x)

basic_any(basic_any &&x)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value>::type>
basic_any(T &&x, typename std::enable_if<std::is_copy_constructible<typename

std::decay<T>::type>::value>::type* = nullptr)

~basic_any()

basic_any &operator=(basic_any const &x)

basic_any &operator=(basic_any &&rhs)

template<typename T, typename Enable = typename std::enable_if<!std::is_same<basic_any, typename std::decay<T>::type>::value && std::is_copy_constructible<typename std::decay<T>::type>::value>::type>
basic_any &operator=(T &&rhs)

basic_any &swap(basic_any &x)

std::type_info const &type() const

template<typename T>
T const &cast() const

bool has_value() const

void reset()

bool equal_to(basic_any const &rhs) const

Private Functions

basic_any &assign(basic_any const &x)

void load(IArch &ar, const unsigned version)

void save(OArch &ar, const unsigned version) const

HPX_SERIALIZATION_SPLIT_MEMBER()

Private Members

detail::any::fxn_ptr_table<IArch, OArch, Char, std::true_type> *table

void *object

2.9. API reference 1095

HPX Documentation, 1.5.1

Private Static Functions

template<typename T, typename ...Ts>
static void new_object(void *&object, std::true_type, Ts&&... ts)

template<typename T, typename ...Ts>
static void new_object(void *&object, std::false_type, Ts&&... ts)

Friends

friend hpx::util::hpx::serialization::access

struct hash_any
#include <serializable_any.hpp>

Public Functions

template<typename Char>
std::size_t operator()(const basic_any<serialization::input_archive, serializa-

tion::output_archive, Char, std::true_type> &elem) const

Header hpx/serialization/serialization_chunk.hpp

namespace hpx

namespace serialization

Enums

enum chunk_type
Values:

chunk_type_index = 0

chunk_type_pointer = 1

Functions

serialization_chunk create_index_chunk(std::size_t index, std::size_t size)

serialization_chunk create_pointer_chunk(void const *pos, std::size_t size, std::uint64_t
rkey = 0)

union chunk_data
#include <serialization_chunk.hpp>

1096 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Members

std::size_t index_

void const *cpos_

void *pos_

struct serialization_chunk
#include <serialization_chunk.hpp>

Public Members

chunk_data data_

std::size_t size_

std::uint64_t rkey_

std::uint8_t type_

Header hpx/serialization/serialization_fwd.hpp

Defines

HPX_SERIALIZATION_SPLIT_MEMBER()

HPX_SERIALIZATION_SPLIT_FREE(T)

HPX_SERIALIZATION_SPLIT_FREE_TEMPLATE(TEMPLATE, ARGS)

namespace hpx

namespace serialization

Functions

template<typename T>
output_archive &operator<<(output_archive &ar, T const &t)

template<typename T>
input_archive &operator>>(input_archive &ar, T &t)

template<typename T>
output_archive &operator&(output_archive &ar, T const &t)

template<typename T>
input_archive &operator&(input_archive &ar, T &t)

2.9. API reference 1097

HPX Documentation, 1.5.1

Header hpx/serialization/serialize.hpp

namespace hpx

namespace serialization

Functions

template<typename T>
output_archive &operator&(output_archive &ar, T const &t)

template<typename T>
input_archive &operator&(input_archive &ar, T &t)

Header hpx/serialization/serialize_buffer.hpp

namespace hpx

namespace serialization

template<typename T, typename Allocator = std::allocator<T>>
class serialize_buffer

#include <serialize_buffer.hpp>

Public Types

enum init_mode
Values:

copy = 0

reference = 1

take = 2

template<>
using value_type = T

Public Functions

serialize_buffer(allocator_type const &alloc = allocator_type())

serialize_buffer(std::size_t size, allocator_type const &alloc = allocator_type())

serialize_buffer(T *data, std::size_t size, init_mode mode = copy, allocator_type const
&alloc = allocator_type())

template<typename Deallocator>
serialize_buffer(T *data, std::size_t size, allocator_type const &alloc, Deallocator

const &dealloc)

template<typename Deleter>

1098 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

serialize_buffer(T *data, std::size_t size, init_mode mode, Deleter const &deleter,
allocator_type const &alloc = allocator_type())

template<typename Deleter>
serialize_buffer(T const *data, std::size_t size, init_mode mode, Deleter const

&deleter, allocator_type const &alloc = allocator_type())

template<typename Deallocator, typename Deleter>
serialize_buffer(T *data, std::size_t size, allocator_type const &alloc, Deallocator

const &dealloc, Deleter const &deleter)

serialize_buffer(T const *data, std::size_t size, allocator_type const &alloc = allo-
cator_type())

template<typename Deleter>
serialize_buffer(T const *data, std::size_t size, Deleter const &deleter, alloca-

tor_type const &alloc = allocator_type())

serialize_buffer(T const *data, std::size_t size, init_mode mode, allocator_type
const &alloc = allocator_type())

T *data()

T const *data() const

T *begin()

T *end()

T &operator[](std::size_t idx)

T operator[](std::size_t idx) const

buffer_type data_array() const

std::size_t size() const

Private Types

template<>
using allocator_type = Allocator

template<>
using buffer_type = boost::shared_array<T>

Private Functions

template<typename Archive>
void save(Archive &ar, unsigned int const) const

template<typename Archive>
void load(Archive &ar, unsigned int const)

2.9. API reference 1099

HPX Documentation, 1.5.1

Private Members

buffer_type data_

std::size_t size_

Allocator alloc_

Private Static Functions

static void no_deleter(T*)

template<typename Deallocator>
static void deleter(T *p, Deallocator dealloc, std::size_t size)

Friends

friend hpx::serialization::hpx::serialization::access

bool operator==(serialize_buffer const &rhs, serialize_buffer const &lhs)

Header hpx/serialization/set.hpp

namespace hpx

namespace serialization

Functions

template<typename T, typename Compare, typename Allocator>
void serialize(input_archive &ar, std::set<T , Compare, Allocator> &set, unsigned)

template<typename T, typename Compare, typename Allocator>
void serialize(output_archive &ar, std::set<T , Compare, Allocator> const &set, unsigned)

Header hpx/serialization/shared_ptr.hpp

namespace hpx

namespace serialization

1100 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename T>
void load(input_archive &ar, std::shared_ptr<T> &ptr, unsigned)

template<typename T>
void save(output_archive &ar, std::shared_ptr<T> const &ptr, unsigned)

Header hpx/serialization/std_tuple.hpp

namespace hpx

namespace serialization

Functions

template<typename Archive, typename ...Ts>
void serialize(Archive &ar, std::tuple<Ts...> &t, unsigned int version)

template<typename Archive>
void serialize(Archive &ar, std::tuple<>&, unsigned int)

Header hpx/serialization/string.hpp

namespace hpx

namespace serialization

Functions

template<typename Char, typename CharTraits, typename Allocator>
void serialize(input_archive &ar, std::basic_string<Char, CharTraits, Allocator> &s, un-

signed)

template<typename Char, typename CharTraits, typename Allocator>
void serialize(output_archive &ar, std::basic_string<Char, CharTraits, Allocator> const &s,

unsigned)

Header hpx/serialization/traits/brace_initializable_traits.hpp

Header hpx/serialization/traits/is_bitwise_serializable.hpp

Defines

HPX_IS_BITWISE_SERIALIZABLE(T)

2.9. API reference 1101

HPX Documentation, 1.5.1

Header hpx/serialization/traits/needs_automatic_registration.hpp

Header hpx/serialization/traits/polymorphic_traits.hpp

Defines

HPX_TRAITS_NONINTRUSIVE_POLYMORPHIC(Class)

HPX_TRAITS_NONINTRUSIVE_POLYMORPHIC_TEMPLATE(TEMPLATE, ARG_LIST)

HPX_TRAITS_SERIALIZED_WITH_ID(Class)

HPX_TRAITS_SERIALIZED_WITH_ID_TEMPLATE(TEMPLATE, ARG_LIST)

Header hpx/serialization/traits/serialization_access_data.hpp

namespace hpx

namespace traits

template<typename Container>
struct default_serialization_access_data

#include <serialization_access_data.hpp> Subclassed by hpx::traits::serialization_access_data<
Container >

Public Types

template<>
using preprocessing_only = std::false_type

Public Static Functions

static constexpr bool is_preprocessing()

static constexpr void write(Container &cont, std::size_t count, std::size_t current, void
const *address)

static bool flush(serialization::binary_filter *filter, Container &cont, std::size_t current,
std::size_t size, std::size_t &written)

static constexpr void read(Container const &cont, std::size_t count, std::size_t cur-
rent, void *address)

static constexpr std::size_t init_data(Container const &cont, serializa-
tion::binary_filter *filter, std::size_t current,
std::size_t decompressed_size)

static constexpr void reset(Container &cont)

template<typename Container>
struct serialization_access_data : public hpx::traits::default_serialization_access_data<Container>

#include <serialization_access_data.hpp> Subclassed by hpx::traits::serialization_access_data<
Container const >

1102 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Static Functions

static std::size_t size(Container const &cont)

static void resize(Container &cont, std::size_t count)

static void write(Container &cont, std::size_t count, std::size_t current, void const *ad-
dress)

static bool flush(serialization::binary_filter *filter, Container &cont, std::size_t current,
std::size_t size, std::size_t &written)

static void read(Container const &cont, std::size_t count, std::size_t current, void *ad-
dress)

static std::size_t init_data(Container const &cont, serialization::binary_filter *filter,
std::size_t current, std::size_t decompressed_size)

Header hpx/serialization/tuple.hpp

namespace hpx

namespace serialization

Functions

template<typename Archive, typename ...Ts>
void serialize(Archive &ar, hpx::util::tuple<Ts...> &t, unsigned int version)

template<typename Archive>
void serialize(Archive &ar, hpx::util::tuple<>&, unsigned)

template<typename Archive, typename ...Ts>
void load_construct_data(Archive &ar, hpx::util::tuple<Ts...> *t, unsigned int version)

template<typename Archive, typename ...Ts>
void save_construct_data(Archive &ar, hpx::util::tuple<Ts...> const *t, unsigned int ver-

sion)

Header hpx/serialization/unique_ptr.hpp

namespace hpx

namespace serialization

2.9. API reference 1103

HPX Documentation, 1.5.1

Functions

template<typename T>
void load(input_archive &ar, std::unique_ptr<T> &ptr, unsigned)

template<typename T>
void save(output_archive &ar, const std::unique_ptr<T> &ptr, unsigned)

Header hpx/serialization/unordered_map.hpp

namespace hpx

namespace serialization

Functions

template<typename Key, typename Value, typename Hash, typename KeyEqual, typename Alloc>
void serialize(input_archive &ar, std::unordered_map<Key, Value, Hash, KeyEqual, Alloc> &t,

unsigned)

template<typename Key, typename Value, typename Hash, typename KeyEqual, typename Alloc>
void serialize(output_archive &ar, const std::unordered_map<Key, Value, Hash, KeyEqual,

Alloc> &t, unsigned)

Header hpx/serialization/valarray.hpp

namespace hpx

namespace serialization

Functions

template<typename T>
void serialize(input_archive &ar, std::valarray<T> &arr, int)

template<typename T>
void serialize(output_archive &ar, std::valarray<T> const &arr, int)

Header hpx/serialization/variant.hpp

Header hpx/serialization/vector.hpp

namespace hpx

namespace serialization

1104 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename Allocator>
void serialize(input_archive &ar, std::vector<bool, Allocator> &v, unsigned)

template<typename T, typename Allocator>
void serialize(input_archive &ar, std::vector<T , Allocator> &v, unsigned)

template<typename Allocator>
void serialize(output_archive &ar, std::vector<bool, Allocator> const &v, unsigned)

template<typename T, typename Allocator>
void serialize(output_archive &ar, std::vector<T , Allocator> const &v, unsigned)

static_reinit

The contents of this module can be included with the header hpx/modules/static_reinit.hpp. These head-
ers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/static_reinit.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/static_reinit/reinitializable_static.hpp

Defines

HPX_EXPORT_REINITIALIZABLE_STATIC

namespace hpx

namespace util

Variables

template<typename T, typename Tag = T , std::size_t N = 1>
struct HPX_EXPORT_REINITIALIZABLE_STATIC reinitializable_static

template<typename T, typename Tag, std::size_t N>
struct reinitializable_static

#include <reinitializable_static.hpp>

Public Types

typedef T value_type

typedef T &reference

typedef T const &const_reference

2.9. API reference 1105

HPX Documentation, 1.5.1

Public Functions

HPX_NON_COPYABLE(reinitializable_static)

reinitializable_static()

template<typename U>
reinitializable_static(U const &val)

operator reference()

operator const_reference() const

reference get(std::size_t item = 0)

const_reference get(std::size_t item = 0) const

Private Types

typedef std::add_pointer<value_type>::type pointer

typedef std::aligned_storage<sizeof(value_type), std::alignment_of<value_type>::value>::type storage_type

Private Static Functions

static void default_construct()

template<typename U>
static void value_construct(U const &v)

static void destruct()

static void default_constructor()

template<typename U>
static void value_constructor(U const *pv)

static pointer get_address(std::size_t item)

Private Static Attributes

reinitializable_static<T, Tag, N>::storage_type data_

std::once_flag constructed_

Header hpx/static_reinit/static_reinit.hpp

namespace hpx

namespace util

1106 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

void reinit_register(util::function_nonser<void)
> const &constructutil::function_nonser<void> const &destruct

void reinit_construct()

void reinit_destruct()

statistics

The contents of this module can be included with the header hpx/modules/statistics.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/statistics.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/statistics/histogram.hpp

namespace boost

namespace accumulators

namespace extract

Variables

extractor<tag::histogram> const histogram = {}

namespace tag

struct histogram : public depends_on<count>, public histogram_num_bins, public histogram_min_range, public histogram_max_range
#include <histogram.hpp>

struct impl
#include <histogram.hpp>

template<typename Sample, typename Weight>
struct apply

#include <histogram.hpp>

2.9. API reference 1107

HPX Documentation, 1.5.1

Public Types

typedef hpx::util::detail::histogram_impl<Sample> type

Header hpx/statistics/max.hpp

namespace hpx

namespace util

Functions

template<typename T>constexpr T const&() hpx::util::max(T const & a, T const & b)

Header hpx/statistics/min.hpp

namespace hpx

namespace util

Functions

template<typename T>constexpr T const&() hpx::util::min(T const & a, T const & b)

Header hpx/statistics/rolling_max.hpp

namespace boost

namespace accumulators

namespace extract

Variables

extractor<tag::rolling_max> const rolling_max = {}

namespace tag

struct rolling_max : public depends_on<rolling_window>
#include <rolling_max.hpp>

struct impl
#include <rolling_max.hpp>

template<typename Sample, typename Weight>
struct apply

#include <rolling_max.hpp>

1108 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Types

typedef hpx::util::detail::rolling_max_impl<Sample> type

Header hpx/statistics/rolling_min.hpp

namespace boost

namespace accumulators

namespace extract

Variables

extractor<tag::rolling_min> const rolling_min = {}

namespace tag

struct rolling_min : public depends_on<rolling_window>
#include <rolling_min.hpp>

struct impl
#include <rolling_min.hpp>

template<typename Sample, typename Weight>
struct apply

#include <rolling_min.hpp>

Public Types

typedef hpx::util::detail::rolling_min_impl<Sample> type

string_util

The contents of this module can be included with the header hpx/modules/string_util.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/string_util.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

2.9. API reference 1109

HPX Documentation, 1.5.1

Header hpx/string_util/case_conv.hpp

namespace hpx

namespace string_util

Functions

template<typename CharT, class Traits, class Alloc>
void to_lower(std::basic_string<CharT , Traits, Alloc> &s)

Header hpx/string_util/classification.hpp

namespace hpx

namespace string_util

Functions

template<typename CharT, typename Traits, typename Allocator>
detail::is_any_of_pred<CharT , Traits, Allocator> is_any_of(std::basic_string<CharT , Traits,

Allocator> const &chars)

auto is_any_of(char const *chars)

struct is_space
#include <classification.hpp>

Public Functions

bool operator()(int c) const

Header hpx/string_util/split.hpp

namespace hpx

namespace string_util

1110 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Enums

enum token_compress_mode
Values:

off

on

Functions

template<typename Container, typename Predicate, typename CharT, typename Traits, typename Allocator>
void split(Container &container, std::basic_string<CharT , Traits, Allocator> const &str, Pred-

icate &&pred, token_compress_mode compress_mode = token_compress_mode::off)

template<typename Container, typename Predicate>
void split(Container &container, char const *str, Predicate &&pred, token_compress_mode

compress_mode = token_compress_mode::off)

Header hpx/string_util/trim.hpp

namespace hpx

namespace string_util

Functions

template<typename CharT, class Traits, class Alloc>
void trim(std::basic_string<CharT , Traits, Alloc> &s)

template<typename CharT, class Traits, class Alloc>
std::basic_string<CharT , Traits, Alloc> trim_copy(std::basic_string<CharT , Traits, Alloc>

const &s)

synchronization

The contents of this module can be included with the header hpx/modules/synchronization.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/synchronization.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

2.9. API reference 1111

HPX Documentation, 1.5.1

Header hpx/condition_variable.hpp

Header hpx/local/barrier.hpp

namespace hpx

Typedefs

using barrier = lcos::local::cpp20_barrier<OnCompletion>

Header hpx/local/latch.hpp

namespace hpx

Typedefs

using latch = hpx::lcos::local::cpp20_latch

Header hpx/mutex.hpp

Header hpx/semaphore.hpp

namespace hpx

Typedefs

using counting_semaphore = hpx::lcos::local::cpp20_counting_semaphore<LeastMaxValue>

using binary_semaphore = hpx::lcos::local::cpp20_binary_semaphore<>

Header hpx/shared_mutex.hpp

Header hpx/stop_token.hpp

Header hpx/synchronization/barrier.hpp

namespace hpx

namespace lcos

namespace local

class barrier
#include <barrier.hpp> A barrier can be used to synchronize a specific number of threads, block-
ing all of the entering threads until all of the threads have entered the barrier.

1112 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note A barrier is not a LCO in the sense that it has no global id and it can’t be triggered using
the action (parcel) mechanism. It is just a low level synchronization primitive allowing to
synchronize a given number of threads.

Public Functions

barrier(std::size_t number_of_threads)

~barrier()

void wait()
The function wait will block the number of entering threads (as given by the constructor pa-
rameter number_of_threads), releasing all waiting threads as soon as the last thread entered
this function.

void count_up()
The function count_up will increase the number of threads to be waited in wait function.

void reset(std::size_t number_of_threads)
The function reset will reset the number of threads as given by the function parameter num-
ber_of_threads. the newer coming threads executing the function wait will be waiting until
total_ is equal to barrier_flag. The last thread exiting the wait function will notify the newer
threads waiting and the newer threads will get the reset number_of_threads_. The function
reset can be executed while previous threads executing waiting after they have been waken up.
Thus total_ can not be reset to barrier_flag which will break the comparison condition under
the function wait.

Private Types

typedef lcos::local::spinlock mutex_type

Private Members

std::size_t number_of_threads_

std::size_t total_

mutex_type mtx_

local::detail::condition_variable cond_

Private Static Attributes

constexpr std::size_t barrier_flag = static_cast<std::size_t>(1) << (CHAR_BIT * sizeof(std::size_t) - 1)

template<typename OnCompletion = detail::empty_oncompletion>
class cpp20_barrier

#include <barrier.hpp>

2.9. API reference 1113

HPX Documentation, 1.5.1

Public Types

template<>
using arrival_token = bool

Public Functions

HPX_NON_COPYABLE(cpp20_barrier)

cpp20_barrier(std::ptrdiff_t expected, OnCompletion completion = OnCompletion())

HPX_NODISCARD arrival_token hpx::lcos::local::cpp20_barrier::arrive(std::ptrdiff_t update = 1)

void wait(arrival_token &&old_phase) const

void arrive_and_wait()
Effects: Equivalent to: wait(arrive()).

void arrive_and_drop()

Public Static Functions

static constexpr std::ptrdiff_t() hpx::lcos::local::cpp20_barrier::max()

Private Types

template<>
using mutex_type = lcos::local::spinlock

Private Members

mutex_type mtx_

local::detail::condition_variable cond_

std::ptrdiff_t expected_

std::ptrdiff_t arrived_

OnCompletion completion_

bool phase_

Header hpx/synchronization/channel_mpmc.hpp

namespace hpx

namespace lcos

namespace local

1114 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Typedefs

using channel_mpmc = bounded_channel<T, hpx::lcos::local::spinlock>

template<typename T, typename Mutex = util::spinlock>
class bounded_channel

#include <channel_mpmc.hpp>

Public Functions

bounded_channel(std::size_t size)

bounded_channel(bounded_channel &&rhs)

bounded_channel &operator=(bounded_channel &&rhs)

~bounded_channel()

bool get(T *val = nullptr) const

bool set(T &&t)

std::size_t close()

std::size_t capacity() const

Protected Functions

std::size_t close(std::unique_lock<mutex_type> &l)

Private Types

template<>
using mutex_type = Mutex

Private Functions

bool is_full(std::size_t tail) const

bool is_empty(std::size_t head) const

Private Members

hpx::util::cache_aligned_data<mutex_type> mtx_

hpx::util::cache_aligned_data<std::size_t> head_

hpx::util::cache_aligned_data<std::size_t> tail_

std::size_t size_

std::unique_ptr<T[]> buffer_

bool closed_

2.9. API reference 1115

HPX Documentation, 1.5.1

Header hpx/synchronization/channel_mpsc.hpp

namespace hpx

namespace lcos

namespace local

Typedefs

using channel_mpsc = base_channel_mpsc<T, hpx::lcos::local::spinlock>

template<typename T, typename Mutex = util::spinlock>
class base_channel_mpsc

#include <channel_mpsc.hpp>

Public Functions

base_channel_mpsc(std::size_t size)

base_channel_mpsc(base_channel_mpsc &&rhs)

base_channel_mpsc &operator=(base_channel_mpsc &&rhs)

~base_channel_mpsc()

bool get(T *val = nullptr) const

bool set(T &&t)

std::size_t close()

std::size_t capacity() const

Private Types

template<>
using mutex_type = Mutex

Private Functions

bool is_full(std::size_t tail) const

bool is_empty(std::size_t head) const

1116 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Members

hpx::util::cache_aligned_data<std::atomic<std::size_t>> head_

hpx::util::cache_aligned_data<tail_data> tail_

std::size_t size_

std::unique_ptr<T[]> buffer_

std::atomic<bool> closed_

struct tail_data

Public Members

template<>
mutex_type mtx_

template<>
std::atomic<std::size_t> tail_

Header hpx/synchronization/channel_spsc.hpp

namespace hpx

namespace lcos

namespace local

template<typename T>
class channel_spsc

#include <channel_spsc.hpp>

Public Functions

channel_spsc(std::size_t size)

channel_spsc(channel_spsc &&rhs)

channel_spsc &operator=(channel_spsc &&rhs)

~channel_spsc()

bool get(T *val = nullptr) const

bool set(T &&t)

std::size_t close()

std::size_t capacity() const

2.9. API reference 1117

HPX Documentation, 1.5.1

Private Functions

bool is_full(std::size_t tail) const

bool is_empty(std::size_t head) const

Private Members

hpx::util::cache_aligned_data<std::atomic<std::size_t>> head_

hpx::util::cache_aligned_data<std::atomic<std::size_t>> tail_

std::size_t size_

std::unique_ptr<T[]> buffer_

std::atomic<bool> closed_

Header hpx/synchronization/condition_variable.hpp

namespace hpx

namespace lcos

namespace local

Enums

enum cv_status
Values:

no_timeout

timeout

error

class condition_variable
#include <condition_variable.hpp>

Public Functions

condition_variable()

~condition_variable()

void notify_one(error_code &ec = throws)

void notify_all(error_code &ec = throws)

void wait(std::unique_lock<mutex> &lock, error_code &ec = throws)

template<typename Predicate>
void wait(std::unique_lock<mutex> &lock, Predicate pred, error_code& = throws)

1118 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

cv_status wait_until(std::unique_lock<mutex> &lock, util::steady_time_point const
&abs_time, error_code &ec = throws)

template<typename Predicate>
bool wait_until(std::unique_lock<mutex> &lock, util::steady_time_point const

&abs_time, Predicate pred, error_code &ec = throws)

cv_status wait_for(std::unique_lock<mutex> &lock, util::steady_duration const
&rel_time, error_code &ec = throws)

template<typename Predicate>
bool wait_for(std::unique_lock<mutex> &lock, util::steady_duration const &rel_time,

Predicate pred, error_code &ec = throws)

Private Types

using mutex_type = detail::condition_variable_data::mutex_type

using data_type = hpx::memory::intrusive_ptr<detail::condition_variable_data>

Private Members

hpx::util::cache_aligned_data_derived<data_type> data_

class condition_variable_any
#include <condition_variable.hpp>

Public Functions

condition_variable_any()

~condition_variable_any()

void notify_one(error_code &ec = throws)

void notify_all(error_code &ec = throws)

template<typename Lock>
void wait(Lock &lock, error_code &ec = throws)

template<typename Lock, typename Predicate>
void wait(Lock &lock, Predicate pred, error_code &ec = throws)

template<typename Lock>
cv_status wait_until(Lock &lock, util::steady_time_point const &abs_time, error_code

&ec = throws)

template<typename Lock, typename Predicate>
bool wait_until(Lock &lock, util::steady_time_point const &abs_time, Predicate pred,

error_code &ec = throws)

template<typename Lock>
cv_status wait_for(Lock &lock, util::steady_duration const &rel_time, error_code &ec

= throws)

template<typename Lock, typename Predicate>

2.9. API reference 1119

HPX Documentation, 1.5.1

bool wait_for(Lock &lock, util::steady_duration const &rel_time, Predicate pred, er-
ror_code &ec = throws)

template<typename Lock, typename Predicate>
bool wait(Lock &lock, stop_token stoken, Predicate pred, error_code &ec = throws)

template<typename Lock, typename Predicate>
bool wait_until(Lock &lock, stop_token stoken, util::steady_time_point const

&abs_time, Predicate pred, error_code &ec = throws)

template<typename Lock, typename Predicate>
bool wait_for(Lock &lock, stop_token stoken, util::steady_duration const &rel_time,

Predicate pred, error_code &ec = throws)

Private Types

using mutex_type = detail::condition_variable_data::mutex_type

using data_type = hpx::memory::intrusive_ptr<detail::condition_variable_data>

Private Members

hpx::util::cache_aligned_data_derived<data_type> data_

Header hpx/synchronization/counting_semaphore.hpp

namespace hpx

namespace lcos

namespace local

Typedefs

typedef counting_semaphore_var counting_semaphore

template<typename Mutex = hpx::lcos::local::spinlock, int N = 0>
class counting_semaphore_var : private hpx::lcos::local::cpp20_counting_semaphore<PTRDIFF_MAX, Mutex>

#include <counting_semaphore.hpp>

Public Functions

counting_semaphore_var(std::ptrdiff_t value = N)

counting_semaphore_var(counting_semaphore_var const&)

counting_semaphore_var &operator=(counting_semaphore_var const&)

void wait(std::ptrdiff_t count = 1)

bool try_wait(std::ptrdiff_t count = 1)

1120 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void signal(std::ptrdiff_t count = 1)
Signal the semaphore.

std::ptrdiff_t signal_all()

Private Types

template<>
using mutex_type = Mutex

template<typename Mutex = hpx::lcos::local::spinlock>
class cpp20_binary_semaphore : public hpx::lcos::local::cpp20_counting_semaphore<1, Mutex>

#include <counting_semaphore.hpp>

Public Functions

HPX_NON_COPYABLE(cpp20_binary_semaphore)

cpp20_binary_semaphore(std::ptrdiff_t value = 1)

~cpp20_binary_semaphore()

template<std::ptrdiff_t LeastMaxValue = PTRDIFF_MAX, typename Mutex = hpx::lcos::local::spinlock>
class cpp20_counting_semaphore

#include <counting_semaphore.hpp>

Public Functions

HPX_NON_COPYABLE(cpp20_counting_semaphore)

cpp20_counting_semaphore(std::ptrdiff_t value)

~cpp20_counting_semaphore()

void release(std::ptrdiff_t update = 1)

bool try_acquire()

void acquire()

bool try_acquire_until(util::steady_time_point const &abs_time)

bool try_acquire_for(util::steady_duration const &rel_time)

Public Static Functions

static constexpr std::ptrdiff_t() hpx::lcos::local::cpp20_counting_semaphore::max()

2.9. API reference 1121

HPX Documentation, 1.5.1

Protected Types

template<>
using mutex_type = Mutex

Protected Attributes

mutex_type mtx_

detail::counting_semaphore sem_

Header hpx/synchronization/event.hpp

namespace hpx

namespace lcos

namespace local

class event
#include <event.hpp> Event semaphores can be used for synchronizing multiple threads that need
to wait for an event to occur. When the event occurs, all threads waiting for the event are woken
up.

Public Functions

event()
Construct a new event semaphore.

bool occurred()
Check if the event has occurred.

void wait()
Wait for the event to occur.

void set()
Release all threads waiting on this semaphore.

void reset()
Reset the event.

1122 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

typedef lcos::local::spinlock mutex_type

Private Functions

void wait_locked(std::unique_lock<mutex_type> &l)

void set_locked(std::unique_lock<mutex_type> l)

Private Members

mutex_type mtx_
This mutex protects the queue.

local::detail::condition_variable cond_

std::atomic<bool> event_

Header hpx/synchronization/latch.hpp

namespace hpx

namespace lcos

namespace local

class cpp20_latch
#include <latch.hpp> Latches are a thread coordination mechanism that allow one or more
threads to block until an operation is completed. An individual latch is a singleuse object; once
the operation has been completed, the latch cannot be reused.

Subclassed by hpx::lcos::local::latch

Public Functions

HPX_NON_COPYABLE(cpp20_latch)

cpp20_latch(std::ptrdiff_t count)
Initialize the latch

Requires: count >= 0. Synchronization: None Postconditions: counter_ == count.

~cpp20_latch()
Requires: No threads are blocked at the synchronization point.

Note May be called even if some threads have not yet returned from wait() or
count_down_and_wait(), provided that counter_ is 0.

Note The destructor might not return until all threads have exited wait() or
count_down_and_wait().

Note It is the caller’s responsibility to ensure that no other thread enters wait() after one thread
has called the destructor. This may require additional coordination.

2.9. API reference 1123

HPX Documentation, 1.5.1

void count_down(std::ptrdiff_t update)
Decrements counter_ by n. Does not block.

Requires: counter_ >= n and n >= 0.

Synchronization: Synchronizes with all calls that block on this latch and with all try_wait calls
on this latch that return true .

Exceptions
• Nothing.:

bool try_wait() const
Returns: With very low probability false. Otherwise counter == 0.

void wait() const
If counter_ is 0, returns immediately. Otherwise, blocks the calling thread at the synchroniza-
tion point until counter_ reaches 0.

Exceptions
• Nothing.:

void arrive_and_wait(std::ptrdiff_t update = 1)
Effects: Equivalent to: count_down(update); wait();

Public Static Functions

static constexpr std::ptrdiff_t() hpx::lcos::local::cpp20_latch::max()
Returns: The maximum value of counter that the implementation supports.

Protected Types

typedef lcos::local::spinlock mutex_type

Protected Attributes

util::cache_line_data<mutex_type> mtx_

util::cache_line_data<local::detail::condition_variable> cond_

std::atomic<std::ptrdiff_t> counter_

bool notified_

class latch : public hpx::lcos::local::cpp20_latch
#include <latch.hpp> A latch maintains an internal counter_ that is initialized when the latch is
created. Threads may block at a synchronization point waiting for counter_ to be decremented to
0. When counter_ reaches 0, all such blocked threads are released.

Calls to countdown_and_wait() , count_down() , wait() , is_ready(), count_up() , and reset()
behave as atomic operations.

Note A local::latch is not an LCO in the sense that it has no global id and it can’t be triggered
using the action (parcel) mechanism. Use lcos::latch instead if this is required. It is just a low
level synchronization primitive allowing to synchronize a given number of threads.

1124 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

HPX_NON_COPYABLE(latch)

latch(std::ptrdiff_t count)
Initialize the latch

Requires: count >= 0. Synchronization: None Postconditions: counter_ == count.

~latch()
Requires: No threads are blocked at the synchronization point.

Note May be called even if some threads have not yet returned from wait() or
count_down_and_wait(), provided that counter_ is 0.

Note The destructor might not return until all threads have exited wait() or
count_down_and_wait().

Note It is the caller’s responsibility to ensure that no other thread enters wait() after one thread
has called the destructor. This may require additional coordination.

void count_down_and_wait()
Decrements counter_ by 1 . Blocks at the synchronization point until counter_ reaches 0.

Requires: counter_ > 0.

Synchronization: Synchronizes with all calls that block on this latch and with all is_ready calls
on this latch that return true.

Exceptions
• Nothing.:

bool is_ready() const
Returns: counter_ == 0. Does not block.

Exceptions
• Nothing.:

void abort_all()

void count_up(std::ptrdiff_t n)
Increments counter_ by n. Does not block.

Requires: n >= 0.

Exceptions
• Nothing.:

void reset(std::ptrdiff_t n)
Reset counter_ to n. Does not block.

Requires: n >= 0.

Exceptions
• Nothing.:

2.9. API reference 1125

HPX Documentation, 1.5.1

Header hpx/synchronization/lock_types.hpp

namespace hpx

namespace lcos

namespace local

Functions

template<typename Mutex>
void swap(upgrade_lock<Mutex> &lhs, upgrade_lock<Mutex> &rhs)

template<typename Mutex>
class upgrade_lock

#include <lock_types.hpp>

Public Types

template<>
using mutex_type = Mutex

Public Functions

upgrade_lock(upgrade_lock const&)

upgrade_lock &operator=(upgrade_lock const&)

upgrade_lock()

upgrade_lock(Mutex &m_)

upgrade_lock(Mutex &m_, std::adopt_lock_t)

upgrade_lock(Mutex &m_, std::defer_lock_t)

upgrade_lock(Mutex &m_, std::try_to_lock_t)

upgrade_lock(upgrade_lock<Mutex> &&other)

upgrade_lock(std::unique_lock<Mutex> &&other)

upgrade_lock &operator=(upgrade_lock<Mutex> &&other)

void swap(upgrade_lock &other)

Mutex *mutex() const

Mutex *release()

~upgrade_lock()

void lock()

1126 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

bool try_lock()

void unlock()

operator bool() const

bool owns_lock() const

Protected Attributes

Mutex *m

bool is_locked

Friends

friend hpx::lcos::local::upgrade_to_unique_lock

template<typename Mutex>
class upgrade_to_unique_lock

#include <lock_types.hpp>

Public Types

template<>
using mutex_type = Mutex

Public Functions

upgrade_to_unique_lock(upgrade_to_unique_lock const&)

upgrade_to_unique_lock &operator=(upgrade_to_unique_lock const&)

upgrade_to_unique_lock(upgrade_lock<Mutex> &m_)

~upgrade_to_unique_lock()

upgrade_to_unique_lock(upgrade_to_unique_lock<Mutex> &&other)

upgrade_to_unique_lock &operator=(upgrade_to_unique_lock<Mutex> &&other)

void swap(upgrade_to_unique_lock &other)

operator bool() const

bool owns_lock() const

Mutex *mutex() const

2.9. API reference 1127

HPX Documentation, 1.5.1

Private Members

upgrade_lock<Mutex> *source

std::unique_lock<Mutex> exclusive

Header hpx/synchronization/mutex.hpp

namespace hpx

namespace lcos

namespace local

class mutex
#include <mutex.hpp> Subclassed by hpx::lcos::local::timed_mutex

Public Functions

HPX_NON_COPYABLE(mutex)

mutex(char const *const description = "")

~mutex()

void lock(char const *description, error_code &ec = throws)

void lock(error_code &ec = throws)

bool try_lock(char const *description, error_code &ec = throws)

bool try_lock(error_code &ec = throws)

void unlock(error_code &ec = throws)

Protected Types

typedef lcos::local::spinlock mutex_type

Protected Attributes

mutex_type mtx_

threads::thread_id_type owner_id_

detail::condition_variable cond_

class timed_mutex : private hpx::lcos::local::mutex
#include <mutex.hpp>

1128 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

HPX_NON_COPYABLE(timed_mutex)

timed_mutex(char const *const description = "")

~timed_mutex()

bool try_lock_until(util::steady_time_point const &abs_time, char const *descrip-
tion, error_code &ec = throws)

bool try_lock_until(util::steady_time_point const &abs_time, error_code &ec =
throws)

bool try_lock_for(util::steady_duration const &rel_time, char const *description,
error_code &ec = throws)

bool try_lock_for(util::steady_duration const &rel_time, error_code &ec = throws)

namespace threads

Typedefs

using thread_id_type = thread_id

using thread_self = coroutines::detail::coroutine_self

Functions

thread_id_type get_self_id()
The function get_self_id returns the HPX thread id of the current thread (or zero if the current thread
is not a HPX thread).

thread_self *get_self_ptr()
The function get_self_ptr returns a pointer to the (OS thread specific) self reference to the current
HPX thread.

Header hpx/synchronization/no_mutex.hpp

namespace hpx

namespace lcos

namespace local

struct no_mutex
#include <no_mutex.hpp>

2.9. API reference 1129

HPX Documentation, 1.5.1

Public Functions

void lock()

bool try_lock()

void unlock()

Header hpx/synchronization/once.hpp

Defines

HPX_ONCE_INIT

namespace hpx

namespace lcos

namespace local

Functions

template<typename F, typename ...Args>
void call_once(once_flag &flag, F &&f, Args&&... args)

struct once_flag
#include <once.hpp>

Public Functions

HPX_NON_COPYABLE(once_flag)

once_flag()

Private Members

std::atomic<long> status_

lcos::local::event event_

Friends

template<typename F, typename ...Args>
void call_once(once_flag &flag, F &&f, Args&&... args)

1130 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/synchronization/recursive_mutex.hpp

namespace hpx

namespace lcos

namespace local

Typedefs

using recursive_mutex = detail::recursive_mutex_impl<>

Header hpx/synchronization/shared_mutex.hpp

namespace hpx

namespace lcos

namespace local

Typedefs

typedef detail::shared_mutex shared_mutex

Header hpx/synchronization/sliding_semaphore.hpp

namespace hpx

namespace lcos

namespace local

Typedefs

typedef sliding_semaphore_var sliding_semaphore

template<typename Mutex = hpx::lcos::local::spinlock>
class sliding_semaphore_var

#include <sliding_semaphore.hpp> A semaphore is a protected variable (an entity storing a
value) or abstract data type (an entity grouping several variables that may or may not be numeri-
cal) which constitutes the classic method for restricting access to shared resources, such as shared
memory, in a multiprogramming environment. Semaphores exist in many variants, though usually
the term refers to a counting semaphore, since a binary semaphore is better known as a mutex.
A counting semaphore is a counter for a set of available resources, rather than a locked/unlocked
flag of a single resource. It was invented by Edsger Dijkstra. Semaphores are the classic solution

2.9. API reference 1131

HPX Documentation, 1.5.1

to preventing race conditions in the dining philosophers problem, although they do not prevent
resource deadlocks.

Sliding semaphores can be used for synchronizing multiple threads as well: one thread wait-
ing for several other threads to touch (signal) the semaphore, or several threads waiting for one
other thread to touch this semaphore. The difference to a counting semaphore is that a sliding
semaphore will not limit the number of threads which are allowed to proceed, but will make sure
that the difference between the (arbitrary) number passed to set and wait does not exceed a given
threshold.

Public Functions

sliding_semaphore_var(std::int64_t max_difference, std::int64_t lower_limit = 0)
Construct a new sliding semaphore.

Parameters
• max_difference: [in] The max difference between the upper limit (as set by wait())

and the lower limit (as set by signal()) which is allowed without suspending any thread
calling wait().

• lower_limit: [in] The initial lower limit.

void set_max_difference(std::int64_t max_difference, std::int64_t lower_limit = 0)
Set/Change the difference that will cause the semaphore to trigger.

Parameters
• max_difference: [in] The max difference between the upper limit (as set by wait())

and the lower limit (as set by signal()) which is allowed without suspending any thread
calling wait().

• lower_limit: [in] The initial lower limit.

void wait(std::int64_t upper_limit)
Wait for the semaphore to be signaled.

Parameters
• upper_limit: [in] The new upper limit. The calling thread will be suspended if the

difference between this value and the largest lower_limit which was set by signal() is
larger than the max_difference.

bool try_wait(std::int64_t upper_limit = 1)
Try to wait for the semaphore to be signaled.

Return The function returns true if the calling thread would not block if it was calling wait().
Parameters

• upper_limit: [in] The new upper limit. The calling thread will be suspended if the
difference between this value and the largest lower_limit which was set by signal() is
larger than the max_difference.

void signal(std::int64_t lower_limit)
Signal the semaphore.

Parameters
• lower_limit: [in] The new lower limit. This will update the current lower limit of this

semaphore. It will also re-schedule all suspended threads for which their associated upper
limit is not larger than the lower limit plus the max_difference.

std::int64_t signal_all()

1132 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

typedef Mutex mutex_type

Private Members

mutex_type mtx_

detail::sliding_semaphore sem_

Header hpx/synchronization/spinlock.hpp

namespace hpx

namespace lcos

namespace local

struct spinlock
#include <spinlock.hpp>

Public Functions

HPX_NON_COPYABLE(spinlock)

spinlock(char const *const desc = "hpx::lcos::local::spinlock")

~spinlock()

void lock()

bool try_lock()

void unlock()

Private Functions

bool acquire_lock()

void relinquish_lock()

bool is_locked() const

2.9. API reference 1133

HPX Documentation, 1.5.1

Private Members

std::atomic<bool> v_

Header hpx/synchronization/spinlock_no_backoff.hpp

namespace hpx

namespace lcos

namespace local

struct spinlock_no_backoff
#include <spinlock_no_backoff.hpp> boost::mutex-compatible spinlock class

Public Functions

HPX_NON_COPYABLE(spinlock_no_backoff)

spinlock_no_backoff()

~spinlock_no_backoff()

void lock()

bool try_lock()

void unlock()

Private Functions

bool acquire_lock()

void relinquish_lock()

bool is_locked() const

Private Members

std::atomic<bool> v_

1134 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/synchronization/spinlock_pool.hpp

namespace hpx

namespace lcos

namespace local

template<typename Tag, std::size_t N = HPX_HAVE_SPINLOCK_POOL_NUM>
class spinlock_pool

#include <spinlock_pool.hpp>

Public Static Functions

static lcos::local::spinlock &spinlock_for(void const *pv)

Private Static Attributes

util::cache_aligned_data<lcos::local::spinlock> pool_

class scoped_lock
#include <spinlock_pool.hpp>

Public Functions

template<>
HPX_NON_COPYABLE(scoped_lock)

template<>
scoped_lock(void const *pv)

template<>
~scoped_lock()

template<>
void lock()

template<>
void unlock()

Private Members

template<>
hpx::lcos::local::spinlock &sp_

2.9. API reference 1135

HPX Documentation, 1.5.1

Header hpx/synchronization/stop_token.hpp

namespace hpx

Functions

template<typename Callback>
stop_callback<typename std::decay<Callback>::type> make_stop_callback(stop_token const

&st, Callback
&&cb)

template<typename Callback>
stop_callback<typename std::decay<Callback>::type> make_stop_callback(stop_token &&st,

Callback &&cb)

void swap(stop_token &lhs, stop_token &rhs)

void swap(stop_source &lhs, stop_source &rhs)

Variables

HPX_INLINE_CONSTEXPR_VARIABLE nostopstate_t hpx::nostopstate = {}

struct nostopstate_t
#include <stop_token.hpp>

Public Functions

nostopstate_t()

template<typename Callback>
class stop_callback : private hpx::detail::stop_callback_base

#include <stop_token.hpp>

Public Types

template<>
using callback_type = Callback

Public Functions

template<typename CB, typename Enable = typename std::enable_if<std::is_constructible<Callback, CB>::value>::type>
stop_callback(stop_token const &st, CB &&cb)

template<typename CB, typename Enable = typename std::enable_if<std::is_constructible<Callback, CB>::value>::type>
stop_callback(stop_token &&st, CB &&cb)

~stop_callback()

stop_callback(stop_callback const&)

stop_callback(stop_callback&&)

1136 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

stop_callback &operator=(stop_callback const&)

stop_callback &operator=(stop_callback&&)

Private Functions

void execute()

Private Members

Callback callback_

hpx::memory::intrusive_ptr<detail::stop_state> state_

class stop_source
#include <stop_token.hpp>

Public Functions

stop_source()

stop_source(nostopstate_t)

stop_source(stop_source const &rhs)

stop_source(stop_source&&)

stop_source &operator=(stop_source const &rhs)

stop_source &operator=(stop_source&&)

~stop_source()

void swap(stop_source &s)

HPX_NODISCARD stop_token hpx::stop_source::get_token() const

HPX_NODISCARD bool hpx::stop_source::stop_possible() const

HPX_NODISCARD bool hpx::stop_source::stop_requested() const

bool request_stop()

Private Members

hpx::memory::intrusive_ptr<detail::stop_state> state_

2.9. API reference 1137

HPX Documentation, 1.5.1

Friends

HPX_NODISCARD friend bool operator==(stop_source const & lhs, stop_source const & rhs)

HPX_NODISCARD friend bool operator!=(stop_source const & lhs, stop_source const & rhs)

class stop_token
#include <stop_token.hpp>

Public Functions

stop_token()

stop_token(stop_token const &rhs)

stop_token(stop_token&&)

stop_token &operator=(stop_token const &rhs)

stop_token &operator=(stop_token&&)

~stop_token()

void swap(stop_token &s)

HPX_NODISCARD bool hpx::stop_token::stop_requested() const

HPX_NODISCARD bool hpx::stop_token::stop_possible() const

Private Functions

stop_token(hpx::memory::intrusive_ptr<detail::stop_state> const &state)

Private Members

hpx::memory::intrusive_ptr<detail::stop_state> state_

Friends

friend hpx::stop_callback

friend hpx::stop_source

HPX_NODISCARD friend bool operator==(stop_token const & lhs, stop_token const & rhs)

HPX_NODISCARD friend bool operator!=(stop_token const & lhs, stop_token const & rhs)

1138 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

testing

The contents of this module can be included with the header hpx/modules/testing.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/testing.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/modules/testing.hpp

Defines

HPX_TEST(...)

HPX_TEST_(...)

HPX_TEST_1(expr)

HPX_TEST_2(strm, expr)

HPX_TEST_IMPL(fixture, expr)

HPX_TEST_MSG(...)

HPX_TEST_MSG_(...)

HPX_TEST_MSG_2(expr, msg)

HPX_TEST_MSG_3(strm, expr, msg)

HPX_TEST_MSG_IMPL(fixture, expr, msg)

HPX_TEST_EQ(...)

HPX_TEST_EQ_(...)

HPX_TEST_EQ_2(expr1, expr2)

HPX_TEST_EQ_3(strm, expr1, expr2)

HPX_TEST_EQ_IMPL(fixture, expr1, expr2)

HPX_TEST_NEQ(...)

HPX_TEST_NEQ_(...)

HPX_TEST_NEQ_2(expr1, expr2)

HPX_TEST_NEQ_3(strm, expr1, expr2)

HPX_TEST_NEQ_IMPL(fixture, expr1, expr2)

HPX_TEST_LT(...)

HPX_TEST_LT_(...)

HPX_TEST_LT_2(expr1, expr2)

HPX_TEST_LT_3(strm, expr1, expr2)

HPX_TEST_LT_IMPL(fixture, expr1, expr2)

HPX_TEST_LTE(...)

HPX_TEST_LTE_(...)

2.9. API reference 1139

HPX Documentation, 1.5.1

HPX_TEST_LTE_2(expr1, expr2)

HPX_TEST_LTE_3(strm, expr1, expr2)

HPX_TEST_LTE_IMPL(fixture, expr1, expr2)

HPX_TEST_RANGE(...)

HPX_TEST_RANGE_(...)

HPX_TEST_RANGE_3(expr1, expr2, expr3)

HPX_TEST_RANGE_4(strm, expr1, expr2, expr3)

HPX_TEST_RANGE_IMPL(fixture, expr1, expr2, expr3)

HPX_TEST_EQ_MSG(...)

HPX_TEST_EQ_MSG_(...)

HPX_TEST_EQ_MSG_3(expr1, expr2, msg)

HPX_TEST_EQ_MSG_4(strm, expr1, expr2, msg)

HPX_TEST_EQ_MSG_IMPL(fixture, expr1, expr2, msg)

HPX_TEST_NEQ_MSG(...)

HPX_TEST_NEQ_MSG_(...)

HPX_TEST_NEQ_MSG_3(expr1, expr2, msg)

HPX_TEST_NEQ_MSG_4(strm, expr1, expr2, msg)

HPX_TEST_NEQ_MSG_IMPL(fixture, expr1, expr2, msg)

HPX_TEST_LT_MSG(...)

HPX_TEST_LT_MSG_(...)

HPX_TEST_LT_MSG_3(expr1, expr2, msg)

HPX_TEST_LT_MSG_4(strm, expr1, expr2, msg)

HPX_TEST_LT_MSG_IMPL(fixture, expr1, expr2, msg)

HPX_TEST_LTE_MSG(...)

HPX_TEST_LTE_MSG_(...)

HPX_TEST_LTE_MSG_3(expr1, expr2, msg)

HPX_TEST_LTE_MSG_4(strm, expr1, expr2, msg)

HPX_TEST_LTE_MSG_IMPL(fixture, expr1, expr2, msg)

HPX_TEST_RANGE_MSG(...)

HPX_TEST_RANGE_MSG_(...)

HPX_TEST_RANGE_MSG_4(expr1, expr2, expr3, msg)

HPX_TEST_RANGE_MSG_5(strm, expr1, expr2, expr3, msg)

HPX_TEST_RANGE_MSG_IMPL(fixture, expr1, expr2, expr3, msg)

HPX_SANITY(...)

HPX_SANITY_(...)

HPX_SANITY_1(expr)

1140 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

HPX_SANITY_2(strm, expr)

HPX_SANITY_IMPL(fixture, expr)

HPX_SANITY_MSG(...)

HPX_SANITY_MSG_(...)

HPX_SANITY_MSG_2(expr, msg)

HPX_SANITY_MSG_3(strm, expr, msg)

HPX_SANITY_MSG_IMPL(fixture, expr, msg)

HPX_SANITY_EQ(...)

HPX_SANITY_EQ_(...)

HPX_SANITY_EQ_2(expr1, expr2)

HPX_SANITY_EQ_3(strm, expr1, expr2)

HPX_SANITY_EQ_IMPL(fixture, expr1, expr2)

HPX_SANITY_NEQ(...)

HPX_SANITY_NEQ_(...)

HPX_SANITY_NEQ_2(expr1, expr2)

HPX_SANITY_NEQ_3(strm, expr1, expr2)

HPX_SANITY_NEQ_IMPL(fixture, expr1, expr2)

HPX_SANITY_LT(...)

HPX_SANITY_LT_(...)

HPX_SANITY_LT_2(expr1, expr2)

HPX_SANITY_LT_3(strm, expr1, expr2)

HPX_SANITY_LT_IMPL(fixture, expr1, expr2)

HPX_SANITY_LTE(...)

HPX_SANITY_LTE_(...)

HPX_SANITY_LTE_2(expr1, expr2)

HPX_SANITY_LTE_3(strm, expr1, expr2)

HPX_SANITY_LTE_IMPL(fixture, expr1, expr2)

HPX_SANITY_RANGE(...)

HPX_SANITY_RANGE_(...)

HPX_SANITY_RANGE_3(expr1, expr2, expr3)

HPX_SANITY_RANGE_4(strm, expr1, expr2, expr3)

HPX_SANITY_RANGE_IMPL(fixture, expr1, expr2, expr3)

HPX_SANITY_EQ_MSG(...)

HPX_SANITY_EQ_MSG_(...)

HPX_SANITY_EQ_MSG_3(expr1, expr2, msg)

HPX_SANITY_EQ_MSG_4(strm, expr1, expr2, msg)

2.9. API reference 1141

HPX Documentation, 1.5.1

HPX_SANITY_EQ_MSG_IMPL(fixture, expr1, expr2, msg)

HPX_TEST_THROW(...)

HPX_TEST_THROW_(...)

HPX_TEST_THROW_2(expression, exception)

HPX_TEST_THROW_3(strm, expression, exception)

HPX_TEST_THROW_IMPL(fixture, expression, exception)

namespace hpx

namespace util

Typedefs

using test_failure_handler_type = function_nonser<void()>

Enums

enum counter_type
Values:

counter_sanity

counter_test

Functions

void set_test_failure_handler(test_failure_handler_type f)

int report_errors(std::ostream &stream = std::cerr)

void print_cdash_timing(const char *name, double time)

void print_cdash_timing(const char *name, std::uint64_t time)

thread_executors

The contents of this module can be included with the header hpx/modules/thread_executors.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are
using these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only
including the module header hpx/modules/thread_executors.hpp, not the particular header in which the
functionality you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

1142 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/execution/executors/default_executor.hpp

namespace hpx

namespace parallel

namespace execution

Typedefs

using default_executor = parallel_executor

Header hpx/execution/executors/this_thread_executors.hpp

Header hpx/execution/executors/thread_pool_executors.hpp

Header hpx/execution/executors/thread_pool_os_executors.hpp

Header hpx/thread_executors/current_executor.hpp

Header hpx/thread_executors/default_executor.hpp

Header hpx/thread_executors/embedded_thread_pool_executors.hpp

Header hpx/thread_executors/executors.hpp

Header hpx/thread_executors/guided_pool_executor.hpp

Header hpx/thread_executors/limiting_executor.hpp

Header hpx/thread_executors/manage_thread_executor.hpp

Header hpx/thread_executors/resource_manager.hpp

Header hpx/thread_executors/this_thread_executors.hpp

Header hpx/thread_executors/thread_execution.hpp

Header hpx/thread_executors/thread_execution_information.hpp

namespace hpx

2.9. API reference 1143

HPX Documentation, 1.5.1

Functions

std::size_t get_os_thread_count(threads::executor const &exec)

namespace threads

Functions

template<typename Executor, typename Parameters>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value, std::size_t>::type processing_units_count(Parameters&&,

Ex-
ecu-
tor
&&exec)

template<typename Executor>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value, bool>::type has_pending_closures(Executor

&&exec)

template<typename Executor>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value, threads::mask_cref_type>::type get_pu_mask(Executor

&&exec,
threads::topology
&topo,
std::size_t
thread_num)

template<typename Executor, typename Mode>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value>::type set_scheduler_mode(Executor

&&exec,
Mode
mode)

Header hpx/thread_executors/thread_executor.hpp

Header hpx/thread_executors/thread_pool_attached_executors.hpp

Header hpx/thread_executors/thread_pool_os_executors.hpp

Header hpx/thread_executors/thread_timed_execution.hpp

namespace hpx

namespace threads

1144 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

template<typename Executor, typename F, typename ...Ts>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value>::type post_at(Executor

&&exec,
hpx::util::steady_time_point
const
&abs_time, F
&&f, Ts&&...
ts)

template<typename Executor, typename F, typename ...Ts>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value>::type post_after(Executor

&&exec,
hpx::util::steady_duration
const
&rel_time,
F &&f,
Ts&&...
ts)

template<typename Executor, typename F, typename ...Ts>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value, hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type>>::type async_execute_at(Executor

&&exec,
hpx::util::steady_time_point
const
&abs_time,
F
&&f,
Ts&&...
ts)

template<typename Executor, typename F, typename ...Ts>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value, hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type>>::type async_execute_after(Executor

&&exec,
hpx::util::steady_duration
const
&rel_time,
F
&&f,
Ts&&...
ts)

template<typename Executor, typename F, typename ...Ts>
std::enable_if<hpx::traits::is_threads_executor<Executor>::value, typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type>::type sync_execute_at(Executor

&&exec,
hpx::util::steady_time_point
const
&abs_time,
F
&&f,
Ts&&...
ts)

template<typename Executor, typename F, typename ...Ts>

2.9. API reference 1145

HPX Documentation, 1.5.1

std::enable_if<hpx::traits::is_threads_executor<Executor>::value, typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type>::type sync_execute_after(Executor
&&exec,
hpx::util::steady_duration
const
&rel_time,
F
&&f,
Ts&&...
ts)

thread_pools

The contents of this module can be included with the header hpx/modules/thread_pools.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/thread_pools.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/thread_pools/scheduled_thread_pool.hpp

Header hpx/thread_pools/scheduled_thread_pool_impl.hpp

Header hpx/thread_pools/scheduling_loop.hpp

thread_support

The contents of this module can be included with the header hpx/modules/thread_support.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/thread_support.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/thread_support/assert_owns_lock.hpp

Defines

HPX_ASSERT_OWNS_LOCK(l)

HPX_ASSERT_DOESNT_OWN_LOCK(l)

Header hpx/thread_support/atomic_count.hpp

namespace hpx

namespace util

class atomic_count
#include <atomic_count.hpp>

1146 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

HPX_NON_COPYABLE(atomic_count)

atomic_count(long value)

atomic_count &operator=(long value)

long operator++()

long operator--()

atomic_count &operator+=(long n)

atomic_count &operator-=(long n)

operator long() const

Private Members

std::atomic<long> value_

Header hpx/thread_support/set_thread_name.hpp

namespace hpx

namespace util

Functions

void set_thread_name(char const*)

Header hpx/thread_support/thread_specific_ptr.hpp

Defines

HPX_EXPORT_THREAD_SPECIFIC_PTR

Header hpx/thread_support/unlock_guard.hpp

namespace hpx

namespace util

template<typename Mutex>
class unlock_guard

#include <unlock_guard.hpp>

2.9. API reference 1147

HPX Documentation, 1.5.1

Public Types

template<>
using mutex_type = Mutex

Public Functions

HPX_NON_COPYABLE(unlock_guard)

unlock_guard(Mutex &m)

~unlock_guard()

Private Members

Mutex &m_

threading

The contents of this module can be included with the header hpx/modules/threading.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/threading.hpp, not the particular header in which the functionality you would
like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/thread.hpp

Header hpx/threading/jthread.hpp

namespace hpx

Functions

void swap(jthread &lhs, jthread &rhs)

class jthread
#include <jthread.hpp>

Public Types

using id = thread::id

using native_handle_type = thread::native_handle_type

1148 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

jthread()

template<typename F, typename ...Ts, typename Enable = typename std::enable_if<!std::is_same<typename std::decay<F>::type, jthread>::value>::type>
jthread(F &&f, Ts&&... ts)

~jthread()

jthread(jthread const&)

jthread(jthread &&x)

jthread &operator=(jthread const&)

jthread &operator=(jthread&&)

void swap(jthread &t)

HPX_NODISCARD bool hpx::jthread::joinable() const

void join()

void detach()

HPX_NODISCARD id hpx::jthread::get_id() const

HPX_NODISCARD native_handle_type hpx::jthread::native_handle()

HPX_NODISCARD stop_source hpx::jthread::get_stop_source()

HPX_NODISCARD stop_token hpx::jthread::get_stop_token() const

bool request_stop()

Public Static Functions

static HPX_NODISCARD unsigned int hpx::jthread::hardware_concurrency()

Private Members

stop_source ssource_

hpx::thread thread_ = {}

Private Static Functions

template<typename F, typename ...Ts>
static void invoke(std::false_type, F &&f, stop_token &&st, Ts&&... ts)

template<typename F, typename ...Ts>
static void invoke(std::true_type, F &&f, stop_token &&st, Ts&&... ts)

2.9. API reference 1149

HPX Documentation, 1.5.1

Header hpx/threading/thread.hpp

namespace hpx

Typedefs

using thread_termination_handler_type = util::function_nonser<void(std::exception_ptr
const &e)>

Functions

void set_thread_termination_handler(thread_termination_handler_type f)

void swap(thread &x, thread &y)

bool operator==(thread::id const &x, thread::id const &y)

bool operator!=(thread::id const &x, thread::id const &y)

bool operator<(thread::id const &x, thread::id const &y)

bool operator>(thread::id const &x, thread::id const &y)

bool operator<=(thread::id const &x, thread::id const &y)

bool operator>=(thread::id const &x, thread::id const &y)

template<typename Char, typename Traits>
std::basic_ostream<Char, Traits> &operator<<(std::basic_ostream<Char, Traits> &out, thread::id

const &id)

class thread
#include <thread.hpp>

Public Types

typedef threads::thread_id_type native_handle_type

Public Functions

thread()

template<typename F, typename Enable = typename std::enable_if<!std::is_same<typename hpx::util::decay<F>::type, thread>::value>::type>
thread(F &&f)

template<typename F, typename ...Ts>
thread(F &&f, Ts&&... vs)

template<typename F>
thread(threads::thread_pool_base *pool, F &&f)

template<typename F, typename ...Ts>
thread(threads::thread_pool_base *pool, F &&f, Ts&&... vs)

1150 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

~thread()

thread(thread&&)

thread &operator=(thread&&)

void swap(thread&)

bool joinable() const

void join()

void detach()

id get_id() const

native_handle_type native_handle() const

void interrupt(bool flag = true)

bool interruption_requested() const

lcos::future<void> get_future(error_code &ec = throws)

std::size_t get_thread_data() const

std::size_t set_thread_data(std::size_t)

Public Static Functions

static HPX_NODISCARD unsigned int hpx::thread::hardware_concurrency()

static void interrupt(id, bool flag = true)

Private Types

typedef lcos::local::spinlock mutex_type

Private Functions

void terminate(const char *function, const char *reason) const

bool joinable_locked() const

void detach_locked()

void start_thread(threads::thread_pool_base *pool, util::unique_function_nonser<void)
> &&func

2.9. API reference 1151

HPX Documentation, 1.5.1

Private Members

mutex_type mtx_

threads::thread_id_type id_

Private Static Functions

static threads::thread_result_type thread_function_nullary(util::unique_function_nonser<void)
> const &func

class id
#include <thread.hpp>

Public Functions

id()

id(threads::thread_id_type const &i)

id(threads::thread_id_type &&i)

threads::thread_id_type const &native_handle() const

Private Members

threads::thread_id_type id_

Friends

friend hpx::thread

bool operator==(thread::id const &x, thread::id const &y)

bool operator!=(thread::id const &x, thread::id const &y)

bool operator<(thread::id const &x, thread::id const &y)

bool operator>(thread::id const &x, thread::id const &y)

bool operator<=(thread::id const &x, thread::id const &y)

bool operator>=(thread::id const &x, thread::id const &y)

template<typename Char, typename Traits>
std::basic_ostream<Char, Traits> &operator<<(std::basic_ostream<Char, Traits> &out,

thread::id const &id)

namespace this_thread

1152 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

thread::id get_id()

void yield()

void yield_to(thread::id)

threads::thread_priority get_priority()

std::ptrdiff_t get_stack_size()

void interruption_point()

bool interruption_enabled()

bool interruption_requested()

void interrupt()

void sleep_until(util::steady_time_point const &abs_time)

void sleep_for(util::steady_duration const &rel_time)

std::size_t get_thread_data()

std::size_t set_thread_data(std::size_t)

class disable_interruption
#include <thread.hpp>

Public Functions

disable_interruption()

~disable_interruption()

Private Functions

disable_interruption(disable_interruption const&)

disable_interruption &operator=(disable_interruption const&)

Private Members

bool interruption_was_enabled_

2.9. API reference 1153

HPX Documentation, 1.5.1

Friends

friend hpx::this_thread::restore_interruption

class restore_interruption
#include <thread.hpp>

Public Functions

restore_interruption(disable_interruption &d)

~restore_interruption()

Private Functions

restore_interruption(restore_interruption const&)

restore_interruption &operator=(restore_interruption const&)

Private Members

bool interruption_was_enabled_

threading_base

The contents of this module can be included with the header hpx/modules/threading_base.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/threading_base.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/threading_base/annotated_function.hpp

namespace hpx

namespace util

Functions

template<typename F>
F &&annotated_function(F &&f, char const* = nullptr)

Given a function as an argument, the user can annotate_function as well. Annotating includes setting
the thread description per thread id.

Parameters
• function:

struct annotate_function
#include <annotated_function.hpp>

1154 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

HPX_NON_COPYABLE(annotate_function)

annotate_function(char const*)

template<typename F>
annotate_function(F&&)

~annotate_function()

Header hpx/threading_base/callback_notifier.hpp

namespace hpx

namespace threads

namespace policies

class callback_notifier
#include <callback_notifier.hpp>

Public Types

typedef util::function_nonser<void(std::size_t, std::size_t, char const*, char const*)>
on_startstop_type

typedef util::function_nonser<bool(std::size_t, std::exception_ptr const&)>
on_error_type

Public Functions

callback_notifier()

void on_start_thread(std::size_t local_thread_num, std::size_t global_thread_num,
char const *pool_name, char const *postfix) const

void on_stop_thread(std::size_t local_thread_num, std::size_t global_thread_num, char
const *pool_name, char const *postfix) const

bool on_error(std::size_t global_thread_num, std::exception_ptr const &e) const

void add_on_start_thread_callback(on_startstop_type const &callback)

void add_on_stop_thread_callback(on_startstop_type const &callback)

void set_on_error_callback(on_error_type const &callback)

2.9. API reference 1155

HPX Documentation, 1.5.1

Public Members

std::deque<on_startstop_type> on_start_thread_callbacks_

std::deque<on_startstop_type> on_stop_thread_callbacks_

on_error_type on_error_

Header hpx/threading_base/create_thread.hpp

Header hpx/threading_base/create_work.hpp

Header hpx/threading_base/execution_agent.hpp

namespace hpx

namespace threads

struct execution_agent : public agent_base
#include <execution_agent.hpp>

Public Functions

execution_agent(coroutines::detail::coroutine_impl *coroutine)

std::string description() const

execution_context const &context() const

void yield(char const *desc)

void yield_k(std::size_t k, char const *desc)

void suspend(char const *desc)

void resume(char const *desc)

void abort(char const *desc)

void sleep_for(hpx::util::steady_duration const &sleep_duration, char const *desc)

void sleep_until(hpx::util::steady_time_point const &sleep_time, char const *desc)

Private Functions

hpx::threads::thread_state_ex_enum do_yield(char const *desc,
threads::thread_state_enum state)

void do_resume(char const *desc, hpx::threads::thread_state_ex_enum statex)

1156 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Members

coroutines::detail::coroutine_stackful_self self_

execution_context context_

struct execution_context : public context_base
#include <execution_agent.hpp>

Public Functions

hpx::execution_base::resource_base const &resource() const

Public Members

hpx::execution_base::resource_base resource_

Header hpx/threading_base/external_timer.hpp

namespace hpx

namespace util

namespace external_timer

Functions

std::shared_ptr<task_wrapper> new_task(thread_description const&, std::uint32_t,
threads::thread_id_type const&)

std::shared_ptr<task_wrapper> update_task(std::shared_ptr<task_wrapper>,
thread_description const&)

struct scoped_timer
#include <external_timer.hpp>

Public Functions

scoped_timer(std::shared_ptr<task_wrapper>)

~scoped_timer()

void stop(void)

void yield(void)

2.9. API reference 1157

HPX Documentation, 1.5.1

Header hpx/threading_base/network_background_callback.hpp

Header hpx/threading_base/print.hpp

Header hpx/threading_base/register_thread.hpp

namespace hpx

namespace threads

Functions

template<typename F>
thread_function_type make_thread_function(F &&f)

template<typename F>
thread_function_type make_thread_function_nullary(F &&f)

threads::thread_id_type register_thread(threads::thread_init_data &data,
threads::thread_pool_base *pool, error_code
&ec = throws)

Create a new thread using the given data.

Return This function will return the internal id of the newly created HPX-thread.
Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the

result code using the parameter ec. Otherwise it throws an instance of hpx::exception.
Parameters

• data: [in] The data to use for creating the thread.
• pool: [in] The thread pool to use for launching the work.
• ec: [in,out] This represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.
Exceptions

• invalid_status: if the runtime system has not been started yet.

threads::thread_id_type register_thread(threads::thread_init_data &data, error_code &ec =
throws)

Create a new thread using the given data on the same thread pool as the calling thread, or on the
default thread pool if not on an HPX thread.

Return This function will return the internal id of the newly created HPX-thread.
Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the

result code using the parameter ec. Otherwise it throws an instance of hpx::exception.
Parameters

• data: [in] The data to use for creating the thread.
• ec: [in,out] This represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.
Exceptions

• invalid_status: if the runtime system has not been started yet.

void register_work(threads::thread_init_data &data, threads::thread_pool_base *pool, er-
ror_code &ec = throws)

Create a new work item using the given data.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

1158 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters
• data: [in] The data to use for creating the thread.
• pool: [in] The thread pool to use for launching the work.
• ec: [in,out] This represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.
Exceptions

• invalid_status: if the runtime system has not been started yet.

void register_work(threads::thread_init_data &data, error_code &ec = throws)
Create a new work item using the given data on the same thread pool as the calling thread, or on the
default thread pool if not on an HPX thread.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• data: [in] The data to use for creating the thread.
• ec: [in,out] This represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.
Exceptions

• invalid_status: if the runtime system has not been started yet.

Header hpx/threading_base/scheduler_base.hpp

namespace hpx

namespace threads

namespace policies

struct scheduler_base
#include <scheduler_base.hpp> The scheduler_base defines the interface to be implemented by
all scheduler policies

Public Types

typedef std::mutex pu_mutex_type

using polling_function_ptr = void (*)()

Public Functions

HPX_NON_COPYABLE(scheduler_base)

scheduler_base(std::size_t num_threads, char const *description = "",
thread_queue_init_parameters thread_queue_init = {}, sched-
uler_mode mode = nothing_special)

virtual ~scheduler_base()

threads::thread_pool_base *get_parent_pool()

void set_parent_pool(threads::thread_pool_base *p)

2.9. API reference 1159

HPX Documentation, 1.5.1

std::size_t global_to_local_thread_index(std::size_t n)

std::size_t local_to_global_thread_index(std::size_t n)

char const *get_description() const

void idle_callback(std::size_t num_thread)

void do_some_work(std::size_t)
This function gets called by the thread-manager whenever new work has been added, allowing
the scheduler to reactivate one or more of possibly idling OS threads

virtual void suspend(std::size_t num_thread)

virtual void resume(std::size_t num_thread)

std::size_t select_active_pu(std::unique_lock<pu_mutex_type> &l, std::size_t
num_thread, bool allow_fallback = false)

std::atomic<hpx::state> &get_state(std::size_t num_thread)

std::atomic<hpx::state> const &get_state(std::size_t num_thread) const

void set_all_states(hpx::state s)

void set_all_states_at_least(hpx::state s)

bool has_reached_state(hpx::state s) const

bool is_state(hpx::state s) const

std::pair<hpx::state, hpx::state> get_minmax_state() const

scheduler_mode get_scheduler_mode() const

bool has_scheduler_mode(scheduler_mode mode) const

virtual void set_scheduler_mode(scheduler_mode mode)

void add_scheduler_mode(scheduler_mode mode)

void remove_scheduler_mode(scheduler_mode mode)

void add_remove_scheduler_mode(scheduler_mode to_add_mode, scheduler_mode
to_remove_mode)

void update_scheduler_mode(scheduler_mode mode, bool set)

pu_mutex_type &get_pu_mutex(std::size_t num_thread)

std::size_t domain_from_local_thread_index(std::size_t n)

std::size_t num_domains(const std::size_t workers)

std::vector<std::size_t> domain_threads(std::size_t local_id, const
std::vector<std::size_t> &ts,
util::function_nonser<bool)std::size_t,
std::size_t

> pred

virtual std::int64_t get_queue_length(std::size_t num_thread = std::size_t(-1))
const = 0

1160 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

virtual std::int64_t get_thread_count(thread_state_enum state = un-
known, thread_priority priority =
thread_priority_default, std::size_t
num_thread = std::size_t(-1), bool reset
= false) const = 0

virtual bool is_core_idle(std::size_t num_thread) const = 0

std::int64_t get_background_thread_count()

void increment_background_thread_count()

void decrement_background_thread_count()

virtual bool enumerate_threads(util::function_nonser<bool)thread_id_type
> const &f, thread_state_enum state = unknown const = 0

virtual void abort_all_suspended_threads() = 0

virtual bool cleanup_terminated(bool delete_all) = 0

virtual bool cleanup_terminated(std::size_t num_thread, bool delete_all) = 0

virtual void create_thread(thread_init_data &data, thread_id_type *id, error_code
&ec) = 0

virtual bool get_next_thread(std::size_t num_thread, bool running,
threads::thread_data *&thrd, bool enable_stealing)
= 0

virtual void schedule_thread(threads::thread_data *thrd,
threads::thread_schedule_hint schedulehint, bool
allow_fallback = false, thread_priority priority =
thread_priority_normal) = 0

virtual void schedule_thread_last(threads::thread_data *thrd,
threads::thread_schedule_hint schedulehint,
bool allow_fallback = false, thread_priority
priority = thread_priority_normal) = 0

virtual void destroy_thread(threads::thread_data *thrd) = 0

virtual bool wait_or_add_new(std::size_t num_thread, bool running, std::int64_t
&idle_loop_count, bool enable_stealing, std::size_t
&added) = 0

virtual void on_start_thread(std::size_t num_thread) = 0

virtual void on_stop_thread(std::size_t num_thread) = 0

virtual void on_error(std::size_t num_thread, std::exception_ptr const &e) = 0

virtual void reset_thread_distribution()

std::ptrdiff_t get_stack_size(threads::thread_stacksize stacksize) const

void set_mpi_polling_function(polling_function_ptr mpi_func)

void clear_mpi_polling_function()

void set_cuda_polling_function(polling_function_ptr cuda_func)

2.9. API reference 1161

HPX Documentation, 1.5.1

void clear_cuda_polling_function()

void custom_polling_function() const

Public Static Functions

static void null_polling_function()

Protected Attributes

util::cache_line_data<std::atomic<scheduler_mode>> mode_

std::vector<pu_mutex_type> suspend_mtxs_

std::vector<std::condition_variable> suspend_conds_

std::vector<pu_mutex_type> pu_mtxs_

std::vector<std::atomic<hpx::state>> states_

char const *description_

thread_queue_init_parameters thread_queue_init_

threads::thread_pool_base *parent_pool_

std::atomic<std::int64_t> background_thread_count_

std::atomic<polling_function_ptr> polling_function_mpi_

std::atomic<polling_function_ptr> polling_function_cuda_

Header hpx/threading_base/scheduler_mode.hpp

namespace hpx

namespace threads

namespace policies

Enums

enum scheduler_mode
This enumeration describes the possible modes of a scheduler.

Values:

nothing_special = 0x000
As the name suggests, this option can be used to disable all other options.

do_background_work = 0x001
The scheduler will periodically call a provided callback function from a special HPX thread
to enable performing background-work, for instance driving networking progress or garbage-
collect AGAS.

1162 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

reduce_thread_priority = 0x002
The kernel priority of the os-thread driving the scheduler will be reduced below normal.

delay_exit = 0x004
The scheduler will wait for some unspecified amount of time before exiting the scheduling loop
while being terminated to make sure no other work is being scheduled during processing the
shutdown request.

fast_idle_mode = 0x008
Some schedulers have the capability to act as ‘embedded’ schedulers. In this case it needs to
periodically invoke a provided callback into the outer scheduler more frequently than normal.
This option enables this behavior.

enable_elasticity = 0x010
This option allows for the scheduler to dynamically increase and reduce the number of pro-
cessing units it runs on. Setting this value not succeed for schedulers that do not support this
functionality.

enable_stealing = 0x020
This option allows schedulers that support work thread/stealing to enable/disable it

enable_stealing_numa = 0x040
This option allows schedulersthat support it to disallow stealing between numa domains

assign_work_round_robin = 0x080
This option tells schedulersthat support it to add tasks round robin to queues on each core

assign_work_thread_parent = 0x100
This option tells schedulers that support it to add tasks round to the same core/queue that the
parent task is running on

steal_high_priority_first = 0x200
This option tells schedulers that support it to always (try to) steal high priority tasks from other
queues before finishing their own lower priority tasks

steal_after_local = 0x400
This option tells schedulers that support it to steal tasks only when their local queues are empty

enable_idle_backoff = 0x0800
This option allows for certain schedulers to explicitly disable exponential idle-back off

default_mode = do_background_work | reduce_thread_priority | delay_exit | enable_stealing | enable_stealing_numa | assign_work_round_robin | steal_after_local | enable_idle_backoff
This option represents the default mode.

all_flags = do_background_work | reduce_thread_priority | delay_exit | fast_idle_mode | enable_elasticity | enable_stealing | enable_stealing_numa | assign_work_round_robin | assign_work_thread_parent | steal_high_priority_first | steal_after_local | enable_idle_backoff
This enables all available options.

Header hpx/threading_base/scheduler_state.hpp

namespace hpx

2.9. API reference 1163

HPX Documentation, 1.5.1

Enums

enum state
Values:

state_invalid = -1

state_initialized = 0

first_valid_runtime_state = state_initialized

state_pre_startup = 1

state_startup = 2

state_pre_main = 3

state_starting = 4

state_running = 5

state_suspended = 6

state_pre_sleep = 7

state_sleeping = 8

state_pre_shutdown = 9

state_shutdown = 10

state_stopping = 11

state_terminating = 12

state_stopped = 13

last_valid_runtime_state = state_stopped

Header hpx/threading_base/set_thread_state.hpp

Header hpx/threading_base/thread_data.hpp

namespace hpx

namespace threads

Functions

constexpr thread_data *get_thread_id_data(thread_id_type const &tid)

thread_self &get_self()
The function get_self returns a reference to the (OS thread specific) self reference to the current HPX
thread.

thread_self *get_self_ptr()
The function get_self_ptr returns a pointer to the (OS thread specific) self reference to the current
HPX thread.

1164 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

thread_self_impl_type *get_ctx_ptr()
The function get_ctx_ptr returns a pointer to the internal data associated with each coroutine.

thread_self *get_self_ptr_checked(error_code &ec = throws)
The function get_self_ptr_checked returns a pointer to the (OS thread specific) self reference to the
current HPX thread.

thread_id_type get_self_id()
The function get_self_id returns the HPX thread id of the current thread (or zero if the current thread
is not a HPX thread).

thread_data *get_self_id_data()
The function get_self_id_data returns the data of the HPX thread id associated with the current thread
(or nullptr if the current thread is not a HPX thread).

thread_id_type get_parent_id()
The function get_parent_id returns the HPX thread id of the current thread’s parent (or zero if the
current thread is not a HPX thread).

Note This function will return a meaningful value only if the code was compiled with
HPX_HAVE_THREAD_PARENT_REFERENCE being defined.

std::size_t get_parent_phase()
The function get_parent_phase returns the HPX phase of the current thread’s parent (or zero if the
current thread is not a HPX thread).

Note This function will return a meaningful value only if the code was compiled with
HPX_HAVE_THREAD_PARENT_REFERENCE being defined.

std::ptrdiff_t get_self_stacksize()
The function get_self_stacksize returns the stack size of the current thread (or zero if the current thread
is not a HPX thread).

thread_stacksize get_self_stacksize_enum()
The function get_self_stacksize_enum returns the stack size of the /.

std::uint32_t get_parent_locality_id()
The function get_parent_locality_id returns the id of the locality of the current thread’s parent (or
zero if the current thread is not a HPX thread).

Note This function will return a meaningful value only if the code was compiled with
HPX_HAVE_THREAD_PARENT_REFERENCE being defined.

std::uint64_t get_self_component_id()
The function get_self_component_id returns the lva of the component the current thread is acting on

Note This function will return a meaningful value only if the code was compiled with
HPX_HAVE_THREAD_TARGET_ADDRESS being defined.

class thread_data
#include <thread_data.hpp> A thread is the representation of a ParalleX thread. It’s a first class
object in ParalleX. In our implementation this is a user level thread running on top of one of the OS
threads spawned by the thread-manager.

A thread encapsulates:
• A thread status word (see the functions thread::get_state and thread::set_state)
• A function to execute (the thread function)
• A frame (in this implementation this is a block of memory used as the threads stack)
• A block of registers (not implemented yet)

2.9. API reference 1165

HPX Documentation, 1.5.1

Generally, threads are not created or executed directly. All functionality related to the management of
threads is implemented by the thread-manager.

Subclassed by hpx::threads::thread_data_stackful, hpx::threads::thread_data_stackless

Public Types

using mutex_type = util::spinlock_pool<tag>

Public Functions

thread_data(thread_data const&)

thread_data(thread_data&&)

thread_data &operator=(thread_data const&)

thread_data &operator=(thread_data&&)

thread_state get_state(std::memory_order order = std::memory_order_acquire) const
The get_state function queries the state of this thread instance.

Return This function returns the current state of this thread. It will return one of the values as
defined by the thread_state enumeration.

Note This function will be seldom used directly. Most of the time the state of a thread will be
retrieved by using the function threadmanager::get_state.

thread_state set_state(thread_state_enum state, thread_state_ex_enum state_ex
= wait_unknown, std::memory_order load_order =
std::memory_order_acquire, std::memory_order exchange_order =
std::memory_order_seq_cst)

The set_state function changes the state of this thread instance.

Note This function will be seldom used directly. Most of the time the state of a thread will
have to be changed using the threadmanager. Moreover, changing the thread state using this
function does not change its scheduling status. It only sets the thread’s status word. To change
the thread’s scheduling status threadmanager::set_state should be used.

Parameters
• newstate: [in] The new state to be set for the thread.

bool set_state_tagged(thread_state_enum newstate, thread_state &prev_state,
thread_state &new_tagged_state, std::memory_order ex-
change_order = std::memory_order_seq_cst)

bool restore_state(thread_state new_state, thread_state old_state, std::memory_order
load_order = std::memory_order_relaxed, std::memory_order
load_exchange = std::memory_order_seq_cst)

The restore_state function changes the state of this thread instance depending on its current state.
It will change the state atomically only if the current state is still the same as passed as the second
parameter. Otherwise it won’t touch the thread state of this instance.

Note This function will be seldom used directly. Most of the time the state of a thread will
have to be changed using the threadmanager. Moreover, changing the thread state using this
function does not change its scheduling status. It only sets the thread’s status word. To change
the thread’s scheduling status threadmanager::set_state should be used.

Return This function returns true if the state has been changed successfully
Parameters

1166 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• newstate: [in] The new state to be set for the thread.
• oldstate: [in] The old state of the thread which still has to be the current state.

bool restore_state(thread_state_enum new_state, thread_state_ex_enum state_ex,
thread_state old_state, std::memory_order load_exchange =
std::memory_order_seq_cst)

constexpr naming::address_type get_component_id() const
Return the id of the component this thread is running in.

util::thread_description get_description() const

util::thread_description set_description(util::thread_description)

util::thread_description get_lco_description() const

util::thread_description set_lco_description(util::thread_description)

constexpr std::uint32_t get_parent_locality_id() const
Return the locality of the parent thread.

constexpr thread_id_type get_parent_thread_id() const
Return the thread id of the parent thread.

constexpr std::size_t get_parent_thread_phase() const
Return the phase of the parent thread.

constexpr util::backtrace const *get_backtrace() const

util::backtrace const *set_backtrace(util::backtrace const*)

constexpr thread_priority get_priority() const

void set_priority(thread_priority priority)

bool interruption_requested() const

bool interruption_enabled() const

bool set_interruption_enabled(bool enable)

void interrupt(bool flag = true)

bool interruption_point(bool throw_on_interrupt = true)

bool add_thread_exit_callback(util::function_nonser<void)
> const &f

void run_thread_exit_callbacks()

void free_thread_exit_callbacks()

policies::scheduler_base *get_scheduler_base() const

std::size_t get_last_worker_thread_num() const

void set_last_worker_thread_num(std::size_t last_worker_thread_num)

std::ptrdiff_t get_stack_size() const

thread_stacksize get_stack_size_enum() const

2.9. API reference 1167

HPX Documentation, 1.5.1

template<typename ThreadQueue>
ThreadQueue &get_queue()

coroutine_type::result_type operator()(hpx::execution_base::this_thread::detail::agent_storage
*agent_storage)

Execute the thread function.

Return This function returns the thread state the thread should be scheduled from this point on.
The thread manager will use the returned value to set the thread’s scheduling status.

virtual thread_id_type get_thread_id() const

virtual std::size_t get_thread_phase() const

virtual std::size_t get_thread_data() const = 0

virtual std::size_t set_thread_data(std::size_t data) = 0

virtual void rebind(thread_init_data &init_data) = 0

thread_data(thread_init_data &init_data, void *queue, std::ptrdiff_t stacksize, bool
is_stackless = false)

virtual ~thread_data()

virtual void destroy() = 0

Public Members

bool is_stackless_

Protected Functions

thread_state_ex_enum set_state_ex(thread_state_ex_enum new_state)
The set_state function changes the extended state of this thread instance.

Note This function will be seldom used directly. Most of the time the state of a thread will have
to be changed using the threadmanager.

Parameters
• newstate: [in] The new extended state to be set for the thread.

void rebind_base(thread_init_data &init_data)

Private Members

std::atomic<thread_state> current_state_

thread_priority priority_

bool requested_interrupt_

bool enabled_interrupt_

bool ran_exit_funcs_

std::forward_list<util::function_nonser<void()>> exit_funcs_

policies::scheduler_base *scheduler_base_

1168 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

std::size_t last_worker_thread_num_

std::ptrdiff_t stacksize_

thread_stacksize stacksize_enum_

void *queue_

Header hpx/threading_base/thread_data_stackful.hpp

namespace hpx

namespace threads

class thread_data_stackful : public hpx::threads::thread_data
#include <thread_data_stackful.hpp> A thread is the representation of a ParalleX thread. It’s a first
class object in ParalleX. In our implementation this is a user level thread running on top of one of the
OS threads spawned by the thread-manager.

A thread encapsulates:
• A thread status word (see the functions thread::get_state and thread::set_state)
• A function to execute (the thread function)
• A frame (in this implementation this is a block of memory used as the threads stack)
• A block of registers (not implemented yet)

Generally, threads are not created or executed directly. All functionality related to the management of
threads is implemented by the thread-manager.

Public Functions

coroutine_type::result_type call(hpx::execution_base::this_thread::detail::agent_storage
*agent_storage)

std::size_t get_thread_data() const

std::size_t set_thread_data(std::size_t data)

void rebind(thread_init_data &init_data)

thread_data_stackful(thread_init_data &init_data, void *queue, std::ptrdiff_t stack-
size)

~thread_data_stackful()

void destroy()

2.9. API reference 1169

HPX Documentation, 1.5.1

Public Static Functions

thread_data *create(thread_init_data &init_data, void *queue, std::ptrdiff_t stacksize)

Private Functions

thread_data *this_()

Private Members

coroutine_type coroutine_

execution_agent agent_

Private Static Attributes

util::internal_allocator<thread_data_stackful> thread_alloc_

Header hpx/threading_base/thread_data_stackless.hpp

namespace hpx

namespace threads

class thread_data_stackless : public hpx::threads::thread_data
#include <thread_data_stackless.hpp> A thread is the representation of a ParalleX thread. It’s a first
class object in ParalleX. In our implementation this is a user level thread running on top of one of the
OS threads spawned by the thread-manager.

A thread encapsulates:
• A thread status word (see the functions thread::get_state and thread::set_state)
• A function to execute (the thread function)
• A frame (in this implementation this is a block of memory used as the threads stack)
• A block of registers (not implemented yet)

Generally, threads are not created or executed directly. All functionality related to the management of
threads is implemented by the thread-manager.

Public Functions

stackless_coroutine_type::result_type call()

std::size_t get_thread_data() const

std::size_t set_thread_data(std::size_t data)

void rebind(thread_init_data &init_data)

thread_data_stackless(thread_init_data &init_data, void *queue, std::ptrdiff_t stack-
size)

~thread_data_stackless()

1170 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

void destroy()

Public Static Functions

thread_data *create(thread_init_data &init_data, void *queue, std::ptrdiff_t stacksize)

Private Functions

thread_data *this_()

Private Members

stackless_coroutine_type coroutine_

Private Static Attributes

util::internal_allocator<thread_data_stackless> thread_alloc_

Header hpx/threading_base/thread_description.hpp

namespace hpx

namespace threads

Functions

util::thread_description get_thread_description(thread_id_type const &id, error_code
&ec = throws)

The function get_thread_description is part of the thread related API allows to query the description
of one of the threads known to the thread-manager.

Return This function returns the description of the thread referenced by the id parameter. If the
thread is not known to the thread-manager the return value will be the string “<unknown>”.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread being queried.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

util::thread_description set_thread_description(thread_id_type const &id,
util::thread_description const &desc
= util::thread_description(), error_code
&ec = throws)

util::thread_description get_thread_lco_description(thread_id_type const &id, er-
ror_code &ec = throws)

2.9. API reference 1171

HPX Documentation, 1.5.1

util::thread_description set_thread_lco_description(thread_id_type const &id,
util::thread_description const
&desc = util::thread_description(),
error_code &ec = throws)

namespace util

Functions

std::ostream &operator<<(std::ostream&, thread_description const&)

std::string as_string(thread_description const &desc)

struct thread_description
#include <thread_description.hpp>

Public Types

enum data_type
Values:

data_type_description = 0

data_type_address = 1

Public Functions

thread_description()

thread_description(char const*)

template<typename F, typename = typename std::enable_if<!std::is_same<F, thread_description>::value && !traits::is_action<F>::value>::type>
thread_description(F const&, char const* = nullptr)

template<typename Action, typename = typename std::enable_if<traits::is_action<Action>::value>::type>
thread_description(Action, char const* = nullptr)

data_type kind() const

char const *get_description() const

std::size_t get_address() const

operator bool() const

bool valid() const

1172 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Functions

void init_from_alternative_name(char const *altname)

Header hpx/threading_base/thread_helpers.hpp

namespace hpx

namespace this_thread

Functions

threads::thread_state_ex_enum suspend(threads::thread_state_enum state,
threads::thread_id_type const &id,
util::thread_description const &description =
util::thread_description("this_thread::suspend"), er-
ror_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to the thread state passed as the parameter.

Note Must be called from within a HPX-thread.
Exceptions

• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-
ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

threads::thread_state_ex_enum suspend(threads::thread_state_enum state = threads::pending,
util::thread_description const &description =
util::thread_description("this_thread::suspend"), er-
ror_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to the thread state passed as the parameter.

Note Must be called from within a HPX-thread.
Exceptions

• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-
ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

threads::thread_state_ex_enum suspend(util::steady_time_point const &abs_time,
threads::thread_id_type const &id,
util::thread_description const &description =
util::thread_description("this_thread::suspend"), er-
ror_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to suspended and schedules a wakeup for this threads at the given time.

Note Must be called from within a HPX-thread.

2.9. API reference 1173

HPX Documentation, 1.5.1

Exceptions
• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-

ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

threads::thread_state_ex_enum suspend(util::steady_time_point const &abs_time,
util::thread_description const &description =
util::thread_description("this_thread::suspend"), er-
ror_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to suspended and schedules a wakeup for this threads at the given time.

Note Must be called from within a HPX-thread.
Exceptions

• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-
ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

threads::thread_state_ex_enum suspend(util::steady_duration const &rel_time,
util::thread_description const &description =
util::thread_description("this_thread::suspend"), er-
ror_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to suspended and schedules a wakeup for this threads after the given
duration.

Note Must be called from within a HPX-thread.
Exceptions

• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-
ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

threads::thread_state_ex_enum suspend(util::steady_duration const &rel_time,
threads::thread_id_type const &id,
util::thread_description const &description =
util::thread_description("this_thread::suspend"), er-
ror_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to suspended and schedules a wakeup for this threads after the given
duration.

Note Must be called from within a HPX-thread.
Exceptions

• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-
ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an

1174 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

error code of hpx::invalid_status.

threads::thread_state_ex_enum suspend(std::uint64_t ms, util::thread_description
const &description =
util::thread_description("this_thread::suspend"), er-
ror_code &ec = throws)

The function suspend will return control to the thread manager (suspends the current thread). It sets
the new state of this thread to suspended and schedules a wakeup for this threads after the given time
(specified in milliseconds).

Note Must be called from within a HPX-thread.
Exceptions

• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-
ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

threads::thread_pool_base *get_pool(error_code &ec = throws)
Returns a pointer to the pool that was used to run the current thread

Exceptions
• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-

ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

namespace threads

Functions

thread_state set_thread_state(thread_id_type const &id, thread_state_enum state =
pending, thread_state_ex_enum stateex = wait_signaled,
thread_priority priority = thread_priority_normal, bool
retry_on_active = true, hpx::error_code &ec = throws)

Set the thread state of the thread referenced by the thread_id id.

Note If the thread referenced by the parameter id is in thread_state::active state this function sched-
ules a new thread which will set the state of the thread as soon as its not active anymore. The
function returns thread_state::active in this case.

Return This function returns the previous state of the thread referenced by the id parameter. It will
return one of the values as defined by the thread_state enumeration. If the thread is not known to
the thread-manager the return value will be thread_state::unknown.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread the state should be modified for.
• state: [in] The new state to be set for the thread referenced by the id parameter.
• stateex: [in] The new extended state to be set for the thread referenced by the id parameter.
• priority:
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

2.9. API reference 1175

HPX Documentation, 1.5.1

thread_id_type set_thread_state(thread_id_type const &id, util::steady_time_point
const &abs_time, std::atomic<bool> *started,
thread_state_enum state = pending, thread_state_ex_enum
stateex = wait_timeout, thread_priority priority =
thread_priority_normal, bool retry_on_active = true,
error_code &ec = throws)

Set the thread state of the thread referenced by the thread_id id.

Set a timer to set the state of the given thread to the given new value after it expired (at the given time)

Return
Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the

result code using the parameter ec. Otherwise it throws an instance of hpx::exception.
Parameters

• id: [in] The thread id of the thread the state should be modified for.
• abs_time: [in] Absolute point in time for the new thread to be run
• started: [in,out] A helper variable allowing to track the state of the timer helper thread
• state: [in] The new state to be set for the thread referenced by the id parameter.
• stateex: [in] The new extended state to be set for the thread referenced by the id parameter.
• priority:
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

thread_id_type set_thread_state(thread_id_type const &id, util::steady_time_point
const &abs_time, thread_state_enum state = pend-
ing, thread_state_ex_enum stateex = wait_timeout,
thread_priority priority = thread_priority_normal, bool
retry_on_active = true, error_code& = throws)

thread_id_type set_thread_state(thread_id_type const &id, util::steady_duration
const &rel_time, thread_state_enum state = pend-
ing, thread_state_ex_enum stateex = wait_timeout,
thread_priority priority = thread_priority_normal, bool
retry_on_active = true, error_code &ec = throws)

Set the thread state of the thread referenced by the thread_id id.

Set a timer to set the state of the given thread to the given new value after it expired (after the given
duration)

Return
Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the

result code using the parameter ec. Otherwise it throws an instance of hpx::exception.
Parameters

• id: [in] The thread id of the thread the state should be modified for.
• rel_time: [in] Time duration after which the new thread should be run
• state: [in] The new state to be set for the thread referenced by the id parameter.
• stateex: [in] The new extended state to be set for the thread referenced by the id parameter.
• priority:
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

thread_state get_thread_state(thread_id_type const &id, error_code &ec = throws)
The function get_thread_backtrace is part of the thread related API allows to query the currently stored
thread back trace (which is captured during thread suspension).

Return This function returns the currently captured stack back trace of the thread referenced by the
id parameter. If the thread is not known to the thread-manager the return value will be the zero.

1176 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception. The
function get_thread_state is part of the thread related API. It queries the state of one of the threads
known to the thread-manager.

Return This function returns the thread state of the thread referenced by the id parameter. If the
thread is not known to the thread-manager the return value will be terminated.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread being queried.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.
Parameters

• id: [in] The thread id of the thread the state should be modified for.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

std::size_t get_thread_phase(thread_id_type const &id, error_code &ec = throws)
The function get_thread_phase is part of the thread related API. It queries the phase of one of the
threads known to the thread-manager.

Return This function returns the thread phase of the thread referenced by the id parameter. If the
thread is not known to the thread-manager the return value will be ~0.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread the phase should be modified for.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

bool get_thread_interruption_enabled(thread_id_type const &id, error_code &ec =
throws)

Returns whether the given thread can be interrupted at this point.

Return This function returns true if the given thread can be interrupted at this point in time. It will
return false otherwise.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread which should be queried.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

bool set_thread_interruption_enabled(thread_id_type const &id, bool enable, er-
ror_code &ec = throws)

Set whether the given thread can be interrupted at this point.

Return This function returns the previous value of whether the given thread could have been inter-
rupted.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread which should receive the new value.
• enable: [in] This value will determine the new interruption enabled status for the given

thread.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

2.9. API reference 1177

HPX Documentation, 1.5.1

bool get_thread_interruption_requested(thread_id_type const &id, error_code &ec
= throws)

Returns whether the given thread has been flagged for interruption.

Return This function returns true if the given thread was flagged for interruption. It will return false
otherwise.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread which should be queried.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

void interrupt_thread(thread_id_type const &id, bool flag, error_code &ec = throws)
Flag the given thread for interruption.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread which should be interrupted.
• flag: [in] The flag encodes whether the thread should be interrupted (if it is true), or ‘unin-

terrupted’ (if it is false).
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

void interrupt_thread(thread_id_type const &id, error_code &ec = throws)

void interruption_point(thread_id_type const &id, error_code &ec = throws)
Interrupt the current thread at this point if it was canceled. This will throw a thread_interrupted
exception, which will cancel the thread.

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread which should be interrupted.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

threads::thread_priority get_thread_priority(thread_id_type const&id, error_code &ec =
throws)

Return priority of the given thread

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread whose priority is queried.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

std::ptrdiff_t get_stack_size(thread_id_type const &id, error_code &ec = throws)
Return stack size of the given thread

Note As long as ec is not pre-initialized to hpx::throws this function doesn’t throw but returns the
result code using the parameter ec. Otherwise it throws an instance of hpx::exception.

Parameters
• id: [in] The thread id of the thread whose priority is queried.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

1178 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

threads::thread_pool_base *get_pool(thread_id_type const &id, error_code &ec = throws)
Returns a pointer to the pool that was used to run the current thread

Exceptions
• If: &ec != &throws, never throws, but will set ec to an appropriate value when an er-

ror occurs. Otherwise, this function will throw an hpx::exception with an error code of
hpx::yield_aborted if it is signaled with wait_aborted. If called outside of a HPX-thread, this
function will throw an hpx::exception with an error code of hpx::null_thread_id. If this func-
tion is called while the thread-manager is not running, it will throw an hpx::exception with an
error code of hpx::invalid_status.

Header hpx/threading_base/thread_init_data.hpp

namespace hpx

namespace threads

Functions

std::ptrdiff_t get_default_stack_size()

std::ptrdiff_t get_stack_size(thread_stacksize)

class thread_init_data
#include <thread_init_data.hpp>

Public Functions

thread_init_data()

thread_init_data &operator=(thread_init_data &&rhs)

thread_init_data(thread_init_data &&rhs)

template<typename F>
thread_init_data(F &&f, util::thread_description const &desc, thread_priority

priority_ = thread_priority_normal, thread_schedule_hint
os_thread = thread_schedule_hint(), thread_stacksize stacksize_ =
thread_stacksize_default, thread_state_enum initial_state_ = pending,
bool run_now_ = false, policies::scheduler_base *scheduler_base_ =
nullptr)

Public Members

threads::thread_function_type func

thread_priority priority

thread_schedule_hint schedulehint

thread_stacksize stacksize

thread_state_enum initial_state

2.9. API reference 1179

HPX Documentation, 1.5.1

bool run_now

policies::scheduler_base *scheduler_base

Header hpx/threading_base/thread_num_tss.hpp

namespace hpx

Functions

std::size_t get_worker_thread_num()
Return the number of the current OS-thread running in the runtime instance the current HPX-thread is
executed with.

This function returns the zero based index of the OS-thread which executes the current HPX-thread.

Note The returned value is zero based and its maximum value is smaller than the overall number of OS-
threads executed (as returned by get_os_thread_count().

Note This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

std::size_t get_worker_thread_num(error_code &ec)
Return the number of the current OS-thread running in the runtime instance the current HPX-thread is
executed with.

This function returns the zero based index of the OS-thread which executes the current HPX-thread.

Note The returned value is zero based and its maximum value is smaller than the overall number of OS-
threads executed (as returned by get_os_thread_count(). It will return -1 if the current thread is not a
known thread or if the runtime is not in running state.

Note This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

Parameters

• ec: [in,out] this represents the error status on exit.

std::size_t get_local_worker_thread_num()
Return the number of the current OS-thread running in the current thread pool the current HPX-thread is
executed with.

This function returns the zero based index of the OS-thread on the current thread pool which executes the
current HPX-thread.

Note The returned value is zero based and its maximum value is smaller than the number of OS-threads
executed on the current thread pool. It will return -1 if the current thread is not a known thread or if
the runtime is not in running state.

Note This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

std::size_t get_local_worker_thread_num(error_code &ec)
Return the number of the current OS-thread running in the current thread pool the current HPX-thread is
executed with.

This function returns the zero based index of the OS-thread on the current thread pool which executes the
current HPX-thread.

1180 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Note The returned value is zero based and its maximum value is smaller than the number of OS-threads
executed on the current thread pool. It will return -1 if the current thread is not a known thread or if
the runtime is not in running state.

Note This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

Parameters

• ec: [in,out] this represents the error status on exit.

std::size_t get_thread_pool_num()
Return the number of the current thread pool the current HPX-thread is executed with.

This function returns the zero based index of the thread pool which executes the current HPX-thread.

Note The returned value is zero based and its maximum value is smaller than the number of thread pools
started by the runtime. It will return -1 if the current thread pool is not a known thread pool or if the
runtime is not in running state.

Note This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

std::size_t get_thread_pool_num(error_code &ec)
Return the number of the current thread pool the current HPX-thread is executed with.

This function returns the zero based index of the thread pool which executes the current HPX-thread.

Note The returned value is zero based and its maximum value is smaller than the number of thread pools
started by the runtime. It will return -1 if the current thread pool is not a known thread pool or if the
runtime is not in running state.

Note This function needs to be executed on a HPX-thread. It will fail otherwise (it will return -1).

Parameters

• ec: [in,out] this represents the error status on exit.

Header hpx/threading_base/thread_pool_base.hpp

namespace hpx

namespace threads

struct executor_statistics
#include <thread_pool_base.hpp> Data structure which stores statistics collected by an executor in-
stance.

2.9. API reference 1181

HPX Documentation, 1.5.1

Public Functions

executor_statistics()

Public Members

std::uint64_t tasks_scheduled_

std::uint64_t tasks_completed_

std::uint64_t queue_length_

class thread_pool_base
#include <thread_pool_base.hpp> The base class used to manage a pool of OS threads.

Public Functions

virtual void suspend_processing_unit_direct(std::size_t virt_core, error_code
&ec = throws) = 0

Suspends the given processing unit. Blocks until the processing unit has been suspended.

Parameters
• virt_core: [in] The processing unit on the the pool to be suspended. The processing

units are indexed starting from 0.

virtual void resume_processing_unit_direct(std::size_t virt_core, error_code
&ec = throws) = 0

Resumes the given processing unit. Blocks until the processing unit has been resumed.

Parameters
• virt_core: [in] The processing unit on the the pool to be resumed. The processing units

are indexed starting from 0.

virtual void resume_direct(error_code &ec = throws) = 0
Resumes the thread pool. Blocks until all OS threads on the thread pool have been resumed.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

virtual void suspend_direct(error_code &ec = throws) = 0
Suspends the thread pool. Blocks until all OS threads on the thread pool have been suspended.

Note A thread pool cannot be suspended from an HPX thread running on the pool itself.
Parameters

• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the
function will throw on error instead.

Exceptions
• hpx::exception: if called from an HPX thread which is running on the pool itself.

struct thread_pool_init_parameters
#include <thread_pool_base.hpp>

1182 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

thread_pool_init_parameters(std::string const &name, std::size_t index,
policies::scheduler_mode mode, std::size_t
num_threads, std::size_t thread_offset,
hpx::threads::policies::callback_notifier ¬i-
fier, hpx::threads::policies::detail::affinity_data
const &affinity_data,
hpx::threads::detail::network_background_callback_type
const &network_background_callback =
hpx::threads::detail::network_background_callback_type(),
std::size_t max_background_threads =
std::size_t(-1), std::size_t max_idle_loop_count
= HPX_IDLE_LOOP_COUNT_MAX,
std::size_t max_busy_loop_count =
HPX_BUSY_LOOP_COUNT_MAX)

Public Members

std::string const &name_

std::size_t index_

policies::scheduler_mode mode_

std::size_t num_threads_

std::size_t thread_offset_

hpx::threads::policies::callback_notifier ¬ifier_

hpx::threads::policies::detail::affinity_data const &affinity_data_

hpx::threads::detail::network_background_callback_type const &network_background_callback_

std::size_t max_background_threads_

std::size_t max_idle_loop_count_

std::size_t max_busy_loop_count_

Header hpx/threading_base/thread_queue_init_parameters.hpp

namespace hpx

namespace threads

namespace policies

struct thread_queue_init_parameters
#include <thread_queue_init_parameters.hpp>

2.9. API reference 1183

HPX Documentation, 1.5.1

Public Functions

thread_queue_init_parameters(std::int64_t max_thread_count =
std::int64_t(HPX_THREAD_QUEUE_MAX_THREAD_COUNT),
std::int64_t min_tasks_to_steal_pending =
std::int64_t(HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_PENDING),
std::int64_t min_tasks_to_steal_staged =
std::int64_t(HPX_THREAD_QUEUE_MIN_TASKS_TO_STEAL_STAGED),
std::int64_t min_add_new_count =
std::int64_t(HPX_THREAD_QUEUE_MIN_ADD_NEW_COUNT),
std::int64_t max_add_new_count =
std::int64_t(HPX_THREAD_QUEUE_MAX_ADD_NEW_COUNT),
std::int64_t min_delete_count =
std::int64_t(HPX_THREAD_QUEUE_MIN_DELETE_COUNT),
std::int64_t max_delete_count =
std::int64_t(HPX_THREAD_QUEUE_MAX_DELETE_COUNT),
std::int64_t max_terminated_threads =
std::int64_t(HPX_THREAD_QUEUE_MAX_TERMINATED_THREADS),
double max_idle_backoff_time = dou-
ble(HPX_IDLE_BACKOFF_TIME_MAX),
std::ptrdiff_t small_stacksize =
HPX_SMALL_STACK_SIZE,
std::ptrdiff_t medium_stacksize =
HPX_MEDIUM_STACK_SIZE, std::ptrdiff_t
large_stacksize = HPX_LARGE_STACK_SIZE,
std::ptrdiff_t huge_stacksize =
HPX_HUGE_STACK_SIZE)

Public Members

std::int64_t max_thread_count_

std::int64_t min_tasks_to_steal_pending_

std::int64_t min_tasks_to_steal_staged_

std::int64_t min_add_new_count_

std::int64_t max_add_new_count_

std::int64_t min_delete_count_

std::int64_t max_delete_count_

std::int64_t max_terminated_threads_

double max_idle_backoff_time_

std::ptrdiff_t const small_stacksize_

std::ptrdiff_t const medium_stacksize_

std::ptrdiff_t const large_stacksize_

std::ptrdiff_t const huge_stacksize_

std::ptrdiff_t const nostack_stacksize_

1184 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/threading_base/thread_specific_ptr.hpp

namespace hpx

namespace threads

template<typename T>
class thread_specific_ptr

#include <thread_specific_ptr.hpp>

Public Types

typedef T element_type

Public Functions

thread_specific_ptr()

thread_specific_ptr(void (*func_))T*

~thread_specific_ptr()

T *get() const

T *operator->() const

T &operator*() const

T *release()

void reset(T *new_value = nullptr)

Private Types

typedef coroutines::detail::tss_cleanup_function cleanup_function

Private Functions

thread_specific_ptr(thread_specific_ptr&)

thread_specific_ptr &operator=(thread_specific_ptr&)

2.9. API reference 1185

HPX Documentation, 1.5.1

Private Members

std::shared_ptr<cleanup_function> cleanup_

struct delete_data : public tss_cleanup_function

Public Functions

template<>
void operator()(void *data)

struct run_custom_cleanup_function : public tss_cleanup_function

Public Functions

template<>
run_custom_cleanup_function(void (*cleanup_function_))T*

template<>
void operator()(void *data)

Public Members

template<>
void (*cleanup_function)(T*)

Header hpx/threading_base/threading_base_fwd.hpp

template<>
struct hash<::hpx::threads::thread_id>

#include <threading_base_fwd.hpp>

Public Functions

std::size_t operator()(::hpx::threads::thread_id const &v) const

namespace std

template<>
struct hash<::hpx::threads::thread_id>

#include <threading_base_fwd.hpp>

1186 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

std::size_t operator()(::hpx::threads::thread_id const &v) const

threadmanager

The contents of this module can be included with the header hpx/modules/threadmanager.hpp. These head-
ers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including the
module header hpx/modules/threadmanager.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/modules/threadmanager.hpp

namespace hpx

namespace threads

class threadmanager
#include <threadmanager.hpp> The thread-manager class is the central instance of management for
all (non-depleted) threads

Public Types

typedef threads::policies::callback_notifier notification_policy_type

typedef std::unique_ptr<thread_pool_base> pool_type

typedef threads::policies::scheduler_base scheduler_type

typedef std::vector<pool_type> pool_vector

Public Functions

threadmanager(notification_policy_type ¬ifier, detail::network_background_callback_type
network_background_callback = detail::network_background_callback_type())

~threadmanager()

void init()

void create_pools()

void print_pools(std::ostream&)
FIXME move to private and add hpx:printpools cmd line option.

thread_pool_base &default_pool() const

scheduler_type &default_scheduler() const

thread_pool_base &get_pool(std::string const &pool_name) const

thread_pool_base &get_pool(pool_id_type const &pool_id) const

2.9. API reference 1187

HPX Documentation, 1.5.1

thread_pool_base &get_pool(std::size_t thread_index) const

bool pool_exists(std::string const &pool_name) const

bool pool_exists(std::size_t pool_index) const

void register_work(thread_init_data &data, error_code &ec = throws)
The function register_work adds a new work item to the thread manager. It doesn’t immediately
create a new thread, it just adds the task parameters (function, initial state and description) to the
internal management data structures. The thread itself will be created when the number of existing
threads drops below the number of threads specified by the constructors max_count parameter.

Parameters
• func: [in] The function or function object to execute as the thread’s function. This must

have a signature as defined by thread_function_type.
• description: [in] The value of this parameter allows to specify a description of the

thread to create. This information is used for logging purposes mainly, but might be useful
for debugging as well. This parameter is optional and defaults to an empty string.

void register_thread(thread_init_data &data, thread_id_type &id, error_code &ec =
throws)

The function register_thread adds a new work item to the thread manager. It creates a new thread,
adds it to the internal management data structures, and schedules the new thread, if appropriate.

Parameters
• func: [in] The function or function object to execute as the thread’s function. This must

have a signature as defined by thread_function_type.
• id: [out] This parameter will hold the id of the created thread. This id is guaranteed to be

validly initialized before the thread function is executed.
• description: [in] The value of this parameter allows to specify a description of the

thread to create. This information is used for logging purposes mainly, but might be useful
for debugging as well. This parameter is optional and defaults to an empty string.

bool run()
Run the thread manager’s work queue. This function instantiates the specified number of OS
threads in each pool. All OS threads are started to execute the function tfunc.

Return The function returns true if the thread manager has been started successfully, otherwise
it returns false.

void stop(bool blocking = true)
Forcefully stop the thread-manager.

Parameters
• blocking:

void suspend()

void resume()

state status() const
Return whether the thread manager is still running This returns the “minimal state”, i.e. the state
of the least advanced thread pool.

std::int64_t get_thread_count(thread_state_enum state = unknown, thread_priority pri-
ority = thread_priority_default, std::size_t num_thread =
std::size_t(-1), bool reset = false)

return the number of HPX-threads with the given state

Note This function lock the internal OS lock in the thread manager

1188 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

std::int64_t get_idle_core_count()

mask_type get_idle_core_mask()

std::int64_t get_background_thread_count()

bool enumerate_threads(util::function_nonser<bool)thread_id_type
> const &f, thread_state_enum state = unknown const

void abort_all_suspended_threads()

bool cleanup_terminated(bool delete_all)

std::size_t get_os_thread_count() const
Return the number of OS threads running in this thread-manager.

This function will return correct results only if the thread-manager is running.

std::thread &get_os_thread_handle(std::size_t num_thread) const

void report_error(std::size_t num_thread, std::exception_ptr const &e)
API functions forwarding to notification policy.

This notifies the thread manager that the passed exception has been raised. The exception will be
routed through the notifier and the scheduler (which will result in it being passed to the runtime
object, which in turn will report it to the console, etc.).

mask_type get_used_processing_units() const
Returns the mask identifying all processing units used by this thread manager.

hwloc_bitmap_ptr get_pool_numa_bitmap(const std::string &pool_name) const

void set_scheduler_mode(threads::policies::scheduler_mode mode)

void add_scheduler_mode(threads::policies::scheduler_mode mode)

void add_remove_scheduler_mode(threads::policies::scheduler_mode
to_add_mode, threads::policies::scheduler_mode
to_remove_mode)

void remove_scheduler_mode(threads::policies::scheduler_mode mode)

void reset_thread_distribution()

void init_tss(std::size_t global_thread_num)

void deinit_tss()

std::size_t shrink_pool(std::string const &pool_name)

std::size_t expand_pool(std::string const &pool_name)

std::int64_t get_queue_length(bool reset)

std::int64_t get_cumulative_duration(bool reset)

std::int64_t get_thread_count_unknown(bool reset)

std::int64_t get_thread_count_active(bool reset)

std::int64_t get_thread_count_pending(bool reset)

2.9. API reference 1189

HPX Documentation, 1.5.1

std::int64_t get_thread_count_suspended(bool reset)

std::int64_t get_thread_count_terminated(bool reset)

std::int64_t get_thread_count_staged(bool reset)

Private Types

typedef std::mutex mutex_type

Private Members

mutex_type mtx_

std::size_t num_threads_

std::vector<pool_id_type> threads_lookup_

pool_vector pools_

notification_policy_type ¬ifier_

detail::network_background_callback_type network_background_callback_

Header hpx/threadmanager/threadmanager_fwd.hpp

timed_execution

The contents of this module can be included with the header hpx/modules/timed_execution.hpp. These
headers may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using
these at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/timed_execution.hpp, not the particular header in which the functionality
you would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/timed_execution/timed_execution.hpp

Header hpx/timed_execution/timed_execution_fwd.hpp

Header hpx/timed_execution/timed_executors.hpp

namespace hpx

namespace parallel

namespace execution

1190 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Typedefs

using sequenced_timed_executor = timed_executor<execution::sequenced_executor>

using parallel_timed_executor = timed_executor<execution::parallel_executor>

template<typename BaseExecutor>
struct timed_executor

#include <timed_executors.hpp>

Public Types

typedef std::decay<BaseExecutor>::type base_executor_type

typedef hpx::traits::executor_execution_category<base_executor_type>::type execution_category

typedef hpx::traits::executor_parameters_type<base_executor_type>::type parameters_type

Public Functions

timed_executor(hpx::util::steady_time_point const &abs_time)

timed_executor(hpx::util::steady_duration const &rel_time)

template<typename Executor>
timed_executor(Executor &&exec, hpx::util::steady_time_point const &abs_time)

template<typename Executor>
timed_executor(Executor &&exec, hpx::util::steady_duration const &rel_time)

template<typename F, typename ...Ts>
hpx::util::detail::invoke_deferred_result<F, Ts...>::type sync_execute(F &&f, Ts&&...

ts)

template<typename F, typename ...Ts>
hpx::future<typename hpx::util::detail::invoke_deferred_result<F, Ts...>::type> async_execute(F

&&f,
Ts&&...
ts)

template<typename F, typename ...Ts>
void post(F &&f, Ts&&... ts)

Public Members

BaseExecutor exec_

std::chrono::steady_clock::time_point execute_at_

2.9. API reference 1191

HPX Documentation, 1.5.1

Header hpx/timed_execution/traits/is_timed_executor.hpp

namespace hpx

namespace parallel

namespace execution

Typedefs

using is_timed_executor_t = typename is_timed_executor<T>::type

timing

The contents of this module can be included with the header hpx/modules/timing.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/timing.hpp, not the particular header in which the functionality you would like to use is
defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/timing/high_resolution_clock.hpp

namespace hpx

namespace util

struct high_resolution_clock
#include <high_resolution_clock.hpp>

Public Static Functions

static std::uint64_t now()

static std::uint64_t() hpx::util::high_resolution_clock::min()

static std::uint64_t() hpx::util::high_resolution_clock::max()

Header hpx/timing/high_resolution_timer.hpp

namespace hpx

namespace util

class high_resolution_timer
#include <high_resolution_timer.hpp>

1192 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

high_resolution_timer()

high_resolution_timer(double t)

void restart()

double elapsed() const

std::int64_t elapsed_microseconds() const

std::int64_t elapsed_nanoseconds() const

double elapsed_max() const

double elapsed_min() const

Public Static Functions

static double now()

Protected Static Functions

static std::uint64_t take_time_stamp()

Private Members

std::uint64_t start_time_

Header hpx/timing/scoped_timer.hpp

namespace hpx

namespace util

template<typename T>
struct scoped_timer

#include <scoped_timer.hpp>

Public Functions

scoped_timer(T &t, bool enabled = true)

scoped_timer(scoped_timer const&)

scoped_timer(scoped_timer &&rhs)

~scoped_timer()

scoped_timer &operator=(scoped_timer const &rhs)

2.9. API reference 1193

HPX Documentation, 1.5.1

scoped_timer &operator=(scoped_timer &&rhs)

bool enabled() const

Private Members

std::uint64_t started_at_

T *t_

Header hpx/timing/steady_clock.hpp

namespace hpx

namespace util

class steady_duration
#include <steady_clock.hpp>

Public Functions

steady_duration(value_type const &rel_time)

template<typename Rep, typename Period>
steady_duration(std::chrono::duration<Rep, Period> const &rel_time)

value_type const &value() const

steady_clock::time_point from_now() const

Private Types

typedef steady_clock::duration value_type

Private Members

value_type _rel_time

class steady_time_point
#include <steady_clock.hpp>

1194 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

steady_time_point(value_type const &abs_time)

template<typename Clock, typename Duration>
steady_time_point(std::chrono::time_point<Clock, Duration> const &abs_time)

value_type const &value() const

Private Types

typedef steady_clock::time_point value_type

Private Members

value_type _abs_time

Header hpx/timing/tick_counter.hpp

namespace hpx

namespace util

class tick_counter
#include <tick_counter.hpp>

Public Functions

tick_counter(std::uint64_t &output)

~tick_counter()

Protected Static Functions

static std::uint64_t take_time_stamp()

Private Members

std::uint64_t const start_time_

std::uint64_t &output_

2.9. API reference 1195

HPX Documentation, 1.5.1

topology

The contents of this module can be included with the header hpx/modules/topology.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/topology.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/topology/cpu_mask.hpp

Header hpx/topology/topology.hpp

namespace hpx

namespace threads

Typedefs

using hwloc_bitmap_ptr = std::shared_ptr<hpx_hwloc_bitmap_wrapper>

Enums

enum hpx_hwloc_membind_policy
Please see hwloc documentation for the corresponding enums HWLOC_MEMBIND_XXX.

Values:

membind_default = HWLOC_MEMBIND_DEFAULT

membind_firsttouch = HWLOC_MEMBIND_FIRSTTOUCH

membind_bind = HWLOC_MEMBIND_BIND

membind_interleave = HWLOC_MEMBIND_INTERLEAVE

membind_replicate = HWLOC_MEMBIND_REPLICATE

membind_nexttouch = HWLOC_MEMBIND_NEXTTOUCH

membind_mixed = HWLOC_MEMBIND_MIXED

membind_user = HWLOC_MEMBIND_MIXED + 256

Functions

topology &create_topology()

HPX_NODISCARD unsigned int hpx::threads::hardware_concurrency()

std::size_t get_memory_page_size()

struct hpx_hwloc_bitmap_wrapper
#include <topology.hpp>

1196 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Public Functions

HPX_NON_COPYABLE(hpx_hwloc_bitmap_wrapper)

hpx_hwloc_bitmap_wrapper()

hpx_hwloc_bitmap_wrapper(void *bmp)

~hpx_hwloc_bitmap_wrapper()

void reset(hwloc_bitmap_t bmp)

operator bool() const

hwloc_bitmap_t get_bmp() const

Private Members

hwloc_bitmap_t bmp_

Friends

std::ostream &operator<<(std::ostream &os, hpx_hwloc_bitmap_wrapper const *bmp)

struct topology
#include <topology.hpp>

Public Functions

topology()

~topology()

std::size_t get_socket_number(std::size_t num_thread, error_code& = throws) const
Return the Socket number of the processing unit the given thread is running on.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

std::size_t get_numa_node_number(std::size_t num_thread, error_code& = throws)
const

Return the NUMA node number of the processing unit the given thread is running on.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

mask_cref_type get_machine_affinity_mask(error_code &ec = throws) const
Return a bit mask where each set bit corresponds to a processing unit available to the application.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

2.9. API reference 1197

HPX Documentation, 1.5.1

mask_type get_service_affinity_mask(mask_cref_type used_processing_units, er-
ror_code &ec = throws) const

Return a bit mask where each set bit corresponds to a processing unit available to the service
threads in the application.

Parameters
• used_processing_units: [in] This is the mask of processing units which are not

available for service threads.
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

mask_cref_type get_socket_affinity_mask(std::size_t num_thread, error_code &ec =
throws) const

Return a bit mask where each set bit corresponds to a processing unit available to the given thread
inside the socket it is running on.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

mask_cref_type get_numa_node_affinity_mask(std::size_t num_thread, error_code
&ec = throws) const

Return a bit mask where each set bit corresponds to a processing unit available to the given thread
inside the NUMA domain it is running on.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

mask_type get_numa_node_affinity_mask_from_numa_node(std::size_t
num_node) const

Return a bit mask where each set bit corresponds to a processing unit associated with the given
NUMA node.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

mask_cref_type get_core_affinity_mask(std::size_t num_thread, error_code &ec =
throws) const

Return a bit mask where each set bit corresponds to a processing unit available to the given thread
inside the core it is running on.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

mask_cref_type get_thread_affinity_mask(std::size_t num_thread, error_code &ec =
throws) const

Return a bit mask where each set bit corresponds to a processing unit available to the given thread.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

void set_thread_affinity_mask(mask_cref_type mask, error_code &ec = throws)
const

Use the given bit mask to set the affinity of the given thread. Each set bit corresponds to a
processing unit the thread will be allowed to run on.

Note Use this function on systems where the affinity must be set from inside the thread itself.

1198 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

mask_type get_thread_affinity_mask_from_lva(void const *lva, error_code &ec
= throws) const

Return a bit mask where each set bit corresponds to a processing unit co-located with the memory
the given address is currently allocated on.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

void print_affinity_mask(std::ostream &os, std::size_t num_thread, mask_cref_type m,
const std::string &pool_name) const

Prints the.

Parameters
• m: to os in a human readable form

bool reduce_thread_priority(error_code &ec = throws) const
Reduce thread priority of the current thread.

Parameters
• ec: [in,out] this represents the error status on exit, if this is pre-initialized to hpx::throws the

function will throw on error instead.

std::size_t get_number_of_sockets() const
Return the number of available NUMA domains.

std::size_t get_number_of_numa_nodes() const
Return the number of available NUMA domains.

std::size_t get_number_of_cores() const
Return the number of available cores.

std::size_t get_number_of_pus() const
Return the number of available hardware processing units.

std::size_t get_number_of_numa_node_cores(std::size_t numa) const
Return number of cores in given numa domain.

std::size_t get_number_of_numa_node_pus(std::size_t numa) const
Return number of processing units in a given numa domain.

std::size_t get_number_of_socket_pus(std::size_t socket) const
Return number of processing units in a given socket.

std::size_t get_number_of_core_pus(std::size_t core) const
Return number of processing units in given core.

std::size_t get_number_of_socket_cores(std::size_t socket) const
Return number of cores units in given socket.

std::size_t get_core_number(std::size_t num_thread, error_code& = throws) const

std::size_t get_pu_number(std::size_t num_core, std::size_t num_pu, error_code &ec =
throws) const

mask_type get_cpubind_mask(error_code &ec = throws) const

2.9. API reference 1199

HPX Documentation, 1.5.1

mask_type get_cpubind_mask(std::thread &handle, error_code &ec = throws) const

hwloc_bitmap_ptr cpuset_to_nodeset(mask_cref_type cpuset) const
convert a cpu mask into a numa node mask in hwloc bitmap form

void write_to_log() const

void *allocate(std::size_t len) const
This is equivalent to malloc(), except that it tries to allocate page-aligned memory from the OS.

void *allocate_membind(std::size_t len, hwloc_bitmap_ptr bitmap,
hpx_hwloc_membind_policy policy, int flags) const

allocate memory with binding to a numa node set as specified by the policy and flags (see hwloc
docs)

threads::mask_type get_area_membind_nodeset(const void *addr, std::size_t len)
const

bool set_area_membind_nodeset(const void *addr, std::size_t len, void *nodeset)
const

int get_numa_domain(const void *addr) const

void deallocate(void *addr, std::size_t len) const
Free memory that was previously allocated by allocate.

void print_vector(std::ostream &os, std::vector<std::size_t> const &v) const

void print_mask_vector(std::ostream &os, std::vector<mask_type> const &v) const

void print_hwloc(std::ostream&) const

mask_type init_socket_affinity_mask_from_socket(std::size_t num_socket)
const

mask_type init_numa_node_affinity_mask_from_numa_node(std::size_t
num_numa_node)
const

mask_type init_core_affinity_mask_from_core(std::size_t num_core,
mask_cref_type default_mask
= empty_mask) const

mask_type init_thread_affinity_mask(std::size_t num_thread) const

mask_type init_thread_affinity_mask(std::size_t num_core, std::size_t num_pu)
const

hwloc_bitmap_t mask_to_bitmap(mask_cref_type mask, hwloc_obj_type_t htype) const

mask_type bitmap_to_mask(hwloc_bitmap_t bitmap, hwloc_obj_type_t htype) const

1200 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Private Types

using mutex_type = hpx::util::spinlock

Private Functions

std::size_t init_node_number(std::size_t num_thread, hwloc_obj_type_t type)

std::size_t init_socket_number(std::size_t num_thread)

std::size_t init_numa_node_number(std::size_t num_thread)

std::size_t init_core_number(std::size_t num_thread)

void extract_node_mask(hwloc_obj_t parent, mask_type &mask) const

std::size_t extract_node_count(hwloc_obj_t parent, hwloc_obj_type_t type, std::size_t
count) const

mask_type init_machine_affinity_mask() const

mask_type init_socket_affinity_mask(std::size_t num_thread) const

mask_type init_numa_node_affinity_mask(std::size_t num_thread) const

mask_type init_core_affinity_mask(std::size_t num_thread) const

void init_num_of_pus()

Private Members

hwloc_topology_t topo

std::size_t num_of_pus_

mutex_type topo_mtx

std::vector<std::size_t> socket_numbers_

std::vector<std::size_t> numa_node_numbers_

std::vector<std::size_t> core_numbers_

mask_type machine_affinity_mask_

std::vector<mask_type> socket_affinity_masks_

std::vector<mask_type> numa_node_affinity_masks_

std::vector<mask_type> core_affinity_masks_

std::vector<mask_type> thread_affinity_masks_

2.9. API reference 1201

HPX Documentation, 1.5.1

Private Static Attributes

mask_type empty_mask

std::size_t memory_page_size_

const std::size_t pu_offset = 0

const std::size_t core_offset = 0

Friends

std::size_t get_memory_page_size()

type_support

The contents of this module can be included with the header hpx/modules/type_support.hpp. These headers
may be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these
at your own risk. If you wish to use non-public functionality from a module we strongly suggest only including
the module header hpx/modules/type_support.hpp, not the particular header in which the functionality you
would like to use is defined. See Public API for a list of names that are part of the public HPX API.

Header hpx/type_support/always_void.hpp

namespace hpx

namespace util

template<typename ...T>
struct always_void

#include <always_void.hpp>

Public Types

typedef void type

Header hpx/type_support/decay.hpp

Header hpx/type_support/detected.hpp

namespace hpx

namespace util

1202 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Typedefs

using is_detected = typename detail::detector<nonesuch, void, Op, Args...>::value_t

using detected_t = typename detail::detector<nonesuch, void, Op, Args...>::type

using detected_or = detail::detector<Default, void, Op, Args...>

using detected_or_t = typename detected_or<Default, Op, Args...>::type

using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>

using is_detected_convertible = std::is_convertible<detected_t<Op, Args...>, To>

struct nonesuch
#include <detected.hpp>

Public Functions

nonesuch()

~nonesuch()

nonesuch(nonesuch const&)

void operator=(nonesuch const&)

Header hpx/type_support/equality.hpp

Header hpx/type_support/identity.hpp

namespace hpx

namespace util

template<typename T>
struct identity

#include <identity.hpp>

Public Types

typedef T type

Header hpx/type_support/lazy_conditional.hpp

Header hpx/type_support/lazy_enable_if.hpp

namespace hpx

namespace util

2.9. API reference 1203

HPX Documentation, 1.5.1

template<typename T>
struct lazy_enable_if<true, T>

#include <lazy_enable_if.hpp>

Public Types

typedef T::type type

Header hpx/type_support/pack.hpp

namespace hpx

namespace util

Typedefs

using index_pack = pack_c<std::size_t, Is...>

template<typename ...Ts>
struct pack

#include <pack.hpp>

Public Types

typedef pack type

Public Static Attributes

const std::size_t size = sizeof...(Ts)

template<typename T, T ... Vs>
struct pack_c

#include <pack.hpp> Subclassed by hpx::util::detail::make_index_pack_join< index_pack< Left. . .
>, index_pack< Right. . . > >, hpx::util::make_index_pack< 1 >

Public Types

typedef pack_c type

Public Static Attributes

const std::size_t size = sizeof...(Vs)

1204 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/type_support/static.hpp

Defines

HPX_EXPORT_STATIC_

namespace hpx

namespace util

template<typename T, typename Tag = T>
struct static_

#include <static.hpp>

Public Types

typedef T value_type

typedef T &reference

typedef T const &const_reference

Public Functions

HPX_NON_COPYABLE(static_)

static_()

operator reference()

operator const_reference() const

reference get()

const_reference get() const

Private Types

typedef std::add_pointer<value_type>::type pointer

typedef std::aligned_storage<sizeof(value_type), std::alignment_of<value_type>::value>::type storage_type

Private Static Functions

static pointer get_address()

2.9. API reference 1205

HPX Documentation, 1.5.1

Private Static Attributes

static_<T, Tag>::storage_type data_

std::once_flag constructed_

struct default_constructor

Public Static Functions

template<>
static void construct()

struct destructor

Public Functions

template<>
~destructor()

Header hpx/type_support/unused.hpp

Defines

HPX_UNUSED(x)

HPX_MAYBE_UNUSED

namespace hpx

namespace util

Variables

constexpr unused_type unused = unused_type()

struct unused_type
#include <unused.hpp>

Public Functions

constexpr unused_type()

constexpr unused_type(unused_type const&)

constexpr unused_type(unused_type&&)

template<typename T>
constexpr unused_type(T const&)

template<typename T>
constexpr unused_type const &operator=(T const&) const

1206 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

template<typename T>
unused_type &operator=(T const&)

constexpr unused_type const &operator=(unused_type const&) const

unused_type &operator=(unused_type const&)

constexpr unused_type const &operator=(unused_type&&) const

unused_type &operator=(unused_type&&)

Header hpx/type_support/unwrap_ref.hpp

template<typename T>
struct unwrap_reference<std::reference_wrapper<T>>

#include <unwrap_ref.hpp>

Public Types

typedef T type

template<typename T>
struct unwrap_reference<std::reference_wrapper<T> const>

#include <unwrap_ref.hpp>

Public Types

typedef T type

namespace hpx

namespace util

Functions

template<typename T>
unwrap_reference<T>::type &unwrap_ref(T &t)

template<typename T>
struct unwrap_reference

#include <unwrap_ref.hpp>

Public Types

typedef T type

template<typename T>
struct unwrap_reference<std::reference_wrapper<T>>

#include <unwrap_ref.hpp>

2.9. API reference 1207

HPX Documentation, 1.5.1

Public Types

typedef T type

template<typename T>
struct unwrap_reference<std::reference_wrapper<T> const>

#include <unwrap_ref.hpp>

Public Types

typedef T type

Header hpx/type_support/void_guard.hpp

namespace hpx

namespace util

template<>
struct void_guard<void>

#include <void_guard.hpp>

Public Functions

template<typename T>
void operator,(T const&) const

util

The contents of this module can be included with the header hpx/modules/util.hpp. These headers may be
used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your own
risk. If you wish to use non-public functionality from a module we strongly suggest only including the module header
hpx/modules/util.hpp, not the particular header in which the functionality you would like to use is defined.
See Public API for a list of names that are part of the public HPX API.

Header hpx/util/calculate_fanout.hpp

namespace hpx

namespace util

1208 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Functions

std::size_t calculate_fanout(std::size_t size, std::size_t local_fanout)

Header hpx/util/get_and_reset_value.hpp

namespace hpx

namespace util

Functions

std::uint64_t get_and_reset_value(std::uint64_t &value, bool reset)

std::int64_t get_and_reset_value(std::int64_t &value, bool reset)

template<typename T>
T get_and_reset_value(std::atomic<T> &value, bool reset)

std::vector<std::int64_t> get_and_reset_value(std::vector<std::int64_t> &value, bool reset)

Header hpx/util/get_entry_as.hpp

namespace hpx

namespace util

Functions

template<typename DestType, typename Config, typename std::enable_if<!std::is_same< DestType, std::string >::value, bool >::type = false>DestType hpx::util::get_entry_as(Config const & config, std::string const & key, DestType const & dflt)

Header hpx/util/insert_checked.hpp

namespace hpx

namespace util

Functions

template<typename Iterator>
bool insert_checked(std::pair<Iterator, bool> const &r)

Helper function for writing predicates that test whether an std::map insertion succeeded. This inline
template function negates the need to explicitly write the sometimes lengthy std::pair<Iterator, bool>
type.

Return This function returns r.second.
Parameters

2.9. API reference 1209

HPX Documentation, 1.5.1

• r: [in] The return value of a std::map insert operation.

template<typename Iterator>
bool insert_checked(std::pair<Iterator, bool> const &r, Iterator &it)

Helper function for writing predicates that test whether an std::map insertion succeeded. This inline
template function negates the need to explicitly write the sometimes lengthy std::pair<Iterator, bool>
type.

Return This function returns r.second.
Parameters

• r: [in] The return value of a std::map insert operation.
• r: [out] A reference to an Iterator, which is set to r.first.

Header hpx/util/ios_flags_saver.hpp

namespace hpx

namespace util

class ios_flags_saver
#include <ios_flags_saver.hpp>

Public Types

typedef ::std::ios_base state_type

typedef ::std::ios_base::fmtflags aspect_type

Public Functions

ios_flags_saver(state_type &s)

ios_flags_saver(state_type &s, aspect_type const &a)

~ios_flags_saver()

ios_flags_saver(ios_flags_saver const&)

ios_flags_saver &operator=(ios_flags_saver const&)

void restore()

Private Members

state_type &s_save_

aspect_type const a_save_

1210 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/util/manage_config.hpp

namespace hpx

namespace util

struct manage_config
#include <manage_config.hpp>

Public Types

typedef std::map<std::string, std::string> map_type

Public Functions

manage_config(std::vector<std::string> const &cfg)

void add(std::vector<std::string> const &cfg)

template<typename T>
T get_value(std::string const &key, T dflt = T()) const

Public Members

map_type config_

Header hpx/util/regex_from_pattern.hpp

namespace hpx

namespace util

Functions

std::string regex_from_pattern(std::string const &pattern, error_code &ec = throws)

Header hpx/util/sed_transform.hpp

namespace hpx

namespace util

2.9. API reference 1211

HPX Documentation, 1.5.1

Functions

bool parse_sed_expression(std::string const &input, std::string &search, std::string &re-
place)

Parse a sed command.

Return true if the parsing was successful, false otherwise.
Note Currently, only supports search and replace syntax (s/search/replace/)
Parameters

• input: [in] The content to parse.
• search: [out] If the parsing is successful, this string is set to the search expression.
• search: [out] If the parsing is successful, this string is set to the replace expression.

struct sed_transform
#include <sed_transform.hpp> An unary function object which applies a sed command to its subject
and returns the resulting string.

Note Currently, only supports search and replace syntax (s/search/replace/)

Public Functions

sed_transform(std::string const &search, std::string const &replace)

sed_transform(std::string const &expression)

std::string operator()(std::string const &input) const

operator bool() const

bool operator!() const

Private Members

std::shared_ptr<command> command_

Header hpx/util/traits/await_traits.hpp

version

The contents of this module can be included with the header hpx/modules/version.hpp. These headers may
be used by user-code but are not guaranteed stable (neither header location nor contents). You are using these at your
own risk. If you wish to use non-public functionality from a module we strongly suggest only including the module
header hpx/modules/version.hpp, not the particular header in which the functionality you would like to use
is defined. See Public API for a list of names that are part of the public HPX API.

1212 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Header hpx/version.hpp

namespace hpx

Functions

std::uint8_t major_version()

std::uint8_t minor_version()

std::uint8_t subminor_version()

std::uint32_t full_version()

std::string full_version_as_string()

std::uint8_t agas_version()

std::string tag()

std::string full_build_string()

std::string build_string()

std::string boost_version()

std::string boost_platform()

std::string boost_compiler()

std::string boost_stdlib()

std::string copyright()

std::string complete_version()

std::string build_type()

std::string build_date_time()

std::string configuration_string()

2.10 Contributing to HPX

HPX development happens on Github. The following sections are a collection of useful information related to HPX
development.

2.10. Contributing to HPX 1213

HPX Documentation, 1.5.1

2.10.1 Contributing to HPX

The main source of information to understand the process of how to contribute to HPX can be found in this docu-
ment241. This is a living document that is constantly updated with relevant information.

2.10.2 HPX governance model

The HPX project is a meritocratic, consensus-based community project. Anyone with an interest in the project can
join the community, contribute to the project design and participate in the decision making process. This document242

describes how that participation takes place and how to set about earning merit within the project community.

2.10.3 Release procedure for HPX

Below is a step by step procedure for making an HPX release. We aim to produce two releases per year: one in
March-April, and one in September-October.

This is a living document and may not be totally current or accurate. It is an attempt to capture current practices in
making an HPX release. Please update it as appropriate.

One way to use this procedure is to print a copy and check off the lines as they are completed to avoid confusion.

1. Notify developers that a release is imminent.

2. Write release notes in docs/sphinx/releases/whats_new_$VERSION.rst. Keep adding
merged PRs and closed issues to this until just before the release is made. Use tools/
generate_pr_issue_list.sh to generate the lists.

3. Add the new release notes to the table of contents in docs/sphinx/releases.rst.

4. Build the docs, and proof-read them. Update any documentation that may have changed, and correct any typos.
Pay special attention to:

• $HPX_SOURCE/README.rst

– Update grant information

• docs/sphinx/releases/whats_new_$VERSION.rst

• docs/sphinx/about_hpx/people.rst

– Update collaborators

– Update grant information

5. This step does not apply to patch releases. For both APEX and libCDS:

• Change the release branch to be the most current release tag available in the APEX/libCDS
git_external section in the main CMakeLists.txt. Please contact the maintainers of the respec-
tive packages to generate a new release to synchronize with the HPX release (APEX243, libCDS244).

6. If there have been any commits to the release branch since the last release, create a tag from the old release
branch before deleting the old release branch in the next step.

7. Unprotect the release branch in the github repository settings so that it can be deleted and recreated (tick “Allow
force pushes” in the release branch settings of the repository).

241 https://github.com/STEllAR-GROUP/hpx/blob/master/.github/CONTRIBUTING.md
242 http://hpx.stellar-group.org/documents/governance/
243 http://github.com/khuck/xpress-apex
244 https://github.com/STEllAR-GROUP/libcds

1214 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/blob/master/.github/CONTRIBUTING.md
https://github.com/STEllAR-GROUP/hpx/blob/master/.github/CONTRIBUTING.md
http://hpx.stellar-group.org/documents/governance/
http://github.com/khuck/xpress-apex
https://github.com/STEllAR-GROUP/libcds

HPX Documentation, 1.5.1

8. Reset the release branch to the latest stable state on master and force push to origin/release. If you are creating
a patch release, branch from the release tag for which you want to create a patch release.

• git checkout -b release (or just checkout in case the it exists)

• git reset --hard stable

• git push --force origin release

9. Protect the release branch again to disable force pushes.

10. Check out the release branch.

11. Make sure HPX_VERSION_MAJOR/MINOR/SUBMINOR in CMakeLists.txt contain the correct values.
Change them if needed.

12. This step does not apply to patch releases. Remove features which have been deprecated for at least 2 releases.
This involves removing build options which enable those features from the main CMakeLists.txt and also delet-
ing all related code and tests from the main source tree.

The general deprecation policy involves a three-step process we have to go through in order to introduce a
breaking change:

a. First release cycle: add a build option that allows for explicitly disabling any old (now deprecated) code.

b. Second release cycle: turn this build option OFF by default.

c. Third release cycle: completely remove the old code.

The main CMakeLists.txt contains a comment indicating for which version the breaking change was introduced
first. In the case of deprecated features which don’t have a replacement yet, we keep them around in case (like
Vc for example).

13. Update the minimum required versions if necessary (compilers, dependencies, etc.) in building_hpx.rst.

14. Verify that the jenkins setup for the release branch on rostam is running and does not display any errors.

15. Repeat the following steps until satisfied with the release.

1. Change HPX_VERSION_TAG in CMakeLists.txt to -rcN, where N is the current iteration of this
step. Start with -rc1.

2. Create a pre-release on GitHub using the script tools/roll_release.sh. This script automatically
tag with the corresponding release number. The script requires that you have the STE||AR Group signing
key.

3. This step is not necessary for patch releases. Notify hpx-users@stellar.cct.lsu.edu and
stellar@cct.lsu.edu of the availability of the release candidate. Ask users to test the candidate
by checking out the release candidate tag.

4. Allow at least a week for testing of the release candidate.

• Use git merge when possible, and fall back to git cherry-pick when needed. For patch
releases git cherry-pick is most likely your only choice if there have been significant unrelated
changes on master since the previous release.

• Go back to the first step when enough patches have been added.

• If there are no more patches, continue to make the final release.

16. Update any occurrences of the latest stable release to refer to the version about to be released. For example,
quickstart.rst contains instructions to check out the latest stable tag. Make sure that refers to the new
version.

17. Add a new entry to the RPM changelog (cmake/packaging/rpm/Changelog.txt) with the new version
number and a link to the corresponding changelog.

2.10. Contributing to HPX 1215

HPX Documentation, 1.5.1

18. Change HPX_VERSION_TAG in CMakeLists.txt to an empty string.

19. Add the release date to the caption of the current “What’s New” section in the docs, and change the value of
HPX_VERSION_DATE in CMakeLists.txt.

20. Create a release on GitHub using the script tools/roll_release.sh. This script automatically tag the
with the corresponding release number. The script requires that you have the STE||AR Group signing key.

21. Update the websites (stellar-group.org245 and stellar.cct.lsu.edu246) with the following:

• Download links on the downloads pages. Link to the release on GitHub.

• Documentation links on the docs page (link to generated documentation on GitHub Pages). Follow the
style of previous releases.

• A new blog post announcing the release, which links to downloads and the “What’s New” section in the
documentation (see previous releases for examples).

22. Merge release branch into master.

23. Post-release cleanup. Create a new pull request against master with the following changes:

1. Modify the release procedure if necessary.

2. Change HPX_VERSION_TAG in CMakeLists.txt back to -trunk.

24. Update Vcpkg (https://github.com/Microsoft/vcpkg) to pull from latest release.

• Update version number in CONTROL

• Update tag and SHA512 to that of the new release

25. Announce the release on hpx-users@stellar.cct.lsu.edu, stellar@cct.lsu.edu, allcct@cct.lsu.edu, fac-
ulty@csc.lsu.edu, faculty@ece.lsu.edu, xpress@crest.iu.edu, the HPX Slack channel, the IRC channel, Sonia
Sachs, our list of external collaborators, isocpp.org, reddit.com, HPC Wire, Inside HPC, Heise Online, and a
CCT press release.

26. Beer and pizza.

2.10.4 Testing HPX

To ensure correctness of HPX, we ship a large variety of unit and regression tests. The tests are driven by the CTest247

tool and are executed automatically by buildbot (see HPX Buildbot Website248) on each commit to the HPX Github249

repository. In addition, it is encouraged to run the test suite manually to ensure proper operation on your target system.
If a test fails for your platform, we highly recommend submitting an issue on our HPX Issues250 tracker with detailed
information about the target system.

245 https://stellar-group.org
246 https://stellar.cct.lsu.edu
247 https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
248 http://rostam.cct.lsu.edu/
249 https://github.com/STEllAR-GROUP/hpx/
250 https://github.com/STEllAR-GROUP/hpx/issues

1216 Chapter 2. What’s so special about HPX?

https://stellar-group.org
https://stellar.cct.lsu.edu
mailto:hpx-users@stellar.cct.lsu.edu
mailto:stellar@cct.lsu.edu
mailto:allcct@cct.lsu.edu
mailto:faculty@csc.lsu.edu
mailto:faculty@csc.lsu.edu
mailto:faculty@ece.lsu.edu
mailto:xpress@crest.iu.edu
https://gitlab.kitware.com/cmake/community/wikis/doc/ctest/Testing-With-CTest
http://rostam.cct.lsu.edu/
https://github.com/STEllAR-GROUP/hpx/
https://github.com/STEllAR-GROUP/hpx/issues

HPX Documentation, 1.5.1

Running tests manually

Running the tests manually is as easy as typing make tests && make test. This will build all tests and run
them once the tests are built successfully. After the tests have been built, you can invoke separate tests with the help
of the ctest command. You can list all available test targets using make help | grep tests. Please see the
CTest Documentation251 for further details.

Issue tracker

If you stumble over a bug or missing feature in HPX, please submit an issue to our HPX Issues252 page. For more
information on how to submit support requests or other means of getting in contact with the developers, please see the
Support Website253 page.

Continuous testing

In addition to manual testing, we run automated tests on various platforms. You can see the status of the current
master head by visiting the HPX Buildbot Website254. We also run tests on all pull requests using both CircleCI255 and
a combination of CDash256 and pycicle257. You can see the dashboards here: CircleCI HPX dashboard258 and CDash
HPX dashboard259 .

2.10.5 Using docker for development

Although it can often be useful to set up a local development environment with system-provided or self-built depen-
dencies, Docker260 provides a convenient alternative to quickly get all the dependencies needed to start development
of HPX. Our testing setup on CircleCI261 uses a docker image to run all tests.

To get started you need to install Docker262 using whatever means is most convenient on your system. Once you have
Docker263 installed, you can pull or directly run the docker image. The image is based on Debian and Clang, and can
be found on Docker Hub264. To start a container using the HPX build environment, run:

docker run --interactive --tty stellargroup/build_env:ubuntu bash

You are now in an environment where all the HPX build and runtime dependencies are present. You can install
additional packages according to your own needs. Please see the Docker Documentation265 for more information on
using Docker266.

251 https://www.cmake.org/cmake/help/latest/manual/ctest.1.html
252 https://github.com/STEllAR-GROUP/hpx/issues
253 https://stellar.cct.lsu.edu/support/
254 http://rostam.cct.lsu.edu/
255 https://circleci.com
256 https://www.kitware.com/cdash/project/about.html
257 https://github.com/biddisco/pycicle/
258 https://circleci.com/gh/STEllAR-GROUP/hpx
259 https://cdash.cscs.ch/index.php?project=HPX
260 https://www.docker.com
261 https://circleci.com
262 https://www.docker.com
263 https://www.docker.com
264 https://hub.docker.com/r/stellargroup/build_env/
265 https://docs.docker.com/
266 https://www.docker.com

2.10. Contributing to HPX 1217

https://www.cmake.org/cmake/help/latest/manual/ctest.1.html
https://github.com/STEllAR-GROUP/hpx/issues
https://stellar.cct.lsu.edu/support/
http://rostam.cct.lsu.edu/
https://circleci.com
https://www.kitware.com/cdash/project/about.html
https://github.com/biddisco/pycicle/
https://circleci.com/gh/STEllAR-GROUP/hpx
https://cdash.cscs.ch/index.php?project=HPX
https://cdash.cscs.ch/index.php?project=HPX
https://www.docker.com
https://circleci.com
https://www.docker.com
https://www.docker.com
https://hub.docker.com/r/stellargroup/build_env/
https://docs.docker.com/
https://www.docker.com

HPX Documentation, 1.5.1

Warning: All changes made within the container are lost when the container is closed. If you want files to
persist (e.g., the HPX source tree) after closing the container, you can bind directories from the host system into
the container (see Docker Documentation (Bind mounts)267).

2.10.6 Documentation

This documentation is built using Sphinx268, and an automatically generated API reference using Doxygen269 and
Breathe270.

We always welcome suggestions on how to improve our documentation, as well as pull requests with corrections and
additions.

Building documentation

Please see the documentation prerequisites section for details on what you need in order to build the HPX docu-
mentation. Enable building of the documentation by setting HPX_WITH_DOCUMENTATION=ON during CMake271

configuration. To build the documentation, build the docs target using your build tool. The default output format
is HTML documentation. You can choose alternative output formats (single-page HTML, PDF, and man) with the
HPX_WITH_DOCUMENTATION_OUTPUT_FORMATS CMake option.

Note: If you add new source files to the Sphinx documentation, you have to run CMake again to have the files
included in the build.

Style guide

The documentation is written using reStructuredText. These are the conventions used for formatting the documenta-
tion:

• Use, at most, 80 characters per line.

• Top-level headings use over- and underlines with =.

• Sub-headings use only underlines with characters in decreasing level of importance: =, - and ..

• Use sentence case in headings.

• Refer to common terminology using :term:`Component`.

• Indent content of directives (.. directive::) by three spaces.

• For C++ code samples at the end of paragraphs, use :: and indent the code sample by 4 spaces.

– For other languages (or if you don’t want a colon at the end of the paragraph), use .. code-block::
language and indent by three spaces as with other directives.

• Use .. list-table:: to wrap tables with a lot of text in cells.

267 https://docs.docker.com/storage/bind-mounts/
268 http://www.sphinx-doc.org
269 https://www.doxygen.org
270 https://breathe.readthedocs.io/en/latest
271 https://www.cmake.org

1218 Chapter 2. What’s so special about HPX?

https://docs.docker.com/storage/bind-mounts/
http://www.sphinx-doc.org
https://www.doxygen.org
https://breathe.readthedocs.io/en/latest
https://www.cmake.org

HPX Documentation, 1.5.1

API documentation

The source code is documented using Doxygen. If you add new API documentation either to existing or new source
files, make sure that you add the documented source files to the doxygen_dependencies variable in docs/
CMakeLists.txt.

2.10.7 Module structure

This section explains the structure of an HPX module.

The tool create_library_skeleton.py272 can be used to generate a basic skeleton. To create a library skeleton, run the
tool in the libs subdirectory with the module name as an argument:

./create_library_skeleton <lib_name>

This creates a skeleton with the necessary files for an HPX module. It will not create any actual source files. The
structure of this skeleton is as follows:

• <lib_name>/

– README.rst

– CMakeLists.txt

– cmake

– docs/

* index.rst

– examples/

* CMakeLists.txt

– include/

* hpx/

· <lib_name>

– src/

* CMakeLists.txt

– tests/

* CMakeLists.txt

* unit/

· CMakeLists.txt

* regressions/

· CMakeLists.txt

* performance/

· CMakeLists.txt
272 https://github.com/STEllAR-GROUP/hpx/blob/master/libs/create_library_skeleton.py

2.10. Contributing to HPX 1219

https://github.com/STEllAR-GROUP/hpx/blob/master/libs/create_library_skeleton.py

HPX Documentation, 1.5.1

A README.rst should be always included which explains the basic purpose of the library and a link to the generated
documentation.

A main CMakeLists.txt is created in the root directory of the module. By default it contains a call to
add_hpx_module which takes care of most of the boilerplate required for a module. You only need to fill in
the source and header files in most cases.

add_hpx_module requires a module name. Optional flags are:

• DEPRECATION_WARNINGS: Enables deprecation warnings for the module.

Optional single-value arguments are:

• COMPATIBILITY_HEADERS: Can be ON, OFF, or left out. Enables compatibility headers. Creates a variable
which can be turned on or off by the user when set to ON or OFF. If left out the option is completely disabled.

• INSTALL_BINARIES: Install the resulting library.

Optional multi-value arguments-are:

• SOURCES: List of source files.

• HEADERS: List of header files.

• COMPAT_HEADERS: List of compatibility header files.

• DEPENDENCIES: Libraries that this module depends on, such as other modules.

• CMAKE_SUBDIRS: List of subdirectories to add to the module.

The include directory should contain only headers that other libraries need. For each of those headers, an automatic
header test to check for self containment will be generated. Private headers should be placed under the src directory.
This allows for clear separation. The cmake subdirectory may include additional CMake273 scripts needed to generate
the respective build configurations.

Compatibility headers (forwarding headers for headers whose location is changed when creating a module, if moving
them from the main library) should be placed in an include_compatibility directory. This directory is not
created by default.

Documentation is placed in the docs folder. A empty skeleton for the index is created, which is picked up by the
main build system and will be part of the generated documentation. Each header inside the include directory will
automatically be processed by Doxygen and included into the documentation. If a header should be excluded from the
API reference, a comment // sphinx:undocumented needs to be added.

Tests are placed in suitable subdirectories of tests.

When in doubt, consult existing modules for examples on how to structure the module.

Finding circular dependencies

Our CI will perform a check to see if there are circular dependencies between modules. In cases where it’s not
clear what is causing the circular dependency, running the cpp-dependencies274 tool manually can be helpful. It can
give you detailed information on exactly which files are causing the circular dependency. If you do not have the
cpp-dependencies tool already installed, one way of obtaining it is by using our docker image. This way you
will have exactly the same environment as on the CI. See Using docker for development for details on how to use the
docker image.

To produce the graph produced by CI run the following command (HPX_SOURCE is assumed to hold the path to the
HPX source directory):

273 https://www.cmake.org
274 https://github.com/tomtom-international/cpp-dependencies

1220 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://github.com/tomtom-international/cpp-dependencies

HPX Documentation, 1.5.1

cpp-dependencies --dir $HPX_SOURCE/libs --graph-cycles circular_dependencies.dot

This will produce a dot file in the current directory. You can inspect this manually with a text editor. You can also
convert this to an image if you have graphviz installed:

dot circular_dependencies.dot -Tsvg -o circular_dependencies.svg

This produces an svg file in the current directory which shows the circular dependencies. Note that if there are no
cycles the image will be empty.

You can use cpp-dependencies to print the include paths between two modules.

cpp-dependencies --dir $HPX_SOURCE/libs --shortest <from> <to>

prints all possible paths from the module <from> to the module <to>. For example, as most modules depend on
config, the following should give you a long list of paths from algorithms to config:

cpp-dependencies --dir $HPX_SOURCE/libs --shortest algorithms config

The following should report that it can’t find a path between the two modules:

cpp-dependencies --dir $HPX_SOURCE/libs --shortest config algorithms

2.11 Releases

2.11.1 HPX V1.5.1 (Sep 30, 2020)

General changes

This is a patch release. It contains the following changes:

• Remove restriction on suspending runtime with multiple localities, users are now responsible for synchronizing
work between localities before suspending.

• Fixes several compilation problems and warnings.

• Adds notes in the documentation explaining how to cite HPX.

Closed issues

• Issue #4971275 - Parallel sort fails to compile with C++20

• Issue #4950276 - Build with HPX_WITH_PARCELPORT_ACTION_COUNTERS ON fails

• Issue #4940277 - Codespell report for “HPX” (on fossies.org)

• Issue #4937278 - Allow suspension of runtime for multiple localities

275 https://github.com/STEllAR-GROUP/hpx/issues/4971
276 https://github.com/STEllAR-GROUP/hpx/issues/4950
277 https://github.com/STEllAR-GROUP/hpx/issues/4940
278 https://github.com/STEllAR-GROUP/hpx/issues/4937

2.11. Releases 1221

https://github.com/STEllAR-GROUP/hpx/issues/4971
https://github.com/STEllAR-GROUP/hpx/issues/4950
https://github.com/STEllAR-GROUP/hpx/issues/4940
https://github.com/STEllAR-GROUP/hpx/issues/4937

HPX Documentation, 1.5.1

Closed pull requests

• PR #4982279 - Add page about citing HPX to documentation

• PR #4981280 - Adding the missing include

• PR #4974281 - Remove leftover format export hack

• PR #4972282 - Removing use of get_temporary_buffer and return_temporary_buffer

• PR #4963283 - Renaming files to avoid warnings from the vs build system

• PR #4951284 - Fixing build if HPX_WITH_PARCELPORT_ACTION_COUNTERS=On

• PR #4946285 - Allow suspension on multiple localities

• PR #4944286 - Fix typos reported by fossies codespell report

• PR #4941287 - Adding some explanation to README about how to cite HPX

• PR #4939288 - Small changes

2.11.2 HPX V1.5.0 (Sep 02, 2020)

General changes

The main focus of this release is on APIs and C++20 conformance. We have added many new C++20 features and
adapted multiple algorithms to be fully C++20 conformant. As part of the modularization we have begun specifying
the public API of HPX in terms of headers and functionality, and aligning it more closely to the C++ standard. All non-
distributed modules are now in place, along with an experimental option to completely disable distributed features in
HPX. We have also added experimental asynchronous MPI and CUDA executors. Lastly this release introduces CMake
targets for depending projects, performance improvements, and many bug fixes.

• We have added the C++20 features hpx::jthread and hpx::stop_token.
hpx::condition_variable_any now exposes new functions supporting hpx::stop_token.

• We have added hpx::stable_sort based on Francisco Tapia’s implementation.

• We have adapted existing synchronization primitives to be fully conformant C++20: hpx::barrier,
hpx::latch, hpx::counting_semaphore, and hpx::binary_semaphore.

• We have started using customization point objects (CPOs) to make the corresponding algorithms fully con-
formant to C++20 as well as to make algorithm extension easier for the user. all_of/any_of/none_of,
copy, count, destroy, equal, fill, find, for_each, generate, mismatch, move, reduce,
transform_reduce are using those CPOs (all in namespace hpx). We also have adapted their correspond-
ing hpx::ranges versions to be conforming to C++20 in this release.

• We have adapted support for co_await to C++20, in addition to hpx::future it now also supports
hpx::shared_future. We have also added allocator support for futures returned by co_return. It
is no longer in the experimental namespace.

• We added serialization support for std::variant and std::tuple.
279 https://github.com/STEllAR-GROUP/hpx/pull/4982
280 https://github.com/STEllAR-GROUP/hpx/pull/4981
281 https://github.com/STEllAR-GROUP/hpx/pull/4974
282 https://github.com/STEllAR-GROUP/hpx/pull/4972
283 https://github.com/STEllAR-GROUP/hpx/pull/4963
284 https://github.com/STEllAR-GROUP/hpx/pull/4951
285 https://github.com/STEllAR-GROUP/hpx/pull/4946
286 https://github.com/STEllAR-GROUP/hpx/pull/4944
287 https://github.com/STEllAR-GROUP/hpx/pull/4941
288 https://github.com/STEllAR-GROUP/hpx/pull/4939

1222 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4982
https://github.com/STEllAR-GROUP/hpx/pull/4981
https://github.com/STEllAR-GROUP/hpx/pull/4974
https://github.com/STEllAR-GROUP/hpx/pull/4972
https://github.com/STEllAR-GROUP/hpx/pull/4963
https://github.com/STEllAR-GROUP/hpx/pull/4951
https://github.com/STEllAR-GROUP/hpx/pull/4946
https://github.com/STEllAR-GROUP/hpx/pull/4944
https://github.com/STEllAR-GROUP/hpx/pull/4941
https://github.com/STEllAR-GROUP/hpx/pull/4939

HPX Documentation, 1.5.1

• result_of and is_callable are now deprecated and replaced by invoke_result and
is_invocable to conform to C++20.

• We continued with the modularization, making it easier for us to add the new experimental
HPX_WITH_DISTRIBUTED_RUNTIME CMake option (see below) . An significant amount of headers have
been deprecated. We adapted the namespaces and headers we could to be closer to the standard ones (Pub-
lic API). Depending code should still compile, however warnings are now generated instructing to change the
include statements accordingly.

• It is now possible to have a basic CUDA support including a helper function to get a future from a CUDA stream
and target handling. They are available under the hpx::cuda::experimental namespace and they can be
enabled with the -DHPX_WITH_ASYNC_CUDA=ON CMake option.

• We added a new hpx::mpi::experimental namespace for getting futures from an asynchronous MPI call
and a new minimal MPI executor hpx::mpi::experimental::executor. These can be enabled with
the -DHPX_WITH_ASYNC_MPI=On CMake option.

• A polymorphic executor has been implemented to reduce compile times as a function accepting executors
can potentially be instantiated only once instead of multiple times with different executors. It accepts the
function signature as a template argument. It needs to be constructed from any other executor. Please
note, that the function signatures that can be scheduled using then_execute, bulk_sync_execute,
bulk_async_execute and bulk_then_execute are slightly different (See the comment in PR
#4514289 for more details).

• The underlying executor of block_executor has been updated to a newer one.

• We have added a parameter to auto_chunk_size to control the amount of iterations to measure.

• All executor parameter hooks can now be exposed through the executor itself. This will allow to deprecate the
.with() functionality on execution policies in the future. This is also a first step towards simplifying our
executor APIs in preparation for the upcoming C++23 executors (senders/receivers).

• We have moved all of the existing APIs related to resiliency into the namespace
hpx::resiliency::experimental. Please note this is a breaking change without backwards-
compatibility option. We have converted all of those APIs to be based on customization point objects. Two new
executors have been added to enable easy integration of the existing resiliency features with other facilities (like
the parallel algorithms): replay_executor and replicate_executor.

• We have added performance counters type information (aggregating, monotonically increasing,
average count, average timer, etc.).

• HPX threads are now re-scheduled on the same worker thread they were suspended on to avoid cache misses
from moving from one thread to the other. This behavior doesn’t prevent the thread from being stolen, however.

• We have added a new configuration option hpx.exception_verbosity to allow to control the level of
verbosity of the exceptions (3 levels available).

• broadcast_to, broadcast_from, scatter_to and scatter_from have been added to the collec-
tives, modernization of gather_here and gather_there with futures taken by rvalue references. See the
breaking change on all_to_all in the next section. None of the collectives need supporting macros anymore
(e.g. specifying the data types used for a collective operation using HPX_REGISTER_ALLGATHER and similar
is not needed anymore).

• New API functions have been added: a) to get the number of cores which are idle
(hpx::get_idle_core_count) and b) returning a bitmask representing the currently idle cores
(hpx::get_idle_core_mask).

• We have added an experimental option to only enable the local runtime, you can disable the distributed run-
time with HPX_WITH_DISTRIBUTED_RUNTIME=OFF. You can also enable the local runtime by using the

289 https://github.com/STEllAR-GROUP/hpx/pull/4514

2.11. Releases 1223

https://github.com/STEllAR-GROUP/hpx/pull/4514
https://github.com/STEllAR-GROUP/hpx/pull/4514

HPX Documentation, 1.5.1

--hpx:local runtime option.

• We fixed task annotations for actions.

• The alias hpx::promise to hpx::lcos::promise is now deprecated. You can use
hpx::lcos::promise directly instead. hpx::promise will refer to the local-only promise in the
future.

• We have added a prepare_checkpoint API function that calculates the amount of necessary buffer space
for a particular set of arguments checkpointed.

• We have added hpx::upgrade_lock and hpx::upgrade_to_unique_lock, which make
hpx::shared_mutex (and similar) usable in more flexible ways.

• We have changed the CMake targets exposed to the user, it now includes HPX::hpx, HPX::wrap_main
(int main as the first HPX thread of the application, see Starting the HPX runtime), HPX::plugin,
HPX::component. The CMake variables HPX_INCLUDE_DIRS and HPX_LIBRARIES are deprecated
and will be removed in a future release, you should now link directly to the HPX::hpx CMake target.

• A new example is demonstrating how to create and use a wrapping executor (quickstart/
executor_with_thread_hooks.cpp)

• A new example is demonstrating how to disable thread stealing during the execution of parallel algorithms
(quickstart/disable_thread_stealing_executor.cpp)

• We now require for our CMake build system configuration files to be formatted using cmake-format.

• We have removed more dependencies on various Boost libraries.

• We have added an experimental option enabling unity builds of HPX using the
-DHPX_WITH_UNITY_BUILD=On CMake option.

• Many bug fixes.

Breaking changes

• HPX now requires a C++14 capable compiler. We have set the HPX C++ standard automatically to C++14 and
if it needs to be set explicitly, it should be specified through the CMAKE_CXX_STANDARD setting as mandated
by CMake. The HPX_WITH_CXX* variables are now deprecated and will be removed in the future.

• Building and using HPX is now supported only when using CMake V3.13 or later, Boost V1.64 or newer, and
when compiling with clang V5, gcc V7, or VS2019, or later. Other compilers might still work but have not been
tested thoroughly.

• We have added a hpx::init_params struct to pass parameters for HPX initialization e.g. the resource
partitioner callback to initialize thread pools (Using the resource partitioner).

• The all_to_all algorithm is renamed to all_gather, and the new all_to_all algorithm is not com-
patible with the old one.

• We have moved all of the existing APIs related to resiliency into the namespace
hpx::resiliency::experimental.

1224 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

Closed issues

• Issue #4918290 - Rename distributed_executors module

• Issue #4900291 - Adding JOSS status badge to README

• Issue #4897292 - Compiler warning, deprecated header used by HPX itself

• Issue #4886293 - A future bound to an action executing on a different locality doesn’t capture exception state

• Issue #4880294 - Undefined reference to main build error when HPX_WITH_DYNAMIC_HPX_MAIN=OFF

• Issue #4877295 - hpx_main might not able to start hpx runtime properly

• Issue #4850296 - Issues creating templated component

• Issue #4829297 - Spack package & HPX_WITH_GENERIC_CONTEXT_COROUTINES

• Issue #4820298 - PAPI counters don’t work

• Issue #4818299 - HPX can’t be used with IO pool turned off

• Issue #4816300 - Build of HPX fails when find_package(Boost) is called before FetchCon-
tent_MakeAvailable(hpx)

• Issue #4813301 - HPX MPI Future failed

• Issue #4811302 - Remove HPX::hpx_no_wrap_main target before 1.5.0 release

• Issue #4810303 - In hpx::for_each::invoke_projected the hpx::util::decay is misguided

• Issue #4787304 - transform_inclusive_scan gives incorrect results for non-commutative operator

• Issue #4786305 - transform_inclusive_scan tries to implicitly convert between types, instead of using the pro-
vided conv function

• Issue #4779306 - HPX build error with GCC 10.1

• Issue #4766307 - Move HPX.Compute functionality to experimental namespace

• Issue #4763308 - License file name

• Issue #4758309 - CMake profiling results

• Issue #4755310 - Building HPX with support for PAPI fails

290 https://github.com/STEllAR-GROUP/hpx/issues/4918
291 https://github.com/STEllAR-GROUP/hpx/issues/4900
292 https://github.com/STEllAR-GROUP/hpx/issues/4897
293 https://github.com/STEllAR-GROUP/hpx/issues/4886
294 https://github.com/STEllAR-GROUP/hpx/issues/4880
295 https://github.com/STEllAR-GROUP/hpx/issues/4877
296 https://github.com/STEllAR-GROUP/hpx/issues/4850
297 https://github.com/STEllAR-GROUP/hpx/issues/4829
298 https://github.com/STEllAR-GROUP/hpx/issues/4820
299 https://github.com/STEllAR-GROUP/hpx/issues/4818
300 https://github.com/STEllAR-GROUP/hpx/issues/4816
301 https://github.com/STEllAR-GROUP/hpx/issues/4813
302 https://github.com/STEllAR-GROUP/hpx/issues/4811
303 https://github.com/STEllAR-GROUP/hpx/issues/4810
304 https://github.com/STEllAR-GROUP/hpx/issues/4787
305 https://github.com/STEllAR-GROUP/hpx/issues/4786
306 https://github.com/STEllAR-GROUP/hpx/issues/4779
307 https://github.com/STEllAR-GROUP/hpx/issues/4766
308 https://github.com/STEllAR-GROUP/hpx/issues/4763
309 https://github.com/STEllAR-GROUP/hpx/issues/4758
310 https://github.com/STEllAR-GROUP/hpx/issues/4755

2.11. Releases 1225

https://github.com/STEllAR-GROUP/hpx/issues/4918
https://github.com/STEllAR-GROUP/hpx/issues/4900
https://github.com/STEllAR-GROUP/hpx/issues/4897
https://github.com/STEllAR-GROUP/hpx/issues/4886
https://github.com/STEllAR-GROUP/hpx/issues/4880
https://github.com/STEllAR-GROUP/hpx/issues/4877
https://github.com/STEllAR-GROUP/hpx/issues/4850
https://github.com/STEllAR-GROUP/hpx/issues/4829
https://github.com/STEllAR-GROUP/hpx/issues/4820
https://github.com/STEllAR-GROUP/hpx/issues/4818
https://github.com/STEllAR-GROUP/hpx/issues/4816
https://github.com/STEllAR-GROUP/hpx/issues/4813
https://github.com/STEllAR-GROUP/hpx/issues/4811
https://github.com/STEllAR-GROUP/hpx/issues/4810
https://github.com/STEllAR-GROUP/hpx/issues/4787
https://github.com/STEllAR-GROUP/hpx/issues/4786
https://github.com/STEllAR-GROUP/hpx/issues/4779
https://github.com/STEllAR-GROUP/hpx/issues/4766
https://github.com/STEllAR-GROUP/hpx/issues/4763
https://github.com/STEllAR-GROUP/hpx/issues/4758
https://github.com/STEllAR-GROUP/hpx/issues/4755

HPX Documentation, 1.5.1

• Issue #4754311 - CMake cache creation breaks when using HPX with mimalloc

• Issue #4752312 - HPX MPI Future build failed

• Issue #4746313 - Memory leak when using dataflow icw components

• Issue #4731314 - Bug in stencil example, calculation of locality IDs

• Issue #4723315 - Build fail with NETWORKING OFF

• Issue #4720316 - Add compatibility headers for modules that had their module headers implicitly generated in
1.4.1

• Issue #4719317 - Undeprecate some module headers

• Issue #4712318 - Rename HPX_MPI_WITH_FUTURES option

• Issue #4709319 - Make deprecation warnings overridable in dependent projects

• Issue #4691320 - Suggestion to fix and enhance the thread_mapper API

• Issue #4686321 - Fix tutorials examples

• Issue #4685322 - HPX distributed map fails to compile

• Issue #4680323 - Build error with HPX_WITH_DYNAMIC_HPX_MAIN=OFF

• Issue #4679324 - Build error for hpx w/ Apex on Summit

• Issue #4675325 - build error with HPX_WITH_NETWORKING=OFF

• Issue #4674326 - Error running Quickstart tests on OS X

• Issue #4662327 - MPI initialization broken when networking off

• Issue #4652328 - How to fix distributed action annotation

• Issue #4650329 - thread descriptions are broken. . . again

• Issue #4648330 - Thread stacksize not properly set

• Issue #4647331 - Rename generated collective headers in modules

• Issue #4639332 - Update deprecation warnings in compatibility headers to point to collective headers

• Issue #4628333 - mpi parcelport totally broken

311 https://github.com/STEllAR-GROUP/hpx/issues/4754
312 https://github.com/STEllAR-GROUP/hpx/issues/4752
313 https://github.com/STEllAR-GROUP/hpx/issues/4746
314 https://github.com/STEllAR-GROUP/hpx/issues/4731
315 https://github.com/STEllAR-GROUP/hpx/issues/4723
316 https://github.com/STEllAR-GROUP/hpx/issues/4720
317 https://github.com/STEllAR-GROUP/hpx/issues/4719
318 https://github.com/STEllAR-GROUP/hpx/issues/4712
319 https://github.com/STEllAR-GROUP/hpx/issues/4709
320 https://github.com/STEllAR-GROUP/hpx/issues/4691
321 https://github.com/STEllAR-GROUP/hpx/issues/4686
322 https://github.com/STEllAR-GROUP/hpx/issues/4685
323 https://github.com/STEllAR-GROUP/hpx/issues/4680
324 https://github.com/STEllAR-GROUP/hpx/issues/4679
325 https://github.com/STEllAR-GROUP/hpx/issues/4675
326 https://github.com/STEllAR-GROUP/hpx/issues/4674
327 https://github.com/STEllAR-GROUP/hpx/issues/4662
328 https://github.com/STEllAR-GROUP/hpx/issues/4652
329 https://github.com/STEllAR-GROUP/hpx/issues/4650
330 https://github.com/STEllAR-GROUP/hpx/issues/4648
331 https://github.com/STEllAR-GROUP/hpx/issues/4647
332 https://github.com/STEllAR-GROUP/hpx/issues/4639
333 https://github.com/STEllAR-GROUP/hpx/issues/4628

1226 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/4754
https://github.com/STEllAR-GROUP/hpx/issues/4752
https://github.com/STEllAR-GROUP/hpx/issues/4746
https://github.com/STEllAR-GROUP/hpx/issues/4731
https://github.com/STEllAR-GROUP/hpx/issues/4723
https://github.com/STEllAR-GROUP/hpx/issues/4720
https://github.com/STEllAR-GROUP/hpx/issues/4719
https://github.com/STEllAR-GROUP/hpx/issues/4712
https://github.com/STEllAR-GROUP/hpx/issues/4709
https://github.com/STEllAR-GROUP/hpx/issues/4691
https://github.com/STEllAR-GROUP/hpx/issues/4686
https://github.com/STEllAR-GROUP/hpx/issues/4685
https://github.com/STEllAR-GROUP/hpx/issues/4680
https://github.com/STEllAR-GROUP/hpx/issues/4679
https://github.com/STEllAR-GROUP/hpx/issues/4675
https://github.com/STEllAR-GROUP/hpx/issues/4674
https://github.com/STEllAR-GROUP/hpx/issues/4662
https://github.com/STEllAR-GROUP/hpx/issues/4652
https://github.com/STEllAR-GROUP/hpx/issues/4650
https://github.com/STEllAR-GROUP/hpx/issues/4648
https://github.com/STEllAR-GROUP/hpx/issues/4647
https://github.com/STEllAR-GROUP/hpx/issues/4639
https://github.com/STEllAR-GROUP/hpx/issues/4628

HPX Documentation, 1.5.1

• Issue #4619334 - Fully document hpx_wrap behaviour and targets

• Issue #4612335 - Compilation issue with HPX 1.4.1 and 1.4.0

• Issue #4594336 - Rename modules

• Issue #4578337 - Default value for HPX_WITH_THREAD_BACKTRACE_DEPTH

• Issue #4572338 - Thread manager should be given a runtime_configuration

• Issue #4571339 - Add high-level documentation to new modules

• Issue #4569340 - Annoying warning when compiling - pls suppress or fix it.

• Issue #4555341 - HPX_HAVE_THREAD_BACKTRACE_ON_SUSPENSION compilation error

• Issue #4543342 - Segfaults in Release builds using sleep_for

• Issue #4539343 - Compilation Error when HPX_MPI_WITH_FUTURES=ON

• Issue #4537344 - Linking issue with libhpx_initd.a

• Issue #4535345 - API for checking if pool with a given name exists

• Issue #4523346 - Build of PR #4311 (git tag 9955e8e) fails

• Issue #4519347 - Documentation problem

• Issue #4513348 - HPXConfig.cmake contains ill-formed paths when library paths use backslashes

• Issue #4507349 - User-polling introduced by MPI futures module should be more generally usable

• Issue #4506350 - Make sure force_linking.hpp is not included in main module header

• Issue #4501351 - Fix compilation of PAPI tests

• Issue #4497352 - Add modules CI checks

• Issue #4489353 - Polymorphic executor

• Issue #4476354 - Use CMake targets defined by FindBoost

• Issue #4473355 - Add vcpkg installation instructions

• Issue #4470356 - Adapt hpx::future to C++20 co_await

334 https://github.com/STEllAR-GROUP/hpx/issues/4619
335 https://github.com/STEllAR-GROUP/hpx/issues/4612
336 https://github.com/STEllAR-GROUP/hpx/issues/4594
337 https://github.com/STEllAR-GROUP/hpx/issues/4578
338 https://github.com/STEllAR-GROUP/hpx/issues/4572
339 https://github.com/STEllAR-GROUP/hpx/issues/4571
340 https://github.com/STEllAR-GROUP/hpx/issues/4569
341 https://github.com/STEllAR-GROUP/hpx/issues/4555
342 https://github.com/STEllAR-GROUP/hpx/issues/4543
343 https://github.com/STEllAR-GROUP/hpx/issues/4539
344 https://github.com/STEllAR-GROUP/hpx/issues/4537
345 https://github.com/STEllAR-GROUP/hpx/issues/4535
346 https://github.com/STEllAR-GROUP/hpx/issues/4523
347 https://github.com/STEllAR-GROUP/hpx/issues/4519
348 https://github.com/STEllAR-GROUP/hpx/issues/4513
349 https://github.com/STEllAR-GROUP/hpx/issues/4507
350 https://github.com/STEllAR-GROUP/hpx/issues/4506
351 https://github.com/STEllAR-GROUP/hpx/issues/4501
352 https://github.com/STEllAR-GROUP/hpx/issues/4497
353 https://github.com/STEllAR-GROUP/hpx/issues/4489
354 https://github.com/STEllAR-GROUP/hpx/issues/4476
355 https://github.com/STEllAR-GROUP/hpx/issues/4473
356 https://github.com/STEllAR-GROUP/hpx/issues/4470

2.11. Releases 1227

https://github.com/STEllAR-GROUP/hpx/issues/4619
https://github.com/STEllAR-GROUP/hpx/issues/4612
https://github.com/STEllAR-GROUP/hpx/issues/4594
https://github.com/STEllAR-GROUP/hpx/issues/4578
https://github.com/STEllAR-GROUP/hpx/issues/4572
https://github.com/STEllAR-GROUP/hpx/issues/4571
https://github.com/STEllAR-GROUP/hpx/issues/4569
https://github.com/STEllAR-GROUP/hpx/issues/4555
https://github.com/STEllAR-GROUP/hpx/issues/4543
https://github.com/STEllAR-GROUP/hpx/issues/4539
https://github.com/STEllAR-GROUP/hpx/issues/4537
https://github.com/STEllAR-GROUP/hpx/issues/4535
https://github.com/STEllAR-GROUP/hpx/issues/4523
https://github.com/STEllAR-GROUP/hpx/issues/4519
https://github.com/STEllAR-GROUP/hpx/issues/4513
https://github.com/STEllAR-GROUP/hpx/issues/4507
https://github.com/STEllAR-GROUP/hpx/issues/4506
https://github.com/STEllAR-GROUP/hpx/issues/4501
https://github.com/STEllAR-GROUP/hpx/issues/4497
https://github.com/STEllAR-GROUP/hpx/issues/4489
https://github.com/STEllAR-GROUP/hpx/issues/4476
https://github.com/STEllAR-GROUP/hpx/issues/4473
https://github.com/STEllAR-GROUP/hpx/issues/4470

HPX Documentation, 1.5.1

• Issue #4468357 - Compile error on Raspberry Pi 4

• Issue #4466358 - Compile error on Windows, current stable:

• Issue #4453359 - Installing HPX on fedora with dnf is not adding cmake files

• Issue #4448360 - New std::variant serialization broken

• Issue #4438361 - Add performance counter flag is monotically increasing

• Issue #4436362 - Build problem: same code build and works with 1.4.0 but it doesn’t with 1.4.1

• Issue #4429363 - Function descriptions not supported in distributed

• Issue #4423364 - –hpx:ini=hpx.lock_detection=0 has no effect

• Issue #4422365 - Add performance counter metadata

• Issue #4419366 - Weird behavior for –hpx:print-counter-interval with large numbers

• Issue #4401367 - Create module repository

• Issue #4400368 - Command line options conflict related to performance counters

• Issue #4349369 - –hpx:use-process-mask option throw an exception on OS X

• Issue #4345370 - Move gh-pages branch out of hpx repo

• Issue #4323371 - Const-correctness error in assignment operator of compute::vector

• Issue #4318372 - ASIO breaks with C++2a concepts

• Issue #4317373 - Application runs even if –hpx:help is specified

• Issue #4063374 - Document hpxcxx compiler wrapper

• Issue #3983375 - Implement the C++20 Synchronization Library

• Issue #3696376 - C++11 constexpr support is now required

• Issue #3623377 - Modular HPX branch and an alternative project layout

• Issue #2836378 - The worst-case time complexity of parallel::sort seems to be O(N^2).

357 https://github.com/STEllAR-GROUP/hpx/issues/4468
358 https://github.com/STEllAR-GROUP/hpx/issues/4466
359 https://github.com/STEllAR-GROUP/hpx/issues/4453
360 https://github.com/STEllAR-GROUP/hpx/issues/4448
361 https://github.com/STEllAR-GROUP/hpx/issues/4438
362 https://github.com/STEllAR-GROUP/hpx/issues/4436
363 https://github.com/STEllAR-GROUP/hpx/issues/4429
364 https://github.com/STEllAR-GROUP/hpx/issues/4423
365 https://github.com/STEllAR-GROUP/hpx/issues/4422
366 https://github.com/STEllAR-GROUP/hpx/issues/4419
367 https://github.com/STEllAR-GROUP/hpx/issues/4401
368 https://github.com/STEllAR-GROUP/hpx/issues/4400
369 https://github.com/STEllAR-GROUP/hpx/issues/4349
370 https://github.com/STEllAR-GROUP/hpx/issues/4345
371 https://github.com/STEllAR-GROUP/hpx/issues/4323
372 https://github.com/STEllAR-GROUP/hpx/issues/4318
373 https://github.com/STEllAR-GROUP/hpx/issues/4317
374 https://github.com/STEllAR-GROUP/hpx/issues/4063
375 https://github.com/STEllAR-GROUP/hpx/issues/3983
376 https://github.com/STEllAR-GROUP/hpx/issues/3696
377 https://github.com/STEllAR-GROUP/hpx/issues/3623
378 https://github.com/STEllAR-GROUP/hpx/issues/2836

1228 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/4468
https://github.com/STEllAR-GROUP/hpx/issues/4466
https://github.com/STEllAR-GROUP/hpx/issues/4453
https://github.com/STEllAR-GROUP/hpx/issues/4448
https://github.com/STEllAR-GROUP/hpx/issues/4438
https://github.com/STEllAR-GROUP/hpx/issues/4436
https://github.com/STEllAR-GROUP/hpx/issues/4429
https://github.com/STEllAR-GROUP/hpx/issues/4423
https://github.com/STEllAR-GROUP/hpx/issues/4422
https://github.com/STEllAR-GROUP/hpx/issues/4419
https://github.com/STEllAR-GROUP/hpx/issues/4401
https://github.com/STEllAR-GROUP/hpx/issues/4400
https://github.com/STEllAR-GROUP/hpx/issues/4349
https://github.com/STEllAR-GROUP/hpx/issues/4345
https://github.com/STEllAR-GROUP/hpx/issues/4323
https://github.com/STEllAR-GROUP/hpx/issues/4318
https://github.com/STEllAR-GROUP/hpx/issues/4317
https://github.com/STEllAR-GROUP/hpx/issues/4063
https://github.com/STEllAR-GROUP/hpx/issues/3983
https://github.com/STEllAR-GROUP/hpx/issues/3696
https://github.com/STEllAR-GROUP/hpx/issues/3623
https://github.com/STEllAR-GROUP/hpx/issues/2836

HPX Documentation, 1.5.1

Closed pull requests

• PR #4936379 - Minor documentation fixes part 2

• PR #4935380 - Add copyright and license to joss paper file

• PR #4934381 - Adding Semicolon in Documentation

• PR #4932382 - Fixing compiler warnings

• PR #4931383 - Small documentation formatting fixes

• PR #4930384 - Documentation Distributed HPX applications localvv with local_vv

• PR #4929385 - Add final version of the JOSS paper

• PR #4928386 - Add HPX_NODISCARD to enable_user_polling structs

• PR #4926387 - Rename distributed_executors module to executors_distributed

• PR #4925388 - Making transform_reduce conforming to C++20

• PR #4923389 - Don’t acquire lock if not needed

• PR #4921390 - Update the release notes for the release candidate 3

• PR #4920391 - Disable libcds release

• PR #4919392 - Make cuda event pool dynamic instead of fixed size

• PR #4917393 - Move chrono functionality to hpx::chrono namespace

• PR #4916394 - HPX_HAVE_DEPRECATION_WARNINGS needs to be set even when disabled

• PR #4915395 - Moving more action related files to actions modules

• PR #4914396 - Add alias targets with namespaces used for exporting

• PR #4912397 - Aggregate initialize CPOs

• PR #4910398 - Explicitly specify hwloc root on Jenkins CSCS builds

• PR #4908399 - Fix algorithms documentation

• PR #4907400 - Remove HPX::hpx_no_wrap_main target

379 https://github.com/STEllAR-GROUP/hpx/pull/4936
380 https://github.com/STEllAR-GROUP/hpx/pull/4935
381 https://github.com/STEllAR-GROUP/hpx/pull/4934
382 https://github.com/STEllAR-GROUP/hpx/pull/4932
383 https://github.com/STEllAR-GROUP/hpx/pull/4931
384 https://github.com/STEllAR-GROUP/hpx/pull/4930
385 https://github.com/STEllAR-GROUP/hpx/pull/4929
386 https://github.com/STEllAR-GROUP/hpx/pull/4928
387 https://github.com/STEllAR-GROUP/hpx/pull/4926
388 https://github.com/STEllAR-GROUP/hpx/pull/4925
389 https://github.com/STEllAR-GROUP/hpx/pull/4923
390 https://github.com/STEllAR-GROUP/hpx/pull/4921
391 https://github.com/STEllAR-GROUP/hpx/pull/4920
392 https://github.com/STEllAR-GROUP/hpx/pull/4919
393 https://github.com/STEllAR-GROUP/hpx/pull/4917
394 https://github.com/STEllAR-GROUP/hpx/pull/4916
395 https://github.com/STEllAR-GROUP/hpx/pull/4915
396 https://github.com/STEllAR-GROUP/hpx/pull/4914
397 https://github.com/STEllAR-GROUP/hpx/pull/4912
398 https://github.com/STEllAR-GROUP/hpx/pull/4910
399 https://github.com/STEllAR-GROUP/hpx/pull/4908
400 https://github.com/STEllAR-GROUP/hpx/pull/4907

2.11. Releases 1229

https://github.com/STEllAR-GROUP/hpx/pull/4936
https://github.com/STEllAR-GROUP/hpx/pull/4935
https://github.com/STEllAR-GROUP/hpx/pull/4934
https://github.com/STEllAR-GROUP/hpx/pull/4932
https://github.com/STEllAR-GROUP/hpx/pull/4931
https://github.com/STEllAR-GROUP/hpx/pull/4930
https://github.com/STEllAR-GROUP/hpx/pull/4929
https://github.com/STEllAR-GROUP/hpx/pull/4928
https://github.com/STEllAR-GROUP/hpx/pull/4926
https://github.com/STEllAR-GROUP/hpx/pull/4925
https://github.com/STEllAR-GROUP/hpx/pull/4923
https://github.com/STEllAR-GROUP/hpx/pull/4921
https://github.com/STEllAR-GROUP/hpx/pull/4920
https://github.com/STEllAR-GROUP/hpx/pull/4919
https://github.com/STEllAR-GROUP/hpx/pull/4917
https://github.com/STEllAR-GROUP/hpx/pull/4916
https://github.com/STEllAR-GROUP/hpx/pull/4915
https://github.com/STEllAR-GROUP/hpx/pull/4914
https://github.com/STEllAR-GROUP/hpx/pull/4912
https://github.com/STEllAR-GROUP/hpx/pull/4910
https://github.com/STEllAR-GROUP/hpx/pull/4908
https://github.com/STEllAR-GROUP/hpx/pull/4907

HPX Documentation, 1.5.1

• PR #4906401 - Fixing unused variable warning

• PR #4905402 - Adding specializations for simple for_loops

• PR #4904403 - Update boost to 1.74.0 for the newest jenkins configs

• PR #4903404 - Hide GITHUB_TOKEN environment variables from environment variable output

• PR #4902405 - Cancel previous pull requests builds before starting a new one with Jenkins

• PR #4901406 - Update public API list with updated algorithms

• PR #4899407 - Suggested changes for HPX V1.5 release notes

• PR #4898408 - Minor tweak to hpx::equal implementation

• PR #4896409 - Making generate() and generate_n conforming to C++20

• PR #4895410 - Update apex tag

• PR #4894411 - Fix exception handling for tasks

• PR #4893412 - Remove last use of std::result_of, removed in C++20

• PR #4892413 - Adding replay_executor and replicate_executor

• PR #4889414 - Restore old behaviour of not requiring linking to hpx_wrap when
HPX_WITH_DYNAMIC_HPX_MAIN=OFF

• PR #4887415 - Making sure remotely thrown (non-hpx) exceptions are properly marshaled back to invocation
site

• PR #4885416 - Adapting hpx::find and friends to C++20

• PR #4884417 - Adapting mismatch to C++20

• PR #4883418 - Adapting hpx::equal to be conforming to C++20

• PR #4882419 - Fixing exception handling for hpx::copy and adding missing tests

• PR #4881420 - Adds different runtime exception when registering thread with the HPX runtime

• PR #4876421 - Adding example demonstrating how to disable thread stealing during the execution of parallel
algorithms

• PR #4874422 - Adding non-policy tests to all_of, any_of, and none_of

401 https://github.com/STEllAR-GROUP/hpx/pull/4906
402 https://github.com/STEllAR-GROUP/hpx/pull/4905
403 https://github.com/STEllAR-GROUP/hpx/pull/4904
404 https://github.com/STEllAR-GROUP/hpx/pull/4903
405 https://github.com/STEllAR-GROUP/hpx/pull/4902
406 https://github.com/STEllAR-GROUP/hpx/pull/4901
407 https://github.com/STEllAR-GROUP/hpx/pull/4899
408 https://github.com/STEllAR-GROUP/hpx/pull/4898
409 https://github.com/STEllAR-GROUP/hpx/pull/4896
410 https://github.com/STEllAR-GROUP/hpx/pull/4895
411 https://github.com/STEllAR-GROUP/hpx/pull/4894
412 https://github.com/STEllAR-GROUP/hpx/pull/4893
413 https://github.com/STEllAR-GROUP/hpx/pull/4892
414 https://github.com/STEllAR-GROUP/hpx/pull/4889
415 https://github.com/STEllAR-GROUP/hpx/pull/4887
416 https://github.com/STEllAR-GROUP/hpx/pull/4885
417 https://github.com/STEllAR-GROUP/hpx/pull/4884
418 https://github.com/STEllAR-GROUP/hpx/pull/4883
419 https://github.com/STEllAR-GROUP/hpx/pull/4882
420 https://github.com/STEllAR-GROUP/hpx/pull/4881
421 https://github.com/STEllAR-GROUP/hpx/pull/4876
422 https://github.com/STEllAR-GROUP/hpx/pull/4874

1230 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4906
https://github.com/STEllAR-GROUP/hpx/pull/4905
https://github.com/STEllAR-GROUP/hpx/pull/4904
https://github.com/STEllAR-GROUP/hpx/pull/4903
https://github.com/STEllAR-GROUP/hpx/pull/4902
https://github.com/STEllAR-GROUP/hpx/pull/4901
https://github.com/STEllAR-GROUP/hpx/pull/4899
https://github.com/STEllAR-GROUP/hpx/pull/4898
https://github.com/STEllAR-GROUP/hpx/pull/4896
https://github.com/STEllAR-GROUP/hpx/pull/4895
https://github.com/STEllAR-GROUP/hpx/pull/4894
https://github.com/STEllAR-GROUP/hpx/pull/4893
https://github.com/STEllAR-GROUP/hpx/pull/4892
https://github.com/STEllAR-GROUP/hpx/pull/4889
https://github.com/STEllAR-GROUP/hpx/pull/4887
https://github.com/STEllAR-GROUP/hpx/pull/4885
https://github.com/STEllAR-GROUP/hpx/pull/4884
https://github.com/STEllAR-GROUP/hpx/pull/4883
https://github.com/STEllAR-GROUP/hpx/pull/4882
https://github.com/STEllAR-GROUP/hpx/pull/4881
https://github.com/STEllAR-GROUP/hpx/pull/4876
https://github.com/STEllAR-GROUP/hpx/pull/4874

HPX Documentation, 1.5.1

• PR #4873423 - Set CUDA compute capability on rostam Jenkins builds

• PR #4872424 - Force partitioned vector scan tests to run serially

• PR #4870425 - Making move conforming with C++20

• PR #4869426 - Making destroy and destroy_n conforming to C++20

• PR #4868427 - Fix miscellaneous header problems

• PR #4867428 - Add CPOs for for_each

• PR #4865429 - Adapting count and count_if to be conforming to C++20

• PR #4864430 - Release notes 1.5.0

• PR #4863431 - adding libcds-hpx tag to prepare for hpx1.5 release

• PR #4862432 - Adding version specific deprecation options

• PR #4861433 - Limiting executor improvements

• PR #4860434 - Making fill and fill_n compatible with C++20

• PR #4859435 - Adapting all_of, any_of, and none_of to C++20

• PR #4857436 - Improve libCDS integration

• PR #4856437 - Correct typos in the documentation of the hpx performance counters

• PR #4854438 - Removing obsolete code

• PR #4853439 - Adding test that derives component from two other components

• PR #4852440 - Fix mpi_ring test in distributed mode by ensuring all ranks run hpx_main

• PR #4851441 - Converting resiliency APIs to tag_invoke based CPOs

• PR #4849442 - Enable use of future_overhead test when DISTRIBUTED_RUNTIME is OFF

• PR #4847443 - Fixing ‘error prone’ constructs as reported by Codacy

• PR #4846444 - Disable Boost.Asio concepts support

• PR #4845445 - Fix PAPI counters
423 https://github.com/STEllAR-GROUP/hpx/pull/4873
424 https://github.com/STEllAR-GROUP/hpx/pull/4872
425 https://github.com/STEllAR-GROUP/hpx/pull/4870
426 https://github.com/STEllAR-GROUP/hpx/pull/4869
427 https://github.com/STEllAR-GROUP/hpx/pull/4868
428 https://github.com/STEllAR-GROUP/hpx/pull/4867
429 https://github.com/STEllAR-GROUP/hpx/pull/4865
430 https://github.com/STEllAR-GROUP/hpx/pull/4864
431 https://github.com/STEllAR-GROUP/hpx/pull/4863
432 https://github.com/STEllAR-GROUP/hpx/pull/4862
433 https://github.com/STEllAR-GROUP/hpx/pull/4861
434 https://github.com/STEllAR-GROUP/hpx/pull/4860
435 https://github.com/STEllAR-GROUP/hpx/pull/4859
436 https://github.com/STEllAR-GROUP/hpx/pull/4857
437 https://github.com/STEllAR-GROUP/hpx/pull/4856
438 https://github.com/STEllAR-GROUP/hpx/pull/4854
439 https://github.com/STEllAR-GROUP/hpx/pull/4853
440 https://github.com/STEllAR-GROUP/hpx/pull/4852
441 https://github.com/STEllAR-GROUP/hpx/pull/4851
442 https://github.com/STEllAR-GROUP/hpx/pull/4849
443 https://github.com/STEllAR-GROUP/hpx/pull/4847
444 https://github.com/STEllAR-GROUP/hpx/pull/4846
445 https://github.com/STEllAR-GROUP/hpx/pull/4845

2.11. Releases 1231

https://github.com/STEllAR-GROUP/hpx/pull/4873
https://github.com/STEllAR-GROUP/hpx/pull/4872
https://github.com/STEllAR-GROUP/hpx/pull/4870
https://github.com/STEllAR-GROUP/hpx/pull/4869
https://github.com/STEllAR-GROUP/hpx/pull/4868
https://github.com/STEllAR-GROUP/hpx/pull/4867
https://github.com/STEllAR-GROUP/hpx/pull/4865
https://github.com/STEllAR-GROUP/hpx/pull/4864
https://github.com/STEllAR-GROUP/hpx/pull/4863
https://github.com/STEllAR-GROUP/hpx/pull/4862
https://github.com/STEllAR-GROUP/hpx/pull/4861
https://github.com/STEllAR-GROUP/hpx/pull/4860
https://github.com/STEllAR-GROUP/hpx/pull/4859
https://github.com/STEllAR-GROUP/hpx/pull/4857
https://github.com/STEllAR-GROUP/hpx/pull/4856
https://github.com/STEllAR-GROUP/hpx/pull/4854
https://github.com/STEllAR-GROUP/hpx/pull/4853
https://github.com/STEllAR-GROUP/hpx/pull/4852
https://github.com/STEllAR-GROUP/hpx/pull/4851
https://github.com/STEllAR-GROUP/hpx/pull/4849
https://github.com/STEllAR-GROUP/hpx/pull/4847
https://github.com/STEllAR-GROUP/hpx/pull/4846
https://github.com/STEllAR-GROUP/hpx/pull/4845

HPX Documentation, 1.5.1

• PR #4843446 - Remove dependency on various Boost headers

• PR #4841447 - Rearrange public API headers

• PR #4840448 - Fixing TSS problems during thread termination

• PR #4839449 - Fix async_cuda build problems when distributed runtime is disabled

• PR #4837450 - Restore compatibility for old (now deprecated) copy algorithms

• PR #4836451 - Adding CPOs for hpx::reduce

• PR #4835452 - Remove using util::result_of from namespace hpx

• PR #4834453 - Fixing the calculation of the number of idle cores and the corresponding idle masks

• PR #4833454 - Allow thread function destructors to yield

• PR #4832455 - Fixing assertion in split_gids and memory leaks in 1d_stencil_7

• PR #4831456 - Making sure MPI_CXX_COMPILE_FLAGS is interpreted as a sequence of options

• PR #4830457 - Update documentation on using HPX::wrap_main

• PR #4827458 - Update clang-newest configuration to use clang 10

• PR #4826459 - Add Jenkins configuration for rostam

• PR #4825460 - Move all CUDA functionality to hpx::cuda::experimental namespace

• PR #4824461 - Add support for building master/release branches to Jenkins configuration

• PR #4821462 - Implement customization point for hpx::copy and hpx::ranges::copy

• PR #4819463 - Allow finding Boost components before finding HPX

• PR #4817464 - Adding range version of stable sort

• PR #4815465 - Fix a wrong #ifdef for IO/TIMER pools causing build errors

• PR #4814466 - Replace hpx::function_nonser with std::function in error module

• PR #4809467 - Foreach adapt

• PR #4808468 - Make internal algorithms functions const

446 https://github.com/STEllAR-GROUP/hpx/pull/4843
447 https://github.com/STEllAR-GROUP/hpx/pull/4841
448 https://github.com/STEllAR-GROUP/hpx/pull/4840
449 https://github.com/STEllAR-GROUP/hpx/pull/4839
450 https://github.com/STEllAR-GROUP/hpx/pull/4837
451 https://github.com/STEllAR-GROUP/hpx/pull/4836
452 https://github.com/STEllAR-GROUP/hpx/pull/4835
453 https://github.com/STEllAR-GROUP/hpx/pull/4834
454 https://github.com/STEllAR-GROUP/hpx/pull/4833
455 https://github.com/STEllAR-GROUP/hpx/pull/4832
456 https://github.com/STEllAR-GROUP/hpx/pull/4831
457 https://github.com/STEllAR-GROUP/hpx/pull/4830
458 https://github.com/STEllAR-GROUP/hpx/pull/4827
459 https://github.com/STEllAR-GROUP/hpx/pull/4826
460 https://github.com/STEllAR-GROUP/hpx/pull/4825
461 https://github.com/STEllAR-GROUP/hpx/pull/4824
462 https://github.com/STEllAR-GROUP/hpx/pull/4821
463 https://github.com/STEllAR-GROUP/hpx/pull/4819
464 https://github.com/STEllAR-GROUP/hpx/pull/4817
465 https://github.com/STEllAR-GROUP/hpx/pull/4815
466 https://github.com/STEllAR-GROUP/hpx/pull/4814
467 https://github.com/STEllAR-GROUP/hpx/pull/4809
468 https://github.com/STEllAR-GROUP/hpx/pull/4808

1232 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4843
https://github.com/STEllAR-GROUP/hpx/pull/4841
https://github.com/STEllAR-GROUP/hpx/pull/4840
https://github.com/STEllAR-GROUP/hpx/pull/4839
https://github.com/STEllAR-GROUP/hpx/pull/4837
https://github.com/STEllAR-GROUP/hpx/pull/4836
https://github.com/STEllAR-GROUP/hpx/pull/4835
https://github.com/STEllAR-GROUP/hpx/pull/4834
https://github.com/STEllAR-GROUP/hpx/pull/4833
https://github.com/STEllAR-GROUP/hpx/pull/4832
https://github.com/STEllAR-GROUP/hpx/pull/4831
https://github.com/STEllAR-GROUP/hpx/pull/4830
https://github.com/STEllAR-GROUP/hpx/pull/4827
https://github.com/STEllAR-GROUP/hpx/pull/4826
https://github.com/STEllAR-GROUP/hpx/pull/4825
https://github.com/STEllAR-GROUP/hpx/pull/4824
https://github.com/STEllAR-GROUP/hpx/pull/4821
https://github.com/STEllAR-GROUP/hpx/pull/4819
https://github.com/STEllAR-GROUP/hpx/pull/4817
https://github.com/STEllAR-GROUP/hpx/pull/4815
https://github.com/STEllAR-GROUP/hpx/pull/4814
https://github.com/STEllAR-GROUP/hpx/pull/4809
https://github.com/STEllAR-GROUP/hpx/pull/4808

HPX Documentation, 1.5.1

• PR #4807469 - Add Jenkins configuration for running on Piz Daint

• PR #4806470 - Update documentation links to new domain name

• PR #4805471 - Applying changes that resolve time complexity issues in sort

• PR #4803472 - Adding implementation of stable_sort

• PR #4802473 - Fix datapar header paths

• PR #4801474 - Replace boost::shared_array<T> with std::shared_ptr<T[]> if supported

• PR #4799475 - Fixing #include paths in compatibility headers

• PR #4798476 - Include the main module header (fixes partially #4488)

• PR #4797477 - Change cmake targets

• PR #4794478 - Removing 128bit integer emulation

• PR #4793479 - Make sure global variable is handled properly

• PR #4792480 - Replace enable_if with HPX_CONCEPT_REQUIRES_ and add is_sentinel_for constraint

• PR #4790481 - Move deprecation warnings from base template to template specializations for result_of etc.
structs

• PR #4789482 - Fix hangs during assertion handling and distributed runtime construction

• PR #4788483 - Fixing inclusive transform scan algorithm to properly handle initial value

• PR #4785484 - Fixing barrier test

• PR #4784485 - Fixing deleter argument bindings in serialize_buffer

• PR #4783486 - Add coveralls badge

• PR #4782487 - Make header tests parallel again

• PR #4780488 - Remove outdated comment about hpx::stop in documentation

• PR #4776489 - debug print improvements

• PR #4775490 - Checkpoint cleanup

• PR #4771491 - Fix compilation with HPX_WITH_NETWORKING=OFF

469 https://github.com/STEllAR-GROUP/hpx/pull/4807
470 https://github.com/STEllAR-GROUP/hpx/pull/4806
471 https://github.com/STEllAR-GROUP/hpx/pull/4805
472 https://github.com/STEllAR-GROUP/hpx/pull/4803
473 https://github.com/STEllAR-GROUP/hpx/pull/4802
474 https://github.com/STEllAR-GROUP/hpx/pull/4801
475 https://github.com/STEllAR-GROUP/hpx/pull/4799
476 https://github.com/STEllAR-GROUP/hpx/pull/4798
477 https://github.com/STEllAR-GROUP/hpx/pull/4797
478 https://github.com/STEllAR-GROUP/hpx/pull/4794
479 https://github.com/STEllAR-GROUP/hpx/pull/4793
480 https://github.com/STEllAR-GROUP/hpx/pull/4792
481 https://github.com/STEllAR-GROUP/hpx/pull/4790
482 https://github.com/STEllAR-GROUP/hpx/pull/4789
483 https://github.com/STEllAR-GROUP/hpx/pull/4788
484 https://github.com/STEllAR-GROUP/hpx/pull/4785
485 https://github.com/STEllAR-GROUP/hpx/pull/4784
486 https://github.com/STEllAR-GROUP/hpx/pull/4783
487 https://github.com/STEllAR-GROUP/hpx/pull/4782
488 https://github.com/STEllAR-GROUP/hpx/pull/4780
489 https://github.com/STEllAR-GROUP/hpx/pull/4776
490 https://github.com/STEllAR-GROUP/hpx/pull/4775
491 https://github.com/STEllAR-GROUP/hpx/pull/4771

2.11. Releases 1233

https://github.com/STEllAR-GROUP/hpx/pull/4807
https://github.com/STEllAR-GROUP/hpx/pull/4806
https://github.com/STEllAR-GROUP/hpx/pull/4805
https://github.com/STEllAR-GROUP/hpx/pull/4803
https://github.com/STEllAR-GROUP/hpx/pull/4802
https://github.com/STEllAR-GROUP/hpx/pull/4801
https://github.com/STEllAR-GROUP/hpx/pull/4799
https://github.com/STEllAR-GROUP/hpx/pull/4798
https://github.com/STEllAR-GROUP/hpx/pull/4797
https://github.com/STEllAR-GROUP/hpx/pull/4794
https://github.com/STEllAR-GROUP/hpx/pull/4793
https://github.com/STEllAR-GROUP/hpx/pull/4792
https://github.com/STEllAR-GROUP/hpx/pull/4790
https://github.com/STEllAR-GROUP/hpx/pull/4789
https://github.com/STEllAR-GROUP/hpx/pull/4788
https://github.com/STEllAR-GROUP/hpx/pull/4785
https://github.com/STEllAR-GROUP/hpx/pull/4784
https://github.com/STEllAR-GROUP/hpx/pull/4783
https://github.com/STEllAR-GROUP/hpx/pull/4782
https://github.com/STEllAR-GROUP/hpx/pull/4780
https://github.com/STEllAR-GROUP/hpx/pull/4776
https://github.com/STEllAR-GROUP/hpx/pull/4775
https://github.com/STEllAR-GROUP/hpx/pull/4771

HPX Documentation, 1.5.1

• PR #4767492 - Remove all force linking leftovers

• PR #4765493 - Fix 1d stencil index calculation

• PR #4764494 - Force some tests to run serially

• PR #4762495 - Update pointees in compatibility headers

• PR #4761496 - Fix running and building of execution module tests on CircleCI

• PR #4760497 - Storing hpx_options in global property to speed up summary report

• PR #4759498 - Reduce memory requirements for our main shared state

• PR #4757499 - Fix mimalloc linking on Windows

• PR #4756500 - Fix compilation issues

• PR #4753501 - Re-adding API functions that were lost during merges

• PR #4751502 - Revert “Create coverage reports and upload them to codecov.io”

• PR #4750503 - Fixing possible race condition during termination detection

• PR #4749504 - Deprecate result_of and friends

• PR #4748505 - Create coverage reports and upload them to codecov.io

• PR #4747506 - Changing #include for MPI parcelport

• PR #4745507 - Add is_sentinel_for trait implementation and test

• PR #4743508 - Fix init_globally example after runtime mode changes

• PR #4742509 - Update SUPPORT.md

• PR #4741510 - Fixing a warning generated for unity builds with msvc

• PR #4740511 - Rename local_lcos and basic_execution modules

• PR #4739512 - Undeprecate a couple of hpx/modulename.hpp headers

• PR #4738513 - Conditionally test schedulers in thread_stacksize_current test

• PR #4734514 - Fixing a bunch of codacy warnings

492 https://github.com/STEllAR-GROUP/hpx/pull/4767
493 https://github.com/STEllAR-GROUP/hpx/pull/4765
494 https://github.com/STEllAR-GROUP/hpx/pull/4764
495 https://github.com/STEllAR-GROUP/hpx/pull/4762
496 https://github.com/STEllAR-GROUP/hpx/pull/4761
497 https://github.com/STEllAR-GROUP/hpx/pull/4760
498 https://github.com/STEllAR-GROUP/hpx/pull/4759
499 https://github.com/STEllAR-GROUP/hpx/pull/4757
500 https://github.com/STEllAR-GROUP/hpx/pull/4756
501 https://github.com/STEllAR-GROUP/hpx/pull/4753
502 https://github.com/STEllAR-GROUP/hpx/pull/4751
503 https://github.com/STEllAR-GROUP/hpx/pull/4750
504 https://github.com/STEllAR-GROUP/hpx/pull/4749
505 https://github.com/STEllAR-GROUP/hpx/pull/4748
506 https://github.com/STEllAR-GROUP/hpx/pull/4747
507 https://github.com/STEllAR-GROUP/hpx/pull/4745
508 https://github.com/STEllAR-GROUP/hpx/pull/4743
509 https://github.com/STEllAR-GROUP/hpx/pull/4742
510 https://github.com/STEllAR-GROUP/hpx/pull/4741
511 https://github.com/STEllAR-GROUP/hpx/pull/4740
512 https://github.com/STEllAR-GROUP/hpx/pull/4739
513 https://github.com/STEllAR-GROUP/hpx/pull/4738
514 https://github.com/STEllAR-GROUP/hpx/pull/4734

1234 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4767
https://github.com/STEllAR-GROUP/hpx/pull/4765
https://github.com/STEllAR-GROUP/hpx/pull/4764
https://github.com/STEllAR-GROUP/hpx/pull/4762
https://github.com/STEllAR-GROUP/hpx/pull/4761
https://github.com/STEllAR-GROUP/hpx/pull/4760
https://github.com/STEllAR-GROUP/hpx/pull/4759
https://github.com/STEllAR-GROUP/hpx/pull/4757
https://github.com/STEllAR-GROUP/hpx/pull/4756
https://github.com/STEllAR-GROUP/hpx/pull/4753
https://github.com/STEllAR-GROUP/hpx/pull/4751
https://github.com/STEllAR-GROUP/hpx/pull/4750
https://github.com/STEllAR-GROUP/hpx/pull/4749
https://github.com/STEllAR-GROUP/hpx/pull/4748
https://github.com/STEllAR-GROUP/hpx/pull/4747
https://github.com/STEllAR-GROUP/hpx/pull/4745
https://github.com/STEllAR-GROUP/hpx/pull/4743
https://github.com/STEllAR-GROUP/hpx/pull/4742
https://github.com/STEllAR-GROUP/hpx/pull/4741
https://github.com/STEllAR-GROUP/hpx/pull/4740
https://github.com/STEllAR-GROUP/hpx/pull/4739
https://github.com/STEllAR-GROUP/hpx/pull/4738
https://github.com/STEllAR-GROUP/hpx/pull/4734

HPX Documentation, 1.5.1

• PR #4733515 - Add experimental unity build option to CMake configuration

• PR #4730516 - Fixing compilation problems with unordered map

• PR #4729517 - Fix APEX build

• PR #4727518 - Fix missing runtime includes for distributed runtime

• PR #4726519 - Add more API headers

• PR #4725520 - Add more compatibility headers for deprecated module headers

• PR #4724521 - Fix 4723

• PR #4721522 - Attempt to fixing migration tests

• PR #4717523 - Make the compatilibility headers macro conditional

• PR #4716524 - Add hpx/runtime.hpp and hpx/distributed/runtime.hpp API headers

• PR #4714525 - Add hpx/future.hpp header

• PR #4713526 - Remove hpx/runtime/threads_fwd.hpp and hpx/util_fwd.hpp

• PR #4711527 - Make module deprecation warnings overridable

• PR #4710528 - Add compatibility headers and other fixes after module header renaming

• PR #4708529 - Add termination handler for parallel algorithms

• PR #4707530 - Use hpx::function_nonser instead of std::function internally

• PR #4706531 - Move header file to module

• PR #4705532 - Fix incorrect behaviour of cmake-format check

• PR #4704533 - Fix resource tests

• PR #4701534 - Fix missing includes for future::then specializations

• PR #4700535 - Removing obsolete memory component

• PR #4699536 - Add short descriptions to modules missing documentation

• PR #4696537 - Rename generated modules headers

515 https://github.com/STEllAR-GROUP/hpx/pull/4733
516 https://github.com/STEllAR-GROUP/hpx/pull/4730
517 https://github.com/STEllAR-GROUP/hpx/pull/4729
518 https://github.com/STEllAR-GROUP/hpx/pull/4727
519 https://github.com/STEllAR-GROUP/hpx/pull/4726
520 https://github.com/STEllAR-GROUP/hpx/pull/4725
521 https://github.com/STEllAR-GROUP/hpx/pull/4724
522 https://github.com/STEllAR-GROUP/hpx/pull/4721
523 https://github.com/STEllAR-GROUP/hpx/pull/4717
524 https://github.com/STEllAR-GROUP/hpx/pull/4716
525 https://github.com/STEllAR-GROUP/hpx/pull/4714
526 https://github.com/STEllAR-GROUP/hpx/pull/4713
527 https://github.com/STEllAR-GROUP/hpx/pull/4711
528 https://github.com/STEllAR-GROUP/hpx/pull/4710
529 https://github.com/STEllAR-GROUP/hpx/pull/4708
530 https://github.com/STEllAR-GROUP/hpx/pull/4707
531 https://github.com/STEllAR-GROUP/hpx/pull/4706
532 https://github.com/STEllAR-GROUP/hpx/pull/4705
533 https://github.com/STEllAR-GROUP/hpx/pull/4704
534 https://github.com/STEllAR-GROUP/hpx/pull/4701
535 https://github.com/STEllAR-GROUP/hpx/pull/4700
536 https://github.com/STEllAR-GROUP/hpx/pull/4699
537 https://github.com/STEllAR-GROUP/hpx/pull/4696

2.11. Releases 1235

https://github.com/STEllAR-GROUP/hpx/pull/4733
https://github.com/STEllAR-GROUP/hpx/pull/4730
https://github.com/STEllAR-GROUP/hpx/pull/4729
https://github.com/STEllAR-GROUP/hpx/pull/4727
https://github.com/STEllAR-GROUP/hpx/pull/4726
https://github.com/STEllAR-GROUP/hpx/pull/4725
https://github.com/STEllAR-GROUP/hpx/pull/4724
https://github.com/STEllAR-GROUP/hpx/pull/4721
https://github.com/STEllAR-GROUP/hpx/pull/4717
https://github.com/STEllAR-GROUP/hpx/pull/4716
https://github.com/STEllAR-GROUP/hpx/pull/4714
https://github.com/STEllAR-GROUP/hpx/pull/4713
https://github.com/STEllAR-GROUP/hpx/pull/4711
https://github.com/STEllAR-GROUP/hpx/pull/4710
https://github.com/STEllAR-GROUP/hpx/pull/4708
https://github.com/STEllAR-GROUP/hpx/pull/4707
https://github.com/STEllAR-GROUP/hpx/pull/4706
https://github.com/STEllAR-GROUP/hpx/pull/4705
https://github.com/STEllAR-GROUP/hpx/pull/4704
https://github.com/STEllAR-GROUP/hpx/pull/4701
https://github.com/STEllAR-GROUP/hpx/pull/4700
https://github.com/STEllAR-GROUP/hpx/pull/4699
https://github.com/STEllAR-GROUP/hpx/pull/4696

HPX Documentation, 1.5.1

• PR #4693538 - Overhauling thread_mapper for public consumption

• PR #4688539 - Fix thread stack size handling

• PR #4687540 - Adding all_gather and fixing all_to_all

• PR #4684541 - Miscellaneous compilation fixes

• PR #4683542 - Fix HPX_WITH_DYNAMIC_HPX_MAIN=OFF

• PR #4682543 - Fix compilation of pack_traversal_rebind_container.hpp

• PR #4681544 - Add missing hpx/execution.hpp includes for future::then

• PR #4678545 - Typeless communicator

• PR #4677546 - Forcing registry option to be accepted without checks.

• PR #4676547 - Adding scatter_to/scatter_from collective operations

• PR #4673548 - Fix PAPI counters compilation

• PR #4671549 - Deprecate hpx::promise alias to hpx::lcos::promise

• PR #4670550 - Explicitly instantiate get_exception

• PR #4667551 - Add stopValue in Sentinel struct instead of Iterator

• PR #4666552 - Add release build on Windows to GitHub actions

• PR #4664553 - Creating itt_notify module.

• PR #4663554 - Mpi fixes

• PR #4659555 - Making sure declarations match definitions in register_locks implementation

• PR #4655556 - Fixing task annotations for actions

• PR #4653557 - Making sure APEX is linked into every application, if needed

• PR #4651558 - Update get_function_annotation.hpp

• PR #4646559 - Runtime type

• PR #4645560 - Add a few more API headers
538 https://github.com/STEllAR-GROUP/hpx/pull/4693
539 https://github.com/STEllAR-GROUP/hpx/pull/4688
540 https://github.com/STEllAR-GROUP/hpx/pull/4687
541 https://github.com/STEllAR-GROUP/hpx/pull/4684
542 https://github.com/STEllAR-GROUP/hpx/pull/4683
543 https://github.com/STEllAR-GROUP/hpx/pull/4682
544 https://github.com/STEllAR-GROUP/hpx/pull/4681
545 https://github.com/STEllAR-GROUP/hpx/pull/4678
546 https://github.com/STEllAR-GROUP/hpx/pull/4677
547 https://github.com/STEllAR-GROUP/hpx/pull/4676
548 https://github.com/STEllAR-GROUP/hpx/pull/4673
549 https://github.com/STEllAR-GROUP/hpx/pull/4671
550 https://github.com/STEllAR-GROUP/hpx/pull/4670
551 https://github.com/STEllAR-GROUP/hpx/pull/4667
552 https://github.com/STEllAR-GROUP/hpx/pull/4666
553 https://github.com/STEllAR-GROUP/hpx/pull/4664
554 https://github.com/STEllAR-GROUP/hpx/pull/4663
555 https://github.com/STEllAR-GROUP/hpx/pull/4659
556 https://github.com/STEllAR-GROUP/hpx/pull/4655
557 https://github.com/STEllAR-GROUP/hpx/pull/4653
558 https://github.com/STEllAR-GROUP/hpx/pull/4651
559 https://github.com/STEllAR-GROUP/hpx/pull/4646
560 https://github.com/STEllAR-GROUP/hpx/pull/4645

1236 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4693
https://github.com/STEllAR-GROUP/hpx/pull/4688
https://github.com/STEllAR-GROUP/hpx/pull/4687
https://github.com/STEllAR-GROUP/hpx/pull/4684
https://github.com/STEllAR-GROUP/hpx/pull/4683
https://github.com/STEllAR-GROUP/hpx/pull/4682
https://github.com/STEllAR-GROUP/hpx/pull/4681
https://github.com/STEllAR-GROUP/hpx/pull/4678
https://github.com/STEllAR-GROUP/hpx/pull/4677
https://github.com/STEllAR-GROUP/hpx/pull/4676
https://github.com/STEllAR-GROUP/hpx/pull/4673
https://github.com/STEllAR-GROUP/hpx/pull/4671
https://github.com/STEllAR-GROUP/hpx/pull/4670
https://github.com/STEllAR-GROUP/hpx/pull/4667
https://github.com/STEllAR-GROUP/hpx/pull/4666
https://github.com/STEllAR-GROUP/hpx/pull/4664
https://github.com/STEllAR-GROUP/hpx/pull/4663
https://github.com/STEllAR-GROUP/hpx/pull/4659
https://github.com/STEllAR-GROUP/hpx/pull/4655
https://github.com/STEllAR-GROUP/hpx/pull/4653
https://github.com/STEllAR-GROUP/hpx/pull/4651
https://github.com/STEllAR-GROUP/hpx/pull/4646
https://github.com/STEllAR-GROUP/hpx/pull/4645

HPX Documentation, 1.5.1

• PR #4644561 - Fixing support for mpirun (and similar)

• PR #4643562 - Fixing the fix for get_idle_core_count() API

• PR #4638563 - Remove HPX_API_EXPORT missed in previous cleanup

• PR #4636564 - Adding C++20 barrier

• PR #4635565 - Adding C++20 latch API

• PR #4634566 - Adding C++20 counting semaphore API

• PR #4633567 - Unify execution parameters customization points

• PR #4632568 - Adding missing bulk_sync_execute wrapper to example executor

• PR #4631569 - Updates to documentation; grammar edits.

• PR #4630570 - Updates to documentation; moved hyperlink

• PR #4624571 - Export set_self_ptr in thread_data.hpp instead of with forward declarations where used

• PR #4623572 - Clean up export macros

• PR #4621573 - Trigger an error for older boost versions on power architectures

• PR #4617574 - Ignore user-set compatibility header options if the module does not have compatibility headers

• PR #4616575 - Fix cmake-format warning

• PR #4615576 - Add handler for serializing custom exceptions

• PR #4614577 - Fix error message when HPX_IGNORE_CMAKE_BUILD_TYPE_COMPATIBILITY=OFF

• PR #4613578 - Make partitioner constructor private

• PR #4611579 - Making auto_chunk_size execute the given function using the given executor

• PR #4610580 - Making sure the thread-local lock registration data is moving to the core the suspended HPX
thread is resumed on

• PR #4609581 - Adding an API function that exposes the number of idle cores

• PR #4608582 - Fixing moodycamel namespace

• PR #4607583 - Moving winsocket initialization to core library

561 https://github.com/STEllAR-GROUP/hpx/pull/4644
562 https://github.com/STEllAR-GROUP/hpx/pull/4643
563 https://github.com/STEllAR-GROUP/hpx/pull/4638
564 https://github.com/STEllAR-GROUP/hpx/pull/4636
565 https://github.com/STEllAR-GROUP/hpx/pull/4635
566 https://github.com/STEllAR-GROUP/hpx/pull/4634
567 https://github.com/STEllAR-GROUP/hpx/pull/4633
568 https://github.com/STEllAR-GROUP/hpx/pull/4632
569 https://github.com/STEllAR-GROUP/hpx/pull/4631
570 https://github.com/STEllAR-GROUP/hpx/pull/4630
571 https://github.com/STEllAR-GROUP/hpx/pull/4624
572 https://github.com/STEllAR-GROUP/hpx/pull/4623
573 https://github.com/STEllAR-GROUP/hpx/pull/4621
574 https://github.com/STEllAR-GROUP/hpx/pull/4617
575 https://github.com/STEllAR-GROUP/hpx/pull/4616
576 https://github.com/STEllAR-GROUP/hpx/pull/4615
577 https://github.com/STEllAR-GROUP/hpx/pull/4614
578 https://github.com/STEllAR-GROUP/hpx/pull/4613
579 https://github.com/STEllAR-GROUP/hpx/pull/4611
580 https://github.com/STEllAR-GROUP/hpx/pull/4610
581 https://github.com/STEllAR-GROUP/hpx/pull/4609
582 https://github.com/STEllAR-GROUP/hpx/pull/4608
583 https://github.com/STEllAR-GROUP/hpx/pull/4607

2.11. Releases 1237

https://github.com/STEllAR-GROUP/hpx/pull/4644
https://github.com/STEllAR-GROUP/hpx/pull/4643
https://github.com/STEllAR-GROUP/hpx/pull/4638
https://github.com/STEllAR-GROUP/hpx/pull/4636
https://github.com/STEllAR-GROUP/hpx/pull/4635
https://github.com/STEllAR-GROUP/hpx/pull/4634
https://github.com/STEllAR-GROUP/hpx/pull/4633
https://github.com/STEllAR-GROUP/hpx/pull/4632
https://github.com/STEllAR-GROUP/hpx/pull/4631
https://github.com/STEllAR-GROUP/hpx/pull/4630
https://github.com/STEllAR-GROUP/hpx/pull/4624
https://github.com/STEllAR-GROUP/hpx/pull/4623
https://github.com/STEllAR-GROUP/hpx/pull/4621
https://github.com/STEllAR-GROUP/hpx/pull/4617
https://github.com/STEllAR-GROUP/hpx/pull/4616
https://github.com/STEllAR-GROUP/hpx/pull/4615
https://github.com/STEllAR-GROUP/hpx/pull/4614
https://github.com/STEllAR-GROUP/hpx/pull/4613
https://github.com/STEllAR-GROUP/hpx/pull/4611
https://github.com/STEllAR-GROUP/hpx/pull/4610
https://github.com/STEllAR-GROUP/hpx/pull/4609
https://github.com/STEllAR-GROUP/hpx/pull/4608
https://github.com/STEllAR-GROUP/hpx/pull/4607

HPX Documentation, 1.5.1

• PR #4606584 - Local runtime module etc.

• PR #4604585 - Add config_registry module

• PR #4603586 - Deal with distributed modules in their respective CMakeLists.txt

• PR #4602587 - Small module fixes

• PR #4598588 - Making sure current_executor and service_executor functions are linked into the core library

• PR #4597589 - Adding broadcast_to/broadcast_from to collectives module

• PR #4596590 - Fix performance regression in block_executor

• PR #4595591 - Making sure main.cpp is built as a library if HPX_WITH_DYNAMIC_MAIN=OFF

• PR #4592592 - Futures module

• PR #4591593 - Adapting co_await support for C++20

• PR #4590594 - Adding missing exception test for for_loop()

• PR #4587595 - Move traits headers to hpx/modulename/traits directory

• PR #4586596 - Remove Travis CI config

• PR #4585597 - Update macOS test blacklist

• PR #4584598 - Attempting to fix missing symbols in stack trace

• PR #4583599 - Fixing bad static_cast

• PR #4582600 - Changing download url for Windows prerequisites to circumvent bandwidth limitations

• PR #4581601 - Adding missing using placeholder::_X

• PR #4579602 - Move get_stack_size_name and related functions

• PR #4575603 - Excluding unconditional definition of class backtrace from global header

• PR #4574604 - Changing return type of hardware_concurrency() to unsigned int

• PR #4570605 - Move tests to modules

• PR #4564606 - Reshuffle internal targets and add HPX::hpx_no_wrap_main target

584 https://github.com/STEllAR-GROUP/hpx/pull/4606
585 https://github.com/STEllAR-GROUP/hpx/pull/4604
586 https://github.com/STEllAR-GROUP/hpx/pull/4603
587 https://github.com/STEllAR-GROUP/hpx/pull/4602
588 https://github.com/STEllAR-GROUP/hpx/pull/4598
589 https://github.com/STEllAR-GROUP/hpx/pull/4597
590 https://github.com/STEllAR-GROUP/hpx/pull/4596
591 https://github.com/STEllAR-GROUP/hpx/pull/4595
592 https://github.com/STEllAR-GROUP/hpx/pull/4592
593 https://github.com/STEllAR-GROUP/hpx/pull/4591
594 https://github.com/STEllAR-GROUP/hpx/pull/4590
595 https://github.com/STEllAR-GROUP/hpx/pull/4587
596 https://github.com/STEllAR-GROUP/hpx/pull/4586
597 https://github.com/STEllAR-GROUP/hpx/pull/4585
598 https://github.com/STEllAR-GROUP/hpx/pull/4584
599 https://github.com/STEllAR-GROUP/hpx/pull/4583
600 https://github.com/STEllAR-GROUP/hpx/pull/4582
601 https://github.com/STEllAR-GROUP/hpx/pull/4581
602 https://github.com/STEllAR-GROUP/hpx/pull/4579
603 https://github.com/STEllAR-GROUP/hpx/pull/4575
604 https://github.com/STEllAR-GROUP/hpx/pull/4574
605 https://github.com/STEllAR-GROUP/hpx/pull/4570
606 https://github.com/STEllAR-GROUP/hpx/pull/4564

1238 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4606
https://github.com/STEllAR-GROUP/hpx/pull/4604
https://github.com/STEllAR-GROUP/hpx/pull/4603
https://github.com/STEllAR-GROUP/hpx/pull/4602
https://github.com/STEllAR-GROUP/hpx/pull/4598
https://github.com/STEllAR-GROUP/hpx/pull/4597
https://github.com/STEllAR-GROUP/hpx/pull/4596
https://github.com/STEllAR-GROUP/hpx/pull/4595
https://github.com/STEllAR-GROUP/hpx/pull/4592
https://github.com/STEllAR-GROUP/hpx/pull/4591
https://github.com/STEllAR-GROUP/hpx/pull/4590
https://github.com/STEllAR-GROUP/hpx/pull/4587
https://github.com/STEllAR-GROUP/hpx/pull/4586
https://github.com/STEllAR-GROUP/hpx/pull/4585
https://github.com/STEllAR-GROUP/hpx/pull/4584
https://github.com/STEllAR-GROUP/hpx/pull/4583
https://github.com/STEllAR-GROUP/hpx/pull/4582
https://github.com/STEllAR-GROUP/hpx/pull/4581
https://github.com/STEllAR-GROUP/hpx/pull/4579
https://github.com/STEllAR-GROUP/hpx/pull/4575
https://github.com/STEllAR-GROUP/hpx/pull/4574
https://github.com/STEllAR-GROUP/hpx/pull/4570
https://github.com/STEllAR-GROUP/hpx/pull/4564

HPX Documentation, 1.5.1

• PR #4563607 - fix CMake option typo

• PR #4562608 - Unregister lock earlier to avoid holding it while suspending

• PR #4561609 - Adding test macros supporting custom output stream

• PR #4560610 - Making sure hash_any::operator()() is linked into core library

• PR #4559611 - Fixing compilation if HPX_WITH_THREAD_BACKTRACE_ON_SUSPENSION=On

• PR #4557612 - Improve spinlock implementation to perform better in high-contention situations

• PR #4553613 - Fix a runtime_ptr problem at shutdown when apex is enabled

• PR #4552614 - Add configuration option for making exceptions less noisy

• PR #4551615 - Clean up thread creation parameters

• PR #4549616 - Test FetchContent build on GitHub actions

• PR #4548617 - Fix stack size

• PR #4545618 - Fix header tests

• PR #4544619 - Fix a typo in sanitizer build

• PR #4541620 - Add API to check if a thread pool exists

• PR #4540621 - Making sure MPI support is enabled if MPI futures are used but networking is disabled

• PR #4538622 - Move channel documentation examples to examples directory

• PR #4536623 - Add generic allocator for execution policies

• PR #4534624 - Enable compatibility headers for thread_executors module

• PR #4532625 - Fixing broken url in README.rst

• PR #4531626 - Update scripts

• PR #4530627 - Make sure module API docs show up in correct order

• PR #4529628 - Adding missing template code to module creation script

• PR #4528629 - Make sure version module uses HPX’s binary dir, not the parent’s

607 https://github.com/STEllAR-GROUP/hpx/pull/4563
608 https://github.com/STEllAR-GROUP/hpx/pull/4562
609 https://github.com/STEllAR-GROUP/hpx/pull/4561
610 https://github.com/STEllAR-GROUP/hpx/pull/4560
611 https://github.com/STEllAR-GROUP/hpx/pull/4559
612 https://github.com/STEllAR-GROUP/hpx/pull/4557
613 https://github.com/STEllAR-GROUP/hpx/pull/4553
614 https://github.com/STEllAR-GROUP/hpx/pull/4552
615 https://github.com/STEllAR-GROUP/hpx/pull/4551
616 https://github.com/STEllAR-GROUP/hpx/pull/4549
617 https://github.com/STEllAR-GROUP/hpx/pull/4548
618 https://github.com/STEllAR-GROUP/hpx/pull/4545
619 https://github.com/STEllAR-GROUP/hpx/pull/4544
620 https://github.com/STEllAR-GROUP/hpx/pull/4541
621 https://github.com/STEllAR-GROUP/hpx/pull/4540
622 https://github.com/STEllAR-GROUP/hpx/pull/4538
623 https://github.com/STEllAR-GROUP/hpx/pull/4536
624 https://github.com/STEllAR-GROUP/hpx/pull/4534
625 https://github.com/STEllAR-GROUP/hpx/pull/4532
626 https://github.com/STEllAR-GROUP/hpx/pull/4531
627 https://github.com/STEllAR-GROUP/hpx/pull/4530
628 https://github.com/STEllAR-GROUP/hpx/pull/4529
629 https://github.com/STEllAR-GROUP/hpx/pull/4528

2.11. Releases 1239

https://github.com/STEllAR-GROUP/hpx/pull/4563
https://github.com/STEllAR-GROUP/hpx/pull/4562
https://github.com/STEllAR-GROUP/hpx/pull/4561
https://github.com/STEllAR-GROUP/hpx/pull/4560
https://github.com/STEllAR-GROUP/hpx/pull/4559
https://github.com/STEllAR-GROUP/hpx/pull/4557
https://github.com/STEllAR-GROUP/hpx/pull/4553
https://github.com/STEllAR-GROUP/hpx/pull/4552
https://github.com/STEllAR-GROUP/hpx/pull/4551
https://github.com/STEllAR-GROUP/hpx/pull/4549
https://github.com/STEllAR-GROUP/hpx/pull/4548
https://github.com/STEllAR-GROUP/hpx/pull/4545
https://github.com/STEllAR-GROUP/hpx/pull/4544
https://github.com/STEllAR-GROUP/hpx/pull/4541
https://github.com/STEllAR-GROUP/hpx/pull/4540
https://github.com/STEllAR-GROUP/hpx/pull/4538
https://github.com/STEllAR-GROUP/hpx/pull/4536
https://github.com/STEllAR-GROUP/hpx/pull/4534
https://github.com/STEllAR-GROUP/hpx/pull/4532
https://github.com/STEllAR-GROUP/hpx/pull/4531
https://github.com/STEllAR-GROUP/hpx/pull/4530
https://github.com/STEllAR-GROUP/hpx/pull/4529
https://github.com/STEllAR-GROUP/hpx/pull/4528

HPX Documentation, 1.5.1

• PR #4527630 - Creating actions_base and actions module

• PR #4526631 - Shared state for cv

• PR #4525632 - Changing sub-name sequencing for experimental namespace

• PR #4524633 - Add API guarantee notes to API reference documentation

• PR #4522634 - Enable and fix deprecation warnings in execution module

• PR #4521635 - Moves more miscellaneous files to modules

• PR #4520636 - Skip execution customization points when executor is known

• PR #4518637 - Module distributed lcos

• PR #4516638 - Fix various builds

• PR #4515639 - Replace backslashes by slashes in windows paths

• PR #4514640 - Adding polymorphic_executor

• PR #4512641 - Adding C++20 jthread and stop_token

• PR #4510642 - Attempt to fix APEX linking in external packages again

• PR #4508643 - Only test pull requests (not all branches) with GitHub actions

• PR #4505644 - Fix duplicate linking in tests (ODR violations)

• PR #4504645 - Fix C++ standard handling

• PR #4503646 - Add CMakelists file check

• PR #4500647 - Fix .clang-format version requirement comment

• PR #4499648 - Attempting to fix hpx_init linking on macOS

• PR #4498649 - Fix compatibility of pool_executor

• PR #4496650 - Removing superfluous SPDX tags

• PR #4494651 - Module executors

• PR #4493652 - Pack traversal module
630 https://github.com/STEllAR-GROUP/hpx/pull/4527
631 https://github.com/STEllAR-GROUP/hpx/pull/4526
632 https://github.com/STEllAR-GROUP/hpx/pull/4525
633 https://github.com/STEllAR-GROUP/hpx/pull/4524
634 https://github.com/STEllAR-GROUP/hpx/pull/4522
635 https://github.com/STEllAR-GROUP/hpx/pull/4521
636 https://github.com/STEllAR-GROUP/hpx/pull/4520
637 https://github.com/STEllAR-GROUP/hpx/pull/4518
638 https://github.com/STEllAR-GROUP/hpx/pull/4516
639 https://github.com/STEllAR-GROUP/hpx/pull/4515
640 https://github.com/STEllAR-GROUP/hpx/pull/4514
641 https://github.com/STEllAR-GROUP/hpx/pull/4512
642 https://github.com/STEllAR-GROUP/hpx/pull/4510
643 https://github.com/STEllAR-GROUP/hpx/pull/4508
644 https://github.com/STEllAR-GROUP/hpx/pull/4505
645 https://github.com/STEllAR-GROUP/hpx/pull/4504
646 https://github.com/STEllAR-GROUP/hpx/pull/4503
647 https://github.com/STEllAR-GROUP/hpx/pull/4500
648 https://github.com/STEllAR-GROUP/hpx/pull/4499
649 https://github.com/STEllAR-GROUP/hpx/pull/4498
650 https://github.com/STEllAR-GROUP/hpx/pull/4496
651 https://github.com/STEllAR-GROUP/hpx/pull/4494
652 https://github.com/STEllAR-GROUP/hpx/pull/4493

1240 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4527
https://github.com/STEllAR-GROUP/hpx/pull/4526
https://github.com/STEllAR-GROUP/hpx/pull/4525
https://github.com/STEllAR-GROUP/hpx/pull/4524
https://github.com/STEllAR-GROUP/hpx/pull/4522
https://github.com/STEllAR-GROUP/hpx/pull/4521
https://github.com/STEllAR-GROUP/hpx/pull/4520
https://github.com/STEllAR-GROUP/hpx/pull/4518
https://github.com/STEllAR-GROUP/hpx/pull/4516
https://github.com/STEllAR-GROUP/hpx/pull/4515
https://github.com/STEllAR-GROUP/hpx/pull/4514
https://github.com/STEllAR-GROUP/hpx/pull/4512
https://github.com/STEllAR-GROUP/hpx/pull/4510
https://github.com/STEllAR-GROUP/hpx/pull/4508
https://github.com/STEllAR-GROUP/hpx/pull/4505
https://github.com/STEllAR-GROUP/hpx/pull/4504
https://github.com/STEllAR-GROUP/hpx/pull/4503
https://github.com/STEllAR-GROUP/hpx/pull/4500
https://github.com/STEllAR-GROUP/hpx/pull/4499
https://github.com/STEllAR-GROUP/hpx/pull/4498
https://github.com/STEllAR-GROUP/hpx/pull/4496
https://github.com/STEllAR-GROUP/hpx/pull/4494
https://github.com/STEllAR-GROUP/hpx/pull/4493

HPX Documentation, 1.5.1

• PR #4492653 - Update copyright year in documentation

• PR #4491654 - Add missing current_executor header

• PR #4490655 - Update GitHub actions configs

• PR #4487656 - Properly dispatch exceptions thrown from hpx_main to be rethrown from hpx::init/hpx::stop

• PR #4486657 - Fixing an initialization order problem

• PR #4485658 - Move miscellaneous files to their rightful modules

• PR #4483659 - Clean up imported CMake target naming

• PR #4481660 - Add vcpkg installation instructions

• PR #4479661 - Add hints to allow to specify MIMALLOC_ROOT

• PR #4478662 - Async modules

• PR #4475663 - Fix rp init changes

• PR #4474664 - Use #pragma once in headers

• PR #4472665 - Add more descriptive error message when using x86 coroutines on non-x86 platforms

• PR #4467666 - Add mimalloc find cmake script

• PR #4465667 - Add thread_executors module

• PR #4464668 - Include module

• PR #4462669 - Merge hpx_init and hpx_wrap into one static library

• PR #4461670 - Making thread_data test more realistic

• PR #4460671 - Suppress MPI warnings in version.cpp

• PR #4459672 - Make sure pkgconfig applications link with hpx_init

• PR #4458673 - Added example demonstrating how to create and use a wrapping executor

• PR #4457674 - Fixing execution of thread exit functions

• PR #4456675 - Move backtrace files to debugging module

653 https://github.com/STEllAR-GROUP/hpx/pull/4492
654 https://github.com/STEllAR-GROUP/hpx/pull/4491
655 https://github.com/STEllAR-GROUP/hpx/pull/4490
656 https://github.com/STEllAR-GROUP/hpx/pull/4487
657 https://github.com/STEllAR-GROUP/hpx/pull/4486
658 https://github.com/STEllAR-GROUP/hpx/pull/4485
659 https://github.com/STEllAR-GROUP/hpx/pull/4483
660 https://github.com/STEllAR-GROUP/hpx/pull/4481
661 https://github.com/STEllAR-GROUP/hpx/pull/4479
662 https://github.com/STEllAR-GROUP/hpx/pull/4478
663 https://github.com/STEllAR-GROUP/hpx/pull/4475
664 https://github.com/STEllAR-GROUP/hpx/pull/4474
665 https://github.com/STEllAR-GROUP/hpx/pull/4472
666 https://github.com/STEllAR-GROUP/hpx/pull/4467
667 https://github.com/STEllAR-GROUP/hpx/pull/4465
668 https://github.com/STEllAR-GROUP/hpx/pull/4464
669 https://github.com/STEllAR-GROUP/hpx/pull/4462
670 https://github.com/STEllAR-GROUP/hpx/pull/4461
671 https://github.com/STEllAR-GROUP/hpx/pull/4460
672 https://github.com/STEllAR-GROUP/hpx/pull/4459
673 https://github.com/STEllAR-GROUP/hpx/pull/4458
674 https://github.com/STEllAR-GROUP/hpx/pull/4457
675 https://github.com/STEllAR-GROUP/hpx/pull/4456

2.11. Releases 1241

https://github.com/STEllAR-GROUP/hpx/pull/4492
https://github.com/STEllAR-GROUP/hpx/pull/4491
https://github.com/STEllAR-GROUP/hpx/pull/4490
https://github.com/STEllAR-GROUP/hpx/pull/4487
https://github.com/STEllAR-GROUP/hpx/pull/4486
https://github.com/STEllAR-GROUP/hpx/pull/4485
https://github.com/STEllAR-GROUP/hpx/pull/4483
https://github.com/STEllAR-GROUP/hpx/pull/4481
https://github.com/STEllAR-GROUP/hpx/pull/4479
https://github.com/STEllAR-GROUP/hpx/pull/4478
https://github.com/STEllAR-GROUP/hpx/pull/4475
https://github.com/STEllAR-GROUP/hpx/pull/4474
https://github.com/STEllAR-GROUP/hpx/pull/4472
https://github.com/STEllAR-GROUP/hpx/pull/4467
https://github.com/STEllAR-GROUP/hpx/pull/4465
https://github.com/STEllAR-GROUP/hpx/pull/4464
https://github.com/STEllAR-GROUP/hpx/pull/4462
https://github.com/STEllAR-GROUP/hpx/pull/4461
https://github.com/STEllAR-GROUP/hpx/pull/4460
https://github.com/STEllAR-GROUP/hpx/pull/4459
https://github.com/STEllAR-GROUP/hpx/pull/4458
https://github.com/STEllAR-GROUP/hpx/pull/4457
https://github.com/STEllAR-GROUP/hpx/pull/4456

HPX Documentation, 1.5.1

• PR #4455676 - Move deadlock_detection and maintain_queue_wait_times source files into schedulers module

• PR #4450677 - Fixing compilation with std::filesystem enabled

• PR #4449678 - Fixing build system to actually build variant test

• PR #4447679 - This fixes an obsolete #include

• PR #4446680 - Resume tasks where they were suspended

• PR #4444681 - Minor CUDA fixes

• PR #4443682 - Add missing tests to CircleCI config

• PR #4442683 - Adding a tag to all auto-generated files allowing for tools to visually distinguish those

• PR #4441684 - Adding performance counter type information

• PR #4440685 - Fixing MSVC build

• PR #4439686 - Link HPX::plugin and component privately in hpx_setup_target

• PR #4437687 - Adding a test that verifies the problem can be solved using a trait specialization

• PR #4434688 - Clean up Boost dependencies and copy string algorithms to new module

• PR #4433689 - Fixing compilation issues (!) if MPI parcelport is enabled

• PR #4431690 - Ignore warnings about name mangling changing

• PR #4430691 - Add performance_counters module

• PR #4428692 - Don’t add compatibility headers to module API reference

• PR #4426693 - Add currently failing tests on GitHub actions to blacklist

• PR #4425694 - Clean up and correct minimum required versions

• PR #4424695 - Making sure hpx.lock_detection=0 works as advertized

• PR #4421696 - Making sure interval time stops underlying timer thread on termination

• PR #4417697 - Adding serialization support for std::variant (if available) and std::tuple

• PR #4415698 - Partially reverting changes applied by PR 4373

676 https://github.com/STEllAR-GROUP/hpx/pull/4455
677 https://github.com/STEllAR-GROUP/hpx/pull/4450
678 https://github.com/STEllAR-GROUP/hpx/pull/4449
679 https://github.com/STEllAR-GROUP/hpx/pull/4447
680 https://github.com/STEllAR-GROUP/hpx/pull/4446
681 https://github.com/STEllAR-GROUP/hpx/pull/4444
682 https://github.com/STEllAR-GROUP/hpx/pull/4443
683 https://github.com/STEllAR-GROUP/hpx/pull/4442
684 https://github.com/STEllAR-GROUP/hpx/pull/4441
685 https://github.com/STEllAR-GROUP/hpx/pull/4440
686 https://github.com/STEllAR-GROUP/hpx/pull/4439
687 https://github.com/STEllAR-GROUP/hpx/pull/4437
688 https://github.com/STEllAR-GROUP/hpx/pull/4434
689 https://github.com/STEllAR-GROUP/hpx/pull/4433
690 https://github.com/STEllAR-GROUP/hpx/pull/4431
691 https://github.com/STEllAR-GROUP/hpx/pull/4430
692 https://github.com/STEllAR-GROUP/hpx/pull/4428
693 https://github.com/STEllAR-GROUP/hpx/pull/4426
694 https://github.com/STEllAR-GROUP/hpx/pull/4425
695 https://github.com/STEllAR-GROUP/hpx/pull/4424
696 https://github.com/STEllAR-GROUP/hpx/pull/4421
697 https://github.com/STEllAR-GROUP/hpx/pull/4417
698 https://github.com/STEllAR-GROUP/hpx/pull/4415

1242 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4455
https://github.com/STEllAR-GROUP/hpx/pull/4450
https://github.com/STEllAR-GROUP/hpx/pull/4449
https://github.com/STEllAR-GROUP/hpx/pull/4447
https://github.com/STEllAR-GROUP/hpx/pull/4446
https://github.com/STEllAR-GROUP/hpx/pull/4444
https://github.com/STEllAR-GROUP/hpx/pull/4443
https://github.com/STEllAR-GROUP/hpx/pull/4442
https://github.com/STEllAR-GROUP/hpx/pull/4441
https://github.com/STEllAR-GROUP/hpx/pull/4440
https://github.com/STEllAR-GROUP/hpx/pull/4439
https://github.com/STEllAR-GROUP/hpx/pull/4437
https://github.com/STEllAR-GROUP/hpx/pull/4434
https://github.com/STEllAR-GROUP/hpx/pull/4433
https://github.com/STEllAR-GROUP/hpx/pull/4431
https://github.com/STEllAR-GROUP/hpx/pull/4430
https://github.com/STEllAR-GROUP/hpx/pull/4428
https://github.com/STEllAR-GROUP/hpx/pull/4426
https://github.com/STEllAR-GROUP/hpx/pull/4425
https://github.com/STEllAR-GROUP/hpx/pull/4424
https://github.com/STEllAR-GROUP/hpx/pull/4421
https://github.com/STEllAR-GROUP/hpx/pull/4417
https://github.com/STEllAR-GROUP/hpx/pull/4415

HPX Documentation, 1.5.1

• PR #4414699 - Added documentation for the compiler-wrapper script hpxcxx.in in creating_hpx_projects.rst

• PR #4413700 - Merging from V1.4.1 release

• PR #4412701 - Making sure to issue a warning if a file specified using –hpx:options-file is not found

• PR #4411702 - Make test specific to HPX_WITH_SHARED_PRIORITY_SCHEDULER

• PR #4407703 - Adding minimal MPI executor

• PR #4405704 - Fix cross pool injection test, use default scheduler as falback

• PR #4404705 - Fix a race condition and clean-up usage of scheduler mode

• PR #4399706 - Add more threading modules

• PR #4398707 - Add CODEOWNERS file

• PR #4395708 - Adding a parameter to auto_chunk_size allowing to control the amount of iterations to measure

• PR #4393709 - Use appropriate cache-line size defaults for different platforms

• PR #4391710 - Fixing use of allocator for C++20

• PR #4390711 - Making –hpx:help behavior consistent

• PR #4388712 - Change the resource partitioner initialization

• PR #4387713 - Fix roll_release.sh

• PR #4386714 - Add warning messages for using thread binding options on macOS

• PR #4385715 - Cuda futures

• PR #4384716 - Make enabling dynamic hpx_main on non-Linux systems a configuration error

• PR #4383717 - Use configure_file for HPXCacheVariables.cmake

• PR #4382718 - Update spellchecking whitelist and fix more typos

• PR #4380719 - Add a helper function to get a future from a cuda stream

• PR #4379720 - Add Windows and macOS CI with GitHub actions

• PR #4378721 - Change C++ standard handling

699 https://github.com/STEllAR-GROUP/hpx/pull/4414
700 https://github.com/STEllAR-GROUP/hpx/pull/4413
701 https://github.com/STEllAR-GROUP/hpx/pull/4412
702 https://github.com/STEllAR-GROUP/hpx/pull/4411
703 https://github.com/STEllAR-GROUP/hpx/pull/4407
704 https://github.com/STEllAR-GROUP/hpx/pull/4405
705 https://github.com/STEllAR-GROUP/hpx/pull/4404
706 https://github.com/STEllAR-GROUP/hpx/pull/4399
707 https://github.com/STEllAR-GROUP/hpx/pull/4398
708 https://github.com/STEllAR-GROUP/hpx/pull/4395
709 https://github.com/STEllAR-GROUP/hpx/pull/4393
710 https://github.com/STEllAR-GROUP/hpx/pull/4391
711 https://github.com/STEllAR-GROUP/hpx/pull/4390
712 https://github.com/STEllAR-GROUP/hpx/pull/4388
713 https://github.com/STEllAR-GROUP/hpx/pull/4387
714 https://github.com/STEllAR-GROUP/hpx/pull/4386
715 https://github.com/STEllAR-GROUP/hpx/pull/4385
716 https://github.com/STEllAR-GROUP/hpx/pull/4384
717 https://github.com/STEllAR-GROUP/hpx/pull/4383
718 https://github.com/STEllAR-GROUP/hpx/pull/4382
719 https://github.com/STEllAR-GROUP/hpx/pull/4380
720 https://github.com/STEllAR-GROUP/hpx/pull/4379
721 https://github.com/STEllAR-GROUP/hpx/pull/4378

2.11. Releases 1243

https://github.com/STEllAR-GROUP/hpx/pull/4414
https://github.com/STEllAR-GROUP/hpx/pull/4413
https://github.com/STEllAR-GROUP/hpx/pull/4412
https://github.com/STEllAR-GROUP/hpx/pull/4411
https://github.com/STEllAR-GROUP/hpx/pull/4407
https://github.com/STEllAR-GROUP/hpx/pull/4405
https://github.com/STEllAR-GROUP/hpx/pull/4404
https://github.com/STEllAR-GROUP/hpx/pull/4399
https://github.com/STEllAR-GROUP/hpx/pull/4398
https://github.com/STEllAR-GROUP/hpx/pull/4395
https://github.com/STEllAR-GROUP/hpx/pull/4393
https://github.com/STEllAR-GROUP/hpx/pull/4391
https://github.com/STEllAR-GROUP/hpx/pull/4390
https://github.com/STEllAR-GROUP/hpx/pull/4388
https://github.com/STEllAR-GROUP/hpx/pull/4387
https://github.com/STEllAR-GROUP/hpx/pull/4386
https://github.com/STEllAR-GROUP/hpx/pull/4385
https://github.com/STEllAR-GROUP/hpx/pull/4384
https://github.com/STEllAR-GROUP/hpx/pull/4383
https://github.com/STEllAR-GROUP/hpx/pull/4382
https://github.com/STEllAR-GROUP/hpx/pull/4380
https://github.com/STEllAR-GROUP/hpx/pull/4379
https://github.com/STEllAR-GROUP/hpx/pull/4378

HPX Documentation, 1.5.1

• PR #4377722 - Remove Python scripts

• PR #4374723 - Adding overload for hpx::init/hpx::start for use with resource partitioner

• PR #4373724 - Adding test that verifies for 4369 to be fixed

• PR #4372725 - Another attempt at fixing the integral mismatch and conversion warnings

• PR #4370726 - Doc updates quick start

• PR #4368727 - Add a whitelist of words for weird spelling suggestions

• PR #4366728 - Suppress or fix clang-tidy-9 warnings

• PR #4365729 - Removing more Boost dependencies

• PR #4363730 - Update clang-format config file for version 9

• PR #4362731 - Fix indices typo

• PR #4361732 - Boost cleanup

• PR #4360733 - Move plugins

• PR #4358734 - Doc updates; generating documentation. Will likely need heavy editing.

• PR #4356735 - Remove some minor unused and unnecessary Boost includes

• PR #4355736 - Fix spellcheck step in CircleCI config

• PR #4354737 - Lightweight utility to hold a pack as members

• PR #4352738 - Minor fixes to the C++ standard detection for MSVC

• PR #4351739 - Move generated documentation to hpx-docs repo

• PR #4347740 - Add cmake policy - CMP0074

• PR #4346741 - Remove file committed by mistake

• PR #4342742 - Remove HCC and SYCL options from CMakeLists.txt

• PR #4341743 - Fix launch process test with APEX enabled

• PR #4340744 - Testing Cirrus CI

722 https://github.com/STEllAR-GROUP/hpx/pull/4377
723 https://github.com/STEllAR-GROUP/hpx/pull/4374
724 https://github.com/STEllAR-GROUP/hpx/pull/4373
725 https://github.com/STEllAR-GROUP/hpx/pull/4372
726 https://github.com/STEllAR-GROUP/hpx/pull/4370
727 https://github.com/STEllAR-GROUP/hpx/pull/4368
728 https://github.com/STEllAR-GROUP/hpx/pull/4366
729 https://github.com/STEllAR-GROUP/hpx/pull/4365
730 https://github.com/STEllAR-GROUP/hpx/pull/4363
731 https://github.com/STEllAR-GROUP/hpx/pull/4362
732 https://github.com/STEllAR-GROUP/hpx/pull/4361
733 https://github.com/STEllAR-GROUP/hpx/pull/4360
734 https://github.com/STEllAR-GROUP/hpx/pull/4358
735 https://github.com/STEllAR-GROUP/hpx/pull/4356
736 https://github.com/STEllAR-GROUP/hpx/pull/4355
737 https://github.com/STEllAR-GROUP/hpx/pull/4354
738 https://github.com/STEllAR-GROUP/hpx/pull/4352
739 https://github.com/STEllAR-GROUP/hpx/pull/4351
740 https://github.com/STEllAR-GROUP/hpx/pull/4347
741 https://github.com/STEllAR-GROUP/hpx/pull/4346
742 https://github.com/STEllAR-GROUP/hpx/pull/4342
743 https://github.com/STEllAR-GROUP/hpx/pull/4341
744 https://github.com/STEllAR-GROUP/hpx/pull/4340

1244 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4377
https://github.com/STEllAR-GROUP/hpx/pull/4374
https://github.com/STEllAR-GROUP/hpx/pull/4373
https://github.com/STEllAR-GROUP/hpx/pull/4372
https://github.com/STEllAR-GROUP/hpx/pull/4370
https://github.com/STEllAR-GROUP/hpx/pull/4368
https://github.com/STEllAR-GROUP/hpx/pull/4366
https://github.com/STEllAR-GROUP/hpx/pull/4365
https://github.com/STEllAR-GROUP/hpx/pull/4363
https://github.com/STEllAR-GROUP/hpx/pull/4362
https://github.com/STEllAR-GROUP/hpx/pull/4361
https://github.com/STEllAR-GROUP/hpx/pull/4360
https://github.com/STEllAR-GROUP/hpx/pull/4358
https://github.com/STEllAR-GROUP/hpx/pull/4356
https://github.com/STEllAR-GROUP/hpx/pull/4355
https://github.com/STEllAR-GROUP/hpx/pull/4354
https://github.com/STEllAR-GROUP/hpx/pull/4352
https://github.com/STEllAR-GROUP/hpx/pull/4351
https://github.com/STEllAR-GROUP/hpx/pull/4347
https://github.com/STEllAR-GROUP/hpx/pull/4346
https://github.com/STEllAR-GROUP/hpx/pull/4342
https://github.com/STEllAR-GROUP/hpx/pull/4341
https://github.com/STEllAR-GROUP/hpx/pull/4340

HPX Documentation, 1.5.1

• PR #4339745 - Post 1.4.0 updates

• PR #4338746 - Spelling corrections and CircleCI spell check

• PR #4333747 - Flatten bound callables

• PR #4332748 - This is a collection of mostly minor (cleanup) fixes

• PR #4331749 - This adds the missing tests for async_colocated and async_continue_colocated

• PR #4330750 - Remove HPX.Compute host default_executor

• PR #4328751 - Generate global header for basic_execution module

• PR #4327752 - Use INTERNAL_FLAGS option for all examples and components

• PR #4326753 - Usage of temporary allocator in assignment operator of compute::vector

• PR #4325754 - Use hpx::threads::get_cache_line_size in prefetching.hpp

• PR #4324755 - Enable compatibility headers option for execution module

• PR #4316756 - Add clang format indentppdirectives

• PR #4313757 - Introduce index_pack alias to pack of size_t

• PR #4312758 - Fixing compatibility header for pack.hpp

• PR #4311759 - Dataflow annotations for APEX

• PR #4309760 - Update launching_and_configuring_hpx_applications.rst

• PR #4306761 - Fix schedule hint not being taken from executor

• PR #4305762 - Implementing hpx::functional::tag_invoke

• PR #4304763 - Improve pack support utilities

• PR #4303764 - Remove errors module dependency on datastructures

• PR #4301765 - Clean up thread executors

• PR #4294766 - Logging revamp

• PR #4292767 - Remove SPDX tag from Boost License file to allow for github to recognize it

745 https://github.com/STEllAR-GROUP/hpx/pull/4339
746 https://github.com/STEllAR-GROUP/hpx/pull/4338
747 https://github.com/STEllAR-GROUP/hpx/pull/4333
748 https://github.com/STEllAR-GROUP/hpx/pull/4332
749 https://github.com/STEllAR-GROUP/hpx/pull/4331
750 https://github.com/STEllAR-GROUP/hpx/pull/4330
751 https://github.com/STEllAR-GROUP/hpx/pull/4328
752 https://github.com/STEllAR-GROUP/hpx/pull/4327
753 https://github.com/STEllAR-GROUP/hpx/pull/4326
754 https://github.com/STEllAR-GROUP/hpx/pull/4325
755 https://github.com/STEllAR-GROUP/hpx/pull/4324
756 https://github.com/STEllAR-GROUP/hpx/pull/4316
757 https://github.com/STEllAR-GROUP/hpx/pull/4313
758 https://github.com/STEllAR-GROUP/hpx/pull/4312
759 https://github.com/STEllAR-GROUP/hpx/pull/4311
760 https://github.com/STEllAR-GROUP/hpx/pull/4309
761 https://github.com/STEllAR-GROUP/hpx/pull/4306
762 https://github.com/STEllAR-GROUP/hpx/pull/4305
763 https://github.com/STEllAR-GROUP/hpx/pull/4304
764 https://github.com/STEllAR-GROUP/hpx/pull/4303
765 https://github.com/STEllAR-GROUP/hpx/pull/4301
766 https://github.com/STEllAR-GROUP/hpx/pull/4294
767 https://github.com/STEllAR-GROUP/hpx/pull/4292

2.11. Releases 1245

https://github.com/STEllAR-GROUP/hpx/pull/4339
https://github.com/STEllAR-GROUP/hpx/pull/4338
https://github.com/STEllAR-GROUP/hpx/pull/4333
https://github.com/STEllAR-GROUP/hpx/pull/4332
https://github.com/STEllAR-GROUP/hpx/pull/4331
https://github.com/STEllAR-GROUP/hpx/pull/4330
https://github.com/STEllAR-GROUP/hpx/pull/4328
https://github.com/STEllAR-GROUP/hpx/pull/4327
https://github.com/STEllAR-GROUP/hpx/pull/4326
https://github.com/STEllAR-GROUP/hpx/pull/4325
https://github.com/STEllAR-GROUP/hpx/pull/4324
https://github.com/STEllAR-GROUP/hpx/pull/4316
https://github.com/STEllAR-GROUP/hpx/pull/4313
https://github.com/STEllAR-GROUP/hpx/pull/4312
https://github.com/STEllAR-GROUP/hpx/pull/4311
https://github.com/STEllAR-GROUP/hpx/pull/4309
https://github.com/STEllAR-GROUP/hpx/pull/4306
https://github.com/STEllAR-GROUP/hpx/pull/4305
https://github.com/STEllAR-GROUP/hpx/pull/4304
https://github.com/STEllAR-GROUP/hpx/pull/4303
https://github.com/STEllAR-GROUP/hpx/pull/4301
https://github.com/STEllAR-GROUP/hpx/pull/4294
https://github.com/STEllAR-GROUP/hpx/pull/4292

HPX Documentation, 1.5.1

• PR #4291768 - Add format support for std::tm

• PR #4290769 - Simplify compatible tuples check

• PR #4288770 - A lightweight take on boost::lexical_cast

• PR #4287771 - Forking boost::lexical_cast as a new module

• PR #4277772 - MPI_futures

• PR #4270773 - Refactor future implementation

• PR #4265774 - Threading module

• PR #4259775 - Module naming base

• PR #4251776 - Local workrequesting scheduler

• PR #4250777 - Inline execution of scoped tasks, if possible

• PR #4247778 - Add execution in module headers

• PR #4246779 - Expose CMake targets officially

• PR #4239780 - Doc updates miscellaneous (partially completed during Google Season of Docs)

• PR #4233781 - Remove project() from modules + fix CMAKE_SOURCE_DIR issue

• PR #4231782 - Module local lcos

• PR #4207783 - Command line handling module

• PR #4206784 - Runtime configuration module

• PR #4141785 - Doc updates examples local to remote (partially completed during Google Season of Docs)

• PR #4091786 - Split runtime into local and distributed parts

• PR #4017787 - Require C++14

768 https://github.com/STEllAR-GROUP/hpx/pull/4291
769 https://github.com/STEllAR-GROUP/hpx/pull/4290
770 https://github.com/STEllAR-GROUP/hpx/pull/4288
771 https://github.com/STEllAR-GROUP/hpx/pull/4287
772 https://github.com/STEllAR-GROUP/hpx/pull/4277
773 https://github.com/STEllAR-GROUP/hpx/pull/4270
774 https://github.com/STEllAR-GROUP/hpx/pull/4265
775 https://github.com/STEllAR-GROUP/hpx/pull/4259
776 https://github.com/STEllAR-GROUP/hpx/pull/4251
777 https://github.com/STEllAR-GROUP/hpx/pull/4250
778 https://github.com/STEllAR-GROUP/hpx/pull/4247
779 https://github.com/STEllAR-GROUP/hpx/pull/4246
780 https://github.com/STEllAR-GROUP/hpx/pull/4239
781 https://github.com/STEllAR-GROUP/hpx/pull/4233
782 https://github.com/STEllAR-GROUP/hpx/pull/4231
783 https://github.com/STEllAR-GROUP/hpx/pull/4207
784 https://github.com/STEllAR-GROUP/hpx/pull/4206
785 https://github.com/STEllAR-GROUP/hpx/pull/4141
786 https://github.com/STEllAR-GROUP/hpx/pull/4091
787 https://github.com/STEllAR-GROUP/hpx/pull/4017

1246 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4291
https://github.com/STEllAR-GROUP/hpx/pull/4290
https://github.com/STEllAR-GROUP/hpx/pull/4288
https://github.com/STEllAR-GROUP/hpx/pull/4287
https://github.com/STEllAR-GROUP/hpx/pull/4277
https://github.com/STEllAR-GROUP/hpx/pull/4270
https://github.com/STEllAR-GROUP/hpx/pull/4265
https://github.com/STEllAR-GROUP/hpx/pull/4259
https://github.com/STEllAR-GROUP/hpx/pull/4251
https://github.com/STEllAR-GROUP/hpx/pull/4250
https://github.com/STEllAR-GROUP/hpx/pull/4247
https://github.com/STEllAR-GROUP/hpx/pull/4246
https://github.com/STEllAR-GROUP/hpx/pull/4239
https://github.com/STEllAR-GROUP/hpx/pull/4233
https://github.com/STEllAR-GROUP/hpx/pull/4231
https://github.com/STEllAR-GROUP/hpx/pull/4207
https://github.com/STEllAR-GROUP/hpx/pull/4206
https://github.com/STEllAR-GROUP/hpx/pull/4141
https://github.com/STEllAR-GROUP/hpx/pull/4091
https://github.com/STEllAR-GROUP/hpx/pull/4017

HPX Documentation, 1.5.1

2.11.3 HPX V1.4.1 (Feb 12, 2020)

General changes

This is a bugfix release. It contains the following changes:

• Fix compilation issues on Windows, macOS, FreeBSD, and with gcc 10

• Install missing pdb files on Windows

• Allow running tests using an installed version of HPX

• Skip MPI finalization if HPX has not initialized MPI

• Give a hard error when attempting to use IO counters on Windows

Closed issues

• Issue #4320788 - HPX 1.4.0 does not compile with gcc 10

• Issue #4336789 - Building HPX 1.4.0 with IO Counters breaks (Windows)

• Issue #4334790 - HPX Debug and RelWithDebinfo builds on Windows not installing .pdb files

• Issue #4322791 - Undefine VT1 and VT2 after boost includes

• Issue #4314792 - Compile error on 1.4.0

• Issue #4307793 - ld: error: duplicate symbol: freebsd_environ

Closed pull requests

• PR #4376794 - Attempt to fix some test build errors on Windows

• PR #4357795 - Adding missing #includes to fix gcc V10 linker problems

• PR #4353796 - Skip MPI_Finalize if MPI_Init is not called from HPX

• PR #4343797 - Give a hard error if IO counters are enabled on non-Linux systems

• PR #4337798 - Installing pdb files on Windows

• PR #4335799 - Adding capability to buildsystem to use an installed version of HPX

• PR #4315800 - Forcing exported symbols from composable_guard to be linked into core library

• PR #4310801 - Remove environment handling from exception.cpp

788 https://github.com/STEllAR-GROUP/hpx/issues/4320
789 https://github.com/STEllAR-GROUP/hpx/issues/4336
790 https://github.com/STEllAR-GROUP/hpx/issues/4334
791 https://github.com/STEllAR-GROUP/hpx/issues/4322
792 https://github.com/STEllAR-GROUP/hpx/issues/4314
793 https://github.com/STEllAR-GROUP/hpx/issues/4307
794 https://github.com/STEllAR-GROUP/hpx/pull/4376
795 https://github.com/STEllAR-GROUP/hpx/pull/4357
796 https://github.com/STEllAR-GROUP/hpx/pull/4353
797 https://github.com/STEllAR-GROUP/hpx/pull/4343
798 https://github.com/STEllAR-GROUP/hpx/pull/4337
799 https://github.com/STEllAR-GROUP/hpx/pull/4335
800 https://github.com/STEllAR-GROUP/hpx/pull/4315
801 https://github.com/STEllAR-GROUP/hpx/pull/4310

2.11. Releases 1247

https://github.com/STEllAR-GROUP/hpx/issues/4320
https://github.com/STEllAR-GROUP/hpx/issues/4336
https://github.com/STEllAR-GROUP/hpx/issues/4334
https://github.com/STEllAR-GROUP/hpx/issues/4322
https://github.com/STEllAR-GROUP/hpx/issues/4314
https://github.com/STEllAR-GROUP/hpx/issues/4307
https://github.com/STEllAR-GROUP/hpx/pull/4376
https://github.com/STEllAR-GROUP/hpx/pull/4357
https://github.com/STEllAR-GROUP/hpx/pull/4353
https://github.com/STEllAR-GROUP/hpx/pull/4343
https://github.com/STEllAR-GROUP/hpx/pull/4337
https://github.com/STEllAR-GROUP/hpx/pull/4335
https://github.com/STEllAR-GROUP/hpx/pull/4315
https://github.com/STEllAR-GROUP/hpx/pull/4310

HPX Documentation, 1.5.1

2.11.4 HPX V1.4.0 (January 15, 2020)

General changes

• We have added the collectives all_to_all and all_reduce.

• We have added APIs for resiliency, which allows replication and replay for failed tasks. See the documentation
for more details.

• Components can now be checkpointed.

• Performance improvements to schedulers and coroutines. A significant change is the addition of stackless
coroutines. These are to be used for tasks that do not need to be suspended and can reduce overheads
noticeably in applications with short tasks. A stackless coroutine can be created with the new stack size
thread_stacksize_nostack.

• We have added an implementation of unique_any, which is a non-copyable version of any.

• The shared_priority_queue_scheduler has been improved. It now has lower overheads than the
default scheduler in many situations. Unlike the default scheduler it fully supports NUMA scheduling hints.
Enable it with the command line option --hpx:queuing=shared-priority. This scheduler should still
be considered experimental, but its use is encouraged in real applications to help us make it production ready.

• We have added the performance counters background-receive-duration and
background-receive-overhead for inspecting the time and overhead spent on receiving parcels
in the background.

• Compilation time has been further improved when HPX_WITH_NETWORKING=OFF.

• We no longer require compiled Boost dependencies in certain configurations. This re-
quires at least Boost 1.70, compiling on x86 with GCC 9, clang (libc++) 9, or VS2019
in C++17 mode. The dependency on Boost.Filesystem can explicitly be turned on with
HPX_FILESYSTEM_WITH_BOOST_FILESYSTEM_COMPATIBILITY=ON (it is off by default
if the standard library supports std::filesystem). Boost.ProgramOptions has been copied
into the HPX repository. We have a compatibility layer for users who must explicitly use
Boost.ProgramOptions instead of the ProgramOptions provided by HPX. To remove the dependency
HPX_PROGRAM_OPTIONS_WITH_BOOST_PROGRAM_OPTIONS_COMPATIBILITY must be explicitly
set to OFF. This option will be removed in a future release. We have also removed several other header-only
dependencies on Boost.

• It is now possible to use the process affinity mask set by tools like numactl and various batch en-
vironments with the command line option --hpx:use-process-mask. Enabling this option implies
--hpx:ignore-batch-env .

• It is now possible to create standalone thread pools without starting the runtime. See the
standalone_thread_pool_executor.cpp test in the execution module for an example.

• Tasks annotated with hpx::util::annotated_function now have their correct name when using
APEX to generate OTF2 files.

• Cloning of APEX was defective in previous releases (it required manual intervention to check out the correct
tag or branch). This has been fixed.

• The option HPX_WITH_MORE_THAN_64_THREADS is now ignored and will be removed in a future release.
The value is instead derived directly from HPX_WITH_MAX_CPU_COUNT option.

• We have deprecated compiling in C++11 mode. The next release will require a C++14 capable compiler.

• We have deprecated support for the Vc library. This option will be replaced with SIMD support from the
standard library in a future release.

1248 Chapter 2. What’s so special about HPX?

HPX Documentation, 1.5.1

• We have significantly refactored our CMake setup. This is intended to be a non-breaking change and will allow
for using HPX through CMake targets in the future.

• We have continued modularizing the HPX library. In the process we have rearranged many header files into
module-specific directories. All moved headers have compatibility headers which forward from the old location
to the new location, together with a deprecation warning. The compatibility headers will eventually be removed.

• We now enforce formatting with clang-format on the majority of our source files.

• We have added SPDX license tags to all files.

• Many bugfixes.

Breaking changes

• The HPX_WITH_THREAD_COMPATIBILITY option and the associated compatibility layer has been removed.

• The HPX_WITH_INCLUSIVE_SCAN_COMPATIBILITY option and the associated compatibility layer has
been removed.

• The HPX_WITH_UNWRAPPED_COMPATIBLITY option and the associated compatibility layer has been re-
moved.

Closed issues

• Issue #4282802 - Build Issues with Release on Windows

• Issue #4278803 - Build Issues with CMake 3.14.4

• Issue #4273804 - Clients of HPX 1.4.0-rc2 with APEX ar not linked to libhpx-apex

• Issue #4269805 - Building HPX 1.4.0-rc2 with support for APEX fails

• Issue #4263806 - Compilation fail on latest master

• Issue #4232807 - Configure of HPX project using CMake FetchContent fails

• Issue #4223808 - “Re-using the main() function as the main HPX entry point” doesn’t work

• Issue #4220809 - HPX won’t compile - error building resource_partitioner

• Issue #4215810 - HPX 1.4.0rc1 does not link on s390x

• Issue #4204811 - Trouble compiling HPX with Intel compiler

• Issue #4199812 - Refactor APEX to eliminate circular dependency

• Issue #4187813 - HPX can’t build on OSX

• Issue #4185814 - Simple debug output for development

802 https://github.com/STEllAR-GROUP/hpx/issues/4282
803 https://github.com/STEllAR-GROUP/hpx/issues/4278
804 https://github.com/STEllAR-GROUP/hpx/issues/4273
805 https://github.com/STEllAR-GROUP/hpx/issues/4269
806 https://github.com/STEllAR-GROUP/hpx/issues/4263
807 https://github.com/STEllAR-GROUP/hpx/issues/4232
808 https://github.com/STEllAR-GROUP/hpx/issues/4223
809 https://github.com/STEllAR-GROUP/hpx/issues/4220
810 https://github.com/STEllAR-GROUP/hpx/issues/4215
811 https://github.com/STEllAR-GROUP/hpx/issues/4204
812 https://github.com/STEllAR-GROUP/hpx/issues/4199
813 https://github.com/STEllAR-GROUP/hpx/issues/4187
814 https://github.com/STEllAR-GROUP/hpx/issues/4185

2.11. Releases 1249

https://github.com/STEllAR-GROUP/hpx/issues/4282
https://github.com/STEllAR-GROUP/hpx/issues/4278
https://github.com/STEllAR-GROUP/hpx/issues/4273
https://github.com/STEllAR-GROUP/hpx/issues/4269
https://github.com/STEllAR-GROUP/hpx/issues/4263
https://github.com/STEllAR-GROUP/hpx/issues/4232
https://github.com/STEllAR-GROUP/hpx/issues/4223
https://github.com/STEllAR-GROUP/hpx/issues/4220
https://github.com/STEllAR-GROUP/hpx/issues/4215
https://github.com/STEllAR-GROUP/hpx/issues/4204
https://github.com/STEllAR-GROUP/hpx/issues/4199
https://github.com/STEllAR-GROUP/hpx/issues/4187
https://github.com/STEllAR-GROUP/hpx/issues/4185

HPX Documentation, 1.5.1

• Issue #4182815 - @HPX_CONF_PREFIX@ is the empty string

• Issue #4169816 - HPX won’t build with APEX

• Issue #4163817 - Add back HPX_LIBRARIES and HPX_INCLUDE_DIRS

• Issue #4161818 - It should be possible to call find_package(HPX) multiple times

• Issue #4155819 - get_self_id() for stackless threads returns invalid_thread_id

• Issue #4151820 - build error with MPI code

• Issue #4150821 - hpx won’t build on POWER9 with clang 8

• Issue #4148822 - cacheline_data delivers poor performance with C++17 compared to C++14

• Issue #4144823 - target general in HPX_LIBRARIES does not exist

• Issue #4134824 - CMake Error when -DHPX_WITH_HPXMP=ON

• Issue #4132825 - parallel fill leaves elements unfilled

• Issue #4123826 - PAPI performance counters are inaccessible

• Issue #4118827 - static_chunk_size is not obeyed in scan algorithms

• Issue #4115828 - dependency chaining error with APEX

• Issue #4107829 - Initializing runtime without entry point function and command line arguments

• Issue #4105830 - Bug in hpx:bind=numa-balanced

• Issue #4101831 - Bound tasks

• Issue #4100832 - Add SPDX identifier to all files

• Issue #4085833 - hpx_topology library should depend on hwloc

• Issue #4067834 - HPX fails to build on macOS

• Issue #4056835 - Building without thread manager idle backoff fails

• Issue #4052836 - Enforce clang-format style for modules

• Issue #4032837 - Simple hello world fails to launch correctly

815 https://github.com/STEllAR-GROUP/hpx/issues/4182
816 https://github.com/STEllAR-GROUP/hpx/issues/4169
817 https://github.com/STEllAR-GROUP/hpx/issues/4163
818 https://github.com/STEllAR-GROUP/hpx/issues/4161
819 https://github.com/STEllAR-GROUP/hpx/issues/4155
820 https://github.com/STEllAR-GROUP/hpx/issues/4151
821 https://github.com/STEllAR-GROUP/hpx/issues/4150
822 https://github.com/STEllAR-GROUP/hpx/issues/4148
823 https://github.com/STEllAR-GROUP/hpx/issues/4144
824 https://github.com/STEllAR-GROUP/hpx/issues/4134
825 https://github.com/STEllAR-GROUP/hpx/issues/4132
826 https://github.com/STEllAR-GROUP/hpx/issues/4123
827 https://github.com/STEllAR-GROUP/hpx/issues/4118
828 https://github.com/STEllAR-GROUP/hpx/issues/4115
829 https://github.com/STEllAR-GROUP/hpx/issues/4107
830 https://github.com/STEllAR-GROUP/hpx/issues/4105
831 https://github.com/STEllAR-GROUP/hpx/issues/4101
832 https://github.com/STEllAR-GROUP/hpx/issues/4100
833 https://github.com/STEllAR-GROUP/hpx/issues/4085
834 https://github.com/STEllAR-GROUP/hpx/issues/4067
835 https://github.com/STEllAR-GROUP/hpx/issues/4056
836 https://github.com/STEllAR-GROUP/hpx/issues/4052
837 https://github.com/STEllAR-GROUP/hpx/issues/4032

1250 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/4182
https://github.com/STEllAR-GROUP/hpx/issues/4169
https://github.com/STEllAR-GROUP/hpx/issues/4163
https://github.com/STEllAR-GROUP/hpx/issues/4161
https://github.com/STEllAR-GROUP/hpx/issues/4155
https://github.com/STEllAR-GROUP/hpx/issues/4151
https://github.com/STEllAR-GROUP/hpx/issues/4150
https://github.com/STEllAR-GROUP/hpx/issues/4148
https://github.com/STEllAR-GROUP/hpx/issues/4144
https://github.com/STEllAR-GROUP/hpx/issues/4134
https://github.com/STEllAR-GROUP/hpx/issues/4132
https://github.com/STEllAR-GROUP/hpx/issues/4123
https://github.com/STEllAR-GROUP/hpx/issues/4118
https://github.com/STEllAR-GROUP/hpx/issues/4115
https://github.com/STEllAR-GROUP/hpx/issues/4107
https://github.com/STEllAR-GROUP/hpx/issues/4105
https://github.com/STEllAR-GROUP/hpx/issues/4101
https://github.com/STEllAR-GROUP/hpx/issues/4100
https://github.com/STEllAR-GROUP/hpx/issues/4085
https://github.com/STEllAR-GROUP/hpx/issues/4067
https://github.com/STEllAR-GROUP/hpx/issues/4056
https://github.com/STEllAR-GROUP/hpx/issues/4052
https://github.com/STEllAR-GROUP/hpx/issues/4032

HPX Documentation, 1.5.1

• Issue #4030838 - Allow threads to skip context switching

• Issue #4029839 - Add support for mimalloc

• Issue #4005840 - Can’t link HPX when APEX enabled

• Issue #4002841 - Missing header for algorithm module

• Issue #3989842 - conversion from long to unsigned int requires a narrowing conversion on MSVC

• Issue #3958843 - /statistics/average@ perf counter can’t be created

• Issue #3953844 - CMake errors from HPX_AddPseudoDependencies

• Issue #3941845 - CMake error for APEX install target

• Issue #3940846 - Convert pseudo-doxygen function documentation into actual doxygen documentation

• Issue #3935847 - HPX compiler match too strict?

• Issue #3929848 - Buildbot failures on latest HPX stable

• Issue #3912849 - I recommend publishing a version that does not depend on the boost library

• Issue #3890850 - hpx.ini not working

• Issue #3883851 - cuda compilation fails because of -faligned-new

• Issue #3879852 - HPX fails to configure with -DHPX_WITH_TESTS=OFF

• Issue #3871853 - dataflow does not support void allocators

• Issue #3867854 - Latest HTML docs placed in wrong directory on GitHub pages

• Issue #3866855 - Make sure all tests use HPX_TEST* macros and not HPX_ASSERT

• Issue #3857856 - CMake all-keyword or all-plain for target_link_libraries

• Issue #3856857 - hpx_setup_target adds rogue flags

• Issue #3850858 - HPX fails to build on POWER8 with Clang7

• Issue #3848859 - Remove lva member from thread_init_data

• Issue #3838860 - hpx::parallel::count/count_if failing tests

838 https://github.com/STEllAR-GROUP/hpx/issues/4030
839 https://github.com/STEllAR-GROUP/hpx/issues/4029
840 https://github.com/STEllAR-GROUP/hpx/issues/4005
841 https://github.com/STEllAR-GROUP/hpx/issues/4002
842 https://github.com/STEllAR-GROUP/hpx/issues/3989
843 https://github.com/STEllAR-GROUP/hpx/issues/3958
844 https://github.com/STEllAR-GROUP/hpx/issues/3953
845 https://github.com/STEllAR-GROUP/hpx/issues/3941
846 https://github.com/STEllAR-GROUP/hpx/issues/3940
847 https://github.com/STEllAR-GROUP/hpx/issues/3935
848 https://github.com/STEllAR-GROUP/hpx/issues/3929
849 https://github.com/STEllAR-GROUP/hpx/issues/3912
850 https://github.com/STEllAR-GROUP/hpx/issues/3890
851 https://github.com/STEllAR-GROUP/hpx/issues/3883
852 https://github.com/STEllAR-GROUP/hpx/issues/3879
853 https://github.com/STEllAR-GROUP/hpx/issues/3871
854 https://github.com/STEllAR-GROUP/hpx/issues/3867
855 https://github.com/STEllAR-GROUP/hpx/issues/3866
856 https://github.com/STEllAR-GROUP/hpx/issues/3857
857 https://github.com/STEllAR-GROUP/hpx/issues/3856
858 https://github.com/STEllAR-GROUP/hpx/issues/3850
859 https://github.com/STEllAR-GROUP/hpx/issues/3848
860 https://github.com/STEllAR-GROUP/hpx/issues/3838

2.11. Releases 1251

https://github.com/STEllAR-GROUP/hpx/issues/4030
https://github.com/STEllAR-GROUP/hpx/issues/4029
https://github.com/STEllAR-GROUP/hpx/issues/4005
https://github.com/STEllAR-GROUP/hpx/issues/4002
https://github.com/STEllAR-GROUP/hpx/issues/3989
https://github.com/STEllAR-GROUP/hpx/issues/3958
https://github.com/STEllAR-GROUP/hpx/issues/3953
https://github.com/STEllAR-GROUP/hpx/issues/3941
https://github.com/STEllAR-GROUP/hpx/issues/3940
https://github.com/STEllAR-GROUP/hpx/issues/3935
https://github.com/STEllAR-GROUP/hpx/issues/3929
https://github.com/STEllAR-GROUP/hpx/issues/3912
https://github.com/STEllAR-GROUP/hpx/issues/3890
https://github.com/STEllAR-GROUP/hpx/issues/3883
https://github.com/STEllAR-GROUP/hpx/issues/3879
https://github.com/STEllAR-GROUP/hpx/issues/3871
https://github.com/STEllAR-GROUP/hpx/issues/3867
https://github.com/STEllAR-GROUP/hpx/issues/3866
https://github.com/STEllAR-GROUP/hpx/issues/3857
https://github.com/STEllAR-GROUP/hpx/issues/3856
https://github.com/STEllAR-GROUP/hpx/issues/3850
https://github.com/STEllAR-GROUP/hpx/issues/3848
https://github.com/STEllAR-GROUP/hpx/issues/3838

HPX Documentation, 1.5.1

• Issue #3651861 - hpx::parallel::transform_reduce with non const reference as lambda parameter

• Issue #3560862 - Apex integration with HPX not working properly

• Issue #3322863 - No warning when mixing debug/release builds

Closed pull requests

• PR #4300864 - Checks for MPI_Init being called twice

• PR #4299865 - Small CMake fixes

• PR #4298866 - Remove extra call to annotate function that messes up traces

• PR #4296867 - Fixing collectives locking problem

• PR #4295868 - Do not check LICENSE_1_0.txt for inspect violations

• PR #4293869 - Applying two small changes fixing carious MSVC/Windows problems

• PR #4285870 - Delete apex.hpp

• PR #4276871 - Disable doxygen generation for hpx/debugging/print.hpp file

• PR #4275872 - Make sure APEX is linked to even when not explicitly referenced

• PR #4272873 - Fix pushing of documentation

• PR #4271874 - Updating APEX tag, don’t create new task_wrapper on operator= of hpx_thread object

• PR #4268875 - Testing for noexcept function specializations in C++11/14 mode

• PR #4267876 - Fixing MSVC warning

• PR #4266877 - Make sure macOS Travis CI fails if build step fails

• PR #4264878 - Clean up compatibility header options

• PR #4262879 - Cleanup modules CMakeLists.txt

• PR #4261880 - Fixing HPX/APEX linking and dependencies for external projects like Phylanx

• PR #4260881 - Fix docs compilation problems

• PR #4258882 - Couple of minor changes

861 https://github.com/STEllAR-GROUP/hpx/issues/3651
862 https://github.com/STEllAR-GROUP/hpx/issues/3560
863 https://github.com/STEllAR-GROUP/hpx/issues/3322
864 https://github.com/STEllAR-GROUP/hpx/pull/4300
865 https://github.com/STEllAR-GROUP/hpx/pull/4299
866 https://github.com/STEllAR-GROUP/hpx/pull/4298
867 https://github.com/STEllAR-GROUP/hpx/pull/4296
868 https://github.com/STEllAR-GROUP/hpx/pull/4295
869 https://github.com/STEllAR-GROUP/hpx/pull/4293
870 https://github.com/STEllAR-GROUP/hpx/pull/4285
871 https://github.com/STEllAR-GROUP/hpx/pull/4276
872 https://github.com/STEllAR-GROUP/hpx/pull/4275
873 https://github.com/STEllAR-GROUP/hpx/pull/4272
874 https://github.com/STEllAR-GROUP/hpx/pull/4271
875 https://github.com/STEllAR-GROUP/hpx/pull/4268
876 https://github.com/STEllAR-GROUP/hpx/pull/4267
877 https://github.com/STEllAR-GROUP/hpx/pull/4266
878 https://github.com/STEllAR-GROUP/hpx/pull/4264
879 https://github.com/STEllAR-GROUP/hpx/pull/4262
880 https://github.com/STEllAR-GROUP/hpx/pull/4261
881 https://github.com/STEllAR-GROUP/hpx/pull/4260
882 https://github.com/STEllAR-GROUP/hpx/pull/4258

1252 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3651
https://github.com/STEllAR-GROUP/hpx/issues/3560
https://github.com/STEllAR-GROUP/hpx/issues/3322
https://github.com/STEllAR-GROUP/hpx/pull/4300
https://github.com/STEllAR-GROUP/hpx/pull/4299
https://github.com/STEllAR-GROUP/hpx/pull/4298
https://github.com/STEllAR-GROUP/hpx/pull/4296
https://github.com/STEllAR-GROUP/hpx/pull/4295
https://github.com/STEllAR-GROUP/hpx/pull/4293
https://github.com/STEllAR-GROUP/hpx/pull/4285
https://github.com/STEllAR-GROUP/hpx/pull/4276
https://github.com/STEllAR-GROUP/hpx/pull/4275
https://github.com/STEllAR-GROUP/hpx/pull/4272
https://github.com/STEllAR-GROUP/hpx/pull/4271
https://github.com/STEllAR-GROUP/hpx/pull/4268
https://github.com/STEllAR-GROUP/hpx/pull/4267
https://github.com/STEllAR-GROUP/hpx/pull/4266
https://github.com/STEllAR-GROUP/hpx/pull/4264
https://github.com/STEllAR-GROUP/hpx/pull/4262
https://github.com/STEllAR-GROUP/hpx/pull/4261
https://github.com/STEllAR-GROUP/hpx/pull/4260
https://github.com/STEllAR-GROUP/hpx/pull/4258

HPX Documentation, 1.5.1

• PR #4257883 - Fix apex annotation for async dispatch

• PR #4256884 - Remove lambdas from assert expressions

• PR #4255885 - Ignoring lock in all_to_all and all_reduce

• PR #4254886 - Adding action specializations for noexcept functions

• PR #4253887 - Move partlit.hpp to affinity module

• PR #4252888 - Make mismatching build types a hard error in CMake

• PR #4249889 - Scheduler improvement

• PR #4248890 - update hpxmp tag to v0.3.0

• PR #4245891 - Adding high performance channels

• PR #4244892 - Ignore lock in ignore_while_locked_1485 test

• PR #4243893 - Fix PAPI command line option documentation

• PR #4242894 - Ignore lock in target_distribution_policy

• PR #4241895 - Fix start_stop_callbacks test

• PR #4240896 - Mostly fix clang CUDA compilation

• PR #4238897 - Google Season of Docs updates to documentation; grammar edits.

• PR #4237898 - fixing annotated task to use the name, not the desc

• PR #4236899 - Move module print summary to modules

• PR #4235900 - Don’t use alignas in cache_{aligned,line}_data

• PR #4234901 - Add basic overview sentence to all modules

• PR #4230902 - Add OS X builds to Travis CI

• PR #4229903 - Remove leftover queue compatibility checks

• PR #4226904 - Fixing APEX shutdown by explicitly shutting down throttling

• PR #4225905 - Allow CMAKE_INSTALL_PREFIX to be a relative path

883 https://github.com/STEllAR-GROUP/hpx/pull/4257
884 https://github.com/STEllAR-GROUP/hpx/pull/4256
885 https://github.com/STEllAR-GROUP/hpx/pull/4255
886 https://github.com/STEllAR-GROUP/hpx/pull/4254
887 https://github.com/STEllAR-GROUP/hpx/pull/4253
888 https://github.com/STEllAR-GROUP/hpx/pull/4252
889 https://github.com/STEllAR-GROUP/hpx/pull/4249
890 https://github.com/STEllAR-GROUP/hpx/pull/4248
891 https://github.com/STEllAR-GROUP/hpx/pull/4245
892 https://github.com/STEllAR-GROUP/hpx/pull/4244
893 https://github.com/STEllAR-GROUP/hpx/pull/4243
894 https://github.com/STEllAR-GROUP/hpx/pull/4242
895 https://github.com/STEllAR-GROUP/hpx/pull/4241
896 https://github.com/STEllAR-GROUP/hpx/pull/4240
897 https://github.com/STEllAR-GROUP/hpx/pull/4238
898 https://github.com/STEllAR-GROUP/hpx/pull/4237
899 https://github.com/STEllAR-GROUP/hpx/pull/4236
900 https://github.com/STEllAR-GROUP/hpx/pull/4235
901 https://github.com/STEllAR-GROUP/hpx/pull/4234
902 https://github.com/STEllAR-GROUP/hpx/pull/4230
903 https://github.com/STEllAR-GROUP/hpx/pull/4229
904 https://github.com/STEllAR-GROUP/hpx/pull/4226
905 https://github.com/STEllAR-GROUP/hpx/pull/4225

2.11. Releases 1253

https://github.com/STEllAR-GROUP/hpx/pull/4257
https://github.com/STEllAR-GROUP/hpx/pull/4256
https://github.com/STEllAR-GROUP/hpx/pull/4255
https://github.com/STEllAR-GROUP/hpx/pull/4254
https://github.com/STEllAR-GROUP/hpx/pull/4253
https://github.com/STEllAR-GROUP/hpx/pull/4252
https://github.com/STEllAR-GROUP/hpx/pull/4249
https://github.com/STEllAR-GROUP/hpx/pull/4248
https://github.com/STEllAR-GROUP/hpx/pull/4245
https://github.com/STEllAR-GROUP/hpx/pull/4244
https://github.com/STEllAR-GROUP/hpx/pull/4243
https://github.com/STEllAR-GROUP/hpx/pull/4242
https://github.com/STEllAR-GROUP/hpx/pull/4241
https://github.com/STEllAR-GROUP/hpx/pull/4240
https://github.com/STEllAR-GROUP/hpx/pull/4238
https://github.com/STEllAR-GROUP/hpx/pull/4237
https://github.com/STEllAR-GROUP/hpx/pull/4236
https://github.com/STEllAR-GROUP/hpx/pull/4235
https://github.com/STEllAR-GROUP/hpx/pull/4234
https://github.com/STEllAR-GROUP/hpx/pull/4230
https://github.com/STEllAR-GROUP/hpx/pull/4229
https://github.com/STEllAR-GROUP/hpx/pull/4226
https://github.com/STEllAR-GROUP/hpx/pull/4225

HPX Documentation, 1.5.1

• PR #4224906 - Deprecate verbs parcelport

• PR #4222907 - Update register_{thread,work} namespaces

• PR #4221908 - Changing HPX_GCC_VERSION check from 70000 to 70300

• PR #4218909 - Google Season of Docs updates to documentation; grammar edits.

• PR #4217910 - Google Season of Docs updates to documentation; grammar edits.

• PR #4216911 - Fixing gcc warning on 32bit platforms (integer truncation)

• PR #4214912 - Apex callback refactoring

• PR #4213913 - Clean up allocator checks for dependent projects

• PR #4212914 - Google Season of Docs updates to documentation; grammar edits.

• PR #4211915 - Google Season of Docs updates to documentation; contributing to hpx

• PR #4210916 - Attempting to fix Intel compilation

• PR #4209917 - Fix CUDA 10 build

• PR #4205918 - Making sure that differences in CMAKE_BUILD_TYPE are not reported on multi-configuration
cmake generators

• PR #4203919 - Deprecate Vc

• PR #4202920 - Fix CUDA configuration

• PR #4200921 - Making sure hpx_wrap is not passed on to linker on non-Linux systems

• PR #4198922 - Fix execution_agent.cpp compilation with GCC 5

• PR #4197923 - Remove deprecated options for 1.4.0 release

• PR #4196924 - minor fixes for building on OSX Darwin

• PR #4195925 - Use full clone on CircleCI for pushing stable tag

• PR #4193926 - Add scheduling hints to hello_world_distributed

• PR #4192927 - Set up CUDA in HPXConfig.cmake

• PR #4191928 - Export allocators root variables

906 https://github.com/STEllAR-GROUP/hpx/pull/4224
907 https://github.com/STEllAR-GROUP/hpx/pull/4222
908 https://github.com/STEllAR-GROUP/hpx/pull/4221
909 https://github.com/STEllAR-GROUP/hpx/pull/4218
910 https://github.com/STEllAR-GROUP/hpx/pull/4217
911 https://github.com/STEllAR-GROUP/hpx/pull/4216
912 https://github.com/STEllAR-GROUP/hpx/pull/4214
913 https://github.com/STEllAR-GROUP/hpx/pull/4213
914 https://github.com/STEllAR-GROUP/hpx/pull/4212
915 https://github.com/STEllAR-GROUP/hpx/pull/4211
916 https://github.com/STEllAR-GROUP/hpx/pull/4210
917 https://github.com/STEllAR-GROUP/hpx/pull/4209
918 https://github.com/STEllAR-GROUP/hpx/pull/4205
919 https://github.com/STEllAR-GROUP/hpx/pull/4203
920 https://github.com/STEllAR-GROUP/hpx/pull/4202
921 https://github.com/STEllAR-GROUP/hpx/pull/4200
922 https://github.com/STEllAR-GROUP/hpx/pull/4198
923 https://github.com/STEllAR-GROUP/hpx/pull/4197
924 https://github.com/STEllAR-GROUP/hpx/pull/4196
925 https://github.com/STEllAR-GROUP/hpx/pull/4195
926 https://github.com/STEllAR-GROUP/hpx/pull/4193
927 https://github.com/STEllAR-GROUP/hpx/pull/4192
928 https://github.com/STEllAR-GROUP/hpx/pull/4191

1254 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4224
https://github.com/STEllAR-GROUP/hpx/pull/4222
https://github.com/STEllAR-GROUP/hpx/pull/4221
https://github.com/STEllAR-GROUP/hpx/pull/4218
https://github.com/STEllAR-GROUP/hpx/pull/4217
https://github.com/STEllAR-GROUP/hpx/pull/4216
https://github.com/STEllAR-GROUP/hpx/pull/4214
https://github.com/STEllAR-GROUP/hpx/pull/4213
https://github.com/STEllAR-GROUP/hpx/pull/4212
https://github.com/STEllAR-GROUP/hpx/pull/4211
https://github.com/STEllAR-GROUP/hpx/pull/4210
https://github.com/STEllAR-GROUP/hpx/pull/4209
https://github.com/STEllAR-GROUP/hpx/pull/4205
https://github.com/STEllAR-GROUP/hpx/pull/4203
https://github.com/STEllAR-GROUP/hpx/pull/4202
https://github.com/STEllAR-GROUP/hpx/pull/4200
https://github.com/STEllAR-GROUP/hpx/pull/4198
https://github.com/STEllAR-GROUP/hpx/pull/4197
https://github.com/STEllAR-GROUP/hpx/pull/4196
https://github.com/STEllAR-GROUP/hpx/pull/4195
https://github.com/STEllAR-GROUP/hpx/pull/4193
https://github.com/STEllAR-GROUP/hpx/pull/4192
https://github.com/STEllAR-GROUP/hpx/pull/4191

HPX Documentation, 1.5.1

• PR #4190929 - Don’t use constexpr in thread_data with GCC <= 6

• PR #4189930 - Only use quick_exit if available

• PR #4188931 - Google Season of Docs updates to documentation; writing single node hpx applications

• PR #4186932 - correct vc to cuda in cuda cmake

• PR #4184933 - Resetting some cached variables to make sure those are re-filled

• PR #4183934 - Fix hpxcxx configuration

• PR #4181935 - Rename base libraries var

• PR #4180936 - Move header left behind earlier to plugin module

• PR #4179937 - Moving zip_iterator and transform_iterator to iterator_support module

• PR #4178938 - Move checkpointing support to its own module

• PR #4177939 - Small const fix to basic_execution module

• PR #4176940 - Add back HPX_LIBRARIES and friends to HPXConfig.cmake

• PR #4175941 - Make Vc public and add it to HPXConfig.cmake

• PR #4173942 - Wait for runtime to be running before returning from hpx::start

• PR #4172943 - More protection against shutdown problems in error handling scenarios.

• PR #4171944 - Ignore lock in condition_variable::wait

• PR #4170945 - Adding APEX dependency to MPI parcelport

• PR #4168946 - Adding utility include

• PR #4167947 - Add a condition to setup the external libraries

• PR #4166948 - Add an INTERNAL_FLAGS option to link to hpx_internal_flags

• PR #4165949 - Forward HPX_* cmake cache variables to external projects

• PR #4164950 - Affinity and batch environment modules

• PR #4162951 - Handle quick exit

929 https://github.com/STEllAR-GROUP/hpx/pull/4190
930 https://github.com/STEllAR-GROUP/hpx/pull/4189
931 https://github.com/STEllAR-GROUP/hpx/pull/4188
932 https://github.com/STEllAR-GROUP/hpx/pull/4186
933 https://github.com/STEllAR-GROUP/hpx/pull/4184
934 https://github.com/STEllAR-GROUP/hpx/pull/4183
935 https://github.com/STEllAR-GROUP/hpx/pull/4181
936 https://github.com/STEllAR-GROUP/hpx/pull/4180
937 https://github.com/STEllAR-GROUP/hpx/pull/4179
938 https://github.com/STEllAR-GROUP/hpx/pull/4178
939 https://github.com/STEllAR-GROUP/hpx/pull/4177
940 https://github.com/STEllAR-GROUP/hpx/pull/4176
941 https://github.com/STEllAR-GROUP/hpx/pull/4175
942 https://github.com/STEllAR-GROUP/hpx/pull/4173
943 https://github.com/STEllAR-GROUP/hpx/pull/4172
944 https://github.com/STEllAR-GROUP/hpx/pull/4171
945 https://github.com/STEllAR-GROUP/hpx/pull/4170
946 https://github.com/STEllAR-GROUP/hpx/pull/4168
947 https://github.com/STEllAR-GROUP/hpx/pull/4167
948 https://github.com/STEllAR-GROUP/hpx/pull/4166
949 https://github.com/STEllAR-GROUP/hpx/pull/4165
950 https://github.com/STEllAR-GROUP/hpx/pull/4164
951 https://github.com/STEllAR-GROUP/hpx/pull/4162

2.11. Releases 1255

https://github.com/STEllAR-GROUP/hpx/pull/4190
https://github.com/STEllAR-GROUP/hpx/pull/4189
https://github.com/STEllAR-GROUP/hpx/pull/4188
https://github.com/STEllAR-GROUP/hpx/pull/4186
https://github.com/STEllAR-GROUP/hpx/pull/4184
https://github.com/STEllAR-GROUP/hpx/pull/4183
https://github.com/STEllAR-GROUP/hpx/pull/4181
https://github.com/STEllAR-GROUP/hpx/pull/4180
https://github.com/STEllAR-GROUP/hpx/pull/4179
https://github.com/STEllAR-GROUP/hpx/pull/4178
https://github.com/STEllAR-GROUP/hpx/pull/4177
https://github.com/STEllAR-GROUP/hpx/pull/4176
https://github.com/STEllAR-GROUP/hpx/pull/4175
https://github.com/STEllAR-GROUP/hpx/pull/4173
https://github.com/STEllAR-GROUP/hpx/pull/4172
https://github.com/STEllAR-GROUP/hpx/pull/4171
https://github.com/STEllAR-GROUP/hpx/pull/4170
https://github.com/STEllAR-GROUP/hpx/pull/4168
https://github.com/STEllAR-GROUP/hpx/pull/4167
https://github.com/STEllAR-GROUP/hpx/pull/4166
https://github.com/STEllAR-GROUP/hpx/pull/4165
https://github.com/STEllAR-GROUP/hpx/pull/4164
https://github.com/STEllAR-GROUP/hpx/pull/4162

HPX Documentation, 1.5.1

• PR #4160952 - Using target_link_libraries for cmake versions >= 3.12

• PR #4159953 - Make sure HPX_WITH_NATIVE_TLS is forwarded to dependent projects

• PR #4158954 - Adding allocator imported target as a dependency of allocator module

• PR #4157955 - Add hpx_memory as a dependency of parcelport plugins

• PR #4156956 - Stackless coroutines now can refer to themselves (through get_self() and friends)

• PR #4154957 - Added CMake policy CMP0060 for HPX applications.

• PR #4153958 - add header iomanip to tests and tool

• PR #4152959 - Casting MPI tag value

• PR #4149960 - Add back private m_desc member variable in program_options module

• PR #4147961 - Resource partitioner and threadmanager modules

• PR #4146962 - Google Season of Docs updates to documentation; creating hpx projects

• PR #4145963 - Adding basic support for stackless threads

• PR #4143964 - Exclude test_client_1950 from all target

• PR #4142965 - Add a new thread_pool_executor

• PR #4140966 - Google Season of Docs updates to documentation; why hpx

• PR #4139967 - Remove runtime includes from coroutines module

• PR #4138968 - Forking boost::intrusive_ptr and adding it as hpx::intrusive_ptr

• PR #4137969 - Fixing TSS destruction

• PR #4136970 - HPX.Compute modules

• PR #4133971 - Fix block_executor

• PR #4131972 - Applying fixes based on reports from PVS Studio

• PR #4130973 - Adding missing header to build system

• PR #4129974 - Fixing compilation if HPX_WITH_DATAPAR_VC is enabled

952 https://github.com/STEllAR-GROUP/hpx/pull/4160
953 https://github.com/STEllAR-GROUP/hpx/pull/4159
954 https://github.com/STEllAR-GROUP/hpx/pull/4158
955 https://github.com/STEllAR-GROUP/hpx/pull/4157
956 https://github.com/STEllAR-GROUP/hpx/pull/4156
957 https://github.com/STEllAR-GROUP/hpx/pull/4154
958 https://github.com/STEllAR-GROUP/hpx/pull/4153
959 https://github.com/STEllAR-GROUP/hpx/pull/4152
960 https://github.com/STEllAR-GROUP/hpx/pull/4149
961 https://github.com/STEllAR-GROUP/hpx/pull/4147
962 https://github.com/STEllAR-GROUP/hpx/pull/4146
963 https://github.com/STEllAR-GROUP/hpx/pull/4145
964 https://github.com/STEllAR-GROUP/hpx/pull/4143
965 https://github.com/STEllAR-GROUP/hpx/pull/4142
966 https://github.com/STEllAR-GROUP/hpx/pull/4140
967 https://github.com/STEllAR-GROUP/hpx/pull/4139
968 https://github.com/STEllAR-GROUP/hpx/pull/4138
969 https://github.com/STEllAR-GROUP/hpx/pull/4137
970 https://github.com/STEllAR-GROUP/hpx/pull/4136
971 https://github.com/STEllAR-GROUP/hpx/pull/4133
972 https://github.com/STEllAR-GROUP/hpx/pull/4131
973 https://github.com/STEllAR-GROUP/hpx/pull/4130
974 https://github.com/STEllAR-GROUP/hpx/pull/4129

1256 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4160
https://github.com/STEllAR-GROUP/hpx/pull/4159
https://github.com/STEllAR-GROUP/hpx/pull/4158
https://github.com/STEllAR-GROUP/hpx/pull/4157
https://github.com/STEllAR-GROUP/hpx/pull/4156
https://github.com/STEllAR-GROUP/hpx/pull/4154
https://github.com/STEllAR-GROUP/hpx/pull/4153
https://github.com/STEllAR-GROUP/hpx/pull/4152
https://github.com/STEllAR-GROUP/hpx/pull/4149
https://github.com/STEllAR-GROUP/hpx/pull/4147
https://github.com/STEllAR-GROUP/hpx/pull/4146
https://github.com/STEllAR-GROUP/hpx/pull/4145
https://github.com/STEllAR-GROUP/hpx/pull/4143
https://github.com/STEllAR-GROUP/hpx/pull/4142
https://github.com/STEllAR-GROUP/hpx/pull/4140
https://github.com/STEllAR-GROUP/hpx/pull/4139
https://github.com/STEllAR-GROUP/hpx/pull/4138
https://github.com/STEllAR-GROUP/hpx/pull/4137
https://github.com/STEllAR-GROUP/hpx/pull/4136
https://github.com/STEllAR-GROUP/hpx/pull/4133
https://github.com/STEllAR-GROUP/hpx/pull/4131
https://github.com/STEllAR-GROUP/hpx/pull/4130
https://github.com/STEllAR-GROUP/hpx/pull/4129

HPX Documentation, 1.5.1

• PR #4128975 - Renaming moveonly_any to unique_any

• PR #4126976 - Attempt to fix basic_any constructor for gcc 7

• PR #4125977 - Changing extra_archive_data implementation

• PR #4124978 - Don’t link to Boost.System unless required

• PR #4122979 - Add kernel launch helper utility (+saxpy demo) and merge in octotiger changes

• PR #4121980 - Fixing migration test if networking is disabled.

• PR #4120981 - Google Season of Docs updates to documentation; hpx build system v1

• PR #4119982 - Making sure chunk_size and max_chunk are actually applied to parallel algorithms if spec-
ified

• PR #4117983 - Make CircleCI formatting check store diff

• PR #4116984 - Fix automatically setting C++ standard

• PR #4114985 - Module serialization

• PR #4113986 - Module datastructures

• PR #4111987 - Fixing performance regression introduced earlier

• PR #4110988 - Adding missing SPDX tags

• PR #4109989 - Overload for start without entry point/argv.

• PR #4108990 - Making sure C++ standard is properly detected and propagated

• PR #4106991 - use std::round for guaranteed rounding without errors

• PR #4104992 - Extend scheduler_mode with new work_stealing and task assignment modes

• PR #4103993 - Add this to lambda capture list

• PR #4102994 - Add spdx license and check

• PR #4099995 - Module coroutines

• PR #4098996 - Fix append module path in module CMakeLists template

• PR #4097997 - Function tests
975 https://github.com/STEllAR-GROUP/hpx/pull/4128
976 https://github.com/STEllAR-GROUP/hpx/pull/4126
977 https://github.com/STEllAR-GROUP/hpx/pull/4125
978 https://github.com/STEllAR-GROUP/hpx/pull/4124
979 https://github.com/STEllAR-GROUP/hpx/pull/4122
980 https://github.com/STEllAR-GROUP/hpx/pull/4121
981 https://github.com/STEllAR-GROUP/hpx/pull/4120
982 https://github.com/STEllAR-GROUP/hpx/pull/4119
983 https://github.com/STEllAR-GROUP/hpx/pull/4117
984 https://github.com/STEllAR-GROUP/hpx/pull/4116
985 https://github.com/STEllAR-GROUP/hpx/pull/4114
986 https://github.com/STEllAR-GROUP/hpx/pull/4113
987 https://github.com/STEllAR-GROUP/hpx/pull/4111
988 https://github.com/STEllAR-GROUP/hpx/pull/4110
989 https://github.com/STEllAR-GROUP/hpx/pull/4109
990 https://github.com/STEllAR-GROUP/hpx/pull/4108
991 https://github.com/STEllAR-GROUP/hpx/pull/4106
992 https://github.com/STEllAR-GROUP/hpx/pull/4104
993 https://github.com/STEllAR-GROUP/hpx/pull/4103
994 https://github.com/STEllAR-GROUP/hpx/pull/4102
995 https://github.com/STEllAR-GROUP/hpx/pull/4099
996 https://github.com/STEllAR-GROUP/hpx/pull/4098
997 https://github.com/STEllAR-GROUP/hpx/pull/4097

2.11. Releases 1257

https://github.com/STEllAR-GROUP/hpx/pull/4128
https://github.com/STEllAR-GROUP/hpx/pull/4126
https://github.com/STEllAR-GROUP/hpx/pull/4125
https://github.com/STEllAR-GROUP/hpx/pull/4124
https://github.com/STEllAR-GROUP/hpx/pull/4122
https://github.com/STEllAR-GROUP/hpx/pull/4121
https://github.com/STEllAR-GROUP/hpx/pull/4120
https://github.com/STEllAR-GROUP/hpx/pull/4119
https://github.com/STEllAR-GROUP/hpx/pull/4117
https://github.com/STEllAR-GROUP/hpx/pull/4116
https://github.com/STEllAR-GROUP/hpx/pull/4114
https://github.com/STEllAR-GROUP/hpx/pull/4113
https://github.com/STEllAR-GROUP/hpx/pull/4111
https://github.com/STEllAR-GROUP/hpx/pull/4110
https://github.com/STEllAR-GROUP/hpx/pull/4109
https://github.com/STEllAR-GROUP/hpx/pull/4108
https://github.com/STEllAR-GROUP/hpx/pull/4106
https://github.com/STEllAR-GROUP/hpx/pull/4104
https://github.com/STEllAR-GROUP/hpx/pull/4103
https://github.com/STEllAR-GROUP/hpx/pull/4102
https://github.com/STEllAR-GROUP/hpx/pull/4099
https://github.com/STEllAR-GROUP/hpx/pull/4098
https://github.com/STEllAR-GROUP/hpx/pull/4097

HPX Documentation, 1.5.1

• PR #4096998 - Removing return of thread_result_type from functions not needing them

• PR #4095999 - Stop-gap measure until cmake overhaul is in place

• PR #40941000 - Deprecate HPX_WITH_MORE_THAN_64_THREADS

• PR #40931001 - Fix initialization of global_num_tasks in parallel_executor

• PR #40921002 - Add support for mi-malloc

• PR #40901003 - Execution context

• PR #40891004 - Make counters in coroutines optional

• PR #40871005 - Making hpx::util::any compatible with C++17

• PR #40841006 - Making sure destination array for std::transform is properly resized

• PR #40831007 - Adapting thread_queue_mc to behave even if no 128bit atomics are available

• PR #40821008 - Fix compilation on GCC 5

• PR #40811009 - Adding option allowing to force using Boost.FileSystem

• PR #40801010 - Updating module dependencies

• PR #40791011 - Add missing tests for iterator_support module

• PR #40781012 - Disable parcel-layer if networking is disabled

• PR #40771013 - Add missing include that causes build fails

• PR #40761014 - Enable compatibility headers for functional module

• PR #40751015 - Coroutines module

• PR #40731016 - Use configure_file for generated files in modules

• PR #40711017 - Fixing MPI detection for PMIx

• PR #40701018 - Fix macOS builds

• PR #40691019 - Moving more facilities to the collectives module

• PR #40681020 - Adding main HPX #include directory to modules

998 https://github.com/STEllAR-GROUP/hpx/pull/4096
999 https://github.com/STEllAR-GROUP/hpx/pull/4095

1000 https://github.com/STEllAR-GROUP/hpx/pull/4094
1001 https://github.com/STEllAR-GROUP/hpx/pull/4093
1002 https://github.com/STEllAR-GROUP/hpx/pull/4092
1003 https://github.com/STEllAR-GROUP/hpx/pull/4090
1004 https://github.com/STEllAR-GROUP/hpx/pull/4089
1005 https://github.com/STEllAR-GROUP/hpx/pull/4087
1006 https://github.com/STEllAR-GROUP/hpx/pull/4084
1007 https://github.com/STEllAR-GROUP/hpx/pull/4083
1008 https://github.com/STEllAR-GROUP/hpx/pull/4082
1009 https://github.com/STEllAR-GROUP/hpx/pull/4081
1010 https://github.com/STEllAR-GROUP/hpx/pull/4080
1011 https://github.com/STEllAR-GROUP/hpx/pull/4079
1012 https://github.com/STEllAR-GROUP/hpx/pull/4078
1013 https://github.com/STEllAR-GROUP/hpx/pull/4077
1014 https://github.com/STEllAR-GROUP/hpx/pull/4076
1015 https://github.com/STEllAR-GROUP/hpx/pull/4075
1016 https://github.com/STEllAR-GROUP/hpx/pull/4073
1017 https://github.com/STEllAR-GROUP/hpx/pull/4071
1018 https://github.com/STEllAR-GROUP/hpx/pull/4070
1019 https://github.com/STEllAR-GROUP/hpx/pull/4069
1020 https://github.com/STEllAR-GROUP/hpx/pull/4068

1258 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4096
https://github.com/STEllAR-GROUP/hpx/pull/4095
https://github.com/STEllAR-GROUP/hpx/pull/4094
https://github.com/STEllAR-GROUP/hpx/pull/4093
https://github.com/STEllAR-GROUP/hpx/pull/4092
https://github.com/STEllAR-GROUP/hpx/pull/4090
https://github.com/STEllAR-GROUP/hpx/pull/4089
https://github.com/STEllAR-GROUP/hpx/pull/4087
https://github.com/STEllAR-GROUP/hpx/pull/4084
https://github.com/STEllAR-GROUP/hpx/pull/4083
https://github.com/STEllAR-GROUP/hpx/pull/4082
https://github.com/STEllAR-GROUP/hpx/pull/4081
https://github.com/STEllAR-GROUP/hpx/pull/4080
https://github.com/STEllAR-GROUP/hpx/pull/4079
https://github.com/STEllAR-GROUP/hpx/pull/4078
https://github.com/STEllAR-GROUP/hpx/pull/4077
https://github.com/STEllAR-GROUP/hpx/pull/4076
https://github.com/STEllAR-GROUP/hpx/pull/4075
https://github.com/STEllAR-GROUP/hpx/pull/4073
https://github.com/STEllAR-GROUP/hpx/pull/4071
https://github.com/STEllAR-GROUP/hpx/pull/4070
https://github.com/STEllAR-GROUP/hpx/pull/4069
https://github.com/STEllAR-GROUP/hpx/pull/4068

HPX Documentation, 1.5.1

• PR #40661021 - Switching the use of message(STATUS "...") to hpx_info

• PR #40651022 - Move Boost.Filesystem handling to filesystem module

• PR #40641023 - Fix program_options test with older boost versions

• PR #40621024 - The cpu_features tool fails to compile on anything but x86 architectures

• PR #40611025 - Add clang-format checking step for modules

• PR #40601026 - Making sure HPX_IDLE_BACKOFF_TIME_MAX is always defined (even if its unused)

• PR #40591027 - Renaming module hpx_parallel_executors into hpx_execution

• PR #40581028 - Do not build networking tests when networking disabled

• PR #40571029 - Printing configuration summary for modules as well

• PR #40551030 - Google Season of Docs updates to documentation; hpx build systems

• PR #40541031 - Add troubleshooting section to manual

• PR #40511032 - Add more variations to future_overhead test

• PR #40501033 - Creating plugin module

• PR #40491034 - Move missing modules tests

• PR #40471035 - Add boost/filesystem headers to inspect deprecated headers

• PR #40451036 - Module functional

• PR #40431037 - Fix preconditions and error messages for suspension functions

• PR #40411038 - Pass HPX_STANDARD on to dependent projects via HPXConfig.cmake

• PR #40401039 - Program options module

• PR #40391040 - Moving non-serializable any (any_nonser) to datastructures module

• PR #40381041 - Adding MPark’s variant (V1.4.0) to HPX

• PR #40371042 - Adding resiliency module

• PR #40361043 - Add C++17 filesystem compatibility header

1021 https://github.com/STEllAR-GROUP/hpx/pull/4066
1022 https://github.com/STEllAR-GROUP/hpx/pull/4065
1023 https://github.com/STEllAR-GROUP/hpx/pull/4064
1024 https://github.com/STEllAR-GROUP/hpx/pull/4062
1025 https://github.com/STEllAR-GROUP/hpx/pull/4061
1026 https://github.com/STEllAR-GROUP/hpx/pull/4060
1027 https://github.com/STEllAR-GROUP/hpx/pull/4059
1028 https://github.com/STEllAR-GROUP/hpx/pull/4058
1029 https://github.com/STEllAR-GROUP/hpx/pull/4057
1030 https://github.com/STEllAR-GROUP/hpx/pull/4055
1031 https://github.com/STEllAR-GROUP/hpx/pull/4054
1032 https://github.com/STEllAR-GROUP/hpx/pull/4051
1033 https://github.com/STEllAR-GROUP/hpx/pull/4050
1034 https://github.com/STEllAR-GROUP/hpx/pull/4049
1035 https://github.com/STEllAR-GROUP/hpx/pull/4047
1036 https://github.com/STEllAR-GROUP/hpx/pull/4045
1037 https://github.com/STEllAR-GROUP/hpx/pull/4043
1038 https://github.com/STEllAR-GROUP/hpx/pull/4041
1039 https://github.com/STEllAR-GROUP/hpx/pull/4040
1040 https://github.com/STEllAR-GROUP/hpx/pull/4039
1041 https://github.com/STEllAR-GROUP/hpx/pull/4038
1042 https://github.com/STEllAR-GROUP/hpx/pull/4037
1043 https://github.com/STEllAR-GROUP/hpx/pull/4036

2.11. Releases 1259

https://github.com/STEllAR-GROUP/hpx/pull/4066
https://github.com/STEllAR-GROUP/hpx/pull/4065
https://github.com/STEllAR-GROUP/hpx/pull/4064
https://github.com/STEllAR-GROUP/hpx/pull/4062
https://github.com/STEllAR-GROUP/hpx/pull/4061
https://github.com/STEllAR-GROUP/hpx/pull/4060
https://github.com/STEllAR-GROUP/hpx/pull/4059
https://github.com/STEllAR-GROUP/hpx/pull/4058
https://github.com/STEllAR-GROUP/hpx/pull/4057
https://github.com/STEllAR-GROUP/hpx/pull/4055
https://github.com/STEllAR-GROUP/hpx/pull/4054
https://github.com/STEllAR-GROUP/hpx/pull/4051
https://github.com/STEllAR-GROUP/hpx/pull/4050
https://github.com/STEllAR-GROUP/hpx/pull/4049
https://github.com/STEllAR-GROUP/hpx/pull/4047
https://github.com/STEllAR-GROUP/hpx/pull/4045
https://github.com/STEllAR-GROUP/hpx/pull/4043
https://github.com/STEllAR-GROUP/hpx/pull/4041
https://github.com/STEllAR-GROUP/hpx/pull/4040
https://github.com/STEllAR-GROUP/hpx/pull/4039
https://github.com/STEllAR-GROUP/hpx/pull/4038
https://github.com/STEllAR-GROUP/hpx/pull/4037
https://github.com/STEllAR-GROUP/hpx/pull/4036

HPX Documentation, 1.5.1

• PR #40351044 - Fixing support for mpirun

• PR #40281045 - CMake to target based directives

• PR #40271046 - Remove GitLab CI configuration

• PR #40261047 - Threading refactoring

• PR #40251048 - Refactoring thread queue configuration options

• PR #40241049 - Fix padding calculation in cache_aligned_data.hpp

• PR #40231050 - Fixing Codacy issues

• PR #40221051 - Make sure process mask option is passed to affinity_data

• PR #40211052 - Warn about compiling in C++11 mode

• PR #40201053 - Module concurrency

• PR #40191054 - Module topology

• PR #40181055 - Update deprecated header in thread_queue_mc.hpp

• PR #40151056 - Avoid overwriting artifacts

• PR #40141057 - Future overheads

• PR #40131058 - Update URL to test output conversion script

• PR #40121059 - Fix CUDA compilation

• PR #40111060 - Fixing cyclic dependencies between modules

• PR #40101061 - Ignore stable tag on CircleCI

• PR #40091062 - Check circular dependencies in a circle ci step

• PR #40081063 - Extend cache aligned data to handle tuple-like data

• PR #40071064 - Fixing migration for components that have actions returning a client

• PR #40061065 - Move is_value_proxy.hpp to algorithms module

• PR #40041066 - Shorten CTest timeout on CircleCI
1044 https://github.com/STEllAR-GROUP/hpx/pull/4035
1045 https://github.com/STEllAR-GROUP/hpx/pull/4028
1046 https://github.com/STEllAR-GROUP/hpx/pull/4027
1047 https://github.com/STEllAR-GROUP/hpx/pull/4026
1048 https://github.com/STEllAR-GROUP/hpx/pull/4025
1049 https://github.com/STEllAR-GROUP/hpx/pull/4024
1050 https://github.com/STEllAR-GROUP/hpx/pull/4023
1051 https://github.com/STEllAR-GROUP/hpx/pull/4022
1052 https://github.com/STEllAR-GROUP/hpx/pull/4021
1053 https://github.com/STEllAR-GROUP/hpx/pull/4020
1054 https://github.com/STEllAR-GROUP/hpx/pull/4019
1055 https://github.com/STEllAR-GROUP/hpx/pull/4018
1056 https://github.com/STEllAR-GROUP/hpx/pull/4015
1057 https://github.com/STEllAR-GROUP/hpx/pull/4014
1058 https://github.com/STEllAR-GROUP/hpx/pull/4013
1059 https://github.com/STEllAR-GROUP/hpx/pull/4012
1060 https://github.com/STEllAR-GROUP/hpx/pull/4011
1061 https://github.com/STEllAR-GROUP/hpx/pull/4010
1062 https://github.com/STEllAR-GROUP/hpx/pull/4009
1063 https://github.com/STEllAR-GROUP/hpx/pull/4008
1064 https://github.com/STEllAR-GROUP/hpx/pull/4007
1065 https://github.com/STEllAR-GROUP/hpx/pull/4006
1066 https://github.com/STEllAR-GROUP/hpx/pull/4004

1260 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/4035
https://github.com/STEllAR-GROUP/hpx/pull/4028
https://github.com/STEllAR-GROUP/hpx/pull/4027
https://github.com/STEllAR-GROUP/hpx/pull/4026
https://github.com/STEllAR-GROUP/hpx/pull/4025
https://github.com/STEllAR-GROUP/hpx/pull/4024
https://github.com/STEllAR-GROUP/hpx/pull/4023
https://github.com/STEllAR-GROUP/hpx/pull/4022
https://github.com/STEllAR-GROUP/hpx/pull/4021
https://github.com/STEllAR-GROUP/hpx/pull/4020
https://github.com/STEllAR-GROUP/hpx/pull/4019
https://github.com/STEllAR-GROUP/hpx/pull/4018
https://github.com/STEllAR-GROUP/hpx/pull/4015
https://github.com/STEllAR-GROUP/hpx/pull/4014
https://github.com/STEllAR-GROUP/hpx/pull/4013
https://github.com/STEllAR-GROUP/hpx/pull/4012
https://github.com/STEllAR-GROUP/hpx/pull/4011
https://github.com/STEllAR-GROUP/hpx/pull/4010
https://github.com/STEllAR-GROUP/hpx/pull/4009
https://github.com/STEllAR-GROUP/hpx/pull/4008
https://github.com/STEllAR-GROUP/hpx/pull/4007
https://github.com/STEllAR-GROUP/hpx/pull/4006
https://github.com/STEllAR-GROUP/hpx/pull/4004

HPX Documentation, 1.5.1

• PR #40031067 - Refactoring to remove (internal) dependencies

• PR #40011068 - Exclude tests from all target

• PR #40001069 - Module errors

• PR #39991070 - Enable support for compatibility headers for logging module

• PR #39981071 - Add process thread binding option

• PR #39971072 - Export handle_assert function

• PR #39961073 - Attempt to solve issue where -latomic does not support 128bit atomics

• PR #39931074 - Make sure __LINE__ is an unsigned

• PR #39911075 - Fix dependencies and flags for header tests

• PR #39901076 - Documentation tags fixes

• PR #39881077 - Adding missing solution folder for format module test

• PR #39871078 - Move runtime-dependent functions out of command line handling

• PR #39861079 - Fix CMake configuration with PAPI on

• PR #39851080 - Module timing

• PR #39841081 - Fix default behaviour of paths in add_hpx_component

• PR #39821082 - Parallel executors module

• PR #39811083 - Segmented algorithms module

• PR #39801084 - Module logging

• PR #39791085 - Module util

• PR #39781086 - Fix clang-tidy step on CircleCI

• PR #39771087 - Fixing solution folders for moved components

• PR #39761088 - Module format

• PR #39751089 - Enable deprecation warnings on CircleCI

1067 https://github.com/STEllAR-GROUP/hpx/pull/4003
1068 https://github.com/STEllAR-GROUP/hpx/pull/4001
1069 https://github.com/STEllAR-GROUP/hpx/pull/4000
1070 https://github.com/STEllAR-GROUP/hpx/pull/3999
1071 https://github.com/STEllAR-GROUP/hpx/pull/3998
1072 https://github.com/STEllAR-GROUP/hpx/pull/3997
1073 https://github.com/STEllAR-GROUP/hpx/pull/3996
1074 https://github.com/STEllAR-GROUP/hpx/pull/3993
1075 https://github.com/STEllAR-GROUP/hpx/pull/3991
1076 https://github.com/STEllAR-GROUP/hpx/pull/3990
1077 https://github.com/STEllAR-GROUP/hpx/pull/3988
1078 https://github.com/STEllAR-GROUP/hpx/pull/3987
1079 https://github.com/STEllAR-GROUP/hpx/pull/3986
1080 https://github.com/STEllAR-GROUP/hpx/pull/3985
1081 https://github.com/STEllAR-GROUP/hpx/pull/3984
1082 https://github.com/STEllAR-GROUP/hpx/pull/3982
1083 https://github.com/STEllAR-GROUP/hpx/pull/3981
1084 https://github.com/STEllAR-GROUP/hpx/pull/3980
1085 https://github.com/STEllAR-GROUP/hpx/pull/3979
1086 https://github.com/STEllAR-GROUP/hpx/pull/3978
1087 https://github.com/STEllAR-GROUP/hpx/pull/3977
1088 https://github.com/STEllAR-GROUP/hpx/pull/3976
1089 https://github.com/STEllAR-GROUP/hpx/pull/3975

2.11. Releases 1261

https://github.com/STEllAR-GROUP/hpx/pull/4003
https://github.com/STEllAR-GROUP/hpx/pull/4001
https://github.com/STEllAR-GROUP/hpx/pull/4000
https://github.com/STEllAR-GROUP/hpx/pull/3999
https://github.com/STEllAR-GROUP/hpx/pull/3998
https://github.com/STEllAR-GROUP/hpx/pull/3997
https://github.com/STEllAR-GROUP/hpx/pull/3996
https://github.com/STEllAR-GROUP/hpx/pull/3993
https://github.com/STEllAR-GROUP/hpx/pull/3991
https://github.com/STEllAR-GROUP/hpx/pull/3990
https://github.com/STEllAR-GROUP/hpx/pull/3988
https://github.com/STEllAR-GROUP/hpx/pull/3987
https://github.com/STEllAR-GROUP/hpx/pull/3986
https://github.com/STEllAR-GROUP/hpx/pull/3985
https://github.com/STEllAR-GROUP/hpx/pull/3984
https://github.com/STEllAR-GROUP/hpx/pull/3982
https://github.com/STEllAR-GROUP/hpx/pull/3981
https://github.com/STEllAR-GROUP/hpx/pull/3980
https://github.com/STEllAR-GROUP/hpx/pull/3979
https://github.com/STEllAR-GROUP/hpx/pull/3978
https://github.com/STEllAR-GROUP/hpx/pull/3977
https://github.com/STEllAR-GROUP/hpx/pull/3976
https://github.com/STEllAR-GROUP/hpx/pull/3975

HPX Documentation, 1.5.1

• PR #39741090 - Fix typos in documentation

• PR #39731091 - Fix compilation with GCC 9

• PR #39721092 - Add condition to clone apex + use of new cmake var APEX_ROOT

• PR #39711093 - Add testing module

• PR #39681094 - Remove unneeded file in hardware module

• PR #39671095 - Remove leftover PIC settings from main CMakeLists.txt

• PR #39661096 - Add missing export option in add_hpx_module

• PR #39651097 - Change current_function_helper back to non-constexpr

• PR #39641098 - Fixing merge problems

• PR #39621099 - Add a trait for std::array for unwrapping

• PR #39611100 - Making hpx::util::tuple<Ts...> and std::tuple<Ts...> convertible

• PR #39601101 - fix compilation with CUDA 10 and GCC 6

• PR #39591102 - Fix C++11 incompatibility

• PR #39571103 - Algorithms module

• PR #39561104 - [HPX_AddModule] Fix lower name var to upper

• PR #39551105 - Fix CMake configuration with examples off and tests on

• PR #39541106 - Move components to separate subdirectory in root of repository

• PR #39521107 - Update papi.cpp

• PR #39511108 - Exclude modules header tests from all target

• PR #39501109 - Adding all_reduce facility to collectives module

• PR #39491110 - This adds a configuration file that will cause for stale issues to be automatically closed

• PR #39481111 - Fixing ALPS environment

• PR #39471112 - Add major compiler version check for building hpx as a binary package

1090 https://github.com/STEllAR-GROUP/hpx/pull/3974
1091 https://github.com/STEllAR-GROUP/hpx/pull/3973
1092 https://github.com/STEllAR-GROUP/hpx/pull/3972
1093 https://github.com/STEllAR-GROUP/hpx/pull/3971
1094 https://github.com/STEllAR-GROUP/hpx/pull/3968
1095 https://github.com/STEllAR-GROUP/hpx/pull/3967
1096 https://github.com/STEllAR-GROUP/hpx/pull/3966
1097 https://github.com/STEllAR-GROUP/hpx/pull/3965
1098 https://github.com/STEllAR-GROUP/hpx/pull/3964
1099 https://github.com/STEllAR-GROUP/hpx/pull/3962
1100 https://github.com/STEllAR-GROUP/hpx/pull/3961
1101 https://github.com/STEllAR-GROUP/hpx/pull/3960
1102 https://github.com/STEllAR-GROUP/hpx/pull/3959
1103 https://github.com/STEllAR-GROUP/hpx/pull/3957
1104 https://github.com/STEllAR-GROUP/hpx/pull/3956
1105 https://github.com/STEllAR-GROUP/hpx/pull/3955
1106 https://github.com/STEllAR-GROUP/hpx/pull/3954
1107 https://github.com/STEllAR-GROUP/hpx/pull/3952
1108 https://github.com/STEllAR-GROUP/hpx/pull/3951
1109 https://github.com/STEllAR-GROUP/hpx/pull/3950
1110 https://github.com/STEllAR-GROUP/hpx/pull/3949
1111 https://github.com/STEllAR-GROUP/hpx/pull/3948
1112 https://github.com/STEllAR-GROUP/hpx/pull/3947

1262 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3974
https://github.com/STEllAR-GROUP/hpx/pull/3973
https://github.com/STEllAR-GROUP/hpx/pull/3972
https://github.com/STEllAR-GROUP/hpx/pull/3971
https://github.com/STEllAR-GROUP/hpx/pull/3968
https://github.com/STEllAR-GROUP/hpx/pull/3967
https://github.com/STEllAR-GROUP/hpx/pull/3966
https://github.com/STEllAR-GROUP/hpx/pull/3965
https://github.com/STEllAR-GROUP/hpx/pull/3964
https://github.com/STEllAR-GROUP/hpx/pull/3962
https://github.com/STEllAR-GROUP/hpx/pull/3961
https://github.com/STEllAR-GROUP/hpx/pull/3960
https://github.com/STEllAR-GROUP/hpx/pull/3959
https://github.com/STEllAR-GROUP/hpx/pull/3957
https://github.com/STEllAR-GROUP/hpx/pull/3956
https://github.com/STEllAR-GROUP/hpx/pull/3955
https://github.com/STEllAR-GROUP/hpx/pull/3954
https://github.com/STEllAR-GROUP/hpx/pull/3952
https://github.com/STEllAR-GROUP/hpx/pull/3951
https://github.com/STEllAR-GROUP/hpx/pull/3950
https://github.com/STEllAR-GROUP/hpx/pull/3949
https://github.com/STEllAR-GROUP/hpx/pull/3948
https://github.com/STEllAR-GROUP/hpx/pull/3947

HPX Documentation, 1.5.1

• PR #39461113 - [Modules] Move the location of the generated headers

• PR #39451114 - Simplify tests and examples cmake

• PR #39431115 - Remove example module

• PR #39421116 - Add NOEXPORT option to add_hpx_{component,library}

• PR #39381117 - Use https for CDash submissions

• PR #39371118 - Add HPX_WITH_BUILD_BINARY_PACKAGE to the compiler check (refs #3935)

• PR #39361119 - Fixing installation of binaries on windows

• PR #39341120 - Add set function for sliding_semaphore max_difference

• PR #39331121 - Remove cudadevrt from compile/link flags as it breaks downstream projects

• PR #39321122 - Fixing 3929

• PR #39311123 - Adding all_to_all

• PR #39301124 - Add test demonstrating the use of broadcast with component actions

• PR #39281125 - fixed number of tasks and number of threads for heterogeneous slurm environments

• PR #39271126 - Moving Cache module’s tests into separate solution folder

• PR #39261127 - Move unit tests to cache module

• PR #39251128 - Move version check to config module

• PR #39241129 - Add schedule hint executor parameters

• PR #39231130 - Allow aligning objects bigger than the cache line size

• PR #39221131 - Add Windows builds with Travis CI

• PR #39211132 - Add ccls cache directory to gitignore

• PR #39201133 - Fix git_external fetching of tags

• PR #39051134 - Correct rostambod url. Fix typo in doc

• PR #39041135 - Fix bug in context_base.hpp

1113 https://github.com/STEllAR-GROUP/hpx/pull/3946
1114 https://github.com/STEllAR-GROUP/hpx/pull/3945
1115 https://github.com/STEllAR-GROUP/hpx/pull/3943
1116 https://github.com/STEllAR-GROUP/hpx/pull/3942
1117 https://github.com/STEllAR-GROUP/hpx/pull/3938
1118 https://github.com/STEllAR-GROUP/hpx/pull/3937
1119 https://github.com/STEllAR-GROUP/hpx/pull/3936
1120 https://github.com/STEllAR-GROUP/hpx/pull/3934
1121 https://github.com/STEllAR-GROUP/hpx/pull/3933
1122 https://github.com/STEllAR-GROUP/hpx/pull/3932
1123 https://github.com/STEllAR-GROUP/hpx/pull/3931
1124 https://github.com/STEllAR-GROUP/hpx/pull/3930
1125 https://github.com/STEllAR-GROUP/hpx/pull/3928
1126 https://github.com/STEllAR-GROUP/hpx/pull/3927
1127 https://github.com/STEllAR-GROUP/hpx/pull/3926
1128 https://github.com/STEllAR-GROUP/hpx/pull/3925
1129 https://github.com/STEllAR-GROUP/hpx/pull/3924
1130 https://github.com/STEllAR-GROUP/hpx/pull/3923
1131 https://github.com/STEllAR-GROUP/hpx/pull/3922
1132 https://github.com/STEllAR-GROUP/hpx/pull/3921
1133 https://github.com/STEllAR-GROUP/hpx/pull/3920
1134 https://github.com/STEllAR-GROUP/hpx/pull/3905
1135 https://github.com/STEllAR-GROUP/hpx/pull/3904

2.11. Releases 1263

https://github.com/STEllAR-GROUP/hpx/pull/3946
https://github.com/STEllAR-GROUP/hpx/pull/3945
https://github.com/STEllAR-GROUP/hpx/pull/3943
https://github.com/STEllAR-GROUP/hpx/pull/3942
https://github.com/STEllAR-GROUP/hpx/pull/3938
https://github.com/STEllAR-GROUP/hpx/pull/3937
https://github.com/STEllAR-GROUP/hpx/pull/3936
https://github.com/STEllAR-GROUP/hpx/pull/3934
https://github.com/STEllAR-GROUP/hpx/pull/3933
https://github.com/STEllAR-GROUP/hpx/pull/3932
https://github.com/STEllAR-GROUP/hpx/pull/3931
https://github.com/STEllAR-GROUP/hpx/pull/3930
https://github.com/STEllAR-GROUP/hpx/pull/3928
https://github.com/STEllAR-GROUP/hpx/pull/3927
https://github.com/STEllAR-GROUP/hpx/pull/3926
https://github.com/STEllAR-GROUP/hpx/pull/3925
https://github.com/STEllAR-GROUP/hpx/pull/3924
https://github.com/STEllAR-GROUP/hpx/pull/3923
https://github.com/STEllAR-GROUP/hpx/pull/3922
https://github.com/STEllAR-GROUP/hpx/pull/3921
https://github.com/STEllAR-GROUP/hpx/pull/3920
https://github.com/STEllAR-GROUP/hpx/pull/3905
https://github.com/STEllAR-GROUP/hpx/pull/3904

HPX Documentation, 1.5.1

• PR #39031136 - Adding new performance counters

• PR #39021137 - Add add_hpx_module function

• PR #39011138 - Factoring out container remapping into a separate trait

• PR #39001139 - Making sure errors during command line processing are properly reported and will not cause
assertions

• PR #38991140 - Remove old compatibility bases from make_action

• PR #38981141 - Make parameter size be of type size_t

• PR #38971142 - Making sure all tests are disabled if HPX_WITH_TESTS=OFF

• PR #38951143 - Add documentation for annotated_function

• PR #38941144 - Working around VS2019 problem with make_action

• PR #38921145 - Avoid MSVC compatibility warning in internal allocator

• PR #38911146 - Removal of the default intel config include

• PR #38881147 - Fix async_customization dataflow example and Clarify what’s being tested

• PR #38871148 - Add Doxygen documentation

• PR #38821149 - Minor docs fixes

• PR #38801150 - Updating APEX version tag

• PR #38781151 - Making sure symbols are properly exported from modules (needed for Windows/MacOS)

• PR #38771152 - Documentation

• PR #38761153 - Module hardware

• PR #38751154 - Converted typedefs in actions submodule to using directives

• PR #38741155 - Allow one to suppress target keywords in hpx_setup_target for backwards compatibility

• PR #38731156 - Add scripts to create releases and generate lists of PRs and issues

• PR #38721157 - Fix latest HTML docs location

• PR #38701158 - Module cache
1136 https://github.com/STEllAR-GROUP/hpx/pull/3903
1137 https://github.com/STEllAR-GROUP/hpx/pull/3902
1138 https://github.com/STEllAR-GROUP/hpx/pull/3901
1139 https://github.com/STEllAR-GROUP/hpx/pull/3900
1140 https://github.com/STEllAR-GROUP/hpx/pull/3899
1141 https://github.com/STEllAR-GROUP/hpx/pull/3898
1142 https://github.com/STEllAR-GROUP/hpx/pull/3897
1143 https://github.com/STEllAR-GROUP/hpx/pull/3895
1144 https://github.com/STEllAR-GROUP/hpx/pull/3894
1145 https://github.com/STEllAR-GROUP/hpx/pull/3892
1146 https://github.com/STEllAR-GROUP/hpx/pull/3891
1147 https://github.com/STEllAR-GROUP/hpx/pull/3888
1148 https://github.com/STEllAR-GROUP/hpx/pull/3887
1149 https://github.com/STEllAR-GROUP/hpx/pull/3882
1150 https://github.com/STEllAR-GROUP/hpx/pull/3880
1151 https://github.com/STEllAR-GROUP/hpx/pull/3878
1152 https://github.com/STEllAR-GROUP/hpx/pull/3877
1153 https://github.com/STEllAR-GROUP/hpx/pull/3876
1154 https://github.com/STEllAR-GROUP/hpx/pull/3875
1155 https://github.com/STEllAR-GROUP/hpx/pull/3874
1156 https://github.com/STEllAR-GROUP/hpx/pull/3873
1157 https://github.com/STEllAR-GROUP/hpx/pull/3872
1158 https://github.com/STEllAR-GROUP/hpx/pull/3870

1264 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3903
https://github.com/STEllAR-GROUP/hpx/pull/3902
https://github.com/STEllAR-GROUP/hpx/pull/3901
https://github.com/STEllAR-GROUP/hpx/pull/3900
https://github.com/STEllAR-GROUP/hpx/pull/3899
https://github.com/STEllAR-GROUP/hpx/pull/3898
https://github.com/STEllAR-GROUP/hpx/pull/3897
https://github.com/STEllAR-GROUP/hpx/pull/3895
https://github.com/STEllAR-GROUP/hpx/pull/3894
https://github.com/STEllAR-GROUP/hpx/pull/3892
https://github.com/STEllAR-GROUP/hpx/pull/3891
https://github.com/STEllAR-GROUP/hpx/pull/3888
https://github.com/STEllAR-GROUP/hpx/pull/3887
https://github.com/STEllAR-GROUP/hpx/pull/3882
https://github.com/STEllAR-GROUP/hpx/pull/3880
https://github.com/STEllAR-GROUP/hpx/pull/3878
https://github.com/STEllAR-GROUP/hpx/pull/3877
https://github.com/STEllAR-GROUP/hpx/pull/3876
https://github.com/STEllAR-GROUP/hpx/pull/3875
https://github.com/STEllAR-GROUP/hpx/pull/3874
https://github.com/STEllAR-GROUP/hpx/pull/3873
https://github.com/STEllAR-GROUP/hpx/pull/3872
https://github.com/STEllAR-GROUP/hpx/pull/3870

HPX Documentation, 1.5.1

• PR #38691159 - Post 1.3.0 version bumps

• PR #38681160 - Replace the macro HPX_ASSERT by HPX_TEST in tests

• PR #38451161 - Assertion module

• PR #38391162 - Make tuple serialization non-intrusive

• PR #38321163 - Config module

• PR #37991164 - Remove compat namespace and its contents

• PR #37011165 - MoodyCamel lockfree

• PR #34961166 - Disabling MPI’s (deprecated) C++ interface

• PR #31921167 - Move type info into hpx::debug namespace and add print helper functions

• PR #31591168 - Support Checkpointing Components

2.11.5 HPX V1.3.0 (May 23, 2019)

General changes

• Performance improvements: the schedulers have significantly reduced overheads from removing false sharing
and the parallel executor has been updated to create fewer futures.

• HPX now defaults to not turning on networking when running on one locality. This means that you can run
multiple instances on the same system without adding command line options.

• Multiple issues reported by Clang sanitizers have been fixed.

• We have added (back) single-page HTML documentation and PDF documentation.

• We have started modularizing the HPX library. This is useful both for developers and users. In the long term
users will be able to consume only parts of the HPX libraries if they do not require all the functionality that HPX
currently provides.

• We have added an implementation of function_ref.

• The barrier and latch classes have gained a few additional member functions.

1159 https://github.com/STEllAR-GROUP/hpx/pull/3869
1160 https://github.com/STEllAR-GROUP/hpx/pull/3868
1161 https://github.com/STEllAR-GROUP/hpx/pull/3845
1162 https://github.com/STEllAR-GROUP/hpx/pull/3839
1163 https://github.com/STEllAR-GROUP/hpx/pull/3832
1164 https://github.com/STEllAR-GROUP/hpx/pull/3799
1165 https://github.com/STEllAR-GROUP/hpx/pull/3701
1166 https://github.com/STEllAR-GROUP/hpx/pull/3496
1167 https://github.com/STEllAR-GROUP/hpx/pull/3192
1168 https://github.com/STEllAR-GROUP/hpx/pull/3159

2.11. Releases 1265

https://github.com/STEllAR-GROUP/hpx/pull/3869
https://github.com/STEllAR-GROUP/hpx/pull/3868
https://github.com/STEllAR-GROUP/hpx/pull/3845
https://github.com/STEllAR-GROUP/hpx/pull/3839
https://github.com/STEllAR-GROUP/hpx/pull/3832
https://github.com/STEllAR-GROUP/hpx/pull/3799
https://github.com/STEllAR-GROUP/hpx/pull/3701
https://github.com/STEllAR-GROUP/hpx/pull/3496
https://github.com/STEllAR-GROUP/hpx/pull/3192
https://github.com/STEllAR-GROUP/hpx/pull/3159

HPX Documentation, 1.5.1

Breaking changes

• Executable and library targets are now created without the _exe and _lib suffix respectively. For example,
the target 1d_stencil_1_exe is now simply called 1d_stencil_1.

• We have removed the following deprecated functionality: queue, scoped_unlock, and support for input
iterators in algorithms.

• We have turned off the compatibility layer for unwrapped by default. The functionality will
be removed in the next release. The option can still be turned on using the CMake1169 option
HPX_WITH_UNWRAPPED_SUPPORT. Likewise, inclusive_scan compatibility overloads have been
turned off by default. They can still be turned on with HPX_WITH_INCLUSIVE_SCAN_COMPATIBILITY.

• The minimum compiler and dependency versions have been updated. We now support GCC from version 5
onwards, Clang from version 4 onwards, and Boost from version 1.61.0 onwards.

• The headers for preprocessor macros have moved as a result of the functionality being moved to a separate
module. The old headers are deprecated and will be removed in a future version of HPX. You can turn off the
warnings by setting HPX_PREPROCESSOR_WITH_DEPRECATION_WARNINGS=OFF or turn off the com-
patibility headers completely with HPX_PREPROCESSOR_WITH_COMPATIBILITY_HEADERS=OFF.

Closed issues

• Issue #38631170 - shouldn’t “-faligned-new” be a usage requirement?

• Issue #38411171 - Build error with msvc 19 caused by SFINAE and C++17

• Issue #38361172 - master branch does not build with idle rate counters enabled

• Issue #38191173 - Add debug suffix to modules built in debug mode

• Issue #38171174 - HPX_INCLUDE_DIRS contains non-existent directory

• Issue #38101175 - Source groups are not created for files in modules

• Issue #38051176 - HPX won’t compile with -DHPX_WITH_APEX=TRUE

• Issue #37921177 - Barrier Hangs When Locality Zero not included

• Issue #37781178 - Replace throw() with noexcept

• Issue #37631179 - configurable sort limit per task

• Issue #37581180 - dataflow doesn’t convert future<future<T>> to future<T>

• Issue #37571181 - When compiling undefined reference to hpx::hpx_check_version_1_2 HPX V1.2.1,
Ubuntu 18.04.01 Server Edition

• Issue #37531182 - --hpx:list-counters=full crashes
1169 https://www.cmake.org
1170 https://github.com/STEllAR-GROUP/hpx/issues/3863
1171 https://github.com/STEllAR-GROUP/hpx/issues/3841
1172 https://github.com/STEllAR-GROUP/hpx/issues/3836
1173 https://github.com/STEllAR-GROUP/hpx/issues/3819
1174 https://github.com/STEllAR-GROUP/hpx/issues/3817
1175 https://github.com/STEllAR-GROUP/hpx/issues/3810
1176 https://github.com/STEllAR-GROUP/hpx/issues/3805
1177 https://github.com/STEllAR-GROUP/hpx/issues/3792
1178 https://github.com/STEllAR-GROUP/hpx/issues/3778
1179 https://github.com/STEllAR-GROUP/hpx/issues/3763
1180 https://github.com/STEllAR-GROUP/hpx/issues/3758
1181 https://github.com/STEllAR-GROUP/hpx/issues/3757
1182 https://github.com/STEllAR-GROUP/hpx/issues/3753

1266 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://github.com/STEllAR-GROUP/hpx/issues/3863
https://github.com/STEllAR-GROUP/hpx/issues/3841
https://github.com/STEllAR-GROUP/hpx/issues/3836
https://github.com/STEllAR-GROUP/hpx/issues/3819
https://github.com/STEllAR-GROUP/hpx/issues/3817
https://github.com/STEllAR-GROUP/hpx/issues/3810
https://github.com/STEllAR-GROUP/hpx/issues/3805
https://github.com/STEllAR-GROUP/hpx/issues/3792
https://github.com/STEllAR-GROUP/hpx/issues/3778
https://github.com/STEllAR-GROUP/hpx/issues/3763
https://github.com/STEllAR-GROUP/hpx/issues/3758
https://github.com/STEllAR-GROUP/hpx/issues/3757
https://github.com/STEllAR-GROUP/hpx/issues/3753

HPX Documentation, 1.5.1

• Issue #37461183 - Detection of MPI with pmix

• Issue #37441184 - Separate spinlock from same cacheline as internal data for all LCOs

• Issue #37431185 - hpxcxx’s shebang doesn’t specify the python version

• Issue #37381186 - Unable to debug parcelport on a single node

• Issue #37351187 - Latest master: Can’t compile in MSVC

• Issue #37311188 - util::bound seems broken on Clang with older libstdc++

• Issue #37241189 - Allow to pre-set command line options through environment

• Issue #37231190 - examples/resource_partitioner build issue on master branch / ubuntu 18

• Issue #37211191 - faced a building error

• Issue #37201192 - Hello World example fails to link

• Issue #37191193 - pkg-config produces invalid output: -l-pthread

• Issue #37181194 - Please make the python executable configurable through cmake

• Issue #37171195 - interested to contribute to the organisation

• Issue #36991196 - Remove ‘HPX runtime’ executable

• Issue #36981197 - Ignore all locks while handling asserts

• Issue #36891198 - Incorrect and inconsistent website structure http://stellar.cct.lsu.edu/downloads/.

• Issue #36811199 - Broken links on http://stellar.cct.lsu.edu/2015/05/hpx-archives-now-on-gmane/

• Issue #36761200 - HPX master built from source, cmake fails to link main.cpp example in docs

• Issue #36731201 - HPX build fails with std::atomic missing error

• Issue #36701202 - Generate PDF again from documentation (with Sphinx)

• Issue #36431203 - Warnings when compiling HPX 1.2.1 with gcc 9

• Issue #36411204 - Trouble with using ranges-v3 and hpx::parallel::reduce

• Issue #36391205 - util::unwrapping does not work well with member functions
1183 https://github.com/STEllAR-GROUP/hpx/issues/3746
1184 https://github.com/STEllAR-GROUP/hpx/issues/3744
1185 https://github.com/STEllAR-GROUP/hpx/issues/3743
1186 https://github.com/STEllAR-GROUP/hpx/issues/3738
1187 https://github.com/STEllAR-GROUP/hpx/issues/3735
1188 https://github.com/STEllAR-GROUP/hpx/issues/3731
1189 https://github.com/STEllAR-GROUP/hpx/issues/3724
1190 https://github.com/STEllAR-GROUP/hpx/issues/3723
1191 https://github.com/STEllAR-GROUP/hpx/issues/3721
1192 https://github.com/STEllAR-GROUP/hpx/issues/3720
1193 https://github.com/STEllAR-GROUP/hpx/issues/3719
1194 https://github.com/STEllAR-GROUP/hpx/issues/3718
1195 https://github.com/STEllAR-GROUP/hpx/issues/3717
1196 https://github.com/STEllAR-GROUP/hpx/issues/3699
1197 https://github.com/STEllAR-GROUP/hpx/issues/3698
1198 https://github.com/STEllAR-GROUP/hpx/issues/3689
1199 https://github.com/STEllAR-GROUP/hpx/issues/3681
1200 https://github.com/STEllAR-GROUP/hpx/issues/3676
1201 https://github.com/STEllAR-GROUP/hpx/issues/3673
1202 https://github.com/STEllAR-GROUP/hpx/issues/3670
1203 https://github.com/STEllAR-GROUP/hpx/issues/3643
1204 https://github.com/STEllAR-GROUP/hpx/issues/3641
1205 https://github.com/STEllAR-GROUP/hpx/issues/3639

2.11. Releases 1267

https://github.com/STEllAR-GROUP/hpx/issues/3746
https://github.com/STEllAR-GROUP/hpx/issues/3744
https://github.com/STEllAR-GROUP/hpx/issues/3743
https://github.com/STEllAR-GROUP/hpx/issues/3738
https://github.com/STEllAR-GROUP/hpx/issues/3735
https://github.com/STEllAR-GROUP/hpx/issues/3731
https://github.com/STEllAR-GROUP/hpx/issues/3724
https://github.com/STEllAR-GROUP/hpx/issues/3723
https://github.com/STEllAR-GROUP/hpx/issues/3721
https://github.com/STEllAR-GROUP/hpx/issues/3720
https://github.com/STEllAR-GROUP/hpx/issues/3719
https://github.com/STEllAR-GROUP/hpx/issues/3718
https://github.com/STEllAR-GROUP/hpx/issues/3717
https://github.com/STEllAR-GROUP/hpx/issues/3699
https://github.com/STEllAR-GROUP/hpx/issues/3698
https://github.com/STEllAR-GROUP/hpx/issues/3689
http://stellar.cct.lsu.edu/downloads/
https://github.com/STEllAR-GROUP/hpx/issues/3681
http://stellar.cct.lsu.edu/2015/05/hpx-archives-now-on-gmane/
https://github.com/STEllAR-GROUP/hpx/issues/3676
https://github.com/STEllAR-GROUP/hpx/issues/3673
https://github.com/STEllAR-GROUP/hpx/issues/3670
https://github.com/STEllAR-GROUP/hpx/issues/3643
https://github.com/STEllAR-GROUP/hpx/issues/3641
https://github.com/STEllAR-GROUP/hpx/issues/3639

HPX Documentation, 1.5.1

• Issue #36341206 - The build fails if shared_future<>::then is called with a thread executor

• Issue #36221207 - VTune Amplifier 2019 not working with use_itt_notify=1

• Issue #36161208 - HPX Fails to Build with CUDA 10

• Issue #36121209 - False sharing of scheduling counters

• Issue #36091210 - executor_parameters timeout with gcc <= 7 and Debug mode

• Issue #36011211 - Misleading error message on power pc for rdtsc and rdtscp

• Issue #35981212 - Build of some examples fails when using Vc

• Issue #35941213 - Error: The number of OS threads requested (20) does not match the number of threads to bind
(12): HPX(bad_parameter)

• Issue #35921214 - Undefined Reference Error

• Issue #35891215 - include could not find load file: HPX_Utils.cmake

• Issue #35871216 - HPX won’t compile on POWER8 with Clang 7

• Issue #35831217 - Fedora and openSUSE instructions missing on “Distribution Packages” page

• Issue #35781218 - Build error when configuring with HPX_HAVE_ALGORITHM_INPUT_ITERATOR_SUPPORT=ON

• Issue #35751219 - Merge openSUSE reproducible patch

• Issue #35701220 - Update HPX to work with the latest VC version

• Issue #35671221 - Build succeed and make failed for hpx:cout

• Issue #35651222 - Polymorphic simple component destructor not getting called

• Issue #35591223 - 1.2.0 is missing from download page

• Issue #35541224 - Clang 6.0 warning of hiding overloaded virtual function

• Issue #35101225 - Build on ppc64 fails

• Issue #34821226 - Improve error message when HPX_WITH_MAX_CPU_COUNT is too low for given system

• Issue #34531227 - Two HPX applications can’t run at the same time.

• Issue #34521228 - Scaling issue on the change to 2 NUMA domains

1206 https://github.com/STEllAR-GROUP/hpx/issues/3634
1207 https://github.com/STEllAR-GROUP/hpx/issues/3622
1208 https://github.com/STEllAR-GROUP/hpx/issues/3616
1209 https://github.com/STEllAR-GROUP/hpx/issues/3612
1210 https://github.com/STEllAR-GROUP/hpx/issues/3609
1211 https://github.com/STEllAR-GROUP/hpx/issues/3601
1212 https://github.com/STEllAR-GROUP/hpx/issues/3598
1213 https://github.com/STEllAR-GROUP/hpx/issues/3594
1214 https://github.com/STEllAR-GROUP/hpx/issues/3592
1215 https://github.com/STEllAR-GROUP/hpx/issues/3589
1216 https://github.com/STEllAR-GROUP/hpx/issues/3587
1217 https://github.com/STEllAR-GROUP/hpx/issues/3583
1218 https://github.com/STEllAR-GROUP/hpx/issues/3578
1219 https://github.com/STEllAR-GROUP/hpx/issues/3575
1220 https://github.com/STEllAR-GROUP/hpx/issues/3570
1221 https://github.com/STEllAR-GROUP/hpx/issues/3567
1222 https://github.com/STEllAR-GROUP/hpx/issues/3565
1223 https://github.com/STEllAR-GROUP/hpx/issues/3559
1224 https://github.com/STEllAR-GROUP/hpx/issues/3554
1225 https://github.com/STEllAR-GROUP/hpx/issues/3510
1226 https://github.com/STEllAR-GROUP/hpx/issues/3482
1227 https://github.com/STEllAR-GROUP/hpx/issues/3453
1228 https://github.com/STEllAR-GROUP/hpx/issues/3452

1268 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3634
https://github.com/STEllAR-GROUP/hpx/issues/3622
https://github.com/STEllAR-GROUP/hpx/issues/3616
https://github.com/STEllAR-GROUP/hpx/issues/3612
https://github.com/STEllAR-GROUP/hpx/issues/3609
https://github.com/STEllAR-GROUP/hpx/issues/3601
https://github.com/STEllAR-GROUP/hpx/issues/3598
https://github.com/STEllAR-GROUP/hpx/issues/3594
https://github.com/STEllAR-GROUP/hpx/issues/3592
https://github.com/STEllAR-GROUP/hpx/issues/3589
https://github.com/STEllAR-GROUP/hpx/issues/3587
https://github.com/STEllAR-GROUP/hpx/issues/3583
https://github.com/STEllAR-GROUP/hpx/issues/3578
https://github.com/STEllAR-GROUP/hpx/issues/3575
https://github.com/STEllAR-GROUP/hpx/issues/3570
https://github.com/STEllAR-GROUP/hpx/issues/3567
https://github.com/STEllAR-GROUP/hpx/issues/3565
https://github.com/STEllAR-GROUP/hpx/issues/3559
https://github.com/STEllAR-GROUP/hpx/issues/3554
https://github.com/STEllAR-GROUP/hpx/issues/3510
https://github.com/STEllAR-GROUP/hpx/issues/3482
https://github.com/STEllAR-GROUP/hpx/issues/3453
https://github.com/STEllAR-GROUP/hpx/issues/3452

HPX Documentation, 1.5.1

• Issue #34421229 - HPX set_difference, set_intersection failure cases

• Issue #34371230 - Ensure parent_task pointer when child task is created and child/parent are on same locality

• Issue #32551231 - Suspension with lock for --hpx:list-component-types

• Issue #30341232 - Use C++17 structured bindings for serialization

• Issue #29991233 - Change thread scheduling use of size_t for thread indexing

Closed pull requests

• PR #38651234 - adds hpx_target_compile_option_if_available

• PR #38641235 - Helper functions that are useful in numa binding and testing of allocator

• PR #38621236 - Temporary fix to local_dataflow_boost_small_vector test

• PR #38601237 - Add cache line padding to intermediate results in for loop reduction

• PR #38591238 - Remove HPX_TLL_PUBLIC and HPX_TLL_PRIVATE from CMake files

• PR #38581239 - Add compile flags and definitions to modules

• PR #38511240 - update hpxmp release tag to v0.2.0

• PR #38491241 - Correct BOOST_ROOT variable name in quick start guide

• PR #38471242 - Fix attach_debugger configuration option

• PR #38461243 - Add tests for libs header tests

• PR #38441244 - Fixing source_groups in preprocessor module to properly handle compatibility headers

• PR #38431245 - This fixes the launch_process/launched_process pair of tests

• PR #38421246 - Fix macro call with ITTNOTIFY enabled

• PR #38401247 - Fixing SLURM environment parsing

• PR #38371248 - Fixing misplaced #endif

• PR #38351249 - make all latch members protected for consistency

• PR #38341250 - Disable transpose_block_numa example on CircleCI

1229 https://github.com/STEllAR-GROUP/hpx/issues/3442
1230 https://github.com/STEllAR-GROUP/hpx/issues/3437
1231 https://github.com/STEllAR-GROUP/hpx/issues/3255
1232 https://github.com/STEllAR-GROUP/hpx/issues/3034
1233 https://github.com/STEllAR-GROUP/hpx/issues/2999
1234 https://github.com/STEllAR-GROUP/hpx/pull/3865
1235 https://github.com/STEllAR-GROUP/hpx/pull/3864
1236 https://github.com/STEllAR-GROUP/hpx/pull/3862
1237 https://github.com/STEllAR-GROUP/hpx/pull/3860
1238 https://github.com/STEllAR-GROUP/hpx/pull/3859
1239 https://github.com/STEllAR-GROUP/hpx/pull/3858
1240 https://github.com/STEllAR-GROUP/hpx/pull/3851
1241 https://github.com/STEllAR-GROUP/hpx/pull/3849
1242 https://github.com/STEllAR-GROUP/hpx/pull/3847
1243 https://github.com/STEllAR-GROUP/hpx/pull/3846
1244 https://github.com/STEllAR-GROUP/hpx/pull/3844
1245 https://github.com/STEllAR-GROUP/hpx/pull/3843
1246 https://github.com/STEllAR-GROUP/hpx/pull/3842
1247 https://github.com/STEllAR-GROUP/hpx/pull/3840
1248 https://github.com/STEllAR-GROUP/hpx/pull/3837
1249 https://github.com/STEllAR-GROUP/hpx/pull/3835
1250 https://github.com/STEllAR-GROUP/hpx/pull/3834

2.11. Releases 1269

https://github.com/STEllAR-GROUP/hpx/issues/3442
https://github.com/STEllAR-GROUP/hpx/issues/3437
https://github.com/STEllAR-GROUP/hpx/issues/3255
https://github.com/STEllAR-GROUP/hpx/issues/3034
https://github.com/STEllAR-GROUP/hpx/issues/2999
https://github.com/STEllAR-GROUP/hpx/pull/3865
https://github.com/STEllAR-GROUP/hpx/pull/3864
https://github.com/STEllAR-GROUP/hpx/pull/3862
https://github.com/STEllAR-GROUP/hpx/pull/3860
https://github.com/STEllAR-GROUP/hpx/pull/3859
https://github.com/STEllAR-GROUP/hpx/pull/3858
https://github.com/STEllAR-GROUP/hpx/pull/3851
https://github.com/STEllAR-GROUP/hpx/pull/3849
https://github.com/STEllAR-GROUP/hpx/pull/3847
https://github.com/STEllAR-GROUP/hpx/pull/3846
https://github.com/STEllAR-GROUP/hpx/pull/3844
https://github.com/STEllAR-GROUP/hpx/pull/3843
https://github.com/STEllAR-GROUP/hpx/pull/3842
https://github.com/STEllAR-GROUP/hpx/pull/3840
https://github.com/STEllAR-GROUP/hpx/pull/3837
https://github.com/STEllAR-GROUP/hpx/pull/3835
https://github.com/STEllAR-GROUP/hpx/pull/3834

HPX Documentation, 1.5.1

• PR #38331251 - make latch counter_ protected for deriving latch in hpxmp

• PR #38311252 - Fix CircleCI config for modules

• PR #38301253 - minor fix: option HPX_WITH_TEST was not working correctly

• PR #38281254 - Avoid for binaries that depend on HPX to directly link against internal modules

• PR #38271255 - Adding shortcut for hpx::get_ptr<>(sync, id) for a local, non-migratable objects

• PR #38261256 - Fix and update modules documentation

• PR #38251257 - Updating default APEX version to 2.1.3 with HPX

• PR #38231258 - Fix pkgconfig libs handling

• PR #38221259 - Change includes in hpx_wrap.cpp to more specific includes

• PR #38211260 - Disable barrier_3792 test when networking is disabled

• PR #38201261 - Assorted CMake fixes

• PR #38151262 - Removing left-over debug output

• PR #38141263 - Allow setting default scheduler mode via the configuration database

• PR #38131264 - Make the deprecation warnings issued by the old pp headers optional

• PR #38121265 - Windows requires to handle symlinks to directories differently from those linking files

• PR #38111266 - Clean up PP module and library skeleton

• PR #38061267 - Moving include path configuration to before APEX

• PR #38041268 - Fix latch

• PR #38031269 - Update hpxcxx to look at lib64 and use python3

• PR #38021270 - Numa binding allocator

• PR #38011271 - Remove duplicated includes

• PR #38001272 - Attempt to fix Posix context switching after lazy init changes

• PR #37981273 - count and count_if accepts different iterator types

1251 https://github.com/STEllAR-GROUP/hpx/pull/3833
1252 https://github.com/STEllAR-GROUP/hpx/pull/3831
1253 https://github.com/STEllAR-GROUP/hpx/pull/3830
1254 https://github.com/STEllAR-GROUP/hpx/pull/3828
1255 https://github.com/STEllAR-GROUP/hpx/pull/3827
1256 https://github.com/STEllAR-GROUP/hpx/pull/3826
1257 https://github.com/STEllAR-GROUP/hpx/pull/3825
1258 https://github.com/STEllAR-GROUP/hpx/pull/3823
1259 https://github.com/STEllAR-GROUP/hpx/pull/3822
1260 https://github.com/STEllAR-GROUP/hpx/pull/3821
1261 https://github.com/STEllAR-GROUP/hpx/pull/3820
1262 https://github.com/STEllAR-GROUP/hpx/pull/3815
1263 https://github.com/STEllAR-GROUP/hpx/pull/3814
1264 https://github.com/STEllAR-GROUP/hpx/pull/3813
1265 https://github.com/STEllAR-GROUP/hpx/pull/3812
1266 https://github.com/STEllAR-GROUP/hpx/pull/3811
1267 https://github.com/STEllAR-GROUP/hpx/pull/3806
1268 https://github.com/STEllAR-GROUP/hpx/pull/3804
1269 https://github.com/STEllAR-GROUP/hpx/pull/3803
1270 https://github.com/STEllAR-GROUP/hpx/pull/3802
1271 https://github.com/STEllAR-GROUP/hpx/pull/3801
1272 https://github.com/STEllAR-GROUP/hpx/pull/3800
1273 https://github.com/STEllAR-GROUP/hpx/pull/3798

1270 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3833
https://github.com/STEllAR-GROUP/hpx/pull/3831
https://github.com/STEllAR-GROUP/hpx/pull/3830
https://github.com/STEllAR-GROUP/hpx/pull/3828
https://github.com/STEllAR-GROUP/hpx/pull/3827
https://github.com/STEllAR-GROUP/hpx/pull/3826
https://github.com/STEllAR-GROUP/hpx/pull/3825
https://github.com/STEllAR-GROUP/hpx/pull/3823
https://github.com/STEllAR-GROUP/hpx/pull/3822
https://github.com/STEllAR-GROUP/hpx/pull/3821
https://github.com/STEllAR-GROUP/hpx/pull/3820
https://github.com/STEllAR-GROUP/hpx/pull/3815
https://github.com/STEllAR-GROUP/hpx/pull/3814
https://github.com/STEllAR-GROUP/hpx/pull/3813
https://github.com/STEllAR-GROUP/hpx/pull/3812
https://github.com/STEllAR-GROUP/hpx/pull/3811
https://github.com/STEllAR-GROUP/hpx/pull/3806
https://github.com/STEllAR-GROUP/hpx/pull/3804
https://github.com/STEllAR-GROUP/hpx/pull/3803
https://github.com/STEllAR-GROUP/hpx/pull/3802
https://github.com/STEllAR-GROUP/hpx/pull/3801
https://github.com/STEllAR-GROUP/hpx/pull/3800
https://github.com/STEllAR-GROUP/hpx/pull/3798

HPX Documentation, 1.5.1

• PR #37971274 - Adding a couple of override keywords to overloaded virtual functions

• PR #37961275 - Re-enable testing all schedulers in shutdown_suspended_test

• PR #37951276 - Change std::terminate to std::abort in SIGSEGV handler

• PR #37941277 - Fixing #3792

• PR #37931278 - Extending migrate_polymorphic_component unit test

• PR #37911279 - Change throw() to noexcept

• PR #37901280 - Remove deprecated options for 1.3.0 release

• PR #37891281 - Remove Boost filesystem compatibility header

• PR #37881282 - Disabled even more spots that should not execute if networking is disabled

• PR #37871283 - Bump minimal boost supported version to 1.61.0

• PR #37861284 - Bump minimum required versions for 1.3.0 release

• PR #37851285 - Explicitly set number of jobs for all ninja invocations on CircleCI

• PR #37841286 - Fix leak and address sanitizer problems

• PR #37831287 - Disabled even more spots that should not execute is networking is disabled

• PR #37821288 - Cherry-picked tuple and thread_init_data fixes from #3701

• PR #37811289 - Fix generic context coroutines after lazy stack allocation changes

• PR #37801290 - Rename hello world examples

• PR #37761291 - Sort algorithms now use the supplied chunker to determine the required minimal chunk size

• PR #37751292 - Disable Boost auto-linking

• PR #37741293 - Tag and push stable builds

• PR #37731294 - Enable migration of polymorphic components

• PR #37711295 - Fix link to stackoverflow in documentation

• PR #37701296 - Replacing constexpr if in brace-serialization code

1274 https://github.com/STEllAR-GROUP/hpx/pull/3797
1275 https://github.com/STEllAR-GROUP/hpx/pull/3796
1276 https://github.com/STEllAR-GROUP/hpx/pull/3795
1277 https://github.com/STEllAR-GROUP/hpx/pull/3794
1278 https://github.com/STEllAR-GROUP/hpx/pull/3793
1279 https://github.com/STEllAR-GROUP/hpx/pull/3791
1280 https://github.com/STEllAR-GROUP/hpx/pull/3790
1281 https://github.com/STEllAR-GROUP/hpx/pull/3789
1282 https://github.com/STEllAR-GROUP/hpx/pull/3788
1283 https://github.com/STEllAR-GROUP/hpx/pull/3787
1284 https://github.com/STEllAR-GROUP/hpx/pull/3786
1285 https://github.com/STEllAR-GROUP/hpx/pull/3785
1286 https://github.com/STEllAR-GROUP/hpx/pull/3784
1287 https://github.com/STEllAR-GROUP/hpx/pull/3783
1288 https://github.com/STEllAR-GROUP/hpx/pull/3782
1289 https://github.com/STEllAR-GROUP/hpx/pull/3781
1290 https://github.com/STEllAR-GROUP/hpx/pull/3780
1291 https://github.com/STEllAR-GROUP/hpx/pull/3776
1292 https://github.com/STEllAR-GROUP/hpx/pull/3775
1293 https://github.com/STEllAR-GROUP/hpx/pull/3774
1294 https://github.com/STEllAR-GROUP/hpx/pull/3773
1295 https://github.com/STEllAR-GROUP/hpx/pull/3771
1296 https://github.com/STEllAR-GROUP/hpx/pull/3770

2.11. Releases 1271

https://github.com/STEllAR-GROUP/hpx/pull/3797
https://github.com/STEllAR-GROUP/hpx/pull/3796
https://github.com/STEllAR-GROUP/hpx/pull/3795
https://github.com/STEllAR-GROUP/hpx/pull/3794
https://github.com/STEllAR-GROUP/hpx/pull/3793
https://github.com/STEllAR-GROUP/hpx/pull/3791
https://github.com/STEllAR-GROUP/hpx/pull/3790
https://github.com/STEllAR-GROUP/hpx/pull/3789
https://github.com/STEllAR-GROUP/hpx/pull/3788
https://github.com/STEllAR-GROUP/hpx/pull/3787
https://github.com/STEllAR-GROUP/hpx/pull/3786
https://github.com/STEllAR-GROUP/hpx/pull/3785
https://github.com/STEllAR-GROUP/hpx/pull/3784
https://github.com/STEllAR-GROUP/hpx/pull/3783
https://github.com/STEllAR-GROUP/hpx/pull/3782
https://github.com/STEllAR-GROUP/hpx/pull/3781
https://github.com/STEllAR-GROUP/hpx/pull/3780
https://github.com/STEllAR-GROUP/hpx/pull/3776
https://github.com/STEllAR-GROUP/hpx/pull/3775
https://github.com/STEllAR-GROUP/hpx/pull/3774
https://github.com/STEllAR-GROUP/hpx/pull/3773
https://github.com/STEllAR-GROUP/hpx/pull/3771
https://github.com/STEllAR-GROUP/hpx/pull/3770

HPX Documentation, 1.5.1

• PR #37691297 - Fix SIGSEGV handler

• PR #37681298 - Adding flags to scheduler allowing to control thread stealing and idle back-off

• PR #37671299 - Fix help formatting in hpxrun.py

• PR #37651300 - Fix a couple of bugs in the thread test

• PR #37641301 - Workaround for SFINAE regression in msvc14.2

• PR #37621302 - Prevent MSVC from prematurely instantiating things

• PR #37611303 - Update python scripts to work with python 3

• PR #37601304 - Fix callable vtable for GCC4.9

• PR #37591305 - Rename PAGE_SIZE to PAGE_SIZE_ because AppleClang

• PR #37551306 - Making sure locks are not held during suspension

• PR #37541307 - Disable more code if networking is not available/not enabled

• PR #37521308 - Move util::format implementation to source file

• PR #37511309 - Fixing problems with lcos::barrier and iostreams

• PR #37501310 - Change error message to take into account use_guard_page setting

• PR #37491311 - Fix lifetime problem in run_as_hpx_thread

• PR #37481312 - Fixed unusable behavior of the clang code analyzer.

• PR #37471313 - Added PMIX_RANK to the defaults of HPX_WITH_PARCELPORT_MPI_ENV.

• PR #37451314 - Introduced cache_aligned_data and cache_line_data helper structure

• PR #37421315 - Remove more unused functionality from util/logging

• PR #37401316 - Fix includes in partitioned vector tests

• PR #37391317 - More fixes to make sure that std::flush really flushes all output

• PR #37371318 - Fix potential shutdown problems

• PR #37361319 - Fix guided_pool_executor after dataflow changes caused compilation fail

1297 https://github.com/STEllAR-GROUP/hpx/pull/3769
1298 https://github.com/STEllAR-GROUP/hpx/pull/3768
1299 https://github.com/STEllAR-GROUP/hpx/pull/3767
1300 https://github.com/STEllAR-GROUP/hpx/pull/3765
1301 https://github.com/STEllAR-GROUP/hpx/pull/3764
1302 https://github.com/STEllAR-GROUP/hpx/pull/3762
1303 https://github.com/STEllAR-GROUP/hpx/pull/3761
1304 https://github.com/STEllAR-GROUP/hpx/pull/3760
1305 https://github.com/STEllAR-GROUP/hpx/pull/3759
1306 https://github.com/STEllAR-GROUP/hpx/pull/3755
1307 https://github.com/STEllAR-GROUP/hpx/pull/3754
1308 https://github.com/STEllAR-GROUP/hpx/pull/3752
1309 https://github.com/STEllAR-GROUP/hpx/pull/3751
1310 https://github.com/STEllAR-GROUP/hpx/pull/3750
1311 https://github.com/STEllAR-GROUP/hpx/pull/3749
1312 https://github.com/STEllAR-GROUP/hpx/pull/3748
1313 https://github.com/STEllAR-GROUP/hpx/pull/3747
1314 https://github.com/STEllAR-GROUP/hpx/pull/3745
1315 https://github.com/STEllAR-GROUP/hpx/pull/3742
1316 https://github.com/STEllAR-GROUP/hpx/pull/3740
1317 https://github.com/STEllAR-GROUP/hpx/pull/3739
1318 https://github.com/STEllAR-GROUP/hpx/pull/3737
1319 https://github.com/STEllAR-GROUP/hpx/pull/3736

1272 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3769
https://github.com/STEllAR-GROUP/hpx/pull/3768
https://github.com/STEllAR-GROUP/hpx/pull/3767
https://github.com/STEllAR-GROUP/hpx/pull/3765
https://github.com/STEllAR-GROUP/hpx/pull/3764
https://github.com/STEllAR-GROUP/hpx/pull/3762
https://github.com/STEllAR-GROUP/hpx/pull/3761
https://github.com/STEllAR-GROUP/hpx/pull/3760
https://github.com/STEllAR-GROUP/hpx/pull/3759
https://github.com/STEllAR-GROUP/hpx/pull/3755
https://github.com/STEllAR-GROUP/hpx/pull/3754
https://github.com/STEllAR-GROUP/hpx/pull/3752
https://github.com/STEllAR-GROUP/hpx/pull/3751
https://github.com/STEllAR-GROUP/hpx/pull/3750
https://github.com/STEllAR-GROUP/hpx/pull/3749
https://github.com/STEllAR-GROUP/hpx/pull/3748
https://github.com/STEllAR-GROUP/hpx/pull/3747
https://github.com/STEllAR-GROUP/hpx/pull/3745
https://github.com/STEllAR-GROUP/hpx/pull/3742
https://github.com/STEllAR-GROUP/hpx/pull/3740
https://github.com/STEllAR-GROUP/hpx/pull/3739
https://github.com/STEllAR-GROUP/hpx/pull/3737
https://github.com/STEllAR-GROUP/hpx/pull/3736

HPX Documentation, 1.5.1

• PR #37341320 - Limiting executor

• PR #37321321 - More constrained bound constructors

• PR #37301322 - Attempt to fix deadlocks during component loading

• PR #37291323 - Add latch member function count_up and reset, requested by hpxMP

• PR #37281324 - Send even empty buffers on hpx::endl and hpx::flush

• PR #37271325 - Adding example demonstrating how to customize the memory management for a component

• PR #37261326 - Adding support for passing command line options through the HPX_COMMANDLINE_OPTIONS
environment variable

• PR #37221327 - Document known broken OpenMPI builds

• PR #37161328 - Add barrier reset function, requested by hpxMP for reusing barrier

• PR #37151329 - More work on functions and vtables

• PR #37141330 - Generate single-page HTML, PDF, manpage from documentation

• PR #37131331 - Updating default APEX version to 2.1.2

• PR #37121332 - Update release procedure

• PR #37101333 - Fix the C++11 build, after #3704

• PR #37091334 - Move some component_registry functionality to source file

• PR #37081335 - Ignore all locks while handling assertions

• PR #37071336 - Remove obsolete hpx runtime executable

• PR #37051337 - Fix and simplify make_ready_future overload sets

• PR #37041338 - Reduce use of binders

• PR #37031339 - Ini

• PR #37021340 - Fixing CUDA compiler errors

• PR #37001341 - Added barrier::increment function to increase total number of thread

• PR #36971342 - One more attempt to fix migration. . .

1320 https://github.com/STEllAR-GROUP/hpx/pull/3734
1321 https://github.com/STEllAR-GROUP/hpx/pull/3732
1322 https://github.com/STEllAR-GROUP/hpx/pull/3730
1323 https://github.com/STEllAR-GROUP/hpx/pull/3729
1324 https://github.com/STEllAR-GROUP/hpx/pull/3728
1325 https://github.com/STEllAR-GROUP/hpx/pull/3727
1326 https://github.com/STEllAR-GROUP/hpx/pull/3726
1327 https://github.com/STEllAR-GROUP/hpx/pull/3722
1328 https://github.com/STEllAR-GROUP/hpx/pull/3716
1329 https://github.com/STEllAR-GROUP/hpx/pull/3715
1330 https://github.com/STEllAR-GROUP/hpx/pull/3714
1331 https://github.com/STEllAR-GROUP/hpx/pull/3713
1332 https://github.com/STEllAR-GROUP/hpx/pull/3712
1333 https://github.com/STEllAR-GROUP/hpx/pull/3710
1334 https://github.com/STEllAR-GROUP/hpx/pull/3709
1335 https://github.com/STEllAR-GROUP/hpx/pull/3708
1336 https://github.com/STEllAR-GROUP/hpx/pull/3707
1337 https://github.com/STEllAR-GROUP/hpx/pull/3705
1338 https://github.com/STEllAR-GROUP/hpx/pull/3704
1339 https://github.com/STEllAR-GROUP/hpx/pull/3703
1340 https://github.com/STEllAR-GROUP/hpx/pull/3702
1341 https://github.com/STEllAR-GROUP/hpx/pull/3700
1342 https://github.com/STEllAR-GROUP/hpx/pull/3697

2.11. Releases 1273

https://github.com/STEllAR-GROUP/hpx/pull/3734
https://github.com/STEllAR-GROUP/hpx/pull/3732
https://github.com/STEllAR-GROUP/hpx/pull/3730
https://github.com/STEllAR-GROUP/hpx/pull/3729
https://github.com/STEllAR-GROUP/hpx/pull/3728
https://github.com/STEllAR-GROUP/hpx/pull/3727
https://github.com/STEllAR-GROUP/hpx/pull/3726
https://github.com/STEllAR-GROUP/hpx/pull/3722
https://github.com/STEllAR-GROUP/hpx/pull/3716
https://github.com/STEllAR-GROUP/hpx/pull/3715
https://github.com/STEllAR-GROUP/hpx/pull/3714
https://github.com/STEllAR-GROUP/hpx/pull/3713
https://github.com/STEllAR-GROUP/hpx/pull/3712
https://github.com/STEllAR-GROUP/hpx/pull/3710
https://github.com/STEllAR-GROUP/hpx/pull/3709
https://github.com/STEllAR-GROUP/hpx/pull/3708
https://github.com/STEllAR-GROUP/hpx/pull/3707
https://github.com/STEllAR-GROUP/hpx/pull/3705
https://github.com/STEllAR-GROUP/hpx/pull/3704
https://github.com/STEllAR-GROUP/hpx/pull/3703
https://github.com/STEllAR-GROUP/hpx/pull/3702
https://github.com/STEllAR-GROUP/hpx/pull/3700
https://github.com/STEllAR-GROUP/hpx/pull/3697

HPX Documentation, 1.5.1

• PR #36941343 - Fixing component migration

• PR #36931344 - Print thread state when getting disallowed value in set_thread_state

• PR #36921345 - Only disable constexpr with clang-cuda, not nvcc+gcc

• PR #36911346 - Link with libsupc++ if needed for thread_local

• PR #36901347 - Remove thousands separators in set_operations_3442 to comply with C++11

• PR #36881348 - Decouple serialization from function vtables

• PR #36871349 - Fix a couple of test failures

• PR #36861350 - Make sure tests.unit.build are run after install on CircleCI

• PR #36851351 - Revise quickstart CMakeLists.txt explanation

• PR #36841352 - Provide concept emulation for Ranges-TS concepts

• PR #36831353 - Ignore uninitialized chunks

• PR #36821354 - Ignore uninitialized chunks. Check proper indices.

• PR #36801355 - Ignore uninitialized chunks. Check proper range indices

• PR #36791356 - Simplify basic action implementations

• PR #36781357 - Making sure HPX_HAVE_LIBATOMIC is unset before checking

• PR #36771358 - Fix generated full version number to be usable in expressions

• PR #36741359 - Reduce functional utilities call depth

• PR #36721360 - Change new build system to use existing macros related to pseudo dependencies

• PR #36691361 - Remove indirection in function_ref when thread description is disabled

• PR #36681362 - Unbreaking async_*cb* tests

• PR #36671363 - Generate version.hpp

• PR #36651364 - Enabling MPI parcelport for gitlab runners

• PR #36641365 - making clang-tidy work properly again

1343 https://github.com/STEllAR-GROUP/hpx/pull/3694
1344 https://github.com/STEllAR-GROUP/hpx/pull/3693
1345 https://github.com/STEllAR-GROUP/hpx/pull/3692
1346 https://github.com/STEllAR-GROUP/hpx/pull/3691
1347 https://github.com/STEllAR-GROUP/hpx/pull/3690
1348 https://github.com/STEllAR-GROUP/hpx/pull/3688
1349 https://github.com/STEllAR-GROUP/hpx/pull/3687
1350 https://github.com/STEllAR-GROUP/hpx/pull/3686
1351 https://github.com/STEllAR-GROUP/hpx/pull/3685
1352 https://github.com/STEllAR-GROUP/hpx/pull/3684
1353 https://github.com/STEllAR-GROUP/hpx/pull/3683
1354 https://github.com/STEllAR-GROUP/hpx/pull/3682
1355 https://github.com/STEllAR-GROUP/hpx/pull/3680
1356 https://github.com/STEllAR-GROUP/hpx/pull/3679
1357 https://github.com/STEllAR-GROUP/hpx/pull/3678
1358 https://github.com/STEllAR-GROUP/hpx/pull/3677
1359 https://github.com/STEllAR-GROUP/hpx/pull/3674
1360 https://github.com/STEllAR-GROUP/hpx/pull/3672
1361 https://github.com/STEllAR-GROUP/hpx/pull/3669
1362 https://github.com/STEllAR-GROUP/hpx/pull/3668
1363 https://github.com/STEllAR-GROUP/hpx/pull/3667
1364 https://github.com/STEllAR-GROUP/hpx/pull/3665
1365 https://github.com/STEllAR-GROUP/hpx/pull/3664

1274 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3694
https://github.com/STEllAR-GROUP/hpx/pull/3693
https://github.com/STEllAR-GROUP/hpx/pull/3692
https://github.com/STEllAR-GROUP/hpx/pull/3691
https://github.com/STEllAR-GROUP/hpx/pull/3690
https://github.com/STEllAR-GROUP/hpx/pull/3688
https://github.com/STEllAR-GROUP/hpx/pull/3687
https://github.com/STEllAR-GROUP/hpx/pull/3686
https://github.com/STEllAR-GROUP/hpx/pull/3685
https://github.com/STEllAR-GROUP/hpx/pull/3684
https://github.com/STEllAR-GROUP/hpx/pull/3683
https://github.com/STEllAR-GROUP/hpx/pull/3682
https://github.com/STEllAR-GROUP/hpx/pull/3680
https://github.com/STEllAR-GROUP/hpx/pull/3679
https://github.com/STEllAR-GROUP/hpx/pull/3678
https://github.com/STEllAR-GROUP/hpx/pull/3677
https://github.com/STEllAR-GROUP/hpx/pull/3674
https://github.com/STEllAR-GROUP/hpx/pull/3672
https://github.com/STEllAR-GROUP/hpx/pull/3669
https://github.com/STEllAR-GROUP/hpx/pull/3668
https://github.com/STEllAR-GROUP/hpx/pull/3667
https://github.com/STEllAR-GROUP/hpx/pull/3665
https://github.com/STEllAR-GROUP/hpx/pull/3664

HPX Documentation, 1.5.1

• PR #36621366 - Attempt to fix exception handling

• PR #36611367 - Move lcos::latch to source file

• PR #36601368 - Fix accidentally explicit gid_type default constructor

• PR #36591369 - Parallel executor latch

• PR #36581370 - Fixing execution_parameters

• PR #36571371 - Avoid dangling references in wait_all

• PR #36561372 - Avoiding lifetime problems with sync_put_parcel

• PR #36551373 - Fixing nullptr dereference inside of function

• PR #36521374 - Attempt to fix thread_map_type definition with C++11

• PR #36501375 - Allowing for end iterator being different from begin iterator

• PR #36491376 - Added architecture identification to cmake to be able to detect timestamp support

• PR #36451377 - Enabling sanitizers on gitlab runner

• PR #36441378 - Attempt to tackle timeouts during startup

• PR #36421379 - Cleanup parallel partitioners

• PR #36401380 - Dataflow now works with functions that return a reference

• PR #36371381 - Merging the executor-enabled overloads of shared_future<>::then

• PR #36331382 - Replace deprecated boost endian macros

• PR #36321383 - Add instructions on getting HPX to documentation

• PR #36311384 - Simplify parcel creation

• PR #36301385 - Small additions and fixes to release procedure

• PR #36291386 - Modular pp

• PR #36271387 - Implement util::function_ref

• PR #36261388 - Fix cancelable_action_client example

1366 https://github.com/STEllAR-GROUP/hpx/pull/3662
1367 https://github.com/STEllAR-GROUP/hpx/pull/3661
1368 https://github.com/STEllAR-GROUP/hpx/pull/3660
1369 https://github.com/STEllAR-GROUP/hpx/pull/3659
1370 https://github.com/STEllAR-GROUP/hpx/pull/3658
1371 https://github.com/STEllAR-GROUP/hpx/pull/3657
1372 https://github.com/STEllAR-GROUP/hpx/pull/3656
1373 https://github.com/STEllAR-GROUP/hpx/pull/3655
1374 https://github.com/STEllAR-GROUP/hpx/pull/3652
1375 https://github.com/STEllAR-GROUP/hpx/pull/3650
1376 https://github.com/STEllAR-GROUP/hpx/pull/3649
1377 https://github.com/STEllAR-GROUP/hpx/pull/3645
1378 https://github.com/STEllAR-GROUP/hpx/pull/3644
1379 https://github.com/STEllAR-GROUP/hpx/pull/3642
1380 https://github.com/STEllAR-GROUP/hpx/pull/3640
1381 https://github.com/STEllAR-GROUP/hpx/pull/3637
1382 https://github.com/STEllAR-GROUP/hpx/pull/3633
1383 https://github.com/STEllAR-GROUP/hpx/pull/3632
1384 https://github.com/STEllAR-GROUP/hpx/pull/3631
1385 https://github.com/STEllAR-GROUP/hpx/pull/3630
1386 https://github.com/STEllAR-GROUP/hpx/pull/3629
1387 https://github.com/STEllAR-GROUP/hpx/pull/3627
1388 https://github.com/STEllAR-GROUP/hpx/pull/3626

2.11. Releases 1275

https://github.com/STEllAR-GROUP/hpx/pull/3662
https://github.com/STEllAR-GROUP/hpx/pull/3661
https://github.com/STEllAR-GROUP/hpx/pull/3660
https://github.com/STEllAR-GROUP/hpx/pull/3659
https://github.com/STEllAR-GROUP/hpx/pull/3658
https://github.com/STEllAR-GROUP/hpx/pull/3657
https://github.com/STEllAR-GROUP/hpx/pull/3656
https://github.com/STEllAR-GROUP/hpx/pull/3655
https://github.com/STEllAR-GROUP/hpx/pull/3652
https://github.com/STEllAR-GROUP/hpx/pull/3650
https://github.com/STEllAR-GROUP/hpx/pull/3649
https://github.com/STEllAR-GROUP/hpx/pull/3645
https://github.com/STEllAR-GROUP/hpx/pull/3644
https://github.com/STEllAR-GROUP/hpx/pull/3642
https://github.com/STEllAR-GROUP/hpx/pull/3640
https://github.com/STEllAR-GROUP/hpx/pull/3637
https://github.com/STEllAR-GROUP/hpx/pull/3633
https://github.com/STEllAR-GROUP/hpx/pull/3632
https://github.com/STEllAR-GROUP/hpx/pull/3631
https://github.com/STEllAR-GROUP/hpx/pull/3630
https://github.com/STEllAR-GROUP/hpx/pull/3629
https://github.com/STEllAR-GROUP/hpx/pull/3627
https://github.com/STEllAR-GROUP/hpx/pull/3626

HPX Documentation, 1.5.1

• PR #36251389 - Added automatic serialization for simple structs (see #3034)

• PR #36241390 - Updating the default order of priority for thread_description

• PR #36211391 - Update copyright year and other small formatting fixes

• PR #36201392 - Adding support for gitlab runner

• PR #36191393 - Store debug logs and core dumps on CircleCI

• PR #36181394 - Various optimizations

• PR #36171395 - Fix link to the gpg key (#2)

• PR #36151396 - Fix unused variable warnings with networking off

• PR #36141397 - Restructuring counter data in scheduler to reduce false sharing

• PR #36131398 - Adding support for gitlab runners

• PR #36101399 - Don’t wait for stop_condition in main thread

• PR #36081400 - Add inline keyword to invalid_thread_id definition for nvcc

• PR #36071401 - Adding configuration key that allows one to explicitly add a directory to the component search
path

• PR #36061402 - Add nvcc to exclude constexpress since is it not supported by nvcc

• PR #36051403 - Add inline to definition of checkpoint stream operators to fix link error

• PR #36041404 - Use format for string formatting

• PR #36031405 - Improve the error message for using to less MAX_CPU_COUNT

• PR #36021406 - Improve the error message for to small values of MAX_CPU_COUNT

• PR #36001407 - Parallel executor aggregated

• PR #35991408 - Making sure networking is disabled for default one-locality-runs

• PR #35961409 - Store thread exit functions in forward_list instead of deque to avoid allocations

• PR #35901410 - Fix typo/mistake in thread queue cleanup_terminated

• PR #35881411 - Fix formatting errors in launching_and_configuring_hpx_applications.rst

1389 https://github.com/STEllAR-GROUP/hpx/pull/3625
1390 https://github.com/STEllAR-GROUP/hpx/pull/3624
1391 https://github.com/STEllAR-GROUP/hpx/pull/3621
1392 https://github.com/STEllAR-GROUP/hpx/pull/3620
1393 https://github.com/STEllAR-GROUP/hpx/pull/3619
1394 https://github.com/STEllAR-GROUP/hpx/pull/3618
1395 https://github.com/STEllAR-GROUP/hpx/pull/3617
1396 https://github.com/STEllAR-GROUP/hpx/pull/3615
1397 https://github.com/STEllAR-GROUP/hpx/pull/3614
1398 https://github.com/STEllAR-GROUP/hpx/pull/3613
1399 https://github.com/STEllAR-GROUP/hpx/pull/3610
1400 https://github.com/STEllAR-GROUP/hpx/pull/3608
1401 https://github.com/STEllAR-GROUP/hpx/pull/3607
1402 https://github.com/STEllAR-GROUP/hpx/pull/3606
1403 https://github.com/STEllAR-GROUP/hpx/pull/3605
1404 https://github.com/STEllAR-GROUP/hpx/pull/3604
1405 https://github.com/STEllAR-GROUP/hpx/pull/3603
1406 https://github.com/STEllAR-GROUP/hpx/pull/3602
1407 https://github.com/STEllAR-GROUP/hpx/pull/3600
1408 https://github.com/STEllAR-GROUP/hpx/pull/3599
1409 https://github.com/STEllAR-GROUP/hpx/pull/3596
1410 https://github.com/STEllAR-GROUP/hpx/pull/3590
1411 https://github.com/STEllAR-GROUP/hpx/pull/3588

1276 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3625
https://github.com/STEllAR-GROUP/hpx/pull/3624
https://github.com/STEllAR-GROUP/hpx/pull/3621
https://github.com/STEllAR-GROUP/hpx/pull/3620
https://github.com/STEllAR-GROUP/hpx/pull/3619
https://github.com/STEllAR-GROUP/hpx/pull/3618
https://github.com/STEllAR-GROUP/hpx/pull/3617
https://github.com/STEllAR-GROUP/hpx/pull/3615
https://github.com/STEllAR-GROUP/hpx/pull/3614
https://github.com/STEllAR-GROUP/hpx/pull/3613
https://github.com/STEllAR-GROUP/hpx/pull/3610
https://github.com/STEllAR-GROUP/hpx/pull/3608
https://github.com/STEllAR-GROUP/hpx/pull/3607
https://github.com/STEllAR-GROUP/hpx/pull/3606
https://github.com/STEllAR-GROUP/hpx/pull/3605
https://github.com/STEllAR-GROUP/hpx/pull/3604
https://github.com/STEllAR-GROUP/hpx/pull/3603
https://github.com/STEllAR-GROUP/hpx/pull/3602
https://github.com/STEllAR-GROUP/hpx/pull/3600
https://github.com/STEllAR-GROUP/hpx/pull/3599
https://github.com/STEllAR-GROUP/hpx/pull/3596
https://github.com/STEllAR-GROUP/hpx/pull/3590
https://github.com/STEllAR-GROUP/hpx/pull/3588

HPX Documentation, 1.5.1

• PR #35861412 - Make bind propagate value category

• PR #35851413 - Extend Cmake for building hpx as distribution packages (refs #3575)

• PR #35841414 - Untangle function storage from object pointer

• PR #35821415 - Towards Modularized HPX

• PR #35801416 - Remove extra || in merge.hpp

• PR #35771417 - Partially revert “Remove vtable empty flag”

• PR #35761418 - Make sure empty startup/shutdown functions are not being used

• PR #35741419 - Make sure DATAPAR settings are conveyed to depending projects

• PR #35731420 - Make sure HPX is usable with latest released version of Vc (V1.4.1)

• PR #35721421 - Adding test ensuring ticket 3565 is fixed

• PR #35711422 - Make empty [unique_]function vtable non-dependent

• PR #35661423 - Fix compilation with dynamic bitset for CPU masks

• PR #35631424 - Drop util::[unique_]function target_type

• PR #35621425 - Removing the target suffixes

• PR #35611426 - Replace executor traits return type deduction (keep non-SFINAE)

• PR #35571427 - Replace the last usages of boost::atomic

• PR #35561428 - Replace boost::scoped_array with std::unique_ptr

• PR #35521429 - (Re)move APEX readme

• PR #35481430 - Replace boost::scoped_ptr with std::unique_ptr

• PR #35471431 - Remove last use of Boost.Signals2

• PR #35441432 - Post 1.2.0 version bumps

• PR #35431433 - added Ubuntu dependency list to readme

• PR #35311434 - Warnings, warnings. . .

1412 https://github.com/STEllAR-GROUP/hpx/pull/3586
1413 https://github.com/STEllAR-GROUP/hpx/pull/3585
1414 https://github.com/STEllAR-GROUP/hpx/pull/3584
1415 https://github.com/STEllAR-GROUP/hpx/pull/3582
1416 https://github.com/STEllAR-GROUP/hpx/pull/3580
1417 https://github.com/STEllAR-GROUP/hpx/pull/3577
1418 https://github.com/STEllAR-GROUP/hpx/pull/3576
1419 https://github.com/STEllAR-GROUP/hpx/pull/3574
1420 https://github.com/STEllAR-GROUP/hpx/pull/3573
1421 https://github.com/STEllAR-GROUP/hpx/pull/3572
1422 https://github.com/STEllAR-GROUP/hpx/pull/3571
1423 https://github.com/STEllAR-GROUP/hpx/pull/3566
1424 https://github.com/STEllAR-GROUP/hpx/pull/3563
1425 https://github.com/STEllAR-GROUP/hpx/pull/3562
1426 https://github.com/STEllAR-GROUP/hpx/pull/3561
1427 https://github.com/STEllAR-GROUP/hpx/pull/3557
1428 https://github.com/STEllAR-GROUP/hpx/pull/3556
1429 https://github.com/STEllAR-GROUP/hpx/pull/3552
1430 https://github.com/STEllAR-GROUP/hpx/pull/3548
1431 https://github.com/STEllAR-GROUP/hpx/pull/3547
1432 https://github.com/STEllAR-GROUP/hpx/pull/3544
1433 https://github.com/STEllAR-GROUP/hpx/pull/3543
1434 https://github.com/STEllAR-GROUP/hpx/pull/3531

2.11. Releases 1277

https://github.com/STEllAR-GROUP/hpx/pull/3586
https://github.com/STEllAR-GROUP/hpx/pull/3585
https://github.com/STEllAR-GROUP/hpx/pull/3584
https://github.com/STEllAR-GROUP/hpx/pull/3582
https://github.com/STEllAR-GROUP/hpx/pull/3580
https://github.com/STEllAR-GROUP/hpx/pull/3577
https://github.com/STEllAR-GROUP/hpx/pull/3576
https://github.com/STEllAR-GROUP/hpx/pull/3574
https://github.com/STEllAR-GROUP/hpx/pull/3573
https://github.com/STEllAR-GROUP/hpx/pull/3572
https://github.com/STEllAR-GROUP/hpx/pull/3571
https://github.com/STEllAR-GROUP/hpx/pull/3566
https://github.com/STEllAR-GROUP/hpx/pull/3563
https://github.com/STEllAR-GROUP/hpx/pull/3562
https://github.com/STEllAR-GROUP/hpx/pull/3561
https://github.com/STEllAR-GROUP/hpx/pull/3557
https://github.com/STEllAR-GROUP/hpx/pull/3556
https://github.com/STEllAR-GROUP/hpx/pull/3552
https://github.com/STEllAR-GROUP/hpx/pull/3548
https://github.com/STEllAR-GROUP/hpx/pull/3547
https://github.com/STEllAR-GROUP/hpx/pull/3544
https://github.com/STEllAR-GROUP/hpx/pull/3543
https://github.com/STEllAR-GROUP/hpx/pull/3531

HPX Documentation, 1.5.1

• PR #35271435 - Add CircleCI filter for building all tags

• PR #35251436 - Segmented algorithms

• PR #35171437 - Replace boost::regex with C++11 <regex>

• PR #35141438 - Cleaning up the build system

• PR #35051439 - Fixing type attribute warning for transfer_action

• PR #35041440 - Add support for rpm packaging

• PR #34991441 - Improving spinlock pools

• PR #34981442 - Remove thread specific ptr

• PR #34861443 - Fix comparison for expect_connecting_localities config entry

• PR #34691444 - Enable (existing) code for extracting stack pointer on Power platform

2.11.6 HPX V1.2.1 (Feb 19, 2019)

General changes

This is a bugfix release. It contains the following changes:

• Fix compilation on ARM, s390x and 32-bit architectures.

• Fix a critical bug in the future implementation.

• Fix several problems in the CMake configuration which affects external projects.

• Add support for Boost 1.69.0.

Closed issues

• Issue #36381445 - Build HPX 1.2 with boost 1.69

• Issue #36351446 - Non-deterministic crashing on Stampede2

• Issue #35501447 - 1>e:000workhpxsrcthrow_exception.cpp(54): error C2440: ‘<function-style-cast>’: cannot
convert from ‘boost::system::error_code’ to ‘hpx::exception’

• Issue #35491448 - HPX 1.2.0 does not build on i686, but release candidate did

• Issue #35111449 - Build on s390x fails

• Issue #35091450 - Build on armv7l fails
1435 https://github.com/STEllAR-GROUP/hpx/pull/3527
1436 https://github.com/STEllAR-GROUP/hpx/pull/3525
1437 https://github.com/STEllAR-GROUP/hpx/pull/3517
1438 https://github.com/STEllAR-GROUP/hpx/pull/3514
1439 https://github.com/STEllAR-GROUP/hpx/pull/3505
1440 https://github.com/STEllAR-GROUP/hpx/pull/3504
1441 https://github.com/STEllAR-GROUP/hpx/pull/3499
1442 https://github.com/STEllAR-GROUP/hpx/pull/3498
1443 https://github.com/STEllAR-GROUP/hpx/pull/3486
1444 https://github.com/STEllAR-GROUP/hpx/pull/3469
1445 https://github.com/STEllAR-GROUP/hpx/issues/3638
1446 https://github.com/STEllAR-GROUP/hpx/issues/3635
1447 https://github.com/STEllAR-GROUP/hpx/issues/3550
1448 https://github.com/STEllAR-GROUP/hpx/issues/3549
1449 https://github.com/STEllAR-GROUP/hpx/issues/3511
1450 https://github.com/STEllAR-GROUP/hpx/issues/3509

1278 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3527
https://github.com/STEllAR-GROUP/hpx/pull/3525
https://github.com/STEllAR-GROUP/hpx/pull/3517
https://github.com/STEllAR-GROUP/hpx/pull/3514
https://github.com/STEllAR-GROUP/hpx/pull/3505
https://github.com/STEllAR-GROUP/hpx/pull/3504
https://github.com/STEllAR-GROUP/hpx/pull/3499
https://github.com/STEllAR-GROUP/hpx/pull/3498
https://github.com/STEllAR-GROUP/hpx/pull/3486
https://github.com/STEllAR-GROUP/hpx/pull/3469
https://github.com/STEllAR-GROUP/hpx/issues/3638
https://github.com/STEllAR-GROUP/hpx/issues/3635
https://github.com/STEllAR-GROUP/hpx/issues/3550
https://github.com/STEllAR-GROUP/hpx/issues/3549
https://github.com/STEllAR-GROUP/hpx/issues/3511
https://github.com/STEllAR-GROUP/hpx/issues/3509

HPX Documentation, 1.5.1

Closed pull requests

• PR #36951451 - Don’t install CMake templates and packaging files

• PR #36661452 - Fixing yet another race in future_data

• PR #36631453 - Fixing race between setting and getting the value inside future_data

• PR #36481454 - Adding timestamp option for S390x platform

• PR #36471455 - Blind attempt to fix warnings issued by gcc V9

• PR #36111456 - Include GNUInstallDirs earlier to have it available for subdirectories

• PR #35951457 - Use GNUInstallDirs lib path in pkgconfig config file

• PR #35931458 - Add include(GNUInstallDirs) to HPXMacros.cmake

• PR #35911459 - Fix compilation error on arm7 architecture. Compiles and runs on Fedora 29 on Pi 3.

• PR #35581460 - Adding constructor exception(boost::system::error_code const&)

• PR #35551461 - cmake: make install locations configurable

• PR #35511462 - Fix uint64_t causing compilation fail on i686

2.11.7 HPX V1.2.0 (Nov 12, 2018)

General changes

Here are some of the main highlights and changes for this release:

• Thanks to the work of our Google Summer of Code student, Nikunj Gupta, we now have a new implementation
of hpx_main.hpp on supported platforms (Linux, BSD and MacOS). This is intended to be a less fragile
drop-in replacement for the old implementation relying on preprocessor macros. The new implementation does
not require changes if you are using the CMake1463 or pkg-config. The old behaviour can be restored by setting
HPX_WITH_DYNAMIC_HPX_MAIN=OFF during CMake1464 configuration. The implementation on Windows
is unchanged.

• We have added functionality to allow passing scheduling hints to our schedulers. These will allow us to create
executors that for example target a specific NUMA domain or allow for HPX threads to be pinned to a particular
worker thread.

• We have significantly improved the performance of our futures implementation by making the shared state
atomic.

1451 https://github.com/STEllAR-GROUP/hpx/pull/3695
1452 https://github.com/STEllAR-GROUP/hpx/pull/3666
1453 https://github.com/STEllAR-GROUP/hpx/pull/3663
1454 https://github.com/STEllAR-GROUP/hpx/pull/3648
1455 https://github.com/STEllAR-GROUP/hpx/pull/3647
1456 https://github.com/STEllAR-GROUP/hpx/pull/3611
1457 https://github.com/STEllAR-GROUP/hpx/pull/3595
1458 https://github.com/STEllAR-GROUP/hpx/pull/3593
1459 https://github.com/STEllAR-GROUP/hpx/pull/3591
1460 https://github.com/STEllAR-GROUP/hpx/pull/3558
1461 https://github.com/STEllAR-GROUP/hpx/pull/3555
1462 https://github.com/STEllAR-GROUP/hpx/pull/3551
1463 https://www.cmake.org
1464 https://www.cmake.org

2.11. Releases 1279

https://github.com/STEllAR-GROUP/hpx/pull/3695
https://github.com/STEllAR-GROUP/hpx/pull/3666
https://github.com/STEllAR-GROUP/hpx/pull/3663
https://github.com/STEllAR-GROUP/hpx/pull/3648
https://github.com/STEllAR-GROUP/hpx/pull/3647
https://github.com/STEllAR-GROUP/hpx/pull/3611
https://github.com/STEllAR-GROUP/hpx/pull/3595
https://github.com/STEllAR-GROUP/hpx/pull/3593
https://github.com/STEllAR-GROUP/hpx/pull/3591
https://github.com/STEllAR-GROUP/hpx/pull/3558
https://github.com/STEllAR-GROUP/hpx/pull/3555
https://github.com/STEllAR-GROUP/hpx/pull/3551
https://www.cmake.org
https://www.cmake.org

HPX Documentation, 1.5.1

• We have replaced Boostbook by Sphinx for our documentation. This means the documentation is easier to
navigate with built-in search and table of contents. We have also added a quick start section and restructured the
documentation to be easier to follow for new users.

• We have added a new option to the --hpx:threads command line option. It is now possible to use cores
to tell HPX to only use one worker thread per core, unlike the existing option all which uses one worker thread
per processing unit (processing unit can be a hyperthread if hyperthreads are available). The default value of
--hpx:threads has also been changed to cores as this leads to better performance in most cases.

• All command line options can now be passed alongside configuration options when initializing HPX. This means
that some options that were previously only available on the command line can now be set as configuration
options.

• HPXMP is a portable, scalable, and flexible application programming interface using the OpenMP specification
that supports multi-platform shared memory multiprocessing programming in C and C++. HPXMP can be
enabled within HPX by setting DHPX_WITH_HPXMP=ON during CMake1465 configuration.

• Two new performance counters were added for measuring the time spent doing background work. /threads/
time/background-work-duration returns the time spent doing background on a given thread or lo-
cality, while /threads/time/background-overhead returns the fraction of time spent doing back-
ground work with respect to the overall time spent running the scheduler. The new performance counters are
disabled by default and can be turned on by setting HPX_WITH_BACKGROUND_THREAD_COUNTERS=ON
during CMake1466 configuration.

• The idling behaviour of HPX has been tweaked to allow for faster idling. This is useful in interactive applications
where the HPX worker threads may not have work all the time. This behaviour can be tweaked and turned off
as before with HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF=OFF during CMake1467 configuration.

• It is now possible to register callback functions for HPX worker thread events. Callbacks can be registered for
starting and stopping worker threads, and for when errors occur.

Breaking changes

• The implementation of hpx_main.hpp has changed. If you are using custom Makefiles you will need to make
changes. Please see the documentation on using Makefiles for more details.

• The default value of --hpx:threads has changed from all to cores. The new option cores only starts
one worker thread per core.

• We have dropped support for Boost 1.56 and 1.57. The minimal version of Boost we now test is 1.58.

• Our boost::format-based formatting implementation has been revised and replaced with a cus-
tom implementation. This changes the formatting syntax and requires changes if you are relying on
hpx::util::format or hpx::util::format_to. The pull request for this change contains more in-
formation: PR #32661468.

• The following deprecated options have now been completely removed:
HPX_WITH_ASYNC_FUNCTION_COMPATIBILITY, HPX_WITH_LOCAL_DATAFLOW,
HPX_WITH_GENERIC_EXECUTION_POLICY, HPX_WITH_BOOST_CHRONO_COMPATIBILITY,
HPX_WITH_EXECUTOR_COMPATIBILITY, HPX_WITH_EXECUTION_POLICY_COMPATIBILITY, and
HPX_WITH_TRANSFORM_REDUCE_COMPATIBILITY.

1465 https://www.cmake.org
1466 https://www.cmake.org
1467 https://www.cmake.org
1468 https://github.com/STEllAR-GROUP/hpx/pull/3266

1280 Chapter 2. What’s so special about HPX?

https://www.cmake.org
https://www.cmake.org
https://www.cmake.org
https://github.com/STEllAR-GROUP/hpx/pull/3266

HPX Documentation, 1.5.1

Closed issues

• Issue #35381469 - numa handling incorrect for hwloc 2

• Issue #35331470 - Cmake version 3.5.1does not work (git ff26b35 2018-11-06)

• Issue #35261471 - Failed building hpx-1.2.0-rc1 on Ubuntu16.04 x86-64 Virtualbox VM

• Issue #35121472 - Build on aarch64 fails

• Issue #34751473 - HPX fails to link if the MPI parcelport is enabled

• Issue #34621474 - CMake configuration shows a minor and inconsequential failure to create a symlink

• Issue #34611475 - Compilation Problems with the most recent Clang

• Issue #34601476 - Deadlock when create_partitioner fails (assertion fails) in debug mode

• Issue #34551477 - HPX build failing with HWLOC errors on POWER8 with hwloc 1.8

• Issue #34381478 - HPX no longer builds on IBM POWER8

• Issue #34261479 - hpx build failed on MacOS

• Issue #34241480 - CircleCI builds broken for forked repositories

• Issue #34221481 - Benchmarks in tests.performance.local are not run nightly

• Issue #34081482 - CMake Targets for HPX

• Issue #33991483 - processing unit out of bounds

• Issue #33951484 - Floating point bug in hpx/runtime/threads/policies/scheduler_base.hpp

• Issue #33781485 - compile error with lcos::communicator

• Issue #33761486 - Failed to build HPX with APEX using clang

• Issue #33661487 - Adapted Safe_Object example fails for –hpx:threads > 1

• Issue #33601488 - Segmentation fault when passing component id as parameter

• Issue #33581489 - HPX runtime hangs after multiple (~thousands) start-stop sequences

• Issue #33521490 - Support TCP provider in libfabric ParcelPort

1469 https://github.com/STEllAR-GROUP/hpx/issues/3538
1470 https://github.com/STEllAR-GROUP/hpx/issues/3533
1471 https://github.com/STEllAR-GROUP/hpx/issues/3526
1472 https://github.com/STEllAR-GROUP/hpx/issues/3512
1473 https://github.com/STEllAR-GROUP/hpx/issues/3475
1474 https://github.com/STEllAR-GROUP/hpx/issues/3462
1475 https://github.com/STEllAR-GROUP/hpx/issues/3461
1476 https://github.com/STEllAR-GROUP/hpx/issues/3460
1477 https://github.com/STEllAR-GROUP/hpx/issues/3455
1478 https://github.com/STEllAR-GROUP/hpx/issues/3438
1479 https://github.com/STEllAR-GROUP/hpx/issues/3426
1480 https://github.com/STEllAR-GROUP/hpx/issues/3424
1481 https://github.com/STEllAR-GROUP/hpx/issues/3422
1482 https://github.com/STEllAR-GROUP/hpx/issues/3408
1483 https://github.com/STEllAR-GROUP/hpx/issues/3399
1484 https://github.com/STEllAR-GROUP/hpx/issues/3395
1485 https://github.com/STEllAR-GROUP/hpx/issues/3378
1486 https://github.com/STEllAR-GROUP/hpx/issues/3376
1487 https://github.com/STEllAR-GROUP/hpx/issues/3366
1488 https://github.com/STEllAR-GROUP/hpx/issues/3360
1489 https://github.com/STEllAR-GROUP/hpx/issues/3358
1490 https://github.com/STEllAR-GROUP/hpx/issues/3352

2.11. Releases 1281

https://github.com/STEllAR-GROUP/hpx/issues/3538
https://github.com/STEllAR-GROUP/hpx/issues/3533
https://github.com/STEllAR-GROUP/hpx/issues/3526
https://github.com/STEllAR-GROUP/hpx/issues/3512
https://github.com/STEllAR-GROUP/hpx/issues/3475
https://github.com/STEllAR-GROUP/hpx/issues/3462
https://github.com/STEllAR-GROUP/hpx/issues/3461
https://github.com/STEllAR-GROUP/hpx/issues/3460
https://github.com/STEllAR-GROUP/hpx/issues/3455
https://github.com/STEllAR-GROUP/hpx/issues/3438
https://github.com/STEllAR-GROUP/hpx/issues/3426
https://github.com/STEllAR-GROUP/hpx/issues/3424
https://github.com/STEllAR-GROUP/hpx/issues/3422
https://github.com/STEllAR-GROUP/hpx/issues/3408
https://github.com/STEllAR-GROUP/hpx/issues/3399
https://github.com/STEllAR-GROUP/hpx/issues/3395
https://github.com/STEllAR-GROUP/hpx/issues/3378
https://github.com/STEllAR-GROUP/hpx/issues/3376
https://github.com/STEllAR-GROUP/hpx/issues/3366
https://github.com/STEllAR-GROUP/hpx/issues/3360
https://github.com/STEllAR-GROUP/hpx/issues/3358
https://github.com/STEllAR-GROUP/hpx/issues/3352

HPX Documentation, 1.5.1

• Issue #33421491 - undefined reference to __atomic_load_16

• Issue #33391492 - setting command line options/flags from init cfg is not obvious

• Issue #33251493 - AGAS migrates components prematurely

• Issue #33211494 - hpx bad_parameter handling is awful

• Issue #33181495 - Benchmarks fail to build with C++11

• Issue #33041496 - hpx::threads::run_as_hpx_thread does not properly handle exceptions

• Issue #33001497 - Setting pu step or offset results in no threads in default pool

• Issue #32971498 - Crash with APEX when running Phylanx lra_csv with > 1 thread

• Issue #32961499 - Building HPX with APEX configuration gives compiler warnings

• Issue #32901500 - make tests failing at hello_world_component

• Issue #32851501 - possible compilation error when “using namespace std;” is defined before including “hpx”
headers files

• Issue #32801502 - HPX fails on OSX

• Issue #32721503 - CircleCI does not upload generated docker image any more

• Issue #32701504 - Error when compiling CUDA examples

• Issue #32671505 - tests.unit.host_.block_allocator fails occasionally

• Issue #32641506 - Possible move to Sphinx for documentation

• Issue #32631507 - Documentation improvements

• Issue #32591508 - set_parcel_write_handler test fails occasionally

• Issue #32581509 - Links to source code in documentation are broken

• Issue #32471510 - Rare tests.unit.host_.block_allocator test failure on 1.1.0-rc1

• Issue #32441511 - Slowing down and speeding up an interval_timer

• Issue #32151512 - Cannot build both tests and examples on MSVC with pseudo-dependencies enabled

• Issue #31951513 - Unnecessary customization point route causing performance penalty

1491 https://github.com/STEllAR-GROUP/hpx/issues/3342
1492 https://github.com/STEllAR-GROUP/hpx/issues/3339
1493 https://github.com/STEllAR-GROUP/hpx/issues/3325
1494 https://github.com/STEllAR-GROUP/hpx/issues/3321
1495 https://github.com/STEllAR-GROUP/hpx/issues/3318
1496 https://github.com/STEllAR-GROUP/hpx/issues/3304
1497 https://github.com/STEllAR-GROUP/hpx/issues/3300
1498 https://github.com/STEllAR-GROUP/hpx/issues/3297
1499 https://github.com/STEllAR-GROUP/hpx/issues/3296
1500 https://github.com/STEllAR-GROUP/hpx/issues/3290
1501 https://github.com/STEllAR-GROUP/hpx/issues/3285
1502 https://github.com/STEllAR-GROUP/hpx/issues/3280
1503 https://github.com/STEllAR-GROUP/hpx/issues/3272
1504 https://github.com/STEllAR-GROUP/hpx/issues/3270
1505 https://github.com/STEllAR-GROUP/hpx/issues/3267
1506 https://github.com/STEllAR-GROUP/hpx/issues/3264
1507 https://github.com/STEllAR-GROUP/hpx/issues/3263
1508 https://github.com/STEllAR-GROUP/hpx/issues/3259
1509 https://github.com/STEllAR-GROUP/hpx/issues/3258
1510 https://github.com/STEllAR-GROUP/hpx/issues/3247
1511 https://github.com/STEllAR-GROUP/hpx/issues/3244
1512 https://github.com/STEllAR-GROUP/hpx/issues/3215
1513 https://github.com/STEllAR-GROUP/hpx/issues/3195

1282 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3342
https://github.com/STEllAR-GROUP/hpx/issues/3339
https://github.com/STEllAR-GROUP/hpx/issues/3325
https://github.com/STEllAR-GROUP/hpx/issues/3321
https://github.com/STEllAR-GROUP/hpx/issues/3318
https://github.com/STEllAR-GROUP/hpx/issues/3304
https://github.com/STEllAR-GROUP/hpx/issues/3300
https://github.com/STEllAR-GROUP/hpx/issues/3297
https://github.com/STEllAR-GROUP/hpx/issues/3296
https://github.com/STEllAR-GROUP/hpx/issues/3290
https://github.com/STEllAR-GROUP/hpx/issues/3285
https://github.com/STEllAR-GROUP/hpx/issues/3280
https://github.com/STEllAR-GROUP/hpx/issues/3272
https://github.com/STEllAR-GROUP/hpx/issues/3270
https://github.com/STEllAR-GROUP/hpx/issues/3267
https://github.com/STEllAR-GROUP/hpx/issues/3264
https://github.com/STEllAR-GROUP/hpx/issues/3263
https://github.com/STEllAR-GROUP/hpx/issues/3259
https://github.com/STEllAR-GROUP/hpx/issues/3258
https://github.com/STEllAR-GROUP/hpx/issues/3247
https://github.com/STEllAR-GROUP/hpx/issues/3244
https://github.com/STEllAR-GROUP/hpx/issues/3215
https://github.com/STEllAR-GROUP/hpx/issues/3195

HPX Documentation, 1.5.1

• Issue #30881514 - A strange thing in parallel::sort.

• Issue #26501515 - libfabric support for passive endpoints

• Issue #12051516 - TSS is broken

Closed pull requests

• PR #35421517 - Fix numa lookup from pu when using hwloc 2.x

• PR #35411518 - Fixing the build system of the MPI parcelport

• PR #35401519 - Updating HPX people section

• PR #35391520 - Splitting test to avoid OOM on CircleCI

• PR #35371521 - Fix guided exec

• PR #35361522 - Updating grants which support the LSU team

• PR #35351523 - Fix hiding of docker credentials

• PR #35341524 - Fixing #3533

• PR #35321525 - fixing minor doc typo –hpx:print-counter-at arg

• PR #35301526 - Changing APEX default tag to v2.1.0

• PR #35291527 - Remove leftover security options and documentation

• PR #35281528 - Fix hwloc version check

• PR #35241529 - Do not build guided pool examples with older GCC compilers

• PR #35231530 - Fix logging regression

• PR #35221531 - Fix more warnings

• PR #35211532 - Fixing argument handling in induction and reduction clauses for parallel::for_loop

• PR #35201533 - Remove docs symlink and versioned docs folders

• PR #35191534 - hpxMP release

• PR #35181535 - Change all steps to use new docker image on CircleCI

1514 https://github.com/STEllAR-GROUP/hpx/issues/3088
1515 https://github.com/STEllAR-GROUP/hpx/issues/2650
1516 https://github.com/STEllAR-GROUP/hpx/issues/1205
1517 https://github.com/STEllAR-GROUP/hpx/pull/3542
1518 https://github.com/STEllAR-GROUP/hpx/pull/3541
1519 https://github.com/STEllAR-GROUP/hpx/pull/3540
1520 https://github.com/STEllAR-GROUP/hpx/pull/3539
1521 https://github.com/STEllAR-GROUP/hpx/pull/3537
1522 https://github.com/STEllAR-GROUP/hpx/pull/3536
1523 https://github.com/STEllAR-GROUP/hpx/pull/3535
1524 https://github.com/STEllAR-GROUP/hpx/pull/3534
1525 https://github.com/STEllAR-GROUP/hpx/pull/3532
1526 https://github.com/STEllAR-GROUP/hpx/pull/3530
1527 https://github.com/STEllAR-GROUP/hpx/pull/3529
1528 https://github.com/STEllAR-GROUP/hpx/pull/3528
1529 https://github.com/STEllAR-GROUP/hpx/pull/3524
1530 https://github.com/STEllAR-GROUP/hpx/pull/3523
1531 https://github.com/STEllAR-GROUP/hpx/pull/3522
1532 https://github.com/STEllAR-GROUP/hpx/pull/3521
1533 https://github.com/STEllAR-GROUP/hpx/pull/3520
1534 https://github.com/STEllAR-GROUP/hpx/pull/3519
1535 https://github.com/STEllAR-GROUP/hpx/pull/3518

2.11. Releases 1283

https://github.com/STEllAR-GROUP/hpx/issues/3088
https://github.com/STEllAR-GROUP/hpx/issues/2650
https://github.com/STEllAR-GROUP/hpx/issues/1205
https://github.com/STEllAR-GROUP/hpx/pull/3542
https://github.com/STEllAR-GROUP/hpx/pull/3541
https://github.com/STEllAR-GROUP/hpx/pull/3540
https://github.com/STEllAR-GROUP/hpx/pull/3539
https://github.com/STEllAR-GROUP/hpx/pull/3537
https://github.com/STEllAR-GROUP/hpx/pull/3536
https://github.com/STEllAR-GROUP/hpx/pull/3535
https://github.com/STEllAR-GROUP/hpx/pull/3534
https://github.com/STEllAR-GROUP/hpx/pull/3532
https://github.com/STEllAR-GROUP/hpx/pull/3530
https://github.com/STEllAR-GROUP/hpx/pull/3529
https://github.com/STEllAR-GROUP/hpx/pull/3528
https://github.com/STEllAR-GROUP/hpx/pull/3524
https://github.com/STEllAR-GROUP/hpx/pull/3523
https://github.com/STEllAR-GROUP/hpx/pull/3522
https://github.com/STEllAR-GROUP/hpx/pull/3521
https://github.com/STEllAR-GROUP/hpx/pull/3520
https://github.com/STEllAR-GROUP/hpx/pull/3519
https://github.com/STEllAR-GROUP/hpx/pull/3518

HPX Documentation, 1.5.1

• PR #35161536 - Drop usage of deprecated facilities removed in C++17

• PR #35151537 - Remove remaining uses of Boost.TypeTraits

• PR #35131538 - Fixing a CMake problem when trying to use libfabric

• PR #35081539 - Remove memory_block component

• PR #35071540 - Propagating the MPI compile definitions to all relevant targets

• PR #35031541 - Update documentation colors and logo

• PR #35021542 - Fix bogus `throws` bindings in scheduled_thread_pool_impl

• PR #35011543 - Split parallel::remove_if tests to avoid OOM on CircleCI

• PR #35001544 - Support NONAMEPREFIX in add_hpx_library()

• PR #34971545 - Note that cuda support requires cmake 3.9

• PR #34951546 - Fixing dataflow

• PR #34931547 - Remove deprecated options for 1.2.0 part 2

• PR #34921548 - Add CUDA_LINK_LIBRARIES_KEYWORD to allow PRIVATE keyword in linkage t. . .

• PR #34911549 - Changing Base docker image

• PR #34901550 - Don’t create tasks immediately with hpx::apply

• PR #34891551 - Remove deprecated options for 1.2.0

• PR #34881552 - Revert “Use BUILD_INTERFACE generator expression to fix cmake flag exports”

• PR #34871553 - Revert “Fixing type attribute warning for transfer_action”

• PR #34851554 - Use BUILD_INTERFACE generator expression to fix cmake flag exports

• PR #34831555 - Fixing type attribute warning for transfer_action

• PR #34811556 - Remove unused variables

• PR #34801557 - Towards a more lightweight transfer action

• PR #34791558 - Fix FLAGS - Use correct version of target_compile_options

1536 https://github.com/STEllAR-GROUP/hpx/pull/3516
1537 https://github.com/STEllAR-GROUP/hpx/pull/3515
1538 https://github.com/STEllAR-GROUP/hpx/pull/3513
1539 https://github.com/STEllAR-GROUP/hpx/pull/3508
1540 https://github.com/STEllAR-GROUP/hpx/pull/3507
1541 https://github.com/STEllAR-GROUP/hpx/pull/3503
1542 https://github.com/STEllAR-GROUP/hpx/pull/3502
1543 https://github.com/STEllAR-GROUP/hpx/pull/3501
1544 https://github.com/STEllAR-GROUP/hpx/pull/3500
1545 https://github.com/STEllAR-GROUP/hpx/pull/3497
1546 https://github.com/STEllAR-GROUP/hpx/pull/3495
1547 https://github.com/STEllAR-GROUP/hpx/pull/3493
1548 https://github.com/STEllAR-GROUP/hpx/pull/3492
1549 https://github.com/STEllAR-GROUP/hpx/pull/3491
1550 https://github.com/STEllAR-GROUP/hpx/pull/3490
1551 https://github.com/STEllAR-GROUP/hpx/pull/3489
1552 https://github.com/STEllAR-GROUP/hpx/pull/3488
1553 https://github.com/STEllAR-GROUP/hpx/pull/3487
1554 https://github.com/STEllAR-GROUP/hpx/pull/3485
1555 https://github.com/STEllAR-GROUP/hpx/pull/3483
1556 https://github.com/STEllAR-GROUP/hpx/pull/3481
1557 https://github.com/STEllAR-GROUP/hpx/pull/3480
1558 https://github.com/STEllAR-GROUP/hpx/pull/3479

1284 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3516
https://github.com/STEllAR-GROUP/hpx/pull/3515
https://github.com/STEllAR-GROUP/hpx/pull/3513
https://github.com/STEllAR-GROUP/hpx/pull/3508
https://github.com/STEllAR-GROUP/hpx/pull/3507
https://github.com/STEllAR-GROUP/hpx/pull/3503
https://github.com/STEllAR-GROUP/hpx/pull/3502
https://github.com/STEllAR-GROUP/hpx/pull/3501
https://github.com/STEllAR-GROUP/hpx/pull/3500
https://github.com/STEllAR-GROUP/hpx/pull/3497
https://github.com/STEllAR-GROUP/hpx/pull/3495
https://github.com/STEllAR-GROUP/hpx/pull/3493
https://github.com/STEllAR-GROUP/hpx/pull/3492
https://github.com/STEllAR-GROUP/hpx/pull/3491
https://github.com/STEllAR-GROUP/hpx/pull/3490
https://github.com/STEllAR-GROUP/hpx/pull/3489
https://github.com/STEllAR-GROUP/hpx/pull/3488
https://github.com/STEllAR-GROUP/hpx/pull/3487
https://github.com/STEllAR-GROUP/hpx/pull/3485
https://github.com/STEllAR-GROUP/hpx/pull/3483
https://github.com/STEllAR-GROUP/hpx/pull/3481
https://github.com/STEllAR-GROUP/hpx/pull/3480
https://github.com/STEllAR-GROUP/hpx/pull/3479

HPX Documentation, 1.5.1

• PR #34781559 - Making sure the application’s exit code is properly propagated back to the OS

• PR #34761560 - Don’t print docker credentials as part of the environment.

• PR #34731561 - Fixing invalid cmake code if no jemalloc prefix was given

• PR #34721562 - Attempting to work around recent clang test compilation failures

• PR #34711563 - Enable jemalloc on windows

• PR #34701564 - Updates readme

• PR #34681565 - Avoid hang if there is an exception thrown during startup

• PR #34671566 - Add compiler specific fallthrough attributes if C++17 attribute is not available

• PR #34661567 - - bugfix : fix compilation with llvm-7.0

• PR #34651568 - This patch adds various optimizations extracted from the thread_local_allocator work

• PR #34641569 - Check for forked repos in CircleCI docker push step

• PR #34631570 - - cmake : create the parent directory before symlinking

• PR #34591571 - Remove unused/incomplete functionality from util/logging

• PR #34581572 - Fix a problem with scope of CMAKE_CXX_FLAGS and hpx_add_compile_flag

• PR #34571573 - Fixing more size_t -> int16_t (and similar) warnings

• PR #34561574 - Add #ifdefs to topology.cpp to support old hwloc versions again

• PR #34541575 - Fixing warnings related to silent conversion of size_t –> int16_t

• PR #34511576 - Add examples as unit tests

• PR #34501577 - Constexpr-fying bind and other functional facilities

• PR #34461578 - Fix some thread suspension timeouts

• PR #34451579 - Fix various warnings

• PR #34431580 - Only enable service pool config options if pools are enabled

• PR #34411581 - Fix missing closing brackets in documentation

1559 https://github.com/STEllAR-GROUP/hpx/pull/3478
1560 https://github.com/STEllAR-GROUP/hpx/pull/3476
1561 https://github.com/STEllAR-GROUP/hpx/pull/3473
1562 https://github.com/STEllAR-GROUP/hpx/pull/3472
1563 https://github.com/STEllAR-GROUP/hpx/pull/3471
1564 https://github.com/STEllAR-GROUP/hpx/pull/3470
1565 https://github.com/STEllAR-GROUP/hpx/pull/3468
1566 https://github.com/STEllAR-GROUP/hpx/pull/3467
1567 https://github.com/STEllAR-GROUP/hpx/pull/3466
1568 https://github.com/STEllAR-GROUP/hpx/pull/3465
1569 https://github.com/STEllAR-GROUP/hpx/pull/3464
1570 https://github.com/STEllAR-GROUP/hpx/pull/3463
1571 https://github.com/STEllAR-GROUP/hpx/pull/3459
1572 https://github.com/STEllAR-GROUP/hpx/pull/3458
1573 https://github.com/STEllAR-GROUP/hpx/pull/3457
1574 https://github.com/STEllAR-GROUP/hpx/pull/3456
1575 https://github.com/STEllAR-GROUP/hpx/pull/3454
1576 https://github.com/STEllAR-GROUP/hpx/pull/3451
1577 https://github.com/STEllAR-GROUP/hpx/pull/3450
1578 https://github.com/STEllAR-GROUP/hpx/pull/3446
1579 https://github.com/STEllAR-GROUP/hpx/pull/3445
1580 https://github.com/STEllAR-GROUP/hpx/pull/3443
1581 https://github.com/STEllAR-GROUP/hpx/pull/3441

2.11. Releases 1285

https://github.com/STEllAR-GROUP/hpx/pull/3478
https://github.com/STEllAR-GROUP/hpx/pull/3476
https://github.com/STEllAR-GROUP/hpx/pull/3473
https://github.com/STEllAR-GROUP/hpx/pull/3472
https://github.com/STEllAR-GROUP/hpx/pull/3471
https://github.com/STEllAR-GROUP/hpx/pull/3470
https://github.com/STEllAR-GROUP/hpx/pull/3468
https://github.com/STEllAR-GROUP/hpx/pull/3467
https://github.com/STEllAR-GROUP/hpx/pull/3466
https://github.com/STEllAR-GROUP/hpx/pull/3465
https://github.com/STEllAR-GROUP/hpx/pull/3464
https://github.com/STEllAR-GROUP/hpx/pull/3463
https://github.com/STEllAR-GROUP/hpx/pull/3459
https://github.com/STEllAR-GROUP/hpx/pull/3458
https://github.com/STEllAR-GROUP/hpx/pull/3457
https://github.com/STEllAR-GROUP/hpx/pull/3456
https://github.com/STEllAR-GROUP/hpx/pull/3454
https://github.com/STEllAR-GROUP/hpx/pull/3451
https://github.com/STEllAR-GROUP/hpx/pull/3450
https://github.com/STEllAR-GROUP/hpx/pull/3446
https://github.com/STEllAR-GROUP/hpx/pull/3445
https://github.com/STEllAR-GROUP/hpx/pull/3443
https://github.com/STEllAR-GROUP/hpx/pull/3441

HPX Documentation, 1.5.1

• PR #34391582 - Use correct MPI CXX libraries for MPI parcelport

• PR #34361583 - Add projection function to find_* (and fix very bad bug)

• PR #34351584 - Fixing 1205

• PR #34341585 - Fix threads cores

• PR #34331586 - Add Heise Online to release announcement list

• PR #34321587 - Don’t track task dependencies for distributed runs

• PR #34311588 - Circle CI setting changes for hpxMP

• PR #34301589 - Fix unused params warning

• PR #34291590 - One thread per core

• PR #34281591 - This suppresses a deprecation warning that is being issued by MSVC 19.15.26726

• PR #34271592 - Fixes #3426

• PR #34251593 - Use source cache and workspace between job steps on CircleCI

• PR #34211594 - Add CDash timing output to future overhead test (for graphs)

• PR #34201595 - Add guided_pool_executor

• PR #34191596 - Fix typo in CircleCI config

• PR #34181597 - Add sphinx documentation

• PR #34151598 - Scheduler NUMA hint and shared priority scheduler

• PR #34141599 - Adding step to synchronize the APEX release

• PR #34131600 - Fixing multiple defines of APEX_HAVE_HPX

• PR #34121601 - Fixes linking with libhpx_wrap error with BSD and Windows based systems

• PR #34101602 - Fix typo in CMakeLists.txt

• PR #34091603 - Fix brackets and indentation in existing_performance_counters.qbk

• PR #34071604 - Fix unused param and extra ; warnings emitted by gcc 8.x

1582 https://github.com/STEllAR-GROUP/hpx/pull/3439
1583 https://github.com/STEllAR-GROUP/hpx/pull/3436
1584 https://github.com/STEllAR-GROUP/hpx/pull/3435
1585 https://github.com/STEllAR-GROUP/hpx/pull/3434
1586 https://github.com/STEllAR-GROUP/hpx/pull/3433
1587 https://github.com/STEllAR-GROUP/hpx/pull/3432
1588 https://github.com/STEllAR-GROUP/hpx/pull/3431
1589 https://github.com/STEllAR-GROUP/hpx/pull/3430
1590 https://github.com/STEllAR-GROUP/hpx/pull/3429
1591 https://github.com/STEllAR-GROUP/hpx/pull/3428
1592 https://github.com/STEllAR-GROUP/hpx/pull/3427
1593 https://github.com/STEllAR-GROUP/hpx/pull/3425
1594 https://github.com/STEllAR-GROUP/hpx/pull/3421
1595 https://github.com/STEllAR-GROUP/hpx/pull/3420
1596 https://github.com/STEllAR-GROUP/hpx/pull/3419
1597 https://github.com/STEllAR-GROUP/hpx/pull/3418
1598 https://github.com/STEllAR-GROUP/hpx/pull/3415
1599 https://github.com/STEllAR-GROUP/hpx/pull/3414
1600 https://github.com/STEllAR-GROUP/hpx/pull/3413
1601 https://github.com/STEllAR-GROUP/hpx/pull/3412
1602 https://github.com/STEllAR-GROUP/hpx/pull/3410
1603 https://github.com/STEllAR-GROUP/hpx/pull/3409
1604 https://github.com/STEllAR-GROUP/hpx/pull/3407

1286 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3439
https://github.com/STEllAR-GROUP/hpx/pull/3436
https://github.com/STEllAR-GROUP/hpx/pull/3435
https://github.com/STEllAR-GROUP/hpx/pull/3434
https://github.com/STEllAR-GROUP/hpx/pull/3433
https://github.com/STEllAR-GROUP/hpx/pull/3432
https://github.com/STEllAR-GROUP/hpx/pull/3431
https://github.com/STEllAR-GROUP/hpx/pull/3430
https://github.com/STEllAR-GROUP/hpx/pull/3429
https://github.com/STEllAR-GROUP/hpx/pull/3428
https://github.com/STEllAR-GROUP/hpx/pull/3427
https://github.com/STEllAR-GROUP/hpx/pull/3425
https://github.com/STEllAR-GROUP/hpx/pull/3421
https://github.com/STEllAR-GROUP/hpx/pull/3420
https://github.com/STEllAR-GROUP/hpx/pull/3419
https://github.com/STEllAR-GROUP/hpx/pull/3418
https://github.com/STEllAR-GROUP/hpx/pull/3415
https://github.com/STEllAR-GROUP/hpx/pull/3414
https://github.com/STEllAR-GROUP/hpx/pull/3413
https://github.com/STEllAR-GROUP/hpx/pull/3412
https://github.com/STEllAR-GROUP/hpx/pull/3410
https://github.com/STEllAR-GROUP/hpx/pull/3409
https://github.com/STEllAR-GROUP/hpx/pull/3407

HPX Documentation, 1.5.1

• PR #34061605 - Adding thread local allocator and use it for future shared states

• PR #34051606 - Adding DHPX_HAVE_THREAD_LOCAL_STORAGE=ON to builds

• PR #34041607 - fixing multiple definition of main() in linux

• PR #34021608 - Allow debug option to be enabled only for Linux systems with dynamic main on

• PR #34011609 - Fix cuda_future_helper.h when compiling with C++11

• PR #34001610 - Fix floating point exception scheduler_base idle backoff

• PR #33981611 - Atomic future state

• PR #33971612 - Fixing code for older gcc versions

• PR #33961613 - Allowing to register thread event functions (start/stop/error)

• PR #33941614 - Fix small mistake in primary_namespace_server.cpp

• PR #33931615 - Explicitly instantiate configured schedulers

• PR #33921616 - Add performance counters background overhead and background work duration

• PR #33911617 - Adapt integration of HPXMP to latest build system changes

• PR #33901618 - Make AGAS measurements optional

• PR #33891619 - Fix deadlock during shutdown

• PR #33881620 - Add several functionalities allowing to optimize synchronous action invocation

• PR #33871621 - Add cmake option to opt out of fail-compile tests

• PR #33861622 - Adding support for boost::container::small_vector to dataflow

• PR #33851623 - Adds Debug option for hpx initializing from main

• PR #33841624 - This hopefully fixes two tests that occasionally fail

• PR #33831625 - Making sure thread local storage is enable for hpxMP

• PR #33821626 - Fix usage of HPX_CAPTURE together with default value capture [=]

• PR #33811627 - Replace undefined instantiations of uniform_int_distribution

1605 https://github.com/STEllAR-GROUP/hpx/pull/3406
1606 https://github.com/STEllAR-GROUP/hpx/pull/3405
1607 https://github.com/STEllAR-GROUP/hpx/pull/3404
1608 https://github.com/STEllAR-GROUP/hpx/pull/3402
1609 https://github.com/STEllAR-GROUP/hpx/pull/3401
1610 https://github.com/STEllAR-GROUP/hpx/pull/3400
1611 https://github.com/STEllAR-GROUP/hpx/pull/3398
1612 https://github.com/STEllAR-GROUP/hpx/pull/3397
1613 https://github.com/STEllAR-GROUP/hpx/pull/3396
1614 https://github.com/STEllAR-GROUP/hpx/pull/3394
1615 https://github.com/STEllAR-GROUP/hpx/pull/3393
1616 https://github.com/STEllAR-GROUP/hpx/pull/3392
1617 https://github.com/STEllAR-GROUP/hpx/pull/3391
1618 https://github.com/STEllAR-GROUP/hpx/pull/3390
1619 https://github.com/STEllAR-GROUP/hpx/pull/3389
1620 https://github.com/STEllAR-GROUP/hpx/pull/3388
1621 https://github.com/STEllAR-GROUP/hpx/pull/3387
1622 https://github.com/STEllAR-GROUP/hpx/pull/3386
1623 https://github.com/STEllAR-GROUP/hpx/pull/3385
1624 https://github.com/STEllAR-GROUP/hpx/pull/3384
1625 https://github.com/STEllAR-GROUP/hpx/pull/3383
1626 https://github.com/STEllAR-GROUP/hpx/pull/3382
1627 https://github.com/STEllAR-GROUP/hpx/pull/3381

2.11. Releases 1287

https://github.com/STEllAR-GROUP/hpx/pull/3406
https://github.com/STEllAR-GROUP/hpx/pull/3405
https://github.com/STEllAR-GROUP/hpx/pull/3404
https://github.com/STEllAR-GROUP/hpx/pull/3402
https://github.com/STEllAR-GROUP/hpx/pull/3401
https://github.com/STEllAR-GROUP/hpx/pull/3400
https://github.com/STEllAR-GROUP/hpx/pull/3398
https://github.com/STEllAR-GROUP/hpx/pull/3397
https://github.com/STEllAR-GROUP/hpx/pull/3396
https://github.com/STEllAR-GROUP/hpx/pull/3394
https://github.com/STEllAR-GROUP/hpx/pull/3393
https://github.com/STEllAR-GROUP/hpx/pull/3392
https://github.com/STEllAR-GROUP/hpx/pull/3391
https://github.com/STEllAR-GROUP/hpx/pull/3390
https://github.com/STEllAR-GROUP/hpx/pull/3389
https://github.com/STEllAR-GROUP/hpx/pull/3388
https://github.com/STEllAR-GROUP/hpx/pull/3387
https://github.com/STEllAR-GROUP/hpx/pull/3386
https://github.com/STEllAR-GROUP/hpx/pull/3385
https://github.com/STEllAR-GROUP/hpx/pull/3384
https://github.com/STEllAR-GROUP/hpx/pull/3383
https://github.com/STEllAR-GROUP/hpx/pull/3382
https://github.com/STEllAR-GROUP/hpx/pull/3381

HPX Documentation, 1.5.1

• PR #33801628 - Add missing semicolons to uses of HPX_COMPILER_FENCE

• PR #33791629 - Fixing #3378

• PR #33771630 - Adding build system support to integrate hpxmp into hpx at the user’s machine

• PR #33751631 - Replacing wrapper for __libc_start_main with main

• PR #33741632 - Adds hpx_wrap to HPX_LINK_LIBRARIES which links only when specified.

• PR #33731633 - Forcing cache settings in HPXConfig.cmake to guarantee updated values

• PR #33721634 - Fix some more c++11 build problems

• PR #33711635 - Adds HPX_LINKER_FLAGS to HPX applications without editing their source codes

• PR #33701636 - util::format: add type_specifier<> specializations for %!s(MISSING) and %!l(MISSING)s

• PR #33691637 - Adding configuration option to allow explicit disable of the new hpx_main feature on Linux

• PR #33681638 - Updates doc with recent hpx_wrap implementation

• PR #33671639 - Adds Mac OS implementation to hpx_main.hpp

• PR #33651640 - Fix order of hpx libs in HPX_CONF_LIBRARIES.

• PR #33631641 - Apex fixing null wrapper

• PR #33611642 - Making sure all parcels get destroyed on an HPX thread (TCP pp)

• PR #33591643 - Feature/improveerrorforcompiler

• PR #33571644 - Static/dynamic executable implementation

• PR #33551645 - Reverting changes introduced by #3283 as those make applications hang

• PR #33541646 - Add external dependencies to HPX_LIBRARY_DIR

• PR #33531647 - Fix libfabric tcp

• PR #33511648 - Move obsolete header to tests directory.

• PR #33501649 - Renaming two functions to avoid problem described in #3285

• PR #33491650 - Make idle backoff exponential with maximum sleep time

1628 https://github.com/STEllAR-GROUP/hpx/pull/3380
1629 https://github.com/STEllAR-GROUP/hpx/pull/3379
1630 https://github.com/STEllAR-GROUP/hpx/pull/3377
1631 https://github.com/STEllAR-GROUP/hpx/pull/3375
1632 https://github.com/STEllAR-GROUP/hpx/pull/3374
1633 https://github.com/STEllAR-GROUP/hpx/pull/3373
1634 https://github.com/STEllAR-GROUP/hpx/pull/3372
1635 https://github.com/STEllAR-GROUP/hpx/pull/3371
1636 https://github.com/STEllAR-GROUP/hpx/pull/3370
1637 https://github.com/STEllAR-GROUP/hpx/pull/3369
1638 https://github.com/STEllAR-GROUP/hpx/pull/3368
1639 https://github.com/STEllAR-GROUP/hpx/pull/3367
1640 https://github.com/STEllAR-GROUP/hpx/pull/3365
1641 https://github.com/STEllAR-GROUP/hpx/pull/3363
1642 https://github.com/STEllAR-GROUP/hpx/pull/3361
1643 https://github.com/STEllAR-GROUP/hpx/pull/3359
1644 https://github.com/STEllAR-GROUP/hpx/pull/3357
1645 https://github.com/STEllAR-GROUP/hpx/pull/3355
1646 https://github.com/STEllAR-GROUP/hpx/pull/3354
1647 https://github.com/STEllAR-GROUP/hpx/pull/3353
1648 https://github.com/STEllAR-GROUP/hpx/pull/3351
1649 https://github.com/STEllAR-GROUP/hpx/pull/3350
1650 https://github.com/STEllAR-GROUP/hpx/pull/3349

1288 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3380
https://github.com/STEllAR-GROUP/hpx/pull/3379
https://github.com/STEllAR-GROUP/hpx/pull/3377
https://github.com/STEllAR-GROUP/hpx/pull/3375
https://github.com/STEllAR-GROUP/hpx/pull/3374
https://github.com/STEllAR-GROUP/hpx/pull/3373
https://github.com/STEllAR-GROUP/hpx/pull/3372
https://github.com/STEllAR-GROUP/hpx/pull/3371
https://github.com/STEllAR-GROUP/hpx/pull/3370
https://github.com/STEllAR-GROUP/hpx/pull/3369
https://github.com/STEllAR-GROUP/hpx/pull/3368
https://github.com/STEllAR-GROUP/hpx/pull/3367
https://github.com/STEllAR-GROUP/hpx/pull/3365
https://github.com/STEllAR-GROUP/hpx/pull/3363
https://github.com/STEllAR-GROUP/hpx/pull/3361
https://github.com/STEllAR-GROUP/hpx/pull/3359
https://github.com/STEllAR-GROUP/hpx/pull/3357
https://github.com/STEllAR-GROUP/hpx/pull/3355
https://github.com/STEllAR-GROUP/hpx/pull/3354
https://github.com/STEllAR-GROUP/hpx/pull/3353
https://github.com/STEllAR-GROUP/hpx/pull/3351
https://github.com/STEllAR-GROUP/hpx/pull/3350
https://github.com/STEllAR-GROUP/hpx/pull/3349

HPX Documentation, 1.5.1

• PR #33471651 - Replace simple_component* with component* in the Documentation

• PR #33461652 - Fix CMakeLists.txt example in quick start

• PR #33451653 - Fix automatic setting of HPX_MORE_THAN_64_THREADS

• PR #33441654 - Reduce amount of information printed for unknown command line options

• PR #33431655 - Safeguard HPX against destruction in global contexts

• PR #33411656 - Allowing for all command line options to be used as configuration settings

• PR #33401657 - Always convert inspect results to JUnit XML

• PR #33361658 - Only run docker push on master on CircleCI

• PR #33351659 - Update description of hpx.os_threads config parameter.

• PR #33341660 - Making sure early logging settings don’t get mixed with others

• PR #33331661 - Update CMake links and versions in documentation

• PR #33321662 - Add notes on target suffixes to CMake documentation

• PR #33311663 - Add quickstart section to documentation

• PR #33301664 - Rename resource_partitioner test to avoid conflicts with pseudodependencies

• PR #33281665 - Making sure object is pinned while executing actions, even if action returns a future

• PR #33271666 - Add missing std::forward to tuple.hpp

• PR #33261667 - Make sure logging is up and running while modules are being discovered.

• PR #33241668 - Replace C++14 overload of std::equal with C++11 code.

• PR #33231669 - Fix a missing apex thread data (wrapper) initialization

• PR #33201670 - Adding support for -std=c++2a (define HPX_WITH_CXX2A=On)

• PR #33191671 - Replacing C++14 feature with equivalent C++11 code

• PR #33171672 - Fix compilation with VS 15.7.1 and /std:c++latest

• PR #33161673 - Fix includes for 1d_stencil_*_omp examples

1651 https://github.com/STEllAR-GROUP/hpx/pull/3347
1652 https://github.com/STEllAR-GROUP/hpx/pull/3346
1653 https://github.com/STEllAR-GROUP/hpx/pull/3345
1654 https://github.com/STEllAR-GROUP/hpx/pull/3344
1655 https://github.com/STEllAR-GROUP/hpx/pull/3343
1656 https://github.com/STEllAR-GROUP/hpx/pull/3341
1657 https://github.com/STEllAR-GROUP/hpx/pull/3340
1658 https://github.com/STEllAR-GROUP/hpx/pull/3336
1659 https://github.com/STEllAR-GROUP/hpx/pull/3335
1660 https://github.com/STEllAR-GROUP/hpx/pull/3334
1661 https://github.com/STEllAR-GROUP/hpx/pull/3333
1662 https://github.com/STEllAR-GROUP/hpx/pull/3332
1663 https://github.com/STEllAR-GROUP/hpx/pull/3331
1664 https://github.com/STEllAR-GROUP/hpx/pull/3330
1665 https://github.com/STEllAR-GROUP/hpx/pull/3328
1666 https://github.com/STEllAR-GROUP/hpx/pull/3327
1667 https://github.com/STEllAR-GROUP/hpx/pull/3326
1668 https://github.com/STEllAR-GROUP/hpx/pull/3324
1669 https://github.com/STEllAR-GROUP/hpx/pull/3323
1670 https://github.com/STEllAR-GROUP/hpx/pull/3320
1671 https://github.com/STEllAR-GROUP/hpx/pull/3319
1672 https://github.com/STEllAR-GROUP/hpx/pull/3317
1673 https://github.com/STEllAR-GROUP/hpx/pull/3316

2.11. Releases 1289

https://github.com/STEllAR-GROUP/hpx/pull/3347
https://github.com/STEllAR-GROUP/hpx/pull/3346
https://github.com/STEllAR-GROUP/hpx/pull/3345
https://github.com/STEllAR-GROUP/hpx/pull/3344
https://github.com/STEllAR-GROUP/hpx/pull/3343
https://github.com/STEllAR-GROUP/hpx/pull/3341
https://github.com/STEllAR-GROUP/hpx/pull/3340
https://github.com/STEllAR-GROUP/hpx/pull/3336
https://github.com/STEllAR-GROUP/hpx/pull/3335
https://github.com/STEllAR-GROUP/hpx/pull/3334
https://github.com/STEllAR-GROUP/hpx/pull/3333
https://github.com/STEllAR-GROUP/hpx/pull/3332
https://github.com/STEllAR-GROUP/hpx/pull/3331
https://github.com/STEllAR-GROUP/hpx/pull/3330
https://github.com/STEllAR-GROUP/hpx/pull/3328
https://github.com/STEllAR-GROUP/hpx/pull/3327
https://github.com/STEllAR-GROUP/hpx/pull/3326
https://github.com/STEllAR-GROUP/hpx/pull/3324
https://github.com/STEllAR-GROUP/hpx/pull/3323
https://github.com/STEllAR-GROUP/hpx/pull/3320
https://github.com/STEllAR-GROUP/hpx/pull/3319
https://github.com/STEllAR-GROUP/hpx/pull/3317
https://github.com/STEllAR-GROUP/hpx/pull/3316

HPX Documentation, 1.5.1

• PR #33141674 - Remove some unused parameter warnings

• PR #33131675 - Fix pu-step and pu-offset command line options

• PR #33121676 - Add conversion of inspect reports to JUnit XML

• PR #33111677 - Fix escaping of closing braces in format specification syntax

• PR #33101678 - Don’t overwrite user settings with defaults in registration database

• PR #33091679 - Fixing potential stack overflow for dataflow

• PR #33081680 - This updates the .clang-format configuration file to utilize newer features

• PR #33061681 - Marking migratable objects in their gid to allow not handling migration in AGAS

• PR #33051682 - Add proper exception handling to run_as_hpx_thread

• PR #33031683 - Changed std::rand to a better inbuilt PRNG Generator

• PR #33021684 - All non-migratable (simple) components now encode their lva and component type in their gid

• PR #33011685 - Add nullptr_t overloads to resource partitioner

• PR #32981686 - Apex task wrapper memory bug

• PR #32951687 - Fix mistakes after merge of CircleCI config

• PR #32941688 - Fix partitioned vector include in partitioned_vector_find tests

• PR #32931689 - Adding emplace support to promise and make_ready_future

• PR #32921690 - Add new cuda kernel synchronization with hpx::future demo

• PR #32911691 - Fixes #3290

• PR #32891692 - Fixing Docker image creation

• PR #32881693 - Avoid allocating shared state for wait_all

• PR #32871694 - Fixing /scheduler/utilization/instantaneous performance counter

• PR #32861695 - dataflow() and future::then() use sync policy where possible

• PR #32841696 - Background thread can use relaxed atomics to manipulate thread state

1674 https://github.com/STEllAR-GROUP/hpx/pull/3314
1675 https://github.com/STEllAR-GROUP/hpx/pull/3313
1676 https://github.com/STEllAR-GROUP/hpx/pull/3312
1677 https://github.com/STEllAR-GROUP/hpx/pull/3311
1678 https://github.com/STEllAR-GROUP/hpx/pull/3310
1679 https://github.com/STEllAR-GROUP/hpx/pull/3309
1680 https://github.com/STEllAR-GROUP/hpx/pull/3308
1681 https://github.com/STEllAR-GROUP/hpx/pull/3306
1682 https://github.com/STEllAR-GROUP/hpx/pull/3305
1683 https://github.com/STEllAR-GROUP/hpx/pull/3303
1684 https://github.com/STEllAR-GROUP/hpx/pull/3302
1685 https://github.com/STEllAR-GROUP/hpx/pull/3301
1686 https://github.com/STEllAR-GROUP/hpx/pull/3298
1687 https://github.com/STEllAR-GROUP/hpx/pull/3295
1688 https://github.com/STEllAR-GROUP/hpx/pull/3294
1689 https://github.com/STEllAR-GROUP/hpx/pull/3293
1690 https://github.com/STEllAR-GROUP/hpx/pull/3292
1691 https://github.com/STEllAR-GROUP/hpx/pull/3291
1692 https://github.com/STEllAR-GROUP/hpx/pull/3289
1693 https://github.com/STEllAR-GROUP/hpx/pull/3288
1694 https://github.com/STEllAR-GROUP/hpx/pull/3287
1695 https://github.com/STEllAR-GROUP/hpx/pull/3286
1696 https://github.com/STEllAR-GROUP/hpx/pull/3284

1290 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3314
https://github.com/STEllAR-GROUP/hpx/pull/3313
https://github.com/STEllAR-GROUP/hpx/pull/3312
https://github.com/STEllAR-GROUP/hpx/pull/3311
https://github.com/STEllAR-GROUP/hpx/pull/3310
https://github.com/STEllAR-GROUP/hpx/pull/3309
https://github.com/STEllAR-GROUP/hpx/pull/3308
https://github.com/STEllAR-GROUP/hpx/pull/3306
https://github.com/STEllAR-GROUP/hpx/pull/3305
https://github.com/STEllAR-GROUP/hpx/pull/3303
https://github.com/STEllAR-GROUP/hpx/pull/3302
https://github.com/STEllAR-GROUP/hpx/pull/3301
https://github.com/STEllAR-GROUP/hpx/pull/3298
https://github.com/STEllAR-GROUP/hpx/pull/3295
https://github.com/STEllAR-GROUP/hpx/pull/3294
https://github.com/STEllAR-GROUP/hpx/pull/3293
https://github.com/STEllAR-GROUP/hpx/pull/3292
https://github.com/STEllAR-GROUP/hpx/pull/3291
https://github.com/STEllAR-GROUP/hpx/pull/3289
https://github.com/STEllAR-GROUP/hpx/pull/3288
https://github.com/STEllAR-GROUP/hpx/pull/3287
https://github.com/STEllAR-GROUP/hpx/pull/3286
https://github.com/STEllAR-GROUP/hpx/pull/3284

HPX Documentation, 1.5.1

• PR #32831697 - Do not unwrap ready future

• PR #32821698 - Fix virtual method override warnings in static schedulers

• PR #32811699 - Disable set_area_membind_nodeset for OSX

• PR #32791700 - Add two variations to the future_overhead benchmark

• PR #32781701 - Fix circleci workspace

• PR #32771702 - Support external plugins

• PR #32761703 - Fix missing parenthesis in hello_compute.cu.

• PR #32741704 - Reinit counters synchronously in reinit_counters test

• PR #32731705 - Splitting tests to avoid compiler OOM

• PR #32711706 - Remove leftover code from context_generic_context.hpp

• PR #32691707 - Fix bulk_construct with count = 0

• PR #32681708 - Replace constexpr with HPX_CXX14_CONSTEXPR and HPX_CONSTEXPR

• PR #32661709 - Replace boost::format with custom sprintf-based implementation

• PR #32651710 - Split parallel tests on CircleCI

• PR #32621711 - Making sure documentation correctly links to source files

• PR #32611712 - Apex refactoring fix rebind

• PR #32601713 - Isolate performance counter parser into a separate TU

• PR #32561714 - Post 1.1.0 version bumps

• PR #32541715 - Adding trait for actions allowing to make runtime decision on whether to execute it directly

• PR #32531716 - Bump minimal supported Boost to 1.58.0

• PR #32511717 - Adds new feature: changing interval used in interval_timer (issue 3244)

• PR #32391718 - Changing std::rand() to a better inbuilt PRNG generator.

• PR #32341719 - Disable background thread when networking is off

1697 https://github.com/STEllAR-GROUP/hpx/pull/3283
1698 https://github.com/STEllAR-GROUP/hpx/pull/3282
1699 https://github.com/STEllAR-GROUP/hpx/pull/3281
1700 https://github.com/STEllAR-GROUP/hpx/pull/3279
1701 https://github.com/STEllAR-GROUP/hpx/pull/3278
1702 https://github.com/STEllAR-GROUP/hpx/pull/3277
1703 https://github.com/STEllAR-GROUP/hpx/pull/3276
1704 https://github.com/STEllAR-GROUP/hpx/pull/3274
1705 https://github.com/STEllAR-GROUP/hpx/pull/3273
1706 https://github.com/STEllAR-GROUP/hpx/pull/3271
1707 https://github.com/STEllAR-GROUP/hpx/pull/3269
1708 https://github.com/STEllAR-GROUP/hpx/pull/3268
1709 https://github.com/STEllAR-GROUP/hpx/pull/3266
1710 https://github.com/STEllAR-GROUP/hpx/pull/3265
1711 https://github.com/STEllAR-GROUP/hpx/pull/3262
1712 https://github.com/STEllAR-GROUP/hpx/pull/3261
1713 https://github.com/STEllAR-GROUP/hpx/pull/3260
1714 https://github.com/STEllAR-GROUP/hpx/pull/3256
1715 https://github.com/STEllAR-GROUP/hpx/pull/3254
1716 https://github.com/STEllAR-GROUP/hpx/pull/3253
1717 https://github.com/STEllAR-GROUP/hpx/pull/3251
1718 https://github.com/STEllAR-GROUP/hpx/pull/3239
1719 https://github.com/STEllAR-GROUP/hpx/pull/3234

2.11. Releases 1291

https://github.com/STEllAR-GROUP/hpx/pull/3283
https://github.com/STEllAR-GROUP/hpx/pull/3282
https://github.com/STEllAR-GROUP/hpx/pull/3281
https://github.com/STEllAR-GROUP/hpx/pull/3279
https://github.com/STEllAR-GROUP/hpx/pull/3278
https://github.com/STEllAR-GROUP/hpx/pull/3277
https://github.com/STEllAR-GROUP/hpx/pull/3276
https://github.com/STEllAR-GROUP/hpx/pull/3274
https://github.com/STEllAR-GROUP/hpx/pull/3273
https://github.com/STEllAR-GROUP/hpx/pull/3271
https://github.com/STEllAR-GROUP/hpx/pull/3269
https://github.com/STEllAR-GROUP/hpx/pull/3268
https://github.com/STEllAR-GROUP/hpx/pull/3266
https://github.com/STEllAR-GROUP/hpx/pull/3265
https://github.com/STEllAR-GROUP/hpx/pull/3262
https://github.com/STEllAR-GROUP/hpx/pull/3261
https://github.com/STEllAR-GROUP/hpx/pull/3260
https://github.com/STEllAR-GROUP/hpx/pull/3256
https://github.com/STEllAR-GROUP/hpx/pull/3254
https://github.com/STEllAR-GROUP/hpx/pull/3253
https://github.com/STEllAR-GROUP/hpx/pull/3251
https://github.com/STEllAR-GROUP/hpx/pull/3239
https://github.com/STEllAR-GROUP/hpx/pull/3234

HPX Documentation, 1.5.1

• PR #32321720 - Clean up suspension tests

• PR #32301721 - Add optional scheduler mode parameter to create_thread_pool function

• PR #32281722 - Allow suspension also on static schedulers

• PR #31631723 - libfabric parcelport w/o HPX_PARCELPORT_LIBFABRIC_ENDPOINT_RDM

• PR #30361724 - Switching to CircleCI 2.0

2.11.8 HPX V1.1.0 (Mar 24, 2018)

General changes

Here are some of the main highlights and changes for this release (in no particular order):

• We have changed the way HPX manages the processing units on a node. We do not longer implicitly
bind all available cores to a single thread pool. The user has now full control over what processing units
are bound to what thread pool, each with a separate scheduler. It is now also possible to create your
own scheduler implementation and control what processing units this scheduler should use. We added the
hpx::resource::partitioner that manages all available processing units and assigns resources to the
used thread pools. Thread pools can be now be suspended/resumed independently. This functionality helps in
running HPX concurrently to code that is directly relying on OpenMP1725 and/or MPI1726.

• We have continued to implement various parallel algorithms. HPX now almost completely implements all of the
parallel algorithms as specified by the C++17 Standard1727. We have also continued to implement these algo-
rithms for the distributed use case (for segmented data structures, such as hpx::partitioned_vector).

• Added a compatibility layer for std::thread, std::mutex, and std::condition_variable allow-
ing for the code to use those facilities where available and to fall back to the corresponding Boost facilities
otherwise. The CMake1728 configuration option -DHPX_WITH_THREAD_COMPATIBILITY=On can be used
to force using the Boost equivalents.

• The parameter sequence for the hpx::parallel::transform_inclusive_scan overload tak-
ing one iterator range has changed (again) to match the changes this algorithm has undergone while
being moved to C++17. The old overloads can be still enabled at configure time by passing
-DHPX_WITH_TRANSFORM_REDUCE_COMPATIBILITY=On to CMake1729.

• The parameter sequence for the hpx::parallel::inclusive_scan overload taking one iterator range
has changed to match the changes this algorithm has undergone while being moved to C++17. The old overloads
can be still enabled at configure time by passing -DHPX_WITH_INCLUSIVE_SCAN_COMPATIBILITY=On
to CMake.

• Added a helper facility hpx::local_new which is equivalent to hpx::new_ except that it creates compo-
nents locally only. As a consequence, the used component constructor may accept non-serializable argument
types and/or non-const references or pointers.

• Removed the (broken) component type hpx::lcos::queue<T>. The old type is still available at configure
time by passing -DHPX_WITH_QUEUE_COMPATIBILITY=On to CMake.

1720 https://github.com/STEllAR-GROUP/hpx/pull/3232
1721 https://github.com/STEllAR-GROUP/hpx/pull/3230
1722 https://github.com/STEllAR-GROUP/hpx/pull/3228
1723 https://github.com/STEllAR-GROUP/hpx/pull/3163
1724 https://github.com/STEllAR-GROUP/hpx/pull/3036
1725 https://openmp.org/wp/
1726 https://en.wikipedia.org/wiki/Message_Passing_Interface
1727 http://www.open-std.org/jtc1/sc22/wg21
1728 https://www.cmake.org
1729 https://www.cmake.org

1292 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3232
https://github.com/STEllAR-GROUP/hpx/pull/3230
https://github.com/STEllAR-GROUP/hpx/pull/3228
https://github.com/STEllAR-GROUP/hpx/pull/3163
https://github.com/STEllAR-GROUP/hpx/pull/3036
https://openmp.org/wp/
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.open-std.org/jtc1/sc22/wg21
https://www.cmake.org
https://www.cmake.org

HPX Documentation, 1.5.1

• The parallel algorithms adopted for C++17 restrict the iterator categories usable with those to at least forward
iterators. Our implementation of the parallel algorithms was supporting input iterators (and output iterators)
as well by simply falling back to sequential execution. We have now made our implementations conform-
ing by requiring at least forward iterators. In order to enable the old behavior use the compatibility option
-DHPX_WITH_ALGORITHM_INPUT_ITERATOR_SUPPORT=On on the CMake1730 command line.

• We have added the functionalities allowing for LCOs being implemented using (simple) components. Before
LCOs had to always be implemented using managed components.

• User defined components don’t have to be default-constructible anymore. Return types from actions don’t
have to be default-constructible anymore either. Our serialization layer now in general supports non-default-
constructible types.

• We have added a new launch policy hpx::launch::lazy that allows oneto defer the decision on what
launch policy to use to the point of execution. This policy is initialized with a function (object) that – when
invoked – is expected to produce the desired launch policy.

Breaking changes

• We have dropped support for the gcc compiler version V4.8. The minimal gcc version we now test on is gcc
V4.9. The minimally required version of CMake1731 is now V3.3.2.

• We have dropped support for the Visual Studio 2013 compiler version. The minimal Visual Studio version we
now test on is Visual Studio 2015.5.

• We have dropped support for the Boost V1.51-V1.54. The minimal version of Boost we now test is Boost V1.55.

• We have dropped support for the hpx::util::unwrapped API. hpx::util::unwrapped will stay
functional to some degree, until it finally gets removed in a later version of HPX. The functional usage of
hpx::util::unwrapped should be changed to the new hpx::util::unwrapping function whereas
the immediate usage should be replaced to hpx::util::unwrap.

• The performance counter names referring to properties as exposed by the threading subsystem have changes as
those now additionally have to specify the thread-pool. See the corresponding documentation for more details.

• The overloads of hpx::async that invoke an action do not perform implicit unwrapping of the returned future
anymore in case the invoked function does return a future in the first place. In this case hpx::async now
returns a hpx::future<future<T>> making its behavior conforming to its local counterpart.

• We have replaced the use of boost::exception_ptr in our APIs with the equivalent
std::exception_ptr. Please change your codes accordingly. No compatibility settings are provided.

• We have removed the compatibility settings for HPX_WITH_COLOCATED_BACKWARDS_COMPATIBILITY
and HPX_WITH_COMPONENT_GET_GID_COMPATIBILITY as their life-cycle has reached its end.

• We have removed the experimental thread schedulers hierarchy_scheduler, periodic_priority_scheduler and
throttling_scheduler in an effort to clean up and consolidate our thread schedulers.

1730 https://www.cmake.org
1731 https://www.cmake.org

2.11. Releases 1293

https://www.cmake.org
https://www.cmake.org

HPX Documentation, 1.5.1

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• PR #32501732 - Apex refactoring with guids

• PR #32491733 - Updating People.qbk

• PR #32461734 - Assorted fixes for CUDA

• PR #32451735 - Apex refactoring with guids

• PR #32421736 - Modify task counting in thread_queue.hpp

• PR #32401737 - Fixed typos

• PR #32381738 - Readding accidentally removed std::abort

• PR #32371739 - Adding Pipeline example

• PR #32361740 - Fixing memory_block

• PR #32331741 - Make schedule_thread take suspended threads into account

• Issue #32261742 - memory_block is breaking, signaling SIGSEGV on a thread on creation and freeing

• PR #32251743 - Applying quick fix for hwloc-2.0

• Issue #32241744 - HPX counters crashing the application

• PR #32231745 - Fix returns when setting config entries

• Issue #32221746 - Errors linking libhpx.so

• Issue #32211747 - HPX on Mac OS X with HWLoc 2.0.0 fails to run

• PR #32161748 - Reorder a variadic array to satisfy VS 2017 15.6

• PR #32141749 - Changed prerequisites.qbk to avoid confusion while building boost

• PR #32131750 - Relax locks for thread suspension to avoid holding locks when yielding

• PR #32121751 - Fix check in sequenced_executor test

• PR #32111752 - Use preinit_array to set argc/argv in init_globally example

1732 https://github.com/STEllAR-GROUP/hpx/pull/3250
1733 https://github.com/STEllAR-GROUP/hpx/pull/3249
1734 https://github.com/STEllAR-GROUP/hpx/pull/3246
1735 https://github.com/STEllAR-GROUP/hpx/pull/3245
1736 https://github.com/STEllAR-GROUP/hpx/pull/3242
1737 https://github.com/STEllAR-GROUP/hpx/pull/3240
1738 https://github.com/STEllAR-GROUP/hpx/pull/3238
1739 https://github.com/STEllAR-GROUP/hpx/pull/3237
1740 https://github.com/STEllAR-GROUP/hpx/pull/3236
1741 https://github.com/STEllAR-GROUP/hpx/pull/3233
1742 https://github.com/STEllAR-GROUP/hpx/issues/3226
1743 https://github.com/STEllAR-GROUP/hpx/pull/3225
1744 https://github.com/STEllAR-GROUP/hpx/issues/3224
1745 https://github.com/STEllAR-GROUP/hpx/pull/3223
1746 https://github.com/STEllAR-GROUP/hpx/issues/3222
1747 https://github.com/STEllAR-GROUP/hpx/issues/3221
1748 https://github.com/STEllAR-GROUP/hpx/pull/3216
1749 https://github.com/STEllAR-GROUP/hpx/pull/3214
1750 https://github.com/STEllAR-GROUP/hpx/pull/3213
1751 https://github.com/STEllAR-GROUP/hpx/pull/3212
1752 https://github.com/STEllAR-GROUP/hpx/pull/3211

1294 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3250
https://github.com/STEllAR-GROUP/hpx/pull/3249
https://github.com/STEllAR-GROUP/hpx/pull/3246
https://github.com/STEllAR-GROUP/hpx/pull/3245
https://github.com/STEllAR-GROUP/hpx/pull/3242
https://github.com/STEllAR-GROUP/hpx/pull/3240
https://github.com/STEllAR-GROUP/hpx/pull/3238
https://github.com/STEllAR-GROUP/hpx/pull/3237
https://github.com/STEllAR-GROUP/hpx/pull/3236
https://github.com/STEllAR-GROUP/hpx/pull/3233
https://github.com/STEllAR-GROUP/hpx/issues/3226
https://github.com/STEllAR-GROUP/hpx/pull/3225
https://github.com/STEllAR-GROUP/hpx/issues/3224
https://github.com/STEllAR-GROUP/hpx/pull/3223
https://github.com/STEllAR-GROUP/hpx/issues/3222
https://github.com/STEllAR-GROUP/hpx/issues/3221
https://github.com/STEllAR-GROUP/hpx/pull/3216
https://github.com/STEllAR-GROUP/hpx/pull/3214
https://github.com/STEllAR-GROUP/hpx/pull/3213
https://github.com/STEllAR-GROUP/hpx/pull/3212
https://github.com/STEllAR-GROUP/hpx/pull/3211

HPX Documentation, 1.5.1

• PR #32101753 - Adapted parallel::{search | search_n} for Ranges TS (see #1668)

• PR #32091754 - Fix locking problems during shutdown

• Issue #32081755 - init_globally throwing a run-time error

• PR #32061756 - Addition of new arithmetic performance counter “Count”

• PR #32051757 - Fixing return type calculation for bulk_then_execute

• PR #32041758 - Changing std::rand() to a better inbuilt PRNG generator

• PR #32031759 - Resolving problems during shutdown for VS2015

• PR #32021760 - Making sure resource partitioner is not accessed if its not valid

• PR #32011761 - Fixing optional::swap

• Issue #32001762 - hpx::util::optional fails

• PR #31991763 - Fix sliding_semaphore test

• PR #31981764 - Set pre_main status before launching run_helper

• PR #31971765 - Update README.rst

• PR #31941766 - parallel::{fill|fill_n} updated for Ranges TS

• PR #31931767 - Updating Runtime.cpp by adding correct description of Performance counters during register

• PR #31911768 - Fix sliding_semaphore_2338 test

• PR #31901769 - Topology improvements

• PR #31891770 - Deleting one include of median from BOOST library to arithmetics_counter file

• PR #31881771 - Optionally disable printing of diagnostics during terminate

• PR #31871772 - Suppressing cmake warning issued by cmake > V3.11

• PR #31851773 - Remove unused scoped_unlock, unlock_guard_try

• PR #31841774 - Fix nqueen example

• PR #31831775 - Add runtime start/stop, resume/suspend and OpenMP benchmarks

1753 https://github.com/STEllAR-GROUP/hpx/pull/3210
1754 https://github.com/STEllAR-GROUP/hpx/pull/3209
1755 https://github.com/STEllAR-GROUP/hpx/issues/3208
1756 https://github.com/STEllAR-GROUP/hpx/pull/3206
1757 https://github.com/STEllAR-GROUP/hpx/pull/3205
1758 https://github.com/STEllAR-GROUP/hpx/pull/3204
1759 https://github.com/STEllAR-GROUP/hpx/pull/3203
1760 https://github.com/STEllAR-GROUP/hpx/pull/3202
1761 https://github.com/STEllAR-GROUP/hpx/pull/3201
1762 https://github.com/STEllAR-GROUP/hpx/issues/3200
1763 https://github.com/STEllAR-GROUP/hpx/pull/3199
1764 https://github.com/STEllAR-GROUP/hpx/pull/3198
1765 https://github.com/STEllAR-GROUP/hpx/pull/3197
1766 https://github.com/STEllAR-GROUP/hpx/pull/3194
1767 https://github.com/STEllAR-GROUP/hpx/pull/3193
1768 https://github.com/STEllAR-GROUP/hpx/pull/3191
1769 https://github.com/STEllAR-GROUP/hpx/pull/3190
1770 https://github.com/STEllAR-GROUP/hpx/pull/3189
1771 https://github.com/STEllAR-GROUP/hpx/pull/3188
1772 https://github.com/STEllAR-GROUP/hpx/pull/3187
1773 https://github.com/STEllAR-GROUP/hpx/pull/3185
1774 https://github.com/STEllAR-GROUP/hpx/pull/3184
1775 https://github.com/STEllAR-GROUP/hpx/pull/3183

2.11. Releases 1295

https://github.com/STEllAR-GROUP/hpx/pull/3210
https://github.com/STEllAR-GROUP/hpx/pull/3209
https://github.com/STEllAR-GROUP/hpx/issues/3208
https://github.com/STEllAR-GROUP/hpx/pull/3206
https://github.com/STEllAR-GROUP/hpx/pull/3205
https://github.com/STEllAR-GROUP/hpx/pull/3204
https://github.com/STEllAR-GROUP/hpx/pull/3203
https://github.com/STEllAR-GROUP/hpx/pull/3202
https://github.com/STEllAR-GROUP/hpx/pull/3201
https://github.com/STEllAR-GROUP/hpx/issues/3200
https://github.com/STEllAR-GROUP/hpx/pull/3199
https://github.com/STEllAR-GROUP/hpx/pull/3198
https://github.com/STEllAR-GROUP/hpx/pull/3197
https://github.com/STEllAR-GROUP/hpx/pull/3194
https://github.com/STEllAR-GROUP/hpx/pull/3193
https://github.com/STEllAR-GROUP/hpx/pull/3191
https://github.com/STEllAR-GROUP/hpx/pull/3190
https://github.com/STEllAR-GROUP/hpx/pull/3189
https://github.com/STEllAR-GROUP/hpx/pull/3188
https://github.com/STEllAR-GROUP/hpx/pull/3187
https://github.com/STEllAR-GROUP/hpx/pull/3185
https://github.com/STEllAR-GROUP/hpx/pull/3184
https://github.com/STEllAR-GROUP/hpx/pull/3183

HPX Documentation, 1.5.1

• Issue #31821776 - bulk_then_execute has unexpected return type/does not compile

• Issue #31811777 - hwloc 2.0 breaks topo class and cannot be used

• Issue #31801778 - Schedulers that don’t support suspend/resume are unusable

• PR #31791779 - Various minor changes to support FLeCSI

• PR #31781780 - Fix #3124

• PR #31771781 - Removed allgather

• PR #31761782 - Fixed Documentation for “using_hpx_pkgconfig”

• PR #31741783 - Add hpx::iostreams::ostream overload to format_to

• PR #31721784 - Fix lifo queue backend

• PR #31711785 - adding the missing unset() function to cpu_mask() for case of more than 64 threads

• PR #31701786 - Add cmake flag -DHPX_WITH_FAULT_TOLERANCE=ON (OFF by default)

• PR #31691787 - Adapted parallel::{count|count_if} for Ranges TS (see #1668)

• PR #31681788 - Changing used namespace for seq execution policy

• Issue #31671789 - Update GSoC projects

• Issue #31661790 - Application (Octotiger) gets stuck on hpx::finalize when only using one thread

• Issue #31651791 - Compilation of parallel algorithms with HPX_WITH_DATAPAR is broken

• PR #31641792 - Fixing component migration

• PR #31621793 - regex_from_pattern: escape regex special characters to avoid misinterpretation

• Issue #31611794 - Building HPX with hwloc 2.0.0 fails

• PR #31601795 - Fixing the handling of quoted command line arguments.

• PR #31581796 - Fixing a race with timed suspension (second attempt)

• PR #31571797 - Revert “Fixing a race with timed suspension”

• PR #31561798 - Fixing serialization of classes with incompatible serialize signature

1776 https://github.com/STEllAR-GROUP/hpx/issues/3182
1777 https://github.com/STEllAR-GROUP/hpx/issues/3181
1778 https://github.com/STEllAR-GROUP/hpx/issues/3180
1779 https://github.com/STEllAR-GROUP/hpx/pull/3179
1780 https://github.com/STEllAR-GROUP/hpx/pull/3178
1781 https://github.com/STEllAR-GROUP/hpx/pull/3177
1782 https://github.com/STEllAR-GROUP/hpx/pull/3176
1783 https://github.com/STEllAR-GROUP/hpx/pull/3174
1784 https://github.com/STEllAR-GROUP/hpx/pull/3172
1785 https://github.com/STEllAR-GROUP/hpx/pull/3171
1786 https://github.com/STEllAR-GROUP/hpx/pull/3170
1787 https://github.com/STEllAR-GROUP/hpx/pull/3169
1788 https://github.com/STEllAR-GROUP/hpx/pull/3168
1789 https://github.com/STEllAR-GROUP/hpx/issues/3167
1790 https://github.com/STEllAR-GROUP/hpx/issues/3166
1791 https://github.com/STEllAR-GROUP/hpx/issues/3165
1792 https://github.com/STEllAR-GROUP/hpx/pull/3164
1793 https://github.com/STEllAR-GROUP/hpx/pull/3162
1794 https://github.com/STEllAR-GROUP/hpx/issues/3161
1795 https://github.com/STEllAR-GROUP/hpx/pull/3160
1796 https://github.com/STEllAR-GROUP/hpx/pull/3158
1797 https://github.com/STEllAR-GROUP/hpx/pull/3157
1798 https://github.com/STEllAR-GROUP/hpx/pull/3156

1296 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/3182
https://github.com/STEllAR-GROUP/hpx/issues/3181
https://github.com/STEllAR-GROUP/hpx/issues/3180
https://github.com/STEllAR-GROUP/hpx/pull/3179
https://github.com/STEllAR-GROUP/hpx/pull/3178
https://github.com/STEllAR-GROUP/hpx/pull/3177
https://github.com/STEllAR-GROUP/hpx/pull/3176
https://github.com/STEllAR-GROUP/hpx/pull/3174
https://github.com/STEllAR-GROUP/hpx/pull/3172
https://github.com/STEllAR-GROUP/hpx/pull/3171
https://github.com/STEllAR-GROUP/hpx/pull/3170
https://github.com/STEllAR-GROUP/hpx/pull/3169
https://github.com/STEllAR-GROUP/hpx/pull/3168
https://github.com/STEllAR-GROUP/hpx/issues/3167
https://github.com/STEllAR-GROUP/hpx/issues/3166
https://github.com/STEllAR-GROUP/hpx/issues/3165
https://github.com/STEllAR-GROUP/hpx/pull/3164
https://github.com/STEllAR-GROUP/hpx/pull/3162
https://github.com/STEllAR-GROUP/hpx/issues/3161
https://github.com/STEllAR-GROUP/hpx/pull/3160
https://github.com/STEllAR-GROUP/hpx/pull/3158
https://github.com/STEllAR-GROUP/hpx/pull/3157
https://github.com/STEllAR-GROUP/hpx/pull/3156

HPX Documentation, 1.5.1

• PR #31541799 - More refactorings based on clang-tidy reports

• PR #31531800 - Fixing a race with timed suspension

• PR #31521801 - Documentation for runtime suspension

• PR #31511802 - Use small_vector only from boost version 1.59 onwards

• PR #31501803 - Avoiding more stack overflows

• PR #31481804 - Refactoring component_base and base_action/transfer_base_action

• PR #31471805 - Move yield_while out of detail namespace and into own file

• PR #31451806 - Remove a leftover of the cxx11 std array cleanup

• PR #31441807 - Minor changes to how actions are executed

• PR #31431808 - Fix stack overhead

• PR #31421809 - Fix typo in config.hpp

• PR #31411810 - Fixing small_vector compatibility with older boost version

• PR #31401811 - is_heap_text fix

• Issue #31391812 - Error in is_heap_tests.hpp

• PR #31381813 - Partially reverting #3126

• PR #31371814 - Suspend speedup

• PR #31361815 - Revert “Fixing #2325”

• PR #31351816 - Improving destruction of threads

• Issue #31341817 - HPX_SERIALIZATION_SPLIT_FREE does not stop compiler from looking for serialize()
method

• PR #31331818 - Make hwloc compulsory

• PR #31321819 - Update CXX14 constexpr feature test

• PR #31311820 - Fixing #2325

• PR #31301821 - Avoid completion handler allocation

1799 https://github.com/STEllAR-GROUP/hpx/pull/3154
1800 https://github.com/STEllAR-GROUP/hpx/pull/3153
1801 https://github.com/STEllAR-GROUP/hpx/pull/3152
1802 https://github.com/STEllAR-GROUP/hpx/pull/3151
1803 https://github.com/STEllAR-GROUP/hpx/pull/3150
1804 https://github.com/STEllAR-GROUP/hpx/pull/3148
1805 https://github.com/STEllAR-GROUP/hpx/pull/3147
1806 https://github.com/STEllAR-GROUP/hpx/pull/3145
1807 https://github.com/STEllAR-GROUP/hpx/pull/3144
1808 https://github.com/STEllAR-GROUP/hpx/pull/3143
1809 https://github.com/STEllAR-GROUP/hpx/pull/3142
1810 https://github.com/STEllAR-GROUP/hpx/pull/3141
1811 https://github.com/STEllAR-GROUP/hpx/pull/3140
1812 https://github.com/STEllAR-GROUP/hpx/issues/3139
1813 https://github.com/STEllAR-GROUP/hpx/pull/3138
1814 https://github.com/STEllAR-GROUP/hpx/pull/3137
1815 https://github.com/STEllAR-GROUP/hpx/pull/3136
1816 https://github.com/STEllAR-GROUP/hpx/pull/3135
1817 https://github.com/STEllAR-GROUP/hpx/issues/3134
1818 https://github.com/STEllAR-GROUP/hpx/pull/3133
1819 https://github.com/STEllAR-GROUP/hpx/pull/3132
1820 https://github.com/STEllAR-GROUP/hpx/pull/3131
1821 https://github.com/STEllAR-GROUP/hpx/pull/3130

2.11. Releases 1297

https://github.com/STEllAR-GROUP/hpx/pull/3154
https://github.com/STEllAR-GROUP/hpx/pull/3153
https://github.com/STEllAR-GROUP/hpx/pull/3152
https://github.com/STEllAR-GROUP/hpx/pull/3151
https://github.com/STEllAR-GROUP/hpx/pull/3150
https://github.com/STEllAR-GROUP/hpx/pull/3148
https://github.com/STEllAR-GROUP/hpx/pull/3147
https://github.com/STEllAR-GROUP/hpx/pull/3145
https://github.com/STEllAR-GROUP/hpx/pull/3144
https://github.com/STEllAR-GROUP/hpx/pull/3143
https://github.com/STEllAR-GROUP/hpx/pull/3142
https://github.com/STEllAR-GROUP/hpx/pull/3141
https://github.com/STEllAR-GROUP/hpx/pull/3140
https://github.com/STEllAR-GROUP/hpx/issues/3139
https://github.com/STEllAR-GROUP/hpx/pull/3138
https://github.com/STEllAR-GROUP/hpx/pull/3137
https://github.com/STEllAR-GROUP/hpx/pull/3136
https://github.com/STEllAR-GROUP/hpx/pull/3135
https://github.com/STEllAR-GROUP/hpx/issues/3134
https://github.com/STEllAR-GROUP/hpx/pull/3133
https://github.com/STEllAR-GROUP/hpx/pull/3132
https://github.com/STEllAR-GROUP/hpx/pull/3131
https://github.com/STEllAR-GROUP/hpx/pull/3130

HPX Documentation, 1.5.1

• PR #31291822 - Suspend runtime

• PR #31281823 - Make docbook dtd and xsl path names consistent

• PR #31271824 - Add hpx::start nullptr overloads

• PR #31261825 - Cleaning up coroutine implementation

• PR #31251826 - Replacing nullptr with hpx::threads::invalid_thread_id

• Issue #31241827 - Add hello_world_component to CI builds

• PR #31231828 - Add new constructor.

• PR #31221829 - Fixing #3121

• Issue #31211830 - HPX_SMT_PAUSE is broken on non-x86 platforms when __GNUC__ is defined

• PR #31201831 - Don’t use boost::intrusive_ptr for thread_id_type

• PR #31191832 - Disable default executor compatibility with V1 executors

• PR #31181833 - Adding performance_counter::reinit to allow for dynamically changing counter sets

• PR #31171834 - Replace uses of boost/experimental::optional with util::optional

• PR #31161835 - Moving background thread APEX timer #2980

• PR #31151836 - Fixing race condition in channel test

• PR #31141837 - Avoid using util::function for thread function wrappers

• PR #31131838 - cmake V3.10.2 has changed the variable names used for MPI

• PR #31121839 - Minor fixes to exclusive_scan algorithm

• PR #31111840 - Revert “fix detection of cxx11_std_atomic”

• PR #31101841 - Suspend thread pool

• PR #31091842 - Fixing thread scheduling when yielding a thread id

• PR #31081843 - Revert “Suspend thread pool”

• PR #31071844 - Remove UB from thread::id relational operators

1822 https://github.com/STEllAR-GROUP/hpx/pull/3129
1823 https://github.com/STEllAR-GROUP/hpx/pull/3128
1824 https://github.com/STEllAR-GROUP/hpx/pull/3127
1825 https://github.com/STEllAR-GROUP/hpx/pull/3126
1826 https://github.com/STEllAR-GROUP/hpx/pull/3125
1827 https://github.com/STEllAR-GROUP/hpx/issues/3124
1828 https://github.com/STEllAR-GROUP/hpx/pull/3123
1829 https://github.com/STEllAR-GROUP/hpx/pull/3122
1830 https://github.com/STEllAR-GROUP/hpx/issues/3121
1831 https://github.com/STEllAR-GROUP/hpx/pull/3120
1832 https://github.com/STEllAR-GROUP/hpx/pull/3119
1833 https://github.com/STEllAR-GROUP/hpx/pull/3118
1834 https://github.com/STEllAR-GROUP/hpx/pull/3117
1835 https://github.com/STEllAR-GROUP/hpx/pull/3116
1836 https://github.com/STEllAR-GROUP/hpx/pull/3115
1837 https://github.com/STEllAR-GROUP/hpx/pull/3114
1838 https://github.com/STEllAR-GROUP/hpx/pull/3113
1839 https://github.com/STEllAR-GROUP/hpx/pull/3112
1840 https://github.com/STEllAR-GROUP/hpx/pull/3111
1841 https://github.com/STEllAR-GROUP/hpx/pull/3110
1842 https://github.com/STEllAR-GROUP/hpx/pull/3109
1843 https://github.com/STEllAR-GROUP/hpx/pull/3108
1844 https://github.com/STEllAR-GROUP/hpx/pull/3107

1298 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3129
https://github.com/STEllAR-GROUP/hpx/pull/3128
https://github.com/STEllAR-GROUP/hpx/pull/3127
https://github.com/STEllAR-GROUP/hpx/pull/3126
https://github.com/STEllAR-GROUP/hpx/pull/3125
https://github.com/STEllAR-GROUP/hpx/issues/3124
https://github.com/STEllAR-GROUP/hpx/pull/3123
https://github.com/STEllAR-GROUP/hpx/pull/3122
https://github.com/STEllAR-GROUP/hpx/issues/3121
https://github.com/STEllAR-GROUP/hpx/pull/3120
https://github.com/STEllAR-GROUP/hpx/pull/3119
https://github.com/STEllAR-GROUP/hpx/pull/3118
https://github.com/STEllAR-GROUP/hpx/pull/3117
https://github.com/STEllAR-GROUP/hpx/pull/3116
https://github.com/STEllAR-GROUP/hpx/pull/3115
https://github.com/STEllAR-GROUP/hpx/pull/3114
https://github.com/STEllAR-GROUP/hpx/pull/3113
https://github.com/STEllAR-GROUP/hpx/pull/3112
https://github.com/STEllAR-GROUP/hpx/pull/3111
https://github.com/STEllAR-GROUP/hpx/pull/3110
https://github.com/STEllAR-GROUP/hpx/pull/3109
https://github.com/STEllAR-GROUP/hpx/pull/3108
https://github.com/STEllAR-GROUP/hpx/pull/3107

HPX Documentation, 1.5.1

• PR #31061845 - Add cmake test for std::decay_t to fix cuda build

• PR #31051846 - Fixing refcount for async traversal frame

• PR #31041847 - Local execution of direct actions is now actually performed directly

• PR #31031848 - Adding support for generic counter_raw_values performance counter type

• Issue #31021849 - Introduce generic performance counter type returning an array of values

• PR #31011850 - Revert “Adapting stack overhead limit for gcc 4.9”

• PR #31001851 - Fix #3068 (condition_variable deadlock)

• PR #30991852 - Fixing lock held during suspension in papi counter component

• PR #30981853 - Unbreak broadcast_wait_for_2822 test

• PR #30971854 - Adapting stack overhead limit for gcc 4.9

• PR #30961855 - fix detection of cxx11_std_atomic

• PR #30951856 - Add ciso646 header to get _LIBCPP_VERSION for testing inplace merge

• PR #30941857 - Relax atomic operations on performance counter values

• PR #30931858 - Short-circuit all_of/any_of/none_of instantiations

• PR #30921859 - Take advantage of C++14 lambda capture initialization syntax, where possible

• PR #30911860 - Remove more references to Boost from logging code

• PR #30901861 - Unify use of yield/yield_k

• PR #30891862 - Fix a strange thing in parallel::detail::handle_exception. (Fix #2834.)

• Issue #30881863 - A strange thing in parallel::sort.

• PR #30871864 - Fixing assertion in default_distribution_policy

• PR #30861865 - Implement parallel::remove and parallel::remove_if

• PR #30851866 - Addressing breaking changes in Boost V1.66

• PR #30841867 - Ignore build warnings round 2

1845 https://github.com/STEllAR-GROUP/hpx/pull/3106
1846 https://github.com/STEllAR-GROUP/hpx/pull/3105
1847 https://github.com/STEllAR-GROUP/hpx/pull/3104
1848 https://github.com/STEllAR-GROUP/hpx/pull/3103
1849 https://github.com/STEllAR-GROUP/hpx/issues/3102
1850 https://github.com/STEllAR-GROUP/hpx/pull/3101
1851 https://github.com/STEllAR-GROUP/hpx/pull/3100
1852 https://github.com/STEllAR-GROUP/hpx/pull/3099
1853 https://github.com/STEllAR-GROUP/hpx/pull/3098
1854 https://github.com/STEllAR-GROUP/hpx/pull/3097
1855 https://github.com/STEllAR-GROUP/hpx/pull/3096
1856 https://github.com/STEllAR-GROUP/hpx/pull/3095
1857 https://github.com/STEllAR-GROUP/hpx/pull/3094
1858 https://github.com/STEllAR-GROUP/hpx/pull/3093
1859 https://github.com/STEllAR-GROUP/hpx/pull/3092
1860 https://github.com/STEllAR-GROUP/hpx/pull/3091
1861 https://github.com/STEllAR-GROUP/hpx/pull/3090
1862 https://github.com/STEllAR-GROUP/hpx/pull/3089
1863 https://github.com/STEllAR-GROUP/hpx/issues/3088
1864 https://github.com/STEllAR-GROUP/hpx/pull/3087
1865 https://github.com/STEllAR-GROUP/hpx/pull/3086
1866 https://github.com/STEllAR-GROUP/hpx/pull/3085
1867 https://github.com/STEllAR-GROUP/hpx/pull/3084

2.11. Releases 1299

https://github.com/STEllAR-GROUP/hpx/pull/3106
https://github.com/STEllAR-GROUP/hpx/pull/3105
https://github.com/STEllAR-GROUP/hpx/pull/3104
https://github.com/STEllAR-GROUP/hpx/pull/3103
https://github.com/STEllAR-GROUP/hpx/issues/3102
https://github.com/STEllAR-GROUP/hpx/pull/3101
https://github.com/STEllAR-GROUP/hpx/pull/3100
https://github.com/STEllAR-GROUP/hpx/pull/3099
https://github.com/STEllAR-GROUP/hpx/pull/3098
https://github.com/STEllAR-GROUP/hpx/pull/3097
https://github.com/STEllAR-GROUP/hpx/pull/3096
https://github.com/STEllAR-GROUP/hpx/pull/3095
https://github.com/STEllAR-GROUP/hpx/pull/3094
https://github.com/STEllAR-GROUP/hpx/pull/3093
https://github.com/STEllAR-GROUP/hpx/pull/3092
https://github.com/STEllAR-GROUP/hpx/pull/3091
https://github.com/STEllAR-GROUP/hpx/pull/3090
https://github.com/STEllAR-GROUP/hpx/pull/3089
https://github.com/STEllAR-GROUP/hpx/issues/3088
https://github.com/STEllAR-GROUP/hpx/pull/3087
https://github.com/STEllAR-GROUP/hpx/pull/3086
https://github.com/STEllAR-GROUP/hpx/pull/3085
https://github.com/STEllAR-GROUP/hpx/pull/3084

HPX Documentation, 1.5.1

• PR #30831868 - Fix typo HPX_WITH_MM_PREFECTH

• PR #30811869 - Pre-decay template arguments early

• PR #30801870 - Suspend thread pool

• PR #30791871 - Ignore build warnings

• PR #30781872 - Don’t test inplace_merge with libc++

• PR #30761873 - Fixing 3075: Part 1

• PR #30741874 - Fix more build warnings

• PR #30731875 - Suspend thread cleanup

• PR #30721876 - Change existing symbol_namespace::iterate to return all data instead of invoking a callback

• PR #30711877 - Fixing pack_traversal_async test

• PR #30701878 - Fix dynamic_counters_loaded_1508 test by adding dependency to memory_component

• PR #30691879 - Fix scheduling loop exit

• Issue #30681880 - hpx::lcos::condition_variable could be suspect to deadlocks

• PR #30671881 - #ifdef out random_shuffle deprecated in later c++

• PR #30661882 - Make coalescing test depend on coalescing library to ensure it gets built

• PR #30651883 - Workaround for minimal_timed_async_executor_test compilation failures, attempts to copy a
deferred call (in unevaluated context)

• PR #30641884 - Fixing wrong condition in wrapper_heap

• PR #30621885 - Fix exception handling for execution::seq

• PR #30611886 - Adapt MSVC C++ mode handling to VS15.5

• PR #30601887 - Fix compiler problem in MSVC release mode

• PR #30591888 - Fixing #2931

• Issue #30581889 - minimal_timed_async_executor_test_exe fails to compile on master (d6f505c)

• PR #30571890 - Fix stable_merge_2964 compilation problems

1868 https://github.com/STEllAR-GROUP/hpx/pull/3083
1869 https://github.com/STEllAR-GROUP/hpx/pull/3081
1870 https://github.com/STEllAR-GROUP/hpx/pull/3080
1871 https://github.com/STEllAR-GROUP/hpx/pull/3079
1872 https://github.com/STEllAR-GROUP/hpx/pull/3078
1873 https://github.com/STEllAR-GROUP/hpx/pull/3076
1874 https://github.com/STEllAR-GROUP/hpx/pull/3074
1875 https://github.com/STEllAR-GROUP/hpx/pull/3073
1876 https://github.com/STEllAR-GROUP/hpx/pull/3072
1877 https://github.com/STEllAR-GROUP/hpx/pull/3071
1878 https://github.com/STEllAR-GROUP/hpx/pull/3070
1879 https://github.com/STEllAR-GROUP/hpx/pull/3069
1880 https://github.com/STEllAR-GROUP/hpx/issues/3068
1881 https://github.com/STEllAR-GROUP/hpx/pull/3067
1882 https://github.com/STEllAR-GROUP/hpx/pull/3066
1883 https://github.com/STEllAR-GROUP/hpx/pull/3065
1884 https://github.com/STEllAR-GROUP/hpx/pull/3064
1885 https://github.com/STEllAR-GROUP/hpx/pull/3062
1886 https://github.com/STEllAR-GROUP/hpx/pull/3061
1887 https://github.com/STEllAR-GROUP/hpx/pull/3060
1888 https://github.com/STEllAR-GROUP/hpx/pull/3059
1889 https://github.com/STEllAR-GROUP/hpx/issues/3058
1890 https://github.com/STEllAR-GROUP/hpx/pull/3057

1300 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3083
https://github.com/STEllAR-GROUP/hpx/pull/3081
https://github.com/STEllAR-GROUP/hpx/pull/3080
https://github.com/STEllAR-GROUP/hpx/pull/3079
https://github.com/STEllAR-GROUP/hpx/pull/3078
https://github.com/STEllAR-GROUP/hpx/pull/3076
https://github.com/STEllAR-GROUP/hpx/pull/3074
https://github.com/STEllAR-GROUP/hpx/pull/3073
https://github.com/STEllAR-GROUP/hpx/pull/3072
https://github.com/STEllAR-GROUP/hpx/pull/3071
https://github.com/STEllAR-GROUP/hpx/pull/3070
https://github.com/STEllAR-GROUP/hpx/pull/3069
https://github.com/STEllAR-GROUP/hpx/issues/3068
https://github.com/STEllAR-GROUP/hpx/pull/3067
https://github.com/STEllAR-GROUP/hpx/pull/3066
https://github.com/STEllAR-GROUP/hpx/pull/3065
https://github.com/STEllAR-GROUP/hpx/pull/3064
https://github.com/STEllAR-GROUP/hpx/pull/3062
https://github.com/STEllAR-GROUP/hpx/pull/3061
https://github.com/STEllAR-GROUP/hpx/pull/3060
https://github.com/STEllAR-GROUP/hpx/pull/3059
https://github.com/STEllAR-GROUP/hpx/issues/3058
https://github.com/STEllAR-GROUP/hpx/pull/3057

HPX Documentation, 1.5.1

• PR #30561891 - Fix some build warnings caused by unused variables/unnecessary tests

• PR #30551892 - Update documentation for running tests

• Issue #30541893 - Assertion failure when using bulk hpx::new_ in asynchronous mode

• PR #30521894 - Do not bind test running to cmake test build rule

• PR #30511895 - Fix HPX-Qt interaction in Qt example.

• Issue #30481896 - nqueen example fails occasionally

• PR #30471897 - Fixing #3044

• PR #30461898 - Add OS thread suspension

• PR #30421899 - PyCicle - first attempt at a build toold for checking PR’s

• PR #30411900 - Fix a problem about asynchronous execution of parallel::merge and parallel::partition.

• PR #30401901 - Fix a mistake about exception handling in asynchronous execution of scan_partitioner.

• PR #30391902 - Consistently use executors to schedule work

• PR #30381903 - Fixing local direct function execution and lambda actions perfect forwarding

• PR #30351904 - Make parallel unit test names match build target/folder names

• PR #30331905 - Fix setting of default build type

• Issue #30321906 - Fix partitioner arg copy found in #2982

• Issue #30311907 - Errors linking libhpx.so due to missing references (master branch, commit 6679a8882)

• PR #30301908 - Revert “implement executor then interface with && forwarding reference”

• PR #30291909 - Run CI inspect checks before building

• PR #30281910 - Added range version of parallel::move

• Issue #30271911 - Implement all scheduling APIs in terms of executors

• PR #30261912 - implement executor then interface with && forwarding reference

• PR #30251913 - Fix typo unitialized to uninitialized

1891 https://github.com/STEllAR-GROUP/hpx/pull/3056
1892 https://github.com/STEllAR-GROUP/hpx/pull/3055
1893 https://github.com/STEllAR-GROUP/hpx/issues/3054
1894 https://github.com/STEllAR-GROUP/hpx/pull/3052
1895 https://github.com/STEllAR-GROUP/hpx/pull/3051
1896 https://github.com/STEllAR-GROUP/hpx/issues/3048
1897 https://github.com/STEllAR-GROUP/hpx/pull/3047
1898 https://github.com/STEllAR-GROUP/hpx/pull/3046
1899 https://github.com/STEllAR-GROUP/hpx/pull/3042
1900 https://github.com/STEllAR-GROUP/hpx/pull/3041
1901 https://github.com/STEllAR-GROUP/hpx/pull/3040
1902 https://github.com/STEllAR-GROUP/hpx/pull/3039
1903 https://github.com/STEllAR-GROUP/hpx/pull/3038
1904 https://github.com/STEllAR-GROUP/hpx/pull/3035
1905 https://github.com/STEllAR-GROUP/hpx/pull/3033
1906 https://github.com/STEllAR-GROUP/hpx/issues/3032
1907 https://github.com/STEllAR-GROUP/hpx/issues/3031
1908 https://github.com/STEllAR-GROUP/hpx/pull/3030
1909 https://github.com/STEllAR-GROUP/hpx/pull/3029
1910 https://github.com/STEllAR-GROUP/hpx/pull/3028
1911 https://github.com/STEllAR-GROUP/hpx/issues/3027
1912 https://github.com/STEllAR-GROUP/hpx/pull/3026
1913 https://github.com/STEllAR-GROUP/hpx/pull/3025

2.11. Releases 1301

https://github.com/STEllAR-GROUP/hpx/pull/3056
https://github.com/STEllAR-GROUP/hpx/pull/3055
https://github.com/STEllAR-GROUP/hpx/issues/3054
https://github.com/STEllAR-GROUP/hpx/pull/3052
https://github.com/STEllAR-GROUP/hpx/pull/3051
https://github.com/STEllAR-GROUP/hpx/issues/3048
https://github.com/STEllAR-GROUP/hpx/pull/3047
https://github.com/STEllAR-GROUP/hpx/pull/3046
https://github.com/STEllAR-GROUP/hpx/pull/3042
https://github.com/STEllAR-GROUP/hpx/pull/3041
https://github.com/STEllAR-GROUP/hpx/pull/3040
https://github.com/STEllAR-GROUP/hpx/pull/3039
https://github.com/STEllAR-GROUP/hpx/pull/3038
https://github.com/STEllAR-GROUP/hpx/pull/3035
https://github.com/STEllAR-GROUP/hpx/pull/3033
https://github.com/STEllAR-GROUP/hpx/issues/3032
https://github.com/STEllAR-GROUP/hpx/issues/3031
https://github.com/STEllAR-GROUP/hpx/pull/3030
https://github.com/STEllAR-GROUP/hpx/pull/3029
https://github.com/STEllAR-GROUP/hpx/pull/3028
https://github.com/STEllAR-GROUP/hpx/issues/3027
https://github.com/STEllAR-GROUP/hpx/pull/3026
https://github.com/STEllAR-GROUP/hpx/pull/3025

HPX Documentation, 1.5.1

• PR #30241914 - Inspect fixes

• PR #30231915 - P0356 Simplified partial function application

• PR #30221916 - Master fixes

• PR #30211917 - Segfault fix

• PR #30201918 - Disable command-line aliasing for applications that use user_main

• PR #30191919 - Adding enable_elasticity option to pool configuration

• PR #30181920 - Fix stack overflow detection configuration in header files

• PR #30171921 - Speed up local action execution

• PR #30161922 - Unify stack-overflow detection options, remove reference to libsigsegv

• PR #30151923 - Speeding up accessing the resource partitioner and the topology info

• Issue #30141924 - HPX does not compile on POWER8 with gcc 5.4

• Issue #30131925 - hello_world occasionally prints multiple lines from a single OS-thread

• PR #30121926 - Silence warning about casting away qualifiers in itt_notify.hpp

• PR #30111927 - Fix cpuset leak in hwloc_topology_info.cpp

• PR #30101928 - Remove useless decay_copy

• PR #30091929 - Fixing 2996

• PR #30081930 - Remove unused internal function

• PR #30071931 - Fixing wrapper_heap alignment problems

• Issue #30061932 - hwloc memory leak

• PR #30041933 - Silence C4251 (needs to have dll-interface) for future_data_void

• Issue #30031934 - Suspension of runtime

• PR #30011935 - Attempting to avoid data races in async_traversal while evaluating dataflow()

• PR #30001936 - Adding hpx::util::optional as a first step to replace experimental::optional

1914 https://github.com/STEllAR-GROUP/hpx/pull/3024
1915 https://github.com/STEllAR-GROUP/hpx/pull/3023
1916 https://github.com/STEllAR-GROUP/hpx/pull/3022
1917 https://github.com/STEllAR-GROUP/hpx/pull/3021
1918 https://github.com/STEllAR-GROUP/hpx/pull/3020
1919 https://github.com/STEllAR-GROUP/hpx/pull/3019
1920 https://github.com/STEllAR-GROUP/hpx/pull/3018
1921 https://github.com/STEllAR-GROUP/hpx/pull/3017
1922 https://github.com/STEllAR-GROUP/hpx/pull/3016
1923 https://github.com/STEllAR-GROUP/hpx/pull/3015
1924 https://github.com/STEllAR-GROUP/hpx/issues/3014
1925 https://github.com/STEllAR-GROUP/hpx/issues/3013
1926 https://github.com/STEllAR-GROUP/hpx/pull/3012
1927 https://github.com/STEllAR-GROUP/hpx/pull/3011
1928 https://github.com/STEllAR-GROUP/hpx/pull/3010
1929 https://github.com/STEllAR-GROUP/hpx/pull/3009
1930 https://github.com/STEllAR-GROUP/hpx/pull/3008
1931 https://github.com/STEllAR-GROUP/hpx/pull/3007
1932 https://github.com/STEllAR-GROUP/hpx/issues/3006
1933 https://github.com/STEllAR-GROUP/hpx/pull/3004
1934 https://github.com/STEllAR-GROUP/hpx/issues/3003
1935 https://github.com/STEllAR-GROUP/hpx/pull/3001
1936 https://github.com/STEllAR-GROUP/hpx/pull/3000

1302 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/3024
https://github.com/STEllAR-GROUP/hpx/pull/3023
https://github.com/STEllAR-GROUP/hpx/pull/3022
https://github.com/STEllAR-GROUP/hpx/pull/3021
https://github.com/STEllAR-GROUP/hpx/pull/3020
https://github.com/STEllAR-GROUP/hpx/pull/3019
https://github.com/STEllAR-GROUP/hpx/pull/3018
https://github.com/STEllAR-GROUP/hpx/pull/3017
https://github.com/STEllAR-GROUP/hpx/pull/3016
https://github.com/STEllAR-GROUP/hpx/pull/3015
https://github.com/STEllAR-GROUP/hpx/issues/3014
https://github.com/STEllAR-GROUP/hpx/issues/3013
https://github.com/STEllAR-GROUP/hpx/pull/3012
https://github.com/STEllAR-GROUP/hpx/pull/3011
https://github.com/STEllAR-GROUP/hpx/pull/3010
https://github.com/STEllAR-GROUP/hpx/pull/3009
https://github.com/STEllAR-GROUP/hpx/pull/3008
https://github.com/STEllAR-GROUP/hpx/pull/3007
https://github.com/STEllAR-GROUP/hpx/issues/3006
https://github.com/STEllAR-GROUP/hpx/pull/3004
https://github.com/STEllAR-GROUP/hpx/issues/3003
https://github.com/STEllAR-GROUP/hpx/pull/3001
https://github.com/STEllAR-GROUP/hpx/pull/3000

HPX Documentation, 1.5.1

• PR #29981937 - Cleanup up and Fixing component creation and deletion

• Issue #29961938 - Build fails with HPX_WITH_HWLOC=OFF

• PR #29951939 - Push more future_data functionality to source file

• PR #29941940 - WIP: Fix throttle test

• PR #29931941 - Making sure –hpx:help does not throw for required (but missing) arguments

• PR #29921942 - Adding non-blocking (on destruction) service executors

• Issue #29911943 - run_as_os_thread locks up

• Issue #29901944 - –help will not work until all required options are provided

• PR #29891945 - Improve error messages caused by misuse of dataflow

• PR #29881946 - Improve error messages caused by misuse of .then

• Issue #29871947 - stack overflow detection producing false positives

• PR #29861948 - Deduplicate non-dependent thread_info logging types

• PR #29851949 - Adapted parallel::{all_of|any_of|none_of} for Ranges TS (see #1668)

• PR #29841950 - Refactor one_size_heap code to simplify code

• PR #29831951 - Fixing local_new_component

• PR #29821952 - Clang tidy

• PR #29811953 - Simplify allocator rebinding in pack traversal

• PR #29791954 - Fixing integer overflows

• PR #29781955 - Implement parallel::inplace_merge

• Issue #29771956 - Make hwloc compulsory instead of optional

• PR #29761957 - Making sure client_base instance that registered the component does not unregister it when being
destructed

• PR #29751958 - Change version of pulled APEX to master

• PR #29741959 - Fix domain not being freed at the end of scheduling loop

1937 https://github.com/STEllAR-GROUP/hpx/pull/2998
1938 https://github.com/STEllAR-GROUP/hpx/issues/2996
1939 https://github.com/STEllAR-GROUP/hpx/pull/2995
1940 https://github.com/STEllAR-GROUP/hpx/pull/2994
1941 https://github.com/STEllAR-GROUP/hpx/pull/2993
1942 https://github.com/STEllAR-GROUP/hpx/pull/2992
1943 https://github.com/STEllAR-GROUP/hpx/issues/2991
1944 https://github.com/STEllAR-GROUP/hpx/issues/2990
1945 https://github.com/STEllAR-GROUP/hpx/pull/2989
1946 https://github.com/STEllAR-GROUP/hpx/pull/2988
1947 https://github.com/STEllAR-GROUP/hpx/issues/2987
1948 https://github.com/STEllAR-GROUP/hpx/pull/2986
1949 https://github.com/STEllAR-GROUP/hpx/pull/2985
1950 https://github.com/STEllAR-GROUP/hpx/pull/2984
1951 https://github.com/STEllAR-GROUP/hpx/pull/2983
1952 https://github.com/STEllAR-GROUP/hpx/pull/2982
1953 https://github.com/STEllAR-GROUP/hpx/pull/2981
1954 https://github.com/STEllAR-GROUP/hpx/pull/2979
1955 https://github.com/STEllAR-GROUP/hpx/pull/2978
1956 https://github.com/STEllAR-GROUP/hpx/issues/2977
1957 https://github.com/STEllAR-GROUP/hpx/pull/2976
1958 https://github.com/STEllAR-GROUP/hpx/pull/2975
1959 https://github.com/STEllAR-GROUP/hpx/pull/2974

2.11. Releases 1303

https://github.com/STEllAR-GROUP/hpx/pull/2998
https://github.com/STEllAR-GROUP/hpx/issues/2996
https://github.com/STEllAR-GROUP/hpx/pull/2995
https://github.com/STEllAR-GROUP/hpx/pull/2994
https://github.com/STEllAR-GROUP/hpx/pull/2993
https://github.com/STEllAR-GROUP/hpx/pull/2992
https://github.com/STEllAR-GROUP/hpx/issues/2991
https://github.com/STEllAR-GROUP/hpx/issues/2990
https://github.com/STEllAR-GROUP/hpx/pull/2989
https://github.com/STEllAR-GROUP/hpx/pull/2988
https://github.com/STEllAR-GROUP/hpx/issues/2987
https://github.com/STEllAR-GROUP/hpx/pull/2986
https://github.com/STEllAR-GROUP/hpx/pull/2985
https://github.com/STEllAR-GROUP/hpx/pull/2984
https://github.com/STEllAR-GROUP/hpx/pull/2983
https://github.com/STEllAR-GROUP/hpx/pull/2982
https://github.com/STEllAR-GROUP/hpx/pull/2981
https://github.com/STEllAR-GROUP/hpx/pull/2979
https://github.com/STEllAR-GROUP/hpx/pull/2978
https://github.com/STEllAR-GROUP/hpx/issues/2977
https://github.com/STEllAR-GROUP/hpx/pull/2976
https://github.com/STEllAR-GROUP/hpx/pull/2975
https://github.com/STEllAR-GROUP/hpx/pull/2974

HPX Documentation, 1.5.1

• PR #29731960 - Fix small typos

• PR #29721961 - Adding uintstd.h header

• PR #29711962 - Fall back to creating local components using local_new

• PR #29701963 - Improve is_tuple_like trait

• PR #29691964 - Fix HPX_WITH_MORE_THAN_64_THREADS default value

• PR #29681965 - Cleaning up dataflow overload set

• PR #29671966 - Make parallel::merge is stable. (Fix #2964.)

• PR #29661967 - Fixing a couple of held locks during exception handling

• PR #29651968 - Adding missing #include

• Issue #29641969 - parallel merge is not stable

• PR #29631970 - Making sure any function object passed to dataflow is released after being invoked

• PR #29621971 - Partially reverting #2891

• PR #29611972 - Attempt to fix the gcc 4.9 problem with the async pack traversal

• Issue #29591973 - Program terminates during error handling

• Issue #29581974 - HPX_PLAIN_ACTION breaks due to missing include

• PR #29571975 - Fixing errors generated by mixing different attribute syntaxes

• Issue #29561976 - Mixing attribute syntaxes leads to compiler errors

• Issue #29551977 - Fix OS-Thread throttling

• PR #29531978 - Making sure any hpx.os_threads=N supplied through a –hpx::config file is taken into account

• PR #29521979 - Removing wrong call to cleanup_terminated_locked

• PR #29511980 - Revert “Make sure the function vtables are initialized before use”

• PR #29501981 - Fix a namespace compilation error when some schedulers are disabled

• Issue #29491982 - master branch giving lockups on shutdown

1960 https://github.com/STEllAR-GROUP/hpx/pull/2973
1961 https://github.com/STEllAR-GROUP/hpx/pull/2972
1962 https://github.com/STEllAR-GROUP/hpx/pull/2971
1963 https://github.com/STEllAR-GROUP/hpx/pull/2970
1964 https://github.com/STEllAR-GROUP/hpx/pull/2969
1965 https://github.com/STEllAR-GROUP/hpx/pull/2968
1966 https://github.com/STEllAR-GROUP/hpx/pull/2967
1967 https://github.com/STEllAR-GROUP/hpx/pull/2966
1968 https://github.com/STEllAR-GROUP/hpx/pull/2965
1969 https://github.com/STEllAR-GROUP/hpx/issues/2964
1970 https://github.com/STEllAR-GROUP/hpx/pull/2963
1971 https://github.com/STEllAR-GROUP/hpx/pull/2962
1972 https://github.com/STEllAR-GROUP/hpx/pull/2961
1973 https://github.com/STEllAR-GROUP/hpx/issues/2959
1974 https://github.com/STEllAR-GROUP/hpx/issues/2958
1975 https://github.com/STEllAR-GROUP/hpx/pull/2957
1976 https://github.com/STEllAR-GROUP/hpx/issues/2956
1977 https://github.com/STEllAR-GROUP/hpx/issues/2955
1978 https://github.com/STEllAR-GROUP/hpx/pull/2953
1979 https://github.com/STEllAR-GROUP/hpx/pull/2952
1980 https://github.com/STEllAR-GROUP/hpx/pull/2951
1981 https://github.com/STEllAR-GROUP/hpx/pull/2950
1982 https://github.com/STEllAR-GROUP/hpx/issues/2949

1304 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2973
https://github.com/STEllAR-GROUP/hpx/pull/2972
https://github.com/STEllAR-GROUP/hpx/pull/2971
https://github.com/STEllAR-GROUP/hpx/pull/2970
https://github.com/STEllAR-GROUP/hpx/pull/2969
https://github.com/STEllAR-GROUP/hpx/pull/2968
https://github.com/STEllAR-GROUP/hpx/pull/2967
https://github.com/STEllAR-GROUP/hpx/pull/2966
https://github.com/STEllAR-GROUP/hpx/pull/2965
https://github.com/STEllAR-GROUP/hpx/issues/2964
https://github.com/STEllAR-GROUP/hpx/pull/2963
https://github.com/STEllAR-GROUP/hpx/pull/2962
https://github.com/STEllAR-GROUP/hpx/pull/2961
https://github.com/STEllAR-GROUP/hpx/issues/2959
https://github.com/STEllAR-GROUP/hpx/issues/2958
https://github.com/STEllAR-GROUP/hpx/pull/2957
https://github.com/STEllAR-GROUP/hpx/issues/2956
https://github.com/STEllAR-GROUP/hpx/issues/2955
https://github.com/STEllAR-GROUP/hpx/pull/2953
https://github.com/STEllAR-GROUP/hpx/pull/2952
https://github.com/STEllAR-GROUP/hpx/pull/2951
https://github.com/STEllAR-GROUP/hpx/pull/2950
https://github.com/STEllAR-GROUP/hpx/issues/2949

HPX Documentation, 1.5.1

• Issue #29471983 - hpx.ini is not used correctly at initialization

• PR #29461984 - Adding explicit feature test for thread_local

• PR #29451985 - Make sure the function vtables are initialized before use

• PR #29441986 - Attempting to solve affinity problems on CircleCI

• PR #29431987 - Changing channel actions to be direct

• PR #29421988 - Adding split_future for std::vector

• PR #29411989 - Add a feature test to test for CXX11 override

• Issue #29401990 - Add split_future for future<vector<T>>

• PR #29391991 - Making error reporting during problems with setting affinity masks more verbose

• PR #29381992 - Fix this various executors

• PR #29371993 - Fix some typos in documentation

• PR #29341994 - Remove the need for “complete” SFINAE checks

• PR #29331995 - Making sure parallel::for_loop is executed in parallel if requested

• PR #29321996 - Classify chunk_size_iterator to input iterator tag. (Fix #2866)

• Issue #29311997 - –hpx:help triggers unusual error with clang build

• PR #29301998 - Add #include files needed to set _POSIX_VERSION for debug check

• PR #29291999 - Fix a couple of deprecated c++ features

• PR #29282000 - Fixing execution parameters

• Issue #29272001 - CMake warning: . . . cycle in constraint graph

• PR #29262002 - Default pool rename

• Issue #29252003 - Default pool cannot be renamed

• Issue #29242004 - hpx:attach-debugger=startup does not work any more

• PR #29232005 - Alloc membind
1983 https://github.com/STEllAR-GROUP/hpx/issues/2947
1984 https://github.com/STEllAR-GROUP/hpx/pull/2946
1985 https://github.com/STEllAR-GROUP/hpx/pull/2945
1986 https://github.com/STEllAR-GROUP/hpx/pull/2944
1987 https://github.com/STEllAR-GROUP/hpx/pull/2943
1988 https://github.com/STEllAR-GROUP/hpx/pull/2942
1989 https://github.com/STEllAR-GROUP/hpx/pull/2941
1990 https://github.com/STEllAR-GROUP/hpx/issues/2940
1991 https://github.com/STEllAR-GROUP/hpx/pull/2939
1992 https://github.com/STEllAR-GROUP/hpx/pull/2938
1993 https://github.com/STEllAR-GROUP/hpx/pull/2937
1994 https://github.com/STEllAR-GROUP/hpx/pull/2934
1995 https://github.com/STEllAR-GROUP/hpx/pull/2933
1996 https://github.com/STEllAR-GROUP/hpx/pull/2932
1997 https://github.com/STEllAR-GROUP/hpx/issues/2931
1998 https://github.com/STEllAR-GROUP/hpx/pull/2930
1999 https://github.com/STEllAR-GROUP/hpx/pull/2929
2000 https://github.com/STEllAR-GROUP/hpx/pull/2928
2001 https://github.com/STEllAR-GROUP/hpx/issues/2927
2002 https://github.com/STEllAR-GROUP/hpx/pull/2926
2003 https://github.com/STEllAR-GROUP/hpx/issues/2925
2004 https://github.com/STEllAR-GROUP/hpx/issues/2924
2005 https://github.com/STEllAR-GROUP/hpx/pull/2923

2.11. Releases 1305

https://github.com/STEllAR-GROUP/hpx/issues/2947
https://github.com/STEllAR-GROUP/hpx/pull/2946
https://github.com/STEllAR-GROUP/hpx/pull/2945
https://github.com/STEllAR-GROUP/hpx/pull/2944
https://github.com/STEllAR-GROUP/hpx/pull/2943
https://github.com/STEllAR-GROUP/hpx/pull/2942
https://github.com/STEllAR-GROUP/hpx/pull/2941
https://github.com/STEllAR-GROUP/hpx/issues/2940
https://github.com/STEllAR-GROUP/hpx/pull/2939
https://github.com/STEllAR-GROUP/hpx/pull/2938
https://github.com/STEllAR-GROUP/hpx/pull/2937
https://github.com/STEllAR-GROUP/hpx/pull/2934
https://github.com/STEllAR-GROUP/hpx/pull/2933
https://github.com/STEllAR-GROUP/hpx/pull/2932
https://github.com/STEllAR-GROUP/hpx/issues/2931
https://github.com/STEllAR-GROUP/hpx/pull/2930
https://github.com/STEllAR-GROUP/hpx/pull/2929
https://github.com/STEllAR-GROUP/hpx/pull/2928
https://github.com/STEllAR-GROUP/hpx/issues/2927
https://github.com/STEllAR-GROUP/hpx/pull/2926
https://github.com/STEllAR-GROUP/hpx/issues/2925
https://github.com/STEllAR-GROUP/hpx/issues/2924
https://github.com/STEllAR-GROUP/hpx/pull/2923

HPX Documentation, 1.5.1

• PR #29222006 - This fixes CircleCI errors when running with –hpx:bind=none

• PR #29212007 - Custom pool executor was missing priority and stacksize options

• PR #29202008 - Adding test to trigger problem reported in #2916

• PR #29192009 - Make sure the resource_partitioner is properly destructed on hpx::finalize

• Issue #29182010 - hpx::init calls wrong (first) callback when called multiple times

• PR #29172011 - Adding util::checkpoint

• Issue #29162012 - Weird runtime failures when using a channel and chained continuations

• PR #29152013 - Introduce executor parameters customization points

• Issue #29142014 - Task assignment to current Pool has unintended consequences

• PR #29132015 - Fix rp hang

• PR #29122016 - Update contributors

• PR #29112017 - Fixing CUDA problems

• PR #29102018 - Improve error reporting for process component on POSIX systems

• PR #29092019 - Fix typo in include path

• PR #29082020 - Use proper container according to iterator tag in benchmarks of parallel algorithms

• PR #29072021 - Optionally force-delete remaining channel items on close

• PR #29062022 - Making sure generated performance counter names are correct

• Issue #29052023 - collecting idle-rate performance counters on multiple localities produces an error

• Issue #29042024 - build broken for Intel 17 compilers

• PR #29032025 - Documentation Updates– Adding New People

• PR #29022026 - Fixing service_executor

• PR #29012027 - Fixing partitioned_vector creation

• PR #29002028 - Add numa-balanced mode to hpx::bind, spread cores over numa domains

2006 https://github.com/STEllAR-GROUP/hpx/pull/2922
2007 https://github.com/STEllAR-GROUP/hpx/pull/2921
2008 https://github.com/STEllAR-GROUP/hpx/pull/2920
2009 https://github.com/STEllAR-GROUP/hpx/pull/2919
2010 https://github.com/STEllAR-GROUP/hpx/issues/2918
2011 https://github.com/STEllAR-GROUP/hpx/pull/2917
2012 https://github.com/STEllAR-GROUP/hpx/issues/2916
2013 https://github.com/STEllAR-GROUP/hpx/pull/2915
2014 https://github.com/STEllAR-GROUP/hpx/issues/2914
2015 https://github.com/STEllAR-GROUP/hpx/pull/2913
2016 https://github.com/STEllAR-GROUP/hpx/pull/2912
2017 https://github.com/STEllAR-GROUP/hpx/pull/2911
2018 https://github.com/STEllAR-GROUP/hpx/pull/2910
2019 https://github.com/STEllAR-GROUP/hpx/pull/2909
2020 https://github.com/STEllAR-GROUP/hpx/pull/2908
2021 https://github.com/STEllAR-GROUP/hpx/pull/2907
2022 https://github.com/STEllAR-GROUP/hpx/pull/2906
2023 https://github.com/STEllAR-GROUP/hpx/issues/2905
2024 https://github.com/STEllAR-GROUP/hpx/issues/2904
2025 https://github.com/STEllAR-GROUP/hpx/pull/2903
2026 https://github.com/STEllAR-GROUP/hpx/pull/2902
2027 https://github.com/STEllAR-GROUP/hpx/pull/2901
2028 https://github.com/STEllAR-GROUP/hpx/pull/2900

1306 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2922
https://github.com/STEllAR-GROUP/hpx/pull/2921
https://github.com/STEllAR-GROUP/hpx/pull/2920
https://github.com/STEllAR-GROUP/hpx/pull/2919
https://github.com/STEllAR-GROUP/hpx/issues/2918
https://github.com/STEllAR-GROUP/hpx/pull/2917
https://github.com/STEllAR-GROUP/hpx/issues/2916
https://github.com/STEllAR-GROUP/hpx/pull/2915
https://github.com/STEllAR-GROUP/hpx/issues/2914
https://github.com/STEllAR-GROUP/hpx/pull/2913
https://github.com/STEllAR-GROUP/hpx/pull/2912
https://github.com/STEllAR-GROUP/hpx/pull/2911
https://github.com/STEllAR-GROUP/hpx/pull/2910
https://github.com/STEllAR-GROUP/hpx/pull/2909
https://github.com/STEllAR-GROUP/hpx/pull/2908
https://github.com/STEllAR-GROUP/hpx/pull/2907
https://github.com/STEllAR-GROUP/hpx/pull/2906
https://github.com/STEllAR-GROUP/hpx/issues/2905
https://github.com/STEllAR-GROUP/hpx/issues/2904
https://github.com/STEllAR-GROUP/hpx/pull/2903
https://github.com/STEllAR-GROUP/hpx/pull/2902
https://github.com/STEllAR-GROUP/hpx/pull/2901
https://github.com/STEllAR-GROUP/hpx/pull/2900

HPX Documentation, 1.5.1

• Issue #28992029 - hpx::bind does not have a mode that balances cores over numa domains

• PR #28982030 - Adding missing #include and missing guard for optional code section

• PR #28972031 - Removing dependency on Boost.ICL

• Issue #28962032 - Debug build fails without -fpermissive with GCC 7.1 and Boost 1.65

• PR #28952033 - Fixing SLURM environment parsing

• PR #28942034 - Fix incorrect handling of compile definition with value 0

• Issue #28932035 - Disabling schedulers causes build errors

• PR #28922036 - added list serializer

• PR #28912037 - Resource Partitioner Fixes

• Issue #28902038 - Destroying a non-empty channel causes an assertion failure

• PR #28892039 - Add check for libatomic

• PR #28882040 - Fix compilation problems if HPX_WITH_ITT_NOTIFY=ON

• PR #28872041 - Adapt broadcast() to non-unwrapping async<Action>

• PR #28862042 - Replace Boost.Random with C++11 <random>

• Issue #28852043 - regression in broadcast?

• Issue #28842044 - linking -latomic is not portable

• PR #28832045 - Explicitly set -pthread flag if available

• PR #28822046 - Wrap boost::format uses

• Issue #28812047 - hpx not compiling with HPX_WITH_ITTNOTIFY=On

• Issue #28802048 - hpx::bind scatter/balanced give wrong pu masks

• PR #28782049 - Fix incorrect pool usage masks setup in RP/thread manager

• PR #28772050 - Require std::array by default

• PR #28752051 - Deprecate use of BOOST_ASSERT

2029 https://github.com/STEllAR-GROUP/hpx/issues/2899
2030 https://github.com/STEllAR-GROUP/hpx/pull/2898
2031 https://github.com/STEllAR-GROUP/hpx/pull/2897
2032 https://github.com/STEllAR-GROUP/hpx/issues/2896
2033 https://github.com/STEllAR-GROUP/hpx/pull/2895
2034 https://github.com/STEllAR-GROUP/hpx/pull/2894
2035 https://github.com/STEllAR-GROUP/hpx/issues/2893
2036 https://github.com/STEllAR-GROUP/hpx/pull/2892
2037 https://github.com/STEllAR-GROUP/hpx/pull/2891
2038 https://github.com/STEllAR-GROUP/hpx/issues/2890
2039 https://github.com/STEllAR-GROUP/hpx/pull/2889
2040 https://github.com/STEllAR-GROUP/hpx/pull/2888
2041 https://github.com/STEllAR-GROUP/hpx/pull/2887
2042 https://github.com/STEllAR-GROUP/hpx/pull/2886
2043 https://github.com/STEllAR-GROUP/hpx/issues/2885
2044 https://github.com/STEllAR-GROUP/hpx/issues/2884
2045 https://github.com/STEllAR-GROUP/hpx/pull/2883
2046 https://github.com/STEllAR-GROUP/hpx/pull/2882
2047 https://github.com/STEllAR-GROUP/hpx/issues/2881
2048 https://github.com/STEllAR-GROUP/hpx/issues/2880
2049 https://github.com/STEllAR-GROUP/hpx/pull/2878
2050 https://github.com/STEllAR-GROUP/hpx/pull/2877
2051 https://github.com/STEllAR-GROUP/hpx/pull/2875

2.11. Releases 1307

https://github.com/STEllAR-GROUP/hpx/issues/2899
https://github.com/STEllAR-GROUP/hpx/pull/2898
https://github.com/STEllAR-GROUP/hpx/pull/2897
https://github.com/STEllAR-GROUP/hpx/issues/2896
https://github.com/STEllAR-GROUP/hpx/pull/2895
https://github.com/STEllAR-GROUP/hpx/pull/2894
https://github.com/STEllAR-GROUP/hpx/issues/2893
https://github.com/STEllAR-GROUP/hpx/pull/2892
https://github.com/STEllAR-GROUP/hpx/pull/2891
https://github.com/STEllAR-GROUP/hpx/issues/2890
https://github.com/STEllAR-GROUP/hpx/pull/2889
https://github.com/STEllAR-GROUP/hpx/pull/2888
https://github.com/STEllAR-GROUP/hpx/pull/2887
https://github.com/STEllAR-GROUP/hpx/pull/2886
https://github.com/STEllAR-GROUP/hpx/issues/2885
https://github.com/STEllAR-GROUP/hpx/issues/2884
https://github.com/STEllAR-GROUP/hpx/pull/2883
https://github.com/STEllAR-GROUP/hpx/pull/2882
https://github.com/STEllAR-GROUP/hpx/issues/2881
https://github.com/STEllAR-GROUP/hpx/issues/2880
https://github.com/STEllAR-GROUP/hpx/pull/2878
https://github.com/STEllAR-GROUP/hpx/pull/2877
https://github.com/STEllAR-GROUP/hpx/pull/2875

HPX Documentation, 1.5.1

• PR #28742052 - Changed serialization of boost.variant to use variadic templates

• Issue #28732053 - building with parcelport_mpi fails on cori

• PR #28712054 - Adding missing support for throttling scheduler

• PR #28702055 - Disambiguate use of base_lco_with_value macros with channel

• Issue #28692056 - Difficulty compiling HPX_REGISTER_CHANNEL_DECLARATION(double)

• PR #28682057 - Removing unneeded assert

• PR #28672058 - Implement parallel::unique

• Issue #28662059 - The chunk_size_iterator violates multipass guarantee

• PR #28652060 - Only use sched_getcpu on linux machines

• PR #28642061 - Create redistribution archive for successful builds

• PR #28632062 - Replace casts/assignments with hard-coded memcpy operations

• Issue #28622063 - sched_getcpu not available on MacOS

• PR #28612064 - Fixing unmatched header defines and recursive inclusion of threadmanager

• Issue #28602065 - Master program fails with assertion ‘type == data_type_address’ failed:
HPX(assertion_failure)

• Issue #28522066 - Support for ARM64

• PR #28582067 - Fix misplaced #if #endif’s that cause build failure without
THREAD_CUMULATIVE_COUNTS

• PR #28572068 - Fix some listing in documentation

• PR #28562069 - Fixing component handling for lcos

• PR #28552070 - Add documentation for coarrays

• PR #28542071 - Support ARM64 in timestamps

• PR #28532072 - Update Table 17. Non-modifying Parallel Algorithms in Documentation

• PR #28512073 - Allowing for non-default-constructible component types

2052 https://github.com/STEllAR-GROUP/hpx/pull/2874
2053 https://github.com/STEllAR-GROUP/hpx/issues/2873
2054 https://github.com/STEllAR-GROUP/hpx/pull/2871
2055 https://github.com/STEllAR-GROUP/hpx/pull/2870
2056 https://github.com/STEllAR-GROUP/hpx/issues/2869
2057 https://github.com/STEllAR-GROUP/hpx/pull/2868
2058 https://github.com/STEllAR-GROUP/hpx/pull/2867
2059 https://github.com/STEllAR-GROUP/hpx/issues/2866
2060 https://github.com/STEllAR-GROUP/hpx/pull/2865
2061 https://github.com/STEllAR-GROUP/hpx/pull/2864
2062 https://github.com/STEllAR-GROUP/hpx/pull/2863
2063 https://github.com/STEllAR-GROUP/hpx/issues/2862
2064 https://github.com/STEllAR-GROUP/hpx/pull/2861
2065 https://github.com/STEllAR-GROUP/hpx/issues/2860
2066 https://github.com/STEllAR-GROUP/hpx/issues/2852
2067 https://github.com/STEllAR-GROUP/hpx/pull/2858
2068 https://github.com/STEllAR-GROUP/hpx/pull/2857
2069 https://github.com/STEllAR-GROUP/hpx/pull/2856
2070 https://github.com/STEllAR-GROUP/hpx/pull/2855
2071 https://github.com/STEllAR-GROUP/hpx/pull/2854
2072 https://github.com/STEllAR-GROUP/hpx/pull/2853
2073 https://github.com/STEllAR-GROUP/hpx/pull/2851

1308 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2874
https://github.com/STEllAR-GROUP/hpx/issues/2873
https://github.com/STEllAR-GROUP/hpx/pull/2871
https://github.com/STEllAR-GROUP/hpx/pull/2870
https://github.com/STEllAR-GROUP/hpx/issues/2869
https://github.com/STEllAR-GROUP/hpx/pull/2868
https://github.com/STEllAR-GROUP/hpx/pull/2867
https://github.com/STEllAR-GROUP/hpx/issues/2866
https://github.com/STEllAR-GROUP/hpx/pull/2865
https://github.com/STEllAR-GROUP/hpx/pull/2864
https://github.com/STEllAR-GROUP/hpx/pull/2863
https://github.com/STEllAR-GROUP/hpx/issues/2862
https://github.com/STEllAR-GROUP/hpx/pull/2861
https://github.com/STEllAR-GROUP/hpx/issues/2860
https://github.com/STEllAR-GROUP/hpx/issues/2852
https://github.com/STEllAR-GROUP/hpx/pull/2858
https://github.com/STEllAR-GROUP/hpx/pull/2857
https://github.com/STEllAR-GROUP/hpx/pull/2856
https://github.com/STEllAR-GROUP/hpx/pull/2855
https://github.com/STEllAR-GROUP/hpx/pull/2854
https://github.com/STEllAR-GROUP/hpx/pull/2853
https://github.com/STEllAR-GROUP/hpx/pull/2851

HPX Documentation, 1.5.1

• PR #28502074 - Enable returning future<R> from actions where R is not default-constructible

• PR #28492075 - Unify serialization of non-default-constructable types

• Issue #28482076 - Components have to be default constructible

• Issue #28472077 - Returning a future<R> where R is not default-constructable broken

• Issue #28462078 - Unify serialization of non-default-constructible types

• PR #28452079 - Add Visual Studio 2015 to the tested toolchains in Appveyor

• Issue #28442080 - Change the appveyor build to use the minimal required MSVC version

• Issue #28432081 - multi node hello_world hangs

• PR #28422082 - Correcting Spelling mistake in docs

• PR #28412083 - Fix usage of std::aligned_storage

• PR #28402084 - Remove constexpr from a void function

• Issue #28392085 - memcpy buffer overflow: load_construct_data() and std::complex members

• Issue #28352086 - constexpr functions with void return type break compilation with CUDA 8.0

• Issue #28342087 - One suspicion in parallel::detail::handle_exception

• PR #28332088 - Implement parallel::merge

• PR #28322089 - Fix a strange thing in parallel::util::detail::handle_local_exceptions. (Fix #2818)

• PR #28302090 - Break the debugger when a test failed

• Issue #28312091 - parallel/executors/execution_fwd.hpp causes compilation failure in C++11
mode.

• PR #28292092 - Implement an API for asynchronous pack traversal

• PR #28282093 - Split unit test builds on CircleCI to avoid timeouts

• Issue #28272094 - failure to compile hello_world example with -Werror

• PR #28242095 - Making sure promises are marked as started when used as continuations

• PR #28232096 - Add documentation for partitioned_vector_view

2074 https://github.com/STEllAR-GROUP/hpx/pull/2850
2075 https://github.com/STEllAR-GROUP/hpx/pull/2849
2076 https://github.com/STEllAR-GROUP/hpx/issues/2848
2077 https://github.com/STEllAR-GROUP/hpx/issues/2847
2078 https://github.com/STEllAR-GROUP/hpx/issues/2846
2079 https://github.com/STEllAR-GROUP/hpx/pull/2845
2080 https://github.com/STEllAR-GROUP/hpx/issues/2844
2081 https://github.com/STEllAR-GROUP/hpx/issues/2843
2082 https://github.com/STEllAR-GROUP/hpx/pull/2842
2083 https://github.com/STEllAR-GROUP/hpx/pull/2841
2084 https://github.com/STEllAR-GROUP/hpx/pull/2840
2085 https://github.com/STEllAR-GROUP/hpx/issues/2839
2086 https://github.com/STEllAR-GROUP/hpx/issues/2835
2087 https://github.com/STEllAR-GROUP/hpx/issues/2834
2088 https://github.com/STEllAR-GROUP/hpx/pull/2833
2089 https://github.com/STEllAR-GROUP/hpx/pull/2832
2090 https://github.com/STEllAR-GROUP/hpx/pull/2830
2091 https://github.com/STEllAR-GROUP/hpx/issues/2831
2092 https://github.com/STEllAR-GROUP/hpx/pull/2829
2093 https://github.com/STEllAR-GROUP/hpx/pull/2828
2094 https://github.com/STEllAR-GROUP/hpx/issues/2827
2095 https://github.com/STEllAR-GROUP/hpx/pull/2824
2096 https://github.com/STEllAR-GROUP/hpx/pull/2823

2.11. Releases 1309

https://github.com/STEllAR-GROUP/hpx/pull/2850
https://github.com/STEllAR-GROUP/hpx/pull/2849
https://github.com/STEllAR-GROUP/hpx/issues/2848
https://github.com/STEllAR-GROUP/hpx/issues/2847
https://github.com/STEllAR-GROUP/hpx/issues/2846
https://github.com/STEllAR-GROUP/hpx/pull/2845
https://github.com/STEllAR-GROUP/hpx/issues/2844
https://github.com/STEllAR-GROUP/hpx/issues/2843
https://github.com/STEllAR-GROUP/hpx/pull/2842
https://github.com/STEllAR-GROUP/hpx/pull/2841
https://github.com/STEllAR-GROUP/hpx/pull/2840
https://github.com/STEllAR-GROUP/hpx/issues/2839
https://github.com/STEllAR-GROUP/hpx/issues/2835
https://github.com/STEllAR-GROUP/hpx/issues/2834
https://github.com/STEllAR-GROUP/hpx/pull/2833
https://github.com/STEllAR-GROUP/hpx/pull/2832
https://github.com/STEllAR-GROUP/hpx/pull/2830
https://github.com/STEllAR-GROUP/hpx/issues/2831
https://github.com/STEllAR-GROUP/hpx/pull/2829
https://github.com/STEllAR-GROUP/hpx/pull/2828
https://github.com/STEllAR-GROUP/hpx/issues/2827
https://github.com/STEllAR-GROUP/hpx/pull/2824
https://github.com/STEllAR-GROUP/hpx/pull/2823

HPX Documentation, 1.5.1

• Issue #28222097 - Yet another issue with wait_for similar to #2796

• PR #28212098 - Fix bugs and improve that about HPX_HAVE_CXX11_AUTO_RETURN_VALUE of CMake

• PR #28202099 - Support C++11 in benchmark codes of parallel::partition and parallel::partition_copy

• PR #28192100 - Fix compile errors in unit test of container version of parallel::partition

• Issue #28182101 - A strange thing in parallel::util::detail::handle_local_exceptions

• Issue #28152102 - HPX fails to compile with HPX_WITH_CUDA=ON and the new CUDA 9.0 RC

• Issue #28142103 - Using ‘gmakeN’ after ‘cmake’ produces error in
src/CMakeFiles/hpx.dir/runtime/agas/addressing_service.cpp.o

• PR #28132104 - Properly support [[noreturn]] attribute if available

• Issue #28122105 - Compilation fails with gcc 7.1.1

• PR #28112106 - Adding hpx::launch::lazy and support for async, dataflow, and future::then

• PR #28102107 - Add option allowing to disable deprecation warning

• PR #28092108 - Disable throttling scheduler if HWLOC is not found/used

• PR #28082109 - Fix compile errors on some environments of parallel::partition

• Issue #28072110 - Difficulty building with HPX_WITH_HWLOC=Off

• PR #28062111 - Partitioned vector

• PR #28052112 - Serializing collections with non-default constructible data

• PR #28022113 - Fix FreeBSD 11

• Issue #28012114 - Rate limiting techniques in io_service

• Issue #28002115 - New Launch Policy: async_if

• PR #27992116 - Fix a unit test failure on GCC in tuple_cat

• PR #27982117 - bump minimum required cmake to 3.0 in test

• PR #27972118 - Making sure future::wait_for et.al. work properly for action results

• Issue #27962119 - wait_for does always in “deferred” state for calls on remote localities

2097 https://github.com/STEllAR-GROUP/hpx/issues/2822
2098 https://github.com/STEllAR-GROUP/hpx/pull/2821
2099 https://github.com/STEllAR-GROUP/hpx/pull/2820
2100 https://github.com/STEllAR-GROUP/hpx/pull/2819
2101 https://github.com/STEllAR-GROUP/hpx/issues/2818
2102 https://github.com/STEllAR-GROUP/hpx/issues/2815
2103 https://github.com/STEllAR-GROUP/hpx/issues/2814
2104 https://github.com/STEllAR-GROUP/hpx/pull/2813
2105 https://github.com/STEllAR-GROUP/hpx/issues/2812
2106 https://github.com/STEllAR-GROUP/hpx/pull/2811
2107 https://github.com/STEllAR-GROUP/hpx/pull/2810
2108 https://github.com/STEllAR-GROUP/hpx/pull/2809
2109 https://github.com/STEllAR-GROUP/hpx/pull/2808
2110 https://github.com/STEllAR-GROUP/hpx/issues/2807
2111 https://github.com/STEllAR-GROUP/hpx/pull/2806
2112 https://github.com/STEllAR-GROUP/hpx/pull/2805
2113 https://github.com/STEllAR-GROUP/hpx/pull/2802
2114 https://github.com/STEllAR-GROUP/hpx/issues/2801
2115 https://github.com/STEllAR-GROUP/hpx/issues/2800
2116 https://github.com/STEllAR-GROUP/hpx/pull/2799
2117 https://github.com/STEllAR-GROUP/hpx/pull/2798
2118 https://github.com/STEllAR-GROUP/hpx/pull/2797
2119 https://github.com/STEllAR-GROUP/hpx/issues/2796

1310 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2822
https://github.com/STEllAR-GROUP/hpx/pull/2821
https://github.com/STEllAR-GROUP/hpx/pull/2820
https://github.com/STEllAR-GROUP/hpx/pull/2819
https://github.com/STEllAR-GROUP/hpx/issues/2818
https://github.com/STEllAR-GROUP/hpx/issues/2815
https://github.com/STEllAR-GROUP/hpx/issues/2814
https://github.com/STEllAR-GROUP/hpx/pull/2813
https://github.com/STEllAR-GROUP/hpx/issues/2812
https://github.com/STEllAR-GROUP/hpx/pull/2811
https://github.com/STEllAR-GROUP/hpx/pull/2810
https://github.com/STEllAR-GROUP/hpx/pull/2809
https://github.com/STEllAR-GROUP/hpx/pull/2808
https://github.com/STEllAR-GROUP/hpx/issues/2807
https://github.com/STEllAR-GROUP/hpx/pull/2806
https://github.com/STEllAR-GROUP/hpx/pull/2805
https://github.com/STEllAR-GROUP/hpx/pull/2802
https://github.com/STEllAR-GROUP/hpx/issues/2801
https://github.com/STEllAR-GROUP/hpx/issues/2800
https://github.com/STEllAR-GROUP/hpx/pull/2799
https://github.com/STEllAR-GROUP/hpx/pull/2798
https://github.com/STEllAR-GROUP/hpx/pull/2797
https://github.com/STEllAR-GROUP/hpx/issues/2796

HPX Documentation, 1.5.1

• Issue #27952120 - Serialization of types without default constructor

• PR #27942121 - Fixing test for partitioned_vector iteration

• PR #27922122 - Implemented segmented find and its variations for partitioned vector

• PR #27912123 - Circumvent scary warning about placement new

• PR #27902124 - Fix OSX build

• PR #27892125 - Resource partitioner

• PR #27882126 - Adapt parallel::is_heap and parallel::is_heap_until to Ranges TS

• PR #27872127 - Unwrap hotfixes

• PR #27862128 - Update CMake Minimum Version to 3.3.2 (refs #2565)

• Issue #27852129 - Issues with masks and cpuset

• PR #27842130 - Error with reduce and transform reduce fixed

• PR #27832131 - StackOverflow integration with libsigsegv

• PR #27822132 - Replace boost::atomic with std::atomic (where possible)

• PR #27812133 - Check for and optionally use [[deprecated]] attribute

• PR #27802134 - Adding empty (but non-trivial) destructor to circumvent warnings

• PR #27792135 - Exception info tweaks

• PR #27782136 - Implement parallel::partition

• PR #27772137 - Improve error handling in gather_here/gather_there

• PR #27762138 - Fix a bug in compiler version check

• PR #27752139 - Fix compilation when HPX_WITH_LOGGING is OFF

• PR #27742140 - Removing dependency on Boost.Date_Time

• PR #27732141 - Add sync_images() method to spmd_block class

• PR #27722142 - Adding documentation for PAPI counters

2120 https://github.com/STEllAR-GROUP/hpx/issues/2795
2121 https://github.com/STEllAR-GROUP/hpx/pull/2794
2122 https://github.com/STEllAR-GROUP/hpx/pull/2792
2123 https://github.com/STEllAR-GROUP/hpx/pull/2791
2124 https://github.com/STEllAR-GROUP/hpx/pull/2790
2125 https://github.com/STEllAR-GROUP/hpx/pull/2789
2126 https://github.com/STEllAR-GROUP/hpx/pull/2788
2127 https://github.com/STEllAR-GROUP/hpx/pull/2787
2128 https://github.com/STEllAR-GROUP/hpx/pull/2786
2129 https://github.com/STEllAR-GROUP/hpx/issues/2785
2130 https://github.com/STEllAR-GROUP/hpx/pull/2784
2131 https://github.com/STEllAR-GROUP/hpx/pull/2783
2132 https://github.com/STEllAR-GROUP/hpx/pull/2782
2133 https://github.com/STEllAR-GROUP/hpx/pull/2781
2134 https://github.com/STEllAR-GROUP/hpx/pull/2780
2135 https://github.com/STEllAR-GROUP/hpx/pull/2779
2136 https://github.com/STEllAR-GROUP/hpx/pull/2778
2137 https://github.com/STEllAR-GROUP/hpx/pull/2777
2138 https://github.com/STEllAR-GROUP/hpx/pull/2776
2139 https://github.com/STEllAR-GROUP/hpx/pull/2775
2140 https://github.com/STEllAR-GROUP/hpx/pull/2774
2141 https://github.com/STEllAR-GROUP/hpx/pull/2773
2142 https://github.com/STEllAR-GROUP/hpx/pull/2772

2.11. Releases 1311

https://github.com/STEllAR-GROUP/hpx/issues/2795
https://github.com/STEllAR-GROUP/hpx/pull/2794
https://github.com/STEllAR-GROUP/hpx/pull/2792
https://github.com/STEllAR-GROUP/hpx/pull/2791
https://github.com/STEllAR-GROUP/hpx/pull/2790
https://github.com/STEllAR-GROUP/hpx/pull/2789
https://github.com/STEllAR-GROUP/hpx/pull/2788
https://github.com/STEllAR-GROUP/hpx/pull/2787
https://github.com/STEllAR-GROUP/hpx/pull/2786
https://github.com/STEllAR-GROUP/hpx/issues/2785
https://github.com/STEllAR-GROUP/hpx/pull/2784
https://github.com/STEllAR-GROUP/hpx/pull/2783
https://github.com/STEllAR-GROUP/hpx/pull/2782
https://github.com/STEllAR-GROUP/hpx/pull/2781
https://github.com/STEllAR-GROUP/hpx/pull/2780
https://github.com/STEllAR-GROUP/hpx/pull/2779
https://github.com/STEllAR-GROUP/hpx/pull/2778
https://github.com/STEllAR-GROUP/hpx/pull/2777
https://github.com/STEllAR-GROUP/hpx/pull/2776
https://github.com/STEllAR-GROUP/hpx/pull/2775
https://github.com/STEllAR-GROUP/hpx/pull/2774
https://github.com/STEllAR-GROUP/hpx/pull/2773
https://github.com/STEllAR-GROUP/hpx/pull/2772

HPX Documentation, 1.5.1

• PR #27712143 - Removing boost preprocessor dependency

• PR #27702144 - Adding test, fixing deadlock in config registry

• PR #27692145 - Remove some other warnings and errors detected by clang 5.0

• Issue #27682146 - Is there iterator tag for HPX?

• PR #27672147 - Improvements to continuation annotation

• PR #27652148 - gcc split stack support for HPX threads #620

• PR #27642149 - Fix some uses of begin/end, remove unnecessary includes

• PR #27632150 - Bump minimal Boost version to 1.55.0

• PR #27622151 - hpx::partitioned_vector serializer

• PR #27612152 - Adding configuration summary to cmake output and –hpx:info

• PR #27602153 - Removing 1d_hydro example as it is broken

• PR #27582154 - Remove various warnings detected by clang 5.0

• Issue #27572155 - In case of a “raw thread” is needed per core for implementing parallel algorithm, what is good
practice in HPX?

• PR #27562156 - Allowing for LCOs to be simple components

• PR #27552157 - Removing make_index_pack_unrolled

• PR #27542158 - Implement parallel::unique_copy

• PR #27532159 - Fixing detection of [[fallthrough]] attribute

• PR #27522160 - New thread priority names

• PR #27512161 - Replace boost::exception with proposed exception_info

• PR #27502162 - Replace boost::iterator_range

• PR #27492163 - Fixing hdf5 examples

• Issue #27482164 - HPX fails to build with enabled hdf5 examples

• Issue #27472165 - Inherited task priorities break certain DAG optimizations

2143 https://github.com/STEllAR-GROUP/hpx/pull/2771
2144 https://github.com/STEllAR-GROUP/hpx/pull/2770
2145 https://github.com/STEllAR-GROUP/hpx/pull/2769
2146 https://github.com/STEllAR-GROUP/hpx/issues/2768
2147 https://github.com/STEllAR-GROUP/hpx/pull/2767
2148 https://github.com/STEllAR-GROUP/hpx/pull/2765
2149 https://github.com/STEllAR-GROUP/hpx/pull/2764
2150 https://github.com/STEllAR-GROUP/hpx/pull/2763
2151 https://github.com/STEllAR-GROUP/hpx/pull/2762
2152 https://github.com/STEllAR-GROUP/hpx/pull/2761
2153 https://github.com/STEllAR-GROUP/hpx/pull/2760
2154 https://github.com/STEllAR-GROUP/hpx/pull/2758
2155 https://github.com/STEllAR-GROUP/hpx/issues/2757
2156 https://github.com/STEllAR-GROUP/hpx/pull/2756
2157 https://github.com/STEllAR-GROUP/hpx/pull/2755
2158 https://github.com/STEllAR-GROUP/hpx/pull/2754
2159 https://github.com/STEllAR-GROUP/hpx/pull/2753
2160 https://github.com/STEllAR-GROUP/hpx/pull/2752
2161 https://github.com/STEllAR-GROUP/hpx/pull/2751
2162 https://github.com/STEllAR-GROUP/hpx/pull/2750
2163 https://github.com/STEllAR-GROUP/hpx/pull/2749
2164 https://github.com/STEllAR-GROUP/hpx/issues/2748
2165 https://github.com/STEllAR-GROUP/hpx/issues/2747

1312 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2771
https://github.com/STEllAR-GROUP/hpx/pull/2770
https://github.com/STEllAR-GROUP/hpx/pull/2769
https://github.com/STEllAR-GROUP/hpx/issues/2768
https://github.com/STEllAR-GROUP/hpx/pull/2767
https://github.com/STEllAR-GROUP/hpx/pull/2765
https://github.com/STEllAR-GROUP/hpx/pull/2764
https://github.com/STEllAR-GROUP/hpx/pull/2763
https://github.com/STEllAR-GROUP/hpx/pull/2762
https://github.com/STEllAR-GROUP/hpx/pull/2761
https://github.com/STEllAR-GROUP/hpx/pull/2760
https://github.com/STEllAR-GROUP/hpx/pull/2758
https://github.com/STEllAR-GROUP/hpx/issues/2757
https://github.com/STEllAR-GROUP/hpx/pull/2756
https://github.com/STEllAR-GROUP/hpx/pull/2755
https://github.com/STEllAR-GROUP/hpx/pull/2754
https://github.com/STEllAR-GROUP/hpx/pull/2753
https://github.com/STEllAR-GROUP/hpx/pull/2752
https://github.com/STEllAR-GROUP/hpx/pull/2751
https://github.com/STEllAR-GROUP/hpx/pull/2750
https://github.com/STEllAR-GROUP/hpx/pull/2749
https://github.com/STEllAR-GROUP/hpx/issues/2748
https://github.com/STEllAR-GROUP/hpx/issues/2747

HPX Documentation, 1.5.1

• Issue #27462166 - HPX segfaulting with valgrind

• PR #27452167 - Adding extended arithmetic performance counters

• PR #27442168 - Adding ability to statistics counters to reset base counter

• Issue #27432169 - Statistics counter does not support resetting

• PR #27422170 - Making sure Vc V2 builds without additional HPX configuration flags

• PR #27412171 - Deprecate unwrapped and implement unwrap and unwrapping

• PR #27402172 - Coroutine stackoverflow detection for linux/posix; Issue #2408

• PR #27392173 - Add files via upload

• PR #27382174 - Appveyor support

• PR #27372175 - Fixing 2735

• Issue #27362176 - 1d_hydro example doesn’t work

• Issue #27352177 - partitioned_vector_subview test failing

• PR #27342178 - Add C++11 range utilities

• PR #27332179 - Adapting iterator requirements for parallel algorithms

• PR #27322180 - Integrate C++ Co-arrays

• PR #27312181 - Adding on_migrated event handler to migratable component instances

• Issue #27292182 - Add on_migrated() event handler to migratable components

• Issue #27282183 - Why Projection is needed in parallel algorithms?

• PR #27272184 - Cmake files for StackOverflow Detection

• PR #27262185 - CMake for Stack Overflow Detection

• PR #27252186 - Implemented segmented algorithms for partitioned vector

• PR #27242187 - Fix examples in Action documentation

• PR #27232188 - Enable lcos::channel<T>::register_as

2166 https://github.com/STEllAR-GROUP/hpx/issues/2746
2167 https://github.com/STEllAR-GROUP/hpx/pull/2745
2168 https://github.com/STEllAR-GROUP/hpx/pull/2744
2169 https://github.com/STEllAR-GROUP/hpx/issues/2743
2170 https://github.com/STEllAR-GROUP/hpx/pull/2742
2171 https://github.com/STEllAR-GROUP/hpx/pull/2741
2172 https://github.com/STEllAR-GROUP/hpx/pull/2740
2173 https://github.com/STEllAR-GROUP/hpx/pull/2739
2174 https://github.com/STEllAR-GROUP/hpx/pull/2738
2175 https://github.com/STEllAR-GROUP/hpx/pull/2737
2176 https://github.com/STEllAR-GROUP/hpx/issues/2736
2177 https://github.com/STEllAR-GROUP/hpx/issues/2735
2178 https://github.com/STEllAR-GROUP/hpx/pull/2734
2179 https://github.com/STEllAR-GROUP/hpx/pull/2733
2180 https://github.com/STEllAR-GROUP/hpx/pull/2732
2181 https://github.com/STEllAR-GROUP/hpx/pull/2731
2182 https://github.com/STEllAR-GROUP/hpx/issues/2729
2183 https://github.com/STEllAR-GROUP/hpx/issues/2728
2184 https://github.com/STEllAR-GROUP/hpx/pull/2727
2185 https://github.com/STEllAR-GROUP/hpx/pull/2726
2186 https://github.com/STEllAR-GROUP/hpx/pull/2725
2187 https://github.com/STEllAR-GROUP/hpx/pull/2724
2188 https://github.com/STEllAR-GROUP/hpx/pull/2723

2.11. Releases 1313

https://github.com/STEllAR-GROUP/hpx/issues/2746
https://github.com/STEllAR-GROUP/hpx/pull/2745
https://github.com/STEllAR-GROUP/hpx/pull/2744
https://github.com/STEllAR-GROUP/hpx/issues/2743
https://github.com/STEllAR-GROUP/hpx/pull/2742
https://github.com/STEllAR-GROUP/hpx/pull/2741
https://github.com/STEllAR-GROUP/hpx/pull/2740
https://github.com/STEllAR-GROUP/hpx/pull/2739
https://github.com/STEllAR-GROUP/hpx/pull/2738
https://github.com/STEllAR-GROUP/hpx/pull/2737
https://github.com/STEllAR-GROUP/hpx/issues/2736
https://github.com/STEllAR-GROUP/hpx/issues/2735
https://github.com/STEllAR-GROUP/hpx/pull/2734
https://github.com/STEllAR-GROUP/hpx/pull/2733
https://github.com/STEllAR-GROUP/hpx/pull/2732
https://github.com/STEllAR-GROUP/hpx/pull/2731
https://github.com/STEllAR-GROUP/hpx/issues/2729
https://github.com/STEllAR-GROUP/hpx/issues/2728
https://github.com/STEllAR-GROUP/hpx/pull/2727
https://github.com/STEllAR-GROUP/hpx/pull/2726
https://github.com/STEllAR-GROUP/hpx/pull/2725
https://github.com/STEllAR-GROUP/hpx/pull/2724
https://github.com/STEllAR-GROUP/hpx/pull/2723

HPX Documentation, 1.5.1

• Issue #27222189 - channel register_as() failing on compilation

• PR #27212190 - Mind map

• PR #27202191 - reorder forward declarations to get rid of C++14-only auto return types

• PR #27192192 - Add documentation for partitioned_vector and add features in pack.hpp

• Issue #27182193 - Some forward declarations in execution_fwd.hpp aren’t C++11-compatible

• PR #27172194 - Config support for fallthrough attribute

• PR #27162195 - Implement parallel::partition_copy

• PR #27152196 - initial import of icu string serializer

• PR #27142197 - initial import of valarray serializer

• PR #27132198 - Remove slashes before CMAKE_FILES_DIRECTORY variables

• PR #27122199 - Fixing wait for 1751

• PR #27112200 - Adjust code for minimal supported GCC having being bumped to 4.9

• PR #27102201 - Adding code of conduct

• PR #27092202 - Fixing UB in destroy tests

• PR #27082203 - Add inline to prevent multiple definition issue

• Issue #27072204 - Multiple defined symbols for task_block.hpp in VS2015

• PR #27062205 - Adding .clang-format file

• PR #27042206 - Add a synchronous mapping API

• Issue #27032207 - Request: Add the .clang-format file to the repository

• Issue #27022208 - STEllAR-GROUP/Vc slower than VCv1 possibly due to wrong instructions generated

• Issue #27012209 - Datapar with STEllAR-GROUP/Vc requires obscure flag

• Issue #27002210 - Naming inconsistency in parallel algorithms

• Issue #26992211 - Iterator requirements are different from standard in parallel copy_if.

2189 https://github.com/STEllAR-GROUP/hpx/issues/2722
2190 https://github.com/STEllAR-GROUP/hpx/pull/2721
2191 https://github.com/STEllAR-GROUP/hpx/pull/2720
2192 https://github.com/STEllAR-GROUP/hpx/pull/2719
2193 https://github.com/STEllAR-GROUP/hpx/issues/2718
2194 https://github.com/STEllAR-GROUP/hpx/pull/2717
2195 https://github.com/STEllAR-GROUP/hpx/pull/2716
2196 https://github.com/STEllAR-GROUP/hpx/pull/2715
2197 https://github.com/STEllAR-GROUP/hpx/pull/2714
2198 https://github.com/STEllAR-GROUP/hpx/pull/2713
2199 https://github.com/STEllAR-GROUP/hpx/pull/2712
2200 https://github.com/STEllAR-GROUP/hpx/pull/2711
2201 https://github.com/STEllAR-GROUP/hpx/pull/2710
2202 https://github.com/STEllAR-GROUP/hpx/pull/2709
2203 https://github.com/STEllAR-GROUP/hpx/pull/2708
2204 https://github.com/STEllAR-GROUP/hpx/issues/2707
2205 https://github.com/STEllAR-GROUP/hpx/pull/2706
2206 https://github.com/STEllAR-GROUP/hpx/pull/2704
2207 https://github.com/STEllAR-GROUP/hpx/issues/2703
2208 https://github.com/STEllAR-GROUP/hpx/issues/2702
2209 https://github.com/STEllAR-GROUP/hpx/issues/2701
2210 https://github.com/STEllAR-GROUP/hpx/issues/2700
2211 https://github.com/STEllAR-GROUP/hpx/issues/2699

1314 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2722
https://github.com/STEllAR-GROUP/hpx/pull/2721
https://github.com/STEllAR-GROUP/hpx/pull/2720
https://github.com/STEllAR-GROUP/hpx/pull/2719
https://github.com/STEllAR-GROUP/hpx/issues/2718
https://github.com/STEllAR-GROUP/hpx/pull/2717
https://github.com/STEllAR-GROUP/hpx/pull/2716
https://github.com/STEllAR-GROUP/hpx/pull/2715
https://github.com/STEllAR-GROUP/hpx/pull/2714
https://github.com/STEllAR-GROUP/hpx/pull/2713
https://github.com/STEllAR-GROUP/hpx/pull/2712
https://github.com/STEllAR-GROUP/hpx/pull/2711
https://github.com/STEllAR-GROUP/hpx/pull/2710
https://github.com/STEllAR-GROUP/hpx/pull/2709
https://github.com/STEllAR-GROUP/hpx/pull/2708
https://github.com/STEllAR-GROUP/hpx/issues/2707
https://github.com/STEllAR-GROUP/hpx/pull/2706
https://github.com/STEllAR-GROUP/hpx/pull/2704
https://github.com/STEllAR-GROUP/hpx/issues/2703
https://github.com/STEllAR-GROUP/hpx/issues/2702
https://github.com/STEllAR-GROUP/hpx/issues/2701
https://github.com/STEllAR-GROUP/hpx/issues/2700
https://github.com/STEllAR-GROUP/hpx/issues/2699

HPX Documentation, 1.5.1

• PR #26982212 - Properly releasing parcelport write handlers

• Issue #26972213 - Compile error in addressing_service.cpp

• Issue #26962214 - Building and using HPX statically: undefined references from runtime_support_server.cpp

• Issue #26952215 - Executor changes cause compilation failures

• PR #26942216 - Refining C++ language mode detection for MSVC

• PR #26932217 - P0443 r2

• PR #26922218 - Partially reverting changes to parcel_await

• Issue #26892219 - HPX build fails when HPX_WITH_CUDA is enabled

• PR #26882220 - Make Cuda Clang builds pass

• PR #26872221 - Add an is_tuple_like trait for sequenceable type detection

• PR #26862222 - Allowing throttling scheduler to be used without idle backoff

• PR #26852223 - Add support of std::array to hpx::util::tuple_size and tuple_element

• PR #26842224 - Adding new statistics performance counters

• PR #26832225 - Replace boost::exception_ptr with std::exception_ptr

• Issue #26822226 - HPX does not compile with HPX_WITH_THREAD_MANAGER_IDLE_BACKOFF=OFF

• PR #26812227 - Attempt to fix problem in managed_component_base

• PR #26802228 - Fix bad size during archive creation

• Issue #26792229 - Mismatch between size of archive and container

• Issue #26782230 - In parallel algorithm, other tasks are executed to the end even if an exception occurs in any
task.

• PR #26772231 - Adding include check for std::addressof

• PR #26762232 - Adding parallel::destroy and destroy_n

• PR #26752233 - Making sure statistics counters work as expected

• PR #26742234 - Turning assertions into exceptions

2212 https://github.com/STEllAR-GROUP/hpx/pull/2698
2213 https://github.com/STEllAR-GROUP/hpx/issues/2697
2214 https://github.com/STEllAR-GROUP/hpx/issues/2696
2215 https://github.com/STEllAR-GROUP/hpx/issues/2695
2216 https://github.com/STEllAR-GROUP/hpx/pull/2694
2217 https://github.com/STEllAR-GROUP/hpx/pull/2693
2218 https://github.com/STEllAR-GROUP/hpx/pull/2692
2219 https://github.com/STEllAR-GROUP/hpx/issues/2689
2220 https://github.com/STEllAR-GROUP/hpx/pull/2688
2221 https://github.com/STEllAR-GROUP/hpx/pull/2687
2222 https://github.com/STEllAR-GROUP/hpx/pull/2686
2223 https://github.com/STEllAR-GROUP/hpx/pull/2685
2224 https://github.com/STEllAR-GROUP/hpx/pull/2684
2225 https://github.com/STEllAR-GROUP/hpx/pull/2683
2226 https://github.com/STEllAR-GROUP/hpx/issues/2682
2227 https://github.com/STEllAR-GROUP/hpx/pull/2681
2228 https://github.com/STEllAR-GROUP/hpx/pull/2680
2229 https://github.com/STEllAR-GROUP/hpx/issues/2679
2230 https://github.com/STEllAR-GROUP/hpx/issues/2678
2231 https://github.com/STEllAR-GROUP/hpx/pull/2677
2232 https://github.com/STEllAR-GROUP/hpx/pull/2676
2233 https://github.com/STEllAR-GROUP/hpx/pull/2675
2234 https://github.com/STEllAR-GROUP/hpx/pull/2674

2.11. Releases 1315

https://github.com/STEllAR-GROUP/hpx/pull/2698
https://github.com/STEllAR-GROUP/hpx/issues/2697
https://github.com/STEllAR-GROUP/hpx/issues/2696
https://github.com/STEllAR-GROUP/hpx/issues/2695
https://github.com/STEllAR-GROUP/hpx/pull/2694
https://github.com/STEllAR-GROUP/hpx/pull/2693
https://github.com/STEllAR-GROUP/hpx/pull/2692
https://github.com/STEllAR-GROUP/hpx/issues/2689
https://github.com/STEllAR-GROUP/hpx/pull/2688
https://github.com/STEllAR-GROUP/hpx/pull/2687
https://github.com/STEllAR-GROUP/hpx/pull/2686
https://github.com/STEllAR-GROUP/hpx/pull/2685
https://github.com/STEllAR-GROUP/hpx/pull/2684
https://github.com/STEllAR-GROUP/hpx/pull/2683
https://github.com/STEllAR-GROUP/hpx/issues/2682
https://github.com/STEllAR-GROUP/hpx/pull/2681
https://github.com/STEllAR-GROUP/hpx/pull/2680
https://github.com/STEllAR-GROUP/hpx/issues/2679
https://github.com/STEllAR-GROUP/hpx/issues/2678
https://github.com/STEllAR-GROUP/hpx/pull/2677
https://github.com/STEllAR-GROUP/hpx/pull/2676
https://github.com/STEllAR-GROUP/hpx/pull/2675
https://github.com/STEllAR-GROUP/hpx/pull/2674

HPX Documentation, 1.5.1

• PR #26732235 - Inhibit direct conversion from future<future<T>> –> future<void>

• PR #26722236 - C++17 invoke forms

• PR #26712237 - Adding uninitialized_value_construct and uninitialized_value_construct_n

• PR #26702238 - Integrate spmd multidimensional views for partitioned_vectors

• PR #26692239 - Adding uninitialized_default_construct and uninitialized_default_construct_n

• PR #26682240 - Fixing documentation index

• Issue #26672241 - Ambiguity of nested hpx::future<void>’s

• Issue #26662242 - Statistics Performance counter is not working

• PR #26642243 - Adding uninitialized_move and uninitialized_move_n

• Issue #26632244 - Seg fault in managed_component::get_base_gid, possibly cause by util::reinitializable_static

• Issue #26622245 - Crash in managed_component::get_base_gid due to problem with util::reinitializable_static

• PR #26652246 - Hide the detail namespace in doxygen per default

• PR #26602247 - Add documentation to hpx::util::unwrapped and hpx::util::unwrapped2

• PR #26592248 - Improve integration with vcpkg

• PR #26582249 - Unify access_data trait for use in both, serialization and de-serialization

• PR #26572250 - Removing hpx::lcos::queue<T>

• PR #26562251 - Reduce MAX_TERMINATED_THREADS default, improve memory use on manycore cpus

• PR #26552252 - Mainteinance for emulate-deleted macros

• PR #26542253 - Implement parallel is_heap and is_heap_until

• PR #26532254 - Drop support for VS2013

• PR #26522255 - This patch makes sure that all parcels in a batch are properly handled

• PR #26492256 - Update docs (Table 18) - move transform to end

• Issue #26472257 - hpx::parcelset::detail::parcel_data::has_continuation_ is uninitialized

2235 https://github.com/STEllAR-GROUP/hpx/pull/2673
2236 https://github.com/STEllAR-GROUP/hpx/pull/2672
2237 https://github.com/STEllAR-GROUP/hpx/pull/2671
2238 https://github.com/STEllAR-GROUP/hpx/pull/2670
2239 https://github.com/STEllAR-GROUP/hpx/pull/2669
2240 https://github.com/STEllAR-GROUP/hpx/pull/2668
2241 https://github.com/STEllAR-GROUP/hpx/issues/2667
2242 https://github.com/STEllAR-GROUP/hpx/issues/2666
2243 https://github.com/STEllAR-GROUP/hpx/pull/2664
2244 https://github.com/STEllAR-GROUP/hpx/issues/2663
2245 https://github.com/STEllAR-GROUP/hpx/issues/2662
2246 https://github.com/STEllAR-GROUP/hpx/pull/2665
2247 https://github.com/STEllAR-GROUP/hpx/pull/2660
2248 https://github.com/STEllAR-GROUP/hpx/pull/2659
2249 https://github.com/STEllAR-GROUP/hpx/pull/2658
2250 https://github.com/STEllAR-GROUP/hpx/pull/2657
2251 https://github.com/STEllAR-GROUP/hpx/pull/2656
2252 https://github.com/STEllAR-GROUP/hpx/pull/2655
2253 https://github.com/STEllAR-GROUP/hpx/pull/2654
2254 https://github.com/STEllAR-GROUP/hpx/pull/2653
2255 https://github.com/STEllAR-GROUP/hpx/pull/2652
2256 https://github.com/STEllAR-GROUP/hpx/pull/2649
2257 https://github.com/STEllAR-GROUP/hpx/issues/2647

1316 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2673
https://github.com/STEllAR-GROUP/hpx/pull/2672
https://github.com/STEllAR-GROUP/hpx/pull/2671
https://github.com/STEllAR-GROUP/hpx/pull/2670
https://github.com/STEllAR-GROUP/hpx/pull/2669
https://github.com/STEllAR-GROUP/hpx/pull/2668
https://github.com/STEllAR-GROUP/hpx/issues/2667
https://github.com/STEllAR-GROUP/hpx/issues/2666
https://github.com/STEllAR-GROUP/hpx/pull/2664
https://github.com/STEllAR-GROUP/hpx/issues/2663
https://github.com/STEllAR-GROUP/hpx/issues/2662
https://github.com/STEllAR-GROUP/hpx/pull/2665
https://github.com/STEllAR-GROUP/hpx/pull/2660
https://github.com/STEllAR-GROUP/hpx/pull/2659
https://github.com/STEllAR-GROUP/hpx/pull/2658
https://github.com/STEllAR-GROUP/hpx/pull/2657
https://github.com/STEllAR-GROUP/hpx/pull/2656
https://github.com/STEllAR-GROUP/hpx/pull/2655
https://github.com/STEllAR-GROUP/hpx/pull/2654
https://github.com/STEllAR-GROUP/hpx/pull/2653
https://github.com/STEllAR-GROUP/hpx/pull/2652
https://github.com/STEllAR-GROUP/hpx/pull/2649
https://github.com/STEllAR-GROUP/hpx/issues/2647

HPX Documentation, 1.5.1

• Issue #26442258 - Some .vcxproj in the HPX.sln fail to build

• Issue #26412259 - hpx::lcos::queue should be deprecated

• PR #26402260 - A new throttling policy with public APIs to suspend/resume

• PR #26392261 - Fix a tiny typo in tutorial.

• Issue #26382262 - Invalid return type ‘void’ of constexpr function

• PR #26362263 - Add and use HPX_MSVC_WARNING_PRAGMA for #pragma warning

• PR #26332264 - Distributed define_spmd_block

• PR #26322265 - Making sure container serialization uses size-compatible types

• PR #26312266 - Add lcos::local::one_element_channel

• PR #26292267 - Move unordered_map out of parcelport into hpx/concurrent

• PR #26282268 - Making sure that shutdown does not hang

• PR #26272269 - Fix serialization

• PR #26262270 - Generate cmake_variables.qbk and cmake_toolchains.qbk outside of the source
tree

• PR #26252271 - Supporting -std=c++17 flag

• PR #26242272 - Fixing a small cmake typo

• PR #26222273 - Update CMake minimum required version to 3.0.2 (closes #2621)

• Issue #26212274 - Compiling hpx master fails with /usr/bin/ld: final link failed: Bad value

• PR #26202275 - Remove warnings due to some captured variables

• PR #26192276 - LF multiple parcels

• PR #26182277 - Some fixes to libfabric that didn’t get caught before the merge

• PR #26172278 - Adding hpx::local_new

• PR #26162279 - Documentation: Extract all entities in order to autolink functions correctly

• Issue #26152280 - Documentation: Linking functions is broken

2258 https://github.com/STEllAR-GROUP/hpx/issues/2644
2259 https://github.com/STEllAR-GROUP/hpx/issues/2641
2260 https://github.com/STEllAR-GROUP/hpx/pull/2640
2261 https://github.com/STEllAR-GROUP/hpx/pull/2639
2262 https://github.com/STEllAR-GROUP/hpx/issues/2638
2263 https://github.com/STEllAR-GROUP/hpx/pull/2636
2264 https://github.com/STEllAR-GROUP/hpx/pull/2633
2265 https://github.com/STEllAR-GROUP/hpx/pull/2632
2266 https://github.com/STEllAR-GROUP/hpx/pull/2631
2267 https://github.com/STEllAR-GROUP/hpx/pull/2629
2268 https://github.com/STEllAR-GROUP/hpx/pull/2628
2269 https://github.com/STEllAR-GROUP/hpx/pull/2627
2270 https://github.com/STEllAR-GROUP/hpx/pull/2626
2271 https://github.com/STEllAR-GROUP/hpx/pull/2625
2272 https://github.com/STEllAR-GROUP/hpx/pull/2624
2273 https://github.com/STEllAR-GROUP/hpx/pull/2622
2274 https://github.com/STEllAR-GROUP/hpx/issues/2621
2275 https://github.com/STEllAR-GROUP/hpx/pull/2620
2276 https://github.com/STEllAR-GROUP/hpx/pull/2619
2277 https://github.com/STEllAR-GROUP/hpx/pull/2618
2278 https://github.com/STEllAR-GROUP/hpx/pull/2617
2279 https://github.com/STEllAR-GROUP/hpx/pull/2616
2280 https://github.com/STEllAR-GROUP/hpx/issues/2615

2.11. Releases 1317

https://github.com/STEllAR-GROUP/hpx/issues/2644
https://github.com/STEllAR-GROUP/hpx/issues/2641
https://github.com/STEllAR-GROUP/hpx/pull/2640
https://github.com/STEllAR-GROUP/hpx/pull/2639
https://github.com/STEllAR-GROUP/hpx/issues/2638
https://github.com/STEllAR-GROUP/hpx/pull/2636
https://github.com/STEllAR-GROUP/hpx/pull/2633
https://github.com/STEllAR-GROUP/hpx/pull/2632
https://github.com/STEllAR-GROUP/hpx/pull/2631
https://github.com/STEllAR-GROUP/hpx/pull/2629
https://github.com/STEllAR-GROUP/hpx/pull/2628
https://github.com/STEllAR-GROUP/hpx/pull/2627
https://github.com/STEllAR-GROUP/hpx/pull/2626
https://github.com/STEllAR-GROUP/hpx/pull/2625
https://github.com/STEllAR-GROUP/hpx/pull/2624
https://github.com/STEllAR-GROUP/hpx/pull/2622
https://github.com/STEllAR-GROUP/hpx/issues/2621
https://github.com/STEllAR-GROUP/hpx/pull/2620
https://github.com/STEllAR-GROUP/hpx/pull/2619
https://github.com/STEllAR-GROUP/hpx/pull/2618
https://github.com/STEllAR-GROUP/hpx/pull/2617
https://github.com/STEllAR-GROUP/hpx/pull/2616
https://github.com/STEllAR-GROUP/hpx/issues/2615

HPX Documentation, 1.5.1

• PR #26142281 - Adding serialization for std::deque

• PR #26132282 - We need to link with boost.thread and boost.chrono if we use boost.context

• PR #26122283 - Making sure for_loop_n(par, . . .) is actually executed in parallel

• PR #26112284 - Add documentation to invoke_fused and friends NFC

• PR #26102285 - Added reduction templates using an identity value

• PR #26082286 - Fixing some unused vars in inspect

• PR #26072287 - Fixed build for mingw

• PR #26062288 - Supporting generic context for boost >= 1.61

• PR #26052289 - Parcelport libfabric3

• PR #26042290 - Adding allocator support to promise and friends

• PR #26032291 - Barrier hang

• PR #26022292 - Changes to scheduler to steal from one high-priority queue

• Issue #26012293 - High priority tasks are not executed first

• PR #26002294 - Compat fixes

• PR #25992295 - Compatibility layer for threading support

• PR #25982296 - V1.1

• PR #25972297 - Release V1.0

• PR #25922298 - First attempt to introduce spmd_block in hpx

• PR #25862299 - local_segment in segmented_iterator_traits

• Issue #25842300 - Add allocator support to promise, packaged_task and friends

• PR #25762301 - Add missing dependencies of cuda based tests

• PR #25752302 - Remove warnings due to some captured variables

• Issue #25742303 - MSVC 2015 Compiler crash when building HPX

2281 https://github.com/STEllAR-GROUP/hpx/pull/2614
2282 https://github.com/STEllAR-GROUP/hpx/pull/2613
2283 https://github.com/STEllAR-GROUP/hpx/pull/2612
2284 https://github.com/STEllAR-GROUP/hpx/pull/2611
2285 https://github.com/STEllAR-GROUP/hpx/pull/2610
2286 https://github.com/STEllAR-GROUP/hpx/pull/2608
2287 https://github.com/STEllAR-GROUP/hpx/pull/2607
2288 https://github.com/STEllAR-GROUP/hpx/pull/2606
2289 https://github.com/STEllAR-GROUP/hpx/pull/2605
2290 https://github.com/STEllAR-GROUP/hpx/pull/2604
2291 https://github.com/STEllAR-GROUP/hpx/pull/2603
2292 https://github.com/STEllAR-GROUP/hpx/pull/2602
2293 https://github.com/STEllAR-GROUP/hpx/issues/2601
2294 https://github.com/STEllAR-GROUP/hpx/pull/2600
2295 https://github.com/STEllAR-GROUP/hpx/pull/2599
2296 https://github.com/STEllAR-GROUP/hpx/pull/2598
2297 https://github.com/STEllAR-GROUP/hpx/pull/2597
2298 https://github.com/STEllAR-GROUP/hpx/pull/2592
2299 https://github.com/STEllAR-GROUP/hpx/pull/2586
2300 https://github.com/STEllAR-GROUP/hpx/issues/2584
2301 https://github.com/STEllAR-GROUP/hpx/pull/2576
2302 https://github.com/STEllAR-GROUP/hpx/pull/2575
2303 https://github.com/STEllAR-GROUP/hpx/issues/2574

1318 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2614
https://github.com/STEllAR-GROUP/hpx/pull/2613
https://github.com/STEllAR-GROUP/hpx/pull/2612
https://github.com/STEllAR-GROUP/hpx/pull/2611
https://github.com/STEllAR-GROUP/hpx/pull/2610
https://github.com/STEllAR-GROUP/hpx/pull/2608
https://github.com/STEllAR-GROUP/hpx/pull/2607
https://github.com/STEllAR-GROUP/hpx/pull/2606
https://github.com/STEllAR-GROUP/hpx/pull/2605
https://github.com/STEllAR-GROUP/hpx/pull/2604
https://github.com/STEllAR-GROUP/hpx/pull/2603
https://github.com/STEllAR-GROUP/hpx/pull/2602
https://github.com/STEllAR-GROUP/hpx/issues/2601
https://github.com/STEllAR-GROUP/hpx/pull/2600
https://github.com/STEllAR-GROUP/hpx/pull/2599
https://github.com/STEllAR-GROUP/hpx/pull/2598
https://github.com/STEllAR-GROUP/hpx/pull/2597
https://github.com/STEllAR-GROUP/hpx/pull/2592
https://github.com/STEllAR-GROUP/hpx/pull/2586
https://github.com/STEllAR-GROUP/hpx/issues/2584
https://github.com/STEllAR-GROUP/hpx/pull/2576
https://github.com/STEllAR-GROUP/hpx/pull/2575
https://github.com/STEllAR-GROUP/hpx/issues/2574

HPX Documentation, 1.5.1

• Issue #25682304 - Remove throttle_scheduler as it has been abandoned

• Issue #25662305 - Add an inline versioning namespace before 1.0 release

• Issue #25652306 - Raise minimal cmake version requirement

• PR #25562307 - Fixing scan partitioner

• PR #25462308 - Broadcast async

• Issue #25432309 - make install fails due to a non-existing .so file

• PR #24952310 - wait_or_add_new returning thread_id_type

• Issue #24802311 - Unable to register new performance counter

• Issue #24712312 - no type named ‘fcontext_t’ in namespace

• Issue #24562313 - Re-implement hpx::util::unwrapped

• Issue #24552314 - Add more arithmetic performance counters

• PR #24542315 - Fix a couple of warnings and compiler errors

• PR #24532316 - Timed executor support

• PR #24472317 - Implementing new executor API (P0443)

• Issue #24392318 - Implement executor proposal

• Issue #24082319 - Stackoverflow detection for linux, e.g. based on libsigsegv

• PR #23772320 - Add a customization point for put_parcel so we can override actions

• Issue #23682321 - HPX_ASSERT problem

• Issue #23242322 - Change default number of threads used to the maximum of the system

• Issue #22662323 - hpx_0.9.99 make tests fail

• PR #21952324 - Support for code completion in VIM

• Issue #21372325 - Hpx does not compile over osx

• Issue #20922326 - make tests should just build the tests

2304 https://github.com/STEllAR-GROUP/hpx/issues/2568
2305 https://github.com/STEllAR-GROUP/hpx/issues/2566
2306 https://github.com/STEllAR-GROUP/hpx/issues/2565
2307 https://github.com/STEllAR-GROUP/hpx/pull/2556
2308 https://github.com/STEllAR-GROUP/hpx/pull/2546
2309 https://github.com/STEllAR-GROUP/hpx/issues/2543
2310 https://github.com/STEllAR-GROUP/hpx/pull/2495
2311 https://github.com/STEllAR-GROUP/hpx/issues/2480
2312 https://github.com/STEllAR-GROUP/hpx/issues/2471
2313 https://github.com/STEllAR-GROUP/hpx/issues/2456
2314 https://github.com/STEllAR-GROUP/hpx/issues/2455
2315 https://github.com/STEllAR-GROUP/hpx/pull/2454
2316 https://github.com/STEllAR-GROUP/hpx/pull/2453
2317 https://github.com/STEllAR-GROUP/hpx/pull/2447
2318 https://github.com/STEllAR-GROUP/hpx/issues/2439
2319 https://github.com/STEllAR-GROUP/hpx/issues/2408
2320 https://github.com/STEllAR-GROUP/hpx/pull/2377
2321 https://github.com/STEllAR-GROUP/hpx/issues/2368
2322 https://github.com/STEllAR-GROUP/hpx/issues/2324
2323 https://github.com/STEllAR-GROUP/hpx/issues/2266
2324 https://github.com/STEllAR-GROUP/hpx/pull/2195
2325 https://github.com/STEllAR-GROUP/hpx/issues/2137
2326 https://github.com/STEllAR-GROUP/hpx/issues/2092

2.11. Releases 1319

https://github.com/STEllAR-GROUP/hpx/issues/2568
https://github.com/STEllAR-GROUP/hpx/issues/2566
https://github.com/STEllAR-GROUP/hpx/issues/2565
https://github.com/STEllAR-GROUP/hpx/pull/2556
https://github.com/STEllAR-GROUP/hpx/pull/2546
https://github.com/STEllAR-GROUP/hpx/issues/2543
https://github.com/STEllAR-GROUP/hpx/pull/2495
https://github.com/STEllAR-GROUP/hpx/issues/2480
https://github.com/STEllAR-GROUP/hpx/issues/2471
https://github.com/STEllAR-GROUP/hpx/issues/2456
https://github.com/STEllAR-GROUP/hpx/issues/2455
https://github.com/STEllAR-GROUP/hpx/pull/2454
https://github.com/STEllAR-GROUP/hpx/pull/2453
https://github.com/STEllAR-GROUP/hpx/pull/2447
https://github.com/STEllAR-GROUP/hpx/issues/2439
https://github.com/STEllAR-GROUP/hpx/issues/2408
https://github.com/STEllAR-GROUP/hpx/pull/2377
https://github.com/STEllAR-GROUP/hpx/issues/2368
https://github.com/STEllAR-GROUP/hpx/issues/2324
https://github.com/STEllAR-GROUP/hpx/issues/2266
https://github.com/STEllAR-GROUP/hpx/pull/2195
https://github.com/STEllAR-GROUP/hpx/issues/2137
https://github.com/STEllAR-GROUP/hpx/issues/2092

HPX Documentation, 1.5.1

• Issue #20262327 - Build HPX with Apple’s clang

• Issue #19322328 - hpx with PBS fails on multiple localities

• PR #19142329 - Parallel heap algorithm implementations WIP

• Issue #15982330 - Disconnecting a locality results in segfault using heartbeat example

• Issue #14042331 - unwrapped doesn’t work with movable only types

• Issue #14002332 - hpx::util::unwrapped doesn’t work with non-future types

• Issue #12052333 - TSS is broken

• Issue #11262334 - vector<future<T> > does not work gracefully with dataflow, when_all and unwrapped

• Issue #10562335 - Thread manager cleanup

• Issue #8632336 - Futures should not require a default constructor

• Issue #8562337 - Allow runtimemode_connect to be used with security enabled

• Issue #7262338 - Valgrind

• Issue #7012339 - Add RCR performance counter component

• Issue #5282340 - Add support for known failures and warning count/comparisons to hpx_run_tests.py

2.11.9 HPX V1.0.0 (Apr 24, 2017)

General changes

Here are some of the main highlights and changes for this release (in no particular order):

• Added the facility hpx::split_future which allows one to convert a future<tuple<Ts...>> into a
tuple<future<Ts>...>. This functionality is not available when compiling HPX with VS2012.

• Added a new type of performance counter which allows one to return a list of values for each invocation. We
also added a first counter of this type which collects a histogram of the times between parcels being created.

• Added new LCOs: hpx::lcos::channel and hpx::lcos::local::channel which are very similar
to the well known channel constructs used in the Go language.

• Added new performance counters reporting the amount of data handled by the networking layer on a action-by-
action basis (please see PR #22892341 for more details).

• Added a new facility hpx::lcos::barrier, replacing the equally named older one. The new facility has
a slightly changed API and is much more efficient. Most notable, the new facility exposes a (global) function
hpx::lcos::barrier::synchronize() which represents a global barrier across all localities.

2327 https://github.com/STEllAR-GROUP/hpx/issues/2026
2328 https://github.com/STEllAR-GROUP/hpx/issues/1932
2329 https://github.com/STEllAR-GROUP/hpx/pull/1914
2330 https://github.com/STEllAR-GROUP/hpx/issues/1598
2331 https://github.com/STEllAR-GROUP/hpx/issues/1404
2332 https://github.com/STEllAR-GROUP/hpx/issues/1400
2333 https://github.com/STEllAR-GROUP/hpx/issues/1205
2334 https://github.com/STEllAR-GROUP/hpx/issues/1126
2335 https://github.com/STEllAR-GROUP/hpx/issues/1056
2336 https://github.com/STEllAR-GROUP/hpx/issues/863
2337 https://github.com/STEllAR-GROUP/hpx/issues/856
2338 https://github.com/STEllAR-GROUP/hpx/issues/726
2339 https://github.com/STEllAR-GROUP/hpx/issues/701
2340 https://github.com/STEllAR-GROUP/hpx/issues/528
2341 https://github.com/STEllAR-GROUP/hpx/pull/2289

1320 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2026
https://github.com/STEllAR-GROUP/hpx/issues/1932
https://github.com/STEllAR-GROUP/hpx/pull/1914
https://github.com/STEllAR-GROUP/hpx/issues/1598
https://github.com/STEllAR-GROUP/hpx/issues/1404
https://github.com/STEllAR-GROUP/hpx/issues/1400
https://github.com/STEllAR-GROUP/hpx/issues/1205
https://github.com/STEllAR-GROUP/hpx/issues/1126
https://github.com/STEllAR-GROUP/hpx/issues/1056
https://github.com/STEllAR-GROUP/hpx/issues/863
https://github.com/STEllAR-GROUP/hpx/issues/856
https://github.com/STEllAR-GROUP/hpx/issues/726
https://github.com/STEllAR-GROUP/hpx/issues/701
https://github.com/STEllAR-GROUP/hpx/issues/528
https://github.com/STEllAR-GROUP/hpx/pull/2289

HPX Documentation, 1.5.1

• We have started to add support for vectorization to our parallel algorithm implementations. This support depends
on using an external library, currently either Vc Library or |boost_simd|_. Please see Issue #23332342 for a list
of currently supported algorithms. This is an experimental feature and its implementation and/or API might
change in the future. Please see this blog-post2343 for more information.

• The parameter sequence for the hpx::parallel::transform_reduce overload taking one
iterator range has changed to match the changes this algorithm has undergone while being
moved to C++17. The old overload can be still enabled at configure time by specifying
-DHPX_WITH_TRANSFORM_REDUCE_COMPATIBILITY=On to CMake.

• The algorithm hpx::parallel::inner_product has been renamed to
hpx::parallel::transform_reduce to match the changes this algorithm has undergone while
being moved to C++17. The old inner_product names can be still enabled at configure time by specifying
-DHPX_WITH_TRANSFORM_REDUCE_COMPATIBILITY=On to CMake.

• Added versions of hpx::get_ptr taking client side representations for component instances as their param-
eter (instead of a global id).

• Added the helper utility hpx::performance_counters::performance_counter_set helping to
encapsulate a set of performance counters to be managed concurrently.

• All execution policies and related classes have been renamed to be consistent with the naming changes applied
for C++17. All policies now live in the namespace hpx::parallel::execution. The ols names can be
still enabled at configure time by specifying -DHPX_WITH_EXECUTION_POLICY_COMPATIBILITY=On
to CMake.

• The thread scheduling subsystem has undergone a major refactoring which results in significant performance
improvements. We have also imroved the performance of creating hpx::future and of various facilities
handling those.

• We have consolidated all of the code in HPX.Compute related to the integration of CUDA.
hpx::partitioned_vector has been enabled to be usable with hpx::compute::vector which al-
lows one to place the partitions on one or more GPU devices.

• Added new performance counters exposing various internals of the thread scheduling subsystem, such as the
current idle- and busy-loop counters and instantaneous scheduler utilization.

• Extended and improved the use of the ITTNotify hooks allowing to collect performance counter data and func-
tion annotation information from within the Intel Amplifier tool.

Breaking changes

• We have dropped support for the gcc compiler versions V4.6 and 4.7. The minimal gcc version we now test on
is gcc V4.8.

• We have removed (default) support for boost::chrono in interfaces, uses of it have been re-
placed with std::chrono. This facility can be still enabled at configure time by specifying
-DHPX_WITH_BOOST_CHRONO_COMPATIBILITY=On to CMake.

• The parameter sequence for the hpx::parallel::transform_reduce overload taking one iterator
range has changed to match the changes this algorithm has undergone while being moved to C++17.

• The algorithm hpx::parallel::inner_product has been renamed to
hpx::parallel::transform_reduce to match the changes this algorithm has undergone while
being moved to C++17.

2342 https://github.com/STEllAR-GROUP/hpx/issues/2333
2343 http://stellar-group.org/2016/09/vectorized-cpp-parallel-algorithms-with-hpx/

2.11. Releases 1321

https://github.com/STEllAR-GROUP/hpx/issues/2333
http://stellar-group.org/2016/09/vectorized-cpp-parallel-algorithms-with-hpx/

HPX Documentation, 1.5.1

• the build options HPX_WITH_COLOCATED_BACKWARDS_COMPATIBILITY and
HPX_WITH_COMPONENT_GET_GID_COMPATIBILITY are now disabled by default. Please change
your code still depending on the deprecated interfaces.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• PR #25962344 - Adding apex data

• PR #25952345 - Remove obsolete file

• Issue #25942346 - FindOpenCL.cmake mismatch with the official cmake module

• PR #25922347 - First attempt to introduce spmd_block in hpx

• Issue #25912348 - Feature request: continuation (then) which does not require the callable object to take a
future<R> as parameter

• PR #25882349 - Daint fixes

• PR #25872350 - Fixing transfer_(continuation)_action::schedule

• PR #25852351 - Work around MSVC having an ICE when compiling with -Ob2

• PR #25832352 - changing 7zip command to 7za in roll_release.sh

• PR #25822353 - First attempt to introduce spmd_block in hpx

• PR #25812354 - Enable annotated function for parallel algorithms

• PR #25802355 - First attempt to introduce spmd_block in hpx

• PR #25792356 - Make thread NICE level setting an option

• PR #25782357 - Implementing enqueue instead of busy wait when no sender is available

• PR #25772358 - Retrieve -std=c++11 consistent nvcc flag

• PR #25762359 - Add missing dependencies of cuda based tests

• PR #25752360 - Remove warnings due to some captured variables

• PR #25732361 - Attempt to resolve resolve_locality

• PR #25722362 - Adding APEX hooks to background thread

2344 https://github.com/STEllAR-GROUP/hpx/pull/2596
2345 https://github.com/STEllAR-GROUP/hpx/pull/2595
2346 https://github.com/STEllAR-GROUP/hpx/issues/2594
2347 https://github.com/STEllAR-GROUP/hpx/pull/2592
2348 https://github.com/STEllAR-GROUP/hpx/issues/2591
2349 https://github.com/STEllAR-GROUP/hpx/pull/2588
2350 https://github.com/STEllAR-GROUP/hpx/pull/2587
2351 https://github.com/STEllAR-GROUP/hpx/pull/2585
2352 https://github.com/STEllAR-GROUP/hpx/pull/2583
2353 https://github.com/STEllAR-GROUP/hpx/pull/2582
2354 https://github.com/STEllAR-GROUP/hpx/pull/2581
2355 https://github.com/STEllAR-GROUP/hpx/pull/2580
2356 https://github.com/STEllAR-GROUP/hpx/pull/2579
2357 https://github.com/STEllAR-GROUP/hpx/pull/2578
2358 https://github.com/STEllAR-GROUP/hpx/pull/2577
2359 https://github.com/STEllAR-GROUP/hpx/pull/2576
2360 https://github.com/STEllAR-GROUP/hpx/pull/2575
2361 https://github.com/STEllAR-GROUP/hpx/pull/2573
2362 https://github.com/STEllAR-GROUP/hpx/pull/2572

1322 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2596
https://github.com/STEllAR-GROUP/hpx/pull/2595
https://github.com/STEllAR-GROUP/hpx/issues/2594
https://github.com/STEllAR-GROUP/hpx/pull/2592
https://github.com/STEllAR-GROUP/hpx/issues/2591
https://github.com/STEllAR-GROUP/hpx/pull/2588
https://github.com/STEllAR-GROUP/hpx/pull/2587
https://github.com/STEllAR-GROUP/hpx/pull/2585
https://github.com/STEllAR-GROUP/hpx/pull/2583
https://github.com/STEllAR-GROUP/hpx/pull/2582
https://github.com/STEllAR-GROUP/hpx/pull/2581
https://github.com/STEllAR-GROUP/hpx/pull/2580
https://github.com/STEllAR-GROUP/hpx/pull/2579
https://github.com/STEllAR-GROUP/hpx/pull/2578
https://github.com/STEllAR-GROUP/hpx/pull/2577
https://github.com/STEllAR-GROUP/hpx/pull/2576
https://github.com/STEllAR-GROUP/hpx/pull/2575
https://github.com/STEllAR-GROUP/hpx/pull/2573
https://github.com/STEllAR-GROUP/hpx/pull/2572

HPX Documentation, 1.5.1

• PR #25712363 - Pick up hpx.ignore_batch_env from config map

• PR #25702364 - Add commandline options –hpx:print-counters-locally

• PR #25692365 - Fix computeapi unit tests

• PR #25672366 - This adds another barrier::synchronize before registering performance counters

• PR #25642367 - Cray static toolchain support

• PR #25632368 - Fixed unhandled exception during startup

• PR #25622369 - Remove partitioned_vector.cu from build tree when nvcc is used

• Issue #25612370 - octo-tiger crash with commit 6e921495ff6c26f125d62629cbaad0525f14f7ab

• PR #25602371 - Prevent -Wundef warnings on Vc version checks

• PR #25592372 - Allowing CUDA callback to set the future directly from an OS thread

• PR #25582373 - Remove warnings due to float precisions

• PR #25572374 - Removing bogus handling of compile flags for CUDA

• PR #25562375 - Fixing scan partitioner

• PR #25542376 - Add more diagnostics to error thrown from find_appropriate_destination

• Issue #25552377 - No valid parcelport configured

• PR #25532378 - Add cmake cuda_arch option

• PR #25522379 - Remove incomplete datapar bindings to libflatarray

• PR #25512380 - Rename hwloc_topology to hwloc_topology_info

• PR #25502381 - Apex api updates

• PR #25492382 - Pre-include defines.hpp to get the macro HPX_HAVE_CUDA value

• PR #25482383 - Fixing issue with disconnect

• PR #25462384 - Some fixes around cuda clang partitioned_vector example

• PR #25452385 - Fix uses of the Vc2 datapar flags; the value, not the type, should be passed to functions

2363 https://github.com/STEllAR-GROUP/hpx/pull/2571
2364 https://github.com/STEllAR-GROUP/hpx/pull/2570
2365 https://github.com/STEllAR-GROUP/hpx/pull/2569
2366 https://github.com/STEllAR-GROUP/hpx/pull/2567
2367 https://github.com/STEllAR-GROUP/hpx/pull/2564
2368 https://github.com/STEllAR-GROUP/hpx/pull/2563
2369 https://github.com/STEllAR-GROUP/hpx/pull/2562
2370 https://github.com/STEllAR-GROUP/hpx/issues/2561
2371 https://github.com/STEllAR-GROUP/hpx/pull/2560
2372 https://github.com/STEllAR-GROUP/hpx/pull/2559
2373 https://github.com/STEllAR-GROUP/hpx/pull/2558
2374 https://github.com/STEllAR-GROUP/hpx/pull/2557
2375 https://github.com/STEllAR-GROUP/hpx/pull/2556
2376 https://github.com/STEllAR-GROUP/hpx/pull/2554
2377 https://github.com/STEllAR-GROUP/hpx/issues/2555
2378 https://github.com/STEllAR-GROUP/hpx/pull/2553
2379 https://github.com/STEllAR-GROUP/hpx/pull/2552
2380 https://github.com/STEllAR-GROUP/hpx/pull/2551
2381 https://github.com/STEllAR-GROUP/hpx/pull/2550
2382 https://github.com/STEllAR-GROUP/hpx/pull/2549
2383 https://github.com/STEllAR-GROUP/hpx/pull/2548
2384 https://github.com/STEllAR-GROUP/hpx/pull/2546
2385 https://github.com/STEllAR-GROUP/hpx/pull/2545

2.11. Releases 1323

https://github.com/STEllAR-GROUP/hpx/pull/2571
https://github.com/STEllAR-GROUP/hpx/pull/2570
https://github.com/STEllAR-GROUP/hpx/pull/2569
https://github.com/STEllAR-GROUP/hpx/pull/2567
https://github.com/STEllAR-GROUP/hpx/pull/2564
https://github.com/STEllAR-GROUP/hpx/pull/2563
https://github.com/STEllAR-GROUP/hpx/pull/2562
https://github.com/STEllAR-GROUP/hpx/issues/2561
https://github.com/STEllAR-GROUP/hpx/pull/2560
https://github.com/STEllAR-GROUP/hpx/pull/2559
https://github.com/STEllAR-GROUP/hpx/pull/2558
https://github.com/STEllAR-GROUP/hpx/pull/2557
https://github.com/STEllAR-GROUP/hpx/pull/2556
https://github.com/STEllAR-GROUP/hpx/pull/2554
https://github.com/STEllAR-GROUP/hpx/issues/2555
https://github.com/STEllAR-GROUP/hpx/pull/2553
https://github.com/STEllAR-GROUP/hpx/pull/2552
https://github.com/STEllAR-GROUP/hpx/pull/2551
https://github.com/STEllAR-GROUP/hpx/pull/2550
https://github.com/STEllAR-GROUP/hpx/pull/2549
https://github.com/STEllAR-GROUP/hpx/pull/2548
https://github.com/STEllAR-GROUP/hpx/pull/2546
https://github.com/STEllAR-GROUP/hpx/pull/2545

HPX Documentation, 1.5.1

• PR #25422386 - Make HPX_WITH_MALLOC easier to use

• PR #25412387 - avoid recompiles when enabling/disabling examples

• PR #25402388 - Fixing usage of target_link_libraries()

• PR #25392389 - fix RPATH behaviour

• Issue #25382390 - HPX_WITH_CUDA corrupts compilation flags

• PR #25372391 - Add output of a Bazel Skylark extension for paths and compile options

• PR #25362392 - Add counter exposing total available memory to Windows as well

• PR #25352393 - Remove obsolete support for security

• Issue #25342394 - Remove command line option --hpx:run-agas-server

• PR #25332395 - Pre-cache locality endpoints during bootstrap

• PR #25322396 - Fixing handling of GIDs during serialization preprocessing

• PR #25312397 - Amend uses of the term “functor”

• PR #25292398 - added counter for reading available memory

• PR #25272399 - Facilities to create actions from lambdas

• PR #25262400 - Updated docs: HPX_WITH_EXAMPLES

• PR #25252401 - Remove warnings related to unused captured variables

• Issue #25242402 - CMAKE failed because it is missing: TCMALLOC_LIBRARY TCMAL-
LOC_INCLUDE_DIR

• PR #25232403 - Fixing compose_cb stack overflow

• PR #25222404 - Instead of unlocking, ignore the lock while creating the message handler

• PR #25212405 - Create LPROGRESS_ logging macro to simplify progress tracking and timings

• PR #25202406 - Intel 17 support

• PR #25192407 - Fix components example

• PR #25182408 - Fixing parcel scheduling

2386 https://github.com/STEllAR-GROUP/hpx/pull/2542
2387 https://github.com/STEllAR-GROUP/hpx/pull/2541
2388 https://github.com/STEllAR-GROUP/hpx/pull/2540
2389 https://github.com/STEllAR-GROUP/hpx/pull/2539
2390 https://github.com/STEllAR-GROUP/hpx/issues/2538
2391 https://github.com/STEllAR-GROUP/hpx/pull/2537
2392 https://github.com/STEllAR-GROUP/hpx/pull/2536
2393 https://github.com/STEllAR-GROUP/hpx/pull/2535
2394 https://github.com/STEllAR-GROUP/hpx/issues/2534
2395 https://github.com/STEllAR-GROUP/hpx/pull/2533
2396 https://github.com/STEllAR-GROUP/hpx/pull/2532
2397 https://github.com/STEllAR-GROUP/hpx/pull/2531
2398 https://github.com/STEllAR-GROUP/hpx/pull/2529
2399 https://github.com/STEllAR-GROUP/hpx/pull/2527
2400 https://github.com/STEllAR-GROUP/hpx/pull/2526
2401 https://github.com/STEllAR-GROUP/hpx/pull/2525
2402 https://github.com/STEllAR-GROUP/hpx/issues/2524
2403 https://github.com/STEllAR-GROUP/hpx/pull/2523
2404 https://github.com/STEllAR-GROUP/hpx/pull/2522
2405 https://github.com/STEllAR-GROUP/hpx/pull/2521
2406 https://github.com/STEllAR-GROUP/hpx/pull/2520
2407 https://github.com/STEllAR-GROUP/hpx/pull/2519
2408 https://github.com/STEllAR-GROUP/hpx/pull/2518

1324 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2542
https://github.com/STEllAR-GROUP/hpx/pull/2541
https://github.com/STEllAR-GROUP/hpx/pull/2540
https://github.com/STEllAR-GROUP/hpx/pull/2539
https://github.com/STEllAR-GROUP/hpx/issues/2538
https://github.com/STEllAR-GROUP/hpx/pull/2537
https://github.com/STEllAR-GROUP/hpx/pull/2536
https://github.com/STEllAR-GROUP/hpx/pull/2535
https://github.com/STEllAR-GROUP/hpx/issues/2534
https://github.com/STEllAR-GROUP/hpx/pull/2533
https://github.com/STEllAR-GROUP/hpx/pull/2532
https://github.com/STEllAR-GROUP/hpx/pull/2531
https://github.com/STEllAR-GROUP/hpx/pull/2529
https://github.com/STEllAR-GROUP/hpx/pull/2527
https://github.com/STEllAR-GROUP/hpx/pull/2526
https://github.com/STEllAR-GROUP/hpx/pull/2525
https://github.com/STEllAR-GROUP/hpx/issues/2524
https://github.com/STEllAR-GROUP/hpx/pull/2523
https://github.com/STEllAR-GROUP/hpx/pull/2522
https://github.com/STEllAR-GROUP/hpx/pull/2521
https://github.com/STEllAR-GROUP/hpx/pull/2520
https://github.com/STEllAR-GROUP/hpx/pull/2519
https://github.com/STEllAR-GROUP/hpx/pull/2518

HPX Documentation, 1.5.1

• Issue #25172409 - Race condition during Parcel Coalescing Handler creation

• Issue #25162410 - HPX locks up when using at least 256 localities

• Issue #25152411 - error: Install cannot find “/lib/hpx/libparcel_coalescing.so.0.9.99” but I can see that file

• PR #25142412 - Making sure that all continuations of a shared_future are invoked in order

• PR #25132413 - Fixing locks held during suspension

• PR #25122414 - MPI Parcelport improvements and fixes related to the background work changes

• PR #25112415 - Fixing bit-wise (zero-copy) serialization

• Issue #25092416 - Linking errors in hwloc_topology

• PR #25082417 - Added documentation for debugging with core files

• PR #25062418 - Fixing background work invocations

• PR #25052419 - Fix tuple serialization

• Issue #25042420 - Ensure continuations are called in the order they have been attached

• PR #25032421 - Adding serialization support for Vc v2 (datapar)

• PR #25022422 - Resolve various, minor compiler warnings

• PR #25012423 - Some other fixes around cuda examples

• Issue #25002424 - nvcc / cuda clang issue due to a missing -DHPX_WITH_CUDA flag

• PR #24992425 - Adding support for std::array to wait_all and friends

• PR #24982426 - Execute background work as HPX thread

• PR #24972427 - Fixing configuration options for spinlock-deadlock detection

• PR #24962428 - Accounting for different compilers in CrayKNL toolchain file

• PR #24942429 - Adding component base class which ties a component instance to a given executor

• PR #24932430 - Enable controlling amount of pending threads which must be available to allow thread stealing

• PR #24922431 - Adding new command line option –hpx:print-counter-reset

2409 https://github.com/STEllAR-GROUP/hpx/issues/2517
2410 https://github.com/STEllAR-GROUP/hpx/issues/2516
2411 https://github.com/STEllAR-GROUP/hpx/issues/2515
2412 https://github.com/STEllAR-GROUP/hpx/pull/2514
2413 https://github.com/STEllAR-GROUP/hpx/pull/2513
2414 https://github.com/STEllAR-GROUP/hpx/pull/2512
2415 https://github.com/STEllAR-GROUP/hpx/pull/2511
2416 https://github.com/STEllAR-GROUP/hpx/issues/2509
2417 https://github.com/STEllAR-GROUP/hpx/pull/2508
2418 https://github.com/STEllAR-GROUP/hpx/pull/2506
2419 https://github.com/STEllAR-GROUP/hpx/pull/2505
2420 https://github.com/STEllAR-GROUP/hpx/issues/2504
2421 https://github.com/STEllAR-GROUP/hpx/pull/2503
2422 https://github.com/STEllAR-GROUP/hpx/pull/2502
2423 https://github.com/STEllAR-GROUP/hpx/pull/2501
2424 https://github.com/STEllAR-GROUP/hpx/issues/2500
2425 https://github.com/STEllAR-GROUP/hpx/pull/2499
2426 https://github.com/STEllAR-GROUP/hpx/pull/2498
2427 https://github.com/STEllAR-GROUP/hpx/pull/2497
2428 https://github.com/STEllAR-GROUP/hpx/pull/2496
2429 https://github.com/STEllAR-GROUP/hpx/pull/2494
2430 https://github.com/STEllAR-GROUP/hpx/pull/2493
2431 https://github.com/STEllAR-GROUP/hpx/pull/2492

2.11. Releases 1325

https://github.com/STEllAR-GROUP/hpx/issues/2517
https://github.com/STEllAR-GROUP/hpx/issues/2516
https://github.com/STEllAR-GROUP/hpx/issues/2515
https://github.com/STEllAR-GROUP/hpx/pull/2514
https://github.com/STEllAR-GROUP/hpx/pull/2513
https://github.com/STEllAR-GROUP/hpx/pull/2512
https://github.com/STEllAR-GROUP/hpx/pull/2511
https://github.com/STEllAR-GROUP/hpx/issues/2509
https://github.com/STEllAR-GROUP/hpx/pull/2508
https://github.com/STEllAR-GROUP/hpx/pull/2506
https://github.com/STEllAR-GROUP/hpx/pull/2505
https://github.com/STEllAR-GROUP/hpx/issues/2504
https://github.com/STEllAR-GROUP/hpx/pull/2503
https://github.com/STEllAR-GROUP/hpx/pull/2502
https://github.com/STEllAR-GROUP/hpx/pull/2501
https://github.com/STEllAR-GROUP/hpx/issues/2500
https://github.com/STEllAR-GROUP/hpx/pull/2499
https://github.com/STEllAR-GROUP/hpx/pull/2498
https://github.com/STEllAR-GROUP/hpx/pull/2497
https://github.com/STEllAR-GROUP/hpx/pull/2496
https://github.com/STEllAR-GROUP/hpx/pull/2494
https://github.com/STEllAR-GROUP/hpx/pull/2493
https://github.com/STEllAR-GROUP/hpx/pull/2492

HPX Documentation, 1.5.1

• PR #24912432 - Resolve ambiguities when compiling with APEX

• PR #24902433 - Resuming threads waiting on future with higher priority

• Issue #24892434 - nvcc issue because -std=c++11 appears twice

• PR #24882435 - Adding performance counters exposing the internal idle and busy-loop counters

• PR #24872436 - Allowing for plain suspend to reschedule thread right away

• PR #24862437 - Only flag HPX code for CUDA if HPX_WITH_CUDA is set

• PR #24852438 - Making thread-queue parameters runtime-configurable

• PR #24842439 - Added atomic counter for parcel-destinations

• PR #24832440 - Added priority-queue lifo scheduler

• PR #24822441 - Changing scheduler to steal only if more than a minimal number of tasks are available

• PR #24812442 - Extending command line option –hpx:print-counter-destination to support value ‘none’

• PR #24792443 - Added option to disable signal handler

• PR #24782444 - Making sure the sine performance counter module gets loaded only for the corresponding exam-
ple

• Issue #24772445 - Breaking at a throw statement

• PR #24762446 - Annotated function

• PR #24752447 - Ensure that using %osthread% during logging will not throw for non-hpx threads

• PR #24742448 - Remove now superficial non_direct actions from base_lco and friends

• PR #24732449 - Refining support for ITTNotify

• PR #24722450 - Some fixes around hpx compute

• Issue #24702451 - redefinition of boost::detail::spinlock

• Issue #24692452 - Dataflow performance issue

• PR #24682453 - Perf docs update

• PR #24662454 - Guarantee to execute remote direct actions on HPX-thread
2432 https://github.com/STEllAR-GROUP/hpx/pull/2491
2433 https://github.com/STEllAR-GROUP/hpx/pull/2490
2434 https://github.com/STEllAR-GROUP/hpx/issues/2489
2435 https://github.com/STEllAR-GROUP/hpx/pull/2488
2436 https://github.com/STEllAR-GROUP/hpx/pull/2487
2437 https://github.com/STEllAR-GROUP/hpx/pull/2486
2438 https://github.com/STEllAR-GROUP/hpx/pull/2485
2439 https://github.com/STEllAR-GROUP/hpx/pull/2484
2440 https://github.com/STEllAR-GROUP/hpx/pull/2483
2441 https://github.com/STEllAR-GROUP/hpx/pull/2482
2442 https://github.com/STEllAR-GROUP/hpx/pull/2481
2443 https://github.com/STEllAR-GROUP/hpx/pull/2479
2444 https://github.com/STEllAR-GROUP/hpx/pull/2478
2445 https://github.com/STEllAR-GROUP/hpx/issues/2477
2446 https://github.com/STEllAR-GROUP/hpx/pull/2476
2447 https://github.com/STEllAR-GROUP/hpx/pull/2475
2448 https://github.com/STEllAR-GROUP/hpx/pull/2474
2449 https://github.com/STEllAR-GROUP/hpx/pull/2473
2450 https://github.com/STEllAR-GROUP/hpx/pull/2472
2451 https://github.com/STEllAR-GROUP/hpx/issues/2470
2452 https://github.com/STEllAR-GROUP/hpx/issues/2469
2453 https://github.com/STEllAR-GROUP/hpx/pull/2468
2454 https://github.com/STEllAR-GROUP/hpx/pull/2466

1326 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2491
https://github.com/STEllAR-GROUP/hpx/pull/2490
https://github.com/STEllAR-GROUP/hpx/issues/2489
https://github.com/STEllAR-GROUP/hpx/pull/2488
https://github.com/STEllAR-GROUP/hpx/pull/2487
https://github.com/STEllAR-GROUP/hpx/pull/2486
https://github.com/STEllAR-GROUP/hpx/pull/2485
https://github.com/STEllAR-GROUP/hpx/pull/2484
https://github.com/STEllAR-GROUP/hpx/pull/2483
https://github.com/STEllAR-GROUP/hpx/pull/2482
https://github.com/STEllAR-GROUP/hpx/pull/2481
https://github.com/STEllAR-GROUP/hpx/pull/2479
https://github.com/STEllAR-GROUP/hpx/pull/2478
https://github.com/STEllAR-GROUP/hpx/issues/2477
https://github.com/STEllAR-GROUP/hpx/pull/2476
https://github.com/STEllAR-GROUP/hpx/pull/2475
https://github.com/STEllAR-GROUP/hpx/pull/2474
https://github.com/STEllAR-GROUP/hpx/pull/2473
https://github.com/STEllAR-GROUP/hpx/pull/2472
https://github.com/STEllAR-GROUP/hpx/issues/2470
https://github.com/STEllAR-GROUP/hpx/issues/2469
https://github.com/STEllAR-GROUP/hpx/pull/2468
https://github.com/STEllAR-GROUP/hpx/pull/2466

HPX Documentation, 1.5.1

• PR #24652455 - Improve demo : Async copy and fixed device handling

• PR #24642456 - Adding performance counter exposing instantaneous scheduler utilization

• PR #24632457 - Downcast to future<void>

• PR #24622458 - Fixed usage of ITT-Notify API with Intel Amplifier

• PR #24612459 - Cublas demo

• PR #24602460 - Fixing thread bindings

• PR #24592461 - Make -std=c++11 nvcc flag consistent for in-build and installed versions

• Issue #24572462 - Segmentation fault when registering a partitioned vector

• PR #24522463 - Properly releasing global barrier for unhandled exceptions

• PR #24512464 - Fixing long shutdown times

• PR #24502465 - Attempting to fix initialization errors on newer platforms (Boost V1.63)

• PR #24492466 - Replace BOOST_COMPILER_FENCE with an HPX version

• PR #24482467 - This fixes a possible race in the migration code

• PR #24452468 - Fixing dataflow et.al. for futures or future-ranges wrapped into ref()

• PR #24442469 - Fix segfaults

• PR #24432470 - Issue 2442

• Issue #24422471 - Mismatch between #if/#endif and namespace scope brackets in this_thread_executers.hpp

• Issue #24412472 - undeclared identifier BOOST_COMPILER_FENCE

• PR #24402473 - Knl build

• PR #24382474 - Datapar backend

• PR #24372475 - Adapt algorithm parameter sequence changes from C++17

• PR #24362476 - Adapt execution policy name changes from C++17

• Issue #24352477 - Trunk broken, undefined reference to hpx::thread::interrupt(hpx::thread::id, bool)

2455 https://github.com/STEllAR-GROUP/hpx/pull/2465
2456 https://github.com/STEllAR-GROUP/hpx/pull/2464
2457 https://github.com/STEllAR-GROUP/hpx/pull/2463
2458 https://github.com/STEllAR-GROUP/hpx/pull/2462
2459 https://github.com/STEllAR-GROUP/hpx/pull/2461
2460 https://github.com/STEllAR-GROUP/hpx/pull/2460
2461 https://github.com/STEllAR-GROUP/hpx/pull/2459
2462 https://github.com/STEllAR-GROUP/hpx/issues/2457
2463 https://github.com/STEllAR-GROUP/hpx/pull/2452
2464 https://github.com/STEllAR-GROUP/hpx/pull/2451
2465 https://github.com/STEllAR-GROUP/hpx/pull/2450
2466 https://github.com/STEllAR-GROUP/hpx/pull/2449
2467 https://github.com/STEllAR-GROUP/hpx/pull/2448
2468 https://github.com/STEllAR-GROUP/hpx/pull/2445
2469 https://github.com/STEllAR-GROUP/hpx/pull/2444
2470 https://github.com/STEllAR-GROUP/hpx/pull/2443
2471 https://github.com/STEllAR-GROUP/hpx/issues/2442
2472 https://github.com/STEllAR-GROUP/hpx/issues/2441
2473 https://github.com/STEllAR-GROUP/hpx/pull/2440
2474 https://github.com/STEllAR-GROUP/hpx/pull/2438
2475 https://github.com/STEllAR-GROUP/hpx/pull/2437
2476 https://github.com/STEllAR-GROUP/hpx/pull/2436
2477 https://github.com/STEllAR-GROUP/hpx/issues/2435

2.11. Releases 1327

https://github.com/STEllAR-GROUP/hpx/pull/2465
https://github.com/STEllAR-GROUP/hpx/pull/2464
https://github.com/STEllAR-GROUP/hpx/pull/2463
https://github.com/STEllAR-GROUP/hpx/pull/2462
https://github.com/STEllAR-GROUP/hpx/pull/2461
https://github.com/STEllAR-GROUP/hpx/pull/2460
https://github.com/STEllAR-GROUP/hpx/pull/2459
https://github.com/STEllAR-GROUP/hpx/issues/2457
https://github.com/STEllAR-GROUP/hpx/pull/2452
https://github.com/STEllAR-GROUP/hpx/pull/2451
https://github.com/STEllAR-GROUP/hpx/pull/2450
https://github.com/STEllAR-GROUP/hpx/pull/2449
https://github.com/STEllAR-GROUP/hpx/pull/2448
https://github.com/STEllAR-GROUP/hpx/pull/2445
https://github.com/STEllAR-GROUP/hpx/pull/2444
https://github.com/STEllAR-GROUP/hpx/pull/2443
https://github.com/STEllAR-GROUP/hpx/issues/2442
https://github.com/STEllAR-GROUP/hpx/issues/2441
https://github.com/STEllAR-GROUP/hpx/pull/2440
https://github.com/STEllAR-GROUP/hpx/pull/2438
https://github.com/STEllAR-GROUP/hpx/pull/2437
https://github.com/STEllAR-GROUP/hpx/pull/2436
https://github.com/STEllAR-GROUP/hpx/issues/2435

HPX Documentation, 1.5.1

• PR #24342478 - More fixes to resource manager

• PR #24332479 - Added versions of hpx::get_ptr taking client side representations

• PR #24322480 - Warning fixes

• PR #24312481 - Adding facility representing set of performance counters

• PR #24302482 - Fix parallel_executor thread spawning

• PR #24292483 - Fix attribute warning for gcc

• Issue #24272484 - Seg fault running octo-tiger with latest HPX commit

• Issue #24262485 - Bug in 9592f5c0bc29806fce0dbe73f35b6ca7e027edcb causes immediate crash in Octo-tiger

• PR #24252486 - Fix nvcc errors due to constexpr specifier

• Issue #24242487 - Async action on component present on hpx::find_here is executing synchronously

• PR #24232488 - Fix nvcc errors due to constexpr specifier

• PR #24222489 - Implementing hpx::this_thread thread data functions

• PR #24212490 - Adding benchmark for wait_all

• Issue #24202491 - Returning object of a component client from another component action fails

• PR #24192492 - Infiniband parcelport

• Issue #24182493 - gcc + nvcc fails to compile code that uses partitioned_vector

• PR #24172494 - Fixing context switching

• PR #24162495 - Adding fixes and workarounds to allow compilation with nvcc/msvc (VS2015up3)

• PR #24152496 - Fix errors coming from hpx compute examples

• PR #24142497 - Fixing msvc12

• PR #24132498 - Enable cuda/nvcc or cuda/clang when using add_hpx_executable()

• PR #24122499 - Fix issue in HPX_SetupTarget.cmake when cuda is used

• PR #24112500 - This fixes the core compilation issues with MSVC12

2478 https://github.com/STEllAR-GROUP/hpx/pull/2434
2479 https://github.com/STEllAR-GROUP/hpx/pull/2433
2480 https://github.com/STEllAR-GROUP/hpx/pull/2432
2481 https://github.com/STEllAR-GROUP/hpx/pull/2431
2482 https://github.com/STEllAR-GROUP/hpx/pull/2430
2483 https://github.com/STEllAR-GROUP/hpx/pull/2429
2484 https://github.com/STEllAR-GROUP/hpx/issues/2427
2485 https://github.com/STEllAR-GROUP/hpx/issues/2426
2486 https://github.com/STEllAR-GROUP/hpx/pull/2425
2487 https://github.com/STEllAR-GROUP/hpx/issues/2424
2488 https://github.com/STEllAR-GROUP/hpx/pull/2423
2489 https://github.com/STEllAR-GROUP/hpx/pull/2422
2490 https://github.com/STEllAR-GROUP/hpx/pull/2421
2491 https://github.com/STEllAR-GROUP/hpx/issues/2420
2492 https://github.com/STEllAR-GROUP/hpx/pull/2419
2493 https://github.com/STEllAR-GROUP/hpx/issues/2418
2494 https://github.com/STEllAR-GROUP/hpx/pull/2417
2495 https://github.com/STEllAR-GROUP/hpx/pull/2416
2496 https://github.com/STEllAR-GROUP/hpx/pull/2415
2497 https://github.com/STEllAR-GROUP/hpx/pull/2414
2498 https://github.com/STEllAR-GROUP/hpx/pull/2413
2499 https://github.com/STEllAR-GROUP/hpx/pull/2412
2500 https://github.com/STEllAR-GROUP/hpx/pull/2411

1328 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2434
https://github.com/STEllAR-GROUP/hpx/pull/2433
https://github.com/STEllAR-GROUP/hpx/pull/2432
https://github.com/STEllAR-GROUP/hpx/pull/2431
https://github.com/STEllAR-GROUP/hpx/pull/2430
https://github.com/STEllAR-GROUP/hpx/pull/2429
https://github.com/STEllAR-GROUP/hpx/issues/2427
https://github.com/STEllAR-GROUP/hpx/issues/2426
https://github.com/STEllAR-GROUP/hpx/pull/2425
https://github.com/STEllAR-GROUP/hpx/issues/2424
https://github.com/STEllAR-GROUP/hpx/pull/2423
https://github.com/STEllAR-GROUP/hpx/pull/2422
https://github.com/STEllAR-GROUP/hpx/pull/2421
https://github.com/STEllAR-GROUP/hpx/issues/2420
https://github.com/STEllAR-GROUP/hpx/pull/2419
https://github.com/STEllAR-GROUP/hpx/issues/2418
https://github.com/STEllAR-GROUP/hpx/pull/2417
https://github.com/STEllAR-GROUP/hpx/pull/2416
https://github.com/STEllAR-GROUP/hpx/pull/2415
https://github.com/STEllAR-GROUP/hpx/pull/2414
https://github.com/STEllAR-GROUP/hpx/pull/2413
https://github.com/STEllAR-GROUP/hpx/pull/2412
https://github.com/STEllAR-GROUP/hpx/pull/2411

HPX Documentation, 1.5.1

• Issue #24102501 - undefined reference to opal_hwloc191_hwloc_.....

• PR #24092502 - Fixing locking for channel and receive_buffer

• PR #24072503 - Solving #2402 and #2403

• PR #24062504 - Improve guards

• PR #24052505 - Enable parallel::for_each for iterators returning proxy types

• PR #24042506 - Forward the explicitly given result_type in the hpx invoke

• Issue #24032507 - datapar_execution + zip iterator: lambda arguments aren’t references

• Issue #24022508 - datapar algorithm instantiated with wrong type #2402

• PR #24012509 - Added support for imported libraries to HPX_Libraries.cmake

• PR #24002510 - Use CMake policy CMP0060

• Issue #23992511 - Error trying to push back vector of futures to vector

• PR #23982512 - Allow config #defines to be written out to custom config/defines.hpp

• Issue #23972513 - CMake generated config defines can cause tedious rebuilds category

• Issue #23962514 - BOOST_ROOT paths are not used at link time

• PR #23952515 - Fix target_link_libraries() issue when HPX Cuda is enabled

• Issue #23942516 - Template compilation error using HPX_WITH_DATAPAR_LIBFLATARRAY

• PR #23932517 - Fixing lock registration for recursive mutex

• PR #23922518 - Add keywords in target_link_libraries in hpx_setup_target

• PR #23912519 - Clang goroutines

• Issue #23902520 - Adapt execution policy name changes from C++17

• PR #23892521 - Chunk allocator and pool are not used and are obsolete

• PR #23882522 - Adding functionalities to datapar needed by octotiger

• PR #23872523 - Fixing race condition for early parcels

2501 https://github.com/STEllAR-GROUP/hpx/issues/2410
2502 https://github.com/STEllAR-GROUP/hpx/pull/2409
2503 https://github.com/STEllAR-GROUP/hpx/pull/2407
2504 https://github.com/STEllAR-GROUP/hpx/pull/2406
2505 https://github.com/STEllAR-GROUP/hpx/pull/2405
2506 https://github.com/STEllAR-GROUP/hpx/pull/2404
2507 https://github.com/STEllAR-GROUP/hpx/issues/2403
2508 https://github.com/STEllAR-GROUP/hpx/issues/2402
2509 https://github.com/STEllAR-GROUP/hpx/pull/2401
2510 https://github.com/STEllAR-GROUP/hpx/pull/2400
2511 https://github.com/STEllAR-GROUP/hpx/issues/2399
2512 https://github.com/STEllAR-GROUP/hpx/pull/2398
2513 https://github.com/STEllAR-GROUP/hpx/issues/2397
2514 https://github.com/STEllAR-GROUP/hpx/issues/2396
2515 https://github.com/STEllAR-GROUP/hpx/pull/2395
2516 https://github.com/STEllAR-GROUP/hpx/issues/2394
2517 https://github.com/STEllAR-GROUP/hpx/pull/2393
2518 https://github.com/STEllAR-GROUP/hpx/pull/2392
2519 https://github.com/STEllAR-GROUP/hpx/pull/2391
2520 https://github.com/STEllAR-GROUP/hpx/issues/2390
2521 https://github.com/STEllAR-GROUP/hpx/pull/2389
2522 https://github.com/STEllAR-GROUP/hpx/pull/2388
2523 https://github.com/STEllAR-GROUP/hpx/pull/2387

2.11. Releases 1329

https://github.com/STEllAR-GROUP/hpx/issues/2410
https://github.com/STEllAR-GROUP/hpx/pull/2409
https://github.com/STEllAR-GROUP/hpx/pull/2407
https://github.com/STEllAR-GROUP/hpx/pull/2406
https://github.com/STEllAR-GROUP/hpx/pull/2405
https://github.com/STEllAR-GROUP/hpx/pull/2404
https://github.com/STEllAR-GROUP/hpx/issues/2403
https://github.com/STEllAR-GROUP/hpx/issues/2402
https://github.com/STEllAR-GROUP/hpx/pull/2401
https://github.com/STEllAR-GROUP/hpx/pull/2400
https://github.com/STEllAR-GROUP/hpx/issues/2399
https://github.com/STEllAR-GROUP/hpx/pull/2398
https://github.com/STEllAR-GROUP/hpx/issues/2397
https://github.com/STEllAR-GROUP/hpx/issues/2396
https://github.com/STEllAR-GROUP/hpx/pull/2395
https://github.com/STEllAR-GROUP/hpx/issues/2394
https://github.com/STEllAR-GROUP/hpx/pull/2393
https://github.com/STEllAR-GROUP/hpx/pull/2392
https://github.com/STEllAR-GROUP/hpx/pull/2391
https://github.com/STEllAR-GROUP/hpx/issues/2390
https://github.com/STEllAR-GROUP/hpx/pull/2389
https://github.com/STEllAR-GROUP/hpx/pull/2388
https://github.com/STEllAR-GROUP/hpx/pull/2387

HPX Documentation, 1.5.1

• Issue #23862524 - Lock registration broken for recursive_mutex

• PR #23852525 - Datapar zip iterator

• PR #23842526 - Fixing race condition in for_loop_reduction

• PR #23832527 - Continuations

• PR #23822528 - add LibFlatArray-based backend for datapar

• PR #23812529 - remove unused typedef to get rid of compiler warnings

• PR #23802530 - Tau cleanup

• PR #23792531 - Can send immediate

• PR #23782532 - Renaming copy_helper/copy_n_helper/move_helper/move_n_helper

• Issue #23762533 - Boost trunk’s spinlock initializer fails to compile

• PR #23752534 - Add support for minimal thread local data

• PR #23742535 - Adding API functions set_config_entry_callback

• PR #23732536 - Add a simple utility for debugging that gives supended task backtraces

• PR #23722537 - Barrier Fixes

• Issue #23702538 - Can’t wait on a wrapped future

• PR #23692539 - Fixing stable_partition

• PR #23672540 - Fixing find_prefixes for Windows platforms

• PR #23662541 - Testing for experimental/optional only in C++14 mode

• PR #23642542 - Adding set_config_entry

• PR #23632543 - Fix papi

• PR #23622544 - Adding missing macros for new non-direct actions

• PR #23612545 - Improve cmake output to help debug compiler incompatibility check

• PR #23602546 - Fixing race condition in condition_variable

2524 https://github.com/STEllAR-GROUP/hpx/issues/2386
2525 https://github.com/STEllAR-GROUP/hpx/pull/2385
2526 https://github.com/STEllAR-GROUP/hpx/pull/2384
2527 https://github.com/STEllAR-GROUP/hpx/pull/2383
2528 https://github.com/STEllAR-GROUP/hpx/pull/2382
2529 https://github.com/STEllAR-GROUP/hpx/pull/2381
2530 https://github.com/STEllAR-GROUP/hpx/pull/2380
2531 https://github.com/STEllAR-GROUP/hpx/pull/2379
2532 https://github.com/STEllAR-GROUP/hpx/pull/2378
2533 https://github.com/STEllAR-GROUP/hpx/issues/2376
2534 https://github.com/STEllAR-GROUP/hpx/pull/2375
2535 https://github.com/STEllAR-GROUP/hpx/pull/2374
2536 https://github.com/STEllAR-GROUP/hpx/pull/2373
2537 https://github.com/STEllAR-GROUP/hpx/pull/2372
2538 https://github.com/STEllAR-GROUP/hpx/issues/2370
2539 https://github.com/STEllAR-GROUP/hpx/pull/2369
2540 https://github.com/STEllAR-GROUP/hpx/pull/2367
2541 https://github.com/STEllAR-GROUP/hpx/pull/2366
2542 https://github.com/STEllAR-GROUP/hpx/pull/2364
2543 https://github.com/STEllAR-GROUP/hpx/pull/2363
2544 https://github.com/STEllAR-GROUP/hpx/pull/2362
2545 https://github.com/STEllAR-GROUP/hpx/pull/2361
2546 https://github.com/STEllAR-GROUP/hpx/pull/2360

1330 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2386
https://github.com/STEllAR-GROUP/hpx/pull/2385
https://github.com/STEllAR-GROUP/hpx/pull/2384
https://github.com/STEllAR-GROUP/hpx/pull/2383
https://github.com/STEllAR-GROUP/hpx/pull/2382
https://github.com/STEllAR-GROUP/hpx/pull/2381
https://github.com/STEllAR-GROUP/hpx/pull/2380
https://github.com/STEllAR-GROUP/hpx/pull/2379
https://github.com/STEllAR-GROUP/hpx/pull/2378
https://github.com/STEllAR-GROUP/hpx/issues/2376
https://github.com/STEllAR-GROUP/hpx/pull/2375
https://github.com/STEllAR-GROUP/hpx/pull/2374
https://github.com/STEllAR-GROUP/hpx/pull/2373
https://github.com/STEllAR-GROUP/hpx/pull/2372
https://github.com/STEllAR-GROUP/hpx/issues/2370
https://github.com/STEllAR-GROUP/hpx/pull/2369
https://github.com/STEllAR-GROUP/hpx/pull/2367
https://github.com/STEllAR-GROUP/hpx/pull/2366
https://github.com/STEllAR-GROUP/hpx/pull/2364
https://github.com/STEllAR-GROUP/hpx/pull/2363
https://github.com/STEllAR-GROUP/hpx/pull/2362
https://github.com/STEllAR-GROUP/hpx/pull/2361
https://github.com/STEllAR-GROUP/hpx/pull/2360

HPX Documentation, 1.5.1

• PR #23592547 - Fixing shutdown when parcels are still in flight

• Issue #23572548 - failed to insert console_print_action into typename_to_id_t registry

• PR #23562549 - Fixing return type of get_iterator_tuple

• PR #23552550 - Fixing compilation against Boost 1 62

• PR #23542551 - Adding serialization for mask_type if CPU_COUNT > 64

• PR #23532552 - Adding hooks to tie in APEX into the parcel layer

• Issue #23522553 - Compile errors when using intel 17 beta (for KNL) on edison

• PR #23512554 - Fix function vtable get_function_address implementation

• Issue #23502555 - Build failure - master branch (4de09f5) with Intel Compiler v17

• PR #23492556 - Enabling zero-copy serialization support for std::vector<>

• PR #23482557 - Adding test to verify #2334 is fixed

• PR #23472558 - Bug fixes for hpx.compute and hpx::lcos::channel

• PR #23462559 - Removing cmake “find” files that are in the APEX cmake Modules

• PR #23452560 - Implemented parallel::stable_partition

• PR #23442561 - Making hpx::lcos::channel usable with basename registration

• PR #23432562 - Fix a couple of examples that failed to compile after recent api changes

• Issue #23422563 - Enabling APEX causes link errors

• PR #23412564 - Removing cmake “find” files that are in the APEX cmake Modules

• PR #23402565 - Implemented all existing datapar algorithms using Boost.SIMD

• PR #23392566 - Fixing 2338

• PR #23382567 - Possible race in sliding semaphore

• PR #23372568 - Adjust osu_latency test to measure window_size parcels in flight at once

• PR #23362569 - Allowing remote direct actions to be executed without spawning a task

2547 https://github.com/STEllAR-GROUP/hpx/pull/2359
2548 https://github.com/STEllAR-GROUP/hpx/issues/2357
2549 https://github.com/STEllAR-GROUP/hpx/pull/2356
2550 https://github.com/STEllAR-GROUP/hpx/pull/2355
2551 https://github.com/STEllAR-GROUP/hpx/pull/2354
2552 https://github.com/STEllAR-GROUP/hpx/pull/2353
2553 https://github.com/STEllAR-GROUP/hpx/issues/2352
2554 https://github.com/STEllAR-GROUP/hpx/pull/2351
2555 https://github.com/STEllAR-GROUP/hpx/issues/2350
2556 https://github.com/STEllAR-GROUP/hpx/pull/2349
2557 https://github.com/STEllAR-GROUP/hpx/pull/2348
2558 https://github.com/STEllAR-GROUP/hpx/pull/2347
2559 https://github.com/STEllAR-GROUP/hpx/pull/2346
2560 https://github.com/STEllAR-GROUP/hpx/pull/2345
2561 https://github.com/STEllAR-GROUP/hpx/pull/2344
2562 https://github.com/STEllAR-GROUP/hpx/pull/2343
2563 https://github.com/STEllAR-GROUP/hpx/issues/2342
2564 https://github.com/STEllAR-GROUP/hpx/pull/2341
2565 https://github.com/STEllAR-GROUP/hpx/pull/2340
2566 https://github.com/STEllAR-GROUP/hpx/pull/2339
2567 https://github.com/STEllAR-GROUP/hpx/pull/2338
2568 https://github.com/STEllAR-GROUP/hpx/pull/2337
2569 https://github.com/STEllAR-GROUP/hpx/pull/2336

2.11. Releases 1331

https://github.com/STEllAR-GROUP/hpx/pull/2359
https://github.com/STEllAR-GROUP/hpx/issues/2357
https://github.com/STEllAR-GROUP/hpx/pull/2356
https://github.com/STEllAR-GROUP/hpx/pull/2355
https://github.com/STEllAR-GROUP/hpx/pull/2354
https://github.com/STEllAR-GROUP/hpx/pull/2353
https://github.com/STEllAR-GROUP/hpx/issues/2352
https://github.com/STEllAR-GROUP/hpx/pull/2351
https://github.com/STEllAR-GROUP/hpx/issues/2350
https://github.com/STEllAR-GROUP/hpx/pull/2349
https://github.com/STEllAR-GROUP/hpx/pull/2348
https://github.com/STEllAR-GROUP/hpx/pull/2347
https://github.com/STEllAR-GROUP/hpx/pull/2346
https://github.com/STEllAR-GROUP/hpx/pull/2345
https://github.com/STEllAR-GROUP/hpx/pull/2344
https://github.com/STEllAR-GROUP/hpx/pull/2343
https://github.com/STEllAR-GROUP/hpx/issues/2342
https://github.com/STEllAR-GROUP/hpx/pull/2341
https://github.com/STEllAR-GROUP/hpx/pull/2340
https://github.com/STEllAR-GROUP/hpx/pull/2339
https://github.com/STEllAR-GROUP/hpx/pull/2338
https://github.com/STEllAR-GROUP/hpx/pull/2337
https://github.com/STEllAR-GROUP/hpx/pull/2336

HPX Documentation, 1.5.1

• PR #23352570 - Making sure multiple components are properly initialized from arguments

• Issue #23342571 - Cannot construct component with large vector on a remote locality

• PR #23322572 - Fixing hpx::lcos::local::barrier

• PR #23312573 - Updating APEX support to include OTF2

• PR #23302574 - Support for data-parallelism for parallel algorithms

• Issue #23292575 - Coordinate settings in cmake

• PR #23282576 - fix LibGeoDecomp builds with HPX + GCC 5.3.0 + CUDA 8RC

• PR #23262577 - Making scan_partitioner work (for now)

• Issue #23232578 - Constructing a vector of components only correctly initializes the first component

• PR #23222579 - Fix problems that bubbled up after merging #2278

• PR #23212580 - Scalable barrier

• PR #23202581 - Std flag fixes

• Issue #23192582 - -std=c++14 and -std=c++1y with Intel can’t build recent Boost builds due to insufficient C++14
support; don’t enable these flags by default for Intel

• PR #23182583 - Improve handling of –hpx:bind=<bind-spec>

• PR #23172584 - Making sure command line warnings are printed once only

• PR #23162585 - Fixing command line handling for default bind mode

• PR #23152586 - Set id_retrieved if set_id is present

• Issue #23142587 - Warning for requested/allocated thread discrepancy is printed twice

• Issue #23132588 - –hpx:print-bind doesn’t work with –hpx:pu-step

• Issue #23122589 - –hpx:bind range specifier restrictions are overly restrictive

• Issue #23112590 - hpx_0.9.99 out of project build fails

• PR #23102591 - Simplify function registration

• PR #23092592 - Spelling and grammar revisions in documentation (and some code)

2570 https://github.com/STEllAR-GROUP/hpx/pull/2335
2571 https://github.com/STEllAR-GROUP/hpx/issues/2334
2572 https://github.com/STEllAR-GROUP/hpx/pull/2332
2573 https://github.com/STEllAR-GROUP/hpx/pull/2331
2574 https://github.com/STEllAR-GROUP/hpx/pull/2330
2575 https://github.com/STEllAR-GROUP/hpx/issues/2329
2576 https://github.com/STEllAR-GROUP/hpx/pull/2328
2577 https://github.com/STEllAR-GROUP/hpx/pull/2326
2578 https://github.com/STEllAR-GROUP/hpx/issues/2323
2579 https://github.com/STEllAR-GROUP/hpx/pull/2322
2580 https://github.com/STEllAR-GROUP/hpx/pull/2321
2581 https://github.com/STEllAR-GROUP/hpx/pull/2320
2582 https://github.com/STEllAR-GROUP/hpx/issues/2319
2583 https://github.com/STEllAR-GROUP/hpx/pull/2318
2584 https://github.com/STEllAR-GROUP/hpx/pull/2317
2585 https://github.com/STEllAR-GROUP/hpx/pull/2316
2586 https://github.com/STEllAR-GROUP/hpx/pull/2315
2587 https://github.com/STEllAR-GROUP/hpx/issues/2314
2588 https://github.com/STEllAR-GROUP/hpx/issues/2313
2589 https://github.com/STEllAR-GROUP/hpx/issues/2312
2590 https://github.com/STEllAR-GROUP/hpx/issues/2311
2591 https://github.com/STEllAR-GROUP/hpx/pull/2310
2592 https://github.com/STEllAR-GROUP/hpx/pull/2309

1332 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2335
https://github.com/STEllAR-GROUP/hpx/issues/2334
https://github.com/STEllAR-GROUP/hpx/pull/2332
https://github.com/STEllAR-GROUP/hpx/pull/2331
https://github.com/STEllAR-GROUP/hpx/pull/2330
https://github.com/STEllAR-GROUP/hpx/issues/2329
https://github.com/STEllAR-GROUP/hpx/pull/2328
https://github.com/STEllAR-GROUP/hpx/pull/2326
https://github.com/STEllAR-GROUP/hpx/issues/2323
https://github.com/STEllAR-GROUP/hpx/pull/2322
https://github.com/STEllAR-GROUP/hpx/pull/2321
https://github.com/STEllAR-GROUP/hpx/pull/2320
https://github.com/STEllAR-GROUP/hpx/issues/2319
https://github.com/STEllAR-GROUP/hpx/pull/2318
https://github.com/STEllAR-GROUP/hpx/pull/2317
https://github.com/STEllAR-GROUP/hpx/pull/2316
https://github.com/STEllAR-GROUP/hpx/pull/2315
https://github.com/STEllAR-GROUP/hpx/issues/2314
https://github.com/STEllAR-GROUP/hpx/issues/2313
https://github.com/STEllAR-GROUP/hpx/issues/2312
https://github.com/STEllAR-GROUP/hpx/issues/2311
https://github.com/STEllAR-GROUP/hpx/pull/2310
https://github.com/STEllAR-GROUP/hpx/pull/2309

HPX Documentation, 1.5.1

• PR #23062593 - Correct minor typo in the documentation

• PR #23052594 - Cleaning up and fixing parcel coalescing

• PR #23042595 - Inspect checks for stream related includes

• PR #23032596 - Add functionality allowing to enumerate threads of given state

• PR #23012597 - Algorithm overloads fix for VS2013

• PR #23002598 - Use <cstdint>, add inspect checks

• PR #22992599 - Replace boost::[c]ref with std::[c]ref, add inspect checks

• PR #22972600 - Fixing compilation with no hw_loc

• PR #22962601 - Hpx compute

• PR #22952602 - Making sure for_loop(execution::par, 0, N, . . .) is actually executed in parallel

• PR #22942603 - Throwing exceptions if the runtime is not up and running

• PR #22932604 - Removing unused parcel port code

• PR #22922605 - Refactor function vtables

• PR #22912606 - Fixing 2286

• PR #22902607 - Simplify algorithm overloads

• PR #22892608 - Adding performance counters reporting parcel related data on a per-action basis

• Issue #22882609 - Remove dormant parcelports

• Issue #22862610 - adjustments to parcel handling to support parcelports that do not need a connection cache

• PR #22852611 - add CMake option to disable package export

• PR #22832612 - Add more inspect checks for use of deprecated components

• Issue #22822613 - Arithmetic exception in executor static chunker

• Issue #22812614 - For loop doesn’t parallelize

• PR #22802615 - Fixing 2277: build failure with PAPI

2593 https://github.com/STEllAR-GROUP/hpx/pull/2306
2594 https://github.com/STEllAR-GROUP/hpx/pull/2305
2595 https://github.com/STEllAR-GROUP/hpx/pull/2304
2596 https://github.com/STEllAR-GROUP/hpx/pull/2303
2597 https://github.com/STEllAR-GROUP/hpx/pull/2301
2598 https://github.com/STEllAR-GROUP/hpx/pull/2300
2599 https://github.com/STEllAR-GROUP/hpx/pull/2299
2600 https://github.com/STEllAR-GROUP/hpx/pull/2297
2601 https://github.com/STEllAR-GROUP/hpx/pull/2296
2602 https://github.com/STEllAR-GROUP/hpx/pull/2295
2603 https://github.com/STEllAR-GROUP/hpx/pull/2294
2604 https://github.com/STEllAR-GROUP/hpx/pull/2293
2605 https://github.com/STEllAR-GROUP/hpx/pull/2292
2606 https://github.com/STEllAR-GROUP/hpx/pull/2291
2607 https://github.com/STEllAR-GROUP/hpx/pull/2290
2608 https://github.com/STEllAR-GROUP/hpx/pull/2289
2609 https://github.com/STEllAR-GROUP/hpx/issues/2288
2610 https://github.com/STEllAR-GROUP/hpx/issues/2286
2611 https://github.com/STEllAR-GROUP/hpx/pull/2285
2612 https://github.com/STEllAR-GROUP/hpx/pull/2283
2613 https://github.com/STEllAR-GROUP/hpx/issues/2282
2614 https://github.com/STEllAR-GROUP/hpx/issues/2281
2615 https://github.com/STEllAR-GROUP/hpx/pull/2280

2.11. Releases 1333

https://github.com/STEllAR-GROUP/hpx/pull/2306
https://github.com/STEllAR-GROUP/hpx/pull/2305
https://github.com/STEllAR-GROUP/hpx/pull/2304
https://github.com/STEllAR-GROUP/hpx/pull/2303
https://github.com/STEllAR-GROUP/hpx/pull/2301
https://github.com/STEllAR-GROUP/hpx/pull/2300
https://github.com/STEllAR-GROUP/hpx/pull/2299
https://github.com/STEllAR-GROUP/hpx/pull/2297
https://github.com/STEllAR-GROUP/hpx/pull/2296
https://github.com/STEllAR-GROUP/hpx/pull/2295
https://github.com/STEllAR-GROUP/hpx/pull/2294
https://github.com/STEllAR-GROUP/hpx/pull/2293
https://github.com/STEllAR-GROUP/hpx/pull/2292
https://github.com/STEllAR-GROUP/hpx/pull/2291
https://github.com/STEllAR-GROUP/hpx/pull/2290
https://github.com/STEllAR-GROUP/hpx/pull/2289
https://github.com/STEllAR-GROUP/hpx/issues/2288
https://github.com/STEllAR-GROUP/hpx/issues/2286
https://github.com/STEllAR-GROUP/hpx/pull/2285
https://github.com/STEllAR-GROUP/hpx/pull/2283
https://github.com/STEllAR-GROUP/hpx/issues/2282
https://github.com/STEllAR-GROUP/hpx/issues/2281
https://github.com/STEllAR-GROUP/hpx/pull/2280

HPX Documentation, 1.5.1

• PR #22792616 - Child vs parent stealing

• Issue #22772617 - master branch build failure (53c5b4f) with papi

• PR #22762618 - Compile time launch policies

• PR #22752619 - Replace boost::chrono with std::chrono in interfaces

• PR #22742620 - Replace most uses of Boost.Assign with initializer list

• PR #22732621 - Fixed typos

• PR #22722622 - Inspect checks

• PR #22702623 - Adding test verifying -Ihpx.os_threads=all

• PR #22692624 - Added inspect check for now obsolete boost type traits

• PR #22682625 - Moving more code into source files

• Issue #22672626 - Add inspect support to deprecate Boost.TypeTraits

• PR #22652627 - Adding channel LCO

• PR #22642628 - Make support for std::ref mandatory

• PR #22632629 - Constrain tuple_member forwarding constructor

• Issue #22622630 - Test hpx.os_threads=all

• Issue #22612631 - OS X: Error: no matching constructor for initialization of
‘hpx::lcos::local::condition_variable_any’

• Issue #22602632 - Make support for std::ref mandatory

• PR #22592633 - Remove most of Boost.MPL, Boost.EnableIf and Boost.TypeTraits

• PR #22582634 - Fixing #2256

• PR #22572635 - Fixing launch process

• Issue #22562636 - Actions are not registered if not invoked

• PR #22552637 - Coalescing histogram

• PR #22542638 - Silence explicit initialization in copy-constructor warnings

2616 https://github.com/STEllAR-GROUP/hpx/pull/2279
2617 https://github.com/STEllAR-GROUP/hpx/issues/2277
2618 https://github.com/STEllAR-GROUP/hpx/pull/2276
2619 https://github.com/STEllAR-GROUP/hpx/pull/2275
2620 https://github.com/STEllAR-GROUP/hpx/pull/2274
2621 https://github.com/STEllAR-GROUP/hpx/pull/2273
2622 https://github.com/STEllAR-GROUP/hpx/pull/2272
2623 https://github.com/STEllAR-GROUP/hpx/pull/2270
2624 https://github.com/STEllAR-GROUP/hpx/pull/2269
2625 https://github.com/STEllAR-GROUP/hpx/pull/2268
2626 https://github.com/STEllAR-GROUP/hpx/issues/2267
2627 https://github.com/STEllAR-GROUP/hpx/pull/2265
2628 https://github.com/STEllAR-GROUP/hpx/pull/2264
2629 https://github.com/STEllAR-GROUP/hpx/pull/2263
2630 https://github.com/STEllAR-GROUP/hpx/issues/2262
2631 https://github.com/STEllAR-GROUP/hpx/issues/2261
2632 https://github.com/STEllAR-GROUP/hpx/issues/2260
2633 https://github.com/STEllAR-GROUP/hpx/pull/2259
2634 https://github.com/STEllAR-GROUP/hpx/pull/2258
2635 https://github.com/STEllAR-GROUP/hpx/pull/2257
2636 https://github.com/STEllAR-GROUP/hpx/issues/2256
2637 https://github.com/STEllAR-GROUP/hpx/pull/2255
2638 https://github.com/STEllAR-GROUP/hpx/pull/2254

1334 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2279
https://github.com/STEllAR-GROUP/hpx/issues/2277
https://github.com/STEllAR-GROUP/hpx/pull/2276
https://github.com/STEllAR-GROUP/hpx/pull/2275
https://github.com/STEllAR-GROUP/hpx/pull/2274
https://github.com/STEllAR-GROUP/hpx/pull/2273
https://github.com/STEllAR-GROUP/hpx/pull/2272
https://github.com/STEllAR-GROUP/hpx/pull/2270
https://github.com/STEllAR-GROUP/hpx/pull/2269
https://github.com/STEllAR-GROUP/hpx/pull/2268
https://github.com/STEllAR-GROUP/hpx/issues/2267
https://github.com/STEllAR-GROUP/hpx/pull/2265
https://github.com/STEllAR-GROUP/hpx/pull/2264
https://github.com/STEllAR-GROUP/hpx/pull/2263
https://github.com/STEllAR-GROUP/hpx/issues/2262
https://github.com/STEllAR-GROUP/hpx/issues/2261
https://github.com/STEllAR-GROUP/hpx/issues/2260
https://github.com/STEllAR-GROUP/hpx/pull/2259
https://github.com/STEllAR-GROUP/hpx/pull/2258
https://github.com/STEllAR-GROUP/hpx/pull/2257
https://github.com/STEllAR-GROUP/hpx/issues/2256
https://github.com/STEllAR-GROUP/hpx/pull/2255
https://github.com/STEllAR-GROUP/hpx/pull/2254

HPX Documentation, 1.5.1

• PR #22532639 - Drop support for GCC 4.6 and 4.7

• PR #22522640 - Prepare V1.0

• PR #22512641 - Convert to 0.9.99

• PR #22492642 - Adding iterator_facade and iterator_adaptor

• Issue #22482643 - Need a feature to yield to a new task immediately

• PR #22462644 - Adding split_future

• PR #22452645 - Add an example for handing over a component instance to a dynamically launched locality

• Issue #22432646 - Add example demonstrating AGAS symbolic name registration

• Issue #22422647 - pkgconfig test broken on CentOS 7 / Boost 1.61

• Issue #22412648 - Compilation error for partitioned vector in hpx_compute branch

• PR #22402649 - Fixing termination detection on one locality

• Issue #22392650 - Create a new facility lcos::split_all

• Issue #22362651 - hpx::cout vs. std::cout

• PR #22322652 - Implement local-only primary namespace service

• Issue #21472653 - would like to know how much data is being routed by particular actions

• Issue #21092654 - Warning while compiling hpx

• Issue #19732655 - Setting INTERFACE_COMPILE_OPTIONS for hpx_init in CMake taints Fortran_FLAGS

• Issue #18642656 - run_guarded using bound function ignores reference

• Issue #17542657 - Running with TCP parcelport causes immediate crash or freeze

• Issue #16552658 - Enable zip_iterator to be used with Boost traversal iterator categories

• Issue #15912659 - Optimize AGAS for shared memory only operation

• Issue #14012660 - Need an efficient infiniband parcelport

• Issue #11252661 - Fix the IPC parcelport

2639 https://github.com/STEllAR-GROUP/hpx/pull/2253
2640 https://github.com/STEllAR-GROUP/hpx/pull/2252
2641 https://github.com/STEllAR-GROUP/hpx/pull/2251
2642 https://github.com/STEllAR-GROUP/hpx/pull/2249
2643 https://github.com/STEllAR-GROUP/hpx/issues/2248
2644 https://github.com/STEllAR-GROUP/hpx/pull/2246
2645 https://github.com/STEllAR-GROUP/hpx/pull/2245
2646 https://github.com/STEllAR-GROUP/hpx/issues/2243
2647 https://github.com/STEllAR-GROUP/hpx/issues/2242
2648 https://github.com/STEllAR-GROUP/hpx/issues/2241
2649 https://github.com/STEllAR-GROUP/hpx/pull/2240
2650 https://github.com/STEllAR-GROUP/hpx/issues/2239
2651 https://github.com/STEllAR-GROUP/hpx/issues/2236
2652 https://github.com/STEllAR-GROUP/hpx/pull/2232
2653 https://github.com/STEllAR-GROUP/hpx/issues/2147
2654 https://github.com/STEllAR-GROUP/hpx/issues/2109
2655 https://github.com/STEllAR-GROUP/hpx/issues/1973
2656 https://github.com/STEllAR-GROUP/hpx/issues/1864
2657 https://github.com/STEllAR-GROUP/hpx/issues/1754
2658 https://github.com/STEllAR-GROUP/hpx/issues/1655
2659 https://github.com/STEllAR-GROUP/hpx/issues/1591
2660 https://github.com/STEllAR-GROUP/hpx/issues/1401
2661 https://github.com/STEllAR-GROUP/hpx/issues/1125

2.11. Releases 1335

https://github.com/STEllAR-GROUP/hpx/pull/2253
https://github.com/STEllAR-GROUP/hpx/pull/2252
https://github.com/STEllAR-GROUP/hpx/pull/2251
https://github.com/STEllAR-GROUP/hpx/pull/2249
https://github.com/STEllAR-GROUP/hpx/issues/2248
https://github.com/STEllAR-GROUP/hpx/pull/2246
https://github.com/STEllAR-GROUP/hpx/pull/2245
https://github.com/STEllAR-GROUP/hpx/issues/2243
https://github.com/STEllAR-GROUP/hpx/issues/2242
https://github.com/STEllAR-GROUP/hpx/issues/2241
https://github.com/STEllAR-GROUP/hpx/pull/2240
https://github.com/STEllAR-GROUP/hpx/issues/2239
https://github.com/STEllAR-GROUP/hpx/issues/2236
https://github.com/STEllAR-GROUP/hpx/pull/2232
https://github.com/STEllAR-GROUP/hpx/issues/2147
https://github.com/STEllAR-GROUP/hpx/issues/2109
https://github.com/STEllAR-GROUP/hpx/issues/1973
https://github.com/STEllAR-GROUP/hpx/issues/1864
https://github.com/STEllAR-GROUP/hpx/issues/1754
https://github.com/STEllAR-GROUP/hpx/issues/1655
https://github.com/STEllAR-GROUP/hpx/issues/1591
https://github.com/STEllAR-GROUP/hpx/issues/1401
https://github.com/STEllAR-GROUP/hpx/issues/1125

HPX Documentation, 1.5.1

• Issue #8392662 - Refactor ibverbs and shmem parcelport

• Issue #7022663 - Add instrumentation of parcel layer

• Issue #6682664 - Implement ispc task interface

• Issue #5332665 - Thread queue/deque internal parameters should be runtime configurable

• Issue #4752666 - Create a means of combining performance counters into querysets

2.11.10 HPX V0.9.99 (Jul 15, 2016)

General changes

As the version number of this release hints, we consider this release to be a preview for the upcoming HPX V1.0. All
of the functionalities we set out to implement for V1.0 are in place; all of the features we wanted to have exposed are
ready. We are very happy with the stability and performance of HPX and we would like to present this release to the
community in order for us to gather broad feedback before releasing V1.0. We still expect for some minor details to
change, but on the whole this release represents what we would like to have in a V1.0.

Overall, since the last release we have had almost 1600 commits while closing almost 400 tickets. These numbers
reflect the incredible development activity we have seen over the last couple of months. We would like to express a
big ‘Thank you!’ to all contributors and those who helped to make this release happen.

The most notable addition in terms of new functionality available with this release is the full implementation of object
migration (i.e. the ability to transparently move HPX components to a different compute node). Additionally, this
release of HPX cleans up many minor issues and some API inconsistencies.

Here are some of the main highlights and changes for this release (in no particular order):

• We have fixed a couple of issues in AGAS and the parcel layer which have caused hangs, segmentation faults at
exit, and a slowdown of applications over time. Fixing those has significantly increased the overall stability and
performance of distributed runs.

• We have started to add parallel algorithm overloads based on the C++ Extensions for Ranges (N45602667) pro-
posal. This also includes the addition of projections to the existing algorithms. Please see Issue #16682668 for a
list of algorithms which have been adapted to N45602669.

• We have implemented index-based parallel for-loops based on a corresponding standardization proposal
(P0075R12670). Please see Issue #20162671 for a list of available algorithms.

• We have added implementations for more parallel algorithms as proposed for the upcoming C++ 17 Standard.
See Issue #11412672 for an overview of which algorithms are available by now.

• We have started to implement a new prototypical functionality with HPX.Compute which uniformly exposes
some of the higher level APIs to heterogeneous architectures (currently CUDA). This functionality is an early
preview and should not be considered stable. It may change considerably in the future.

• We have pervasively added (optional) executor arguments to all API functions which schedule new work. Ex-
ecutors are now used throughout the code base as the main means of executing tasks.

2662 https://github.com/STEllAR-GROUP/hpx/issues/839
2663 https://github.com/STEllAR-GROUP/hpx/issues/702
2664 https://github.com/STEllAR-GROUP/hpx/issues/668
2665 https://github.com/STEllAR-GROUP/hpx/issues/533
2666 https://github.com/STEllAR-GROUP/hpx/issues/475
2667 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4560.pdf
2668 https://github.com/STEllAR-GROUP/hpx/issues/1668
2669 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4560.pdf
2670 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0075r1.pdf
2671 https://github.com/STEllAR-GROUP/hpx/issues/2016
2672 https://github.com/STEllAR-GROUP/hpx/issues/1141

1336 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/839
https://github.com/STEllAR-GROUP/hpx/issues/702
https://github.com/STEllAR-GROUP/hpx/issues/668
https://github.com/STEllAR-GROUP/hpx/issues/533
https://github.com/STEllAR-GROUP/hpx/issues/475
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4560.pdf
https://github.com/STEllAR-GROUP/hpx/issues/1668
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4560.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0075r1.pdf
https://github.com/STEllAR-GROUP/hpx/issues/2016
https://github.com/STEllAR-GROUP/hpx/issues/1141

HPX Documentation, 1.5.1

• Added hpx::make_future<R>(future<T> &&) allowing to convert a future of any type T into a future
of any other type R, either based on default conversion rules of the embedded types or using a given explicit
conversion function.

• We finally finished the implementation of transparent migration of components to another locality. It is now
possible to trigger a migration operation without ‘stopping the world’ for the object to migrate. HPX will make
sure that no work is being performed on an object before it is migrated and that all subsequently scheduled work
for the migrated object will be transparently forwarded to the new locality. Please note that the global id of the
migrated object does not change, thus the application will not have to be changed in any way to support this
new functionality. Please note that this feature is currently considered experimental. See Issue #5592673 and PR
#19662674 for more details.

• The hpx::dataflow facility is now usable with actions. Similarly to hpx::async, actions can be specified
as an explicit template argument (hpx::dataflow<Action>(target, ...)) or as the first argument
(hpx::dataflow(Action(), target, ...)). We have also enabled the use of distribution policies
as the target for dataflow invocations. Please see Issue #12652675 and PR #19122676 for more information.

• Adding overloads of gather_here and gather_there to accept the plain values of the data to gather (in
addition to the existing overloads expecting futures).

• We have cleaned up and refactored large parts of the code base. This helped reducing compile and link times of
HPX itself and also of applications depending on it. We have further decreased the dependency of HPX on the
Boost libraries by replacing part of those with facilities available from the standard libraries.

• Wherever possible we have removed dependencies of our API on Boost by replacing those with the equivalent
facility from the C++11 standard library.

• We have added new performance counters for parcel coalescing, file-IO, the AGAS cache, and overall scheduler
time. Resetting performance counters has been overhauled and fixed.

• We have introduced a generic client type hpx::components::client<> and added support for using it
with hpx::async. This removes the necessity to implement specific client types for every component type
without losing type safety. This deemphasizes the need for using the low level hpx::id_type for referencing
(possibly remote) component instances. The plan is to deprecate the direct use of hpx::id_type in user code
in the future.

• We have added a special iterator which supports automatic prefetching of one or more arrays for speeding up
loop-like code (see hpx::parallel::util::make_prefetcher_context()).

• We have extended the interfaces exposed from executors (as proposed by N44062677) to accept an arbitrary
number of arguments.

Breaking changes

• In order to move the dataflow facility to namespace hpx we added a definition of hpx::dataflow
which might create ambiguities in existing codes. The previous definition of this facility
(hpx::lcos::local::dataflow) has been deprecated and is available only if the constant
-DHPX_WITH_LOCAL_DATAFLOW_COMPATIBILITY=On to CMake2678 is defined at configuration
time. Please explicitly qualify all uses of the dataflow facility if you enable this compatibility setting and
encounter ambiguities.

2673 https://github.com/STEllAR-GROUP/hpx/issues/559
2674 https://github.com/STEllAR-GROUP/hpx/pull/1966
2675 https://github.com/STEllAR-GROUP/hpx/issues/1265
2676 https://github.com/STEllAR-GROUP/hpx/pull/1912
2677 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf
2678 https://www.cmake.org

2.11. Releases 1337

https://github.com/STEllAR-GROUP/hpx/issues/559
https://github.com/STEllAR-GROUP/hpx/pull/1966
https://github.com/STEllAR-GROUP/hpx/pull/1966
https://github.com/STEllAR-GROUP/hpx/issues/1265
https://github.com/STEllAR-GROUP/hpx/pull/1912
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf
https://www.cmake.org

HPX Documentation, 1.5.1

• The adaptation of the C++ Extensions for Ranges (N45602679) proposal imposes some breaking changes related
to the return types of some of the parallel algorithms. Please see Issue #16682680 for a list of algorithms which
have already been adapted.

• The facility hpx::lcos::make_future_void() has been replaced by
hpx::make_future<void>().

• We have removed support for Intel V13 and gcc 4.4.x.

• We have removed (default) support for the generic hpx::parallel::execution_poliy be-
cause it was removed from the Parallelism TS (__cpp11_n4104__) while it was being added to
the upcoming C++17 Standard. This facility can be still enabled at configure time by specifying
-DHPX_WITH_GENERIC_EXECUTION_POLICY=On to CMake.

• Uses of boost::shared_ptr and related facilities have been replaced with std::shared_ptr and
friends. Uses of boost::unique_lock, boost::lock_guard etc. have also been replaced by the
equivalent (and equally named) tools available from the C++11 standard library.

• Facilities that used to expect an explicit boost::unique_lock now take an std::unique_lock. Addi-
tionally, condition_variable no longer aliases condition_variable_any; its interface now only
works with std::unique_lock<local::mutex>.

• Uses of boost::function, boost::bind, boost::tuple have been replaced by the corresponding
facilities in HPX (hpx::util::function, hpx::util::bind, and hpx::util::tuple, respec-
tively).

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• PR #22502681 - change default chunker of parallel executor to static one

• PR #22472682 - HPX on ppc64le

• PR #22442683 - Fixing MSVC problems

• PR #22382684 - Fixing small typos

• PR #22372685 - Fixing small typos

• PR #22342686 - Fix broken add test macro when extra args are passed in

• PR #22312687 - Fixing possible race during future awaiting in serialization

• PR #22302688 - Fix stream nvcc

• PR #22292689 - Fixed run_as_hpx_thread

• PR #22282690 - On prefetching_test branch : adding prefetching_iterator and related tests used for prefetching
containers within lambda functions

2679 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4560.pdf
2680 https://github.com/STEllAR-GROUP/hpx/issues/1668
2681 https://github.com/STEllAR-GROUP/hpx/pull/2250
2682 https://github.com/STEllAR-GROUP/hpx/pull/2247
2683 https://github.com/STEllAR-GROUP/hpx/pull/2244
2684 https://github.com/STEllAR-GROUP/hpx/pull/2238
2685 https://github.com/STEllAR-GROUP/hpx/pull/2237
2686 https://github.com/STEllAR-GROUP/hpx/pull/2234
2687 https://github.com/STEllAR-GROUP/hpx/pull/2231
2688 https://github.com/STEllAR-GROUP/hpx/pull/2230
2689 https://github.com/STEllAR-GROUP/hpx/pull/2229
2690 https://github.com/STEllAR-GROUP/hpx/pull/2228

1338 Chapter 2. What’s so special about HPX?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4560.pdf
https://github.com/STEllAR-GROUP/hpx/issues/1668
https://github.com/STEllAR-GROUP/hpx/pull/2250
https://github.com/STEllAR-GROUP/hpx/pull/2247
https://github.com/STEllAR-GROUP/hpx/pull/2244
https://github.com/STEllAR-GROUP/hpx/pull/2238
https://github.com/STEllAR-GROUP/hpx/pull/2237
https://github.com/STEllAR-GROUP/hpx/pull/2234
https://github.com/STEllAR-GROUP/hpx/pull/2231
https://github.com/STEllAR-GROUP/hpx/pull/2230
https://github.com/STEllAR-GROUP/hpx/pull/2229
https://github.com/STEllAR-GROUP/hpx/pull/2228

HPX Documentation, 1.5.1

• PR #22272691 - Support for HPXCL’s opencl::event

• PR #22262692 - Preparing for release of V0.9.99

• PR #22252693 - fix issue when compiling components with hpxcxx

• PR #22242694 - Compute alloc fix

• PR #22232695 - Simplify promise

• PR #22222696 - Replace last uses of boost::function by util::function_nonser

• PR #22212697 - Fix config tests

• PR #22202698 - Fixing gcc 4.6 compilation issues

• PR #22192699 - nullptr support for [unique_]function

• PR #22182700 - Introducing clang tidy

• PR #22162701 - Replace NULL with nullptr

• Issue #22142702 - Let inspect flag use of NULL, suggest nullptr instead

• PR #22132703 - Require support for nullptr

• PR #22122704 - Properly find jemalloc through pkg-config

• PR #22112705 - Disable a couple of warnings reported by Intel on Windows

• PR #22102706 - Fixed host::block_allocator::bulk_construct

• PR #22092707 - Started to clean up new sort algorithms, made things compile for sort_by_key

• PR #22082708 - A couple of fixes that were exposed by a new sort algorithm

• PR #22072709 - Adding missing includes in /hpx/include/serialization.hpp

• PR #22062710 - Call package_action::get_future before package_action::apply

• PR #22052711 - The indirect_packaged_task::operator() needs to be run on a HPX thread

• PR #22042712 - Variadic executor parameters

• PR #22032713 - Delay-initialize members of partitoned iterator

2691 https://github.com/STEllAR-GROUP/hpx/pull/2227
2692 https://github.com/STEllAR-GROUP/hpx/pull/2226
2693 https://github.com/STEllAR-GROUP/hpx/pull/2225
2694 https://github.com/STEllAR-GROUP/hpx/pull/2224
2695 https://github.com/STEllAR-GROUP/hpx/pull/2223
2696 https://github.com/STEllAR-GROUP/hpx/pull/2222
2697 https://github.com/STEllAR-GROUP/hpx/pull/2221
2698 https://github.com/STEllAR-GROUP/hpx/pull/2220
2699 https://github.com/STEllAR-GROUP/hpx/pull/2219
2700 https://github.com/STEllAR-GROUP/hpx/pull/2218
2701 https://github.com/STEllAR-GROUP/hpx/pull/2216
2702 https://github.com/STEllAR-GROUP/hpx/issues/2214
2703 https://github.com/STEllAR-GROUP/hpx/pull/2213
2704 https://github.com/STEllAR-GROUP/hpx/pull/2212
2705 https://github.com/STEllAR-GROUP/hpx/pull/2211
2706 https://github.com/STEllAR-GROUP/hpx/pull/2210
2707 https://github.com/STEllAR-GROUP/hpx/pull/2209
2708 https://github.com/STEllAR-GROUP/hpx/pull/2208
2709 https://github.com/STEllAR-GROUP/hpx/pull/2207
2710 https://github.com/STEllAR-GROUP/hpx/pull/2206
2711 https://github.com/STEllAR-GROUP/hpx/pull/2205
2712 https://github.com/STEllAR-GROUP/hpx/pull/2204
2713 https://github.com/STEllAR-GROUP/hpx/pull/2203

2.11. Releases 1339

https://github.com/STEllAR-GROUP/hpx/pull/2227
https://github.com/STEllAR-GROUP/hpx/pull/2226
https://github.com/STEllAR-GROUP/hpx/pull/2225
https://github.com/STEllAR-GROUP/hpx/pull/2224
https://github.com/STEllAR-GROUP/hpx/pull/2223
https://github.com/STEllAR-GROUP/hpx/pull/2222
https://github.com/STEllAR-GROUP/hpx/pull/2221
https://github.com/STEllAR-GROUP/hpx/pull/2220
https://github.com/STEllAR-GROUP/hpx/pull/2219
https://github.com/STEllAR-GROUP/hpx/pull/2218
https://github.com/STEllAR-GROUP/hpx/pull/2216
https://github.com/STEllAR-GROUP/hpx/issues/2214
https://github.com/STEllAR-GROUP/hpx/pull/2213
https://github.com/STEllAR-GROUP/hpx/pull/2212
https://github.com/STEllAR-GROUP/hpx/pull/2211
https://github.com/STEllAR-GROUP/hpx/pull/2210
https://github.com/STEllAR-GROUP/hpx/pull/2209
https://github.com/STEllAR-GROUP/hpx/pull/2208
https://github.com/STEllAR-GROUP/hpx/pull/2207
https://github.com/STEllAR-GROUP/hpx/pull/2206
https://github.com/STEllAR-GROUP/hpx/pull/2205
https://github.com/STEllAR-GROUP/hpx/pull/2204
https://github.com/STEllAR-GROUP/hpx/pull/2203

HPX Documentation, 1.5.1

• PR #22022714 - Added segmented fill for hpx::vector

• Issue #22012715 - Null Thread id encountered on partitioned_vector

• PR #22002716 - Fix hangs

• PR #21992717 - Deprecating hpx/traits.hpp

• PR #21982718 - Making explicit inclusion of external libraries into build

• PR #21972719 - Fix typo in QT CMakeLists

• PR #21962720 - Fixing a gcc warning about attributes being ignored

• PR #21942721 - Fixing partitioned_vector_spmd_foreach example

• Issue #21932722 - partitioned_vector_spmd_foreach seg faults

• PR #21922723 - Support Boost.Thread v4

• PR #21912724 - HPX.Compute prototype

• PR #21902725 - Spawning operation on new thread if remaining stack space becomes too small

• PR #21892726 - Adding callback taking index and future to when_each

• PR #21882727 - Adding new example demonstrating receive_buffer

• PR #21872728 - Mask 128-bit ints if CUDA is being used

• PR #21862729 - Make startup & shutdown functions unique_function

• PR #21852730 - Fixing logging output not to cause hang on shutdown

• PR #21842731 - Allowing component clients as action return types

• Issue #21832732 - Enabling logging output causes hang on shutdown

• Issue #21822733 - 1d_stencil seg fault

• Issue #21812734 - Setting small stack size does not change default

• PR #21802735 - Changing default bind mode to balanced

• PR #21792736 - adding prefetching_iterator and related tests used for prefetching containers within lambda
functions

2714 https://github.com/STEllAR-GROUP/hpx/pull/2202
2715 https://github.com/STEllAR-GROUP/hpx/issues/2201
2716 https://github.com/STEllAR-GROUP/hpx/pull/2200
2717 https://github.com/STEllAR-GROUP/hpx/pull/2199
2718 https://github.com/STEllAR-GROUP/hpx/pull/2198
2719 https://github.com/STEllAR-GROUP/hpx/pull/2197
2720 https://github.com/STEllAR-GROUP/hpx/pull/2196
2721 https://github.com/STEllAR-GROUP/hpx/pull/2194
2722 https://github.com/STEllAR-GROUP/hpx/issues/2193
2723 https://github.com/STEllAR-GROUP/hpx/pull/2192
2724 https://github.com/STEllAR-GROUP/hpx/pull/2191
2725 https://github.com/STEllAR-GROUP/hpx/pull/2190
2726 https://github.com/STEllAR-GROUP/hpx/pull/2189
2727 https://github.com/STEllAR-GROUP/hpx/pull/2188
2728 https://github.com/STEllAR-GROUP/hpx/pull/2187
2729 https://github.com/STEllAR-GROUP/hpx/pull/2186
2730 https://github.com/STEllAR-GROUP/hpx/pull/2185
2731 https://github.com/STEllAR-GROUP/hpx/pull/2184
2732 https://github.com/STEllAR-GROUP/hpx/issues/2183
2733 https://github.com/STEllAR-GROUP/hpx/issues/2182
2734 https://github.com/STEllAR-GROUP/hpx/issues/2181
2735 https://github.com/STEllAR-GROUP/hpx/pull/2180
2736 https://github.com/STEllAR-GROUP/hpx/pull/2179

1340 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2202
https://github.com/STEllAR-GROUP/hpx/issues/2201
https://github.com/STEllAR-GROUP/hpx/pull/2200
https://github.com/STEllAR-GROUP/hpx/pull/2199
https://github.com/STEllAR-GROUP/hpx/pull/2198
https://github.com/STEllAR-GROUP/hpx/pull/2197
https://github.com/STEllAR-GROUP/hpx/pull/2196
https://github.com/STEllAR-GROUP/hpx/pull/2194
https://github.com/STEllAR-GROUP/hpx/issues/2193
https://github.com/STEllAR-GROUP/hpx/pull/2192
https://github.com/STEllAR-GROUP/hpx/pull/2191
https://github.com/STEllAR-GROUP/hpx/pull/2190
https://github.com/STEllAR-GROUP/hpx/pull/2189
https://github.com/STEllAR-GROUP/hpx/pull/2188
https://github.com/STEllAR-GROUP/hpx/pull/2187
https://github.com/STEllAR-GROUP/hpx/pull/2186
https://github.com/STEllAR-GROUP/hpx/pull/2185
https://github.com/STEllAR-GROUP/hpx/pull/2184
https://github.com/STEllAR-GROUP/hpx/issues/2183
https://github.com/STEllAR-GROUP/hpx/issues/2182
https://github.com/STEllAR-GROUP/hpx/issues/2181
https://github.com/STEllAR-GROUP/hpx/pull/2180
https://github.com/STEllAR-GROUP/hpx/pull/2179

HPX Documentation, 1.5.1

• PR #21772737 - Fixing 2176

• Issue #21762738 - Launch process test fails on OSX

• PR #21752739 - Fix unbalanced config/warnings includes, add some new ones

• PR #21742740 - Fix test categorization : regression not unit

• Issue #21722741 - Different performance results

• Issue #21712742 - “negative entry in reference count table” running octotiger on 32 nodes on queenbee

• Issue #21702743 - Error while compiling on Mac + boost 1.60

• PR #21682744 - Fixing problems with is_bitwise_serializable

• Issue #21672745 - startup & shutdown function should accept unique_function

• Issue #21662746 - Simple receive_buffer example

• PR #21652747 - Fix wait all

• PR #21642748 - Fix wait all

• PR #21632749 - Fix some typos in config tests

• PR #21622750 - Improve #includes

• PR #21602751 - Add inspect check for missing #include <list>

• PR #21592752 - Add missing finalize call to stop test hanging

• PR #21582753 - Algo fixes

• PR #21572754 - Stack check

• Issue #21562755 - OSX reports stack space incorrectly (generic context coroutines)

• Issue #21552756 - Race condition suspected in runtime

• PR #21542757 - Replace boost::detail::atomic_count with the new util::atomic_count

• PR #21532758 - Fix stack overflow on OSX

• PR #21522759 - Define is_bitwise_serializable as is_trivially_copyable when available

2737 https://github.com/STEllAR-GROUP/hpx/pull/2177
2738 https://github.com/STEllAR-GROUP/hpx/issues/2176
2739 https://github.com/STEllAR-GROUP/hpx/pull/2175
2740 https://github.com/STEllAR-GROUP/hpx/pull/2174
2741 https://github.com/STEllAR-GROUP/hpx/issues/2172
2742 https://github.com/STEllAR-GROUP/hpx/issues/2171
2743 https://github.com/STEllAR-GROUP/hpx/issues/2170
2744 https://github.com/STEllAR-GROUP/hpx/pull/2168
2745 https://github.com/STEllAR-GROUP/hpx/issues/2167
2746 https://github.com/STEllAR-GROUP/hpx/issues/2166
2747 https://github.com/STEllAR-GROUP/hpx/pull/2165
2748 https://github.com/STEllAR-GROUP/hpx/pull/2164
2749 https://github.com/STEllAR-GROUP/hpx/pull/2163
2750 https://github.com/STEllAR-GROUP/hpx/pull/2162
2751 https://github.com/STEllAR-GROUP/hpx/pull/2160
2752 https://github.com/STEllAR-GROUP/hpx/pull/2159
2753 https://github.com/STEllAR-GROUP/hpx/pull/2158
2754 https://github.com/STEllAR-GROUP/hpx/pull/2157
2755 https://github.com/STEllAR-GROUP/hpx/issues/2156
2756 https://github.com/STEllAR-GROUP/hpx/issues/2155
2757 https://github.com/STEllAR-GROUP/hpx/pull/2154
2758 https://github.com/STEllAR-GROUP/hpx/pull/2153
2759 https://github.com/STEllAR-GROUP/hpx/pull/2152

2.11. Releases 1341

https://github.com/STEllAR-GROUP/hpx/pull/2177
https://github.com/STEllAR-GROUP/hpx/issues/2176
https://github.com/STEllAR-GROUP/hpx/pull/2175
https://github.com/STEllAR-GROUP/hpx/pull/2174
https://github.com/STEllAR-GROUP/hpx/issues/2172
https://github.com/STEllAR-GROUP/hpx/issues/2171
https://github.com/STEllAR-GROUP/hpx/issues/2170
https://github.com/STEllAR-GROUP/hpx/pull/2168
https://github.com/STEllAR-GROUP/hpx/issues/2167
https://github.com/STEllAR-GROUP/hpx/issues/2166
https://github.com/STEllAR-GROUP/hpx/pull/2165
https://github.com/STEllAR-GROUP/hpx/pull/2164
https://github.com/STEllAR-GROUP/hpx/pull/2163
https://github.com/STEllAR-GROUP/hpx/pull/2162
https://github.com/STEllAR-GROUP/hpx/pull/2160
https://github.com/STEllAR-GROUP/hpx/pull/2159
https://github.com/STEllAR-GROUP/hpx/pull/2158
https://github.com/STEllAR-GROUP/hpx/pull/2157
https://github.com/STEllAR-GROUP/hpx/issues/2156
https://github.com/STEllAR-GROUP/hpx/issues/2155
https://github.com/STEllAR-GROUP/hpx/pull/2154
https://github.com/STEllAR-GROUP/hpx/pull/2153
https://github.com/STEllAR-GROUP/hpx/pull/2152

HPX Documentation, 1.5.1

• PR #21512760 - Adding missing <cstring> for std::mem* functions

• Issue #21502761 - Unable to use component clients as action return types

• PR #21492762 - std::memmove copies bytes, use bytes*sizeof(type) when copying larger types

• PR #21462763 - Adding customization point for parallel copy/move

• PR #21452764 - Applying changes to address warnings issued by latest version of PVS Studio

• Issue #21482765 - hpx::parallel::copy is broken after trivially copyable changes

• PR #21442766 - Some minor tweaks to compute prototype

• PR #21432767 - Added Boost version support information over OSX platform

• PR #21422768 - Fixing memory leak in example

• PR #21412769 - Add missing specializations in execution policies

• PR #21392770 - This PR fixes a few problems reported by Clang’s Undefined Behavior sanitizer

• PR #21382771 - Revert “Adding fedora docs”

• PR #21362772 - Removed double semicolon

• PR #21352773 - Add deprecated #include check for hpx_fwd.hpp

• PR #21342774 - Resolved memory leak in stencil_8

• PR #21332775 - Replace uses of boost pointer containers

• PR #21322776 - Removing unused typedef

• PR #21312777 - Add several include checks for std facilities

• PR #21302778 - Fixing parcel compression, adding test

• PR #21292779 - Fix invalid attribute warnings

• Issue #21282780 - hpx::init seems to segfault

• PR #21272781 - Making executor_traits N-nary

• PR #21262782 - GCC 4.6 fails to deduce the correct type in lambda

2760 https://github.com/STEllAR-GROUP/hpx/pull/2151
2761 https://github.com/STEllAR-GROUP/hpx/issues/2150
2762 https://github.com/STEllAR-GROUP/hpx/pull/2149
2763 https://github.com/STEllAR-GROUP/hpx/pull/2146
2764 https://github.com/STEllAR-GROUP/hpx/pull/2145
2765 https://github.com/STEllAR-GROUP/hpx/issues/2148
2766 https://github.com/STEllAR-GROUP/hpx/pull/2144
2767 https://github.com/STEllAR-GROUP/hpx/pull/2143
2768 https://github.com/STEllAR-GROUP/hpx/pull/2142
2769 https://github.com/STEllAR-GROUP/hpx/pull/2141
2770 https://github.com/STEllAR-GROUP/hpx/pull/2139
2771 https://github.com/STEllAR-GROUP/hpx/pull/2138
2772 https://github.com/STEllAR-GROUP/hpx/pull/2136
2773 https://github.com/STEllAR-GROUP/hpx/pull/2135
2774 https://github.com/STEllAR-GROUP/hpx/pull/2134
2775 https://github.com/STEllAR-GROUP/hpx/pull/2133
2776 https://github.com/STEllAR-GROUP/hpx/pull/2132
2777 https://github.com/STEllAR-GROUP/hpx/pull/2131
2778 https://github.com/STEllAR-GROUP/hpx/pull/2130
2779 https://github.com/STEllAR-GROUP/hpx/pull/2129
2780 https://github.com/STEllAR-GROUP/hpx/issues/2128
2781 https://github.com/STEllAR-GROUP/hpx/pull/2127
2782 https://github.com/STEllAR-GROUP/hpx/pull/2126

1342 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2151
https://github.com/STEllAR-GROUP/hpx/issues/2150
https://github.com/STEllAR-GROUP/hpx/pull/2149
https://github.com/STEllAR-GROUP/hpx/pull/2146
https://github.com/STEllAR-GROUP/hpx/pull/2145
https://github.com/STEllAR-GROUP/hpx/issues/2148
https://github.com/STEllAR-GROUP/hpx/pull/2144
https://github.com/STEllAR-GROUP/hpx/pull/2143
https://github.com/STEllAR-GROUP/hpx/pull/2142
https://github.com/STEllAR-GROUP/hpx/pull/2141
https://github.com/STEllAR-GROUP/hpx/pull/2139
https://github.com/STEllAR-GROUP/hpx/pull/2138
https://github.com/STEllAR-GROUP/hpx/pull/2136
https://github.com/STEllAR-GROUP/hpx/pull/2135
https://github.com/STEllAR-GROUP/hpx/pull/2134
https://github.com/STEllAR-GROUP/hpx/pull/2133
https://github.com/STEllAR-GROUP/hpx/pull/2132
https://github.com/STEllAR-GROUP/hpx/pull/2131
https://github.com/STEllAR-GROUP/hpx/pull/2130
https://github.com/STEllAR-GROUP/hpx/pull/2129
https://github.com/STEllAR-GROUP/hpx/issues/2128
https://github.com/STEllAR-GROUP/hpx/pull/2127
https://github.com/STEllAR-GROUP/hpx/pull/2126

HPX Documentation, 1.5.1

• PR #21252783 - Making parcel coalescing test actually test something

• Issue #21242784 - Make a testcase for parcel compression

• Issue #21232785 - hpx/hpx/runtime/applier_fwd.hpp - Multiple defined types

• Issue #21222786 - Exception in primary_namespace::resolve_free_list

• Issue #21212787 - Possible memory leak in 1d_stencil_8

• PR #21202788 - Fixing 2119

• Issue #21192789 - reduce_by_key compilation problems

• Issue #21182790 - Premature unwrapping of boost::ref’ed arguments

• PR #21172791 - Added missing initializer on last constructor for thread_description

• PR #21162792 - Use a lightweight bind implementation when no placeholders are given

• PR #21152793 - Replace boost::shared_ptr with std::shared_ptr

• PR #21142794 - Adding hook functions for executor_parameter_traits supporting timers

• Issue #21132795 - Compilation error with gcc version 4.9.3 (MacPorts gcc49 4.9.3_0)

• PR #21122796 - Replace uses of safe_bool with explicit operator bool

• Issue #21112797 - Compilation error on QT example

• Issue #21102798 - Compilation error when passing non-future argument to unwrapped continuation in dataflow

• Issue #21092799 - Warning while compiling hpx

• Issue #21092800 - Stack trace of last bug causing issues with octotiger

• Issue #21082801 - Stack trace of last bug causing issues with octotiger

• PR #21072802 - Making sure that a missing parcel_coalescing module does not cause startup exceptions

• PR #21062803 - Stop using hpx_fwd.hpp

• Issue #21052804 - coalescing plugin handler is not optional any more

• Issue #21042805 - Make executor_traits N-nary

2783 https://github.com/STEllAR-GROUP/hpx/pull/2125
2784 https://github.com/STEllAR-GROUP/hpx/issues/2124
2785 https://github.com/STEllAR-GROUP/hpx/issues/2123
2786 https://github.com/STEllAR-GROUP/hpx/issues/2122
2787 https://github.com/STEllAR-GROUP/hpx/issues/2121
2788 https://github.com/STEllAR-GROUP/hpx/pull/2120
2789 https://github.com/STEllAR-GROUP/hpx/issues/2119
2790 https://github.com/STEllAR-GROUP/hpx/issues/2118
2791 https://github.com/STEllAR-GROUP/hpx/pull/2117
2792 https://github.com/STEllAR-GROUP/hpx/pull/2116
2793 https://github.com/STEllAR-GROUP/hpx/pull/2115
2794 https://github.com/STEllAR-GROUP/hpx/pull/2114
2795 https://github.com/STEllAR-GROUP/hpx/issues/2113
2796 https://github.com/STEllAR-GROUP/hpx/pull/2112
2797 https://github.com/STEllAR-GROUP/hpx/issues/2111
2798 https://github.com/STEllAR-GROUP/hpx/issues/2110
2799 https://github.com/STEllAR-GROUP/hpx/issues/2109
2800 https://github.com/STEllAR-GROUP/hpx/issues/2109
2801 https://github.com/STEllAR-GROUP/hpx/issues/2108
2802 https://github.com/STEllAR-GROUP/hpx/pull/2107
2803 https://github.com/STEllAR-GROUP/hpx/pull/2106
2804 https://github.com/STEllAR-GROUP/hpx/issues/2105
2805 https://github.com/STEllAR-GROUP/hpx/issues/2104

2.11. Releases 1343

https://github.com/STEllAR-GROUP/hpx/pull/2125
https://github.com/STEllAR-GROUP/hpx/issues/2124
https://github.com/STEllAR-GROUP/hpx/issues/2123
https://github.com/STEllAR-GROUP/hpx/issues/2122
https://github.com/STEllAR-GROUP/hpx/issues/2121
https://github.com/STEllAR-GROUP/hpx/pull/2120
https://github.com/STEllAR-GROUP/hpx/issues/2119
https://github.com/STEllAR-GROUP/hpx/issues/2118
https://github.com/STEllAR-GROUP/hpx/pull/2117
https://github.com/STEllAR-GROUP/hpx/pull/2116
https://github.com/STEllAR-GROUP/hpx/pull/2115
https://github.com/STEllAR-GROUP/hpx/pull/2114
https://github.com/STEllAR-GROUP/hpx/issues/2113
https://github.com/STEllAR-GROUP/hpx/pull/2112
https://github.com/STEllAR-GROUP/hpx/issues/2111
https://github.com/STEllAR-GROUP/hpx/issues/2110
https://github.com/STEllAR-GROUP/hpx/issues/2109
https://github.com/STEllAR-GROUP/hpx/issues/2109
https://github.com/STEllAR-GROUP/hpx/issues/2108
https://github.com/STEllAR-GROUP/hpx/pull/2107
https://github.com/STEllAR-GROUP/hpx/pull/2106
https://github.com/STEllAR-GROUP/hpx/issues/2105
https://github.com/STEllAR-GROUP/hpx/issues/2104

HPX Documentation, 1.5.1

• Issue #21032806 - Build error with octotiger and hpx commit e657426d

• PR #21022807 - Combining thread data storage

• PR #21012808 - Added repartition version of 1d stencil that uses any performance counter

• PR #21002809 - Drop obsolete TR1 result_of protocol

• PR #20992810 - Replace uses of boost::bind with util::bind

• PR #20982811 - Deprecated inspect checks

• PR #20972812 - Reduce by key, extends #1141

• PR #20962813 - Moving local cache from external to hpx/util

• PR #20952814 - Bump minimum required Boost to 1.50.0

• PR #20942815 - Add include checks for several Boost utilities

• Issue #20932816 - /. . . /local_cache.hpp(89): error #303: explicit type is missing (“int” assumed)

• PR #20912817 - Fix for Raspberry pi build

• PR #20902818 - Fix storage size for util::function<>

• PR #20892819 - Fix #2088

• Issue #20882820 - More verbose output from cmake configuration

• PR #20872821 - Making sure init_globally always executes hpx_main

• Issue #20862822 - Race condition with recent HPX

• PR #20852823 - Adding #include checker

• PR #20842824 - Replace boost lock types with standard library ones

• PR #20832825 - Simplify packaged task

• PR #20822826 - Updating APEX version for testing

• PR #20812827 - Cleanup exception headers

• PR #20802828 - Make call_once variadic
2806 https://github.com/STEllAR-GROUP/hpx/issues/2103
2807 https://github.com/STEllAR-GROUP/hpx/pull/2102
2808 https://github.com/STEllAR-GROUP/hpx/pull/2101
2809 https://github.com/STEllAR-GROUP/hpx/pull/2100
2810 https://github.com/STEllAR-GROUP/hpx/pull/2099
2811 https://github.com/STEllAR-GROUP/hpx/pull/2098
2812 https://github.com/STEllAR-GROUP/hpx/pull/2097
2813 https://github.com/STEllAR-GROUP/hpx/pull/2096
2814 https://github.com/STEllAR-GROUP/hpx/pull/2095
2815 https://github.com/STEllAR-GROUP/hpx/pull/2094
2816 https://github.com/STEllAR-GROUP/hpx/issues/2093
2817 https://github.com/STEllAR-GROUP/hpx/pull/2091
2818 https://github.com/STEllAR-GROUP/hpx/pull/2090
2819 https://github.com/STEllAR-GROUP/hpx/pull/2089
2820 https://github.com/STEllAR-GROUP/hpx/issues/2088
2821 https://github.com/STEllAR-GROUP/hpx/pull/2087
2822 https://github.com/STEllAR-GROUP/hpx/issues/2086
2823 https://github.com/STEllAR-GROUP/hpx/pull/2085
2824 https://github.com/STEllAR-GROUP/hpx/pull/2084
2825 https://github.com/STEllAR-GROUP/hpx/pull/2083
2826 https://github.com/STEllAR-GROUP/hpx/pull/2082
2827 https://github.com/STEllAR-GROUP/hpx/pull/2081
2828 https://github.com/STEllAR-GROUP/hpx/pull/2080

1344 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2103
https://github.com/STEllAR-GROUP/hpx/pull/2102
https://github.com/STEllAR-GROUP/hpx/pull/2101
https://github.com/STEllAR-GROUP/hpx/pull/2100
https://github.com/STEllAR-GROUP/hpx/pull/2099
https://github.com/STEllAR-GROUP/hpx/pull/2098
https://github.com/STEllAR-GROUP/hpx/pull/2097
https://github.com/STEllAR-GROUP/hpx/pull/2096
https://github.com/STEllAR-GROUP/hpx/pull/2095
https://github.com/STEllAR-GROUP/hpx/pull/2094
https://github.com/STEllAR-GROUP/hpx/issues/2093
https://github.com/STEllAR-GROUP/hpx/pull/2091
https://github.com/STEllAR-GROUP/hpx/pull/2090
https://github.com/STEllAR-GROUP/hpx/pull/2089
https://github.com/STEllAR-GROUP/hpx/issues/2088
https://github.com/STEllAR-GROUP/hpx/pull/2087
https://github.com/STEllAR-GROUP/hpx/issues/2086
https://github.com/STEllAR-GROUP/hpx/pull/2085
https://github.com/STEllAR-GROUP/hpx/pull/2084
https://github.com/STEllAR-GROUP/hpx/pull/2083
https://github.com/STEllAR-GROUP/hpx/pull/2082
https://github.com/STEllAR-GROUP/hpx/pull/2081
https://github.com/STEllAR-GROUP/hpx/pull/2080

HPX Documentation, 1.5.1

• Issue #20792829 - With GNU C++, line 85 of hpx/config/version.hpp causes link failure when linking application

• Issue #20782830 - Simple test fails with _GLIBCXX_DEBUG defined

• PR #20772831 - Instantiate board in nqueen client

• PR #20762832 - Moving coalescing registration to TUs

• PR #20752833 - Fixed some documentation typos

• PR #20742834 - Adding flush-mode to message handler flush

• PR #20732835 - Fixing performance regression introduced lately

• PR #20722836 - Refactor local::condition_variable

• PR #20712837 - Timer based on boost::asio::deadline_timer

• PR #20702838 - Refactor tuple based functionality

• PR #20692839 - Fixed typos

• Issue #20682840 - Seg fault with octotiger

• PR #20672841 - Algorithm cleanup

• PR #20662842 - Split credit fixes

• PR #20652843 - Rename HPX_MOVABLE_BUT_NOT_COPYABLE to HPX_MOVABLE_ONLY

• PR #20642844 - Fixed some typos in docs

• PR #20632845 - Adding example demonstrating template components

• Issue #20622846 - Support component templates

• PR #20612847 - Replace some uses of lexical_cast<string> with C++11 std::to_string

• PR #20602848 - Replace uses of boost::noncopyable with HPX_NON_COPYABLE

• PR #20592849 - Adding missing for_loop algorithms

• PR #20582850 - Move several definitions to more appropriate headers

• PR #20572851 - Simplify assert_owns_lock and ignore_while_checking

2829 https://github.com/STEllAR-GROUP/hpx/issues/2079
2830 https://github.com/STEllAR-GROUP/hpx/issues/2078
2831 https://github.com/STEllAR-GROUP/hpx/pull/2077
2832 https://github.com/STEllAR-GROUP/hpx/pull/2076
2833 https://github.com/STEllAR-GROUP/hpx/pull/2075
2834 https://github.com/STEllAR-GROUP/hpx/pull/2074
2835 https://github.com/STEllAR-GROUP/hpx/pull/2073
2836 https://github.com/STEllAR-GROUP/hpx/pull/2072
2837 https://github.com/STEllAR-GROUP/hpx/pull/2071
2838 https://github.com/STEllAR-GROUP/hpx/pull/2070
2839 https://github.com/STEllAR-GROUP/hpx/pull/2069
2840 https://github.com/STEllAR-GROUP/hpx/issues/2068
2841 https://github.com/STEllAR-GROUP/hpx/pull/2067
2842 https://github.com/STEllAR-GROUP/hpx/pull/2066
2843 https://github.com/STEllAR-GROUP/hpx/pull/2065
2844 https://github.com/STEllAR-GROUP/hpx/pull/2064
2845 https://github.com/STEllAR-GROUP/hpx/pull/2063
2846 https://github.com/STEllAR-GROUP/hpx/issues/2062
2847 https://github.com/STEllAR-GROUP/hpx/pull/2061
2848 https://github.com/STEllAR-GROUP/hpx/pull/2060
2849 https://github.com/STEllAR-GROUP/hpx/pull/2059
2850 https://github.com/STEllAR-GROUP/hpx/pull/2058
2851 https://github.com/STEllAR-GROUP/hpx/pull/2057

2.11. Releases 1345

https://github.com/STEllAR-GROUP/hpx/issues/2079
https://github.com/STEllAR-GROUP/hpx/issues/2078
https://github.com/STEllAR-GROUP/hpx/pull/2077
https://github.com/STEllAR-GROUP/hpx/pull/2076
https://github.com/STEllAR-GROUP/hpx/pull/2075
https://github.com/STEllAR-GROUP/hpx/pull/2074
https://github.com/STEllAR-GROUP/hpx/pull/2073
https://github.com/STEllAR-GROUP/hpx/pull/2072
https://github.com/STEllAR-GROUP/hpx/pull/2071
https://github.com/STEllAR-GROUP/hpx/pull/2070
https://github.com/STEllAR-GROUP/hpx/pull/2069
https://github.com/STEllAR-GROUP/hpx/issues/2068
https://github.com/STEllAR-GROUP/hpx/pull/2067
https://github.com/STEllAR-GROUP/hpx/pull/2066
https://github.com/STEllAR-GROUP/hpx/pull/2065
https://github.com/STEllAR-GROUP/hpx/pull/2064
https://github.com/STEllAR-GROUP/hpx/pull/2063
https://github.com/STEllAR-GROUP/hpx/issues/2062
https://github.com/STEllAR-GROUP/hpx/pull/2061
https://github.com/STEllAR-GROUP/hpx/pull/2060
https://github.com/STEllAR-GROUP/hpx/pull/2059
https://github.com/STEllAR-GROUP/hpx/pull/2058
https://github.com/STEllAR-GROUP/hpx/pull/2057

HPX Documentation, 1.5.1

• PR #20562852 - Replacing std::result_of with util::result_of

• PR #20552853 - Fix process launching/connecting back

• PR #20542854 - Add a forwarding coroutine header

• PR #20532855 - Replace uses of boost::unordered_map with std::unordered_map

• PR #20522856 - Rewrite tuple unwrap

• PR #20502857 - Replace uses of BOOST_SCOPED_ENUM with C++11 scoped enums

• PR #20492858 - Attempt to narrow down split_credit problem

• PR #20482859 - Fixing gcc startup hangs

• PR #20472860 - Fixing when_xxx and wait_xxx for MSVC12

• PR #20462861 - adding persistent_auto_chunk_size and related tests for for_each

• PR #20452862 - Fixing HPX_HAVE_THREAD_BACKTRACE_DEPTH build time configuration

• PR #20442863 - Adding missing service executor types

• PR #20432864 - Removing ambiguous definitions for is_future_range and future_range_traits

• PR #20422865 - Clarify that HPX builds can use (much) more than 2GB per process

• PR #20412866 - Changing future_iterator_traits to support pointers

• Issue #20402867 - Improve documentation memory usage warning?

• PR #20392868 - Coroutine cleanup

• PR #20382869 - Fix cmake policy CMP0042 warning MACOSX_RPATH

• PR #20372870 - Avoid redundant specialization of [unique_]function_nonser

• PR #20362871 - nvcc dies with an internal error upon pushing/popping warnings inside templates

• Issue #20352872 - Use a less restrictive iterator definition in hpx::lcos::detail::future_iterator_traits

• PR #20342873 - Fixing compilation error with thread queue wait time performance counter

• Issue #20332874 - Compilation error when compiling with thread queue waittime performance counter

2852 https://github.com/STEllAR-GROUP/hpx/pull/2056
2853 https://github.com/STEllAR-GROUP/hpx/pull/2055
2854 https://github.com/STEllAR-GROUP/hpx/pull/2054
2855 https://github.com/STEllAR-GROUP/hpx/pull/2053
2856 https://github.com/STEllAR-GROUP/hpx/pull/2052
2857 https://github.com/STEllAR-GROUP/hpx/pull/2050
2858 https://github.com/STEllAR-GROUP/hpx/pull/2049
2859 https://github.com/STEllAR-GROUP/hpx/pull/2048
2860 https://github.com/STEllAR-GROUP/hpx/pull/2047
2861 https://github.com/STEllAR-GROUP/hpx/pull/2046
2862 https://github.com/STEllAR-GROUP/hpx/pull/2045
2863 https://github.com/STEllAR-GROUP/hpx/pull/2044
2864 https://github.com/STEllAR-GROUP/hpx/pull/2043
2865 https://github.com/STEllAR-GROUP/hpx/pull/2042
2866 https://github.com/STEllAR-GROUP/hpx/pull/2041
2867 https://github.com/STEllAR-GROUP/hpx/issues/2040
2868 https://github.com/STEllAR-GROUP/hpx/pull/2039
2869 https://github.com/STEllAR-GROUP/hpx/pull/2038
2870 https://github.com/STEllAR-GROUP/hpx/pull/2037
2871 https://github.com/STEllAR-GROUP/hpx/pull/2036
2872 https://github.com/STEllAR-GROUP/hpx/issues/2035
2873 https://github.com/STEllAR-GROUP/hpx/pull/2034
2874 https://github.com/STEllAR-GROUP/hpx/issues/2033

1346 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/2056
https://github.com/STEllAR-GROUP/hpx/pull/2055
https://github.com/STEllAR-GROUP/hpx/pull/2054
https://github.com/STEllAR-GROUP/hpx/pull/2053
https://github.com/STEllAR-GROUP/hpx/pull/2052
https://github.com/STEllAR-GROUP/hpx/pull/2050
https://github.com/STEllAR-GROUP/hpx/pull/2049
https://github.com/STEllAR-GROUP/hpx/pull/2048
https://github.com/STEllAR-GROUP/hpx/pull/2047
https://github.com/STEllAR-GROUP/hpx/pull/2046
https://github.com/STEllAR-GROUP/hpx/pull/2045
https://github.com/STEllAR-GROUP/hpx/pull/2044
https://github.com/STEllAR-GROUP/hpx/pull/2043
https://github.com/STEllAR-GROUP/hpx/pull/2042
https://github.com/STEllAR-GROUP/hpx/pull/2041
https://github.com/STEllAR-GROUP/hpx/issues/2040
https://github.com/STEllAR-GROUP/hpx/pull/2039
https://github.com/STEllAR-GROUP/hpx/pull/2038
https://github.com/STEllAR-GROUP/hpx/pull/2037
https://github.com/STEllAR-GROUP/hpx/pull/2036
https://github.com/STEllAR-GROUP/hpx/issues/2035
https://github.com/STEllAR-GROUP/hpx/pull/2034
https://github.com/STEllAR-GROUP/hpx/issues/2033

HPX Documentation, 1.5.1

• Issue #20322875 - Ambiguous template instantiation for is_future_range and future_range_traits.

• PR #20312876 - Don’t restart timer on every incoming parcel

• PR #20302877 - Unify handling of execution policies in parallel algorithms

• PR #20292878 - Make pkg-config .pc files use .dylib on OSX

• PR #20282879 - Adding process component

• PR #20272880 - Making check for compiler compatibility independent on compiler path

• PR #20252881 - Fixing inspect tool

• PR #20242882 - Intel13 removal

• PR #20232883 - Fix errors related to older boost versions and parameter pack expansions in lambdas

• Issue #20222884 - gmake fail: “No rule to make target /usr/lib46/libboost_context-mt.so”

• PR #20212885 - Added Sudoku example

• Issue #20202886 - Make errors related to init_globally.cpp example while building HPX out of the box

• PR #20192887 - Fixed some compilation and cmake errors encountered in nqueen example

• PR #20182888 - For loop algorithms

• PR #20172889 - Non-recursive at_index implementation

• Issue #20162890 - Add index-based for-loops

• Issue #20152891 - Change default bind-mode to balanced

• PR #20142892 - Fixed dataflow if invoked action returns a future

• PR #20132893 - Fixing compilation issues with external example

• PR #20122894 - Added Sierpinski Triangle example

• Issue #20112895 - Compilation error while running sample hello_world_component code

• PR #20102896 - Segmented move implemented for hpx::vector

• Issue #20092897 - pkg-config order incorrect on 14.04 / GCC 4.8

2875 https://github.com/STEllAR-GROUP/hpx/issues/2032
2876 https://github.com/STEllAR-GROUP/hpx/pull/2031
2877 https://github.com/STEllAR-GROUP/hpx/pull/2030
2878 https://github.com/STEllAR-GROUP/hpx/pull/2029
2879 https://github.com/STEllAR-GROUP/hpx/pull/2028
2880 https://github.com/STEllAR-GROUP/hpx/pull/2027
2881 https://github.com/STEllAR-GROUP/hpx/pull/2025
2882 https://github.com/STEllAR-GROUP/hpx/pull/2024
2883 https://github.com/STEllAR-GROUP/hpx/pull/2023
2884 https://github.com/STEllAR-GROUP/hpx/issues/2022
2885 https://github.com/STEllAR-GROUP/hpx/pull/2021
2886 https://github.com/STEllAR-GROUP/hpx/issues/2020
2887 https://github.com/STEllAR-GROUP/hpx/pull/2019
2888 https://github.com/STEllAR-GROUP/hpx/pull/2018
2889 https://github.com/STEllAR-GROUP/hpx/pull/2017
2890 https://github.com/STEllAR-GROUP/hpx/issues/2016
2891 https://github.com/STEllAR-GROUP/hpx/issues/2015
2892 https://github.com/STEllAR-GROUP/hpx/pull/2014
2893 https://github.com/STEllAR-GROUP/hpx/pull/2013
2894 https://github.com/STEllAR-GROUP/hpx/pull/2012
2895 https://github.com/STEllAR-GROUP/hpx/issues/2011
2896 https://github.com/STEllAR-GROUP/hpx/pull/2010
2897 https://github.com/STEllAR-GROUP/hpx/issues/2009

2.11. Releases 1347

https://github.com/STEllAR-GROUP/hpx/issues/2032
https://github.com/STEllAR-GROUP/hpx/pull/2031
https://github.com/STEllAR-GROUP/hpx/pull/2030
https://github.com/STEllAR-GROUP/hpx/pull/2029
https://github.com/STEllAR-GROUP/hpx/pull/2028
https://github.com/STEllAR-GROUP/hpx/pull/2027
https://github.com/STEllAR-GROUP/hpx/pull/2025
https://github.com/STEllAR-GROUP/hpx/pull/2024
https://github.com/STEllAR-GROUP/hpx/pull/2023
https://github.com/STEllAR-GROUP/hpx/issues/2022
https://github.com/STEllAR-GROUP/hpx/pull/2021
https://github.com/STEllAR-GROUP/hpx/issues/2020
https://github.com/STEllAR-GROUP/hpx/pull/2019
https://github.com/STEllAR-GROUP/hpx/pull/2018
https://github.com/STEllAR-GROUP/hpx/pull/2017
https://github.com/STEllAR-GROUP/hpx/issues/2016
https://github.com/STEllAR-GROUP/hpx/issues/2015
https://github.com/STEllAR-GROUP/hpx/pull/2014
https://github.com/STEllAR-GROUP/hpx/pull/2013
https://github.com/STEllAR-GROUP/hpx/pull/2012
https://github.com/STEllAR-GROUP/hpx/issues/2011
https://github.com/STEllAR-GROUP/hpx/pull/2010
https://github.com/STEllAR-GROUP/hpx/issues/2009

HPX Documentation, 1.5.1

• Issue #20082898 - Compilation error in dataflow of action returning a future

• PR #20072899 - Adding new performance counter exposing overall scheduler time

• PR #20062900 - Function includes

• PR #20052901 - Adding an example demonstrating how to initialize HPX from a global object

• PR #20042902 - Fixing 2000

• PR #20032903 - Adding generation parameter to gather to enable using it more than once

• PR #20022904 - Turn on position independent code to solve link problem with hpx_init

• Issue #20012905 - Gathering more than once segfaults

• Issue #20002906 - Undefined reference to hpx::assertion_failed

• Issue #19992907 - Seg fault in hpx::lcos::base_lco_with_value<*>::set_value_nonvirt() when running octo-tiger

• PR #19982908 - Detect unknown command line options

• PR #19972909 - Extending thread description

• PR #19962910 - Adding natvis files to solution (MSVC only)

• Issue #19952911 - Command line handling does not produce error

• PR #19942912 - Possible missing include in test_utils.hpp

• PR #19932913 - Add missing LANGUAGES tag to a hpx_add_compile_flag_if_available() call in CMake-
Lists.txt

• PR #19922914 - Fixing shared_executor_test

• PR #19912915 - Making sure the winsock library is properly initialized

• PR #19902916 - Fixing bind_test placeholder ambiguity coming from boost-1.60

• PR #19892917 - Performance tuning

• PR #19872918 - Make configurable size of internal storage in util::function

• PR #19862919 - AGAS Refactoring+1753 Cache mods

• PR #19852920 - Adding missing task_block::run() overload taking an executor

2898 https://github.com/STEllAR-GROUP/hpx/issues/2008
2899 https://github.com/STEllAR-GROUP/hpx/pull/2007
2900 https://github.com/STEllAR-GROUP/hpx/pull/2006
2901 https://github.com/STEllAR-GROUP/hpx/pull/2005
2902 https://github.com/STEllAR-GROUP/hpx/pull/2004
2903 https://github.com/STEllAR-GROUP/hpx/pull/2003
2904 https://github.com/STEllAR-GROUP/hpx/pull/2002
2905 https://github.com/STEllAR-GROUP/hpx/issues/2001
2906 https://github.com/STEllAR-GROUP/hpx/issues/2000
2907 https://github.com/STEllAR-GROUP/hpx/issues/1999
2908 https://github.com/STEllAR-GROUP/hpx/pull/1998
2909 https://github.com/STEllAR-GROUP/hpx/pull/1997
2910 https://github.com/STEllAR-GROUP/hpx/pull/1996
2911 https://github.com/STEllAR-GROUP/hpx/issues/1995
2912 https://github.com/STEllAR-GROUP/hpx/pull/1994
2913 https://github.com/STEllAR-GROUP/hpx/pull/1993
2914 https://github.com/STEllAR-GROUP/hpx/pull/1992
2915 https://github.com/STEllAR-GROUP/hpx/pull/1991
2916 https://github.com/STEllAR-GROUP/hpx/pull/1990
2917 https://github.com/STEllAR-GROUP/hpx/pull/1989
2918 https://github.com/STEllAR-GROUP/hpx/pull/1987
2919 https://github.com/STEllAR-GROUP/hpx/pull/1986
2920 https://github.com/STEllAR-GROUP/hpx/pull/1985

1348 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/2008
https://github.com/STEllAR-GROUP/hpx/pull/2007
https://github.com/STEllAR-GROUP/hpx/pull/2006
https://github.com/STEllAR-GROUP/hpx/pull/2005
https://github.com/STEllAR-GROUP/hpx/pull/2004
https://github.com/STEllAR-GROUP/hpx/pull/2003
https://github.com/STEllAR-GROUP/hpx/pull/2002
https://github.com/STEllAR-GROUP/hpx/issues/2001
https://github.com/STEllAR-GROUP/hpx/issues/2000
https://github.com/STEllAR-GROUP/hpx/issues/1999
https://github.com/STEllAR-GROUP/hpx/pull/1998
https://github.com/STEllAR-GROUP/hpx/pull/1997
https://github.com/STEllAR-GROUP/hpx/pull/1996
https://github.com/STEllAR-GROUP/hpx/issues/1995
https://github.com/STEllAR-GROUP/hpx/pull/1994
https://github.com/STEllAR-GROUP/hpx/pull/1993
https://github.com/STEllAR-GROUP/hpx/pull/1992
https://github.com/STEllAR-GROUP/hpx/pull/1991
https://github.com/STEllAR-GROUP/hpx/pull/1990
https://github.com/STEllAR-GROUP/hpx/pull/1989
https://github.com/STEllAR-GROUP/hpx/pull/1987
https://github.com/STEllAR-GROUP/hpx/pull/1986
https://github.com/STEllAR-GROUP/hpx/pull/1985

HPX Documentation, 1.5.1

• PR #19842921 - Adding an optimized LRU Cache implementation (for AGAS)

• PR #19832922 - Avoid invoking migration table look up for all objects

• PR #19812923 - Replacing uintptr_t (which is not defined everywhere) with std::size_t

• PR #19802924 - Optimizing LCO continuations

• PR #19792925 - Fixing Cori

• PR #19782926 - Fix test check that got broken in hasty fix to memory overflow

• PR #19772927 - Refactor action traits

• PR #19762928 - Fixes typo in README.rst

• PR #19752929 - Reduce size of benchmark timing arrays to fix test failures

• PR #19742930 - Add action to update data owned by the partitioned_vector component

• PR #19722931 - Adding partitioned_vector SPMD example

• PR #19712932 - Fixing 1965

• PR #19702933 - Papi fixes

• PR #19692934 - Fixing continuation recursions to not depend on fixed amount of recursions

• PR #19682935 - More segmented algorithms

• Issue #19672936 - Simplify component implementations

• PR #19662937 - Migrate components

• Issue #19642938 - fatal error: ‘boost/lockfree/detail/branch_hints.hpp’ file not found

• Issue #19622939 - parallel:copy_if has race condition when used on in place arrays

• PR #19632940 - Fixing Static Parcelport initialization

• PR #19612941 - Fix function target

• Issue #19602942 - Papi counters don’t reset

• PR #19592943 - Fixing 1958

2921 https://github.com/STEllAR-GROUP/hpx/pull/1984
2922 https://github.com/STEllAR-GROUP/hpx/pull/1983
2923 https://github.com/STEllAR-GROUP/hpx/pull/1981
2924 https://github.com/STEllAR-GROUP/hpx/pull/1980
2925 https://github.com/STEllAR-GROUP/hpx/pull/1979
2926 https://github.com/STEllAR-GROUP/hpx/pull/1978
2927 https://github.com/STEllAR-GROUP/hpx/pull/1977
2928 https://github.com/STEllAR-GROUP/hpx/pull/1976
2929 https://github.com/STEllAR-GROUP/hpx/pull/1975
2930 https://github.com/STEllAR-GROUP/hpx/pull/1974
2931 https://github.com/STEllAR-GROUP/hpx/pull/1972
2932 https://github.com/STEllAR-GROUP/hpx/pull/1971
2933 https://github.com/STEllAR-GROUP/hpx/pull/1970
2934 https://github.com/STEllAR-GROUP/hpx/pull/1969
2935 https://github.com/STEllAR-GROUP/hpx/pull/1968
2936 https://github.com/STEllAR-GROUP/hpx/issues/1967
2937 https://github.com/STEllAR-GROUP/hpx/pull/1966
2938 https://github.com/STEllAR-GROUP/hpx/issues/1964
2939 https://github.com/STEllAR-GROUP/hpx/issues/1962
2940 https://github.com/STEllAR-GROUP/hpx/pull/1963
2941 https://github.com/STEllAR-GROUP/hpx/pull/1961
2942 https://github.com/STEllAR-GROUP/hpx/issues/1960
2943 https://github.com/STEllAR-GROUP/hpx/pull/1959

2.11. Releases 1349

https://github.com/STEllAR-GROUP/hpx/pull/1984
https://github.com/STEllAR-GROUP/hpx/pull/1983
https://github.com/STEllAR-GROUP/hpx/pull/1981
https://github.com/STEllAR-GROUP/hpx/pull/1980
https://github.com/STEllAR-GROUP/hpx/pull/1979
https://github.com/STEllAR-GROUP/hpx/pull/1978
https://github.com/STEllAR-GROUP/hpx/pull/1977
https://github.com/STEllAR-GROUP/hpx/pull/1976
https://github.com/STEllAR-GROUP/hpx/pull/1975
https://github.com/STEllAR-GROUP/hpx/pull/1974
https://github.com/STEllAR-GROUP/hpx/pull/1972
https://github.com/STEllAR-GROUP/hpx/pull/1971
https://github.com/STEllAR-GROUP/hpx/pull/1970
https://github.com/STEllAR-GROUP/hpx/pull/1969
https://github.com/STEllAR-GROUP/hpx/pull/1968
https://github.com/STEllAR-GROUP/hpx/issues/1967
https://github.com/STEllAR-GROUP/hpx/pull/1966
https://github.com/STEllAR-GROUP/hpx/issues/1964
https://github.com/STEllAR-GROUP/hpx/issues/1962
https://github.com/STEllAR-GROUP/hpx/pull/1963
https://github.com/STEllAR-GROUP/hpx/pull/1961
https://github.com/STEllAR-GROUP/hpx/issues/1960
https://github.com/STEllAR-GROUP/hpx/pull/1959

HPX Documentation, 1.5.1

• Issue #19582944 - inclusive_scan gives incorrect results with non-commutative operator

• PR #19572945 - Fixing #1950

• PR #19562946 - Sort by key example

• PR #19552947 - Adding regression test for #1946: Hang in wait_all() in distributed run

• Issue #19542948 - HPX releases should not use -Werror

• PR #19532949 - Adding performance analysis for AGAS cache

• PR #19522950 - Adapting test for explicit variadics to fail for gcc 4.6

• PR #19512951 - Fixing memory leak

• Issue #19502952 - Simplify external builds

• PR #19492953 - Fixing yet another lock that is being held during suspension

• PR #19482954 - Fixed container algorithms for Intel

• PR #19472955 - Adding workaround for tagged_tuple

• Issue #19462956 - Hang in wait_all() in distributed run

• PR #19452957 - Fixed container algorithm tests

• Issue #19442958 - assertion ‘p.destination_locality() == hpx::get_locality()’ failed

• PR #19432959 - Fix a couple of compile errors with clang

• PR #19422960 - Making parcel coalescing functional

• Issue #19412961 - Re-enable parcel coalescing

• PR #19402962 - Touching up make_future

• PR #19392963 - Fixing problems in over-subscription management in the resource manager

• PR #19382964 - Removing use of unified Boost.Thread header

• PR #19372965 - Cleaning up the use of Boost.Accumulator headers

• PR #19362966 - Making sure interval timer is started for aggregating performance counters

2944 https://github.com/STEllAR-GROUP/hpx/issues/1958
2945 https://github.com/STEllAR-GROUP/hpx/pull/1957
2946 https://github.com/STEllAR-GROUP/hpx/pull/1956
2947 https://github.com/STEllAR-GROUP/hpx/pull/1955
2948 https://github.com/STEllAR-GROUP/hpx/issues/1954
2949 https://github.com/STEllAR-GROUP/hpx/pull/1953
2950 https://github.com/STEllAR-GROUP/hpx/pull/1952
2951 https://github.com/STEllAR-GROUP/hpx/pull/1951
2952 https://github.com/STEllAR-GROUP/hpx/issues/1950
2953 https://github.com/STEllAR-GROUP/hpx/pull/1949
2954 https://github.com/STEllAR-GROUP/hpx/pull/1948
2955 https://github.com/STEllAR-GROUP/hpx/pull/1947
2956 https://github.com/STEllAR-GROUP/hpx/issues/1946
2957 https://github.com/STEllAR-GROUP/hpx/pull/1945
2958 https://github.com/STEllAR-GROUP/hpx/issues/1944
2959 https://github.com/STEllAR-GROUP/hpx/pull/1943
2960 https://github.com/STEllAR-GROUP/hpx/pull/1942
2961 https://github.com/STEllAR-GROUP/hpx/issues/1941
2962 https://github.com/STEllAR-GROUP/hpx/pull/1940
2963 https://github.com/STEllAR-GROUP/hpx/pull/1939
2964 https://github.com/STEllAR-GROUP/hpx/pull/1938
2965 https://github.com/STEllAR-GROUP/hpx/pull/1937
2966 https://github.com/STEllAR-GROUP/hpx/pull/1936

1350 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1958
https://github.com/STEllAR-GROUP/hpx/pull/1957
https://github.com/STEllAR-GROUP/hpx/pull/1956
https://github.com/STEllAR-GROUP/hpx/pull/1955
https://github.com/STEllAR-GROUP/hpx/issues/1954
https://github.com/STEllAR-GROUP/hpx/pull/1953
https://github.com/STEllAR-GROUP/hpx/pull/1952
https://github.com/STEllAR-GROUP/hpx/pull/1951
https://github.com/STEllAR-GROUP/hpx/issues/1950
https://github.com/STEllAR-GROUP/hpx/pull/1949
https://github.com/STEllAR-GROUP/hpx/pull/1948
https://github.com/STEllAR-GROUP/hpx/pull/1947
https://github.com/STEllAR-GROUP/hpx/issues/1946
https://github.com/STEllAR-GROUP/hpx/pull/1945
https://github.com/STEllAR-GROUP/hpx/issues/1944
https://github.com/STEllAR-GROUP/hpx/pull/1943
https://github.com/STEllAR-GROUP/hpx/pull/1942
https://github.com/STEllAR-GROUP/hpx/issues/1941
https://github.com/STEllAR-GROUP/hpx/pull/1940
https://github.com/STEllAR-GROUP/hpx/pull/1939
https://github.com/STEllAR-GROUP/hpx/pull/1938
https://github.com/STEllAR-GROUP/hpx/pull/1937
https://github.com/STEllAR-GROUP/hpx/pull/1936

HPX Documentation, 1.5.1

• PR #19352967 - Tagged results

• PR #19342968 - Fix remote async with deferred launch policy

• Issue #19332969 - Floating point exception in statistics_counter<boost::accumulators::tag::mean>::get_counter_value

• PR #19322970 - Removing superfluous includes of boost/lockfree/detail/branch_hints.hpp

• PR #19312971 - fix compilation with clang 3.8.0

• Issue #19302972 - Missing online documentation for HPX 0.9.11

• PR #19292973 - LWG2485: get() should be overloaded for const tuple&&

• PR #19282974 - Revert “Using ninja for circle-ci builds”

• PR #19272975 - Using ninja for circle-ci builds

• PR #19262976 - Fixing serialization of std::array

• Issue #19252977 - Issues with static HPX libraries

• Issue #19242978 - Performance degrading over time

• Issue #19232979 - serialization of std::array appears broken in latest commit

• PR #19222980 - Container algorithms

• PR #19212981 - Tons of smaller quality improvements

• Issue #19202982 - Seg fault in hpx::serialization::output_archive::add_gid when running octotiger

• Issue #19192983 - Intel 15 compiler bug preventing HPX build

• PR #19182984 - Address sanitizer fixes

• PR #19172985 - Fixing compilation problems of parallel::sort with Intel compilers

• PR #19162986 - Making sure code compiles if HPX_WITH_HWLOC=Off

• Issue #19152987 - max_cores undefined if HPX_WITH_HWLOC=Off

• PR #19132988 - Add utility member functions for partitioned_vector

• PR #19122989 - Adding support for invoking actions to dataflow

2967 https://github.com/STEllAR-GROUP/hpx/pull/1935
2968 https://github.com/STEllAR-GROUP/hpx/pull/1934
2969 https://github.com/STEllAR-GROUP/hpx/issues/1933
2970 https://github.com/STEllAR-GROUP/hpx/pull/1932
2971 https://github.com/STEllAR-GROUP/hpx/pull/1931
2972 https://github.com/STEllAR-GROUP/hpx/issues/1930
2973 https://github.com/STEllAR-GROUP/hpx/pull/1929
2974 https://github.com/STEllAR-GROUP/hpx/pull/1928
2975 https://github.com/STEllAR-GROUP/hpx/pull/1927
2976 https://github.com/STEllAR-GROUP/hpx/pull/1926
2977 https://github.com/STEllAR-GROUP/hpx/issues/1925
2978 https://github.com/STEllAR-GROUP/hpx/issues/1924
2979 https://github.com/STEllAR-GROUP/hpx/issues/1923
2980 https://github.com/STEllAR-GROUP/hpx/pull/1922
2981 https://github.com/STEllAR-GROUP/hpx/pull/1921
2982 https://github.com/STEllAR-GROUP/hpx/issues/1920
2983 https://github.com/STEllAR-GROUP/hpx/issues/1919
2984 https://github.com/STEllAR-GROUP/hpx/pull/1918
2985 https://github.com/STEllAR-GROUP/hpx/pull/1917
2986 https://github.com/STEllAR-GROUP/hpx/pull/1916
2987 https://github.com/STEllAR-GROUP/hpx/issues/1915
2988 https://github.com/STEllAR-GROUP/hpx/pull/1913
2989 https://github.com/STEllAR-GROUP/hpx/pull/1912

2.11. Releases 1351

https://github.com/STEllAR-GROUP/hpx/pull/1935
https://github.com/STEllAR-GROUP/hpx/pull/1934
https://github.com/STEllAR-GROUP/hpx/issues/1933
https://github.com/STEllAR-GROUP/hpx/pull/1932
https://github.com/STEllAR-GROUP/hpx/pull/1931
https://github.com/STEllAR-GROUP/hpx/issues/1930
https://github.com/STEllAR-GROUP/hpx/pull/1929
https://github.com/STEllAR-GROUP/hpx/pull/1928
https://github.com/STEllAR-GROUP/hpx/pull/1927
https://github.com/STEllAR-GROUP/hpx/pull/1926
https://github.com/STEllAR-GROUP/hpx/issues/1925
https://github.com/STEllAR-GROUP/hpx/issues/1924
https://github.com/STEllAR-GROUP/hpx/issues/1923
https://github.com/STEllAR-GROUP/hpx/pull/1922
https://github.com/STEllAR-GROUP/hpx/pull/1921
https://github.com/STEllAR-GROUP/hpx/issues/1920
https://github.com/STEllAR-GROUP/hpx/issues/1919
https://github.com/STEllAR-GROUP/hpx/pull/1918
https://github.com/STEllAR-GROUP/hpx/pull/1917
https://github.com/STEllAR-GROUP/hpx/pull/1916
https://github.com/STEllAR-GROUP/hpx/issues/1915
https://github.com/STEllAR-GROUP/hpx/pull/1913
https://github.com/STEllAR-GROUP/hpx/pull/1912

HPX Documentation, 1.5.1

• PR #19112990 - Adding first batch of container algorithms

• PR #19102991 - Keep cmake_module_path

• PR #19092992 - Fix mpirun with pbs

• PR #19082993 - Changing parallel::sort to return the last iterator as proposed by N4560

• PR #19072994 - Adding a minimum version for Open MPI

• PR #19062995 - Updates to the Release Procedure

• PR #19052996 - Fixing #1903

• PR #19042997 - Making sure std containers are cleared before serialization loads data

• Issue #19032998 - When running octotiger, I get: assertion '(*new_gids_)[gid].size() == 1'
failed: HPX(assertion_failure)

• Issue #19022999 - Immediate crash when running hpx/octotiger with _GLIBCXX_DEBUG defined.

• PR #19013000 - Making non-serializable classes non-serializable

• Issue #19003001 - Two possible issues with std::list serialization

• PR #18993002 - Fixing a problem with credit splitting as revealed by #1898

• Issue #18983003 - Accessing component from locality where it was not created segfaults

• PR #18973004 - Changing parallel::sort to return the last iterator as proposed by N4560

• Issue #18963005 - version 1.0?

• Issue #18953006 - Warning comment on numa_allocator is not very clear

• PR #18943007 - Add support for compilers that have thread_local

• PR #18933008 - Fixing 1890

• PR #18923009 - Adds typed future_type for executor_traits

• PR #18913010 - Fix wording in certain parallel algorithm docs

• Issue #18903011 - Invoking papi counters give segfault

• PR #18893012 - Fixing problems as reported by clang-check

2990 https://github.com/STEllAR-GROUP/hpx/pull/1911
2991 https://github.com/STEllAR-GROUP/hpx/pull/1910
2992 https://github.com/STEllAR-GROUP/hpx/pull/1909
2993 https://github.com/STEllAR-GROUP/hpx/pull/1908
2994 https://github.com/STEllAR-GROUP/hpx/pull/1907
2995 https://github.com/STEllAR-GROUP/hpx/pull/1906
2996 https://github.com/STEllAR-GROUP/hpx/pull/1905
2997 https://github.com/STEllAR-GROUP/hpx/pull/1904
2998 https://github.com/STEllAR-GROUP/hpx/issues/1903
2999 https://github.com/STEllAR-GROUP/hpx/issues/1902
3000 https://github.com/STEllAR-GROUP/hpx/pull/1901
3001 https://github.com/STEllAR-GROUP/hpx/issues/1900
3002 https://github.com/STEllAR-GROUP/hpx/pull/1899
3003 https://github.com/STEllAR-GROUP/hpx/issues/1898
3004 https://github.com/STEllAR-GROUP/hpx/pull/1897
3005 https://github.com/STEllAR-GROUP/hpx/issues/1896
3006 https://github.com/STEllAR-GROUP/hpx/issues/1895
3007 https://github.com/STEllAR-GROUP/hpx/pull/1894
3008 https://github.com/STEllAR-GROUP/hpx/pull/1893
3009 https://github.com/STEllAR-GROUP/hpx/pull/1892
3010 https://github.com/STEllAR-GROUP/hpx/pull/1891
3011 https://github.com/STEllAR-GROUP/hpx/issues/1890
3012 https://github.com/STEllAR-GROUP/hpx/pull/1889

1352 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1911
https://github.com/STEllAR-GROUP/hpx/pull/1910
https://github.com/STEllAR-GROUP/hpx/pull/1909
https://github.com/STEllAR-GROUP/hpx/pull/1908
https://github.com/STEllAR-GROUP/hpx/pull/1907
https://github.com/STEllAR-GROUP/hpx/pull/1906
https://github.com/STEllAR-GROUP/hpx/pull/1905
https://github.com/STEllAR-GROUP/hpx/pull/1904
https://github.com/STEllAR-GROUP/hpx/issues/1903
https://github.com/STEllAR-GROUP/hpx/issues/1902
https://github.com/STEllAR-GROUP/hpx/pull/1901
https://github.com/STEllAR-GROUP/hpx/issues/1900
https://github.com/STEllAR-GROUP/hpx/pull/1899
https://github.com/STEllAR-GROUP/hpx/issues/1898
https://github.com/STEllAR-GROUP/hpx/pull/1897
https://github.com/STEllAR-GROUP/hpx/issues/1896
https://github.com/STEllAR-GROUP/hpx/issues/1895
https://github.com/STEllAR-GROUP/hpx/pull/1894
https://github.com/STEllAR-GROUP/hpx/pull/1893
https://github.com/STEllAR-GROUP/hpx/pull/1892
https://github.com/STEllAR-GROUP/hpx/pull/1891
https://github.com/STEllAR-GROUP/hpx/issues/1890
https://github.com/STEllAR-GROUP/hpx/pull/1889

HPX Documentation, 1.5.1

• PR #18883013 - WIP parallel is_heap

• PR #18873014 - Fixed resetting performance counters related to idle-rate, etc

• Issue #18863015 - Run hpx with qsub does not work

• PR #18853016 - Warning cleaning pass

• PR #18843017 - Add missing parallel algorithm header

• PR #18833018 - Add feature test for thread_local on Clang for TLS

• PR #18823019 - Fix some redundant qualifiers

• Issue #18813020 - Unable to compile Octotiger using HPX and Intel MPI on SuperMIC

• Issue #18803021 - clang with libc++ on Linux needs TLS case

• PR #18793022 - Doc fixes for #1868

• PR #18783023 - Simplify functions

• PR #18773024 - Removing most usage of Boost.Config

• PR #18763025 - Add missing parallel algorithms to algorithm.hpp

• PR #18753026 - Simplify callables

• PR #18743027 - Address long standing FIXME on using std::unique_ptr with incomplete types

• PR #18733028 - Fixing 1871

• PR #18723029 - Making sure PBS environment uses specified node list even if no PBS_NODEFILE env is
available

• Issue #18713030 - Fortran checks should be optional

• PR #18703031 - Touch local::mutex

• PR #18693032 - Documentation refactoring based off #1868

• PR #18673033 - Embrace static_assert

• PR #18663034 - Fix #1803 with documentation refactoring

• PR #18653035 - Setting OUTPUT_NAME as target properties

3013 https://github.com/STEllAR-GROUP/hpx/pull/1888
3014 https://github.com/STEllAR-GROUP/hpx/pull/1887
3015 https://github.com/STEllAR-GROUP/hpx/issues/1886
3016 https://github.com/STEllAR-GROUP/hpx/pull/1885
3017 https://github.com/STEllAR-GROUP/hpx/pull/1884
3018 https://github.com/STEllAR-GROUP/hpx/pull/1883
3019 https://github.com/STEllAR-GROUP/hpx/pull/1882
3020 https://github.com/STEllAR-GROUP/hpx/issues/1881
3021 https://github.com/STEllAR-GROUP/hpx/issues/1880
3022 https://github.com/STEllAR-GROUP/hpx/pull/1879
3023 https://github.com/STEllAR-GROUP/hpx/pull/1878
3024 https://github.com/STEllAR-GROUP/hpx/pull/1877
3025 https://github.com/STEllAR-GROUP/hpx/pull/1876
3026 https://github.com/STEllAR-GROUP/hpx/pull/1875
3027 https://github.com/STEllAR-GROUP/hpx/pull/1874
3028 https://github.com/STEllAR-GROUP/hpx/pull/1873
3029 https://github.com/STEllAR-GROUP/hpx/pull/1872
3030 https://github.com/STEllAR-GROUP/hpx/issues/1871
3031 https://github.com/STEllAR-GROUP/hpx/pull/1870
3032 https://github.com/STEllAR-GROUP/hpx/pull/1869
3033 https://github.com/STEllAR-GROUP/hpx/pull/1867
3034 https://github.com/STEllAR-GROUP/hpx/pull/1866
3035 https://github.com/STEllAR-GROUP/hpx/pull/1865

2.11. Releases 1353

https://github.com/STEllAR-GROUP/hpx/pull/1888
https://github.com/STEllAR-GROUP/hpx/pull/1887
https://github.com/STEllAR-GROUP/hpx/issues/1886
https://github.com/STEllAR-GROUP/hpx/pull/1885
https://github.com/STEllAR-GROUP/hpx/pull/1884
https://github.com/STEllAR-GROUP/hpx/pull/1883
https://github.com/STEllAR-GROUP/hpx/pull/1882
https://github.com/STEllAR-GROUP/hpx/issues/1881
https://github.com/STEllAR-GROUP/hpx/issues/1880
https://github.com/STEllAR-GROUP/hpx/pull/1879
https://github.com/STEllAR-GROUP/hpx/pull/1878
https://github.com/STEllAR-GROUP/hpx/pull/1877
https://github.com/STEllAR-GROUP/hpx/pull/1876
https://github.com/STEllAR-GROUP/hpx/pull/1875
https://github.com/STEllAR-GROUP/hpx/pull/1874
https://github.com/STEllAR-GROUP/hpx/pull/1873
https://github.com/STEllAR-GROUP/hpx/pull/1872
https://github.com/STEllAR-GROUP/hpx/issues/1871
https://github.com/STEllAR-GROUP/hpx/pull/1870
https://github.com/STEllAR-GROUP/hpx/pull/1869
https://github.com/STEllAR-GROUP/hpx/pull/1867
https://github.com/STEllAR-GROUP/hpx/pull/1866
https://github.com/STEllAR-GROUP/hpx/pull/1865

HPX Documentation, 1.5.1

• PR #18633036 - Use SYSTEM for boost includes

• PR #18623037 - Minor cleanups

• PR #18613038 - Minor Corrections for Release

• PR #18603039 - Fixing hpx gdb script

• Issue #18593040 - reset_active_counters resets times and thread counts before some of the counters are evaluated

• PR #18583041 - Release V0.9.11

• PR #18573042 - removing diskperf example from 9.11 release

• PR #18563043 - fix return in packaged_task_base::reset()

• Issue #18423044 - Install error: file INSTALL cannot find libhpx_parcel_coalescing.so.0.9.11

• PR #18393045 - Adding fedora docs

• PR #18243046 - Changing version on master to V0.9.12

• PR #18183047 - Fixing #1748

• Issue #18153048 - seg fault in AGAS

• Issue #18033049 - wait_all documentation

• Issue #17963050 - Outdated documentation to be revised

• Issue #17593051 - glibc munmap_chunk or free(): invalid pointer on SuperMIC

• Issue #17533052 - HPX performance degrades with time since execution begins

• Issue #17483053 - All public HPX headers need to be self contained

• PR #17193054 - How to build HPX with Visual Studio

• Issue #16843055 - Race condition when using –hpx:connect?

• PR #16583056 - Add serialization for std::set (as there is for std::vector and std::map)

• PR #16413057 - Generic client

• Issue #16323058 - heartbeat example fails on separate nodes

3036 https://github.com/STEllAR-GROUP/hpx/pull/1863
3037 https://github.com/STEllAR-GROUP/hpx/pull/1862
3038 https://github.com/STEllAR-GROUP/hpx/pull/1861
3039 https://github.com/STEllAR-GROUP/hpx/pull/1860
3040 https://github.com/STEllAR-GROUP/hpx/issues/1859
3041 https://github.com/STEllAR-GROUP/hpx/pull/1858
3042 https://github.com/STEllAR-GROUP/hpx/pull/1857
3043 https://github.com/STEllAR-GROUP/hpx/pull/1856
3044 https://github.com/STEllAR-GROUP/hpx/issues/1842
3045 https://github.com/STEllAR-GROUP/hpx/pull/1839
3046 https://github.com/STEllAR-GROUP/hpx/pull/1824
3047 https://github.com/STEllAR-GROUP/hpx/pull/1818
3048 https://github.com/STEllAR-GROUP/hpx/issues/1815
3049 https://github.com/STEllAR-GROUP/hpx/issues/1803
3050 https://github.com/STEllAR-GROUP/hpx/issues/1796
3051 https://github.com/STEllAR-GROUP/hpx/issues/1759
3052 https://github.com/STEllAR-GROUP/hpx/issues/1753
3053 https://github.com/STEllAR-GROUP/hpx/issues/1748
3054 https://github.com/STEllAR-GROUP/hpx/pull/1719
3055 https://github.com/STEllAR-GROUP/hpx/issues/1684
3056 https://github.com/STEllAR-GROUP/hpx/pull/1658
3057 https://github.com/STEllAR-GROUP/hpx/pull/1641
3058 https://github.com/STEllAR-GROUP/hpx/issues/1632

1354 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1863
https://github.com/STEllAR-GROUP/hpx/pull/1862
https://github.com/STEllAR-GROUP/hpx/pull/1861
https://github.com/STEllAR-GROUP/hpx/pull/1860
https://github.com/STEllAR-GROUP/hpx/issues/1859
https://github.com/STEllAR-GROUP/hpx/pull/1858
https://github.com/STEllAR-GROUP/hpx/pull/1857
https://github.com/STEllAR-GROUP/hpx/pull/1856
https://github.com/STEllAR-GROUP/hpx/issues/1842
https://github.com/STEllAR-GROUP/hpx/pull/1839
https://github.com/STEllAR-GROUP/hpx/pull/1824
https://github.com/STEllAR-GROUP/hpx/pull/1818
https://github.com/STEllAR-GROUP/hpx/issues/1815
https://github.com/STEllAR-GROUP/hpx/issues/1803
https://github.com/STEllAR-GROUP/hpx/issues/1796
https://github.com/STEllAR-GROUP/hpx/issues/1759
https://github.com/STEllAR-GROUP/hpx/issues/1753
https://github.com/STEllAR-GROUP/hpx/issues/1748
https://github.com/STEllAR-GROUP/hpx/pull/1719
https://github.com/STEllAR-GROUP/hpx/issues/1684
https://github.com/STEllAR-GROUP/hpx/pull/1658
https://github.com/STEllAR-GROUP/hpx/pull/1641
https://github.com/STEllAR-GROUP/hpx/issues/1632

HPX Documentation, 1.5.1

• PR #16033059 - Adds preferred namespace check to inspect tool

• Issue #15593060 - Extend inspect tool

• Issue #15233061 - Remote async with deferred launch policy never executes

• Issue #14723062 - Serialization issues

• Issue #14573063 - Implement N4392: C++ Latches and Barriers

• PR #14443064 - Enabling usage of moveonly types for component construction

• Issue #14073065 - The Intel 13 compiler has failing unit tests

• Issue #14053066 - Allow component constructors to take movable only types

• Issue #12653067 - Enable dataflow() to be usable with actions

• Issue #12363068 - NUMA aware allocators

• Issue #8023069 - Fix Broken Examples

• Issue #5593070 - Add hpx::migrate facility

• Issue #4493071 - Make actions with template arguments usable and add documentation

• Issue #2793072 - Refactor addressing_service into a base class and two derived classes

• Issue #2243073 - Changing thread state metadata is not thread safe

• Issue #553074 - Uniform syntax for enums should be implemented

2.11.11 HPX V0.9.11 (Nov 11, 2015)

Our main focus for this release was the design and development of a coherent set of higher-level APIs exposing
various types of parallelism to the application programmer. We introduced the concepts of an executor, which can
be used to customize the where and when of execution of tasks in the context of parallelizing codes. We extended
all APIs related to managing parallel tasks to support executors which gives the user the choce of either using one
of the predefined executor types or to provide its own, possibly application specific, executor. We paid very close
attention to align all of these changes with the existing C++ Standards documents or with the ongoing proposals for
standardization.

This release is the first after our change to a new development policy. We switched all development to be strictly
performed on branches only, all direct commits to our main branch (master) are prohibited. Any change has to
go through a peer review before it will be merged to master. As a result the overall stability of our code base has
significantly increased, the development process itself has been simplified. This change manifests itself in a large
number of pull-requests which have been merged (please see below for a full list of closed issues and pull-requests).

3059 https://github.com/STEllAR-GROUP/hpx/pull/1603
3060 https://github.com/STEllAR-GROUP/hpx/issues/1559
3061 https://github.com/STEllAR-GROUP/hpx/issues/1523
3062 https://github.com/STEllAR-GROUP/hpx/issues/1472
3063 https://github.com/STEllAR-GROUP/hpx/issues/1457
3064 https://github.com/STEllAR-GROUP/hpx/pull/1444
3065 https://github.com/STEllAR-GROUP/hpx/issues/1407
3066 https://github.com/STEllAR-GROUP/hpx/issues/1405
3067 https://github.com/STEllAR-GROUP/hpx/issues/1265
3068 https://github.com/STEllAR-GROUP/hpx/issues/1236
3069 https://github.com/STEllAR-GROUP/hpx/issues/802
3070 https://github.com/STEllAR-GROUP/hpx/issues/559
3071 https://github.com/STEllAR-GROUP/hpx/issues/449
3072 https://github.com/STEllAR-GROUP/hpx/issues/279
3073 https://github.com/STEllAR-GROUP/hpx/issues/224
3074 https://github.com/STEllAR-GROUP/hpx/issues/55

2.11. Releases 1355

https://github.com/STEllAR-GROUP/hpx/pull/1603
https://github.com/STEllAR-GROUP/hpx/issues/1559
https://github.com/STEllAR-GROUP/hpx/issues/1523
https://github.com/STEllAR-GROUP/hpx/issues/1472
https://github.com/STEllAR-GROUP/hpx/issues/1457
https://github.com/STEllAR-GROUP/hpx/pull/1444
https://github.com/STEllAR-GROUP/hpx/issues/1407
https://github.com/STEllAR-GROUP/hpx/issues/1405
https://github.com/STEllAR-GROUP/hpx/issues/1265
https://github.com/STEllAR-GROUP/hpx/issues/1236
https://github.com/STEllAR-GROUP/hpx/issues/802
https://github.com/STEllAR-GROUP/hpx/issues/559
https://github.com/STEllAR-GROUP/hpx/issues/449
https://github.com/STEllAR-GROUP/hpx/issues/279
https://github.com/STEllAR-GROUP/hpx/issues/224
https://github.com/STEllAR-GROUP/hpx/issues/55

HPX Documentation, 1.5.1

All in all for this release, we closed almost 100 issues and merged over 290 pull-requests. There have been over 1600
commits to the master branch since the last release.

General changes

• We are moving into the direction of unifying managed and simple components. As such, the classes
hpx::components::component and hpx::components::component_base have been added
which currently just forward to the currently existing simple component facilities. The examples have been
converted to only use those two classes.

• Added integration with the CircleCI3075 hosted continuous integration service. This gives us constant and im-
mediate feedback on the health of our master branch.

• The compiler configuration subsystem in the build system has been reimplemented. Instead of using
Boost.Config we now use our own lightweight set of cmake scripts to determine the available language and
library features supported by the used compiler.

• The API for creating instances of components has been consolidated. All component instances should be created
using the hpx::new_ only. It allows one to instantiate both, single component instances and multiple com-
ponent instances. The placement of the created components can be controlled by special distribution policies.
Please see the corresponding documentation outlining the use of hpx::new_.

• Introduced four new distribution policies which can be used with many API functions which traditionally ex-
pected to be used with a locality id. The new distribution policies are:

– hpx::components::default_distribution_policy which tries to place multiple compo-
nent instances as evenly as possible.

– hpx::components::colocating_distribution_policy which will refer to the locality
where a given component instance is currently placed.

– hpx::components::binpacking_distribution_policy which will place multiple compo-
nent instances as evenly as possible based on any performance counter.

– hpx::components::target_distribution_policy which allows one to represent a given lo-
cality in the context of a distrwibution policy.

• The new distribution policies can now be also used with hpx::async. This change also dep-
recates hpx::async_colocated(id, ...) which now is replaced by a distribution policy:
hpx::async(hpx::colocated(id), ...).

• The hpx::vector and hpx::unordered_map data structures can now be used with the new distribution
policies as well.

• The parallel facility hpx::parallel::task_region has been renamed to
hpx::parallel::task_block based on the changes in the corresponding standardization proposal
N44113076.

• Added extensions to the parallel facility hpx::parallel::task_block allowing to combine a task_block
with an execution policy. This implies a minor breaking change as the hpx::parallel::task_block is
now a template.

• Added new LCOs: hpx::lcos::latch and hpx::lcos::local::latchwhich semantically conform
to the proposed std::latch (see N43993077).

• Added performance counters exposing data related to data transferred by input/output (filesystem) operations
(thanks to Maciej Brodowicz).

3075 https://circleci.com/gh/STEllAR-GROUP/hpx
3076 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
3077 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4399.html

1356 Chapter 2. What’s so special about HPX?

https://circleci.com/gh/STEllAR-GROUP/hpx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4399.html

HPX Documentation, 1.5.1

• Added performance counters allowing to track the number of action invocations (local and remote invocations).

• Added new command line options –hpx:print-counter-at and –hpx:reset-counters.

• The hpx::vector component has been renamed to hpx::partitioned_vector to make it explicit that
the underlying memory is not contiguous.

• Introduced a completely new and uniform higher-level parallelism API which is based on executors. All existing
parallelism APIs have been adapted to this. We have added a large number of different executor types, such as
a numa-aware executor, a this-thread executor, etc.

• Added support for the MingW toolchain on Windows (thanks to Eric Lemanissier).

• HPX now includes support for APEX, (Autonomic Performance Environment for eXascale). APEX is an
instrumentation and software adaptation library that provides an interface to TAU profiling / tracing as well
as runtime adaptation of HPX applications through policy definitions. For more information and docu-
mentation, please see https://github.com/khuck/xpress-apex. To enable APEX at configuration time, specify
-DHPX_WITH_APEX=On. To also include support for TAU profiling, specify -DHPX_WITH_TAU=On and
specify the -DTAU_ROOT, -DTAU_ARCH and -DTAU_OPTIONS cmake parameters.

• We have implemented many more of the Using parallel algorithms. Please see Issue #11413078 for the list of all
available parallel algorithms (thanks to Daniel Bourgeois and John Biddiscombe for contributing their work).

Breaking changes

• We are moving into the direction of unifying managed and simple components. In order to stop expos-
ing the old facilities, all examples have been converted to use the new classes. The breaking change in
this release is that performance counters are now a hpx::components::component_base instead of
hpx::components::managed_component_base.

• We removed the support for stackless threads. It turned out that there was no performance benefit when using
stackless threads. As such, we decided to clean up our codebase. This feature was not documented.

• The CMake project name has changed from ‘hpx’ to ‘HPX’ for consistency and compatibility with naming
conventions and other CMake projects. Generated config files go into <prefix>/lib/cmake/HPX and not <pre-
fix>/lib/cmake/hpx.

• The macro HPX_REGISTER_MINIMAL_COMPONENT_FACTORY has been deprecated. Please use
HPX_REGISTER_COMPONENT. instead. The old macro will be removed in the next release.

• The obsolete distributing_factory and binpacking_factory components have been re-
moved. The corresponding functionality is now provided by the hpx::new_ API
function in conjunction with the hpx::default_layout and hpx::binpacking
distribution policies (hpx::components::default_distribution_policy and
hpx::components::binpacking_distribution_policy)

• The API function hpx::new_colocated has been deprecated. Please use the consoli-
dated API hpx::new_ in conjunction with the new hpx::colocated distribution pol-
icy (hpx::components::colocating_distribution_policy) instead. The old API
function will still be available for at least one release of HPX if the configuration variable
HPX_WITH_COLOCATED_BACKWARDS_COMPATIBILITY is enabled.

• The API function hpx::async_colocated has been deprecated. Please use the consol-
idated API hpx::async in conjunction with the new hpx::colocated distribution pol-
icy (hpx::components::colocating_distribution_policy) instead. The old API
function will still be available for at least one release of HPX if the configuration variable
HPX_WITH_COLOCATED_BACKWARDS_COMPATIBILITY is enabled.

3078 https://github.com/STEllAR-GROUP/hpx/issues/1141

2.11. Releases 1357

https://github.com/khuck/xpress-apex
https://github.com/STEllAR-GROUP/hpx/issues/1141

HPX Documentation, 1.5.1

• The obsolete remote_object component has been removed.

• Replaced the use of Boost.Serialization with our own solution. While the new version is mostly compatible with
Boost.Serialization, this change requires some minor code modifications in user code. For more information,
please see the corresponding announcement3079 on the hpx-users@stellar.cct.lsu.edu mailing list.

• The names used by cmake to influence various configuration options have been unified. The new naming
scheme relies on all configuration constants to start with HPX_WITH_..., while the preprocessor constant
which is used at build time starts with HPX_HAVE_.... For instance, the former cmake command line
-DHPX_MALLOC=... now has to be specified a -DHPX_WITH_MALLOC=... and will cause the prepro-
cessor constant HPX_HAVE_MALLOC to be defined. The actual name of the constant (i.e. MALLOC) has not
changed. Please see the corresponding documentation for more details (CMake variables used to configure
HPX).

• The get_gid() functions exposed by the component base classes
hpx::components::server::simple_component_base, hpx::components::server::managed_component_base,
and hpx::components::server::fixed_component_base have been replaced by two new func-
tions: get_unmanaged_id() and get_id(). To enable the old function name for backwards compatibil-
ity, use the cmake configuration option HPX_WITH_COMPONENT_GET_GID_COMPATIBILITY=On.

• All functions which were named get_gid() but were returning hpx::id_type have been renamed to
get_id(). To enable the old function names for backwards compatibility, use the cmake configuration option
HPX_WITH_COMPONENT_GET_GID_COMPATIBILITY=On.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• PR #18553080 - Completely removing external/endian

• PR #18543081 - Don’t pollute CMAKE_CXX_FLAGS through find_package()

• PR #18533082 - Updating CMake configuration to get correct version of TAU library

• PR #18523083 - Fixing Performance Problems with MPI Parcelport

• PR #18513084 - Fixing hpx_add_link_flag() and hpx_remove_link_flag()

• PR #18503085 - Fixing 1836, adding parallel::sort

• PR #18493086 - Fixing configuration for use of more than 64 cores

• PR #18483087 - Change default APEX version for release

• PR #18473088 - Fix client_base::then on release

• PR #18463089 - Removing broken lcos::local::channel from release

• PR #18453090 - Adding example demonstrating a possible safe-object implementation to release

3079 http://thread.gmane.org/gmane.comp.lib.hpx.devel/196
3080 https://github.com/STEllAR-GROUP/hpx/pull/1855
3081 https://github.com/STEllAR-GROUP/hpx/pull/1854
3082 https://github.com/STEllAR-GROUP/hpx/pull/1853
3083 https://github.com/STEllAR-GROUP/hpx/pull/1852
3084 https://github.com/STEllAR-GROUP/hpx/pull/1851
3085 https://github.com/STEllAR-GROUP/hpx/pull/1850
3086 https://github.com/STEllAR-GROUP/hpx/pull/1849
3087 https://github.com/STEllAR-GROUP/hpx/pull/1848
3088 https://github.com/STEllAR-GROUP/hpx/pull/1847
3089 https://github.com/STEllAR-GROUP/hpx/pull/1846
3090 https://github.com/STEllAR-GROUP/hpx/pull/1845

1358 Chapter 2. What’s so special about HPX?

http://thread.gmane.org/gmane.comp.lib.hpx.devel/196
mailto:hpx-users@stellar.cct.lsu.edu
mailto:hpx-users@stellar.cct.lsu.edu
https://github.com/STEllAR-GROUP/hpx/pull/1855
https://github.com/STEllAR-GROUP/hpx/pull/1854
https://github.com/STEllAR-GROUP/hpx/pull/1853
https://github.com/STEllAR-GROUP/hpx/pull/1852
https://github.com/STEllAR-GROUP/hpx/pull/1851
https://github.com/STEllAR-GROUP/hpx/pull/1850
https://github.com/STEllAR-GROUP/hpx/pull/1849
https://github.com/STEllAR-GROUP/hpx/pull/1848
https://github.com/STEllAR-GROUP/hpx/pull/1847
https://github.com/STEllAR-GROUP/hpx/pull/1846
https://github.com/STEllAR-GROUP/hpx/pull/1845

HPX Documentation, 1.5.1

• PR #18443091 - Removing stubs from accumulator examples

• PR #18433092 - Don’t pollute CMAKE_CXX_FLAGS through find_package()

• PR #18413093 - Fixing client_base<>::then

• PR #18403094 - Adding example demonstrating a possible safe-object implementation

• PR #18383095 - Update version rc1

• PR #18373096 - Removing broken lcos::local::channel

• PR #18353097 - Adding explicit move constructor and assignment operator to hpx::lcos::promise

• PR #18343098 - Making hpx::lcos::promise move-only

• PR #18333099 - Adding fedora docs

• Issue #18323100 - hpx::lcos::promise<> must be move-only

• PR #18313101 - Fixing resource manager gcc5.2

• PR #18303102 - Fix intel13

• PR #18293103 - Unbreaking thread test

• PR #18283104 - Fixing #1620

• PR #18273105 - Fixing a memory management issue for the Parquet application

• Issue #18263106 - Memory management issue in hpx::lcos::promise

• PR #18253107 - Adding hpx::components::component and hpx::components::component_base

• PR #18233108 - Adding git commit id to circleci build

• PR #18223109 - applying fixes suggested by clang 3.7

• PR #18213110 - Hyperlink fixes

• PR #18203111 - added parallel multi-locality sanity test

• PR #18193112 - Fixing #1667

• Issue #18173113 - Hyperlinks generated by inspect tool are wrong

3091 https://github.com/STEllAR-GROUP/hpx/pull/1844
3092 https://github.com/STEllAR-GROUP/hpx/pull/1843
3093 https://github.com/STEllAR-GROUP/hpx/pull/1841
3094 https://github.com/STEllAR-GROUP/hpx/pull/1840
3095 https://github.com/STEllAR-GROUP/hpx/pull/1838
3096 https://github.com/STEllAR-GROUP/hpx/pull/1837
3097 https://github.com/STEllAR-GROUP/hpx/pull/1835
3098 https://github.com/STEllAR-GROUP/hpx/pull/1834
3099 https://github.com/STEllAR-GROUP/hpx/pull/1833
3100 https://github.com/STEllAR-GROUP/hpx/issues/1832
3101 https://github.com/STEllAR-GROUP/hpx/pull/1831
3102 https://github.com/STEllAR-GROUP/hpx/pull/1830
3103 https://github.com/STEllAR-GROUP/hpx/pull/1829
3104 https://github.com/STEllAR-GROUP/hpx/pull/1828
3105 https://github.com/STEllAR-GROUP/hpx/pull/1827
3106 https://github.com/STEllAR-GROUP/hpx/issues/1826
3107 https://github.com/STEllAR-GROUP/hpx/pull/1825
3108 https://github.com/STEllAR-GROUP/hpx/pull/1823
3109 https://github.com/STEllAR-GROUP/hpx/pull/1822
3110 https://github.com/STEllAR-GROUP/hpx/pull/1821
3111 https://github.com/STEllAR-GROUP/hpx/pull/1820
3112 https://github.com/STEllAR-GROUP/hpx/pull/1819
3113 https://github.com/STEllAR-GROUP/hpx/issues/1817

2.11. Releases 1359

https://github.com/STEllAR-GROUP/hpx/pull/1844
https://github.com/STEllAR-GROUP/hpx/pull/1843
https://github.com/STEllAR-GROUP/hpx/pull/1841
https://github.com/STEllAR-GROUP/hpx/pull/1840
https://github.com/STEllAR-GROUP/hpx/pull/1838
https://github.com/STEllAR-GROUP/hpx/pull/1837
https://github.com/STEllAR-GROUP/hpx/pull/1835
https://github.com/STEllAR-GROUP/hpx/pull/1834
https://github.com/STEllAR-GROUP/hpx/pull/1833
https://github.com/STEllAR-GROUP/hpx/issues/1832
https://github.com/STEllAR-GROUP/hpx/pull/1831
https://github.com/STEllAR-GROUP/hpx/pull/1830
https://github.com/STEllAR-GROUP/hpx/pull/1829
https://github.com/STEllAR-GROUP/hpx/pull/1828
https://github.com/STEllAR-GROUP/hpx/pull/1827
https://github.com/STEllAR-GROUP/hpx/issues/1826
https://github.com/STEllAR-GROUP/hpx/pull/1825
https://github.com/STEllAR-GROUP/hpx/pull/1823
https://github.com/STEllAR-GROUP/hpx/pull/1822
https://github.com/STEllAR-GROUP/hpx/pull/1821
https://github.com/STEllAR-GROUP/hpx/pull/1820
https://github.com/STEllAR-GROUP/hpx/pull/1819
https://github.com/STEllAR-GROUP/hpx/issues/1817

HPX Documentation, 1.5.1

• PR #18163114 - Support hpxrx

• PR #18143115 - Fix async to dispatch to the correct locality in all cases

• Issue #18133116 - async(launch::. . . , action(), . . .) always invokes locally

• PR #18123117 - fixed syntax error in CMakeLists.txt

• PR #18113118 - Agas optimizations

• PR #18103119 - drop superfluous typedefs

• PR #18093120 - Allow HPX to be used as an optional package in 3rd party code

• PR #18083121 - Fixing #1723

• PR #18073122 - Making sure resolve_localities does not hang during normal operation

• Issue #18063123 - Spinlock no longer movable and deletes operator ‘=’, breaks MiniGhost

• Issue #18043124 - register_with_basename causes hangs

• PR #18013125 - Enhanced the inspect tool to take user directly to the problem with hyperlinks

• Issue #18003126 - Problems compiling application on smic

• PR #17993127 - Fixing cv exceptions

• PR #17983128 - Documentation refactoring & updating

• PR #17973129 - Updating the activeharmony CMake module

• PR #17953130 - Fixing cv

• PR #17943131 - Fix connect with hpx::runtime_mode_connect

• PR #17933132 - fix a wrong use of HPX_MAX_CPU_COUNT instead of HPX_HAVE_MAX_CPU_COUNT

• PR #17923133 - Allow for default constructed parcel instances to be moved

• PR #17913134 - Fix connect with hpx::runtime_mode_connect

• Issue #17903135 - assertion action_.get() failed: HPX(assertion_failure) when running Octotiger with pull
request 1786

• PR #17893136 - Fixing discover_counter_types API function

3114 https://github.com/STEllAR-GROUP/hpx/pull/1816
3115 https://github.com/STEllAR-GROUP/hpx/pull/1814
3116 https://github.com/STEllAR-GROUP/hpx/issues/1813
3117 https://github.com/STEllAR-GROUP/hpx/pull/1812
3118 https://github.com/STEllAR-GROUP/hpx/pull/1811
3119 https://github.com/STEllAR-GROUP/hpx/pull/1810
3120 https://github.com/STEllAR-GROUP/hpx/pull/1809
3121 https://github.com/STEllAR-GROUP/hpx/pull/1808
3122 https://github.com/STEllAR-GROUP/hpx/pull/1807
3123 https://github.com/STEllAR-GROUP/hpx/issues/1806
3124 https://github.com/STEllAR-GROUP/hpx/issues/1804
3125 https://github.com/STEllAR-GROUP/hpx/pull/1801
3126 https://github.com/STEllAR-GROUP/hpx/issues/1800
3127 https://github.com/STEllAR-GROUP/hpx/pull/1799
3128 https://github.com/STEllAR-GROUP/hpx/pull/1798
3129 https://github.com/STEllAR-GROUP/hpx/pull/1797
3130 https://github.com/STEllAR-GROUP/hpx/pull/1795
3131 https://github.com/STEllAR-GROUP/hpx/pull/1794
3132 https://github.com/STEllAR-GROUP/hpx/pull/1793
3133 https://github.com/STEllAR-GROUP/hpx/pull/1792
3134 https://github.com/STEllAR-GROUP/hpx/pull/1791
3135 https://github.com/STEllAR-GROUP/hpx/issues/1790
3136 https://github.com/STEllAR-GROUP/hpx/pull/1789

1360 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1816
https://github.com/STEllAR-GROUP/hpx/pull/1814
https://github.com/STEllAR-GROUP/hpx/issues/1813
https://github.com/STEllAR-GROUP/hpx/pull/1812
https://github.com/STEllAR-GROUP/hpx/pull/1811
https://github.com/STEllAR-GROUP/hpx/pull/1810
https://github.com/STEllAR-GROUP/hpx/pull/1809
https://github.com/STEllAR-GROUP/hpx/pull/1808
https://github.com/STEllAR-GROUP/hpx/pull/1807
https://github.com/STEllAR-GROUP/hpx/issues/1806
https://github.com/STEllAR-GROUP/hpx/issues/1804
https://github.com/STEllAR-GROUP/hpx/pull/1801
https://github.com/STEllAR-GROUP/hpx/issues/1800
https://github.com/STEllAR-GROUP/hpx/pull/1799
https://github.com/STEllAR-GROUP/hpx/pull/1798
https://github.com/STEllAR-GROUP/hpx/pull/1797
https://github.com/STEllAR-GROUP/hpx/pull/1795
https://github.com/STEllAR-GROUP/hpx/pull/1794
https://github.com/STEllAR-GROUP/hpx/pull/1793
https://github.com/STEllAR-GROUP/hpx/pull/1792
https://github.com/STEllAR-GROUP/hpx/pull/1791
https://github.com/STEllAR-GROUP/hpx/issues/1790
https://github.com/STEllAR-GROUP/hpx/pull/1789

HPX Documentation, 1.5.1

• Issue #17883137 - connect with hpx::runtime_mode_connect

• Issue #17873138 - discover_counter_types not working

• PR #17863139 - Changing addressing_service to use std::unordered_map instead of std::map

• PR #17853140 - Fix is_iterator for container algorithms

• PR #17843141 - Adding new command line options:

• PR #17833142 - Minor changes for APEX support

• PR #17823143 - Drop legacy forwarding action traits

• PR #17813144 - Attempt to resolve the race between cv::wait_xxx and cv::notify_all

• PR #17803145 - Removing serialize_sequence

• PR #17793146 - Fixed #1501: hwloc configuration options are wrong for MIC

• PR #17783147 - Removing ability to enable/disable parcel handling

• PR #17773148 - Completely removing stackless threads

• PR #17763149 - Cleaning up util/plugin

• PR #17753150 - Agas fixes

• PR #17743151 - Action invocation count

• PR #17733152 - replaced MSVC variable with WIN32

• PR #17723153 - Fixing Problems in MPI parcelport and future serialization.

• PR #17713154 - Fixing intel 13 compiler errors related to variadic template template parameters for
lcos::when_ tests

• PR #17703155 - Forwarding decay to std::

• PR #17693156 - Add more characters with special regex meaning to the existing patch

• PR #17683157 - Adding test for receive_buffer

• PR #17673158 - Making sure that uptime counter throws exception on any attempt to be reset

• PR #17663159 - Cleaning up code related to throttling scheduler

3137 https://github.com/STEllAR-GROUP/hpx/issues/1788
3138 https://github.com/STEllAR-GROUP/hpx/issues/1787
3139 https://github.com/STEllAR-GROUP/hpx/pull/1786
3140 https://github.com/STEllAR-GROUP/hpx/pull/1785
3141 https://github.com/STEllAR-GROUP/hpx/pull/1784
3142 https://github.com/STEllAR-GROUP/hpx/pull/1783
3143 https://github.com/STEllAR-GROUP/hpx/pull/1782
3144 https://github.com/STEllAR-GROUP/hpx/pull/1781
3145 https://github.com/STEllAR-GROUP/hpx/pull/1780
3146 https://github.com/STEllAR-GROUP/hpx/pull/1779
3147 https://github.com/STEllAR-GROUP/hpx/pull/1778
3148 https://github.com/STEllAR-GROUP/hpx/pull/1777
3149 https://github.com/STEllAR-GROUP/hpx/pull/1776
3150 https://github.com/STEllAR-GROUP/hpx/pull/1775
3151 https://github.com/STEllAR-GROUP/hpx/pull/1774
3152 https://github.com/STEllAR-GROUP/hpx/pull/1773
3153 https://github.com/STEllAR-GROUP/hpx/pull/1772
3154 https://github.com/STEllAR-GROUP/hpx/pull/1771
3155 https://github.com/STEllAR-GROUP/hpx/pull/1770
3156 https://github.com/STEllAR-GROUP/hpx/pull/1769
3157 https://github.com/STEllAR-GROUP/hpx/pull/1768
3158 https://github.com/STEllAR-GROUP/hpx/pull/1767
3159 https://github.com/STEllAR-GROUP/hpx/pull/1766

2.11. Releases 1361

https://github.com/STEllAR-GROUP/hpx/issues/1788
https://github.com/STEllAR-GROUP/hpx/issues/1787
https://github.com/STEllAR-GROUP/hpx/pull/1786
https://github.com/STEllAR-GROUP/hpx/pull/1785
https://github.com/STEllAR-GROUP/hpx/pull/1784
https://github.com/STEllAR-GROUP/hpx/pull/1783
https://github.com/STEllAR-GROUP/hpx/pull/1782
https://github.com/STEllAR-GROUP/hpx/pull/1781
https://github.com/STEllAR-GROUP/hpx/pull/1780
https://github.com/STEllAR-GROUP/hpx/pull/1779
https://github.com/STEllAR-GROUP/hpx/pull/1778
https://github.com/STEllAR-GROUP/hpx/pull/1777
https://github.com/STEllAR-GROUP/hpx/pull/1776
https://github.com/STEllAR-GROUP/hpx/pull/1775
https://github.com/STEllAR-GROUP/hpx/pull/1774
https://github.com/STEllAR-GROUP/hpx/pull/1773
https://github.com/STEllAR-GROUP/hpx/pull/1772
https://github.com/STEllAR-GROUP/hpx/pull/1771
https://github.com/STEllAR-GROUP/hpx/pull/1770
https://github.com/STEllAR-GROUP/hpx/pull/1769
https://github.com/STEllAR-GROUP/hpx/pull/1768
https://github.com/STEllAR-GROUP/hpx/pull/1767
https://github.com/STEllAR-GROUP/hpx/pull/1766

HPX Documentation, 1.5.1

• PR #17653160 - Restricting thread_data to creating only with intrusive_pointers

• PR #17643161 - Fixing 1763

• Issue #17633162 - UB in thread_data::operator delete

• PR #17623163 - Making sure all serialization registries/factories are unique

• PR #17613164 - Fixed #1751: hpx::future::wait_for fails a simple test

• PR #17583165 - Fixing #1757

• Issue #17573166 - pinning not correct using –hpx:bind

• Issue #17563167 - compilation error with MinGW

• PR #17553168 - Making output serialization const-correct

• Issue #17533169 - HPX performance degrades with time since execution begins

• Issue #17523170 - Error in AGAS

• Issue #17513171 - hpx::future::wait_for fails a simple test

• PR #17503172 - Removing hpx_fwd.hpp includes

• PR #17493173 - Simplify result_of and friends

• PR #17473174 - Removed superfluous code from message_buffer.hpp

• PR #17463175 - Tuple dependencies

• Issue #17453176 - Broken when_some which takes iterators

• PR #17443177 - Refining archive interface

• PR #17433178 - Fixing when_all when only a single future is passed

• PR #17423179 - Config includes

• PR #17413180 - Os executors

• Issue #17403181 - hpx::promise has some problems

• PR #17393182 - Parallel composition with generic containers

3160 https://github.com/STEllAR-GROUP/hpx/pull/1765
3161 https://github.com/STEllAR-GROUP/hpx/pull/1764
3162 https://github.com/STEllAR-GROUP/hpx/issues/1763
3163 https://github.com/STEllAR-GROUP/hpx/pull/1762
3164 https://github.com/STEllAR-GROUP/hpx/pull/1761
3165 https://github.com/STEllAR-GROUP/hpx/pull/1758
3166 https://github.com/STEllAR-GROUP/hpx/issues/1757
3167 https://github.com/STEllAR-GROUP/hpx/issues/1756
3168 https://github.com/STEllAR-GROUP/hpx/pull/1755
3169 https://github.com/STEllAR-GROUP/hpx/issues/1753
3170 https://github.com/STEllAR-GROUP/hpx/issues/1752
3171 https://github.com/STEllAR-GROUP/hpx/issues/1751
3172 https://github.com/STEllAR-GROUP/hpx/pull/1750
3173 https://github.com/STEllAR-GROUP/hpx/pull/1749
3174 https://github.com/STEllAR-GROUP/hpx/pull/1747
3175 https://github.com/STEllAR-GROUP/hpx/pull/1746
3176 https://github.com/STEllAR-GROUP/hpx/issues/1745
3177 https://github.com/STEllAR-GROUP/hpx/pull/1744
3178 https://github.com/STEllAR-GROUP/hpx/pull/1743
3179 https://github.com/STEllAR-GROUP/hpx/pull/1742
3180 https://github.com/STEllAR-GROUP/hpx/pull/1741
3181 https://github.com/STEllAR-GROUP/hpx/issues/1740
3182 https://github.com/STEllAR-GROUP/hpx/pull/1739

1362 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1765
https://github.com/STEllAR-GROUP/hpx/pull/1764
https://github.com/STEllAR-GROUP/hpx/issues/1763
https://github.com/STEllAR-GROUP/hpx/pull/1762
https://github.com/STEllAR-GROUP/hpx/pull/1761
https://github.com/STEllAR-GROUP/hpx/pull/1758
https://github.com/STEllAR-GROUP/hpx/issues/1757
https://github.com/STEllAR-GROUP/hpx/issues/1756
https://github.com/STEllAR-GROUP/hpx/pull/1755
https://github.com/STEllAR-GROUP/hpx/issues/1753
https://github.com/STEllAR-GROUP/hpx/issues/1752
https://github.com/STEllAR-GROUP/hpx/issues/1751
https://github.com/STEllAR-GROUP/hpx/pull/1750
https://github.com/STEllAR-GROUP/hpx/pull/1749
https://github.com/STEllAR-GROUP/hpx/pull/1747
https://github.com/STEllAR-GROUP/hpx/pull/1746
https://github.com/STEllAR-GROUP/hpx/issues/1745
https://github.com/STEllAR-GROUP/hpx/pull/1744
https://github.com/STEllAR-GROUP/hpx/pull/1743
https://github.com/STEllAR-GROUP/hpx/pull/1742
https://github.com/STEllAR-GROUP/hpx/pull/1741
https://github.com/STEllAR-GROUP/hpx/issues/1740
https://github.com/STEllAR-GROUP/hpx/pull/1739

HPX Documentation, 1.5.1

• Issue #17383183 - After building program and successfully linking to a version of hpx DHPX_DIR seems to be
ignored

• Issue #17373184 - Uptime problems

• PR #17363185 - added convenience c-tor and begin()/end() to serialize_buffer

• PR #17353186 - Config includes

• PR #17343187 - Fixed #1688: Add timer counters for tfunc_total and exec_total

• Issue #17333188 - Add unit test for hpx/lcos/local/receive_buffer.hpp

• PR #17323189 - Renaming get_os_thread_count

• PR #17313190 - Basename registration

• Issue #17303191 - Use after move of thread_init_data

• PR #17293192 - Rewriting channel based on new gate component

• PR #17283193 - Fixing #1722

• PR #17273194 - Fixing compile problems with apply_colocated

• PR #17263195 - Apex integration

• PR #17253196 - fixed test timeouts

• PR #17243197 - Renaming vector

• Issue #17233198 - Drop support for intel compilers and gcc 4.4. based standard libs

• Issue #17223199 - Add support for detecting non-ready futures before serialization

• PR #17213200 - Unifying parallel executors, initializing from launch policy

• PR #17203201 - dropped superfluous typedef

• Issue #17183202 - Windows 10 x64, VS 2015 - Unknown CMake command “add_hpx_pseudo_target”.

• PR #17173203 - Timed executor traits for thread-executors

• PR #17163204 - serialization of arrays didn’t work with non-pod types. fixed

• PR #17153205 - List serialization
3183 https://github.com/STEllAR-GROUP/hpx/issues/1738
3184 https://github.com/STEllAR-GROUP/hpx/issues/1737
3185 https://github.com/STEllAR-GROUP/hpx/pull/1736
3186 https://github.com/STEllAR-GROUP/hpx/pull/1735
3187 https://github.com/STEllAR-GROUP/hpx/pull/1734
3188 https://github.com/STEllAR-GROUP/hpx/issues/1733
3189 https://github.com/STEllAR-GROUP/hpx/pull/1732
3190 https://github.com/STEllAR-GROUP/hpx/pull/1731
3191 https://github.com/STEllAR-GROUP/hpx/issues/1730
3192 https://github.com/STEllAR-GROUP/hpx/pull/1729
3193 https://github.com/STEllAR-GROUP/hpx/pull/1728
3194 https://github.com/STEllAR-GROUP/hpx/pull/1727
3195 https://github.com/STEllAR-GROUP/hpx/pull/1726
3196 https://github.com/STEllAR-GROUP/hpx/pull/1725
3197 https://github.com/STEllAR-GROUP/hpx/pull/1724
3198 https://github.com/STEllAR-GROUP/hpx/issues/1723
3199 https://github.com/STEllAR-GROUP/hpx/issues/1722
3200 https://github.com/STEllAR-GROUP/hpx/pull/1721
3201 https://github.com/STEllAR-GROUP/hpx/pull/1720
3202 https://github.com/STEllAR-GROUP/hpx/issues/1718
3203 https://github.com/STEllAR-GROUP/hpx/pull/1717
3204 https://github.com/STEllAR-GROUP/hpx/pull/1716
3205 https://github.com/STEllAR-GROUP/hpx/pull/1715

2.11. Releases 1363

https://github.com/STEllAR-GROUP/hpx/issues/1738
https://github.com/STEllAR-GROUP/hpx/issues/1737
https://github.com/STEllAR-GROUP/hpx/pull/1736
https://github.com/STEllAR-GROUP/hpx/pull/1735
https://github.com/STEllAR-GROUP/hpx/pull/1734
https://github.com/STEllAR-GROUP/hpx/issues/1733
https://github.com/STEllAR-GROUP/hpx/pull/1732
https://github.com/STEllAR-GROUP/hpx/pull/1731
https://github.com/STEllAR-GROUP/hpx/issues/1730
https://github.com/STEllAR-GROUP/hpx/pull/1729
https://github.com/STEllAR-GROUP/hpx/pull/1728
https://github.com/STEllAR-GROUP/hpx/pull/1727
https://github.com/STEllAR-GROUP/hpx/pull/1726
https://github.com/STEllAR-GROUP/hpx/pull/1725
https://github.com/STEllAR-GROUP/hpx/pull/1724
https://github.com/STEllAR-GROUP/hpx/issues/1723
https://github.com/STEllAR-GROUP/hpx/issues/1722
https://github.com/STEllAR-GROUP/hpx/pull/1721
https://github.com/STEllAR-GROUP/hpx/pull/1720
https://github.com/STEllAR-GROUP/hpx/issues/1718
https://github.com/STEllAR-GROUP/hpx/pull/1717
https://github.com/STEllAR-GROUP/hpx/pull/1716
https://github.com/STEllAR-GROUP/hpx/pull/1715

HPX Documentation, 1.5.1

• PR #17143206 - changing misspellings

• PR #17133207 - Fixed distribution policy executors

• PR #17123208 - Moving library detection to be executed after feature tests

• PR #17113209 - Simplify parcel

• PR #17103210 - Compile only tests

• PR #17093211 - Implemented timed executors

• PR #17083212 - Implement parallel::executor_traits for thread-executors

• PR #17073213 - Various fixes to threads::executors to make custom schedulers work

• PR #17063214 - Command line option –hpx:cores does not work as expected

• Issue #17053215 - command line option –hpx:cores does not work as expected

• PR #17043216 - vector deserialization is speeded up a little

• PR #17033217 - Fixing shared_mutes

• Issue #17023218 - Shared_mutex does not compile with no_mutex cond_var

• PR #17013219 - Add distribution_policy_executor

• PR #17003220 - Executor parameters

• PR #16993221 - Readers writer lock

• PR #16983222 - Remove leftovers

• PR #16973223 - Fixing held locks

• PR #16963224 - Modified Scan Partitioner for Algorithms

• PR #16953225 - This thread executors

• PR #16943226 - Fixed #1688: Add timer counters for tfunc_total and exec_total

• PR #16933227 - Fix #1691: is_executor template specification fails for inherited executors

• PR #16923228 - Fixed #1662: Possible exception source in coalescing_message_handler

3206 https://github.com/STEllAR-GROUP/hpx/pull/1714
3207 https://github.com/STEllAR-GROUP/hpx/pull/1713
3208 https://github.com/STEllAR-GROUP/hpx/pull/1712
3209 https://github.com/STEllAR-GROUP/hpx/pull/1711
3210 https://github.com/STEllAR-GROUP/hpx/pull/1710
3211 https://github.com/STEllAR-GROUP/hpx/pull/1709
3212 https://github.com/STEllAR-GROUP/hpx/pull/1708
3213 https://github.com/STEllAR-GROUP/hpx/pull/1707
3214 https://github.com/STEllAR-GROUP/hpx/pull/1706
3215 https://github.com/STEllAR-GROUP/hpx/issues/1705
3216 https://github.com/STEllAR-GROUP/hpx/pull/1704
3217 https://github.com/STEllAR-GROUP/hpx/pull/1703
3218 https://github.com/STEllAR-GROUP/hpx/issues/1702
3219 https://github.com/STEllAR-GROUP/hpx/pull/1701
3220 https://github.com/STEllAR-GROUP/hpx/pull/1700
3221 https://github.com/STEllAR-GROUP/hpx/pull/1699
3222 https://github.com/STEllAR-GROUP/hpx/pull/1698
3223 https://github.com/STEllAR-GROUP/hpx/pull/1697
3224 https://github.com/STEllAR-GROUP/hpx/pull/1696
3225 https://github.com/STEllAR-GROUP/hpx/pull/1695
3226 https://github.com/STEllAR-GROUP/hpx/pull/1694
3227 https://github.com/STEllAR-GROUP/hpx/pull/1693
3228 https://github.com/STEllAR-GROUP/hpx/pull/1692

1364 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1714
https://github.com/STEllAR-GROUP/hpx/pull/1713
https://github.com/STEllAR-GROUP/hpx/pull/1712
https://github.com/STEllAR-GROUP/hpx/pull/1711
https://github.com/STEllAR-GROUP/hpx/pull/1710
https://github.com/STEllAR-GROUP/hpx/pull/1709
https://github.com/STEllAR-GROUP/hpx/pull/1708
https://github.com/STEllAR-GROUP/hpx/pull/1707
https://github.com/STEllAR-GROUP/hpx/pull/1706
https://github.com/STEllAR-GROUP/hpx/issues/1705
https://github.com/STEllAR-GROUP/hpx/pull/1704
https://github.com/STEllAR-GROUP/hpx/pull/1703
https://github.com/STEllAR-GROUP/hpx/issues/1702
https://github.com/STEllAR-GROUP/hpx/pull/1701
https://github.com/STEllAR-GROUP/hpx/pull/1700
https://github.com/STEllAR-GROUP/hpx/pull/1699
https://github.com/STEllAR-GROUP/hpx/pull/1698
https://github.com/STEllAR-GROUP/hpx/pull/1697
https://github.com/STEllAR-GROUP/hpx/pull/1696
https://github.com/STEllAR-GROUP/hpx/pull/1695
https://github.com/STEllAR-GROUP/hpx/pull/1694
https://github.com/STEllAR-GROUP/hpx/pull/1693
https://github.com/STEllAR-GROUP/hpx/pull/1692

HPX Documentation, 1.5.1

• Issue #16913229 - is_executor template specification fails for inherited executors

• PR #16903230 - added macro for non-intrusive serialization of classes without a default c-tor

• PR #16893231 - Replace value_or_error with custom storage, unify future_data state

• Issue #16883232 - Add timer counters for tfunc_total and exec_total

• PR #16873233 - Fixed interval timer

• PR #16863234 - Fixing cmake warnings about not existing pseudo target dependencies

• PR #16853235 - Converting partitioners to use bulk async execute

• PR #16833236 - Adds a tool for inspect that checks for character limits

• PR #16823237 - Change project name to (uppercase) HPX

• PR #16813238 - Counter shortnames

• PR #16803239 - Extended Non-intrusive Serialization to Ease Usage for Library Developers

• PR #16793240 - Working on 1544: More executor changes

• PR #16783241 - Transpose fixes

• PR #16773242 - Improve Boost compatibility check

• PR #16763243 - 1d stencil fix

• Issue #16753244 - hpx project name is not HPX

• PR #16743245 - Fixing the MPI parcelport

• PR #16733246 - added move semantics to map/vector deserialization

• PR #16723247 - Vs2015 await

• PR #16713248 - Adapt transform for #1668

• PR #16703249 - Started to work on #1668

• PR #16693250 - Add this_thread_executors

• Issue #16673251 - Apple build instructions in docs are out of date

3229 https://github.com/STEllAR-GROUP/hpx/issues/1691
3230 https://github.com/STEllAR-GROUP/hpx/pull/1690
3231 https://github.com/STEllAR-GROUP/hpx/pull/1689
3232 https://github.com/STEllAR-GROUP/hpx/issues/1688
3233 https://github.com/STEllAR-GROUP/hpx/pull/1687
3234 https://github.com/STEllAR-GROUP/hpx/pull/1686
3235 https://github.com/STEllAR-GROUP/hpx/pull/1685
3236 https://github.com/STEllAR-GROUP/hpx/pull/1683
3237 https://github.com/STEllAR-GROUP/hpx/pull/1682
3238 https://github.com/STEllAR-GROUP/hpx/pull/1681
3239 https://github.com/STEllAR-GROUP/hpx/pull/1680
3240 https://github.com/STEllAR-GROUP/hpx/pull/1679
3241 https://github.com/STEllAR-GROUP/hpx/pull/1678
3242 https://github.com/STEllAR-GROUP/hpx/pull/1677
3243 https://github.com/STEllAR-GROUP/hpx/pull/1676
3244 https://github.com/STEllAR-GROUP/hpx/issues/1675
3245 https://github.com/STEllAR-GROUP/hpx/pull/1674
3246 https://github.com/STEllAR-GROUP/hpx/pull/1673
3247 https://github.com/STEllAR-GROUP/hpx/pull/1672
3248 https://github.com/STEllAR-GROUP/hpx/pull/1671
3249 https://github.com/STEllAR-GROUP/hpx/pull/1670
3250 https://github.com/STEllAR-GROUP/hpx/pull/1669
3251 https://github.com/STEllAR-GROUP/hpx/issues/1667

2.11. Releases 1365

https://github.com/STEllAR-GROUP/hpx/issues/1691
https://github.com/STEllAR-GROUP/hpx/pull/1690
https://github.com/STEllAR-GROUP/hpx/pull/1689
https://github.com/STEllAR-GROUP/hpx/issues/1688
https://github.com/STEllAR-GROUP/hpx/pull/1687
https://github.com/STEllAR-GROUP/hpx/pull/1686
https://github.com/STEllAR-GROUP/hpx/pull/1685
https://github.com/STEllAR-GROUP/hpx/pull/1683
https://github.com/STEllAR-GROUP/hpx/pull/1682
https://github.com/STEllAR-GROUP/hpx/pull/1681
https://github.com/STEllAR-GROUP/hpx/pull/1680
https://github.com/STEllAR-GROUP/hpx/pull/1679
https://github.com/STEllAR-GROUP/hpx/pull/1678
https://github.com/STEllAR-GROUP/hpx/pull/1677
https://github.com/STEllAR-GROUP/hpx/pull/1676
https://github.com/STEllAR-GROUP/hpx/issues/1675
https://github.com/STEllAR-GROUP/hpx/pull/1674
https://github.com/STEllAR-GROUP/hpx/pull/1673
https://github.com/STEllAR-GROUP/hpx/pull/1672
https://github.com/STEllAR-GROUP/hpx/pull/1671
https://github.com/STEllAR-GROUP/hpx/pull/1670
https://github.com/STEllAR-GROUP/hpx/pull/1669
https://github.com/STEllAR-GROUP/hpx/issues/1667

HPX Documentation, 1.5.1

• PR #16663252 - Apex integration

• PR #16653253 - Fixes an error with the whitespace check that showed the incorrect location of the error

• Issue #16643254 - Inspect tool found incorrect endline whitespace

• PR #16633255 - Improve use of locks

• Issue #16623256 - Possible exception source in coalescing_message_handler

• PR #16613257 - Added support for 128bit number serialization

• PR #16603258 - Serialization 128bits

• PR #16593259 - Implemented inner_product and adjacent_diff algos

• PR #16583260 - Add serialization for std::set (as there is for std::vector and std::map)

• PR #16573261 - Use of shared_ptr in io_service_pool changed to unique_ptr

• Issue #16563262 - 1d_stencil codes all have wrong factor

• PR #16543263 - When using runtime_mode_connect, find the correct localhost public ip address

• PR #16533264 - Fixing 1617

• PR #16523265 - Remove traits::action_may_require_id_splitting

• PR #16513266 - Fixed performance counters related to AGAS cache timings

• PR #16503267 - Remove leftovers of traits::type_size

• PR #16493268 - Shorten target names on Windows to shorten used path names

• PR #16483269 - Fixing problems introduced by merging #1623 for older compilers

• PR #16473270 - Simplify running automatic builds on Windows

• Issue #16463271 - Cache insert and update performance counters are broken

• Issue #16443272 - Remove leftovers of traits::type_size

• Issue #16433273 - Remove traits::action_may_require_id_splitting

• PR #16423274 - Adds spell checker to the inspect tool for qbk and doxygen comments

3252 https://github.com/STEllAR-GROUP/hpx/pull/1666
3253 https://github.com/STEllAR-GROUP/hpx/pull/1665
3254 https://github.com/STEllAR-GROUP/hpx/issues/1664
3255 https://github.com/STEllAR-GROUP/hpx/pull/1663
3256 https://github.com/STEllAR-GROUP/hpx/issues/1662
3257 https://github.com/STEllAR-GROUP/hpx/pull/1661
3258 https://github.com/STEllAR-GROUP/hpx/pull/1660
3259 https://github.com/STEllAR-GROUP/hpx/pull/1659
3260 https://github.com/STEllAR-GROUP/hpx/pull/1658
3261 https://github.com/STEllAR-GROUP/hpx/pull/1657
3262 https://github.com/STEllAR-GROUP/hpx/issues/1656
3263 https://github.com/STEllAR-GROUP/hpx/pull/1654
3264 https://github.com/STEllAR-GROUP/hpx/pull/1653
3265 https://github.com/STEllAR-GROUP/hpx/pull/1652
3266 https://github.com/STEllAR-GROUP/hpx/pull/1651
3267 https://github.com/STEllAR-GROUP/hpx/pull/1650
3268 https://github.com/STEllAR-GROUP/hpx/pull/1649
3269 https://github.com/STEllAR-GROUP/hpx/pull/1648
3270 https://github.com/STEllAR-GROUP/hpx/pull/1647
3271 https://github.com/STEllAR-GROUP/hpx/issues/1646
3272 https://github.com/STEllAR-GROUP/hpx/issues/1644
3273 https://github.com/STEllAR-GROUP/hpx/issues/1643
3274 https://github.com/STEllAR-GROUP/hpx/pull/1642

1366 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1666
https://github.com/STEllAR-GROUP/hpx/pull/1665
https://github.com/STEllAR-GROUP/hpx/issues/1664
https://github.com/STEllAR-GROUP/hpx/pull/1663
https://github.com/STEllAR-GROUP/hpx/issues/1662
https://github.com/STEllAR-GROUP/hpx/pull/1661
https://github.com/STEllAR-GROUP/hpx/pull/1660
https://github.com/STEllAR-GROUP/hpx/pull/1659
https://github.com/STEllAR-GROUP/hpx/pull/1658
https://github.com/STEllAR-GROUP/hpx/pull/1657
https://github.com/STEllAR-GROUP/hpx/issues/1656
https://github.com/STEllAR-GROUP/hpx/pull/1654
https://github.com/STEllAR-GROUP/hpx/pull/1653
https://github.com/STEllAR-GROUP/hpx/pull/1652
https://github.com/STEllAR-GROUP/hpx/pull/1651
https://github.com/STEllAR-GROUP/hpx/pull/1650
https://github.com/STEllAR-GROUP/hpx/pull/1649
https://github.com/STEllAR-GROUP/hpx/pull/1648
https://github.com/STEllAR-GROUP/hpx/pull/1647
https://github.com/STEllAR-GROUP/hpx/issues/1646
https://github.com/STEllAR-GROUP/hpx/issues/1644
https://github.com/STEllAR-GROUP/hpx/issues/1643
https://github.com/STEllAR-GROUP/hpx/pull/1642

HPX Documentation, 1.5.1

• PR #16403275 - First step towards fixing 688

• PR #16393276 - Re-apply remaining changes from limit_dataflow_recursion branch

• PR #16383277 - This fixes possible deadlock in the test ignore_while_locked_1485

• PR #16373278 - Fixing hpx::wait_all() invoked with two vector<future<T>>

• PR #16363279 - Partially re-apply changes from limit_dataflow_recursion branch

• PR #16353280 - Adding missing test for #1572

• PR #16343281 - Revert “Limit recursion-depth in dataflow to a configurable constant”

• PR #16333282 - Add command line option to ignore batch environment

• PR #16313283 - hpx::lcos::queue exhibits strange behavior

• PR #16303284 - Fixed endline_whitespace_check.cpp to detect lines with only whitespace

• Issue #16293285 - Inspect trailing whitespace checker problem

• PR #16283286 - Removed meaningless const qualifiers. Minor icpc fix.

• PR #16273287 - Fixing the queue LCO and add example demonstrating its use

• PR #16263288 - Deprecating get_gid(), add get_id() and get_unmanaged_id()

• PR #16253289 - Allowing to specify whether to send credits along with message

• Issue #16243290 - Lifetime issue

• Issue #16233291 - hpx::wait_all() invoked with two vector<future<T>> fails

• PR #16223292 - Executor partitioners

• PR #16213293 - Clean up coroutines implementation

• Issue #16203294 - Revert #1535

• PR #16193295 - Fix result type calculation for hpx::make_continuation

• PR #16183296 - Fixing RDTSC on Xeon/Phi

• Issue #16173297 - hpx cmake not working when run as a subproject

3275 https://github.com/STEllAR-GROUP/hpx/pull/1640
3276 https://github.com/STEllAR-GROUP/hpx/pull/1639
3277 https://github.com/STEllAR-GROUP/hpx/pull/1638
3278 https://github.com/STEllAR-GROUP/hpx/pull/1637
3279 https://github.com/STEllAR-GROUP/hpx/pull/1636
3280 https://github.com/STEllAR-GROUP/hpx/pull/1635
3281 https://github.com/STEllAR-GROUP/hpx/pull/1634
3282 https://github.com/STEllAR-GROUP/hpx/pull/1633
3283 https://github.com/STEllAR-GROUP/hpx/pull/1631
3284 https://github.com/STEllAR-GROUP/hpx/pull/1630
3285 https://github.com/STEllAR-GROUP/hpx/issues/1629
3286 https://github.com/STEllAR-GROUP/hpx/pull/1628
3287 https://github.com/STEllAR-GROUP/hpx/pull/1627
3288 https://github.com/STEllAR-GROUP/hpx/pull/1626
3289 https://github.com/STEllAR-GROUP/hpx/pull/1625
3290 https://github.com/STEllAR-GROUP/hpx/issues/1624
3291 https://github.com/STEllAR-GROUP/hpx/issues/1623
3292 https://github.com/STEllAR-GROUP/hpx/pull/1622
3293 https://github.com/STEllAR-GROUP/hpx/pull/1621
3294 https://github.com/STEllAR-GROUP/hpx/issues/1620
3295 https://github.com/STEllAR-GROUP/hpx/pull/1619
3296 https://github.com/STEllAR-GROUP/hpx/pull/1618
3297 https://github.com/STEllAR-GROUP/hpx/issues/1617

2.11. Releases 1367

https://github.com/STEllAR-GROUP/hpx/pull/1640
https://github.com/STEllAR-GROUP/hpx/pull/1639
https://github.com/STEllAR-GROUP/hpx/pull/1638
https://github.com/STEllAR-GROUP/hpx/pull/1637
https://github.com/STEllAR-GROUP/hpx/pull/1636
https://github.com/STEllAR-GROUP/hpx/pull/1635
https://github.com/STEllAR-GROUP/hpx/pull/1634
https://github.com/STEllAR-GROUP/hpx/pull/1633
https://github.com/STEllAR-GROUP/hpx/pull/1631
https://github.com/STEllAR-GROUP/hpx/pull/1630
https://github.com/STEllAR-GROUP/hpx/issues/1629
https://github.com/STEllAR-GROUP/hpx/pull/1628
https://github.com/STEllAR-GROUP/hpx/pull/1627
https://github.com/STEllAR-GROUP/hpx/pull/1626
https://github.com/STEllAR-GROUP/hpx/pull/1625
https://github.com/STEllAR-GROUP/hpx/issues/1624
https://github.com/STEllAR-GROUP/hpx/issues/1623
https://github.com/STEllAR-GROUP/hpx/pull/1622
https://github.com/STEllAR-GROUP/hpx/pull/1621
https://github.com/STEllAR-GROUP/hpx/issues/1620
https://github.com/STEllAR-GROUP/hpx/pull/1619
https://github.com/STEllAR-GROUP/hpx/pull/1618
https://github.com/STEllAR-GROUP/hpx/issues/1617

HPX Documentation, 1.5.1

• Issue #16163298 - cmake problem resulting in RDTSC not working correctly for Xeon Phi creates very strange
results for duration counters

• Issue #16153299 - hpx::make_continuation requires input and output to be the same

• PR #16143300 - Fixed remove copy test

• Issue #16133301 - Dataflow causes stack overflow

• PR #16123302 - Modified foreach partitioner to use bulk execute

• PR #16113303 - Limit recursion-depth in dataflow to a configurable constant

• PR #16103304 - Increase timeout for CircleCI

• PR #16093305 - Refactoring thread manager, mainly extracting thread pool

• PR #16083306 - Fixed running multiple localities without localities parameter

• PR #16073307 - More algorithm fixes to adjacentfind

• Issue #16063308 - Running without localities parameter binds to bogus port range

• Issue #16053309 - Too many serializations

• PR #16043310 - Changes the HPX image into a hyperlink

• PR #16013311 - Fixing problems with remove_copy algorithm tests

• PR #16003312 - Actions with ids cleanup

• PR #15993313 - Duplicate binding of global ids should fail

• PR #15983314 - Fixing array access

• PR #15973315 - Improved the reliability of connecting/disconnecting localities

• Issue #15963316 - Duplicate id binding should fail

• PR #15953317 - Fixing more cmake config constants

• PR #15943318 - Fixing preprocessor constant used to enable C++11 chrono

• PR #15933319 - Adding operator|() for hpx::launch

• Issue #15923320 - Error (typo) in the docs

3298 https://github.com/STEllAR-GROUP/hpx/issues/1616
3299 https://github.com/STEllAR-GROUP/hpx/issues/1615
3300 https://github.com/STEllAR-GROUP/hpx/pull/1614
3301 https://github.com/STEllAR-GROUP/hpx/issues/1613
3302 https://github.com/STEllAR-GROUP/hpx/pull/1612
3303 https://github.com/STEllAR-GROUP/hpx/pull/1611
3304 https://github.com/STEllAR-GROUP/hpx/pull/1610
3305 https://github.com/STEllAR-GROUP/hpx/pull/1609
3306 https://github.com/STEllAR-GROUP/hpx/pull/1608
3307 https://github.com/STEllAR-GROUP/hpx/pull/1607
3308 https://github.com/STEllAR-GROUP/hpx/issues/1606
3309 https://github.com/STEllAR-GROUP/hpx/issues/1605
3310 https://github.com/STEllAR-GROUP/hpx/pull/1604
3311 https://github.com/STEllAR-GROUP/hpx/pull/1601
3312 https://github.com/STEllAR-GROUP/hpx/pull/1600
3313 https://github.com/STEllAR-GROUP/hpx/pull/1599
3314 https://github.com/STEllAR-GROUP/hpx/pull/1598
3315 https://github.com/STEllAR-GROUP/hpx/pull/1597
3316 https://github.com/STEllAR-GROUP/hpx/issues/1596
3317 https://github.com/STEllAR-GROUP/hpx/pull/1595
3318 https://github.com/STEllAR-GROUP/hpx/pull/1594
3319 https://github.com/STEllAR-GROUP/hpx/pull/1593
3320 https://github.com/STEllAR-GROUP/hpx/issues/1592

1368 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1616
https://github.com/STEllAR-GROUP/hpx/issues/1615
https://github.com/STEllAR-GROUP/hpx/pull/1614
https://github.com/STEllAR-GROUP/hpx/issues/1613
https://github.com/STEllAR-GROUP/hpx/pull/1612
https://github.com/STEllAR-GROUP/hpx/pull/1611
https://github.com/STEllAR-GROUP/hpx/pull/1610
https://github.com/STEllAR-GROUP/hpx/pull/1609
https://github.com/STEllAR-GROUP/hpx/pull/1608
https://github.com/STEllAR-GROUP/hpx/pull/1607
https://github.com/STEllAR-GROUP/hpx/issues/1606
https://github.com/STEllAR-GROUP/hpx/issues/1605
https://github.com/STEllAR-GROUP/hpx/pull/1604
https://github.com/STEllAR-GROUP/hpx/pull/1601
https://github.com/STEllAR-GROUP/hpx/pull/1600
https://github.com/STEllAR-GROUP/hpx/pull/1599
https://github.com/STEllAR-GROUP/hpx/pull/1598
https://github.com/STEllAR-GROUP/hpx/pull/1597
https://github.com/STEllAR-GROUP/hpx/issues/1596
https://github.com/STEllAR-GROUP/hpx/pull/1595
https://github.com/STEllAR-GROUP/hpx/pull/1594
https://github.com/STEllAR-GROUP/hpx/pull/1593
https://github.com/STEllAR-GROUP/hpx/issues/1592

HPX Documentation, 1.5.1

• Issue #15903321 - CMake fails when CMAKE_BINARY_DIR contains ‘+’.

• Issue #15893322 - Disconnecting a locality results in segfault using heartbeat example

• PR #15883323 - Fix doc string for config option HPX_WITH_EXAMPLES

• PR #15863324 - Fixing 1493

• PR #15853325 - Additional Check for Inspect Tool to detect Endline Whitespace

• Issue #15843326 - Clean up coroutines implementation

• PR #15833327 - Adding a check for end line whitespace

• PR #15823328 - Attempt to fix assert firing after scheduling loop was exited

• PR #15813329 - Fixed adjacentfind_binary test

• PR #15803330 - Prevent some of the internal cmake lists from growing indefinitely

• PR #15793331 - Removing type_size trait, replacing it with special archive type

• Issue #15783332 - Remove demangle_helper

• PR #15773333 - Get ptr problems

• Issue #15763334 - Refactor async, dataflow, and future::then

• PR #15753335 - Fixing tests for parallel rotate

• PR #15743336 - Cleaning up schedulers

• PR #15733337 - Fixing thread pool executor

• PR #15723338 - Fixing number of configured localities

• PR #15713339 - Reimplement decay

• PR #15703340 - Refactoring async, apply, and dataflow APIs

• PR #15693341 - Changed range for mach-o library lookup

• PR #15683342 - Mark decltype support as required

• PR #15673343 - Removed const from algorithms

3321 https://github.com/STEllAR-GROUP/hpx/issues/1590
3322 https://github.com/STEllAR-GROUP/hpx/issues/1589
3323 https://github.com/STEllAR-GROUP/hpx/pull/1588
3324 https://github.com/STEllAR-GROUP/hpx/pull/1586
3325 https://github.com/STEllAR-GROUP/hpx/pull/1585
3326 https://github.com/STEllAR-GROUP/hpx/issues/1584
3327 https://github.com/STEllAR-GROUP/hpx/pull/1583
3328 https://github.com/STEllAR-GROUP/hpx/pull/1582
3329 https://github.com/STEllAR-GROUP/hpx/pull/1581
3330 https://github.com/STEllAR-GROUP/hpx/pull/1580
3331 https://github.com/STEllAR-GROUP/hpx/pull/1579
3332 https://github.com/STEllAR-GROUP/hpx/issues/1578
3333 https://github.com/STEllAR-GROUP/hpx/pull/1577
3334 https://github.com/STEllAR-GROUP/hpx/issues/1576
3335 https://github.com/STEllAR-GROUP/hpx/pull/1575
3336 https://github.com/STEllAR-GROUP/hpx/pull/1574
3337 https://github.com/STEllAR-GROUP/hpx/pull/1573
3338 https://github.com/STEllAR-GROUP/hpx/pull/1572
3339 https://github.com/STEllAR-GROUP/hpx/pull/1571
3340 https://github.com/STEllAR-GROUP/hpx/pull/1570
3341 https://github.com/STEllAR-GROUP/hpx/pull/1569
3342 https://github.com/STEllAR-GROUP/hpx/pull/1568
3343 https://github.com/STEllAR-GROUP/hpx/pull/1567

2.11. Releases 1369

https://github.com/STEllAR-GROUP/hpx/issues/1590
https://github.com/STEllAR-GROUP/hpx/issues/1589
https://github.com/STEllAR-GROUP/hpx/pull/1588
https://github.com/STEllAR-GROUP/hpx/pull/1586
https://github.com/STEllAR-GROUP/hpx/pull/1585
https://github.com/STEllAR-GROUP/hpx/issues/1584
https://github.com/STEllAR-GROUP/hpx/pull/1583
https://github.com/STEllAR-GROUP/hpx/pull/1582
https://github.com/STEllAR-GROUP/hpx/pull/1581
https://github.com/STEllAR-GROUP/hpx/pull/1580
https://github.com/STEllAR-GROUP/hpx/pull/1579
https://github.com/STEllAR-GROUP/hpx/issues/1578
https://github.com/STEllAR-GROUP/hpx/pull/1577
https://github.com/STEllAR-GROUP/hpx/issues/1576
https://github.com/STEllAR-GROUP/hpx/pull/1575
https://github.com/STEllAR-GROUP/hpx/pull/1574
https://github.com/STEllAR-GROUP/hpx/pull/1573
https://github.com/STEllAR-GROUP/hpx/pull/1572
https://github.com/STEllAR-GROUP/hpx/pull/1571
https://github.com/STEllAR-GROUP/hpx/pull/1570
https://github.com/STEllAR-GROUP/hpx/pull/1569
https://github.com/STEllAR-GROUP/hpx/pull/1568
https://github.com/STEllAR-GROUP/hpx/pull/1567

HPX Documentation, 1.5.1

• Issue #15663344 - CMAKE Configuration Test Failures for clang 3.5 on debian

• PR #15653345 - Dylib support

• PR #15643346 - Converted partitioners and some algorithms to use executors

• PR #15633347 - Fix several #includes for Boost.Preprocessor

• PR #15623348 - Adding configuration option disabling/enabling all message handlers

• PR #15613349 - Removed all occurrences of boost::move replacing it with std::move

• Issue #15603350 - Leftover HPX_REGISTER_ACTION_DECLARATION_2

• PR #15583351 - Revisit async/apply SFINAE conditions

• PR #15573352 - Removing type_size trait, replacing it with special archive type

• PR #15563353 - Executor algorithms

• PR #15553354 - Remove the necessity to specify archive flags on the receiving end

• PR #15543355 - Removing obsolete Boost.Serialization macros

• PR #15533356 - Properly fix HPX_DEFINE_*_ACTION macros

• PR #15523357 - Fixed algorithms relying on copy_if implementation

• PR #15513358 - Pxfs - Modifying FindOrangeFS.cmake based on OrangeFS 2.9.X

• Issue #15503359 - Passing plain identifier inside HPX_DEFINE_PLAIN_ACTION_1

• PR #15493360 - Fixing intel14/libstdc++4.4

• PR #15483361 - Moving raw_ptr to detail namespace

• PR #15473362 - Adding support for executors to future.then

• PR #15463363 - Executor traits result types

• PR #15453364 - Integrate executors with dataflow

• PR #15433365 - Fix potential zero-copy for primarynamespace::bulk_service_async et.al.

• PR #15423366 - Merging HPX0.9.10 into pxfs branch

3344 https://github.com/STEllAR-GROUP/hpx/issues/1566
3345 https://github.com/STEllAR-GROUP/hpx/pull/1565
3346 https://github.com/STEllAR-GROUP/hpx/pull/1564
3347 https://github.com/STEllAR-GROUP/hpx/pull/1563
3348 https://github.com/STEllAR-GROUP/hpx/pull/1562
3349 https://github.com/STEllAR-GROUP/hpx/pull/1561
3350 https://github.com/STEllAR-GROUP/hpx/issues/1560
3351 https://github.com/STEllAR-GROUP/hpx/pull/1558
3352 https://github.com/STEllAR-GROUP/hpx/pull/1557
3353 https://github.com/STEllAR-GROUP/hpx/pull/1556
3354 https://github.com/STEllAR-GROUP/hpx/pull/1555
3355 https://github.com/STEllAR-GROUP/hpx/pull/1554
3356 https://github.com/STEllAR-GROUP/hpx/pull/1553
3357 https://github.com/STEllAR-GROUP/hpx/pull/1552
3358 https://github.com/STEllAR-GROUP/hpx/pull/1551
3359 https://github.com/STEllAR-GROUP/hpx/issues/1550
3360 https://github.com/STEllAR-GROUP/hpx/pull/1549
3361 https://github.com/STEllAR-GROUP/hpx/pull/1548
3362 https://github.com/STEllAR-GROUP/hpx/pull/1547
3363 https://github.com/STEllAR-GROUP/hpx/pull/1546
3364 https://github.com/STEllAR-GROUP/hpx/pull/1545
3365 https://github.com/STEllAR-GROUP/hpx/pull/1543
3366 https://github.com/STEllAR-GROUP/hpx/pull/1542

1370 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1566
https://github.com/STEllAR-GROUP/hpx/pull/1565
https://github.com/STEllAR-GROUP/hpx/pull/1564
https://github.com/STEllAR-GROUP/hpx/pull/1563
https://github.com/STEllAR-GROUP/hpx/pull/1562
https://github.com/STEllAR-GROUP/hpx/pull/1561
https://github.com/STEllAR-GROUP/hpx/issues/1560
https://github.com/STEllAR-GROUP/hpx/pull/1558
https://github.com/STEllAR-GROUP/hpx/pull/1557
https://github.com/STEllAR-GROUP/hpx/pull/1556
https://github.com/STEllAR-GROUP/hpx/pull/1555
https://github.com/STEllAR-GROUP/hpx/pull/1554
https://github.com/STEllAR-GROUP/hpx/pull/1553
https://github.com/STEllAR-GROUP/hpx/pull/1552
https://github.com/STEllAR-GROUP/hpx/pull/1551
https://github.com/STEllAR-GROUP/hpx/issues/1550
https://github.com/STEllAR-GROUP/hpx/pull/1549
https://github.com/STEllAR-GROUP/hpx/pull/1548
https://github.com/STEllAR-GROUP/hpx/pull/1547
https://github.com/STEllAR-GROUP/hpx/pull/1546
https://github.com/STEllAR-GROUP/hpx/pull/1545
https://github.com/STEllAR-GROUP/hpx/pull/1543
https://github.com/STEllAR-GROUP/hpx/pull/1542

HPX Documentation, 1.5.1

• PR #15413367 - Removed stale cmake tests, unused since the great cmake refactoring

• PR #15403368 - Fix idle-rate on platforms without TSC

• PR #15393369 - Reporting situation if zero-copy-serialization was performed by a parcel generated from a plain
apply/async

• PR #15383370 - Changed return type of bulk executors and added test

• Issue #15373371 - Incorrect cpuid config tests

• PR #15363372 - Changed return type of bulk executors and added test

• PR #15353373 - Make sure promise::get_gid() can be called more than once

• PR #15343374 - Fixed async_callback with bound callback

• PR #15333375 - Updated the link in the documentation to a publically- accessible URL

• PR #15323376 - Make sure sync primitives are not copyable nor movable

• PR #15313377 - Fix unwrapped issue with future ranges of void type

• PR #15303378 - Serialization complex

• Issue #15283379 - Unwrapped issue with future<void>

• Issue #15273380 - HPX does not build with Boost 1.58.0

• PR #15263381 - Added support for boost.multi_array serialization

• PR #15253382 - Properly handle deferred futures, fixes #1506

• PR #15243383 - Making sure invalid action argument types generate clear error message

• Issue #15223384 - Need serialization support for boost multi array

• Issue #15213385 - Remote async and zero-copy serialization optimizations don’t play well together

• PR #15203386 - Fixing UB whil registering polymorphic classes for serialization

• PR #15193387 - Making detail::condition_variable safe to use

• PR #15183388 - Fix when_some bug missing indices in its result

• Issue #15173389 - Typo may affect CMake build system tests

3367 https://github.com/STEllAR-GROUP/hpx/pull/1541
3368 https://github.com/STEllAR-GROUP/hpx/pull/1540
3369 https://github.com/STEllAR-GROUP/hpx/pull/1539
3370 https://github.com/STEllAR-GROUP/hpx/pull/1538
3371 https://github.com/STEllAR-GROUP/hpx/issues/1537
3372 https://github.com/STEllAR-GROUP/hpx/pull/1536
3373 https://github.com/STEllAR-GROUP/hpx/pull/1535
3374 https://github.com/STEllAR-GROUP/hpx/pull/1534
3375 https://github.com/STEllAR-GROUP/hpx/pull/1533
3376 https://github.com/STEllAR-GROUP/hpx/pull/1532
3377 https://github.com/STEllAR-GROUP/hpx/pull/1531
3378 https://github.com/STEllAR-GROUP/hpx/pull/1530
3379 https://github.com/STEllAR-GROUP/hpx/issues/1528
3380 https://github.com/STEllAR-GROUP/hpx/issues/1527
3381 https://github.com/STEllAR-GROUP/hpx/pull/1526
3382 https://github.com/STEllAR-GROUP/hpx/pull/1525
3383 https://github.com/STEllAR-GROUP/hpx/pull/1524
3384 https://github.com/STEllAR-GROUP/hpx/issues/1522
3385 https://github.com/STEllAR-GROUP/hpx/issues/1521
3386 https://github.com/STEllAR-GROUP/hpx/pull/1520
3387 https://github.com/STEllAR-GROUP/hpx/pull/1519
3388 https://github.com/STEllAR-GROUP/hpx/pull/1518
3389 https://github.com/STEllAR-GROUP/hpx/issues/1517

2.11. Releases 1371

https://github.com/STEllAR-GROUP/hpx/pull/1541
https://github.com/STEllAR-GROUP/hpx/pull/1540
https://github.com/STEllAR-GROUP/hpx/pull/1539
https://github.com/STEllAR-GROUP/hpx/pull/1538
https://github.com/STEllAR-GROUP/hpx/issues/1537
https://github.com/STEllAR-GROUP/hpx/pull/1536
https://github.com/STEllAR-GROUP/hpx/pull/1535
https://github.com/STEllAR-GROUP/hpx/pull/1534
https://github.com/STEllAR-GROUP/hpx/pull/1533
https://github.com/STEllAR-GROUP/hpx/pull/1532
https://github.com/STEllAR-GROUP/hpx/pull/1531
https://github.com/STEllAR-GROUP/hpx/pull/1530
https://github.com/STEllAR-GROUP/hpx/issues/1528
https://github.com/STEllAR-GROUP/hpx/issues/1527
https://github.com/STEllAR-GROUP/hpx/pull/1526
https://github.com/STEllAR-GROUP/hpx/pull/1525
https://github.com/STEllAR-GROUP/hpx/pull/1524
https://github.com/STEllAR-GROUP/hpx/issues/1522
https://github.com/STEllAR-GROUP/hpx/issues/1521
https://github.com/STEllAR-GROUP/hpx/pull/1520
https://github.com/STEllAR-GROUP/hpx/pull/1519
https://github.com/STEllAR-GROUP/hpx/pull/1518
https://github.com/STEllAR-GROUP/hpx/issues/1517

HPX Documentation, 1.5.1

• PR #15163390 - Fixing Posix context

• PR #15153391 - Fixing Posix context

• PR #15143392 - Correct problems with loading dynamic components

• PR #15133393 - Fixing intel glibc4 4

• Issue #15083394 - memory and papi counters do not work

• Issue #15073395 - Unrecognized Command Line Option Error causing exit status 0

• Issue #15063396 - Properly handle deferred futures

• PR #15053397 - Adding #include - would not compile without this

• Issue #15023398 - boost::filesystem::exists throws unexpected exception

• Issue #15013399 - hwloc configuration options are wrong for MIC

• PR #15043400 - Making sure boost::filesystem::exists() does not throw

• PR #15003401 - Exit application on --hpx:version/-v and --hpx:info

• PR #14983402 - Extended task block

• PR #14973403 - Unique ptr serialization

• PR #14963404 - Unique ptr serialization (closed)

• PR #14953405 - Switching circleci build type to debug

• Issue #14943406 - --hpx:version/-v does not exit after printing version information

• Issue #14933407 - add an hpx_ prefix to libraries and components to avoid name conflicts

• Issue #14923408 - Define and ensure limitations for arguments to async/apply

• PR #14893409 - Enable idle rate counter on demand

• PR #14883410 - Made sure detail::condition_variable can be safely destroyed

• PR #14873411 - Introduced default (main) template implementation for ignore_while_checking

• PR #14863412 - Add HPX inspect tool

3390 https://github.com/STEllAR-GROUP/hpx/pull/1516
3391 https://github.com/STEllAR-GROUP/hpx/pull/1515
3392 https://github.com/STEllAR-GROUP/hpx/pull/1514
3393 https://github.com/STEllAR-GROUP/hpx/pull/1513
3394 https://github.com/STEllAR-GROUP/hpx/issues/1508
3395 https://github.com/STEllAR-GROUP/hpx/issues/1507
3396 https://github.com/STEllAR-GROUP/hpx/issues/1506
3397 https://github.com/STEllAR-GROUP/hpx/pull/1505
3398 https://github.com/STEllAR-GROUP/hpx/issues/1502
3399 https://github.com/STEllAR-GROUP/hpx/issues/1501
3400 https://github.com/STEllAR-GROUP/hpx/pull/1504
3401 https://github.com/STEllAR-GROUP/hpx/pull/1500
3402 https://github.com/STEllAR-GROUP/hpx/pull/1498
3403 https://github.com/STEllAR-GROUP/hpx/pull/1497
3404 https://github.com/STEllAR-GROUP/hpx/pull/1496
3405 https://github.com/STEllAR-GROUP/hpx/pull/1495
3406 https://github.com/STEllAR-GROUP/hpx/issues/1494
3407 https://github.com/STEllAR-GROUP/hpx/issues/1493
3408 https://github.com/STEllAR-GROUP/hpx/issues/1492
3409 https://github.com/STEllAR-GROUP/hpx/pull/1489
3410 https://github.com/STEllAR-GROUP/hpx/pull/1488
3411 https://github.com/STEllAR-GROUP/hpx/pull/1487
3412 https://github.com/STEllAR-GROUP/hpx/pull/1486

1372 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/pull/1516
https://github.com/STEllAR-GROUP/hpx/pull/1515
https://github.com/STEllAR-GROUP/hpx/pull/1514
https://github.com/STEllAR-GROUP/hpx/pull/1513
https://github.com/STEllAR-GROUP/hpx/issues/1508
https://github.com/STEllAR-GROUP/hpx/issues/1507
https://github.com/STEllAR-GROUP/hpx/issues/1506
https://github.com/STEllAR-GROUP/hpx/pull/1505
https://github.com/STEllAR-GROUP/hpx/issues/1502
https://github.com/STEllAR-GROUP/hpx/issues/1501
https://github.com/STEllAR-GROUP/hpx/pull/1504
https://github.com/STEllAR-GROUP/hpx/pull/1500
https://github.com/STEllAR-GROUP/hpx/pull/1498
https://github.com/STEllAR-GROUP/hpx/pull/1497
https://github.com/STEllAR-GROUP/hpx/pull/1496
https://github.com/STEllAR-GROUP/hpx/pull/1495
https://github.com/STEllAR-GROUP/hpx/issues/1494
https://github.com/STEllAR-GROUP/hpx/issues/1493
https://github.com/STEllAR-GROUP/hpx/issues/1492
https://github.com/STEllAR-GROUP/hpx/pull/1489
https://github.com/STEllAR-GROUP/hpx/pull/1488
https://github.com/STEllAR-GROUP/hpx/pull/1487
https://github.com/STEllAR-GROUP/hpx/pull/1486

HPX Documentation, 1.5.1

• Issue #14853413 - ignore_while_locked doesn’t support all Lockable types

• PR #14843414 - Docker image generation

• PR #14833415 - Move external endian library into HPX

• PR #14823416 - Actions with integer type ids

• Issue #14813417 - Sync primitives safe destruction

• Issue #14803418 - Move external/boost/endian into hpx/util

• Issue #14783419 - Boost inspect violations

• PR #14793420 - Adds serialization for arrays; some further/minor fixes

• PR #14773421 - Fixing problems with the Intel compiler using a GCC 4.4 std library

• PR #14763422 - Adding hpx::lcos::latch and hpx::lcos::local::latch

• Issue #14753423 - Boost inspect violations

• PR #14733424 - Fixing action move tests

• Issue #14713425 - Sync primitives should not be movable

• PR #14703426 - Removing hpx::util::polymorphic_factory

• PR #14683427 - Fixed container creation

• Issue #14673428 - HPX application fail during finalization

• Issue #14663429 - HPX doesn’t pick up Torque’s nodefile on SuperMIC

• Issue #14643430 - HPX option for pre and post bootstrap performance counters

• PR #14633431 - Replacing async_colocated(id, ...) with async(colocated(id), ...)

• PR #14623432 - Consolidated task_region with N4411

• PR #14613433 - Consolidate inconsistent CMake option names

• Issue #14603434 - Which malloc is actually used? or at least which one is HPX built with

• Issue #14593435 - Make cmake configure step fail explicitly if compiler version is not supported

3413 https://github.com/STEllAR-GROUP/hpx/issues/1485
3414 https://github.com/STEllAR-GROUP/hpx/pull/1484
3415 https://github.com/STEllAR-GROUP/hpx/pull/1483
3416 https://github.com/STEllAR-GROUP/hpx/pull/1482
3417 https://github.com/STEllAR-GROUP/hpx/issues/1481
3418 https://github.com/STEllAR-GROUP/hpx/issues/1480
3419 https://github.com/STEllAR-GROUP/hpx/issues/1478
3420 https://github.com/STEllAR-GROUP/hpx/pull/1479
3421 https://github.com/STEllAR-GROUP/hpx/pull/1477
3422 https://github.com/STEllAR-GROUP/hpx/pull/1476
3423 https://github.com/STEllAR-GROUP/hpx/issues/1475
3424 https://github.com/STEllAR-GROUP/hpx/pull/1473
3425 https://github.com/STEllAR-GROUP/hpx/issues/1471
3426 https://github.com/STEllAR-GROUP/hpx/pull/1470
3427 https://github.com/STEllAR-GROUP/hpx/pull/1468
3428 https://github.com/STEllAR-GROUP/hpx/issues/1467
3429 https://github.com/STEllAR-GROUP/hpx/issues/1466
3430 https://github.com/STEllAR-GROUP/hpx/issues/1464
3431 https://github.com/STEllAR-GROUP/hpx/pull/1463
3432 https://github.com/STEllAR-GROUP/hpx/pull/1462
3433 https://github.com/STEllAR-GROUP/hpx/pull/1461
3434 https://github.com/STEllAR-GROUP/hpx/issues/1460
3435 https://github.com/STEllAR-GROUP/hpx/issues/1459

2.11. Releases 1373

https://github.com/STEllAR-GROUP/hpx/issues/1485
https://github.com/STEllAR-GROUP/hpx/pull/1484
https://github.com/STEllAR-GROUP/hpx/pull/1483
https://github.com/STEllAR-GROUP/hpx/pull/1482
https://github.com/STEllAR-GROUP/hpx/issues/1481
https://github.com/STEllAR-GROUP/hpx/issues/1480
https://github.com/STEllAR-GROUP/hpx/issues/1478
https://github.com/STEllAR-GROUP/hpx/pull/1479
https://github.com/STEllAR-GROUP/hpx/pull/1477
https://github.com/STEllAR-GROUP/hpx/pull/1476
https://github.com/STEllAR-GROUP/hpx/issues/1475
https://github.com/STEllAR-GROUP/hpx/pull/1473
https://github.com/STEllAR-GROUP/hpx/issues/1471
https://github.com/STEllAR-GROUP/hpx/pull/1470
https://github.com/STEllAR-GROUP/hpx/pull/1468
https://github.com/STEllAR-GROUP/hpx/issues/1467
https://github.com/STEllAR-GROUP/hpx/issues/1466
https://github.com/STEllAR-GROUP/hpx/issues/1464
https://github.com/STEllAR-GROUP/hpx/pull/1463
https://github.com/STEllAR-GROUP/hpx/pull/1462
https://github.com/STEllAR-GROUP/hpx/pull/1461
https://github.com/STEllAR-GROUP/hpx/issues/1460
https://github.com/STEllAR-GROUP/hpx/issues/1459

HPX Documentation, 1.5.1

• Issue #14583436 - Update parallel::task_region with N4411

• PR #14563437 - Consolidating new_<>()

• Issue #14553438 - Replace async_colocated(id, ...) with async(colocated(id), ...)

• PR #14543439 - Removed harmful std::moves from return statements

• PR #14533440 - Use range-based for-loop instead of Boost.Foreach

• PR #14523441 - C++ feature tests

• PR #14513442 - When serializing, pass archive flags to traits::get_type_size

• Issue #14503443 - traits:get_type_size needs archive flags to enable zero_copy optimizations

• Issue #14493444 - “couldn’t create performance counter” - AGAS

• Issue #14483445 - Replace distributing factories with new_<T[]>(...)

• PR #14473446 - Removing obsolete remote_object component

• PR #14463447 - Hpx serialization

• PR #14453448 - Replacing travis with circleci

• PR #14433449 - Always stripping HPX command line arguments before executing start function

• PR #14423450 - Adding –hpx:bind=none to disable thread affinities

• Issue #14393451 - Libraries get linked in multiple times, RPATH is not properly set

• PR #14383452 - Removed superfluous typedefs

• Issue #14373453 - hpx::init() should strip HPX-related flags from argv

• Issue #14363454 - Add strong scaling option to htts

• PR #14353455 - Adding async_cb, async_continue_cb, and async_colocated_cb

• PR #14343456 - Added missing install rule, removed some dead CMake code

• PR #14333457 - Add GitExternal and SubProject cmake scripts from eyescale/cmake repo

• Issue #14323458 - Add command line flag to disable thread pinning

3436 https://github.com/STEllAR-GROUP/hpx/issues/1458
3437 https://github.com/STEllAR-GROUP/hpx/pull/1456
3438 https://github.com/STEllAR-GROUP/hpx/issues/1455
3439 https://github.com/STEllAR-GROUP/hpx/pull/1454
3440 https://github.com/STEllAR-GROUP/hpx/pull/1453
3441 https://github.com/STEllAR-GROUP/hpx/pull/1452
3442 https://github.com/STEllAR-GROUP/hpx/pull/1451
3443 https://github.com/STEllAR-GROUP/hpx/issues/1450
3444 https://github.com/STEllAR-GROUP/hpx/issues/1449
3445 https://github.com/STEllAR-GROUP/hpx/issues/1448
3446 https://github.com/STEllAR-GROUP/hpx/pull/1447
3447 https://github.com/STEllAR-GROUP/hpx/pull/1446
3448 https://github.com/STEllAR-GROUP/hpx/pull/1445
3449 https://github.com/STEllAR-GROUP/hpx/pull/1443
3450 https://github.com/STEllAR-GROUP/hpx/pull/1442
3451 https://github.com/STEllAR-GROUP/hpx/issues/1439
3452 https://github.com/STEllAR-GROUP/hpx/pull/1438
3453 https://github.com/STEllAR-GROUP/hpx/issues/1437
3454 https://github.com/STEllAR-GROUP/hpx/issues/1436
3455 https://github.com/STEllAR-GROUP/hpx/pull/1435
3456 https://github.com/STEllAR-GROUP/hpx/pull/1434
3457 https://github.com/STEllAR-GROUP/hpx/pull/1433
3458 https://github.com/STEllAR-GROUP/hpx/issues/1432

1374 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1458
https://github.com/STEllAR-GROUP/hpx/pull/1456
https://github.com/STEllAR-GROUP/hpx/issues/1455
https://github.com/STEllAR-GROUP/hpx/pull/1454
https://github.com/STEllAR-GROUP/hpx/pull/1453
https://github.com/STEllAR-GROUP/hpx/pull/1452
https://github.com/STEllAR-GROUP/hpx/pull/1451
https://github.com/STEllAR-GROUP/hpx/issues/1450
https://github.com/STEllAR-GROUP/hpx/issues/1449
https://github.com/STEllAR-GROUP/hpx/issues/1448
https://github.com/STEllAR-GROUP/hpx/pull/1447
https://github.com/STEllAR-GROUP/hpx/pull/1446
https://github.com/STEllAR-GROUP/hpx/pull/1445
https://github.com/STEllAR-GROUP/hpx/pull/1443
https://github.com/STEllAR-GROUP/hpx/pull/1442
https://github.com/STEllAR-GROUP/hpx/issues/1439
https://github.com/STEllAR-GROUP/hpx/pull/1438
https://github.com/STEllAR-GROUP/hpx/issues/1437
https://github.com/STEllAR-GROUP/hpx/issues/1436
https://github.com/STEllAR-GROUP/hpx/pull/1435
https://github.com/STEllAR-GROUP/hpx/pull/1434
https://github.com/STEllAR-GROUP/hpx/pull/1433
https://github.com/STEllAR-GROUP/hpx/issues/1432

HPX Documentation, 1.5.1

• PR #14313459 - Fix #1423

• Issue #14303460 - Inconsistent CMake option names

• Issue #14293461 - Configure setting HPX_HAVE_PARCELPORT_MPI is ignored

• PR #14283462 - Fixes #1419 (closed)

• PR #14273463 - Adding stencil_iterator and transform_iterator

• PR #14263464 - Fixes #1419

• PR #14253465 - During serialization memory allocation should honour allocator chunk size

• Issue #14243466 - chunk allocation during serialization does not use memory pool/allocator chunk size

• Issue #14233467 - Remove HPX_STD_UNIQUE_PTR

• Issue #14223468 - hpx:threads=all allocates too many os threads

• PR #14203469 - added .travis.yml

• Issue #14193470 - Unify enums: hpx::runtime::state and hpx::state

• PR #14163471 - Adding travis builder

• Issue #14143472 - Correct directory for dispatch_gcc46.hpp iteration

• Issue #14103473 - Set operation algorithms

• Issue #13893474 - Parallel algorithms relying on scan partitioner break for small number of elements

• Issue #13253475 - Exceptions thrown during parcel handling are not handled correctly

• Issue #13153476 - Errors while running performance tests

• Issue #13093477 - hpx::vector partitions are not easily extendable by applications

• PR #13003478 - Added serialization/de-serialization to examples.tuplespace

• Issue #12513479 - hpx::threads::get_thread_count doesn’t consider pending threads

• Issue #10083480 - Decrease in application performance overtime; occasional spikes of major slowdown

• Issue #10013481 - Zero copy serialization raises assert

3459 https://github.com/STEllAR-GROUP/hpx/pull/1431
3460 https://github.com/STEllAR-GROUP/hpx/issues/1430
3461 https://github.com/STEllAR-GROUP/hpx/issues/1429
3462 https://github.com/STEllAR-GROUP/hpx/pull/1428
3463 https://github.com/STEllAR-GROUP/hpx/pull/1427
3464 https://github.com/STEllAR-GROUP/hpx/pull/1426
3465 https://github.com/STEllAR-GROUP/hpx/pull/1425
3466 https://github.com/STEllAR-GROUP/hpx/issues/1424
3467 https://github.com/STEllAR-GROUP/hpx/issues/1423
3468 https://github.com/STEllAR-GROUP/hpx/issues/1422
3469 https://github.com/STEllAR-GROUP/hpx/pull/1420
3470 https://github.com/STEllAR-GROUP/hpx/issues/1419
3471 https://github.com/STEllAR-GROUP/hpx/pull/1416
3472 https://github.com/STEllAR-GROUP/hpx/issues/1414
3473 https://github.com/STEllAR-GROUP/hpx/issues/1410
3474 https://github.com/STEllAR-GROUP/hpx/issues/1389
3475 https://github.com/STEllAR-GROUP/hpx/issues/1325
3476 https://github.com/STEllAR-GROUP/hpx/issues/1315
3477 https://github.com/STEllAR-GROUP/hpx/issues/1309
3478 https://github.com/STEllAR-GROUP/hpx/pull/1300
3479 https://github.com/STEllAR-GROUP/hpx/issues/1251
3480 https://github.com/STEllAR-GROUP/hpx/issues/1008
3481 https://github.com/STEllAR-GROUP/hpx/issues/1001

2.11. Releases 1375

https://github.com/STEllAR-GROUP/hpx/pull/1431
https://github.com/STEllAR-GROUP/hpx/issues/1430
https://github.com/STEllAR-GROUP/hpx/issues/1429
https://github.com/STEllAR-GROUP/hpx/pull/1428
https://github.com/STEllAR-GROUP/hpx/pull/1427
https://github.com/STEllAR-GROUP/hpx/pull/1426
https://github.com/STEllAR-GROUP/hpx/pull/1425
https://github.com/STEllAR-GROUP/hpx/issues/1424
https://github.com/STEllAR-GROUP/hpx/issues/1423
https://github.com/STEllAR-GROUP/hpx/issues/1422
https://github.com/STEllAR-GROUP/hpx/pull/1420
https://github.com/STEllAR-GROUP/hpx/issues/1419
https://github.com/STEllAR-GROUP/hpx/pull/1416
https://github.com/STEllAR-GROUP/hpx/issues/1414
https://github.com/STEllAR-GROUP/hpx/issues/1410
https://github.com/STEllAR-GROUP/hpx/issues/1389
https://github.com/STEllAR-GROUP/hpx/issues/1325
https://github.com/STEllAR-GROUP/hpx/issues/1315
https://github.com/STEllAR-GROUP/hpx/issues/1309
https://github.com/STEllAR-GROUP/hpx/pull/1300
https://github.com/STEllAR-GROUP/hpx/issues/1251
https://github.com/STEllAR-GROUP/hpx/issues/1008
https://github.com/STEllAR-GROUP/hpx/issues/1001

HPX Documentation, 1.5.1

• Issue #7213482 - Make HPX usable for Xeon Phi

• Issue #5243483 - Extend scheduler to support threads which can’t be stolen

2.11.12 HPX V0.9.10 (Mar 24, 2015)

General changes

This is the 12th official release of HPX. It coincides with the 7th anniversary of the first commit to our source code
repository. Since then, we have seen over 12300 commits amounting to more than 220000 lines of C++ code.

The major focus of this release was to improve the reliability of large scale runs. We believe to have achieved this goal
as we now can reliably run HPX applications on up to ~24k cores. We have also shown that HPX can be used with
success for symmetric runs (applications using both, host cores and Intel Xeon/Phi coprocessors). This is a huge step
forward in terms of the usability of HPX. The main focus of this work involved isolating the causes of the segmentation
faults at start up and shut down. Many of these issues were discovered to be the result of the suspension of threads
which hold locks.

A very important improvement introduced with this release is the refactoring of the code representing our parcel-port
implementation. Parcel- ports can now be implemented by 3rd parties as independent plugins which are dynamically
loaded at runtime (static linking of parcel-ports is also supported). This refactoring also includes a massive improve-
ment of the performance of our existing parcel-ports. We were able to significantly reduce the networking latencies
and to improve the available networking bandwidth. Please note that in this release we disabled the ibverbs and ipc
parcel ports as those have not been ported to the new plugin system yet (see Issue #8393484).

Another corner stone of this release is our work towards a complete implementation of __cpp11_n4104__ (Working
Draft, Technical Specification for C++ Extensions for Parallelism). This document defines a set of parallel algorithms
to be added to the C++ standard library. We now have implemented about 75% of all specified parallel algorithms
(see [link hpx.manual.parallel.parallel_algorithms Parallel Algorithms] for more details). We also implemented some
extensions to __cpp11_n4104__ allowing to invoke all of the algorithms asynchronously.

This release adds a first implementation of hpx::vector which is a distributed data structure closely aligned to
the functionality of std::vector. The difference is that hpx::vector stores the data in partitions where the
partitions can be distributed over different localities. We started to work on allowing to use the parallel algorithms
with hpx::vector. At this point we have implemented only a few of the parallel algorithms to support distributed
data structures (like hpx::vector) for testing purposes (see Issue #13383485 for a documentation of our progress).

Breaking changes

With this release we put a lot of effort into changing the code base to be more compatible to C++11. These changes
have caused the following issues for backward compatibility:

• Move to Variadics- All of the API now uses variadic templates. However, this change required
to modify the argument sequence for some of the exiting API functions (hpx::async_continue,
hpx::apply_continue, hpx::when_each, hpx::wait_each, synchronous invocation of actions).

• Changes to Macros- We also removed the macros HPX_STD_FUNCTION and HPX_STD_TUPLE.
This shouldn’t affect any user code as we replaced HPX_STD_FUNCTION with
hpx::util::function_nonser which was the default expansion used for this
macro. All HPX API functions which expect a hpx::util::function_nonser (or a
hpx::util::unique_function_nonser) can now be transparently called with a compatible

3482 https://github.com/STEllAR-GROUP/hpx/issues/721
3483 https://github.com/STEllAR-GROUP/hpx/issues/524
3484 https://github.com/STEllAR-GROUP/hpx/issues/839
3485 https://github.com/STEllAR-GROUP/hpx/issues/1338

1376 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/721
https://github.com/STEllAR-GROUP/hpx/issues/524
https://github.com/STEllAR-GROUP/hpx/issues/839
https://github.com/STEllAR-GROUP/hpx/issues/1338

HPX Documentation, 1.5.1

std::function instead. Similarly, HPX_STD_TUPLE was replaced by its default expansion as well:
hpx::util::tuple.

• Changes to hpx::unique_future- hpx::unique_future, which was deprecated in the previous re-
lease for hpx::future is now completely removed from HPX. This completes the transition to a completely
standards conforming implementation of hpx::future.

• Changes to Supported Compilers. Finally, in order to utilize more C++11 semantics, we have officially dropped
support for GCC 4.4 and MSVC 2012. Please see our Prerequisites page for more details.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• Issue #14023486 - Internal shared_future serialization copies

• Issue #13993487 - Build takes unusually long time. . .

• Issue #13983488 - Tests using the scan partitioner are broken on at least gcc 4.7 and intel compiler

• Issue #13973489 - Completely remove hpx::unique_future

• Issue #13963490 - Parallel scan algorithms with different initial values

• Issue #13953491 - Race Condition - 1d_stencil_8 - SuperMIC

• Issue #13943492 - “suspending thread while at least one lock is being held” - 1d_stencil_8 - SuperMIC

• Issue #13933493 - SEGFAULT in 1d_stencil_8 on SuperMIC

• Issue #13923494 - Fixing #1168

• Issue #13913495 - Parallel Algorithms for scan partitioner for small number of elements

• Issue #13873496 - Failure with more than 4 localities

• Issue #13863497 - Dispatching unhandled exceptions to outer user code

• Issue #13853498 - Adding Copy algorithms, fixing parallel::copy_if

• Issue #13843499 - Fixing 1325

• Issue #13833500 - Fixed #504: Refactor Dataflow LCO to work with futures, this removes the dataflow compo-
nent as it is obsolete

• Issue #13823501 - is_sorted, is_sorted_until and is_partitioned algorithms

• Issue #13813502 - fix for CMake versions prior to 3.1

3486 https://github.com/STEllAR-GROUP/hpx/issues/1402
3487 https://github.com/STEllAR-GROUP/hpx/issues/1399
3488 https://github.com/STEllAR-GROUP/hpx/issues/1398
3489 https://github.com/STEllAR-GROUP/hpx/issues/1397
3490 https://github.com/STEllAR-GROUP/hpx/issues/1396
3491 https://github.com/STEllAR-GROUP/hpx/issues/1395
3492 https://github.com/STEllAR-GROUP/hpx/issues/1394
3493 https://github.com/STEllAR-GROUP/hpx/issues/1393
3494 https://github.com/STEllAR-GROUP/hpx/issues/1392
3495 https://github.com/STEllAR-GROUP/hpx/issues/1391
3496 https://github.com/STEllAR-GROUP/hpx/issues/1387
3497 https://github.com/STEllAR-GROUP/hpx/issues/1386
3498 https://github.com/STEllAR-GROUP/hpx/issues/1385
3499 https://github.com/STEllAR-GROUP/hpx/issues/1384
3500 https://github.com/STEllAR-GROUP/hpx/issues/1383
3501 https://github.com/STEllAR-GROUP/hpx/issues/1382
3502 https://github.com/STEllAR-GROUP/hpx/issues/1381

2.11. Releases 1377

https://github.com/STEllAR-GROUP/hpx/issues/1402
https://github.com/STEllAR-GROUP/hpx/issues/1399
https://github.com/STEllAR-GROUP/hpx/issues/1398
https://github.com/STEllAR-GROUP/hpx/issues/1397
https://github.com/STEllAR-GROUP/hpx/issues/1396
https://github.com/STEllAR-GROUP/hpx/issues/1395
https://github.com/STEllAR-GROUP/hpx/issues/1394
https://github.com/STEllAR-GROUP/hpx/issues/1393
https://github.com/STEllAR-GROUP/hpx/issues/1392
https://github.com/STEllAR-GROUP/hpx/issues/1391
https://github.com/STEllAR-GROUP/hpx/issues/1387
https://github.com/STEllAR-GROUP/hpx/issues/1386
https://github.com/STEllAR-GROUP/hpx/issues/1385
https://github.com/STEllAR-GROUP/hpx/issues/1384
https://github.com/STEllAR-GROUP/hpx/issues/1383
https://github.com/STEllAR-GROUP/hpx/issues/1382
https://github.com/STEllAR-GROUP/hpx/issues/1381

HPX Documentation, 1.5.1

• Issue #13803503 - resolved warning in CMake 3.1 and newer

• Issue #13793504 - Compilation error with papi

• Issue #13783505 - Towards safer migration

• Issue #13773506 - HPXConfig.cmake should include TCMALLOC_LIBRARY and TCMALLOC_INCLUDE_DIR

• Issue #13763507 - Warning on uninitialized member

• Issue #13753508 - Fixing 1163

• Issue #13743509 - Fixing the MSVC 12 release builder

• Issue #13733510 - Modifying parallel search algorithm for zero length searches

• Issue #13723511 - Modifying parallel search algorithm for zero length searches

• Issue #13713512 - Avoid holding a lock during agas::incref while doing a credit split

• Issue #13703513 - --hpx:bind throws unexpected error

• Issue #13693514 - Getting rid of (void) in loops

• Issue #13683515 - Variadic templates support for tuple

• Issue #13673516 - One last batch of variadic templates support

• Issue #13663517 - Fixing symbolic namespace hang

• Issue #13653518 - More held locks

• Issue #13643519 - Add counters 1363

• Issue #13633520 - Add thread overhead counters

• Issue #13623521 - Std config removal

• Issue #13613522 - Parcelport plugins

• Issue #13603523 - Detuplify transfer_action

• Issue #13593524 - Removed obsolete checks

• Issue #13583525 - Fixing 1352

3503 https://github.com/STEllAR-GROUP/hpx/issues/1380
3504 https://github.com/STEllAR-GROUP/hpx/issues/1379
3505 https://github.com/STEllAR-GROUP/hpx/issues/1378
3506 https://github.com/STEllAR-GROUP/hpx/issues/1377
3507 https://github.com/STEllAR-GROUP/hpx/issues/1376
3508 https://github.com/STEllAR-GROUP/hpx/issues/1375
3509 https://github.com/STEllAR-GROUP/hpx/issues/1374
3510 https://github.com/STEllAR-GROUP/hpx/issues/1373
3511 https://github.com/STEllAR-GROUP/hpx/issues/1372
3512 https://github.com/STEllAR-GROUP/hpx/issues/1371
3513 https://github.com/STEllAR-GROUP/hpx/issues/1370
3514 https://github.com/STEllAR-GROUP/hpx/issues/1369
3515 https://github.com/STEllAR-GROUP/hpx/issues/1368
3516 https://github.com/STEllAR-GROUP/hpx/issues/1367
3517 https://github.com/STEllAR-GROUP/hpx/issues/1366
3518 https://github.com/STEllAR-GROUP/hpx/issues/1365
3519 https://github.com/STEllAR-GROUP/hpx/issues/1364
3520 https://github.com/STEllAR-GROUP/hpx/issues/1363
3521 https://github.com/STEllAR-GROUP/hpx/issues/1362
3522 https://github.com/STEllAR-GROUP/hpx/issues/1361
3523 https://github.com/STEllAR-GROUP/hpx/issues/1360
3524 https://github.com/STEllAR-GROUP/hpx/issues/1359
3525 https://github.com/STEllAR-GROUP/hpx/issues/1358

1378 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1380
https://github.com/STEllAR-GROUP/hpx/issues/1379
https://github.com/STEllAR-GROUP/hpx/issues/1378
https://github.com/STEllAR-GROUP/hpx/issues/1377
https://github.com/STEllAR-GROUP/hpx/issues/1376
https://github.com/STEllAR-GROUP/hpx/issues/1375
https://github.com/STEllAR-GROUP/hpx/issues/1374
https://github.com/STEllAR-GROUP/hpx/issues/1373
https://github.com/STEllAR-GROUP/hpx/issues/1372
https://github.com/STEllAR-GROUP/hpx/issues/1371
https://github.com/STEllAR-GROUP/hpx/issues/1370
https://github.com/STEllAR-GROUP/hpx/issues/1369
https://github.com/STEllAR-GROUP/hpx/issues/1368
https://github.com/STEllAR-GROUP/hpx/issues/1367
https://github.com/STEllAR-GROUP/hpx/issues/1366
https://github.com/STEllAR-GROUP/hpx/issues/1365
https://github.com/STEllAR-GROUP/hpx/issues/1364
https://github.com/STEllAR-GROUP/hpx/issues/1363
https://github.com/STEllAR-GROUP/hpx/issues/1362
https://github.com/STEllAR-GROUP/hpx/issues/1361
https://github.com/STEllAR-GROUP/hpx/issues/1360
https://github.com/STEllAR-GROUP/hpx/issues/1359
https://github.com/STEllAR-GROUP/hpx/issues/1358

HPX Documentation, 1.5.1

• Issue #13573526 - Variadic templates support for runtime_support and components

• Issue #13563527 - fixed coordinate test for intel13

• Issue #13553528 - fixed coordinate.hpp

• Issue #13543529 - Lexicographical Compare completed

• Issue #13533530 - HPX should set Boost_ADDITIONAL_VERSIONS flags

• Issue #13523531 - Error: Cannot find action ‘’ in type registry: HPX(bad_action_code)

• Issue #13513532 - Variadic templates support for appliers

• Issue #13503533 - Actions simplification

• Issue #13493534 - Variadic when and wait functions

• Issue #13483535 - Added hpx_init header to test files

• Issue #13473536 - Another batch of variadic templates support

• Issue #13463537 - Segmented copy

• Issue #13453538 - Attempting to fix hangs during shutdown

• Issue #13443539 - Std config removal

• Issue #13433540 - Removing various distribution policies for hpx::vector

• Issue #13423541 - Inclusive scan

• Issue #13413542 - Exclusive scan

• Issue #13403543 - Adding parallel::count for distributed data structures, adding tests

• Issue #13393544 - Update argument order for transform_reduce

• Issue #13373545 - Fix dataflow to handle properly ranges of futures

• Issue #13363546 - dataflow needs to hold onto futures passed to it

• Issue #13353547 - Fails to compile with msvc14

• Issue #13343548 - Examples build problem

3526 https://github.com/STEllAR-GROUP/hpx/issues/1357
3527 https://github.com/STEllAR-GROUP/hpx/issues/1356
3528 https://github.com/STEllAR-GROUP/hpx/issues/1355
3529 https://github.com/STEllAR-GROUP/hpx/issues/1354
3530 https://github.com/STEllAR-GROUP/hpx/issues/1353
3531 https://github.com/STEllAR-GROUP/hpx/issues/1352
3532 https://github.com/STEllAR-GROUP/hpx/issues/1351
3533 https://github.com/STEllAR-GROUP/hpx/issues/1350
3534 https://github.com/STEllAR-GROUP/hpx/issues/1349
3535 https://github.com/STEllAR-GROUP/hpx/issues/1348
3536 https://github.com/STEllAR-GROUP/hpx/issues/1347
3537 https://github.com/STEllAR-GROUP/hpx/issues/1346
3538 https://github.com/STEllAR-GROUP/hpx/issues/1345
3539 https://github.com/STEllAR-GROUP/hpx/issues/1344
3540 https://github.com/STEllAR-GROUP/hpx/issues/1343
3541 https://github.com/STEllAR-GROUP/hpx/issues/1342
3542 https://github.com/STEllAR-GROUP/hpx/issues/1341
3543 https://github.com/STEllAR-GROUP/hpx/issues/1340
3544 https://github.com/STEllAR-GROUP/hpx/issues/1339
3545 https://github.com/STEllAR-GROUP/hpx/issues/1337
3546 https://github.com/STEllAR-GROUP/hpx/issues/1336
3547 https://github.com/STEllAR-GROUP/hpx/issues/1335
3548 https://github.com/STEllAR-GROUP/hpx/issues/1334

2.11. Releases 1379

https://github.com/STEllAR-GROUP/hpx/issues/1357
https://github.com/STEllAR-GROUP/hpx/issues/1356
https://github.com/STEllAR-GROUP/hpx/issues/1355
https://github.com/STEllAR-GROUP/hpx/issues/1354
https://github.com/STEllAR-GROUP/hpx/issues/1353
https://github.com/STEllAR-GROUP/hpx/issues/1352
https://github.com/STEllAR-GROUP/hpx/issues/1351
https://github.com/STEllAR-GROUP/hpx/issues/1350
https://github.com/STEllAR-GROUP/hpx/issues/1349
https://github.com/STEllAR-GROUP/hpx/issues/1348
https://github.com/STEllAR-GROUP/hpx/issues/1347
https://github.com/STEllAR-GROUP/hpx/issues/1346
https://github.com/STEllAR-GROUP/hpx/issues/1345
https://github.com/STEllAR-GROUP/hpx/issues/1344
https://github.com/STEllAR-GROUP/hpx/issues/1343
https://github.com/STEllAR-GROUP/hpx/issues/1342
https://github.com/STEllAR-GROUP/hpx/issues/1341
https://github.com/STEllAR-GROUP/hpx/issues/1340
https://github.com/STEllAR-GROUP/hpx/issues/1339
https://github.com/STEllAR-GROUP/hpx/issues/1337
https://github.com/STEllAR-GROUP/hpx/issues/1336
https://github.com/STEllAR-GROUP/hpx/issues/1335
https://github.com/STEllAR-GROUP/hpx/issues/1334

HPX Documentation, 1.5.1

• Issue #13333549 - Distributed transform reduce

• Issue #13323550 - Variadic templates support for actions

• Issue #13313551 - Some ambiguous calls of map::erase have been prevented by adding additional check in
locality constructor.

• Issue #13303552 - Defining Plain Actions does not work as described in the documentation

• Issue #13293553 - Distributed vector cleanup

• Issue #13283554 - Sync docs and comments with code in hello_world example

• Issue #13273555 - Typos in docs

• Issue #13263556 - Documentation and code diverged in Fibonacci tutorial

• Issue #13253557 - Exceptions thrown during parcel handling are not handled correctly

• Issue #13243558 - fixed bandwidth calculation

• Issue #13233559 - mmap() failed to allocate thread stack due to insufficient resources

• Issue #13223560 - HPX fails to build aa182cf

• Issue #13213561 - Limiting size of outgoing messages while coalescing parcels

• Issue #13203562 - passing a future with launch::deferred in remote function call causes hang

• Issue #13193563 - An exception when tries to specify number high priority threads with abp-priority

• Issue #13183564 - Unable to run program with abp-priority and numa-sensitivity enabled

• Issue #13173565 - N4071 Search/Search_n finished, minor changes

• Issue #13163566 - Add config option to make -Ihpx.run_hpx_main!=1 the default

• Issue #13143567 - Variadic support for async and apply

• Issue #13133568 - Adjust when_any/some to the latest proposed interfaces

• Issue #13123569 - Fixing #857: hpx::naming::locality leaks parcelport specific information into the public inter-
face

• Issue #13113570 - Distributed get’er/set’er_values for distributed vector

3549 https://github.com/STEllAR-GROUP/hpx/issues/1333
3550 https://github.com/STEllAR-GROUP/hpx/issues/1332
3551 https://github.com/STEllAR-GROUP/hpx/issues/1331
3552 https://github.com/STEllAR-GROUP/hpx/issues/1330
3553 https://github.com/STEllAR-GROUP/hpx/issues/1329
3554 https://github.com/STEllAR-GROUP/hpx/issues/1328
3555 https://github.com/STEllAR-GROUP/hpx/issues/1327
3556 https://github.com/STEllAR-GROUP/hpx/issues/1326
3557 https://github.com/STEllAR-GROUP/hpx/issues/1325
3558 https://github.com/STEllAR-GROUP/hpx/issues/1324
3559 https://github.com/STEllAR-GROUP/hpx/issues/1323
3560 https://github.com/STEllAR-GROUP/hpx/issues/1322
3561 https://github.com/STEllAR-GROUP/hpx/issues/1321
3562 https://github.com/STEllAR-GROUP/hpx/issues/1320
3563 https://github.com/STEllAR-GROUP/hpx/issues/1319
3564 https://github.com/STEllAR-GROUP/hpx/issues/1318
3565 https://github.com/STEllAR-GROUP/hpx/issues/1317
3566 https://github.com/STEllAR-GROUP/hpx/issues/1316
3567 https://github.com/STEllAR-GROUP/hpx/issues/1314
3568 https://github.com/STEllAR-GROUP/hpx/issues/1313
3569 https://github.com/STEllAR-GROUP/hpx/issues/1312
3570 https://github.com/STEllAR-GROUP/hpx/issues/1311

1380 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1333
https://github.com/STEllAR-GROUP/hpx/issues/1332
https://github.com/STEllAR-GROUP/hpx/issues/1331
https://github.com/STEllAR-GROUP/hpx/issues/1330
https://github.com/STEllAR-GROUP/hpx/issues/1329
https://github.com/STEllAR-GROUP/hpx/issues/1328
https://github.com/STEllAR-GROUP/hpx/issues/1327
https://github.com/STEllAR-GROUP/hpx/issues/1326
https://github.com/STEllAR-GROUP/hpx/issues/1325
https://github.com/STEllAR-GROUP/hpx/issues/1324
https://github.com/STEllAR-GROUP/hpx/issues/1323
https://github.com/STEllAR-GROUP/hpx/issues/1322
https://github.com/STEllAR-GROUP/hpx/issues/1321
https://github.com/STEllAR-GROUP/hpx/issues/1320
https://github.com/STEllAR-GROUP/hpx/issues/1319
https://github.com/STEllAR-GROUP/hpx/issues/1318
https://github.com/STEllAR-GROUP/hpx/issues/1317
https://github.com/STEllAR-GROUP/hpx/issues/1316
https://github.com/STEllAR-GROUP/hpx/issues/1314
https://github.com/STEllAR-GROUP/hpx/issues/1313
https://github.com/STEllAR-GROUP/hpx/issues/1312
https://github.com/STEllAR-GROUP/hpx/issues/1311

HPX Documentation, 1.5.1

• Issue #13103571 - Crashing in hpx::parcelset::policies::mpi::connection_handler::handle_messages() on Super-
MIC

• Issue #13083572 - Unable to execute an application with –hpx:threads

• Issue #13073573 - merge_graph linking issue

• Issue #13063574 - First batch of variadic templates support

• Issue #13053575 - Create a compiler wrapper

• Issue #13043576 - Provide a compiler wrapper for hpx

• Issue #13033577 - Drop support for GCC44

• Issue #13023578 - Fixing #1297

• Issue #13013579 - Compilation error when tried to use boost range iterators with wait_all

• Issue #12983580 - Distributed vector

• Issue #12973581 - Unable to invoke component actions recursively

• Issue #12943582 - HDF5 build error

• Issue #12753583 - The parcelport implementation is non-optimal

• Issue #12673584 - Added classes and unit tests for local_file, orangefs_file and pxfs_file

• Issue #12643585 - Error “assertion ‘!m_fun’ failed” randomly occurs when using TCP

• Issue #12543586 - thread binding seems to not work properly

• Issue #12203587 - parallel::copy_if is broken

• Issue #12173588 - Find a better way of fixing the issue patched by #1216

• Issue #11683589 - Starting HPX on Cray machines using aprun isn’t working correctly

• Issue #10853590 - Replace startup and shutdown barriers with broadcasts

• Issue #9813591 - With SLURM, –hpx:threads=8 should not be necessary

• Issue #8573592 - hpx::naming::locality leaks parcelport specific information into the public interface

• Issue #8503593 - “flush” not documented
3571 https://github.com/STEllAR-GROUP/hpx/issues/1310
3572 https://github.com/STEllAR-GROUP/hpx/issues/1308
3573 https://github.com/STEllAR-GROUP/hpx/issues/1307
3574 https://github.com/STEllAR-GROUP/hpx/issues/1306
3575 https://github.com/STEllAR-GROUP/hpx/issues/1305
3576 https://github.com/STEllAR-GROUP/hpx/issues/1304
3577 https://github.com/STEllAR-GROUP/hpx/issues/1303
3578 https://github.com/STEllAR-GROUP/hpx/issues/1302
3579 https://github.com/STEllAR-GROUP/hpx/issues/1301
3580 https://github.com/STEllAR-GROUP/hpx/issues/1298
3581 https://github.com/STEllAR-GROUP/hpx/issues/1297
3582 https://github.com/STEllAR-GROUP/hpx/issues/1294
3583 https://github.com/STEllAR-GROUP/hpx/issues/1275
3584 https://github.com/STEllAR-GROUP/hpx/issues/1267
3585 https://github.com/STEllAR-GROUP/hpx/issues/1264
3586 https://github.com/STEllAR-GROUP/hpx/issues/1254
3587 https://github.com/STEllAR-GROUP/hpx/issues/1220
3588 https://github.com/STEllAR-GROUP/hpx/issues/1217
3589 https://github.com/STEllAR-GROUP/hpx/issues/1168
3590 https://github.com/STEllAR-GROUP/hpx/issues/1085
3591 https://github.com/STEllAR-GROUP/hpx/issues/981
3592 https://github.com/STEllAR-GROUP/hpx/issues/857
3593 https://github.com/STEllAR-GROUP/hpx/issues/850

2.11. Releases 1381

https://github.com/STEllAR-GROUP/hpx/issues/1310
https://github.com/STEllAR-GROUP/hpx/issues/1308
https://github.com/STEllAR-GROUP/hpx/issues/1307
https://github.com/STEllAR-GROUP/hpx/issues/1306
https://github.com/STEllAR-GROUP/hpx/issues/1305
https://github.com/STEllAR-GROUP/hpx/issues/1304
https://github.com/STEllAR-GROUP/hpx/issues/1303
https://github.com/STEllAR-GROUP/hpx/issues/1302
https://github.com/STEllAR-GROUP/hpx/issues/1301
https://github.com/STEllAR-GROUP/hpx/issues/1298
https://github.com/STEllAR-GROUP/hpx/issues/1297
https://github.com/STEllAR-GROUP/hpx/issues/1294
https://github.com/STEllAR-GROUP/hpx/issues/1275
https://github.com/STEllAR-GROUP/hpx/issues/1267
https://github.com/STEllAR-GROUP/hpx/issues/1264
https://github.com/STEllAR-GROUP/hpx/issues/1254
https://github.com/STEllAR-GROUP/hpx/issues/1220
https://github.com/STEllAR-GROUP/hpx/issues/1217
https://github.com/STEllAR-GROUP/hpx/issues/1168
https://github.com/STEllAR-GROUP/hpx/issues/1085
https://github.com/STEllAR-GROUP/hpx/issues/981
https://github.com/STEllAR-GROUP/hpx/issues/857
https://github.com/STEllAR-GROUP/hpx/issues/850

HPX Documentation, 1.5.1

• Issue #7633594 - Create buildbot instance that uses std::bind as HPX_STD_BIND

• Issue #6803595 - Convert parcel ports into a plugin system

• Issue #5823596 - Make exception thrown from HPX threads available from hpx::init

• Issue #5043597 - Refactor Dataflow LCO to work with futures

• Issue #1963598 - Don’t store copies of the locality network metadata in the gva table

2.11.13 HPX V0.9.9 (Oct 31, 2014, codename Spooky)

General changes

We have had over 1500 commits since the last release and we have closed over 200 tickets (bugs, feature requests, pull
requests, etc.). These are by far the largest numbers of commits and resolved issues for any of the HPX releases so far.
We are especially happy about the large number of people who contributed for the first time to HPX.

• We completed the transition from the older (non-conforming) implementation of hpx::future to the new
and fully conforming version by removing the old code and by renaming the type hpx::unique_future
to hpx::future. In order to maintain backwards compatibility with existing code which uses the type
hpx::unique_futurewe support the configuration variable HPX_UNIQUE_FUTURE_ALIAS. If this vari-
able is set to ON while running cmake it will additionally define a template alias for this type.

• We rewrote and significantly changed our build system. Please have a look at the new (now generated) docu-
mentation here: HPX build system. Please revisit your build scripts to adapt to the changes. The most notable
changes are:

– HPX_NO_INSTALL is no longer necessary.

– For external builds, you need to set HPX_DIR instead of HPX_ROOT as described here: Using HPX with
CMake-based projects.

– IDEs that support multiple configurations (Visual Studio and XCode) can now be used as intended. that
means no build dir.

– Building HPX statically (without dynamic libraries) is now supported
(-DHPX_STATIC_LINKING=On).

– Please note that many variables used to configure the build process have been renamed to unify the naming
conventions (see the section CMake variables used to configure HPX for more information).

– This also fixes a long list of issues, for more information see Issue #12043599.

• We started to implement various proposals to the C++ Standardization committee related to parallelism and con-
currency, most notably N44093600 (Working Draft, Technical Specification for C++ Extensions for Parallelism),
N44113601 (Task Region Rev. 3), and N43133602 (Working Draft, Technical Specification for C++ Extensions
for Concurrency).

3594 https://github.com/STEllAR-GROUP/hpx/issues/763
3595 https://github.com/STEllAR-GROUP/hpx/issues/680
3596 https://github.com/STEllAR-GROUP/hpx/issues/582
3597 https://github.com/STEllAR-GROUP/hpx/issues/504
3598 https://github.com/STEllAR-GROUP/hpx/issues/196
3599 https://github.com/STEllAR-GROUP/hpx/issues/1204
3600 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4409.pdf
3601 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
3602 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html

1382 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/763
https://github.com/STEllAR-GROUP/hpx/issues/680
https://github.com/STEllAR-GROUP/hpx/issues/582
https://github.com/STEllAR-GROUP/hpx/issues/504
https://github.com/STEllAR-GROUP/hpx/issues/196
https://github.com/STEllAR-GROUP/hpx/issues/1204
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4409.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4411.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html

HPX Documentation, 1.5.1

• We completely remodeled our automatic build system to run builds and unit tests on various systems and com-
pilers. This allows us to find most bugs right as they were introduced and helps to maintain a high level of
quality and compatibility. The newest build logs can be found at HPX Buildbot Website3603.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• Issue #12963604 - Rename make_error_future to make_exceptional_future, adjust to N4123

• Issue #12953605 - building issue

• Issue #12933606 - Transpose example

• Issue #12923607 - Wrong abs() function used in example

• Issue #12913608 - non-synchronized shift operators have been removed

• Issue #12903609 - RDTSCP is defined as true for Xeon Phi build

• Issue #12893610 - Fixing 1288

• Issue #12883611 - Add new performance counters

• Issue #12873612 - Hierarchy scheduler broken performance counters

• Issue #12863613 - Algorithm cleanup

• Issue #12853614 - Broken Links in Documentation

• Issue #12843615 - Uninitialized copy

• Issue #12833616 - missing boost::scoped_ptr includes

• Issue #12823617 - Update documentation of build options for schedulers

• Issue #12813618 - reset idle rate counter

• Issue #12803619 - Bug when executing on Intel MIC

• Issue #12793620 - Add improved when_all/wait_all

• Issue #12783621 - Implement improved when_all/wait_all

• Issue #12773622 - feature request: get access to argc argv and variables_map

3603 http://rostam.cct.lsu.edu/
3604 https://github.com/STEllAR-GROUP/hpx/issues/1296
3605 https://github.com/STEllAR-GROUP/hpx/issues/1295
3606 https://github.com/STEllAR-GROUP/hpx/issues/1293
3607 https://github.com/STEllAR-GROUP/hpx/issues/1292
3608 https://github.com/STEllAR-GROUP/hpx/issues/1291
3609 https://github.com/STEllAR-GROUP/hpx/issues/1290
3610 https://github.com/STEllAR-GROUP/hpx/issues/1289
3611 https://github.com/STEllAR-GROUP/hpx/issues/1288
3612 https://github.com/STEllAR-GROUP/hpx/issues/1287
3613 https://github.com/STEllAR-GROUP/hpx/issues/1286
3614 https://github.com/STEllAR-GROUP/hpx/issues/1285
3615 https://github.com/STEllAR-GROUP/hpx/issues/1284
3616 https://github.com/STEllAR-GROUP/hpx/issues/1283
3617 https://github.com/STEllAR-GROUP/hpx/issues/1282
3618 https://github.com/STEllAR-GROUP/hpx/issues/1281
3619 https://github.com/STEllAR-GROUP/hpx/issues/1280
3620 https://github.com/STEllAR-GROUP/hpx/issues/1279
3621 https://github.com/STEllAR-GROUP/hpx/issues/1278
3622 https://github.com/STEllAR-GROUP/hpx/issues/1277

2.11. Releases 1383

http://rostam.cct.lsu.edu/
https://github.com/STEllAR-GROUP/hpx/issues/1296
https://github.com/STEllAR-GROUP/hpx/issues/1295
https://github.com/STEllAR-GROUP/hpx/issues/1293
https://github.com/STEllAR-GROUP/hpx/issues/1292
https://github.com/STEllAR-GROUP/hpx/issues/1291
https://github.com/STEllAR-GROUP/hpx/issues/1290
https://github.com/STEllAR-GROUP/hpx/issues/1289
https://github.com/STEllAR-GROUP/hpx/issues/1288
https://github.com/STEllAR-GROUP/hpx/issues/1287
https://github.com/STEllAR-GROUP/hpx/issues/1286
https://github.com/STEllAR-GROUP/hpx/issues/1285
https://github.com/STEllAR-GROUP/hpx/issues/1284
https://github.com/STEllAR-GROUP/hpx/issues/1283
https://github.com/STEllAR-GROUP/hpx/issues/1282
https://github.com/STEllAR-GROUP/hpx/issues/1281
https://github.com/STEllAR-GROUP/hpx/issues/1280
https://github.com/STEllAR-GROUP/hpx/issues/1279
https://github.com/STEllAR-GROUP/hpx/issues/1278
https://github.com/STEllAR-GROUP/hpx/issues/1277

HPX Documentation, 1.5.1

• Issue #12763623 - Remove merging map

• Issue #12743624 - Weird (wrong) string code in papi.cpp

• Issue #12733625 - Sequential task execution policy

• Issue #12723626 - Avoid CMake name clash for Boost.Thread library

• Issue #12713627 - Updates on HPX Test Units

• Issue #12703628 - hpx/util/safe_lexical_cast.hpp is added

• Issue #12693629 - Added default value for “LIB” cmake variable

• Issue #12683630 - Memory Counters not working

• Issue #12663631 - FindHPX.cmake is not installed

• Issue #12633632 - apply_remote test takes too long

• Issue #12623633 - Chrono cleanup

• Issue #12613634 - Need make install for papi counters and this builds all the examples

• Issue #12603635 - Documentation of Stencil example claims

• Issue #12593636 - Avoid double-linking Boost on Windows

• Issue #12573637 - Adding additional parameter to create_thread

• Issue #12563638 - added buildbot changes to release notes

• Issue #12553639 - Cannot build MiniGhost

• Issue #12533640 - hpx::thread defects

• Issue #12523641 - HPX_PREFIX is too fragile

• Issue #12503642 - switch_to_fiber_emulation does not work properly

• Issue #12493643 - Documentation is generated under Release folder

• Issue #12483644 - Fix usage of hpx_generic_coroutine_context and get tests passing on powerpc

• Issue #12473645 - Dynamic linking error

3623 https://github.com/STEllAR-GROUP/hpx/issues/1276
3624 https://github.com/STEllAR-GROUP/hpx/issues/1274
3625 https://github.com/STEllAR-GROUP/hpx/issues/1273
3626 https://github.com/STEllAR-GROUP/hpx/issues/1272
3627 https://github.com/STEllAR-GROUP/hpx/issues/1271
3628 https://github.com/STEllAR-GROUP/hpx/issues/1270
3629 https://github.com/STEllAR-GROUP/hpx/issues/1269
3630 https://github.com/STEllAR-GROUP/hpx/issues/1268
3631 https://github.com/STEllAR-GROUP/hpx/issues/1266
3632 https://github.com/STEllAR-GROUP/hpx/issues/1263
3633 https://github.com/STEllAR-GROUP/hpx/issues/1262
3634 https://github.com/STEllAR-GROUP/hpx/issues/1261
3635 https://github.com/STEllAR-GROUP/hpx/issues/1260
3636 https://github.com/STEllAR-GROUP/hpx/issues/1259
3637 https://github.com/STEllAR-GROUP/hpx/issues/1257
3638 https://github.com/STEllAR-GROUP/hpx/issues/1256
3639 https://github.com/STEllAR-GROUP/hpx/issues/1255
3640 https://github.com/STEllAR-GROUP/hpx/issues/1253
3641 https://github.com/STEllAR-GROUP/hpx/issues/1252
3642 https://github.com/STEllAR-GROUP/hpx/issues/1250
3643 https://github.com/STEllAR-GROUP/hpx/issues/1249
3644 https://github.com/STEllAR-GROUP/hpx/issues/1248
3645 https://github.com/STEllAR-GROUP/hpx/issues/1247

1384 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1276
https://github.com/STEllAR-GROUP/hpx/issues/1274
https://github.com/STEllAR-GROUP/hpx/issues/1273
https://github.com/STEllAR-GROUP/hpx/issues/1272
https://github.com/STEllAR-GROUP/hpx/issues/1271
https://github.com/STEllAR-GROUP/hpx/issues/1270
https://github.com/STEllAR-GROUP/hpx/issues/1269
https://github.com/STEllAR-GROUP/hpx/issues/1268
https://github.com/STEllAR-GROUP/hpx/issues/1266
https://github.com/STEllAR-GROUP/hpx/issues/1263
https://github.com/STEllAR-GROUP/hpx/issues/1262
https://github.com/STEllAR-GROUP/hpx/issues/1261
https://github.com/STEllAR-GROUP/hpx/issues/1260
https://github.com/STEllAR-GROUP/hpx/issues/1259
https://github.com/STEllAR-GROUP/hpx/issues/1257
https://github.com/STEllAR-GROUP/hpx/issues/1256
https://github.com/STEllAR-GROUP/hpx/issues/1255
https://github.com/STEllAR-GROUP/hpx/issues/1253
https://github.com/STEllAR-GROUP/hpx/issues/1252
https://github.com/STEllAR-GROUP/hpx/issues/1250
https://github.com/STEllAR-GROUP/hpx/issues/1249
https://github.com/STEllAR-GROUP/hpx/issues/1248
https://github.com/STEllAR-GROUP/hpx/issues/1247

HPX Documentation, 1.5.1

• Issue #12463646 - Make cpuid.cpp C++11 compliant

• Issue #12453647 - HPX fails on startup (setting thread affinity mask)

• Issue #12443648 - HPX_WITH_RDTSC configure test fails, but should succeed

• Issue #12433649 - CTest dashboard info for CSCS CDash drop location

• Issue #12423650 - Mac fixes

• Issue #12413651 - Failure in Distributed with Boost 1.56

• Issue #12403652 - fix a race condition in examples.diskperf

• Issue #12393653 - fix wait_each in examples.diskperf

• Issue #12383654 - Fixed #1237: hpx::util::portable_binary_iarchive failed

• Issue #12373655 - hpx::util::portable_binary_iarchive faileds

• Issue #12353656 - Fixing clang warnings and errors

• Issue #12343657 - TCP runs fail: Transport endpoint is not connected

• Issue #12333658 - Making sure the correct number of threads is registered with AGAS

• Issue #12323659 - Fixing race in wait_xxx

• Issue #12313660 - Parallel minmax

• Issue #12303661 - Distributed run of 1d_stencil_8 uses less threads than spec. & sometimes gives errors

• Issue #12293662 - Unstable number of threads

• Issue #12283663 - HPX link error (cmake / MPI)

• Issue #12263664 - Warning about struct/class thread_counters

• Issue #12253665 - Adding parallel::replace etc

• Issue #12243666 - Extending dataflow to pass through non-future arguments

• Issue #12233667 - Remaining find algorithms implemented, N4071

• Issue #12223668 - Merging all the changes

3646 https://github.com/STEllAR-GROUP/hpx/issues/1246
3647 https://github.com/STEllAR-GROUP/hpx/issues/1245
3648 https://github.com/STEllAR-GROUP/hpx/issues/1244
3649 https://github.com/STEllAR-GROUP/hpx/issues/1243
3650 https://github.com/STEllAR-GROUP/hpx/issues/1242
3651 https://github.com/STEllAR-GROUP/hpx/issues/1241
3652 https://github.com/STEllAR-GROUP/hpx/issues/1240
3653 https://github.com/STEllAR-GROUP/hpx/issues/1239
3654 https://github.com/STEllAR-GROUP/hpx/issues/1238
3655 https://github.com/STEllAR-GROUP/hpx/issues/1237
3656 https://github.com/STEllAR-GROUP/hpx/issues/1235
3657 https://github.com/STEllAR-GROUP/hpx/issues/1234
3658 https://github.com/STEllAR-GROUP/hpx/issues/1233
3659 https://github.com/STEllAR-GROUP/hpx/issues/1232
3660 https://github.com/STEllAR-GROUP/hpx/issues/1231
3661 https://github.com/STEllAR-GROUP/hpx/issues/1230
3662 https://github.com/STEllAR-GROUP/hpx/issues/1229
3663 https://github.com/STEllAR-GROUP/hpx/issues/1228
3664 https://github.com/STEllAR-GROUP/hpx/issues/1226
3665 https://github.com/STEllAR-GROUP/hpx/issues/1225
3666 https://github.com/STEllAR-GROUP/hpx/issues/1224
3667 https://github.com/STEllAR-GROUP/hpx/issues/1223
3668 https://github.com/STEllAR-GROUP/hpx/issues/1222

2.11. Releases 1385

https://github.com/STEllAR-GROUP/hpx/issues/1246
https://github.com/STEllAR-GROUP/hpx/issues/1245
https://github.com/STEllAR-GROUP/hpx/issues/1244
https://github.com/STEllAR-GROUP/hpx/issues/1243
https://github.com/STEllAR-GROUP/hpx/issues/1242
https://github.com/STEllAR-GROUP/hpx/issues/1241
https://github.com/STEllAR-GROUP/hpx/issues/1240
https://github.com/STEllAR-GROUP/hpx/issues/1239
https://github.com/STEllAR-GROUP/hpx/issues/1238
https://github.com/STEllAR-GROUP/hpx/issues/1237
https://github.com/STEllAR-GROUP/hpx/issues/1235
https://github.com/STEllAR-GROUP/hpx/issues/1234
https://github.com/STEllAR-GROUP/hpx/issues/1233
https://github.com/STEllAR-GROUP/hpx/issues/1232
https://github.com/STEllAR-GROUP/hpx/issues/1231
https://github.com/STEllAR-GROUP/hpx/issues/1230
https://github.com/STEllAR-GROUP/hpx/issues/1229
https://github.com/STEllAR-GROUP/hpx/issues/1228
https://github.com/STEllAR-GROUP/hpx/issues/1226
https://github.com/STEllAR-GROUP/hpx/issues/1225
https://github.com/STEllAR-GROUP/hpx/issues/1224
https://github.com/STEllAR-GROUP/hpx/issues/1223
https://github.com/STEllAR-GROUP/hpx/issues/1222

HPX Documentation, 1.5.1

• Issue #12213669 - No error output when using mpirun with hpx

• Issue #12193670 - Adding new AGAS cache performance counters

• Issue #12163671 - Fixing using futures (clients) as arguments to actions

• Issue #12153672 - Error compiling simple component

• Issue #12143673 - Stencil docs

• Issue #12133674 - Using more than a few dozen MPI processes on SuperMike results in a seg fault before getting
to hpx_main

• Issue #12123675 - Parallel rotate

• Issue #12113676 - Direct actions cause the future’s shared_state to be leaked

• Issue #12103677 - Refactored local::promise to be standard conformant

• Issue #12093678 - Improve command line handling

• Issue #12083679 - Adding parallel::reverse and parallel::reverse_copy

• Issue #12073680 - Add copy_backward and move_backward

• Issue #12063681 - N4071 additional algorithms implemented

• Issue #12043682 - Cmake simplification and various other minor changes

• Issue #12033683 - Implementing new launch policy for (local) async: hpx::launch::fork.

• Issue #12023684 - Failed assertion in connection_cache.hpp

• Issue #12013685 - pkg-config doesn’t add mpi link directories

• Issue #12003686 - Error when querying time performance counters

• Issue #11993687 - library path is now configurable (again)

• Issue #11983688 - Error when querying performance counters

• Issue #11973689 - tests fail with intel compiler

• Issue #11963690 - Silence several warnings

• Issue #11953691 - Rephrase initializers to work with VC++ 2012

3669 https://github.com/STEllAR-GROUP/hpx/issues/1221
3670 https://github.com/STEllAR-GROUP/hpx/issues/1219
3671 https://github.com/STEllAR-GROUP/hpx/issues/1216
3672 https://github.com/STEllAR-GROUP/hpx/issues/1215
3673 https://github.com/STEllAR-GROUP/hpx/issues/1214
3674 https://github.com/STEllAR-GROUP/hpx/issues/1213
3675 https://github.com/STEllAR-GROUP/hpx/issues/1212
3676 https://github.com/STEllAR-GROUP/hpx/issues/1211
3677 https://github.com/STEllAR-GROUP/hpx/issues/1210
3678 https://github.com/STEllAR-GROUP/hpx/issues/1209
3679 https://github.com/STEllAR-GROUP/hpx/issues/1208
3680 https://github.com/STEllAR-GROUP/hpx/issues/1207
3681 https://github.com/STEllAR-GROUP/hpx/issues/1206
3682 https://github.com/STEllAR-GROUP/hpx/issues/1204
3683 https://github.com/STEllAR-GROUP/hpx/issues/1203
3684 https://github.com/STEllAR-GROUP/hpx/issues/1202
3685 https://github.com/STEllAR-GROUP/hpx/issues/1201
3686 https://github.com/STEllAR-GROUP/hpx/issues/1200
3687 https://github.com/STEllAR-GROUP/hpx/issues/1199
3688 https://github.com/STEllAR-GROUP/hpx/issues/1198
3689 https://github.com/STEllAR-GROUP/hpx/issues/1197
3690 https://github.com/STEllAR-GROUP/hpx/issues/1196
3691 https://github.com/STEllAR-GROUP/hpx/issues/1195

1386 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1221
https://github.com/STEllAR-GROUP/hpx/issues/1219
https://github.com/STEllAR-GROUP/hpx/issues/1216
https://github.com/STEllAR-GROUP/hpx/issues/1215
https://github.com/STEllAR-GROUP/hpx/issues/1214
https://github.com/STEllAR-GROUP/hpx/issues/1213
https://github.com/STEllAR-GROUP/hpx/issues/1212
https://github.com/STEllAR-GROUP/hpx/issues/1211
https://github.com/STEllAR-GROUP/hpx/issues/1210
https://github.com/STEllAR-GROUP/hpx/issues/1209
https://github.com/STEllAR-GROUP/hpx/issues/1208
https://github.com/STEllAR-GROUP/hpx/issues/1207
https://github.com/STEllAR-GROUP/hpx/issues/1206
https://github.com/STEllAR-GROUP/hpx/issues/1204
https://github.com/STEllAR-GROUP/hpx/issues/1203
https://github.com/STEllAR-GROUP/hpx/issues/1202
https://github.com/STEllAR-GROUP/hpx/issues/1201
https://github.com/STEllAR-GROUP/hpx/issues/1200
https://github.com/STEllAR-GROUP/hpx/issues/1199
https://github.com/STEllAR-GROUP/hpx/issues/1198
https://github.com/STEllAR-GROUP/hpx/issues/1197
https://github.com/STEllAR-GROUP/hpx/issues/1196
https://github.com/STEllAR-GROUP/hpx/issues/1195

HPX Documentation, 1.5.1

• Issue #11943692 - Simplify parallel algorithms

• Issue #11933693 - Adding parallel::equal

• Issue #11923694 - HPX(out_of_memory) on including <hpx/hpx.hpp>

• Issue #11913695 - Fixing #1189

• Issue #11903696 - Chrono cleanup

• Issue #11893697 - Deadlock .. somewhere? (probably serialization)

• Issue #11883698 - Removed future::get_status()

• Issue #11863699 - Fixed FindOpenCL to find current AMD APP SDK

• Issue #11843700 - Tweaking future unwrapping

• Issue #11833701 - Extended parallel::reduce

• Issue #11823702 - future::unwrap hangs for launch::deferred

• Issue #11813703 - Adding all_of, any_of, and none_of and corresponding documentation

• Issue #11803704 - hpx::cout defect

• Issue #11793705 - hpx::async does not work for member function pointers when called on types with self-
defined unary operator*

• Issue #11783706 - Implemented variadic hpx::util::zip_iterator

• Issue #11773707 - MPI parcelport defect

• Issue #11763708 - HPX_DEFINE_COMPONENT_CONST_ACTION_TPL does not have a 2-argument version

• Issue #11753709 - Create util::zip_iterator working with util::tuple<>

• Issue #11743710 - Error Building HPX on linux, root_certificate_authority.cpp

• Issue #11733711 - hpx::cout output lost

• Issue #11723712 - HPX build error with Clang 3.4.2

• Issue #11713713 - CMAKE_INSTALL_PREFIX ignored

• Issue #11703714 - Close hpx_benchmarks repository on Github

3692 https://github.com/STEllAR-GROUP/hpx/issues/1194
3693 https://github.com/STEllAR-GROUP/hpx/issues/1193
3694 https://github.com/STEllAR-GROUP/hpx/issues/1192
3695 https://github.com/STEllAR-GROUP/hpx/issues/1191
3696 https://github.com/STEllAR-GROUP/hpx/issues/1190
3697 https://github.com/STEllAR-GROUP/hpx/issues/1189
3698 https://github.com/STEllAR-GROUP/hpx/issues/1188
3699 https://github.com/STEllAR-GROUP/hpx/issues/1186
3700 https://github.com/STEllAR-GROUP/hpx/issues/1184
3701 https://github.com/STEllAR-GROUP/hpx/issues/1183
3702 https://github.com/STEllAR-GROUP/hpx/issues/1182
3703 https://github.com/STEllAR-GROUP/hpx/issues/1181
3704 https://github.com/STEllAR-GROUP/hpx/issues/1180
3705 https://github.com/STEllAR-GROUP/hpx/issues/1179
3706 https://github.com/STEllAR-GROUP/hpx/issues/1178
3707 https://github.com/STEllAR-GROUP/hpx/issues/1177
3708 https://github.com/STEllAR-GROUP/hpx/issues/1176
3709 https://github.com/STEllAR-GROUP/hpx/issues/1175
3710 https://github.com/STEllAR-GROUP/hpx/issues/1174
3711 https://github.com/STEllAR-GROUP/hpx/issues/1173
3712 https://github.com/STEllAR-GROUP/hpx/issues/1172
3713 https://github.com/STEllAR-GROUP/hpx/issues/1171
3714 https://github.com/STEllAR-GROUP/hpx/issues/1170

2.11. Releases 1387

https://github.com/STEllAR-GROUP/hpx/issues/1194
https://github.com/STEllAR-GROUP/hpx/issues/1193
https://github.com/STEllAR-GROUP/hpx/issues/1192
https://github.com/STEllAR-GROUP/hpx/issues/1191
https://github.com/STEllAR-GROUP/hpx/issues/1190
https://github.com/STEllAR-GROUP/hpx/issues/1189
https://github.com/STEllAR-GROUP/hpx/issues/1188
https://github.com/STEllAR-GROUP/hpx/issues/1186
https://github.com/STEllAR-GROUP/hpx/issues/1184
https://github.com/STEllAR-GROUP/hpx/issues/1183
https://github.com/STEllAR-GROUP/hpx/issues/1182
https://github.com/STEllAR-GROUP/hpx/issues/1181
https://github.com/STEllAR-GROUP/hpx/issues/1180
https://github.com/STEllAR-GROUP/hpx/issues/1179
https://github.com/STEllAR-GROUP/hpx/issues/1178
https://github.com/STEllAR-GROUP/hpx/issues/1177
https://github.com/STEllAR-GROUP/hpx/issues/1176
https://github.com/STEllAR-GROUP/hpx/issues/1175
https://github.com/STEllAR-GROUP/hpx/issues/1174
https://github.com/STEllAR-GROUP/hpx/issues/1173
https://github.com/STEllAR-GROUP/hpx/issues/1172
https://github.com/STEllAR-GROUP/hpx/issues/1171
https://github.com/STEllAR-GROUP/hpx/issues/1170

HPX Documentation, 1.5.1

• Issue #11693715 - Buildbot emails have syntax error in url

• Issue #11673716 - Merge partial implementation of standards proposal N3960

• Issue #11663717 - Fixed several compiler warnings

• Issue #11653718 - cmake warns: “tests.regressions.actions” does not exist

• Issue #11643719 - Want my own serialization of hpx::future

• Issue #11623720 - Segfault in hello_world example

• Issue #11613721 - Use HPX_ASSERT to aid the compiler

• Issue #11603722 - Do not put -DNDEBUG into hpx_application.pc

• Issue #11593723 - Support Clang 3.4.2

• Issue #11583724 - Fixed #1157: Rename when_n/wait_n, add when_xxx_n/wait_xxx_n

• Issue #11573725 - Rename when_n/wait_n, add when_xxx_n/wait_xxx_n

• Issue #11563726 - Force inlining fails

• Issue #11553727 - changed header of printout to be compatible with python csv module

• Issue #11543728 - Fixing iostreams

• Issue #11533729 - Standard manipulators (like std::endl) do not work with hpx::ostream

• Issue #11523730 - Functions revamp

• Issue #11513731 - Suppressing cmake 3.0 policy warning for CMP0026

• Issue #11503732 - Client Serialization error

• Issue #11493733 - Segfault on Stampede

• Issue #11483734 - Refactoring mini-ghost

• Issue #11473735 - N3960 copy_if and copy_n implemented and tested

• Issue #11463736 - Stencil print

• Issue #11453737 - N3960 hpx::parallel::copy implemented and tested

3715 https://github.com/STEllAR-GROUP/hpx/issues/1169
3716 https://github.com/STEllAR-GROUP/hpx/issues/1167
3717 https://github.com/STEllAR-GROUP/hpx/issues/1166
3718 https://github.com/STEllAR-GROUP/hpx/issues/1165
3719 https://github.com/STEllAR-GROUP/hpx/issues/1164
3720 https://github.com/STEllAR-GROUP/hpx/issues/1162
3721 https://github.com/STEllAR-GROUP/hpx/issues/1161
3722 https://github.com/STEllAR-GROUP/hpx/issues/1160
3723 https://github.com/STEllAR-GROUP/hpx/issues/1159
3724 https://github.com/STEllAR-GROUP/hpx/issues/1158
3725 https://github.com/STEllAR-GROUP/hpx/issues/1157
3726 https://github.com/STEllAR-GROUP/hpx/issues/1156
3727 https://github.com/STEllAR-GROUP/hpx/issues/1155
3728 https://github.com/STEllAR-GROUP/hpx/issues/1154
3729 https://github.com/STEllAR-GROUP/hpx/issues/1153
3730 https://github.com/STEllAR-GROUP/hpx/issues/1152
3731 https://github.com/STEllAR-GROUP/hpx/issues/1151
3732 https://github.com/STEllAR-GROUP/hpx/issues/1150
3733 https://github.com/STEllAR-GROUP/hpx/issues/1149
3734 https://github.com/STEllAR-GROUP/hpx/issues/1148
3735 https://github.com/STEllAR-GROUP/hpx/issues/1147
3736 https://github.com/STEllAR-GROUP/hpx/issues/1146
3737 https://github.com/STEllAR-GROUP/hpx/issues/1145

1388 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1169
https://github.com/STEllAR-GROUP/hpx/issues/1167
https://github.com/STEllAR-GROUP/hpx/issues/1166
https://github.com/STEllAR-GROUP/hpx/issues/1165
https://github.com/STEllAR-GROUP/hpx/issues/1164
https://github.com/STEllAR-GROUP/hpx/issues/1162
https://github.com/STEllAR-GROUP/hpx/issues/1161
https://github.com/STEllAR-GROUP/hpx/issues/1160
https://github.com/STEllAR-GROUP/hpx/issues/1159
https://github.com/STEllAR-GROUP/hpx/issues/1158
https://github.com/STEllAR-GROUP/hpx/issues/1157
https://github.com/STEllAR-GROUP/hpx/issues/1156
https://github.com/STEllAR-GROUP/hpx/issues/1155
https://github.com/STEllAR-GROUP/hpx/issues/1154
https://github.com/STEllAR-GROUP/hpx/issues/1153
https://github.com/STEllAR-GROUP/hpx/issues/1152
https://github.com/STEllAR-GROUP/hpx/issues/1151
https://github.com/STEllAR-GROUP/hpx/issues/1150
https://github.com/STEllAR-GROUP/hpx/issues/1149
https://github.com/STEllAR-GROUP/hpx/issues/1148
https://github.com/STEllAR-GROUP/hpx/issues/1147
https://github.com/STEllAR-GROUP/hpx/issues/1146
https://github.com/STEllAR-GROUP/hpx/issues/1145

HPX Documentation, 1.5.1

• Issue #11443738 - OpenMP examples 1d_stencil do not build

• Issue #11433739 - 1d_stencil OpenMP examples do not build

• Issue #11423740 - Cannot build HPX with gcc 4.6 on OS X

• Issue #11403741 - Fix OpenMP lookup, enable usage of config tests in external CMake projects.

• Issue #11393742 - hpx/hpx/config/compiler_specific.hpp

• Issue #11383743 - clean up pkg-config files

• Issue #11373744 - Improvements to create binary packages

• Issue #11363745 - HPX_GCC_VERSION not defined on all compilers

• Issue #11353746 - Avoiding collision between winsock2.h and windows.h

• Issue #11343747 - Making sure, that hpx::finalize can be called from any locality

• Issue #11333748 - 1d stencil examples

• Issue #11313749 - Refactor unique_function implementation

• Issue #11303750 - Unique function

• Issue #11293751 - Some fixes to the Build system on OS X

• Issue #11283752 - Action future args

• Issue #11273753 - Executor causes segmentation fault

• Issue #11243754 - Adding new API functions: register_id_with_basename,
unregister_id_with_basename, find_ids_from_basename; adding test

• Issue #11233755 - Reduce nesting of try-catch construct in encode_parcels?

• Issue #11223756 - Client base fixes

• Issue #11213757 - Update hpxrun.py.in

• Issue #11203758 - HTTS2 tests compile errors on v110 (VS2012)

• Issue #11193759 - Remove references to boost::atomic in accumulator example

• Issue #11183760 - Only build test thread_pool_executor_1114_test if HPX_LOCAL_SCHEDULER is set

3738 https://github.com/STEllAR-GROUP/hpx/issues/1144
3739 https://github.com/STEllAR-GROUP/hpx/issues/1143
3740 https://github.com/STEllAR-GROUP/hpx/issues/1142
3741 https://github.com/STEllAR-GROUP/hpx/issues/1140
3742 https://github.com/STEllAR-GROUP/hpx/issues/1139
3743 https://github.com/STEllAR-GROUP/hpx/issues/1138
3744 https://github.com/STEllAR-GROUP/hpx/issues/1137
3745 https://github.com/STEllAR-GROUP/hpx/issues/1136
3746 https://github.com/STEllAR-GROUP/hpx/issues/1135
3747 https://github.com/STEllAR-GROUP/hpx/issues/1134
3748 https://github.com/STEllAR-GROUP/hpx/issues/1133
3749 https://github.com/STEllAR-GROUP/hpx/issues/1131
3750 https://github.com/STEllAR-GROUP/hpx/issues/1130
3751 https://github.com/STEllAR-GROUP/hpx/issues/1129
3752 https://github.com/STEllAR-GROUP/hpx/issues/1128
3753 https://github.com/STEllAR-GROUP/hpx/issues/1127
3754 https://github.com/STEllAR-GROUP/hpx/issues/1124
3755 https://github.com/STEllAR-GROUP/hpx/issues/1123
3756 https://github.com/STEllAR-GROUP/hpx/issues/1122
3757 https://github.com/STEllAR-GROUP/hpx/issues/1121
3758 https://github.com/STEllAR-GROUP/hpx/issues/1120
3759 https://github.com/STEllAR-GROUP/hpx/issues/1119
3760 https://github.com/STEllAR-GROUP/hpx/issues/1118

2.11. Releases 1389

https://github.com/STEllAR-GROUP/hpx/issues/1144
https://github.com/STEllAR-GROUP/hpx/issues/1143
https://github.com/STEllAR-GROUP/hpx/issues/1142
https://github.com/STEllAR-GROUP/hpx/issues/1140
https://github.com/STEllAR-GROUP/hpx/issues/1139
https://github.com/STEllAR-GROUP/hpx/issues/1138
https://github.com/STEllAR-GROUP/hpx/issues/1137
https://github.com/STEllAR-GROUP/hpx/issues/1136
https://github.com/STEllAR-GROUP/hpx/issues/1135
https://github.com/STEllAR-GROUP/hpx/issues/1134
https://github.com/STEllAR-GROUP/hpx/issues/1133
https://github.com/STEllAR-GROUP/hpx/issues/1131
https://github.com/STEllAR-GROUP/hpx/issues/1130
https://github.com/STEllAR-GROUP/hpx/issues/1129
https://github.com/STEllAR-GROUP/hpx/issues/1128
https://github.com/STEllAR-GROUP/hpx/issues/1127
https://github.com/STEllAR-GROUP/hpx/issues/1124
https://github.com/STEllAR-GROUP/hpx/issues/1123
https://github.com/STEllAR-GROUP/hpx/issues/1122
https://github.com/STEllAR-GROUP/hpx/issues/1121
https://github.com/STEllAR-GROUP/hpx/issues/1120
https://github.com/STEllAR-GROUP/hpx/issues/1119
https://github.com/STEllAR-GROUP/hpx/issues/1118

HPX Documentation, 1.5.1

• Issue #11173761 - local_queue_executor linker error on vc110

• Issue #11163762 - Disabled performance counter should give runtime errors, not invalid data

• Issue #11153763 - Compile error with Intel C++ 13.1

• Issue #11143764 - Default constructed executor is not usable

• Issue #11133765 - Fast compilation of logging causes ABI incompatibilities between different NDEBUG values

• Issue #11123766 - Using thread_pool_executors causes segfault

• Issue #11113767 - hpx::threads::get_thread_data always returns zero

• Issue #11103768 - Remove unnecessary null pointer checks

• Issue #11093769 - More tests adjustments

• Issue #11083770 - Clarify build rules for “libboost_atomic-mt.so”?

• Issue #11073771 - Remove unnecessary null pointer checks

• Issue #11063772 - network_storage benchmark imporvements, adding legends to plots and tidying layout

• Issue #11053773 - Add more plot outputs and improve instructions doc

• Issue #11043774 - Complete quoting for parameters of some CMake commands

• Issue #11033775 - Work on test/scripts

• Issue #11023776 - Changed minimum requirement of window install to 2012

• Issue #11013777 - Changed minimum requirement of window install to 2012

• Issue #11003778 - Changed readme to no longer specify using MSVC 2010 compiler

• Issue #10993779 - Error returning futures from component actions

• Issue #10983780 - Improve storage test

• Issue #10973781 - data_actions quickstart example calls missing function decorate_action of data_get_action

• Issue #10963782 - MPI parcelport broken with new zero copy optimization

• Issue #10953783 - Warning C4005: _WIN32_WINNT: Macro redefinition

3761 https://github.com/STEllAR-GROUP/hpx/issues/1117
3762 https://github.com/STEllAR-GROUP/hpx/issues/1116
3763 https://github.com/STEllAR-GROUP/hpx/issues/1115
3764 https://github.com/STEllAR-GROUP/hpx/issues/1114
3765 https://github.com/STEllAR-GROUP/hpx/issues/1113
3766 https://github.com/STEllAR-GROUP/hpx/issues/1112
3767 https://github.com/STEllAR-GROUP/hpx/issues/1111
3768 https://github.com/STEllAR-GROUP/hpx/issues/1110
3769 https://github.com/STEllAR-GROUP/hpx/issues/1109
3770 https://github.com/STEllAR-GROUP/hpx/issues/1108
3771 https://github.com/STEllAR-GROUP/hpx/issues/1107
3772 https://github.com/STEllAR-GROUP/hpx/issues/1106
3773 https://github.com/STEllAR-GROUP/hpx/issues/1105
3774 https://github.com/STEllAR-GROUP/hpx/issues/1104
3775 https://github.com/STEllAR-GROUP/hpx/issues/1103
3776 https://github.com/STEllAR-GROUP/hpx/issues/1102
3777 https://github.com/STEllAR-GROUP/hpx/issues/1101
3778 https://github.com/STEllAR-GROUP/hpx/issues/1100
3779 https://github.com/STEllAR-GROUP/hpx/issues/1099
3780 https://github.com/STEllAR-GROUP/hpx/issues/1098
3781 https://github.com/STEllAR-GROUP/hpx/issues/1097
3782 https://github.com/STEllAR-GROUP/hpx/issues/1096
3783 https://github.com/STEllAR-GROUP/hpx/issues/1095

1390 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1117
https://github.com/STEllAR-GROUP/hpx/issues/1116
https://github.com/STEllAR-GROUP/hpx/issues/1115
https://github.com/STEllAR-GROUP/hpx/issues/1114
https://github.com/STEllAR-GROUP/hpx/issues/1113
https://github.com/STEllAR-GROUP/hpx/issues/1112
https://github.com/STEllAR-GROUP/hpx/issues/1111
https://github.com/STEllAR-GROUP/hpx/issues/1110
https://github.com/STEllAR-GROUP/hpx/issues/1109
https://github.com/STEllAR-GROUP/hpx/issues/1108
https://github.com/STEllAR-GROUP/hpx/issues/1107
https://github.com/STEllAR-GROUP/hpx/issues/1106
https://github.com/STEllAR-GROUP/hpx/issues/1105
https://github.com/STEllAR-GROUP/hpx/issues/1104
https://github.com/STEllAR-GROUP/hpx/issues/1103
https://github.com/STEllAR-GROUP/hpx/issues/1102
https://github.com/STEllAR-GROUP/hpx/issues/1101
https://github.com/STEllAR-GROUP/hpx/issues/1100
https://github.com/STEllAR-GROUP/hpx/issues/1099
https://github.com/STEllAR-GROUP/hpx/issues/1098
https://github.com/STEllAR-GROUP/hpx/issues/1097
https://github.com/STEllAR-GROUP/hpx/issues/1096
https://github.com/STEllAR-GROUP/hpx/issues/1095

HPX Documentation, 1.5.1

• Issue #10943784 - Syntax error for -DHPX_UNIQUE_FUTURE_ALIAS in master

• Issue #10933785 - Syntax error for -DHPX_UNIQUE_FUTURE_ALIAS

• Issue #10923786 - Rename unique_future<> back to future<>

• Issue #10913787 - Inconsistent error message

• Issue #10903788 - On windows 8.1 the examples crashed if using more than one os thread

• Issue #10893789 - Components should be allowed to have their own executor

• Issue #10883790 - Add possibility to select a network interface for the ibverbs parcelport

• Issue #10873791 - ibverbs and ipc parcelport uses zero copy optimization

• Issue #10833792 - Make shell examples copyable in docs

• Issue #10823793 - Implement proper termination detection during shutdown

• Issue #10813794 - Implement thread_specific_ptr for hpx::threads

• Issue #10723795 - make install not working properly

• Issue #10703796 - Complete quoting for parameters of some CMake commands

• Issue #10593797 - Fix more unused variable warnings

• Issue #10513798 - Implement when_each

• Issue #9733799 - Would like option to report hwloc bindings

• Issue #9703800 - Bad flags for Fortran compiler

• Issue #9413801 - Create a proper user level context switching class for BG/Q

• Issue #9353802 - Build error with gcc 4.6 and Boost 1.54.0 on hpx trunk and 0.9.6

• Issue #9343803 - Want to build HPX without dynamic libraries

• Issue #9273804 - Make hpx/lcos/reduce.hpp accept futures of id_type

• Issue #9263805 - All unit tests that are run with more than one thread with CTest/hpx_run_test should configure
hpx.os_threads

• Issue #9253806 - regression_dataflow_791 needs to be brought in line with HPX standards

3784 https://github.com/STEllAR-GROUP/hpx/issues/1094
3785 https://github.com/STEllAR-GROUP/hpx/issues/1093
3786 https://github.com/STEllAR-GROUP/hpx/issues/1092
3787 https://github.com/STEllAR-GROUP/hpx/issues/1091
3788 https://github.com/STEllAR-GROUP/hpx/issues/1090
3789 https://github.com/STEllAR-GROUP/hpx/issues/1089
3790 https://github.com/STEllAR-GROUP/hpx/issues/1088
3791 https://github.com/STEllAR-GROUP/hpx/issues/1087
3792 https://github.com/STEllAR-GROUP/hpx/issues/1083
3793 https://github.com/STEllAR-GROUP/hpx/issues/1082
3794 https://github.com/STEllAR-GROUP/hpx/issues/1081
3795 https://github.com/STEllAR-GROUP/hpx/issues/1072
3796 https://github.com/STEllAR-GROUP/hpx/issues/1070
3797 https://github.com/STEllAR-GROUP/hpx/issues/1059
3798 https://github.com/STEllAR-GROUP/hpx/issues/1051
3799 https://github.com/STEllAR-GROUP/hpx/issues/973
3800 https://github.com/STEllAR-GROUP/hpx/issues/970
3801 https://github.com/STEllAR-GROUP/hpx/issues/941
3802 https://github.com/STEllAR-GROUP/hpx/issues/935
3803 https://github.com/STEllAR-GROUP/hpx/issues/934
3804 https://github.com/STEllAR-GROUP/hpx/issues/927
3805 https://github.com/STEllAR-GROUP/hpx/issues/926
3806 https://github.com/STEllAR-GROUP/hpx/issues/925

2.11. Releases 1391

https://github.com/STEllAR-GROUP/hpx/issues/1094
https://github.com/STEllAR-GROUP/hpx/issues/1093
https://github.com/STEllAR-GROUP/hpx/issues/1092
https://github.com/STEllAR-GROUP/hpx/issues/1091
https://github.com/STEllAR-GROUP/hpx/issues/1090
https://github.com/STEllAR-GROUP/hpx/issues/1089
https://github.com/STEllAR-GROUP/hpx/issues/1088
https://github.com/STEllAR-GROUP/hpx/issues/1087
https://github.com/STEllAR-GROUP/hpx/issues/1083
https://github.com/STEllAR-GROUP/hpx/issues/1082
https://github.com/STEllAR-GROUP/hpx/issues/1081
https://github.com/STEllAR-GROUP/hpx/issues/1072
https://github.com/STEllAR-GROUP/hpx/issues/1070
https://github.com/STEllAR-GROUP/hpx/issues/1059
https://github.com/STEllAR-GROUP/hpx/issues/1051
https://github.com/STEllAR-GROUP/hpx/issues/973
https://github.com/STEllAR-GROUP/hpx/issues/970
https://github.com/STEllAR-GROUP/hpx/issues/941
https://github.com/STEllAR-GROUP/hpx/issues/935
https://github.com/STEllAR-GROUP/hpx/issues/934
https://github.com/STEllAR-GROUP/hpx/issues/927
https://github.com/STEllAR-GROUP/hpx/issues/926
https://github.com/STEllAR-GROUP/hpx/issues/925

HPX Documentation, 1.5.1

• Issue #8993807 - Fix race conditions in regression tests

• Issue #8793808 - Hung test leads to cascading test failure; make tests should support the MPI parcelport

• Issue #8653809 - future<T> and friends shall work for movable only Ts

• Issue #8473810 - Dynamic libraries are not installed on OS X

• Issue #8163811 - First Program tutorial pull request

• Issue #7993812 - Wrap lexical_cast to avoid exceptions

• Issue #7203813 - broken configuration when using ccmake on Ubuntu

• Issue #6223814 - --hpx:hpx and --hpx:debug-hpx-log is nonsensical

• Issue #5253815 - Extend barrier LCO test to run in distributed

• Issue #5153816 - Multi-destination version of hpx::apply is broken

• Issue #5093817 - Push Boost.Atomic changes upstream

• Issue #5033818 - Running HPX applications on Windows should not require setting %PATH%

• Issue #4613819 - Add a compilation sanity test

• Issue #4563820 - hpx_run_tests.py should log output from tests that timeout

• Issue #4543821 - Investigate threadmanager performance

• Issue #3453822 - Add more versatile environmental/cmake variable support to hpx_find_* CMake macros

• Issue #2093823 - Support multiple configurations in generated build files

• Issue #1903824 - hpx::cout should be a std::ostream

• Issue #1893825 - iostreams component should use startup/shutdown functions

• Issue #1833826 - Use Boost.ICL for correctness in AGAS

• Issue #443827 - Implement real futures

3807 https://github.com/STEllAR-GROUP/hpx/issues/899
3808 https://github.com/STEllAR-GROUP/hpx/issues/879
3809 https://github.com/STEllAR-GROUP/hpx/issues/865
3810 https://github.com/STEllAR-GROUP/hpx/issues/847
3811 https://github.com/STEllAR-GROUP/hpx/issues/816
3812 https://github.com/STEllAR-GROUP/hpx/issues/799
3813 https://github.com/STEllAR-GROUP/hpx/issues/720
3814 https://github.com/STEllAR-GROUP/hpx/issues/622
3815 https://github.com/STEllAR-GROUP/hpx/issues/525
3816 https://github.com/STEllAR-GROUP/hpx/issues/515
3817 https://github.com/STEllAR-GROUP/hpx/issues/509
3818 https://github.com/STEllAR-GROUP/hpx/issues/503
3819 https://github.com/STEllAR-GROUP/hpx/issues/461
3820 https://github.com/STEllAR-GROUP/hpx/issues/456
3821 https://github.com/STEllAR-GROUP/hpx/issues/454
3822 https://github.com/STEllAR-GROUP/hpx/issues/345
3823 https://github.com/STEllAR-GROUP/hpx/issues/209
3824 https://github.com/STEllAR-GROUP/hpx/issues/190
3825 https://github.com/STEllAR-GROUP/hpx/issues/189
3826 https://github.com/STEllAR-GROUP/hpx/issues/183
3827 https://github.com/STEllAR-GROUP/hpx/issues/44

1392 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/899
https://github.com/STEllAR-GROUP/hpx/issues/879
https://github.com/STEllAR-GROUP/hpx/issues/865
https://github.com/STEllAR-GROUP/hpx/issues/847
https://github.com/STEllAR-GROUP/hpx/issues/816
https://github.com/STEllAR-GROUP/hpx/issues/799
https://github.com/STEllAR-GROUP/hpx/issues/720
https://github.com/STEllAR-GROUP/hpx/issues/622
https://github.com/STEllAR-GROUP/hpx/issues/525
https://github.com/STEllAR-GROUP/hpx/issues/515
https://github.com/STEllAR-GROUP/hpx/issues/509
https://github.com/STEllAR-GROUP/hpx/issues/503
https://github.com/STEllAR-GROUP/hpx/issues/461
https://github.com/STEllAR-GROUP/hpx/issues/456
https://github.com/STEllAR-GROUP/hpx/issues/454
https://github.com/STEllAR-GROUP/hpx/issues/345
https://github.com/STEllAR-GROUP/hpx/issues/209
https://github.com/STEllAR-GROUP/hpx/issues/190
https://github.com/STEllAR-GROUP/hpx/issues/189
https://github.com/STEllAR-GROUP/hpx/issues/183
https://github.com/STEllAR-GROUP/hpx/issues/44

HPX Documentation, 1.5.1

2.11.14 HPX V0.9.8 (Mar 24, 2014)

We have had over 800 commits since the last release and we have closed over 65 tickets (bugs, feature requests, etc.).

With the changes below, HPX is once again leading the charge of a whole new era of computation. By intrinsically
breaking down and synchronizing the work to be done, HPX insures that application developers will no longer have
to fret about where a segment of code executes. That allows coders to focus their time and energy to understanding
the data dependencies of their algorithms and thereby the core obstacles to an efficient code. Here are some of the
advantages of using HPX:

• HPX is solidly rooted in a sophisticated theoretical execution model – ParalleX

• HPX exposes an API fully conforming to the C++11 and the draft C++14 standards, extended and applied to
distributed computing. Everything programmers know about the concurrency primitives of the standard C++
library is still valid in the context of HPX.

• It provides a competitive, high performance implementation of modern, future-proof ideas which gives an
smooth migration path from today’s mainstream techniques

• There is no need for the programmer to worry about lower level parallelization paradigms like threads or message
passing; no need to understand pthreads, MPI, OpenMP, or Windows threads, etc.

• There is no need to think about different types of parallelism such as tasks, pipelines, or fork-join, task or data
parallelism.

• The same source of your program compiles and runs on Linux, BlueGene/Q, Mac OS X, Windows, and Android.

• The same code runs on shared memory multi-core systems and supercomputers, on handheld devices and Intel®
Xeon Phi™ accelerators, or a heterogeneous mix of those.

General changes

• A major API breaking change for this release was introduced by implementing hpx::future
and hpx::shared_future fully in conformance with the C++11 Standard3828. While
hpx::shared_future is new and will not create any compatibility problems, we revised the interface
and implementation of the existing hpx::future. For more details please see the mailing list archive3829.
To avoid any incompatibilities for existing code we named the type which implements the std::future
interface as hpx::unique_future. For the next release this will be renamed to hpx::future, making it
full conforming to C++11 Standard3830.

• A large part of the code base of HPX has been refactored and partially re-implemented. The main changes were
related to

– The threading subsystem: these changes significantly reduce the amount of overheads caused by the sched-
ulers, improve the modularity of the code base, and extend the variety of available scheduling algorithms.

– The parcel subsystem: these changes improve the performance of the HPX networking layer, modularize
the structure of the parcelports, and simplify the creation of new parcelports for other underlying network-
ing libraries.

– The API subsystem: these changes improved the conformance of the API to C++11 Standard, extend and
unify the available API functionality, and decrease the overheads created by various elements of the API.

– The robustness of the component loading subsystem has been improved significantly, allowing to more
portably and more reliably register the components needed by an application as startup. This additionally
speeds up general application initialization.

3828 http://www.open-std.org/jtc1/sc22/wg21
3829 http://mail.cct.lsu.edu/pipermail/hpx-users/2014-January/000141.html
3830 http://www.open-std.org/jtc1/sc22/wg21

2.11. Releases 1393

http://www.open-std.org/jtc1/sc22/wg21
http://mail.cct.lsu.edu/pipermail/hpx-users/2014-January/000141.html
http://www.open-std.org/jtc1/sc22/wg21

HPX Documentation, 1.5.1

• We added new API functionality like hpx::migrate and hpx::copy_component which are the basic
building blocks necessary for implementing higher level abstractions for system-wide load balancing, runtime-
adaptive resource management, and object-oriented checkpointing and state-management.

• We removed the use of C++11 move emulation (using Boost.Move), replacing it with C++11 rvalue references.
This is the first step towards using more and more native C++11 facilities which we plan to introduce in the
future.

• We improved the reference counting scheme used by HPX which helps managing distributed objects and mem-
ory. This improves the overall stability of HPX and further simplifies writing real world applications.

• The minimal Boost version required to use HPX is now V1.49.0.

• This release coincides with the first release of HPXPI (V0.1.0), the first implementation of the XPI specifica-
tion3831.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• Issue #10863832 - Expose internal boost::shared_array to allow user management of array lifetime

• Issue #10833833 - Make shell examples copyable in docs

• Issue #10803834 - /threads{locality#*/total}/count/cumulative broken

• Issue #10793835 - Build problems on OS X

• Issue #10783836 - Improve robustness of component loading

• Issue #10773837 - Fix a missing enum definition for ‘take’ mode

• Issue #10763838 - Merge Jb master

• Issue #10753839 - Unknown CMake command “add_hpx_pseudo_target”

• Issue #10743840 - Implement apply_continue_callback and apply_colocated_callback

• Issue #10733841 - The new apply_colocated and async_colocated functions lead to automatic regis-
tered functions

• Issue #10713842 - Remove deferred_packaged_task

• Issue #10693843 - serialize_buffer with allocator fails at destruction

• Issue #10683844 - Coroutine include and forward declarations missing

• Issue #10673845 - Add allocator support to util::serialize_buffer

3831 https://github.com/STEllAR-GROUP/hpxpi/blob/master/spec.pdf?raw=true
3832 https://github.com/STEllAR-GROUP/hpx/issues/1086
3833 https://github.com/STEllAR-GROUP/hpx/issues/1083
3834 https://github.com/STEllAR-GROUP/hpx/issues/1080
3835 https://github.com/STEllAR-GROUP/hpx/issues/1079
3836 https://github.com/STEllAR-GROUP/hpx/issues/1078
3837 https://github.com/STEllAR-GROUP/hpx/issues/1077
3838 https://github.com/STEllAR-GROUP/hpx/issues/1076
3839 https://github.com/STEllAR-GROUP/hpx/issues/1075
3840 https://github.com/STEllAR-GROUP/hpx/issues/1074
3841 https://github.com/STEllAR-GROUP/hpx/issues/1073
3842 https://github.com/STEllAR-GROUP/hpx/issues/1071
3843 https://github.com/STEllAR-GROUP/hpx/issues/1069
3844 https://github.com/STEllAR-GROUP/hpx/issues/1068
3845 https://github.com/STEllAR-GROUP/hpx/issues/1067

1394 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpxpi/blob/master/spec.pdf?raw=true
https://github.com/STEllAR-GROUP/hpxpi/blob/master/spec.pdf?raw=true
https://github.com/STEllAR-GROUP/hpx/issues/1086
https://github.com/STEllAR-GROUP/hpx/issues/1083
https://github.com/STEllAR-GROUP/hpx/issues/1080
https://github.com/STEllAR-GROUP/hpx/issues/1079
https://github.com/STEllAR-GROUP/hpx/issues/1078
https://github.com/STEllAR-GROUP/hpx/issues/1077
https://github.com/STEllAR-GROUP/hpx/issues/1076
https://github.com/STEllAR-GROUP/hpx/issues/1075
https://github.com/STEllAR-GROUP/hpx/issues/1074
https://github.com/STEllAR-GROUP/hpx/issues/1073
https://github.com/STEllAR-GROUP/hpx/issues/1071
https://github.com/STEllAR-GROUP/hpx/issues/1069
https://github.com/STEllAR-GROUP/hpx/issues/1068
https://github.com/STEllAR-GROUP/hpx/issues/1067

HPX Documentation, 1.5.1

• Issue #10663846 - Allow for MPI_Init being called before HPX launches

• Issue #10653847 - AGAS cache isn’t used/populated on worker localities

• Issue #10643848 - Reorder includes to ensure ws2 includes early

• Issue #10633849 - Add hpx::runtime::suspend and hpx::runtime::resume

• Issue #10623850 - Fix async_continue to properly handle return types

• Issue #10613851 - Implement async_colocated and apply_colocated

• Issue #10603852 - Implement minimal component migration

• Issue #10583853 - Remove HPX_UTIL_TUPLE from code base

• Issue #10573854 - Add performance counters for threading subsystem

• Issue #10553855 - Thread allocation uses two memory pools

• Issue #10533856 - Work stealing flawed

• Issue #10523857 - Fix a number of warnings

• Issue #10493858 - Fixes for TLS on OSX and more reliable test running

• Issue #10483859 - Fixing after 588 hang

• Issue #10473860 - Use port ‘0’ for networking when using one locality

• Issue #10463861 - composable_guard test is broken when having more than one thread

• Issue #10453862 - Security missing headers

• Issue #10443863 - Native TLS on FreeBSD via __thread

• Issue #10433864 - async et.al. compute the wrong result type

• Issue #10423865 - async et.al. implicitly unwrap reference_wrappers

• Issue #10413866 - Remove redundant costly Kleene stars from regex searches

• Issue #10403867 - CMake script regex match patterns has unnecessary kleenes

• Issue #10393868 - Remove use of Boost.Move and replace with std::move and real rvalue refs

3846 https://github.com/STEllAR-GROUP/hpx/issues/1066
3847 https://github.com/STEllAR-GROUP/hpx/issues/1065
3848 https://github.com/STEllAR-GROUP/hpx/issues/1064
3849 https://github.com/STEllAR-GROUP/hpx/issues/1063
3850 https://github.com/STEllAR-GROUP/hpx/issues/1062
3851 https://github.com/STEllAR-GROUP/hpx/issues/1061
3852 https://github.com/STEllAR-GROUP/hpx/issues/1060
3853 https://github.com/STEllAR-GROUP/hpx/issues/1058
3854 https://github.com/STEllAR-GROUP/hpx/issues/1057
3855 https://github.com/STEllAR-GROUP/hpx/issues/1055
3856 https://github.com/STEllAR-GROUP/hpx/issues/1053
3857 https://github.com/STEllAR-GROUP/hpx/issues/1052
3858 https://github.com/STEllAR-GROUP/hpx/issues/1049
3859 https://github.com/STEllAR-GROUP/hpx/issues/1048
3860 https://github.com/STEllAR-GROUP/hpx/issues/1047
3861 https://github.com/STEllAR-GROUP/hpx/issues/1046
3862 https://github.com/STEllAR-GROUP/hpx/issues/1045
3863 https://github.com/STEllAR-GROUP/hpx/issues/1044
3864 https://github.com/STEllAR-GROUP/hpx/issues/1043
3865 https://github.com/STEllAR-GROUP/hpx/issues/1042
3866 https://github.com/STEllAR-GROUP/hpx/issues/1041
3867 https://github.com/STEllAR-GROUP/hpx/issues/1040
3868 https://github.com/STEllAR-GROUP/hpx/issues/1039

2.11. Releases 1395

https://github.com/STEllAR-GROUP/hpx/issues/1066
https://github.com/STEllAR-GROUP/hpx/issues/1065
https://github.com/STEllAR-GROUP/hpx/issues/1064
https://github.com/STEllAR-GROUP/hpx/issues/1063
https://github.com/STEllAR-GROUP/hpx/issues/1062
https://github.com/STEllAR-GROUP/hpx/issues/1061
https://github.com/STEllAR-GROUP/hpx/issues/1060
https://github.com/STEllAR-GROUP/hpx/issues/1058
https://github.com/STEllAR-GROUP/hpx/issues/1057
https://github.com/STEllAR-GROUP/hpx/issues/1055
https://github.com/STEllAR-GROUP/hpx/issues/1053
https://github.com/STEllAR-GROUP/hpx/issues/1052
https://github.com/STEllAR-GROUP/hpx/issues/1049
https://github.com/STEllAR-GROUP/hpx/issues/1048
https://github.com/STEllAR-GROUP/hpx/issues/1047
https://github.com/STEllAR-GROUP/hpx/issues/1046
https://github.com/STEllAR-GROUP/hpx/issues/1045
https://github.com/STEllAR-GROUP/hpx/issues/1044
https://github.com/STEllAR-GROUP/hpx/issues/1043
https://github.com/STEllAR-GROUP/hpx/issues/1042
https://github.com/STEllAR-GROUP/hpx/issues/1041
https://github.com/STEllAR-GROUP/hpx/issues/1040
https://github.com/STEllAR-GROUP/hpx/issues/1039

HPX Documentation, 1.5.1

• Issue #10383869 - Bump minimal required Boost to 1.49.0

• Issue #10373870 - Implicit unwrapping of futures in async broken

• Issue #10363871 - Scheduler hangs when user code attempts to “block” OS-threads

• Issue #10353872 - Idle-rate counter always reports 100% idle rate

• Issue #10343873 - Symbolic name registration causes application hangs

• Issue #10333874 - Application options read in from an options file generate an error message

• Issue #10323875 - hpx::id_type local reference counting is wrong

• Issue #10313876 - Negative entry in reference count table

• Issue #10303877 - Implement condition_variable

• Issue #10293878 - Deadlock in thread scheduling subsystem

• Issue #10283879 - HPX-thread cumulative count performance counters report incorrect value

• Issue #10273880 - Expose hpx::thread_interrupted error code as a separate exception type

• Issue #10263881 - Exceptions thrown in asynchronous calls can be lost if the value of the future is never queried

• Issue #10253882 - future::wait_for/wait_until do not remove callback

• Issue #10243883 - Remove dependence to boost assert and create hpx assert

• Issue #10233884 - Segfaults with tcmalloc

• Issue #10223885 - prerequisites link in readme is broken

• Issue #10203886 - HPX Deadlock on external synchronization

• Issue #10193887 - Convert using BOOST_ASSERT to HPX_ASSERT

• Issue #10183888 - compiling bug with gcc 4.8.1

• Issue #10173889 - Possible crash in io_pool executor

• Issue #10163890 - Crash at startup

• Issue #10143891 - Implement Increment/Decrement Merging

3869 https://github.com/STEllAR-GROUP/hpx/issues/1038
3870 https://github.com/STEllAR-GROUP/hpx/issues/1037
3871 https://github.com/STEllAR-GROUP/hpx/issues/1036
3872 https://github.com/STEllAR-GROUP/hpx/issues/1035
3873 https://github.com/STEllAR-GROUP/hpx/issues/1034
3874 https://github.com/STEllAR-GROUP/hpx/issues/1033
3875 https://github.com/STEllAR-GROUP/hpx/issues/1032
3876 https://github.com/STEllAR-GROUP/hpx/issues/1031
3877 https://github.com/STEllAR-GROUP/hpx/issues/1030
3878 https://github.com/STEllAR-GROUP/hpx/issues/1029
3879 https://github.com/STEllAR-GROUP/hpx/issues/1028
3880 https://github.com/STEllAR-GROUP/hpx/issues/1027
3881 https://github.com/STEllAR-GROUP/hpx/issues/1026
3882 https://github.com/STEllAR-GROUP/hpx/issues/1025
3883 https://github.com/STEllAR-GROUP/hpx/issues/1024
3884 https://github.com/STEllAR-GROUP/hpx/issues/1023
3885 https://github.com/STEllAR-GROUP/hpx/issues/1022
3886 https://github.com/STEllAR-GROUP/hpx/issues/1020
3887 https://github.com/STEllAR-GROUP/hpx/issues/1019
3888 https://github.com/STEllAR-GROUP/hpx/issues/1018
3889 https://github.com/STEllAR-GROUP/hpx/issues/1017
3890 https://github.com/STEllAR-GROUP/hpx/issues/1016
3891 https://github.com/STEllAR-GROUP/hpx/issues/1014

1396 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1038
https://github.com/STEllAR-GROUP/hpx/issues/1037
https://github.com/STEllAR-GROUP/hpx/issues/1036
https://github.com/STEllAR-GROUP/hpx/issues/1035
https://github.com/STEllAR-GROUP/hpx/issues/1034
https://github.com/STEllAR-GROUP/hpx/issues/1033
https://github.com/STEllAR-GROUP/hpx/issues/1032
https://github.com/STEllAR-GROUP/hpx/issues/1031
https://github.com/STEllAR-GROUP/hpx/issues/1030
https://github.com/STEllAR-GROUP/hpx/issues/1029
https://github.com/STEllAR-GROUP/hpx/issues/1028
https://github.com/STEllAR-GROUP/hpx/issues/1027
https://github.com/STEllAR-GROUP/hpx/issues/1026
https://github.com/STEllAR-GROUP/hpx/issues/1025
https://github.com/STEllAR-GROUP/hpx/issues/1024
https://github.com/STEllAR-GROUP/hpx/issues/1023
https://github.com/STEllAR-GROUP/hpx/issues/1022
https://github.com/STEllAR-GROUP/hpx/issues/1020
https://github.com/STEllAR-GROUP/hpx/issues/1019
https://github.com/STEllAR-GROUP/hpx/issues/1018
https://github.com/STEllAR-GROUP/hpx/issues/1017
https://github.com/STEllAR-GROUP/hpx/issues/1016
https://github.com/STEllAR-GROUP/hpx/issues/1014

HPX Documentation, 1.5.1

• Issue #10133892 - Add more logging channels to enable greater control over logging granularity

• Issue #10123893 - --hpx:debug-hpx-log and --hpx:debug-agas-log lead to non-thread safe writes

• Issue #10113894 - After installation, running applications from the build/staging directory no longer works

• Issue #10103895 - Mergable decrement requests are not being merged

• Issue #10093896 - --hpx:list-symbolic-names crashes

• Issue #10073897 - Components are not properly destroyed

• Issue #10063898 - Segfault/hang in set_data

• Issue #10033899 - Performance counter naming issue

• Issue #9823900 - Race condition during startup

• Issue #9123901 - OS X: component type not found in map

• Issue #6633902 - Create a buildbot slave based on Clang 3.2/OSX

• Issue #6363903 - Expose this_locality::apply<act>(p1, p2); for local execution

• Issue #1973904 - Add --console=address option for PBS runs

• Issue #1753905 - Asynchronous AGAS API

2.11.15 HPX V0.9.7 (Nov 13, 2013)

We have had over 1000 commits since the last release and we have closed over 180 tickets (bugs, feature requests,
etc.).

General changes

• Ported HPX to BlueGene/Q

• Improved HPX support for Xeon/Phi accelerators

• Reimplemented hpx::bind, hpx::tuple, and hpx::function for better performance and better com-
pliance with the C++11 Standard. Added hpx::mem_fn.

• Reworked hpx::when_all and hpx::when_any for better compliance with the ongoing C++ standard-
ization effort, added heterogeneous version for those functions. Added hpx::when_any_swapped.

• Added hpx::copy as a precursor for a migrate functionality

• Added hpx::get_ptr allowing to directly access the memory underlying a given component

3892 https://github.com/STEllAR-GROUP/hpx/issues/1013
3893 https://github.com/STEllAR-GROUP/hpx/issues/1012
3894 https://github.com/STEllAR-GROUP/hpx/issues/1011
3895 https://github.com/STEllAR-GROUP/hpx/issues/1010
3896 https://github.com/STEllAR-GROUP/hpx/issues/1009
3897 https://github.com/STEllAR-GROUP/hpx/issues/1007
3898 https://github.com/STEllAR-GROUP/hpx/issues/1006
3899 https://github.com/STEllAR-GROUP/hpx/issues/1003
3900 https://github.com/STEllAR-GROUP/hpx/issues/982
3901 https://github.com/STEllAR-GROUP/hpx/issues/912
3902 https://github.com/STEllAR-GROUP/hpx/issues/663
3903 https://github.com/STEllAR-GROUP/hpx/issues/636
3904 https://github.com/STEllAR-GROUP/hpx/issues/197
3905 https://github.com/STEllAR-GROUP/hpx/issues/175

2.11. Releases 1397

https://github.com/STEllAR-GROUP/hpx/issues/1013
https://github.com/STEllAR-GROUP/hpx/issues/1012
https://github.com/STEllAR-GROUP/hpx/issues/1011
https://github.com/STEllAR-GROUP/hpx/issues/1010
https://github.com/STEllAR-GROUP/hpx/issues/1009
https://github.com/STEllAR-GROUP/hpx/issues/1007
https://github.com/STEllAR-GROUP/hpx/issues/1006
https://github.com/STEllAR-GROUP/hpx/issues/1003
https://github.com/STEllAR-GROUP/hpx/issues/982
https://github.com/STEllAR-GROUP/hpx/issues/912
https://github.com/STEllAR-GROUP/hpx/issues/663
https://github.com/STEllAR-GROUP/hpx/issues/636
https://github.com/STEllAR-GROUP/hpx/issues/197
https://github.com/STEllAR-GROUP/hpx/issues/175

HPX Documentation, 1.5.1

• Added the hpx::lcos::broadcast, hpx::lcos::reduce, and hpx::lcos::fold collective op-
erations

• Added hpx::get_locality_name allowing to retrieve the name of any of the localities for the application.

• Added support for more flexible thread affinity control from the HPX command line, such as new modes for
--hpx:bind (balanced, scattered, compact), improved default settings when running multiple lo-
calities on the same node.

• Added experimental executors for simpler thread pooling and scheduling. This API may change in the future as
it will stay aligned with the ongoing C++ standardization efforts.

• Massively improved the performance of the HPX serialization code. Added partial support for zero copy serial-
ization of array and bitwise-copyable types.

• General performance improvements of the code related to threads and futures.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release.

• Issue #10053906 - Allow one to disable array optimizations and zero copy optimizations for each parcelport

• Issue #10043907 - Generate new HPX logo image for the docs

• Issue #10023908 - If MPI parcelport is not available, running HPX under mpirun should fail

• Issue #10013909 - Zero copy serialization raises assert

• Issue #10003910 - Can’t connect to a HPX application running with the MPI parcelport from a non MPI parcelport
locality

• Issue #9993911 - Optimize hpx::when_n

• Issue #9983912 - Fixed const-correctness

• Issue #9973913 - Making serialize_buffer::data() type save

• Issue #9963914 - Memory leak in hpx::lcos::promise

• Issue #9953915 - Race while registering pre-shutdown functions

• Issue #9943916 - thread_rescheduling regression test does not compile

• Issue #9923917 - Correct comments and messages

• Issue #9913918 - setcap cap_sys_rawio=ep for power profiling causes an HPX application to abort

• Issue #9893919 - Jacobi hangs during execution

3906 https://github.com/STEllAR-GROUP/hpx/issues/1005
3907 https://github.com/STEllAR-GROUP/hpx/issues/1004
3908 https://github.com/STEllAR-GROUP/hpx/issues/1002
3909 https://github.com/STEllAR-GROUP/hpx/issues/1001
3910 https://github.com/STEllAR-GROUP/hpx/issues/1000
3911 https://github.com/STEllAR-GROUP/hpx/issues/999
3912 https://github.com/STEllAR-GROUP/hpx/issues/998
3913 https://github.com/STEllAR-GROUP/hpx/issues/997
3914 https://github.com/STEllAR-GROUP/hpx/issues/996
3915 https://github.com/STEllAR-GROUP/hpx/issues/995
3916 https://github.com/STEllAR-GROUP/hpx/issues/994
3917 https://github.com/STEllAR-GROUP/hpx/issues/992
3918 https://github.com/STEllAR-GROUP/hpx/issues/991
3919 https://github.com/STEllAR-GROUP/hpx/issues/989

1398 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/1005
https://github.com/STEllAR-GROUP/hpx/issues/1004
https://github.com/STEllAR-GROUP/hpx/issues/1002
https://github.com/STEllAR-GROUP/hpx/issues/1001
https://github.com/STEllAR-GROUP/hpx/issues/1000
https://github.com/STEllAR-GROUP/hpx/issues/999
https://github.com/STEllAR-GROUP/hpx/issues/998
https://github.com/STEllAR-GROUP/hpx/issues/997
https://github.com/STEllAR-GROUP/hpx/issues/996
https://github.com/STEllAR-GROUP/hpx/issues/995
https://github.com/STEllAR-GROUP/hpx/issues/994
https://github.com/STEllAR-GROUP/hpx/issues/992
https://github.com/STEllAR-GROUP/hpx/issues/991
https://github.com/STEllAR-GROUP/hpx/issues/989

HPX Documentation, 1.5.1

• Issue #9883920 - multiple_init test is failing

• Issue #9863921 - Can’t call a function called “init” from “main” when using <hpx/hpx_main.hpp>

• Issue #9843922 - Reference counting tests are failing

• Issue #9833923 - thread_suspension_executor test fails

• Issue #9803924 - Terminating HPX threads don’t leave stack in virgin state

• Issue #9793925 - Static scheduler not in documents

• Issue #9783926 - Preprocessing limits are broken

• Issue #9773927 - Make tests.regressions.lcos.future_hang_on_get shorter

• Issue #9763928 - Wrong library order in pkgconfig

• Issue #9753929 - Please reopen #963

• Issue #9743930 - Option pu-offset ignored in fixing_588 branch

• Issue #9723931 - Cannot use MKL with HPX

• Issue #9693932 - Non-existent INI files requested on the command line via --hpx:config do not cause warn-
ings or errors.

• Issue #9683933 - Cannot build examples in fixing_588 branch

• Issue #9673934 - Command line description of --hpx:queuing seems wrong

• Issue #9663935 - --hpx:print-bind physical core numbers are wrong

• Issue #9653936 - Deadlock when building in Release mode

• Issue #9633937 - Not all worker threads are working

• Issue #9623938 - Problem with SLURM integration

• Issue #9613939 - --hpx:print-bind outputs incorrect information

• Issue #9603940 - Fix cut and paste error in documentation of get_thread_priority

• Issue #9593941 - Change link to boost.atomic in documentation to point to boost.org

• Issue #9583942 - Undefined reference to intrusive_ptr_release

3920 https://github.com/STEllAR-GROUP/hpx/issues/988
3921 https://github.com/STEllAR-GROUP/hpx/issues/986
3922 https://github.com/STEllAR-GROUP/hpx/issues/984
3923 https://github.com/STEllAR-GROUP/hpx/issues/983
3924 https://github.com/STEllAR-GROUP/hpx/issues/980
3925 https://github.com/STEllAR-GROUP/hpx/issues/979
3926 https://github.com/STEllAR-GROUP/hpx/issues/978
3927 https://github.com/STEllAR-GROUP/hpx/issues/977
3928 https://github.com/STEllAR-GROUP/hpx/issues/976
3929 https://github.com/STEllAR-GROUP/hpx/issues/975
3930 https://github.com/STEllAR-GROUP/hpx/issues/974
3931 https://github.com/STEllAR-GROUP/hpx/issues/972
3932 https://github.com/STEllAR-GROUP/hpx/issues/969
3933 https://github.com/STEllAR-GROUP/hpx/issues/968
3934 https://github.com/STEllAR-GROUP/hpx/issues/967
3935 https://github.com/STEllAR-GROUP/hpx/issues/966
3936 https://github.com/STEllAR-GROUP/hpx/issues/965
3937 https://github.com/STEllAR-GROUP/hpx/issues/963
3938 https://github.com/STEllAR-GROUP/hpx/issues/962
3939 https://github.com/STEllAR-GROUP/hpx/issues/961
3940 https://github.com/STEllAR-GROUP/hpx/issues/960
3941 https://github.com/STEllAR-GROUP/hpx/issues/959
3942 https://github.com/STEllAR-GROUP/hpx/issues/958

2.11. Releases 1399

https://github.com/STEllAR-GROUP/hpx/issues/988
https://github.com/STEllAR-GROUP/hpx/issues/986
https://github.com/STEllAR-GROUP/hpx/issues/984
https://github.com/STEllAR-GROUP/hpx/issues/983
https://github.com/STEllAR-GROUP/hpx/issues/980
https://github.com/STEllAR-GROUP/hpx/issues/979
https://github.com/STEllAR-GROUP/hpx/issues/978
https://github.com/STEllAR-GROUP/hpx/issues/977
https://github.com/STEllAR-GROUP/hpx/issues/976
https://github.com/STEllAR-GROUP/hpx/issues/975
https://github.com/STEllAR-GROUP/hpx/issues/974
https://github.com/STEllAR-GROUP/hpx/issues/972
https://github.com/STEllAR-GROUP/hpx/issues/969
https://github.com/STEllAR-GROUP/hpx/issues/968
https://github.com/STEllAR-GROUP/hpx/issues/967
https://github.com/STEllAR-GROUP/hpx/issues/966
https://github.com/STEllAR-GROUP/hpx/issues/965
https://github.com/STEllAR-GROUP/hpx/issues/963
https://github.com/STEllAR-GROUP/hpx/issues/962
https://github.com/STEllAR-GROUP/hpx/issues/961
https://github.com/STEllAR-GROUP/hpx/issues/960
https://github.com/STEllAR-GROUP/hpx/issues/959
https://github.com/STEllAR-GROUP/hpx/issues/958

HPX Documentation, 1.5.1

• Issue #9573943 - Make tuple standard compliant

• Issue #9563944 - Segfault with a3382fb

• Issue #9553945 - --hpx:nodes and --hpx:nodefiles do not work with foreign nodes

• Issue #9543946 - Make order of arguments for hpx::async and hpx::broadcast consistent

• Issue #9533947 - Cannot use MKL with HPX

• Issue #9523948 - register_[pre_]shutdown_function never throw

• Issue #9513949 - Assert when number of threads is greater than hardware concurrency

• Issue #9483950 - HPX_HAVE_GENERIC_CONTEXT_COROUTINES conflicts with
HPX_HAVE_FIBER_BASED_COROUTINES

• Issue #9473951 - Need MPI_THREAD_MULTIPLE for backward compatibility

• Issue #9463952 - HPX does not call MPI_Finalize

• Issue #9453953 - Segfault with hpx::lcos::broadcast

• Issue #9443954 - OS X: assertion pu_offset_ < hardware_concurrency failed

• Issue #9433955 - #include <hpx/hpx_main.hpp> does not work

• Issue #9423956 - Make the BG/Q work with -O3

• Issue #9403957 - Use separator when concatenating locality name

• Issue #9393958 - Refactor MPI parcelport to use MPI_Wait instead of multiple MPI_Test calls

• Issue #9383959 - Want to officially access client_base::gid_

• Issue #9373960 - client_base::gid_ should be private``

• Issue #9363961 - Want doxygen-like source code index

• Issue #9353962 - Build error with gcc 4.6 and Boost 1.54.0 on hpx trunk and 0.9.6

• Issue #9333963 - Cannot build HPX with Boost 1.54.0

• Issue #9323964 - Components are destructed too early

• Issue #9313965 - Make HPX work on BG/Q
3943 https://github.com/STEllAR-GROUP/hpx/issues/957
3944 https://github.com/STEllAR-GROUP/hpx/issues/956
3945 https://github.com/STEllAR-GROUP/hpx/issues/955
3946 https://github.com/STEllAR-GROUP/hpx/issues/954
3947 https://github.com/STEllAR-GROUP/hpx/issues/953
3948 https://github.com/STEllAR-GROUP/hpx/issues/952
3949 https://github.com/STEllAR-GROUP/hpx/issues/951
3950 https://github.com/STEllAR-GROUP/hpx/issues/948
3951 https://github.com/STEllAR-GROUP/hpx/issues/947
3952 https://github.com/STEllAR-GROUP/hpx/issues/946
3953 https://github.com/STEllAR-GROUP/hpx/issues/945
3954 https://github.com/STEllAR-GROUP/hpx/issues/944
3955 https://github.com/STEllAR-GROUP/hpx/issues/943
3956 https://github.com/STEllAR-GROUP/hpx/issues/942
3957 https://github.com/STEllAR-GROUP/hpx/issues/940
3958 https://github.com/STEllAR-GROUP/hpx/issues/939
3959 https://github.com/STEllAR-GROUP/hpx/issues/938
3960 https://github.com/STEllAR-GROUP/hpx/issues/937
3961 https://github.com/STEllAR-GROUP/hpx/issues/936
3962 https://github.com/STEllAR-GROUP/hpx/issues/935
3963 https://github.com/STEllAR-GROUP/hpx/issues/933
3964 https://github.com/STEllAR-GROUP/hpx/issues/932
3965 https://github.com/STEllAR-GROUP/hpx/issues/931

1400 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/957
https://github.com/STEllAR-GROUP/hpx/issues/956
https://github.com/STEllAR-GROUP/hpx/issues/955
https://github.com/STEllAR-GROUP/hpx/issues/954
https://github.com/STEllAR-GROUP/hpx/issues/953
https://github.com/STEllAR-GROUP/hpx/issues/952
https://github.com/STEllAR-GROUP/hpx/issues/951
https://github.com/STEllAR-GROUP/hpx/issues/948
https://github.com/STEllAR-GROUP/hpx/issues/947
https://github.com/STEllAR-GROUP/hpx/issues/946
https://github.com/STEllAR-GROUP/hpx/issues/945
https://github.com/STEllAR-GROUP/hpx/issues/944
https://github.com/STEllAR-GROUP/hpx/issues/943
https://github.com/STEllAR-GROUP/hpx/issues/942
https://github.com/STEllAR-GROUP/hpx/issues/940
https://github.com/STEllAR-GROUP/hpx/issues/939
https://github.com/STEllAR-GROUP/hpx/issues/938
https://github.com/STEllAR-GROUP/hpx/issues/937
https://github.com/STEllAR-GROUP/hpx/issues/936
https://github.com/STEllAR-GROUP/hpx/issues/935
https://github.com/STEllAR-GROUP/hpx/issues/933
https://github.com/STEllAR-GROUP/hpx/issues/932
https://github.com/STEllAR-GROUP/hpx/issues/931

HPX Documentation, 1.5.1

• Issue #9303966 - make git-docs is broken

• Issue #9293967 - Generating index in docs broken

• Issue #9283968 - Optimize hpx::util::static_ for C++11 compilers supporting magic statics

• Issue #9243969 - Make kill_process_tree (in process.py) more robust on Mac OSX

• Issue #9233970 - Correct BLAS and RNPL cmake tests

• Issue #9223971 - Cannot link against BLAS

• Issue #9213972 - Implement hpx::mem_fn

• Issue #9203973 - Output locality with --hpx:print-bind

• Issue #9193974 - Correct grammar; simplify boolean expressions

• Issue #9183975 - Link to hello_world.cpp is broken

• Issue #9173976 - adapt cmake file to new boostbook version

• Issue #9163977 - fix problem building documentation with xsltproc >= 1.1.27

• Issue #9153978 - Add another TBBMalloc library search path

• Issue #9143979 - Build problem with Intel compiler on Stampede (TACC)

• Issue #9133980 - fix error messages in fibonacci examples

• Issue #9113981 - Update OS X build instructions

• Issue #9103982 - Want like to specify MPI_ROOT instead of compiler wrapper script

• Issue #9093983 - Warning about void* arithmetic

• Issue #9083984 - Buildbot for MIC is broken

• Issue #9063985 - Can’t use --hpx:bind=balanced with multiple MPI processes

• Issue #9053986 - --hpx:bind documentation should describe full grammar

• Issue #9043987 - Add hpx::lcos::fold and hpx::lcos::inverse_fold collective operation

• Issue #9033988 - Add hpx::when_any_swapped()
3966 https://github.com/STEllAR-GROUP/hpx/issues/930
3967 https://github.com/STEllAR-GROUP/hpx/issues/929
3968 https://github.com/STEllAR-GROUP/hpx/issues/928
3969 https://github.com/STEllAR-GROUP/hpx/issues/924
3970 https://github.com/STEllAR-GROUP/hpx/issues/923
3971 https://github.com/STEllAR-GROUP/hpx/issues/922
3972 https://github.com/STEllAR-GROUP/hpx/issues/921
3973 https://github.com/STEllAR-GROUP/hpx/issues/920
3974 https://github.com/STEllAR-GROUP/hpx/issues/919
3975 https://github.com/STEllAR-GROUP/hpx/issues/918
3976 https://github.com/STEllAR-GROUP/hpx/issues/917
3977 https://github.com/STEllAR-GROUP/hpx/issues/916
3978 https://github.com/STEllAR-GROUP/hpx/issues/915
3979 https://github.com/STEllAR-GROUP/hpx/issues/914
3980 https://github.com/STEllAR-GROUP/hpx/issues/913
3981 https://github.com/STEllAR-GROUP/hpx/issues/911
3982 https://github.com/STEllAR-GROUP/hpx/issues/910
3983 https://github.com/STEllAR-GROUP/hpx/issues/909
3984 https://github.com/STEllAR-GROUP/hpx/issues/908
3985 https://github.com/STEllAR-GROUP/hpx/issues/906
3986 https://github.com/STEllAR-GROUP/hpx/issues/905
3987 https://github.com/STEllAR-GROUP/hpx/issues/904
3988 https://github.com/STEllAR-GROUP/hpx/issues/903

2.11. Releases 1401

https://github.com/STEllAR-GROUP/hpx/issues/930
https://github.com/STEllAR-GROUP/hpx/issues/929
https://github.com/STEllAR-GROUP/hpx/issues/928
https://github.com/STEllAR-GROUP/hpx/issues/924
https://github.com/STEllAR-GROUP/hpx/issues/923
https://github.com/STEllAR-GROUP/hpx/issues/922
https://github.com/STEllAR-GROUP/hpx/issues/921
https://github.com/STEllAR-GROUP/hpx/issues/920
https://github.com/STEllAR-GROUP/hpx/issues/919
https://github.com/STEllAR-GROUP/hpx/issues/918
https://github.com/STEllAR-GROUP/hpx/issues/917
https://github.com/STEllAR-GROUP/hpx/issues/916
https://github.com/STEllAR-GROUP/hpx/issues/915
https://github.com/STEllAR-GROUP/hpx/issues/914
https://github.com/STEllAR-GROUP/hpx/issues/913
https://github.com/STEllAR-GROUP/hpx/issues/911
https://github.com/STEllAR-GROUP/hpx/issues/910
https://github.com/STEllAR-GROUP/hpx/issues/909
https://github.com/STEllAR-GROUP/hpx/issues/908
https://github.com/STEllAR-GROUP/hpx/issues/906
https://github.com/STEllAR-GROUP/hpx/issues/905
https://github.com/STEllAR-GROUP/hpx/issues/904
https://github.com/STEllAR-GROUP/hpx/issues/903

HPX Documentation, 1.5.1

• Issue #9023989 - Add hpx::lcos::reduce collective operation

• Issue #9013990 - Web documentation is not searchable

• Issue #9003991 - Web documentation for trunk has no index

• Issue #8983992 - Some tests fail with GCC 4.8.1 and MPI parcel port

• Issue #8973993 - HWLOC causes failures on Mac

• Issue #8963994 - pu-offset leads to startup error

• Issue #8953995 - hpx::get_locality_name not defined

• Issue #8943996 - Race condition at shutdown

• Issue #8933997 - --hpx:print-bind switches std::cout to hexadecimal mode

• Issue #8923998 - hwloc_topology_load can be expensive – don’t call multiple times

• Issue #8913999 - The documentation for get_locality_name is wrong

• Issue #8904000 - --hpx:print-bind should not exit

• Issue #8894001 - --hpx:debug-hpx-log=FILE does not work

• Issue #8884002 - MPI parcelport does not exit cleanly for –hpx:print-bind

• Issue #8874003 - Choose thread affinities more cleverly

• Issue #8864004 - Logging documentation is confusing

• Issue #8854005 - Two threads are slower than one

• Issue #8844006 - is_callable failing with member pointers in C++11

• Issue #8834007 - Need help with is_callable_test

• Issue #8824008 - tests.regressions.lcos.future_hang_on_get does not terminate

• Issue #8814009 - tests/regressions/block_matrix/matrix.hh won’t compile with GCC 4.8.1

• Issue #8804010 - HPX does not work on OS X

• Issue #8784011 - future::unwrap triggers assertion

3989 https://github.com/STEllAR-GROUP/hpx/issues/902
3990 https://github.com/STEllAR-GROUP/hpx/issues/901
3991 https://github.com/STEllAR-GROUP/hpx/issues/900
3992 https://github.com/STEllAR-GROUP/hpx/issues/898
3993 https://github.com/STEllAR-GROUP/hpx/issues/897
3994 https://github.com/STEllAR-GROUP/hpx/issues/896
3995 https://github.com/STEllAR-GROUP/hpx/issues/895
3996 https://github.com/STEllAR-GROUP/hpx/issues/894
3997 https://github.com/STEllAR-GROUP/hpx/issues/893
3998 https://github.com/STEllAR-GROUP/hpx/issues/892
3999 https://github.com/STEllAR-GROUP/hpx/issues/891
4000 https://github.com/STEllAR-GROUP/hpx/issues/890
4001 https://github.com/STEllAR-GROUP/hpx/issues/889
4002 https://github.com/STEllAR-GROUP/hpx/issues/888
4003 https://github.com/STEllAR-GROUP/hpx/issues/887
4004 https://github.com/STEllAR-GROUP/hpx/issues/886
4005 https://github.com/STEllAR-GROUP/hpx/issues/885
4006 https://github.com/STEllAR-GROUP/hpx/issues/884
4007 https://github.com/STEllAR-GROUP/hpx/issues/883
4008 https://github.com/STEllAR-GROUP/hpx/issues/882
4009 https://github.com/STEllAR-GROUP/hpx/issues/881
4010 https://github.com/STEllAR-GROUP/hpx/issues/880
4011 https://github.com/STEllAR-GROUP/hpx/issues/878

1402 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/902
https://github.com/STEllAR-GROUP/hpx/issues/901
https://github.com/STEllAR-GROUP/hpx/issues/900
https://github.com/STEllAR-GROUP/hpx/issues/898
https://github.com/STEllAR-GROUP/hpx/issues/897
https://github.com/STEllAR-GROUP/hpx/issues/896
https://github.com/STEllAR-GROUP/hpx/issues/895
https://github.com/STEllAR-GROUP/hpx/issues/894
https://github.com/STEllAR-GROUP/hpx/issues/893
https://github.com/STEllAR-GROUP/hpx/issues/892
https://github.com/STEllAR-GROUP/hpx/issues/891
https://github.com/STEllAR-GROUP/hpx/issues/890
https://github.com/STEllAR-GROUP/hpx/issues/889
https://github.com/STEllAR-GROUP/hpx/issues/888
https://github.com/STEllAR-GROUP/hpx/issues/887
https://github.com/STEllAR-GROUP/hpx/issues/886
https://github.com/STEllAR-GROUP/hpx/issues/885
https://github.com/STEllAR-GROUP/hpx/issues/884
https://github.com/STEllAR-GROUP/hpx/issues/883
https://github.com/STEllAR-GROUP/hpx/issues/882
https://github.com/STEllAR-GROUP/hpx/issues/881
https://github.com/STEllAR-GROUP/hpx/issues/880
https://github.com/STEllAR-GROUP/hpx/issues/878

HPX Documentation, 1.5.1

• Issue #8774012 - “make tests” has build errors on Ubuntu 12.10

• Issue #8764013 - tcmalloc is used by default, even if it is not present

• Issue #8754014 - global_fixture is defined in a header file

• Issue #8744015 - Some tests take very long

• Issue #8734016 - Add block-matrix code as regression test

• Issue #8724017 - HPX documentation does not say how to run tests with detailed output

• Issue #8714018 - All tests fail with “make test”

• Issue #8704019 - Please explicitly disable serialization in classes that don’t support it

• Issue #8684020 - boost_any test failing

• Issue #8674021 - Reduce the number of copies of hpx::function arguments

• Issue #8634022 - Futures should not require a default constructor

• Issue #8624023 - value_or_error shall not default construct its result

• Issue #8614024 - HPX_UNUSED macro

• Issue #8604025 - Add functionality to copy construct a component

• Issue #8594026 - hpx::endl should flush

• Issue #8584027 - Create hpx::get_ptr<> allowing to access component implementation

• Issue #8554028 - Implement hpx::INVOKE

• Issue #8544029 - hpx/hpx.hpp does not include hpx/include/iostreams.hpp

• Issue #8534030 - Feature request: null future

• Issue #8524031 - Feature request: Locality names

• Issue #8514032 - hpx::cout output does not appear on screen

• Issue #8494033 - All tests fail on OS X after installing

• Issue #8484034 - Update OS X build instructions

4012 https://github.com/STEllAR-GROUP/hpx/issues/877
4013 https://github.com/STEllAR-GROUP/hpx/issues/876
4014 https://github.com/STEllAR-GROUP/hpx/issues/875
4015 https://github.com/STEllAR-GROUP/hpx/issues/874
4016 https://github.com/STEllAR-GROUP/hpx/issues/873
4017 https://github.com/STEllAR-GROUP/hpx/issues/872
4018 https://github.com/STEllAR-GROUP/hpx/issues/871
4019 https://github.com/STEllAR-GROUP/hpx/issues/870
4020 https://github.com/STEllAR-GROUP/hpx/issues/868
4021 https://github.com/STEllAR-GROUP/hpx/issues/867
4022 https://github.com/STEllAR-GROUP/hpx/issues/863
4023 https://github.com/STEllAR-GROUP/hpx/issues/862
4024 https://github.com/STEllAR-GROUP/hpx/issues/861
4025 https://github.com/STEllAR-GROUP/hpx/issues/860
4026 https://github.com/STEllAR-GROUP/hpx/issues/859
4027 https://github.com/STEllAR-GROUP/hpx/issues/858
4028 https://github.com/STEllAR-GROUP/hpx/issues/855
4029 https://github.com/STEllAR-GROUP/hpx/issues/854
4030 https://github.com/STEllAR-GROUP/hpx/issues/853
4031 https://github.com/STEllAR-GROUP/hpx/issues/852
4032 https://github.com/STEllAR-GROUP/hpx/issues/851
4033 https://github.com/STEllAR-GROUP/hpx/issues/849
4034 https://github.com/STEllAR-GROUP/hpx/issues/848

2.11. Releases 1403

https://github.com/STEllAR-GROUP/hpx/issues/877
https://github.com/STEllAR-GROUP/hpx/issues/876
https://github.com/STEllAR-GROUP/hpx/issues/875
https://github.com/STEllAR-GROUP/hpx/issues/874
https://github.com/STEllAR-GROUP/hpx/issues/873
https://github.com/STEllAR-GROUP/hpx/issues/872
https://github.com/STEllAR-GROUP/hpx/issues/871
https://github.com/STEllAR-GROUP/hpx/issues/870
https://github.com/STEllAR-GROUP/hpx/issues/868
https://github.com/STEllAR-GROUP/hpx/issues/867
https://github.com/STEllAR-GROUP/hpx/issues/863
https://github.com/STEllAR-GROUP/hpx/issues/862
https://github.com/STEllAR-GROUP/hpx/issues/861
https://github.com/STEllAR-GROUP/hpx/issues/860
https://github.com/STEllAR-GROUP/hpx/issues/859
https://github.com/STEllAR-GROUP/hpx/issues/858
https://github.com/STEllAR-GROUP/hpx/issues/855
https://github.com/STEllAR-GROUP/hpx/issues/854
https://github.com/STEllAR-GROUP/hpx/issues/853
https://github.com/STEllAR-GROUP/hpx/issues/852
https://github.com/STEllAR-GROUP/hpx/issues/851
https://github.com/STEllAR-GROUP/hpx/issues/849
https://github.com/STEllAR-GROUP/hpx/issues/848

HPX Documentation, 1.5.1

• Issue #8464035 - Update hpx_external_example

• Issue #8454036 - Issues with having both debug and release modules in the same directory

• Issue #8444037 - Create configuration header

• Issue #8434038 - Tests should use CTest

• Issue #8424039 - Remove buffer_pool from MPI parcelport

• Issue #8414040 - Add possibility to broadcast an index with hpx::lcos::broadcast

• Issue #8384041 - Simplify util::tuple

• Issue #8374042 - Adopt boost::tuple tests for util::tuple

• Issue #8364043 - Adopt boost::function tests for util::function

• Issue #8354044 - Tuple interface missing pieces

• Issue #8334045 - Partially preprocessing files not working

• Issue #8324046 - Native papi counters do not work with wild cards

• Issue #8314047 - Arithmetics counter fails if only one parameter is given

• Issue #8304048 - Convert hpx::util::function to use new scheme for serializing its base pointer

• Issue #8294049 - Consistently use decay<T> instead of remove_const< remove_reference<T>>

• Issue #8284050 - Update future implementation to N3721 and N3722

• Issue #8274051 - Enable MPI parcelport for bootstrapping whenever application was started using mpirun

• Issue #8264052 - Support command line option --hpx:print-bind even if --hpx::bind was not used

• Issue #8254053 - Memory counters give segfault when attempting to use thread wild cards or numbers only total
works

• Issue #8244054 - Enable lambda functions to be used with hpx::async/hpx::apply

• Issue #8234055 - Using a hashing filter

• Issue #8224056 - Silence unused variable warning

• Issue #8214057 - Detect if a function object is callable with given arguments

4035 https://github.com/STEllAR-GROUP/hpx/issues/846
4036 https://github.com/STEllAR-GROUP/hpx/issues/845
4037 https://github.com/STEllAR-GROUP/hpx/issues/844
4038 https://github.com/STEllAR-GROUP/hpx/issues/843
4039 https://github.com/STEllAR-GROUP/hpx/issues/842
4040 https://github.com/STEllAR-GROUP/hpx/issues/841
4041 https://github.com/STEllAR-GROUP/hpx/issues/838
4042 https://github.com/STEllAR-GROUP/hpx/issues/837
4043 https://github.com/STEllAR-GROUP/hpx/issues/836
4044 https://github.com/STEllAR-GROUP/hpx/issues/835
4045 https://github.com/STEllAR-GROUP/hpx/issues/833
4046 https://github.com/STEllAR-GROUP/hpx/issues/832
4047 https://github.com/STEllAR-GROUP/hpx/issues/831
4048 https://github.com/STEllAR-GROUP/hpx/issues/830
4049 https://github.com/STEllAR-GROUP/hpx/issues/829
4050 https://github.com/STEllAR-GROUP/hpx/issues/828
4051 https://github.com/STEllAR-GROUP/hpx/issues/827
4052 https://github.com/STEllAR-GROUP/hpx/issues/826
4053 https://github.com/STEllAR-GROUP/hpx/issues/825
4054 https://github.com/STEllAR-GROUP/hpx/issues/824
4055 https://github.com/STEllAR-GROUP/hpx/issues/823
4056 https://github.com/STEllAR-GROUP/hpx/issues/822
4057 https://github.com/STEllAR-GROUP/hpx/issues/821

1404 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/846
https://github.com/STEllAR-GROUP/hpx/issues/845
https://github.com/STEllAR-GROUP/hpx/issues/844
https://github.com/STEllAR-GROUP/hpx/issues/843
https://github.com/STEllAR-GROUP/hpx/issues/842
https://github.com/STEllAR-GROUP/hpx/issues/841
https://github.com/STEllAR-GROUP/hpx/issues/838
https://github.com/STEllAR-GROUP/hpx/issues/837
https://github.com/STEllAR-GROUP/hpx/issues/836
https://github.com/STEllAR-GROUP/hpx/issues/835
https://github.com/STEllAR-GROUP/hpx/issues/833
https://github.com/STEllAR-GROUP/hpx/issues/832
https://github.com/STEllAR-GROUP/hpx/issues/831
https://github.com/STEllAR-GROUP/hpx/issues/830
https://github.com/STEllAR-GROUP/hpx/issues/829
https://github.com/STEllAR-GROUP/hpx/issues/828
https://github.com/STEllAR-GROUP/hpx/issues/827
https://github.com/STEllAR-GROUP/hpx/issues/826
https://github.com/STEllAR-GROUP/hpx/issues/825
https://github.com/STEllAR-GROUP/hpx/issues/824
https://github.com/STEllAR-GROUP/hpx/issues/823
https://github.com/STEllAR-GROUP/hpx/issues/822
https://github.com/STEllAR-GROUP/hpx/issues/821

HPX Documentation, 1.5.1

• Issue #8204058 - Allow wildcards to be used for performance counter names

• Issue #8194059 - Make the AGAS symbolic name registry distributed

• Issue #8184060 - Add future::then() overload taking an executor

• Issue #8174061 - Fixed typo

• Issue #8154062 - Create an lco that is performing an efficient broadcast of actions

• Issue #8144063 - Papi counters cannot specify thread#* to get the counts for all threads

• Issue #8134064 - Scoped unlock

• Issue #8114065 - simple_central_tuplespace_client run error

• Issue #8104066 - ostream error when << any objects

• Issue #8094067 - Optimize parcel serialization

• Issue #8084068 - HPX applications throw exception when executed from the build directory

• Issue #8074069 - Create performance counters exposing overall AGAS statistics

• Issue #7954070 - Create timed make_ready_future

• Issue #7944071 - Create heterogeneous when_all/when_any/etc.

• Issue #7214072 - Make HPX usable for Xeon Phi

• Issue #6944073 - CMake should complain if you attempt to build an example without its dependencies

• Issue #6924074 - SLURM support broken

• Issue #6834075 - python/hpx/process.py imports epoll on all platforms

• Issue #6194076 - Automate the doc building process

• Issue #6004077 - GTC performance broken

• Issue #5774078 - Allow for zero copy serialization/networking

• Issue #5514079 - Change executable names to have debug postfix in Debug builds

• Issue #5444080 - Write a custom .lib file on Windows pulling in hpx_init and hpx.dll, phase out hpx_init

4058 https://github.com/STEllAR-GROUP/hpx/issues/820
4059 https://github.com/STEllAR-GROUP/hpx/issues/819
4060 https://github.com/STEllAR-GROUP/hpx/issues/818
4061 https://github.com/STEllAR-GROUP/hpx/issues/817
4062 https://github.com/STEllAR-GROUP/hpx/issues/815
4063 https://github.com/STEllAR-GROUP/hpx/issues/814
4064 https://github.com/STEllAR-GROUP/hpx/issues/813
4065 https://github.com/STEllAR-GROUP/hpx/issues/811
4066 https://github.com/STEllAR-GROUP/hpx/issues/810
4067 https://github.com/STEllAR-GROUP/hpx/issues/809
4068 https://github.com/STEllAR-GROUP/hpx/issues/808
4069 https://github.com/STEllAR-GROUP/hpx/issues/807
4070 https://github.com/STEllAR-GROUP/hpx/issues/795
4071 https://github.com/STEllAR-GROUP/hpx/issues/794
4072 https://github.com/STEllAR-GROUP/hpx/issues/721
4073 https://github.com/STEllAR-GROUP/hpx/issues/694
4074 https://github.com/STEllAR-GROUP/hpx/issues/692
4075 https://github.com/STEllAR-GROUP/hpx/issues/683
4076 https://github.com/STEllAR-GROUP/hpx/issues/619
4077 https://github.com/STEllAR-GROUP/hpx/issues/600
4078 https://github.com/STEllAR-GROUP/hpx/issues/577
4079 https://github.com/STEllAR-GROUP/hpx/issues/551
4080 https://github.com/STEllAR-GROUP/hpx/issues/544

2.11. Releases 1405

https://github.com/STEllAR-GROUP/hpx/issues/820
https://github.com/STEllAR-GROUP/hpx/issues/819
https://github.com/STEllAR-GROUP/hpx/issues/818
https://github.com/STEllAR-GROUP/hpx/issues/817
https://github.com/STEllAR-GROUP/hpx/issues/815
https://github.com/STEllAR-GROUP/hpx/issues/814
https://github.com/STEllAR-GROUP/hpx/issues/813
https://github.com/STEllAR-GROUP/hpx/issues/811
https://github.com/STEllAR-GROUP/hpx/issues/810
https://github.com/STEllAR-GROUP/hpx/issues/809
https://github.com/STEllAR-GROUP/hpx/issues/808
https://github.com/STEllAR-GROUP/hpx/issues/807
https://github.com/STEllAR-GROUP/hpx/issues/795
https://github.com/STEllAR-GROUP/hpx/issues/794
https://github.com/STEllAR-GROUP/hpx/issues/721
https://github.com/STEllAR-GROUP/hpx/issues/694
https://github.com/STEllAR-GROUP/hpx/issues/692
https://github.com/STEllAR-GROUP/hpx/issues/683
https://github.com/STEllAR-GROUP/hpx/issues/619
https://github.com/STEllAR-GROUP/hpx/issues/600
https://github.com/STEllAR-GROUP/hpx/issues/577
https://github.com/STEllAR-GROUP/hpx/issues/551
https://github.com/STEllAR-GROUP/hpx/issues/544

HPX Documentation, 1.5.1

• Issue #5344081 - hpx::init should take functions by std::function and should accept all forms of
hpx_main

• Issue #5084082 - FindPackage fails to set FOO_LIBRARY_DIR

• Issue #5064083 - Add cmake support to generate ini files for external applications

• Issue #4704084 - Changing build-type after configure does not update boost library names

• Issue #4534085 - Document hpx_run_tests.py

• Issue #4454086 - Significant performance mismatch between MPI and HPX in SMP for allgather example

• Issue #4434087 - Make docs viewable from build directory

• Issue #4214088 - Support multiple HPX instances per node in a batch environment like PBS or SLURM

• Issue #3164089 - Add message size limitation

• Issue #2494090 - Clean up locking code in big boot barrier

• Issue #1364091 - Persistent CMake variables need to be marked as cache variables

2.11.16 HPX V0.9.6 (Jul 30, 2013)

We have had over 1200 commits since the last release and we have closed roughly 140 tickets (bugs, feature requests,
etc.).

General changes

The major new features in this release are:

• We further consolidated the API exposed by HPX. We aligned our APIs as much as possible with the exist-
ing C++11 Standard4092 and related proposals to the C++ standardization committee (such as N36324093 and
N38574094).

• We implemented a first version of a distributed AGAS service which essentially eliminates all explicit AGAS
network traffic.

• We created a native ibverbs parcelport allowing to take advantage of the superior latency and bandwidth char-
acteristics of Infiniband networks.

• We successfully ported HPX to the Xeon Phi platform.

• Support for the SLURM scheduling system was implemented.

• Major efforts have been dedicated to improving the performance counter framework, numerous new counters
were implemented and new APIs were added.

4081 https://github.com/STEllAR-GROUP/hpx/issues/534
4082 https://github.com/STEllAR-GROUP/hpx/issues/508
4083 https://github.com/STEllAR-GROUP/hpx/issues/506
4084 https://github.com/STEllAR-GROUP/hpx/issues/470
4085 https://github.com/STEllAR-GROUP/hpx/issues/453
4086 https://github.com/STEllAR-GROUP/hpx/issues/445
4087 https://github.com/STEllAR-GROUP/hpx/issues/443
4088 https://github.com/STEllAR-GROUP/hpx/issues/421
4089 https://github.com/STEllAR-GROUP/hpx/issues/316
4090 https://github.com/STEllAR-GROUP/hpx/issues/249
4091 https://github.com/STEllAR-GROUP/hpx/issues/136
4092 http://www.open-std.org/jtc1/sc22/wg21
4093 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3632.html
4094 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3857.pdf

1406 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/534
https://github.com/STEllAR-GROUP/hpx/issues/508
https://github.com/STEllAR-GROUP/hpx/issues/506
https://github.com/STEllAR-GROUP/hpx/issues/470
https://github.com/STEllAR-GROUP/hpx/issues/453
https://github.com/STEllAR-GROUP/hpx/issues/445
https://github.com/STEllAR-GROUP/hpx/issues/443
https://github.com/STEllAR-GROUP/hpx/issues/421
https://github.com/STEllAR-GROUP/hpx/issues/316
https://github.com/STEllAR-GROUP/hpx/issues/249
https://github.com/STEllAR-GROUP/hpx/issues/136
http://www.open-std.org/jtc1/sc22/wg21
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3632.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3857.pdf

HPX Documentation, 1.5.1

• We added a modular parcel compression system allowing to improve bandwidth utilization (by reducing the
overall size of the transferred data).

• We added a modular parcel coalescing system allowing to combine several parcels into larger messages. This
reduces latencies introduced by the communication layer.

• Added an experimental executors API allowing to use different scheduling policies for different parts of the
code. This API has been modelled after the Standards proposal N35624095. This API is bound to change in the
future, though.

• Added minimal security support for localities which is enforced on the parcelport level. This support is prelim-
inary and experimental and might change in the future.

• We created a parcelport using low level MPI functions. This is in support of legacy applications which are to be
gradually ported and to support platforms where MPI is the only available portable networking layer.

• We added a preliminary and experimental implementation of a tuple-space object which exposes an interface
similar to such systems described in the literature (see for instance The Linda Coordination Language4096).

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release. This is again a very long list of newly implemented
features and fixed issues.

• Issue #8064097 - make (all) in examples folder does nothing

• Issue #8054098 - Adding the introduction and fixing DOCBOOK dependencies for Windows use

• Issue #8044099 - Add stackless (non-suspendable) thread type

• Issue #8034100 - Create proper serialization support functions for util::tuple

• Issue #8004101 - Add possibility to disable array optimizations during serialization

• Issue #7984102 - HPX_LIMIT does not work for local dataflow

• Issue #7974103 - Create a parcelport which uses MPI

• Issue #7964104 - Problem with Large Numbers of Threads

• Issue #7934105 - Changing dataflow test case to hang consistently

• Issue #7924106 - CMake Error

• Issue #7914107 - Problems with local::dataflow

• Issue #7904108 - wait_for() doesn’t compile

• Issue #7894109 - HPX with Intel compiler segfaults

4095 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3562.pdf
4096 https://en.wikipedia.org/wiki/Linda_(coordination_language)
4097 https://github.com/STEllAR-GROUP/hpx/issues/806
4098 https://github.com/STEllAR-GROUP/hpx/issues/805
4099 https://github.com/STEllAR-GROUP/hpx/issues/804
4100 https://github.com/STEllAR-GROUP/hpx/issues/803
4101 https://github.com/STEllAR-GROUP/hpx/issues/800
4102 https://github.com/STEllAR-GROUP/hpx/issues/798
4103 https://github.com/STEllAR-GROUP/hpx/issues/797
4104 https://github.com/STEllAR-GROUP/hpx/issues/796
4105 https://github.com/STEllAR-GROUP/hpx/issues/793
4106 https://github.com/STEllAR-GROUP/hpx/issues/792
4107 https://github.com/STEllAR-GROUP/hpx/issues/791
4108 https://github.com/STEllAR-GROUP/hpx/issues/790
4109 https://github.com/STEllAR-GROUP/hpx/issues/789

2.11. Releases 1407

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3562.pdf
https://en.wikipedia.org/wiki/Linda_(coordination_language)
https://github.com/STEllAR-GROUP/hpx/issues/806
https://github.com/STEllAR-GROUP/hpx/issues/805
https://github.com/STEllAR-GROUP/hpx/issues/804
https://github.com/STEllAR-GROUP/hpx/issues/803
https://github.com/STEllAR-GROUP/hpx/issues/800
https://github.com/STEllAR-GROUP/hpx/issues/798
https://github.com/STEllAR-GROUP/hpx/issues/797
https://github.com/STEllAR-GROUP/hpx/issues/796
https://github.com/STEllAR-GROUP/hpx/issues/793
https://github.com/STEllAR-GROUP/hpx/issues/792
https://github.com/STEllAR-GROUP/hpx/issues/791
https://github.com/STEllAR-GROUP/hpx/issues/790
https://github.com/STEllAR-GROUP/hpx/issues/789

HPX Documentation, 1.5.1

• Issue #7884110 - Intel compiler support

• Issue #7874111 - Fixed SFINAEd specializations

• Issue #7864112 - Memory issues during benchmarking.

• Issue #7854113 - Create an API allowing to register external threads with HPX

• Issue #7844114 - util::plugin is throwing an error when a symbol is not found

• Issue #7834115 - How does hpx:bind work?

• Issue #7824116 - Added quotes around STRING REPLACE potentially empty arguments

• Issue #7814117 - Make sure no exceptions propagate into the thread manager

• Issue #7804118 - Allow arithmetics performance counters to expand its parameters

• Issue #7794119 - Test case for 778

• Issue #7784120 - Swapping futures segfaults

• Issue #7774121 - hpx::lcos::details::when_xxx don’t restore completion handlers

• Issue #7764122 - Compiler chokes on dataflow overload with launch policy

• Issue #7754123 - Runtime error with local dataflow (copying futures?)

• Issue #7744124 - Using local dataflow without explicit namespace

• Issue #7734125 - Local dataflow with unwrap: functor operators need to be const

• Issue #7724126 - Allow (remote) actions to return a future

• Issue #7714127 - Setting HPX_LIMIT gives huge boost MPL errors

• Issue #7704128 - Add launch policy to (local) dataflow

• Issue #7694129 - Make compile time configuration information available

• Issue #7684130 - Const correctness problem in local dataflow

• Issue #7674131 - Add launch policies to async

• Issue #7664132 - Mark data structures for optimized (array based) serialization

4110 https://github.com/STEllAR-GROUP/hpx/issues/788
4111 https://github.com/STEllAR-GROUP/hpx/issues/787
4112 https://github.com/STEllAR-GROUP/hpx/issues/786
4113 https://github.com/STEllAR-GROUP/hpx/issues/785
4114 https://github.com/STEllAR-GROUP/hpx/issues/784
4115 https://github.com/STEllAR-GROUP/hpx/issues/783
4116 https://github.com/STEllAR-GROUP/hpx/issues/782
4117 https://github.com/STEllAR-GROUP/hpx/issues/781
4118 https://github.com/STEllAR-GROUP/hpx/issues/780
4119 https://github.com/STEllAR-GROUP/hpx/issues/779
4120 https://github.com/STEllAR-GROUP/hpx/issues/778
4121 https://github.com/STEllAR-GROUP/hpx/issues/777
4122 https://github.com/STEllAR-GROUP/hpx/issues/776
4123 https://github.com/STEllAR-GROUP/hpx/issues/775
4124 https://github.com/STEllAR-GROUP/hpx/issues/774
4125 https://github.com/STEllAR-GROUP/hpx/issues/773
4126 https://github.com/STEllAR-GROUP/hpx/issues/772
4127 https://github.com/STEllAR-GROUP/hpx/issues/771
4128 https://github.com/STEllAR-GROUP/hpx/issues/770
4129 https://github.com/STEllAR-GROUP/hpx/issues/769
4130 https://github.com/STEllAR-GROUP/hpx/issues/768
4131 https://github.com/STEllAR-GROUP/hpx/issues/767
4132 https://github.com/STEllAR-GROUP/hpx/issues/766

1408 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/788
https://github.com/STEllAR-GROUP/hpx/issues/787
https://github.com/STEllAR-GROUP/hpx/issues/786
https://github.com/STEllAR-GROUP/hpx/issues/785
https://github.com/STEllAR-GROUP/hpx/issues/784
https://github.com/STEllAR-GROUP/hpx/issues/783
https://github.com/STEllAR-GROUP/hpx/issues/782
https://github.com/STEllAR-GROUP/hpx/issues/781
https://github.com/STEllAR-GROUP/hpx/issues/780
https://github.com/STEllAR-GROUP/hpx/issues/779
https://github.com/STEllAR-GROUP/hpx/issues/778
https://github.com/STEllAR-GROUP/hpx/issues/777
https://github.com/STEllAR-GROUP/hpx/issues/776
https://github.com/STEllAR-GROUP/hpx/issues/775
https://github.com/STEllAR-GROUP/hpx/issues/774
https://github.com/STEllAR-GROUP/hpx/issues/773
https://github.com/STEllAR-GROUP/hpx/issues/772
https://github.com/STEllAR-GROUP/hpx/issues/771
https://github.com/STEllAR-GROUP/hpx/issues/770
https://github.com/STEllAR-GROUP/hpx/issues/769
https://github.com/STEllAR-GROUP/hpx/issues/768
https://github.com/STEllAR-GROUP/hpx/issues/767
https://github.com/STEllAR-GROUP/hpx/issues/766

HPX Documentation, 1.5.1

• Issue #7654133 - Align hpx::any with N3508: Any Library Proposal (Revision 2)

• Issue #7644134 - Align hpx::future with newest N3558: A Standardized Representation of Asynchronous Oper-
ations

• Issue #7624135 - added a human readable output for the ping pong example

• Issue #7614136 - Ambiguous typename when constructing derived component

• Issue #7604137 - Simple components can not be derived

• Issue #7594138 - make install doesn’t give a complete install

• Issue #7584139 - Stack overflow when using locking_hook<>

• Issue #7574140 - copy paste error; unsupported function overloading

• Issue #7564141 - GTCX runtime issue in Gordon

• Issue #7554142 - Papi counters don’t work with reset and evaluate API’s

• Issue #7534143 - cmake bugfix and improved component action docs

• Issue #7524144 - hpx simple component docs

• Issue #7504145 - Add hpx::util::any

• Issue #7494146 - Thread phase counter is not reset

• Issue #7484147 - Memory performance counter are not registered

• Issue #7474148 - Create performance counters exposing arithmetic operations

• Issue #7454149 - apply_callback needs to invoke callback when applied locally

• Issue #7444150 - CMake fixes

• Issue #7434151 - Problem Building github version of HPX

• Issue #7424152 - Remove HPX_STD_BIND

• Issue #7414153 - assertion ‘px != 0’ failed: HPX(assertion_failure) for low numbers of OS threads

• Issue #7394154 - Performance counters do not count to the end of the program or evalution

• Issue #7384155 - Dedicated AGAS server runs don’t work; console ignores -a option.

4133 https://github.com/STEllAR-GROUP/hpx/issues/765
4134 https://github.com/STEllAR-GROUP/hpx/issues/764
4135 https://github.com/STEllAR-GROUP/hpx/issues/762
4136 https://github.com/STEllAR-GROUP/hpx/issues/761
4137 https://github.com/STEllAR-GROUP/hpx/issues/760
4138 https://github.com/STEllAR-GROUP/hpx/issues/759
4139 https://github.com/STEllAR-GROUP/hpx/issues/758
4140 https://github.com/STEllAR-GROUP/hpx/issues/757
4141 https://github.com/STEllAR-GROUP/hpx/issues/756
4142 https://github.com/STEllAR-GROUP/hpx/issues/755
4143 https://github.com/STEllAR-GROUP/hpx/issues/753
4144 https://github.com/STEllAR-GROUP/hpx/issues/752
4145 https://github.com/STEllAR-GROUP/hpx/issues/750
4146 https://github.com/STEllAR-GROUP/hpx/issues/749
4147 https://github.com/STEllAR-GROUP/hpx/issues/748
4148 https://github.com/STEllAR-GROUP/hpx/issues/747
4149 https://github.com/STEllAR-GROUP/hpx/issues/745
4150 https://github.com/STEllAR-GROUP/hpx/issues/744
4151 https://github.com/STEllAR-GROUP/hpx/issues/743
4152 https://github.com/STEllAR-GROUP/hpx/issues/742
4153 https://github.com/STEllAR-GROUP/hpx/issues/741
4154 https://github.com/STEllAR-GROUP/hpx/issues/739
4155 https://github.com/STEllAR-GROUP/hpx/issues/738

2.11. Releases 1409

https://github.com/STEllAR-GROUP/hpx/issues/765
https://github.com/STEllAR-GROUP/hpx/issues/764
https://github.com/STEllAR-GROUP/hpx/issues/762
https://github.com/STEllAR-GROUP/hpx/issues/761
https://github.com/STEllAR-GROUP/hpx/issues/760
https://github.com/STEllAR-GROUP/hpx/issues/759
https://github.com/STEllAR-GROUP/hpx/issues/758
https://github.com/STEllAR-GROUP/hpx/issues/757
https://github.com/STEllAR-GROUP/hpx/issues/756
https://github.com/STEllAR-GROUP/hpx/issues/755
https://github.com/STEllAR-GROUP/hpx/issues/753
https://github.com/STEllAR-GROUP/hpx/issues/752
https://github.com/STEllAR-GROUP/hpx/issues/750
https://github.com/STEllAR-GROUP/hpx/issues/749
https://github.com/STEllAR-GROUP/hpx/issues/748
https://github.com/STEllAR-GROUP/hpx/issues/747
https://github.com/STEllAR-GROUP/hpx/issues/745
https://github.com/STEllAR-GROUP/hpx/issues/744
https://github.com/STEllAR-GROUP/hpx/issues/743
https://github.com/STEllAR-GROUP/hpx/issues/742
https://github.com/STEllAR-GROUP/hpx/issues/741
https://github.com/STEllAR-GROUP/hpx/issues/739
https://github.com/STEllAR-GROUP/hpx/issues/738

HPX Documentation, 1.5.1

• Issue #7374156 - Missing bind overloads

• Issue #7364157 - Performance counter wildcards do not always work

• Issue #7354158 - Create native ibverbs parcelport based on rdma operations

• Issue #7344159 - Threads stolen performance counter total is incorrect

• Issue #7334160 - Test benchmarks need to be checked and fixed

• Issue #7324161 - Build fails with Mac, using mac ports clang-3.3 on latest git branch

• Issue #7314162 - Add global start/stop API for performance counters

• Issue #7304163 - Performance counter values are apparently incorrect

• Issue #7294164 - Unhandled switch

• Issue #7284165 - Serialization of hpx::util::function between two localities causes seg faults

• Issue #7274166 - Memory counters on Mac OS X

• Issue #7254167 - Restore original thread priority on resume

• Issue #7244168 - Performance benchmarks do not depend on main HPX libraries

• Issue #7234169 - [teletype]–hpx:nodes=``cat $PBS_NODEFILE`` works; –hpx:nodefile=$PBS_NODEFILE
does not.[c++]

• Issue #7224170 - Fix binding const member functions as actions

• Issue #7194171 - Create performance counter exposing compression ratio

• Issue #7184172 - Add possibility to compress parcel data

• Issue #7174173 - strip_credit_from_gid has misleading semantics

• Issue #7164174 - Non-option arguments to programs run using pbsdsh must be before --hpx:nodes, con-
trary to directions

• Issue #7154175 - Re-thrown exceptions should retain the original call site

• Issue #7144176 - failed assertion in debug mode

• Issue #7134177 - Add performance counters monitoring connection caches

4156 https://github.com/STEllAR-GROUP/hpx/issues/737
4157 https://github.com/STEllAR-GROUP/hpx/issues/736
4158 https://github.com/STEllAR-GROUP/hpx/issues/735
4159 https://github.com/STEllAR-GROUP/hpx/issues/734
4160 https://github.com/STEllAR-GROUP/hpx/issues/733
4161 https://github.com/STEllAR-GROUP/hpx/issues/732
4162 https://github.com/STEllAR-GROUP/hpx/issues/731
4163 https://github.com/STEllAR-GROUP/hpx/issues/730
4164 https://github.com/STEllAR-GROUP/hpx/issues/729
4165 https://github.com/STEllAR-GROUP/hpx/issues/728
4166 https://github.com/STEllAR-GROUP/hpx/issues/727
4167 https://github.com/STEllAR-GROUP/hpx/issues/725
4168 https://github.com/STEllAR-GROUP/hpx/issues/724
4169 https://github.com/STEllAR-GROUP/hpx/issues/723
4170 https://github.com/STEllAR-GROUP/hpx/issues/722
4171 https://github.com/STEllAR-GROUP/hpx/issues/719
4172 https://github.com/STEllAR-GROUP/hpx/issues/718
4173 https://github.com/STEllAR-GROUP/hpx/issues/717
4174 https://github.com/STEllAR-GROUP/hpx/issues/716
4175 https://github.com/STEllAR-GROUP/hpx/issues/715
4176 https://github.com/STEllAR-GROUP/hpx/issues/714
4177 https://github.com/STEllAR-GROUP/hpx/issues/713

1410 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/737
https://github.com/STEllAR-GROUP/hpx/issues/736
https://github.com/STEllAR-GROUP/hpx/issues/735
https://github.com/STEllAR-GROUP/hpx/issues/734
https://github.com/STEllAR-GROUP/hpx/issues/733
https://github.com/STEllAR-GROUP/hpx/issues/732
https://github.com/STEllAR-GROUP/hpx/issues/731
https://github.com/STEllAR-GROUP/hpx/issues/730
https://github.com/STEllAR-GROUP/hpx/issues/729
https://github.com/STEllAR-GROUP/hpx/issues/728
https://github.com/STEllAR-GROUP/hpx/issues/727
https://github.com/STEllAR-GROUP/hpx/issues/725
https://github.com/STEllAR-GROUP/hpx/issues/724
https://github.com/STEllAR-GROUP/hpx/issues/723
https://github.com/STEllAR-GROUP/hpx/issues/722
https://github.com/STEllAR-GROUP/hpx/issues/719
https://github.com/STEllAR-GROUP/hpx/issues/718
https://github.com/STEllAR-GROUP/hpx/issues/717
https://github.com/STEllAR-GROUP/hpx/issues/716
https://github.com/STEllAR-GROUP/hpx/issues/715
https://github.com/STEllAR-GROUP/hpx/issues/714
https://github.com/STEllAR-GROUP/hpx/issues/713

HPX Documentation, 1.5.1

• Issue #7124178 - Adjust parcel related performance counters to be connection type specific

• Issue #7114179 - configuration failure

• Issue #7104180 - Error “timed out while trying to find room in the connection cache” when trying to start multiple
localities on a single computer

• Issue #7094181 - Add new thread state ‘staged’ referring to task descriptions

• Issue #7084182 - Detect/mitigate bad non-system installs of GCC on Redhat systems

• Issue #7074183 - Many examples do not link with Git HEAD version

• Issue #7064184 - hpx::init removes portions of non-option command line arguments before last = sign

• Issue #7054185 - Create rolling average and median aggregating performance counters

• Issue #7044186 - Create performance counter to expose thread queue waiting time

• Issue #7034187 - Add support to HPX build system to find librcrtool.a and related headers

• Issue #6994188 - Generalize instrumentation support

• Issue #6984189 - compilation failure with hwloc absent

• Issue #6974190 - Performance counter counts should be zero indexed

• Issue #6964191 - Distributed problem

• Issue #6954192 - Bad perf counter time printed

• Issue #6934193 - --help doesn’t print component specific command line options

• Issue #6924194 - SLURM support broken

• Issue #6914195 - exception while executing any application linked with hwloc

• Issue #6904196 - thread_id_test and thread_launcher_test failing

• Issue #6894197 - Make the buildbots use hwloc

• Issue #6874198 - compilation error fix (hwloc_topology)

• Issue #6864199 - Linker Error for Applications

• Issue #6844200 - Pinning of service thread fails when number of worker threads equals the number of cores

4178 https://github.com/STEllAR-GROUP/hpx/issues/712
4179 https://github.com/STEllAR-GROUP/hpx/issues/711
4180 https://github.com/STEllAR-GROUP/hpx/issues/710
4181 https://github.com/STEllAR-GROUP/hpx/issues/709
4182 https://github.com/STEllAR-GROUP/hpx/issues/708
4183 https://github.com/STEllAR-GROUP/hpx/issues/707
4184 https://github.com/STEllAR-GROUP/hpx/issues/706
4185 https://github.com/STEllAR-GROUP/hpx/issues/705
4186 https://github.com/STEllAR-GROUP/hpx/issues/704
4187 https://github.com/STEllAR-GROUP/hpx/issues/703
4188 https://github.com/STEllAR-GROUP/hpx/issues/699
4189 https://github.com/STEllAR-GROUP/hpx/issues/698
4190 https://github.com/STEllAR-GROUP/hpx/issues/697
4191 https://github.com/STEllAR-GROUP/hpx/issues/696
4192 https://github.com/STEllAR-GROUP/hpx/issues/695
4193 https://github.com/STEllAR-GROUP/hpx/issues/693
4194 https://github.com/STEllAR-GROUP/hpx/issues/692
4195 https://github.com/STEllAR-GROUP/hpx/issues/691
4196 https://github.com/STEllAR-GROUP/hpx/issues/690
4197 https://github.com/STEllAR-GROUP/hpx/issues/689
4198 https://github.com/STEllAR-GROUP/hpx/issues/687
4199 https://github.com/STEllAR-GROUP/hpx/issues/686
4200 https://github.com/STEllAR-GROUP/hpx/issues/684

2.11. Releases 1411

https://github.com/STEllAR-GROUP/hpx/issues/712
https://github.com/STEllAR-GROUP/hpx/issues/711
https://github.com/STEllAR-GROUP/hpx/issues/710
https://github.com/STEllAR-GROUP/hpx/issues/709
https://github.com/STEllAR-GROUP/hpx/issues/708
https://github.com/STEllAR-GROUP/hpx/issues/707
https://github.com/STEllAR-GROUP/hpx/issues/706
https://github.com/STEllAR-GROUP/hpx/issues/705
https://github.com/STEllAR-GROUP/hpx/issues/704
https://github.com/STEllAR-GROUP/hpx/issues/703
https://github.com/STEllAR-GROUP/hpx/issues/699
https://github.com/STEllAR-GROUP/hpx/issues/698
https://github.com/STEllAR-GROUP/hpx/issues/697
https://github.com/STEllAR-GROUP/hpx/issues/696
https://github.com/STEllAR-GROUP/hpx/issues/695
https://github.com/STEllAR-GROUP/hpx/issues/693
https://github.com/STEllAR-GROUP/hpx/issues/692
https://github.com/STEllAR-GROUP/hpx/issues/691
https://github.com/STEllAR-GROUP/hpx/issues/690
https://github.com/STEllAR-GROUP/hpx/issues/689
https://github.com/STEllAR-GROUP/hpx/issues/687
https://github.com/STEllAR-GROUP/hpx/issues/686
https://github.com/STEllAR-GROUP/hpx/issues/684

HPX Documentation, 1.5.1

• Issue #6824201 - Add performance counters exposing number of stolen threads

• Issue #6814202 - Add apply_continue for asynchronous chaining of actions

• Issue #6794203 - Remove obsolete async_callback API functions

• Issue #6784204 - Add new API for setting/triggering LCOs

• Issue #6774205 - Add async_continue for true continuation style actions

• Issue #6764206 - Buildbot for gcc 4.4 broken

• Issue #6754207 - Partial preprocessing broken

• Issue #6744208 - HPX segfaults when built with gcc 4.7

• Issue #6734209 - use_guard_pages has inconsistent preprocessor guards

• Issue #6724210 - External build breaks if library path has spaces

• Issue #6714211 - release tarballs are tarbombs

• Issue #6704212 - CMake won’t find Boost headers in layout=versioned install

• Issue #6694213 - Links in docs to source files broken if not installed

• Issue #6674214 - Not reading ini file properly

• Issue #6644215 - Adapt new meanings of ‘const’ and ‘mutable’

• Issue #6614216 - Implement BTL Parcel port

• Issue #6554217 - Make HPX work with the “decltype” result_of

• Issue #6474218 - documentation for specifying the number of high priority threads
--hpx:high-priority-threads

• Issue #6434219 - Error parsing host file

• Issue #6424220 - HWLoc issue with TAU

• Issue #6394221 - Logging potentially suspends a running thread

• Issue #6344222 - Improve error reporting from parcel layer

• Issue #6274223 - Add tests for async and apply overloads that accept regular C++ functions

4201 https://github.com/STEllAR-GROUP/hpx/issues/682
4202 https://github.com/STEllAR-GROUP/hpx/issues/681
4203 https://github.com/STEllAR-GROUP/hpx/issues/679
4204 https://github.com/STEllAR-GROUP/hpx/issues/678
4205 https://github.com/STEllAR-GROUP/hpx/issues/677
4206 https://github.com/STEllAR-GROUP/hpx/issues/676
4207 https://github.com/STEllAR-GROUP/hpx/issues/675
4208 https://github.com/STEllAR-GROUP/hpx/issues/674
4209 https://github.com/STEllAR-GROUP/hpx/issues/673
4210 https://github.com/STEllAR-GROUP/hpx/issues/672
4211 https://github.com/STEllAR-GROUP/hpx/issues/671
4212 https://github.com/STEllAR-GROUP/hpx/issues/670
4213 https://github.com/STEllAR-GROUP/hpx/issues/669
4214 https://github.com/STEllAR-GROUP/hpx/issues/667
4215 https://github.com/STEllAR-GROUP/hpx/issues/664
4216 https://github.com/STEllAR-GROUP/hpx/issues/661
4217 https://github.com/STEllAR-GROUP/hpx/issues/655
4218 https://github.com/STEllAR-GROUP/hpx/issues/647
4219 https://github.com/STEllAR-GROUP/hpx/issues/643
4220 https://github.com/STEllAR-GROUP/hpx/issues/642
4221 https://github.com/STEllAR-GROUP/hpx/issues/639
4222 https://github.com/STEllAR-GROUP/hpx/issues/634
4223 https://github.com/STEllAR-GROUP/hpx/issues/627

1412 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/682
https://github.com/STEllAR-GROUP/hpx/issues/681
https://github.com/STEllAR-GROUP/hpx/issues/679
https://github.com/STEllAR-GROUP/hpx/issues/678
https://github.com/STEllAR-GROUP/hpx/issues/677
https://github.com/STEllAR-GROUP/hpx/issues/676
https://github.com/STEllAR-GROUP/hpx/issues/675
https://github.com/STEllAR-GROUP/hpx/issues/674
https://github.com/STEllAR-GROUP/hpx/issues/673
https://github.com/STEllAR-GROUP/hpx/issues/672
https://github.com/STEllAR-GROUP/hpx/issues/671
https://github.com/STEllAR-GROUP/hpx/issues/670
https://github.com/STEllAR-GROUP/hpx/issues/669
https://github.com/STEllAR-GROUP/hpx/issues/667
https://github.com/STEllAR-GROUP/hpx/issues/664
https://github.com/STEllAR-GROUP/hpx/issues/661
https://github.com/STEllAR-GROUP/hpx/issues/655
https://github.com/STEllAR-GROUP/hpx/issues/647
https://github.com/STEllAR-GROUP/hpx/issues/643
https://github.com/STEllAR-GROUP/hpx/issues/642
https://github.com/STEllAR-GROUP/hpx/issues/639
https://github.com/STEllAR-GROUP/hpx/issues/634
https://github.com/STEllAR-GROUP/hpx/issues/627

HPX Documentation, 1.5.1

• Issue #6264224 - hpx/future.hpp header

• Issue #6014225 - Intel support

• Issue #5574226 - Remove action codes

• Issue #5314227 - AGAS request and response classes should use switch statements

• Issue #5294228 - Investigate the state of hwloc support

• Issue #5264229 - Make HPX aware of hyper-threading

• Issue #5184230 - Create facilities allowing to use plain arrays as action arguments

• Issue #4734231 - hwloc thread binding is broken on CPUs with hyperthreading

• Issue #3834232 - Change result type detection for hpx::util::bind to use result_of protocol

• Issue #3414233 - Consolidate route code

• Issue #2194234 - Only copy arguments into actions once

• Issue #1774235 - Implement distributed AGAS

• Issue #434236 - Support for Darwin (Xcode + Clang)

2.11.17 HPX V0.9.5 (Jan 16, 2013)

We have had over 1000 commits since the last release and we have closed roughly 150 tickets (bugs, feature requests,
etc.).

General changes

This release is continuing along the lines of code and API consolidation, and overall usability inprovements. We
dedicated much attention to performance and we were able to significantly improve the threading and networking
subsystems.

We successfully ported HPX to the Android platform. HPX applications now not only can run on mobile devices, but
we support heterogeneous applications running across architecture boundaries. At the Supercomputing Conference
2012 we demonstrated connecting Android tablets to simulations running on a Linux cluster. The Android tablet was
used to query performance counters from the Linux simulation and to steer its parameters.

We successfully ported HPX to Mac OSX (using the Clang compiler). Thanks to Pyry Jahkola for contributing the
corresponding patches. Please see the section How to install HPX on OS X (Mac) for more details.

We made a special effort to make HPX usable in highly concurrent use cases. Many of the HPX API functions
which possibly take longer than 100 microseconds to execute now can be invoked asynchronously. We added uniform

4224 https://github.com/STEllAR-GROUP/hpx/issues/626
4225 https://github.com/STEllAR-GROUP/hpx/issues/601
4226 https://github.com/STEllAR-GROUP/hpx/issues/557
4227 https://github.com/STEllAR-GROUP/hpx/issues/531
4228 https://github.com/STEllAR-GROUP/hpx/issues/529
4229 https://github.com/STEllAR-GROUP/hpx/issues/526
4230 https://github.com/STEllAR-GROUP/hpx/issues/518
4231 https://github.com/STEllAR-GROUP/hpx/issues/473
4232 https://github.com/STEllAR-GROUP/hpx/issues/383
4233 https://github.com/STEllAR-GROUP/hpx/issues/341
4234 https://github.com/STEllAR-GROUP/hpx/issues/219
4235 https://github.com/STEllAR-GROUP/hpx/issues/177
4236 https://github.com/STEllAR-GROUP/hpx/issues/43

2.11. Releases 1413

https://github.com/STEllAR-GROUP/hpx/issues/626
https://github.com/STEllAR-GROUP/hpx/issues/601
https://github.com/STEllAR-GROUP/hpx/issues/557
https://github.com/STEllAR-GROUP/hpx/issues/531
https://github.com/STEllAR-GROUP/hpx/issues/529
https://github.com/STEllAR-GROUP/hpx/issues/526
https://github.com/STEllAR-GROUP/hpx/issues/518
https://github.com/STEllAR-GROUP/hpx/issues/473
https://github.com/STEllAR-GROUP/hpx/issues/383
https://github.com/STEllAR-GROUP/hpx/issues/341
https://github.com/STEllAR-GROUP/hpx/issues/219
https://github.com/STEllAR-GROUP/hpx/issues/177
https://github.com/STEllAR-GROUP/hpx/issues/43

HPX Documentation, 1.5.1

support for composing futures which simplifies to write asynchronous code. HPX actions (function objects encapsu-
lating possibly concurrent remote function invocations) are now well integrated with all other API facilities such like
hpx::bind.

All of the API has been aligned as much as possible with established paradigms. HPX now mirrors many of the
facilities as defined in the C++11 Standard, such as hpx::thread, hpx::function, hpx::future, etc.

A lot of work has been put into improving the documentation. Many of the API functions are documented now,
concepts are explained in detail, and examples are better described than before. The new documentation index enables
finding information with lesser effort.

This is the first release of HPX we perform after the move to Github4237 This step has enabled a wider participation
from the community and further encourages us in our decision to release HPX as a true open source library (HPX is
licensed under the very liberal Boost Software License4238).

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release. This is by far the longest list of newly implemented
features and fixed issues for any of HPX’ releases so far.

• Issue #6664239 - Segfault on calling hpx::finalize twice

• Issue #6654240 - Adding declaration num_of_cores

• Issue #6624241 - pkgconfig is building wrong

• Issue #6604242 - Need uninterrupt function

• Issue #6594243 - Move our logging library into a different namespace

• Issue #6584244 - Dynamic performance counter types are broken

• Issue #6574245 - HPX v0.9.5 (RC1) hello_world example segfaulting

• Issue #6564246 - Define the affinity of parcel-pool, io-pool, and timer-pool threads

• Issue #6544247 - Integrate the Boost auto_index tool with documentation

• Issue #6534248 - Make HPX build on OS X + Clang + libc++

• Issue #6514249 - Add fine-grained control for thread pinning

• Issue #6504250 - Command line no error message when using -hpx:(anything)

• Issue #6454251 - Command line aliases don’t work in [teletype]``@file``[c++]

• Issue #6444252 - Terminated threads are not always properly cleaned up

4237 https://github.com/STEllAR-GROUP/hpx/
4238 https://www.boost.org/LICENSE_1_0.txt
4239 https://github.com/STEllAR-GROUP/hpx/issues/666
4240 https://github.com/STEllAR-GROUP/hpx/issues/665
4241 https://github.com/STEllAR-GROUP/hpx/issues/662
4242 https://github.com/STEllAR-GROUP/hpx/issues/660
4243 https://github.com/STEllAR-GROUP/hpx/issues/659
4244 https://github.com/STEllAR-GROUP/hpx/issues/658
4245 https://github.com/STEllAR-GROUP/hpx/issues/657
4246 https://github.com/STEllAR-GROUP/hpx/issues/656
4247 https://github.com/STEllAR-GROUP/hpx/issues/654
4248 https://github.com/STEllAR-GROUP/hpx/issues/653
4249 https://github.com/STEllAR-GROUP/hpx/issues/651
4250 https://github.com/STEllAR-GROUP/hpx/issues/650
4251 https://github.com/STEllAR-GROUP/hpx/issues/645
4252 https://github.com/STEllAR-GROUP/hpx/issues/644

1414 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/
https://www.boost.org/LICENSE_1_0.txt
https://github.com/STEllAR-GROUP/hpx/issues/666
https://github.com/STEllAR-GROUP/hpx/issues/665
https://github.com/STEllAR-GROUP/hpx/issues/662
https://github.com/STEllAR-GROUP/hpx/issues/660
https://github.com/STEllAR-GROUP/hpx/issues/659
https://github.com/STEllAR-GROUP/hpx/issues/658
https://github.com/STEllAR-GROUP/hpx/issues/657
https://github.com/STEllAR-GROUP/hpx/issues/656
https://github.com/STEllAR-GROUP/hpx/issues/654
https://github.com/STEllAR-GROUP/hpx/issues/653
https://github.com/STEllAR-GROUP/hpx/issues/651
https://github.com/STEllAR-GROUP/hpx/issues/650
https://github.com/STEllAR-GROUP/hpx/issues/645
https://github.com/STEllAR-GROUP/hpx/issues/644

HPX Documentation, 1.5.1

• Issue #6404253 - future_data<T>::set_on_completed_ used without locks

• Issue #6384254 - hpx build with intel compilers fails on linux

• Issue #6374255 - –copy-dt-needed-entries breaks with gold

• Issue #6354256 - Boost V1.53 will add Boost.Lockfree and Boost.Atomic

• Issue #6334257 - Re-add examples to final 0.9.5 release

• Issue #6324258 - Example thread_aware_timer is broken

• Issue #6314259 - FFT application throws error in parcellayer

• Issue #6304260 - Event synchronization example is broken

• Issue #6294261 - Waiting on futures hangs

• Issue #6284262 - Add an HPX_ALWAYS_ASSERT macro

• Issue #6254263 - Port coroutines context switch benchmark

• Issue #6214264 - New INI section for stack sizes

• Issue #6184265 - pkg_config support does not work with a HPX debug build

• Issue #6174266 - hpx/external/logging/boost/logging/detail/cache_before_init.hpp:139:67: error:
‘get_thread_id’ was not declared in this scope

• Issue #6164267 - Change wait_xxx not to use locking

• Issue #6154268 - Revert visibility ‘fix’ (fb0b6b8245dad1127b0c25ebafd9386b3945cca9)

• Issue #6144269 - Fix Dataflow linker error

• Issue #6134270 - find_here should throw an exception on failure

• Issue #6124271 - Thread phase doesn’t show up in debug mode

• Issue #6114272 - Make stack guard pages configurable at runtime (initialization time)

• Issue #6104273 - Co-Locate Components

• Issue #6094274 - future_overhead

• Issue #6084275 - --hpx:list-counter-infos problem

4253 https://github.com/STEllAR-GROUP/hpx/issues/640
4254 https://github.com/STEllAR-GROUP/hpx/issues/638
4255 https://github.com/STEllAR-GROUP/hpx/issues/637
4256 https://github.com/STEllAR-GROUP/hpx/issues/635
4257 https://github.com/STEllAR-GROUP/hpx/issues/633
4258 https://github.com/STEllAR-GROUP/hpx/issues/632
4259 https://github.com/STEllAR-GROUP/hpx/issues/631
4260 https://github.com/STEllAR-GROUP/hpx/issues/630
4261 https://github.com/STEllAR-GROUP/hpx/issues/629
4262 https://github.com/STEllAR-GROUP/hpx/issues/628
4263 https://github.com/STEllAR-GROUP/hpx/issues/625
4264 https://github.com/STEllAR-GROUP/hpx/issues/621
4265 https://github.com/STEllAR-GROUP/hpx/issues/618
4266 https://github.com/STEllAR-GROUP/hpx/issues/617
4267 https://github.com/STEllAR-GROUP/hpx/issues/616
4268 https://github.com/STEllAR-GROUP/hpx/issues/615
4269 https://github.com/STEllAR-GROUP/hpx/issues/614
4270 https://github.com/STEllAR-GROUP/hpx/issues/613
4271 https://github.com/STEllAR-GROUP/hpx/issues/612
4272 https://github.com/STEllAR-GROUP/hpx/issues/611
4273 https://github.com/STEllAR-GROUP/hpx/issues/610
4274 https://github.com/STEllAR-GROUP/hpx/issues/609
4275 https://github.com/STEllAR-GROUP/hpx/issues/608

2.11. Releases 1415

https://github.com/STEllAR-GROUP/hpx/issues/640
https://github.com/STEllAR-GROUP/hpx/issues/638
https://github.com/STEllAR-GROUP/hpx/issues/637
https://github.com/STEllAR-GROUP/hpx/issues/635
https://github.com/STEllAR-GROUP/hpx/issues/633
https://github.com/STEllAR-GROUP/hpx/issues/632
https://github.com/STEllAR-GROUP/hpx/issues/631
https://github.com/STEllAR-GROUP/hpx/issues/630
https://github.com/STEllAR-GROUP/hpx/issues/629
https://github.com/STEllAR-GROUP/hpx/issues/628
https://github.com/STEllAR-GROUP/hpx/issues/625
https://github.com/STEllAR-GROUP/hpx/issues/621
https://github.com/STEllAR-GROUP/hpx/issues/618
https://github.com/STEllAR-GROUP/hpx/issues/617
https://github.com/STEllAR-GROUP/hpx/issues/616
https://github.com/STEllAR-GROUP/hpx/issues/615
https://github.com/STEllAR-GROUP/hpx/issues/614
https://github.com/STEllAR-GROUP/hpx/issues/613
https://github.com/STEllAR-GROUP/hpx/issues/612
https://github.com/STEllAR-GROUP/hpx/issues/611
https://github.com/STEllAR-GROUP/hpx/issues/610
https://github.com/STEllAR-GROUP/hpx/issues/609
https://github.com/STEllAR-GROUP/hpx/issues/608

HPX Documentation, 1.5.1

• Issue #6074276 - Update Boost.Context based backend for coroutines

• Issue #6064277 - 1d_wave_equation is not working

• Issue #6054278 - Any C++ function that has serializable arguments and a serializable return type should be
remotable

• Issue #6044279 - Connecting localities isn’t working anymore

• Issue #6034280 - Do not verify any ini entries read from a file

• Issue #6024281 - Rename argument_size to type_size/ added implementation to get parcel size

• Issue #5994282 - Enable locality specific command line options

• Issue #5984283 - Need an API that accesses the performance counter reporting the system uptime

• Issue #5974284 - compiling on ranger

• Issue #5954285 - I need a place to store data in a thread self pointer

• Issue #5944286 - 32/64 interoperability

• Issue #5934287 - Warn if logging is disabled at compile time but requested at runtime

• Issue #5924288 - Add optional argument value to --hpx:list-counters and
--hpx:list-counter-infos

• Issue #5914289 - Allow for wildcards in performance counter names specified with --hpx:print-counter

• Issue #5904290 - Local promise semantic differences

• Issue #5894291 - Create API to query performance counter names

• Issue #5874292 - Add get_num_localities and get_num_threads to AGAS API

• Issue #5864293 - Adjust local AGAS cache size based on number of localities

• Issue #5854294 - Error while using counters in HPX

• Issue #5844295 - counting argument size of actions, initial pass.

• Issue #5814296 - Remove RemoteResult template parameter for future<>

• Issue #5804297 - Add possibility to hook into actions

4276 https://github.com/STEllAR-GROUP/hpx/issues/607
4277 https://github.com/STEllAR-GROUP/hpx/issues/606
4278 https://github.com/STEllAR-GROUP/hpx/issues/605
4279 https://github.com/STEllAR-GROUP/hpx/issues/604
4280 https://github.com/STEllAR-GROUP/hpx/issues/603
4281 https://github.com/STEllAR-GROUP/hpx/issues/602
4282 https://github.com/STEllAR-GROUP/hpx/issues/599
4283 https://github.com/STEllAR-GROUP/hpx/issues/598
4284 https://github.com/STEllAR-GROUP/hpx/issues/597
4285 https://github.com/STEllAR-GROUP/hpx/issues/595
4286 https://github.com/STEllAR-GROUP/hpx/issues/594
4287 https://github.com/STEllAR-GROUP/hpx/issues/593
4288 https://github.com/STEllAR-GROUP/hpx/issues/592
4289 https://github.com/STEllAR-GROUP/hpx/issues/591
4290 https://github.com/STEllAR-GROUP/hpx/issues/590
4291 https://github.com/STEllAR-GROUP/hpx/issues/589
4292 https://github.com/STEllAR-GROUP/hpx/issues/587
4293 https://github.com/STEllAR-GROUP/hpx/issues/586
4294 https://github.com/STEllAR-GROUP/hpx/issues/585
4295 https://github.com/STEllAR-GROUP/hpx/issues/584
4296 https://github.com/STEllAR-GROUP/hpx/issues/581
4297 https://github.com/STEllAR-GROUP/hpx/issues/580

1416 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/607
https://github.com/STEllAR-GROUP/hpx/issues/606
https://github.com/STEllAR-GROUP/hpx/issues/605
https://github.com/STEllAR-GROUP/hpx/issues/604
https://github.com/STEllAR-GROUP/hpx/issues/603
https://github.com/STEllAR-GROUP/hpx/issues/602
https://github.com/STEllAR-GROUP/hpx/issues/599
https://github.com/STEllAR-GROUP/hpx/issues/598
https://github.com/STEllAR-GROUP/hpx/issues/597
https://github.com/STEllAR-GROUP/hpx/issues/595
https://github.com/STEllAR-GROUP/hpx/issues/594
https://github.com/STEllAR-GROUP/hpx/issues/593
https://github.com/STEllAR-GROUP/hpx/issues/592
https://github.com/STEllAR-GROUP/hpx/issues/591
https://github.com/STEllAR-GROUP/hpx/issues/590
https://github.com/STEllAR-GROUP/hpx/issues/589
https://github.com/STEllAR-GROUP/hpx/issues/587
https://github.com/STEllAR-GROUP/hpx/issues/586
https://github.com/STEllAR-GROUP/hpx/issues/585
https://github.com/STEllAR-GROUP/hpx/issues/584
https://github.com/STEllAR-GROUP/hpx/issues/581
https://github.com/STEllAR-GROUP/hpx/issues/580

HPX Documentation, 1.5.1

• Issue #5784298 - Use angle brackets in HPX error dumps

• Issue #5764299 - Exception incorrectly thrown when --help is used

• Issue #5754300 - HPX(bad_component_type) with gcc 4.7.2 and boost 1.51

• Issue #5744301 - --hpx:connect command line parameter not working correctly

• Issue #5714302 - hpx::wait() (callback version) should pass the future to the callback function

• Issue #5704303 - hpx::wait should operate on boost::arrays and std::lists

• Issue #5694304 - Add a logging sink for Android

• Issue #5684305 - 2-argument version of HPX_DEFINE_COMPONENT_ACTION

• Issue #5674306 - Connecting to a running HPX application works only once

• Issue #5654307 - HPX doesn’t shutdown properly

• Issue #5644308 - Partial preprocessing of new component creation interface

• Issue #5634309 - Add hpx::start/hpx::stop to avoid blocking main thread

• Issue #5624310 - All command line arguments swallowed by hpx

• Issue #5614311 - Boost.Tuple is not move aware

• Issue #5584312 - boost::shared_ptr<> style semantics/syntax for client classes

• Issue #5564313 - Creation of partially preprocessed headers should be enabled for Boost newer than V1.50

• Issue #5554314 - BOOST_FORCEINLINE does not name a type

• Issue #5544315 - Possible race condition in thread get_id()

• Issue #5524316 - Move enable client_base

• Issue #5504317 - Add stack size category ‘huge’

• Issue #5494318 - ShenEOS run seg-faults on single or distributed runs

• Issue #5454319 - AUTOGLOB broken for add_hpx_component

• Issue #5424320 - FindHPX_HDF5 still searches multiple times

4298 https://github.com/STEllAR-GROUP/hpx/issues/578
4299 https://github.com/STEllAR-GROUP/hpx/issues/576
4300 https://github.com/STEllAR-GROUP/hpx/issues/575
4301 https://github.com/STEllAR-GROUP/hpx/issues/574
4302 https://github.com/STEllAR-GROUP/hpx/issues/571
4303 https://github.com/STEllAR-GROUP/hpx/issues/570
4304 https://github.com/STEllAR-GROUP/hpx/issues/569
4305 https://github.com/STEllAR-GROUP/hpx/issues/568
4306 https://github.com/STEllAR-GROUP/hpx/issues/567
4307 https://github.com/STEllAR-GROUP/hpx/issues/565
4308 https://github.com/STEllAR-GROUP/hpx/issues/564
4309 https://github.com/STEllAR-GROUP/hpx/issues/563
4310 https://github.com/STEllAR-GROUP/hpx/issues/562
4311 https://github.com/STEllAR-GROUP/hpx/issues/561
4312 https://github.com/STEllAR-GROUP/hpx/issues/558
4313 https://github.com/STEllAR-GROUP/hpx/issues/556
4314 https://github.com/STEllAR-GROUP/hpx/issues/555
4315 https://github.com/STEllAR-GROUP/hpx/issues/554
4316 https://github.com/STEllAR-GROUP/hpx/issues/552
4317 https://github.com/STEllAR-GROUP/hpx/issues/550
4318 https://github.com/STEllAR-GROUP/hpx/issues/549
4319 https://github.com/STEllAR-GROUP/hpx/issues/545
4320 https://github.com/STEllAR-GROUP/hpx/issues/542

2.11. Releases 1417

https://github.com/STEllAR-GROUP/hpx/issues/578
https://github.com/STEllAR-GROUP/hpx/issues/576
https://github.com/STEllAR-GROUP/hpx/issues/575
https://github.com/STEllAR-GROUP/hpx/issues/574
https://github.com/STEllAR-GROUP/hpx/issues/571
https://github.com/STEllAR-GROUP/hpx/issues/570
https://github.com/STEllAR-GROUP/hpx/issues/569
https://github.com/STEllAR-GROUP/hpx/issues/568
https://github.com/STEllAR-GROUP/hpx/issues/567
https://github.com/STEllAR-GROUP/hpx/issues/565
https://github.com/STEllAR-GROUP/hpx/issues/564
https://github.com/STEllAR-GROUP/hpx/issues/563
https://github.com/STEllAR-GROUP/hpx/issues/562
https://github.com/STEllAR-GROUP/hpx/issues/561
https://github.com/STEllAR-GROUP/hpx/issues/558
https://github.com/STEllAR-GROUP/hpx/issues/556
https://github.com/STEllAR-GROUP/hpx/issues/555
https://github.com/STEllAR-GROUP/hpx/issues/554
https://github.com/STEllAR-GROUP/hpx/issues/552
https://github.com/STEllAR-GROUP/hpx/issues/550
https://github.com/STEllAR-GROUP/hpx/issues/549
https://github.com/STEllAR-GROUP/hpx/issues/545
https://github.com/STEllAR-GROUP/hpx/issues/542

HPX Documentation, 1.5.1

• Issue #5414321 - Quotes around application name in hpx::init

• Issue #5394322 - Race conditition occurring with new lightweight threads

• Issue #5354323 - hpx_run_tests.py exits with no error code when tests are missing

• Issue #5304324 - Thread description(<unknown>) in logs

• Issue #5234325 - Make thread objects more lightweight

• Issue #5214326 - hpx::error_code is not usable for lightweight error handling

• Issue #5204327 - Add full user environment to HPX logs

• Issue #5194328 - Build succeeds, running fails

• Issue #5174329 - Add a guard page to linux coroutine stacks

• Issue #5164330 - hpx::thread::detach suspends while holding locks, leads to hang in debug

• Issue #5144331 - Preprocessed headers for <hpx/apply.hpp> don’t compile

• Issue #5134332 - Buildbot configuration problem

• Issue #5124333 - Implement action based stack size customization

• Issue #5114334 - Move action priority into a separate type trait

• Issue #5104335 - trunk broken

• Issue #5074336 - no matching function for call to boost::scoped_ptr<hpx::threads::topology>::scoped_ptr(hpx::threads::linux_topology*)

• Issue #5054337 - undefined_symbol regression test currently failing

• Issue #5024338 - Adding OpenCL and OCLM support to HPX for Windows and Linux

• Issue #5014339 - find_package(HPX) sets cmake output variables

• Issue #5004340 - wait_any/wait_all are badly named

• Issue #4994341 - Add support for disabling pbs support in pbs runs

• Issue #4984342 - Error during no-cache runs

• Issue #4964343 - Add partial preprocessing support to cmake

4321 https://github.com/STEllAR-GROUP/hpx/issues/541
4322 https://github.com/STEllAR-GROUP/hpx/issues/539
4323 https://github.com/STEllAR-GROUP/hpx/issues/535
4324 https://github.com/STEllAR-GROUP/hpx/issues/530
4325 https://github.com/STEllAR-GROUP/hpx/issues/523
4326 https://github.com/STEllAR-GROUP/hpx/issues/521
4327 https://github.com/STEllAR-GROUP/hpx/issues/520
4328 https://github.com/STEllAR-GROUP/hpx/issues/519
4329 https://github.com/STEllAR-GROUP/hpx/issues/517
4330 https://github.com/STEllAR-GROUP/hpx/issues/516
4331 https://github.com/STEllAR-GROUP/hpx/issues/514
4332 https://github.com/STEllAR-GROUP/hpx/issues/513
4333 https://github.com/STEllAR-GROUP/hpx/issues/512
4334 https://github.com/STEllAR-GROUP/hpx/issues/511
4335 https://github.com/STEllAR-GROUP/hpx/issues/510
4336 https://github.com/STEllAR-GROUP/hpx/issues/507
4337 https://github.com/STEllAR-GROUP/hpx/issues/505
4338 https://github.com/STEllAR-GROUP/hpx/issues/502
4339 https://github.com/STEllAR-GROUP/hpx/issues/501
4340 https://github.com/STEllAR-GROUP/hpx/issues/500
4341 https://github.com/STEllAR-GROUP/hpx/issues/499
4342 https://github.com/STEllAR-GROUP/hpx/issues/498
4343 https://github.com/STEllAR-GROUP/hpx/issues/496

1418 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/541
https://github.com/STEllAR-GROUP/hpx/issues/539
https://github.com/STEllAR-GROUP/hpx/issues/535
https://github.com/STEllAR-GROUP/hpx/issues/530
https://github.com/STEllAR-GROUP/hpx/issues/523
https://github.com/STEllAR-GROUP/hpx/issues/521
https://github.com/STEllAR-GROUP/hpx/issues/520
https://github.com/STEllAR-GROUP/hpx/issues/519
https://github.com/STEllAR-GROUP/hpx/issues/517
https://github.com/STEllAR-GROUP/hpx/issues/516
https://github.com/STEllAR-GROUP/hpx/issues/514
https://github.com/STEllAR-GROUP/hpx/issues/513
https://github.com/STEllAR-GROUP/hpx/issues/512
https://github.com/STEllAR-GROUP/hpx/issues/511
https://github.com/STEllAR-GROUP/hpx/issues/510
https://github.com/STEllAR-GROUP/hpx/issues/507
https://github.com/STEllAR-GROUP/hpx/issues/505
https://github.com/STEllAR-GROUP/hpx/issues/502
https://github.com/STEllAR-GROUP/hpx/issues/501
https://github.com/STEllAR-GROUP/hpx/issues/500
https://github.com/STEllAR-GROUP/hpx/issues/499
https://github.com/STEllAR-GROUP/hpx/issues/498
https://github.com/STEllAR-GROUP/hpx/issues/496

HPX Documentation, 1.5.1

• Issue #4954344 - Support HPX modules exporting startup/shutdown functions only

• Issue #4944345 - Allow modules to specify when to run startup/shutdown functions

• Issue #4934346 - Avoid constructing a string in make_success_code

• Issue #4924347 - Performance counter creation is no longer synchronized at startup

• Issue #4914348 - Performance counter creation is no longer synchronized at startup

• Issue #4904349 - Sheneos on_completed_bulk seg fault in distributed

• Issue #4894350 - compiling issue with g++44

• Issue #4884351 - Adding OpenCL and OCLM support to HPX for the MSVC platform

• Issue #4874352 - FindHPX.cmake problems

• Issue #4854353 - Change distributing_factory and binpacking_factory to use bulk creation

• Issue #4844354 - Change HPX_DONT_USE_PREPROCESSED_FILES to
HPX_USE_PREPROCESSED_FILES

• Issue #4834355 - Memory counter for Windows

• Issue #4794356 - strange errors appear when requesting performance counters on multiple nodes

• Issue #4774357 - Create (global) timer for multi-threaded measurements

• Issue #4724358 - Add partial preprocessing using Wave

• Issue #4714359 - Segfault stack traces don’t show up in release

• Issue #4684360 - External projects need to link with internal components

• Issue #4624361 - Startup/shutdown functions are called more than once

• Issue #4584362 - Consolidate hpx::util::high_resolution_timer and hpx::util::high_resolution_clock

• Issue #4574363 - index out of bounds in allgather_and_gate on 4 cores or more

• Issue #4484364 - Make HPX compile with clang

• Issue #4474365 - ‘make tests’ should execute tests on local installation

• Issue #4464366 - Remove SVN-related code from the codebase
4344 https://github.com/STEllAR-GROUP/hpx/issues/495
4345 https://github.com/STEllAR-GROUP/hpx/issues/494
4346 https://github.com/STEllAR-GROUP/hpx/issues/493
4347 https://github.com/STEllAR-GROUP/hpx/issues/492
4348 https://github.com/STEllAR-GROUP/hpx/issues/491
4349 https://github.com/STEllAR-GROUP/hpx/issues/490
4350 https://github.com/STEllAR-GROUP/hpx/issues/489
4351 https://github.com/STEllAR-GROUP/hpx/issues/488
4352 https://github.com/STEllAR-GROUP/hpx/issues/487
4353 https://github.com/STEllAR-GROUP/hpx/issues/485
4354 https://github.com/STEllAR-GROUP/hpx/issues/484
4355 https://github.com/STEllAR-GROUP/hpx/issues/483
4356 https://github.com/STEllAR-GROUP/hpx/issues/479
4357 https://github.com/STEllAR-GROUP/hpx/issues/477
4358 https://github.com/STEllAR-GROUP/hpx/issues/472
4359 https://github.com/STEllAR-GROUP/hpx/issues/471
4360 https://github.com/STEllAR-GROUP/hpx/issues/468
4361 https://github.com/STEllAR-GROUP/hpx/issues/462
4362 https://github.com/STEllAR-GROUP/hpx/issues/458
4363 https://github.com/STEllAR-GROUP/hpx/issues/457
4364 https://github.com/STEllAR-GROUP/hpx/issues/448
4365 https://github.com/STEllAR-GROUP/hpx/issues/447
4366 https://github.com/STEllAR-GROUP/hpx/issues/446

2.11. Releases 1419

https://github.com/STEllAR-GROUP/hpx/issues/495
https://github.com/STEllAR-GROUP/hpx/issues/494
https://github.com/STEllAR-GROUP/hpx/issues/493
https://github.com/STEllAR-GROUP/hpx/issues/492
https://github.com/STEllAR-GROUP/hpx/issues/491
https://github.com/STEllAR-GROUP/hpx/issues/490
https://github.com/STEllAR-GROUP/hpx/issues/489
https://github.com/STEllAR-GROUP/hpx/issues/488
https://github.com/STEllAR-GROUP/hpx/issues/487
https://github.com/STEllAR-GROUP/hpx/issues/485
https://github.com/STEllAR-GROUP/hpx/issues/484
https://github.com/STEllAR-GROUP/hpx/issues/483
https://github.com/STEllAR-GROUP/hpx/issues/479
https://github.com/STEllAR-GROUP/hpx/issues/477
https://github.com/STEllAR-GROUP/hpx/issues/472
https://github.com/STEllAR-GROUP/hpx/issues/471
https://github.com/STEllAR-GROUP/hpx/issues/468
https://github.com/STEllAR-GROUP/hpx/issues/462
https://github.com/STEllAR-GROUP/hpx/issues/458
https://github.com/STEllAR-GROUP/hpx/issues/457
https://github.com/STEllAR-GROUP/hpx/issues/448
https://github.com/STEllAR-GROUP/hpx/issues/447
https://github.com/STEllAR-GROUP/hpx/issues/446

HPX Documentation, 1.5.1

• Issue #4444367 - race condition in smp

• Issue #4414368 - Patched Boost.Serialization headers should only be installed if needed

• Issue #4394369 - Components using HPX_REGISTER_STARTUP_MODULE fail to compile with MSVC

• Issue #4364370 - Verify that no locks are being held while threads are suspended

• Issue #4354371 - Installing HPX should not clobber existing Boost installation

• Issue #4344372 - Logging external component failed (Boost 1.50)

• Issue #4334373 - Runtime crash when building all examples

• Issue #4324374 - Dataflow hangs on 512 cores/64 nodes

• Issue #4304375 - Problem with distributing factory

• Issue #4244376 - File paths referring to XSL-files need to be properly escaped

• Issue #4174377 - Make dataflow LCOs work out of the box by using partial preprocessing

• Issue #4134378 - hpx_svnversion.py fails on Windows

• Issue #4124379 - Make hpx::error_code equivalent to hpx::exception

• Issue #3984380 - HPX clobbers out-of-tree application specific CMake variables (specifically
CMAKE_BUILD_TYPE)

• Issue #3944381 - Remove code generating random port numbers for network

• Issue #3784382 - ShenEOS scaling issues

• Issue #3544383 - Create a coroutines wrapper for Boost.Context

• Issue #3494384 - Commandline option --localities=N/-lN should be necessary only on AGAS locality

• Issue #3344385 - Add auto_index support to cmake based documentation toolchain

• Issue #3184386 - Network benchmarks

• Issue #3174387 - Implement network performance counters

• Issue #3104388 - Duplicate logging entries

• Issue #2304389 - Add compile time option to disable thread debugging info

4367 https://github.com/STEllAR-GROUP/hpx/issues/444
4368 https://github.com/STEllAR-GROUP/hpx/issues/441
4369 https://github.com/STEllAR-GROUP/hpx/issues/439
4370 https://github.com/STEllAR-GROUP/hpx/issues/436
4371 https://github.com/STEllAR-GROUP/hpx/issues/435
4372 https://github.com/STEllAR-GROUP/hpx/issues/434
4373 https://github.com/STEllAR-GROUP/hpx/issues/433
4374 https://github.com/STEllAR-GROUP/hpx/issues/432
4375 https://github.com/STEllAR-GROUP/hpx/issues/430
4376 https://github.com/STEllAR-GROUP/hpx/issues/424
4377 https://github.com/STEllAR-GROUP/hpx/issues/417
4378 https://github.com/STEllAR-GROUP/hpx/issues/413
4379 https://github.com/STEllAR-GROUP/hpx/issues/412
4380 https://github.com/STEllAR-GROUP/hpx/issues/398
4381 https://github.com/STEllAR-GROUP/hpx/issues/394
4382 https://github.com/STEllAR-GROUP/hpx/issues/378
4383 https://github.com/STEllAR-GROUP/hpx/issues/354
4384 https://github.com/STEllAR-GROUP/hpx/issues/349
4385 https://github.com/STEllAR-GROUP/hpx/issues/334
4386 https://github.com/STEllAR-GROUP/hpx/issues/318
4387 https://github.com/STEllAR-GROUP/hpx/issues/317
4388 https://github.com/STEllAR-GROUP/hpx/issues/310
4389 https://github.com/STEllAR-GROUP/hpx/issues/230

1420 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/444
https://github.com/STEllAR-GROUP/hpx/issues/441
https://github.com/STEllAR-GROUP/hpx/issues/439
https://github.com/STEllAR-GROUP/hpx/issues/436
https://github.com/STEllAR-GROUP/hpx/issues/435
https://github.com/STEllAR-GROUP/hpx/issues/434
https://github.com/STEllAR-GROUP/hpx/issues/433
https://github.com/STEllAR-GROUP/hpx/issues/432
https://github.com/STEllAR-GROUP/hpx/issues/430
https://github.com/STEllAR-GROUP/hpx/issues/424
https://github.com/STEllAR-GROUP/hpx/issues/417
https://github.com/STEllAR-GROUP/hpx/issues/413
https://github.com/STEllAR-GROUP/hpx/issues/412
https://github.com/STEllAR-GROUP/hpx/issues/398
https://github.com/STEllAR-GROUP/hpx/issues/394
https://github.com/STEllAR-GROUP/hpx/issues/378
https://github.com/STEllAR-GROUP/hpx/issues/354
https://github.com/STEllAR-GROUP/hpx/issues/349
https://github.com/STEllAR-GROUP/hpx/issues/334
https://github.com/STEllAR-GROUP/hpx/issues/318
https://github.com/STEllAR-GROUP/hpx/issues/317
https://github.com/STEllAR-GROUP/hpx/issues/310
https://github.com/STEllAR-GROUP/hpx/issues/230

HPX Documentation, 1.5.1

• Issue #1714390 - Add an INI option to turn off deadlock detection independently of logging

• Issue #1704391 - OSHL internal counters are incorrect

• Issue #1034392 - Better diagnostics for multiple component/action registerations under the same name

• Issue #484393 - Support for Darwin (Xcode + Clang)

• Issue #214394 - Build fails with GCC 4.6

2.11.18 HPX V0.9.0 (Jul 5, 2012)

We have had roughly 800 commits since the last release and we have closed approximately 80 tickets (bugs, feature
requests, etc.).

General changes

• Significant improvements made to the usability of HPX in large-scale, distributed environments.

• Renamed hpx::lcos::packaged_task to hpx::lcos::packaged_action to reflect the semantic
differences to a packaged_task as defined by the C++11 Standard4395.

• HPX now exposes hpx::thread which is compliant to the C++11 std::thread type except that it (purely lo-
cally) represents an HPX thread. This new type does not expose any of the remote capabilities of the underlying
HPX-thread implementation.

• The type hpx::lcos::future is now compliant to the C++11 std::future<> type. This type can be used to
synchronize both, local and remote operations. In both cases the control flow will ‘return’ to the future in order
to trigger any continuation.

• The types hpx::lcos::local::promise and hpx::lcos::local::packaged_task are now
compliant to the C++11 std::promise<> and std::packaged_task<> types. These can be
used to create a future representing local work only. Use the types hpx::lcos::promise and
hpx::lcos::packaged_action to wrap any (possibly remote) action into a future.

• hpx::thread and hpx::lcos::future are now cancelable.

• Added support for sequential and logic composition of hpx::lcos::futures. The member func-
tion hpx::lcos::future::when permits futures to be sequentially composed. The helper functions
hpx::wait_all, hpx::wait_any , and hpx::wait_n can be used to wait for more than one future
at a time.

• HPX now exposes hpx::apply and hpx::async as the preferred way of creating (or invoking) any deferred
work. These functions are usable with various types of functions, function objects, and actions and provide a
uniform way to spawn deferred tasks.

• HPX now utilizes hpx::util::bind to (partially) bind local functions and function objects, and also ac-
tions. Remote bound actions can have placeholders as well.

• HPX continuations are now fully polymorphic. The class hpx::actions::forwarding_continuation
is an example of how the user can write is own types of continuations. It can be used to execute any function as
an continuation of a particular action.

4390 https://github.com/STEllAR-GROUP/hpx/issues/171
4391 https://github.com/STEllAR-GROUP/hpx/issues/170
4392 https://github.com/STEllAR-GROUP/hpx/issues/103
4393 https://github.com/STEllAR-GROUP/hpx/issues/48
4394 https://github.com/STEllAR-GROUP/hpx/issues/21
4395 http://www.open-std.org/jtc1/sc22/wg21

2.11. Releases 1421

https://github.com/STEllAR-GROUP/hpx/issues/171
https://github.com/STEllAR-GROUP/hpx/issues/170
https://github.com/STEllAR-GROUP/hpx/issues/103
https://github.com/STEllAR-GROUP/hpx/issues/48
https://github.com/STEllAR-GROUP/hpx/issues/21
http://www.open-std.org/jtc1/sc22/wg21

HPX Documentation, 1.5.1

• Reworked the action invocation API to be fully conformant to normal functions. Actions can now be invoked
using hpx::apply , hpx::async, or using the operator() implemented on actions. Actions themselves
can now be cheaply instantiated as they do not have any members anymore.

• Reworked the lazy action invocation API. Actions can now be directly bound using hpx::util::bind by
passing an action instance as the first argument.

• A minimal HPX program now looks like this:

#include <hpx/hpx_init.hpp>

int hpx_main()
{

return hpx::finalize();
}

int main()
{

return hpx::init();
}

This removes the immediate dependency on the Boost.Program Options4396 library.

Note: This minimal version of an HPX program does not support any of the default command line arguments
(such as –help, or command line options related to PBS). It is suggested to always pass argc and argv to HPX
as shown in the example below.

• In order to support those, but still not to depend on Boost.Program Options4397, the minimal program can be
written as:

#include <hpx/hpx_init.hpp>

// The arguments for hpx_main can be left off, which very similar to the
// behavior of ``main()`` as defined by C++.
int hpx_main(int argc, char* argv[])
{

return hpx::finalize();
}

int main(int argc, char* argv[])
{

return hpx::init(argc, argv);
}

• Added performance counters exposing the number of component instances which are alive on a given locality.

• Added performance counters exposing then number of messages sent and received, the number of parcels sent
and received, the number of bytes sent and received, the overall time required to send and receive data, and the
overall time required to serialize and deserialize the data.

• Added a new component: hpx::components::binpacking_factory which is equivalent to the ex-
isting hpx::components::distributing_factory component, except that it equalizes the overall
population of the components to create. It exposes two factory methods, one based on the number of existing
instances of the component type to create, and one based on an arbitrary performance counter which will be
queried for all relevant localities.

4396 https://www.boost.org/doc/html/program_options.html
4397 https://www.boost.org/doc/html/program_options.html

1422 Chapter 2. What’s so special about HPX?

https://www.boost.org/doc/html/program_options.html
https://www.boost.org/doc/html/program_options.html

HPX Documentation, 1.5.1

• Added API functions allowing to access elements of the diagnostic information embedded in the given
exception: hpx::get_locality_id, hpx::get_host_name, hpx::get_process_id,
hpx::get_function_name, hpx::get_file_name, hpx::get_line_number,
hpx::get_os_thread, hpx::get_thread_id, and hpx::get_thread_description.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release:

• Issue #714398 - GIDs that are not serialized via handle_gid<> should raise an exception

• Issue #1054399 - Allow for hpx::util::functions to be registered in the AGAS symbolic namespace

• Issue #1074400 - Nasty threadmanger race condition (reproducible in sheneos_test)

• Issue #1084401 - Add millisecond resolution to HPX logs on Linux

• Issue #1104402 - Shutdown hang in distributed with release build

• Issue #1164403 - Don’t use TSS for the applier and runtime pointers

• Issue #1624404 - Move local synchronous execution shortcut from hpx::function to the applier

• Issue #1724405 - Cache sources in CMake and check if they change manually

• Issue #1784406 - Add an INI option to turn off ranged-based AGAS caching

• Issue #1874407 - Support for disabling performance counter deployment

• Issue #2024408 - Support for sending performance counter data to a specific file

• Issue #2184409 - boost.coroutines allows different stack sizes, but stack pool is unaware of this

• Issue #2314410 - Implement movable boost::bind

• Issue #2324411 - Implement movable boost::function

• Issue #2364412 - Allow binding hpx::util::function to actions

• Issue #2394413 - Replace hpx::function with hpx::util::function

• Issue #2404414 - Can’t specify RemoteResult with lcos::async

• Issue #2424415 - REGISTER_TEMPLATE support for plain actions

• Issue #2434416 - handle_gid<> support for hpx::util::function

4398 https://github.com/STEllAR-GROUP/hpx/issues/71
4399 https://github.com/STEllAR-GROUP/hpx/issues/105
4400 https://github.com/STEllAR-GROUP/hpx/issues/107
4401 https://github.com/STEllAR-GROUP/hpx/issues/108
4402 https://github.com/STEllAR-GROUP/hpx/issues/110
4403 https://github.com/STEllAR-GROUP/hpx/issues/116
4404 https://github.com/STEllAR-GROUP/hpx/issues/162
4405 https://github.com/STEllAR-GROUP/hpx/issues/172
4406 https://github.com/STEllAR-GROUP/hpx/issues/178
4407 https://github.com/STEllAR-GROUP/hpx/issues/187
4408 https://github.com/STEllAR-GROUP/hpx/issues/202
4409 https://github.com/STEllAR-GROUP/hpx/issues/218
4410 https://github.com/STEllAR-GROUP/hpx/issues/231
4411 https://github.com/STEllAR-GROUP/hpx/issues/232
4412 https://github.com/STEllAR-GROUP/hpx/issues/236
4413 https://github.com/STEllAR-GROUP/hpx/issues/239
4414 https://github.com/STEllAR-GROUP/hpx/issues/240
4415 https://github.com/STEllAR-GROUP/hpx/issues/242
4416 https://github.com/STEllAR-GROUP/hpx/issues/243

2.11. Releases 1423

https://github.com/STEllAR-GROUP/hpx/issues/71
https://github.com/STEllAR-GROUP/hpx/issues/105
https://github.com/STEllAR-GROUP/hpx/issues/107
https://github.com/STEllAR-GROUP/hpx/issues/108
https://github.com/STEllAR-GROUP/hpx/issues/110
https://github.com/STEllAR-GROUP/hpx/issues/116
https://github.com/STEllAR-GROUP/hpx/issues/162
https://github.com/STEllAR-GROUP/hpx/issues/172
https://github.com/STEllAR-GROUP/hpx/issues/178
https://github.com/STEllAR-GROUP/hpx/issues/187
https://github.com/STEllAR-GROUP/hpx/issues/202
https://github.com/STEllAR-GROUP/hpx/issues/218
https://github.com/STEllAR-GROUP/hpx/issues/231
https://github.com/STEllAR-GROUP/hpx/issues/232
https://github.com/STEllAR-GROUP/hpx/issues/236
https://github.com/STEllAR-GROUP/hpx/issues/239
https://github.com/STEllAR-GROUP/hpx/issues/240
https://github.com/STEllAR-GROUP/hpx/issues/242
https://github.com/STEllAR-GROUP/hpx/issues/243

HPX Documentation, 1.5.1

• Issue #2454417 - *_c_cache code throws an exception if the queried GID is not in the local cache

• Issue #2464418 - Undefined references in dataflow/adaptive1d example

• Issue #2524419 - Problems configuring sheneos with CMake

• Issue #2544420 - Lifetime of components doesn’t end when client goes out of scope

• Issue #2594421 - CMake does not detect that MSVC10 has lambdas

• Issue #2604422 - io_service_pool segfault

• Issue #2614423 - Late parcel executed outside of pxthread

• Issue #2634424 - Cannot select allocator with CMake

• Issue #2644425 - Fix allocator select

• Issue #2674426 - Runtime error for hello_world

• Issue #2694427 - pthread_affinity_np test fails to compile

• Issue #2704428 - Compiler noise due to -Wcast-qual

• Issue #2754429 - Problem with configuration tests/include paths on Gentoo

• Issue #3254430 - Sheneos is 200-400 times slower than the fortran equivalent

• Issue #3314431 - hpx::init and hpx_main() should not depend on program_options

• Issue #3334432 - Add doxygen support to CMake for doc toolchain

• Issue #3404433 - Performance counters for parcels

• Issue #3464434 - Component loading error when running hello_world in distributed on MSVC2010

• Issue #3624435 - Missing initializer error

• Issue #3634436 - Parcel port serialization error

• Issue #3664437 - Parcel buffering leads to types incompatible exception

• Issue #3684438 - Scalable alternative to rand() needed for HPX

• Issue #3694439 - IB over IP is substantially slower than just using standard TCP/IP

4417 https://github.com/STEllAR-GROUP/hpx/issues/245
4418 https://github.com/STEllAR-GROUP/hpx/issues/246
4419 https://github.com/STEllAR-GROUP/hpx/issues/252
4420 https://github.com/STEllAR-GROUP/hpx/issues/254
4421 https://github.com/STEllAR-GROUP/hpx/issues/259
4422 https://github.com/STEllAR-GROUP/hpx/issues/260
4423 https://github.com/STEllAR-GROUP/hpx/issues/261
4424 https://github.com/STEllAR-GROUP/hpx/issues/263
4425 https://github.com/STEllAR-GROUP/hpx/issues/264
4426 https://github.com/STEllAR-GROUP/hpx/issues/267
4427 https://github.com/STEllAR-GROUP/hpx/issues/269
4428 https://github.com/STEllAR-GROUP/hpx/issues/270
4429 https://github.com/STEllAR-GROUP/hpx/issues/275
4430 https://github.com/STEllAR-GROUP/hpx/issues/325
4431 https://github.com/STEllAR-GROUP/hpx/issues/331
4432 https://github.com/STEllAR-GROUP/hpx/issues/333
4433 https://github.com/STEllAR-GROUP/hpx/issues/340
4434 https://github.com/STEllAR-GROUP/hpx/issues/346
4435 https://github.com/STEllAR-GROUP/hpx/issues/362
4436 https://github.com/STEllAR-GROUP/hpx/issues/363
4437 https://github.com/STEllAR-GROUP/hpx/issues/366
4438 https://github.com/STEllAR-GROUP/hpx/issues/368
4439 https://github.com/STEllAR-GROUP/hpx/issues/369

1424 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/245
https://github.com/STEllAR-GROUP/hpx/issues/246
https://github.com/STEllAR-GROUP/hpx/issues/252
https://github.com/STEllAR-GROUP/hpx/issues/254
https://github.com/STEllAR-GROUP/hpx/issues/259
https://github.com/STEllAR-GROUP/hpx/issues/260
https://github.com/STEllAR-GROUP/hpx/issues/261
https://github.com/STEllAR-GROUP/hpx/issues/263
https://github.com/STEllAR-GROUP/hpx/issues/264
https://github.com/STEllAR-GROUP/hpx/issues/267
https://github.com/STEllAR-GROUP/hpx/issues/269
https://github.com/STEllAR-GROUP/hpx/issues/270
https://github.com/STEllAR-GROUP/hpx/issues/275
https://github.com/STEllAR-GROUP/hpx/issues/325
https://github.com/STEllAR-GROUP/hpx/issues/331
https://github.com/STEllAR-GROUP/hpx/issues/333
https://github.com/STEllAR-GROUP/hpx/issues/340
https://github.com/STEllAR-GROUP/hpx/issues/346
https://github.com/STEllAR-GROUP/hpx/issues/362
https://github.com/STEllAR-GROUP/hpx/issues/363
https://github.com/STEllAR-GROUP/hpx/issues/366
https://github.com/STEllAR-GROUP/hpx/issues/368
https://github.com/STEllAR-GROUP/hpx/issues/369

HPX Documentation, 1.5.1

• Issue #3744440 - hpx::lcos::wait should work with dataflows and arbitrary classes meeting the future
interface

• Issue #3754441 - Conflicting/ambiguous overloads of hpx::lcos::wait

• Issue #3764442 - Find_HPX.cmake should set CMake variable HPX_FOUND for out of tree builds

• Issue #3774443 - ShenEOS interpolate bulk and interpolate_one_bulk are broken

• Issue #3794444 - Add support for distributed runs under SLURM

• Issue #3824445 - _Unwind_Word not declared in boost.backtrace

• Issue #3874446 - Doxygen should look only at list of specified files

• Issue #3884447 - Running make install on an out-of-tree application is broken

• Issue #3914448 - Out-of-tree application segfaults when running in qsub

• Issue #3924449 - Remove HPX_NO_INSTALL option from cmake build system

• Issue #3964450 - Pragma related warnings when compiling with older gcc versions

• Issue #3994451 - Out of tree component build problems

• Issue #4004452 - Out of source builds on Windows: linker should not receive compiler flags

• Issue #4014453 - Out of source builds on Windows: components need to be linked with hpx_serialization

• Issue #4044454 - gfortran fails to link automatically when fortran files are present

• Issue #4054455 - Inability to specify linking order for external libraries

• Issue #4064456 - Adapt action limits such that dataflow applications work without additional defines

• Issue #4154457 - locality_results is not a member of hpx::components::server

• Issue #4254458 - Breaking changes to traits::*result wrt std::vector<id_type>

• Issue #4264459 - AUTOGLOB needs to be updated to support fortran

4440 https://github.com/STEllAR-GROUP/hpx/issues/374
4441 https://github.com/STEllAR-GROUP/hpx/issues/375
4442 https://github.com/STEllAR-GROUP/hpx/issues/376
4443 https://github.com/STEllAR-GROUP/hpx/issues/377
4444 https://github.com/STEllAR-GROUP/hpx/issues/379
4445 https://github.com/STEllAR-GROUP/hpx/issues/382
4446 https://github.com/STEllAR-GROUP/hpx/issues/387
4447 https://github.com/STEllAR-GROUP/hpx/issues/388
4448 https://github.com/STEllAR-GROUP/hpx/issues/391
4449 https://github.com/STEllAR-GROUP/hpx/issues/392
4450 https://github.com/STEllAR-GROUP/hpx/issues/396
4451 https://github.com/STEllAR-GROUP/hpx/issues/399
4452 https://github.com/STEllAR-GROUP/hpx/issues/400
4453 https://github.com/STEllAR-GROUP/hpx/issues/401
4454 https://github.com/STEllAR-GROUP/hpx/issues/404
4455 https://github.com/STEllAR-GROUP/hpx/issues/405
4456 https://github.com/STEllAR-GROUP/hpx/issues/406
4457 https://github.com/STEllAR-GROUP/hpx/issues/415
4458 https://github.com/STEllAR-GROUP/hpx/issues/425
4459 https://github.com/STEllAR-GROUP/hpx/issues/426

2.11. Releases 1425

https://github.com/STEllAR-GROUP/hpx/issues/374
https://github.com/STEllAR-GROUP/hpx/issues/375
https://github.com/STEllAR-GROUP/hpx/issues/376
https://github.com/STEllAR-GROUP/hpx/issues/377
https://github.com/STEllAR-GROUP/hpx/issues/379
https://github.com/STEllAR-GROUP/hpx/issues/382
https://github.com/STEllAR-GROUP/hpx/issues/387
https://github.com/STEllAR-GROUP/hpx/issues/388
https://github.com/STEllAR-GROUP/hpx/issues/391
https://github.com/STEllAR-GROUP/hpx/issues/392
https://github.com/STEllAR-GROUP/hpx/issues/396
https://github.com/STEllAR-GROUP/hpx/issues/399
https://github.com/STEllAR-GROUP/hpx/issues/400
https://github.com/STEllAR-GROUP/hpx/issues/401
https://github.com/STEllAR-GROUP/hpx/issues/404
https://github.com/STEllAR-GROUP/hpx/issues/405
https://github.com/STEllAR-GROUP/hpx/issues/406
https://github.com/STEllAR-GROUP/hpx/issues/415
https://github.com/STEllAR-GROUP/hpx/issues/425
https://github.com/STEllAR-GROUP/hpx/issues/426

HPX Documentation, 1.5.1

2.11.19 HPX V0.8.1 (Apr 21, 2012)

This is a point release including important bug fixes for HPX V0.8.0 (Mar 23, 2012).

General changes

• HPX does not need to be installed anymore to be functional.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this point release:

• Issue #2954460 - Don’t require install path to be known at compile time.

• Issue #3714461 - Add hpx iostreams to standard build.

• Issue #3844462 - Fix compilation with GCC 4.7.

• Issue #3904463 - Remove keep_factory_alive startup call from ShenEOS; add shutdown call to H5close.

• Issue #3934464 - Thread affinity control is broken.

Bug fixes (commits)

Here is a list of the important commits included in this point release:

• r7642 - External: Fix backtrace memory violation.

• r7775 - Components: Fix symbol visibility bug with component startup providers. This prevents one com-
ponents providers from overriding another components.

• r7778 - Components: Fix startup/shutdown provider shadowing issues.

2.11.20 HPX V0.8.0 (Mar 23, 2012)

We have had roughly 1000 commits since the last release and we have closed approximately 70 tickets (bugs, feature
requests, etc.).

General changes

• Improved PBS support, allowing for arbitrary naming schemes of node-hostnames.

• Finished verification of the reference counting framework.

• Implemented decrement merging logic to optimize the distributed reference counting system.

• Restructured the LCO framework. Renamed hpx::lcos::eager_future<>
and hpx::lcos::lazy_future<> into hpx::lcos::packaged_task and
hpx::lcos::deferred_packaged_task. Split hpx::lcos::promise into
hpx::lcos::packaged_task and hpx::lcos::future. Added ‘local’ futures (in namespace
hpx::lcos::local).

4460 https://github.com/STEllAR-GROUP/hpx/issues/295
4461 https://github.com/STEllAR-GROUP/hpx/issues/371
4462 https://github.com/STEllAR-GROUP/hpx/issues/384
4463 https://github.com/STEllAR-GROUP/hpx/issues/390
4464 https://github.com/STEllAR-GROUP/hpx/issues/393

1426 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/295
https://github.com/STEllAR-GROUP/hpx/issues/371
https://github.com/STEllAR-GROUP/hpx/issues/384
https://github.com/STEllAR-GROUP/hpx/issues/390
https://github.com/STEllAR-GROUP/hpx/issues/393

HPX Documentation, 1.5.1

• Improved the general performance of local and remote action invocations. This (under certain circumstances)
drastically reduces the number of copies created for each of the parameters and return values.

• Reworked the performance counter framework. Performance counters are now created only when needed, which
reduces the overall resource requirements. The new framework allows for much more flexible creation and
management of performance counters. The new sine example application demonstrates some of the capabilities
of the new infrastructure.

• Added a buildbot-based continuous build system which gives instant, automated feedback on each commit to
SVN.

• Added more automated tests to verify proper functioning of HPX.

• Started to create documentation for HPX and its API.

• Added documentation toolchain to the build system.

• Added dataflow LCO.

• Changed default HPX command line options to have hpx: prefix. For instance, the former option --threads
is now --hpx:threads. This has been done to make ambiguities with possible application specific command
line options as unlikely as possible. See the section HPX Command Line Options for a full list of available
options.

• Added the possibility to define command line aliases. The former short (one-letter) command line options have
been predefined as aliases for backwards compatibility. See the section HPX Command Line Options for a
detailed description of command line option aliasing.

• Network connections are now cached based on the connected host. The number of simultaneous connections to
a particular host is now limited. Parcels are buffered and bundled if all connections are in use.

• Added more refined thread affinity control. This is based on the external library Portable Hardware Locality
(HWLOC).

• Improved support for Windows builds with CMake.

• Added support for components to register their own command line options.

• Added the possibility to register custom startup/shutdown functions for any component. These functions are
guaranteed to be executed by an HPX thread.

• Added two new experimental thread schedulers: hierarchy_scheduler and periodic_priority_scheduler.
These can be activated by using the command line options --hpx:queuing=hierarchy or
--hpx:queuing=periodic.

Example applications

• Graph500 performance benchmark4465 (thanks to Matthew Anderson for contributing this application).

• GTC (Gyrokinetic Toroidal Code)4466: a skeleton for particle in cell type codes.

• Random Memory Access: an example demonstrating random memory accesses in a large array

• ShenEOS example4467, demonstrating partitioning of large read-only data structures and exposing an interpola-
tion API.

• Sine performance counter demo.

• Accumulator examples demonstrating how to write and use HPX components.

4465 http://www.graph500.org/
4466 http://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization/nersc-6-benchmarks/gtc/
4467 http://stellarcollapse.org/equationofstate

2.11. Releases 1427

http://www.graph500.org/
http://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization/nersc-6-benchmarks/gtc/
http://stellarcollapse.org/equationofstate

HPX Documentation, 1.5.1

• Quickstart examples (like hello_world, fibonacci, quicksort, factorial, etc.) demonstrating simple HPX concepts
which introduce some of the concepts in HPX.

• Load balancing and work stealing demos.

API changes

• Moved all local LCOs into a separate namespace hpx::lcos::local (for instance,
hpx::lcos::local_mutex is now hpx::lcos::local::mutex).

• Replaced hpx::actions::function with hpx::util::function. Cleaned up related code.

• Removed hpx::traits::handle_gid and moved handling of global reference counts into the corre-
sponding serialization code.

• Changed terminology: prefix is now called locality_id, renamed the corresponding API functions (such
as hpx::get_prefix, which is now called hpx::get_locality_id).

• Adding hpx::find_remote_localities, and hpx::get_num_localities.

• Changed performance counter naming scheme to make it more bash friendly. The new performance counter
naming scheme is now

/object{parentname#parentindex/instance#index}/counter#parameters

• Added hpx::get_worker_thread_num replacing hpx::threadmanager_base::get_thread_num.

• Renamed hpx::get_num_os_threads to hpx::get_os_threads_count.

• Added hpx::threads::get_thread_count.

• Restructured the Futures sub-system, renaming types in accordance with the terminology used by the C++11
ISO standard.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release:

• Issue #314468 - Specialize handle_gid<> for examples and tests

• Issue #724469 - Fix AGAS reference counting

• Issue #1044470 - heartbeat throws an exception when decrefing the performance counter it’s watching

• Issue #1114471 - throttle causes an exception on the target application

• Issue #1424472 - One failed component loading causes an unrelated component to fail

• Issue #1654473 - Remote exception propagation bug in AGAS reference counting test

• Issue #1864474 - Test credit exhaustion/splitting (e.g. prepare_gid and symbol NS)

• Issue #1884475 - Implement remaining AGAS reference counting test cases

4468 https://github.com/STEllAR-GROUP/hpx/issues/31
4469 https://github.com/STEllAR-GROUP/hpx/issues/72
4470 https://github.com/STEllAR-GROUP/hpx/issues/104
4471 https://github.com/STEllAR-GROUP/hpx/issues/111
4472 https://github.com/STEllAR-GROUP/hpx/issues/142
4473 https://github.com/STEllAR-GROUP/hpx/issues/165
4474 https://github.com/STEllAR-GROUP/hpx/issues/186
4475 https://github.com/STEllAR-GROUP/hpx/issues/188

1428 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/31
https://github.com/STEllAR-GROUP/hpx/issues/72
https://github.com/STEllAR-GROUP/hpx/issues/104
https://github.com/STEllAR-GROUP/hpx/issues/111
https://github.com/STEllAR-GROUP/hpx/issues/142
https://github.com/STEllAR-GROUP/hpx/issues/165
https://github.com/STEllAR-GROUP/hpx/issues/186
https://github.com/STEllAR-GROUP/hpx/issues/188

HPX Documentation, 1.5.1

• Issue #2584476 - No type checking of GIDs in stubs classes

• Issue #2714477 - Seg fault/shared pointer assertion in distributed code

• Issue #2814478 - CMake options need descriptive text

• Issue #2834479 - AGAS caching broken (gva_cache needs to be rewritten with ICL)

• Issue #2854480 - HPX_INSTALL root directory not the same as CMAKE_INSTALL_PREFIX

• Issue #2864481 - New segfault in dataflow applications

• Issue #2894482 - Exceptions should only be logged if not handled

• Issue #2904483 - c++11 tests failure

• Issue #2934484 - Build target for component libraries

• Issue #2964485 - Compilation error with Boost V1.49rc1

• Issue #2984486 - Illegal instructions on termination

• Issue #2994487 - gravity aborts with multiple threads

• Issue #3014488 - Build error with Boost trunk

• Issue #3034489 - Logging assertion failure in distributed runs

• Issue #3044490 - Exception ‘what’ strings are lost when exceptions from decode_parcel are reported

• Issue #3064491 - Performance counter user interface issues

• Issue #3074492 - Logging exception in distributed runs

• Issue #3084493 - Logging deadlocks in distributed

• Issue #3094494 - Reference counting test failures and exceptions

• Issue #3114495 - Merge AGAS remote_interface with the runtime_support object

• Issue #3144496 - Object tracking for id_types

• Issue #3154497 - Remove handle_gid and handle credit splitting in id_type serialization

• Issue #3204498 - applier::get_locality_id() should return an error value (or throw an exception)

4476 https://github.com/STEllAR-GROUP/hpx/issues/258
4477 https://github.com/STEllAR-GROUP/hpx/issues/271
4478 https://github.com/STEllAR-GROUP/hpx/issues/281
4479 https://github.com/STEllAR-GROUP/hpx/issues/283
4480 https://github.com/STEllAR-GROUP/hpx/issues/285
4481 https://github.com/STEllAR-GROUP/hpx/issues/286
4482 https://github.com/STEllAR-GROUP/hpx/issues/289
4483 https://github.com/STEllAR-GROUP/hpx/issues/290
4484 https://github.com/STEllAR-GROUP/hpx/issues/293
4485 https://github.com/STEllAR-GROUP/hpx/issues/296
4486 https://github.com/STEllAR-GROUP/hpx/issues/298
4487 https://github.com/STEllAR-GROUP/hpx/issues/299
4488 https://github.com/STEllAR-GROUP/hpx/issues/301
4489 https://github.com/STEllAR-GROUP/hpx/issues/303
4490 https://github.com/STEllAR-GROUP/hpx/issues/304
4491 https://github.com/STEllAR-GROUP/hpx/issues/306
4492 https://github.com/STEllAR-GROUP/hpx/issues/307
4493 https://github.com/STEllAR-GROUP/hpx/issues/308
4494 https://github.com/STEllAR-GROUP/hpx/issues/309
4495 https://github.com/STEllAR-GROUP/hpx/issues/311
4496 https://github.com/STEllAR-GROUP/hpx/issues/314
4497 https://github.com/STEllAR-GROUP/hpx/issues/315
4498 https://github.com/STEllAR-GROUP/hpx/issues/320

2.11. Releases 1429

https://github.com/STEllAR-GROUP/hpx/issues/258
https://github.com/STEllAR-GROUP/hpx/issues/271
https://github.com/STEllAR-GROUP/hpx/issues/281
https://github.com/STEllAR-GROUP/hpx/issues/283
https://github.com/STEllAR-GROUP/hpx/issues/285
https://github.com/STEllAR-GROUP/hpx/issues/286
https://github.com/STEllAR-GROUP/hpx/issues/289
https://github.com/STEllAR-GROUP/hpx/issues/290
https://github.com/STEllAR-GROUP/hpx/issues/293
https://github.com/STEllAR-GROUP/hpx/issues/296
https://github.com/STEllAR-GROUP/hpx/issues/298
https://github.com/STEllAR-GROUP/hpx/issues/299
https://github.com/STEllAR-GROUP/hpx/issues/301
https://github.com/STEllAR-GROUP/hpx/issues/303
https://github.com/STEllAR-GROUP/hpx/issues/304
https://github.com/STEllAR-GROUP/hpx/issues/306
https://github.com/STEllAR-GROUP/hpx/issues/307
https://github.com/STEllAR-GROUP/hpx/issues/308
https://github.com/STEllAR-GROUP/hpx/issues/309
https://github.com/STEllAR-GROUP/hpx/issues/311
https://github.com/STEllAR-GROUP/hpx/issues/314
https://github.com/STEllAR-GROUP/hpx/issues/315
https://github.com/STEllAR-GROUP/hpx/issues/320

HPX Documentation, 1.5.1

• Issue #3214499 - Optimization for id_types which are never split should be restored

• Issue #3224500 - Command line processing ignored with Boost 1.47.0

• Issue #3234501 - Credit exhaustion causes object to stay alive

• Issue #3244502 - Duplicate exception messages

• Issue #3264503 - Integrate Quickbook with CMake

• Issue #3294504 - –help and –version should still work

• Issue #3304505 - Create pkg-config files

• Issue #3374506 - Improve usability of performance counter timestamps

• Issue #3384507 - Non-std exceptions deriving from std::exceptions in tfunc may be sliced

• Issue #3394508 - Decrease the number of send_pending_parcels threads

• Issue #3434509 - Dynamically setting the stack size doesn’t work

• Issue #3514510 - ‘make install’ does not update documents

• Issue #3534511 - Disable FIXMEs in the docs by default; add a doc developer CMake option to enable FIXMEs

• Issue #3554512 - ‘make’ doesn’t do anything after correct configuration

• Issue #3564513 - Don’t use hpx::util::static_ in topology code

• Issue #3594514 - Infinite recursion in hpx::tuple serialization

• Issue #3614515 - Add compile time option to disable logging completely

• Issue #3644516 - Installation seriously broken in r7443

2.11.21 HPX V0.7.0 (Dec 12, 2011)

We have had roughly 1000 commits since the last release and we have closed approximately 120 tickets (bugs, feature
requests, etc.).

4499 https://github.com/STEllAR-GROUP/hpx/issues/321
4500 https://github.com/STEllAR-GROUP/hpx/issues/322
4501 https://github.com/STEllAR-GROUP/hpx/issues/323
4502 https://github.com/STEllAR-GROUP/hpx/issues/324
4503 https://github.com/STEllAR-GROUP/hpx/issues/326
4504 https://github.com/STEllAR-GROUP/hpx/issues/329
4505 https://github.com/STEllAR-GROUP/hpx/issues/330
4506 https://github.com/STEllAR-GROUP/hpx/issues/337
4507 https://github.com/STEllAR-GROUP/hpx/issues/338
4508 https://github.com/STEllAR-GROUP/hpx/issues/339
4509 https://github.com/STEllAR-GROUP/hpx/issues/343
4510 https://github.com/STEllAR-GROUP/hpx/issues/351
4511 https://github.com/STEllAR-GROUP/hpx/issues/353
4512 https://github.com/STEllAR-GROUP/hpx/issues/355
4513 https://github.com/STEllAR-GROUP/hpx/issues/356
4514 https://github.com/STEllAR-GROUP/hpx/issues/359
4515 https://github.com/STEllAR-GROUP/hpx/issues/361
4516 https://github.com/STEllAR-GROUP/hpx/issues/364

1430 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/321
https://github.com/STEllAR-GROUP/hpx/issues/322
https://github.com/STEllAR-GROUP/hpx/issues/323
https://github.com/STEllAR-GROUP/hpx/issues/324
https://github.com/STEllAR-GROUP/hpx/issues/326
https://github.com/STEllAR-GROUP/hpx/issues/329
https://github.com/STEllAR-GROUP/hpx/issues/330
https://github.com/STEllAR-GROUP/hpx/issues/337
https://github.com/STEllAR-GROUP/hpx/issues/338
https://github.com/STEllAR-GROUP/hpx/issues/339
https://github.com/STEllAR-GROUP/hpx/issues/343
https://github.com/STEllAR-GROUP/hpx/issues/351
https://github.com/STEllAR-GROUP/hpx/issues/353
https://github.com/STEllAR-GROUP/hpx/issues/355
https://github.com/STEllAR-GROUP/hpx/issues/356
https://github.com/STEllAR-GROUP/hpx/issues/359
https://github.com/STEllAR-GROUP/hpx/issues/361
https://github.com/STEllAR-GROUP/hpx/issues/364

HPX Documentation, 1.5.1

General changes

• Completely removed code related to deprecated AGAS V1, started to work on AGAS V2.1.

• Started to clean up and streamline the exposed APIs (see ‘API changes’ below for more details).

• Revamped and unified performance counter framework, added a lot of new performance counter instances for
monitoring of a diverse set of internal HPX parameters (queue lengths, access statistics, etc.).

• Improved general error handling and logging support.

• Fixed several race conditions, improved overall stability, decreased memory footprint, improved overall perfor-
mance (major optimizations include native TLS support and ranged-based AGAS caching).

• Added support for running HPX applications with PBS.

• Many updates to the build system, added support for gcc 4.5.x and 4.6.x, added C++11 support.

• Many updates to default command line options.

• Added many tests, set up buildbot for continuous integration testing.

• Better shutdown handling of distributed applications.

Example applications

• quickstart/factorial and quickstart/fibonacci, future-recursive parallel algorithms.

• quickstart/hello_world, distributed hello world example.

• quickstart/rma, simple remote memory access example

• quickstart/quicksort, parallel quicksort implementation.

• gtc, gyrokinetic torodial code.

• bfs, breadth-first-search, example code for a graph application.

• sheneos, partitioning of large data sets.

• accumulator, simple component example.

• balancing/os_thread_num, balancing/px_thread_phase, examples demonstrating load balancing and work steal-
ing.

API changes

• Added hpx::find_all_localities.

• Added hpx::terminate for non-graceful termination of applications.

• Added hpx::lcos::async functions for simpler asynchronous programming.

• Added new AGAS interface for handling of symbolic namespace (hpx::agas::*).

• Renamed hpx::components::wait to hpx::lcos::wait.

• Renamed hpx::lcos::future_value to hpx::lcos::promise.

• Renamed hpx::lcos::recursive_mutex to hpx::lcos::local_recursive_mutex,
hpx::lcos::mutex to hpx::lcos::local_mutex

• Removed support for Boost versions older than V1.38, recommended Boost version is now V1.47 and newer.

• Removed hpx::process (this will be replaced by a real process implementation in the future).

2.11. Releases 1431

HPX Documentation, 1.5.1

• Removed non-functional LCO code (hpx::lcos::dataflow, hpx::lcos::thunk,
hpx::lcos::dataflow_variable).

• Removed deprecated hpx::naming::full_address.

Bug fixes (closed tickets)

Here is a list of the important tickets we closed for this release:

• Issue #284517 - Integrate Windows/Linux CMake code for HPX core

• Issue #324518 - hpx::cout() should be hpx::cout

• Issue #334519 - AGAS V2 legacy client does not properly handle error_code

• Issue #604520 - AGAS: allow for registerid to optionally take ownership of the gid

• Issue #624521 - adaptive1d compilation failure in Fusion

• Issue #644522 - Parcel subsystem doesn’t resolve domain names

• Issue #834523 - No error handling if no console is available

• Issue #844524 - No error handling if a hosted locality is treated as the bootstrap server

• Issue #904525 - Add general commandline option -N

• Issue #914526 - Add possibility to read command line arguments from file

• Issue #924527 - Always log exceptions/errors to the log file

• Issue #934528 - Log the command line/program name

• Issue #954529 - Support for distributed launches

• Issue #974530 - Attempt to create a bad component type in AMR examples

• Issue #1004531 - factorial and factorial_get examples trigger AGAS component type assertions

• Issue #1014532 - Segfault when hpx::process::here() is called in fibonacci2

• Issue #1024533 - unknown_component_address in int_object_semaphore_client

• Issue #1144534 - marduk raises assertion with default parameters

• Issue #1154535 - Logging messages for SMP runs (on the console) shouldn’t be buffered

4517 https://github.com/STEllAR-GROUP/hpx/issues/28
4518 https://github.com/STEllAR-GROUP/hpx/issues/32
4519 https://github.com/STEllAR-GROUP/hpx/issues/33
4520 https://github.com/STEllAR-GROUP/hpx/issues/60
4521 https://github.com/STEllAR-GROUP/hpx/issues/62
4522 https://github.com/STEllAR-GROUP/hpx/issues/64
4523 https://github.com/STEllAR-GROUP/hpx/issues/83
4524 https://github.com/STEllAR-GROUP/hpx/issues/84
4525 https://github.com/STEllAR-GROUP/hpx/issues/90
4526 https://github.com/STEllAR-GROUP/hpx/issues/91
4527 https://github.com/STEllAR-GROUP/hpx/issues/92
4528 https://github.com/STEllAR-GROUP/hpx/issues/93
4529 https://github.com/STEllAR-GROUP/hpx/issues/95
4530 https://github.com/STEllAR-GROUP/hpx/issues/97
4531 https://github.com/STEllAR-GROUP/hpx/issues/100
4532 https://github.com/STEllAR-GROUP/hpx/issues/101
4533 https://github.com/STEllAR-GROUP/hpx/issues/102
4534 https://github.com/STEllAR-GROUP/hpx/issues/114
4535 https://github.com/STEllAR-GROUP/hpx/issues/115

1432 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/28
https://github.com/STEllAR-GROUP/hpx/issues/32
https://github.com/STEllAR-GROUP/hpx/issues/33
https://github.com/STEllAR-GROUP/hpx/issues/60
https://github.com/STEllAR-GROUP/hpx/issues/62
https://github.com/STEllAR-GROUP/hpx/issues/64
https://github.com/STEllAR-GROUP/hpx/issues/83
https://github.com/STEllAR-GROUP/hpx/issues/84
https://github.com/STEllAR-GROUP/hpx/issues/90
https://github.com/STEllAR-GROUP/hpx/issues/91
https://github.com/STEllAR-GROUP/hpx/issues/92
https://github.com/STEllAR-GROUP/hpx/issues/93
https://github.com/STEllAR-GROUP/hpx/issues/95
https://github.com/STEllAR-GROUP/hpx/issues/97
https://github.com/STEllAR-GROUP/hpx/issues/100
https://github.com/STEllAR-GROUP/hpx/issues/101
https://github.com/STEllAR-GROUP/hpx/issues/102
https://github.com/STEllAR-GROUP/hpx/issues/114
https://github.com/STEllAR-GROUP/hpx/issues/115

HPX Documentation, 1.5.1

• Issue #1194536 - marduk linking strategy breaks other applications

• Issue #1214537 - pbsdsh problem

• Issue #1234538 - marduk, dataflow and adaptive1d fail to build

• Issue #1244539 - Lower default preprocessing arity

• Issue #1254540 - Move hpx::detail::diagnostic_information out of the detail namespace

• Issue #1264541 - Test definitions for AGAS reference counting

• Issue #1284542 - Add averaging performance counter

• Issue #1294543 - Error with endian.hpp while building adaptive1d

• Issue #1304544 - Bad initialization of performance counters

• Issue #1314545 - Add global startup/shutdown functions to component modules

• Issue #1324546 - Avoid using auto_ptr

• Issue #1334547 - On Windows hpx.dll doesn’t get installed

• Issue #1344548 - HPX_LIBRARY does not reflect real library name (on Windows)

• Issue #1354549 - Add detection of unique_ptr to build system

• Issue #1374550 - Add command line option allowing to repeatedly evaluate performance counters

• Issue #1394551 - Logging is broken

• Issue #1404552 - CMake problem on windows

• Issue #1414553 - Move all non-component libraries into $PREFIX/lib/hpx

• Issue #1434554 - adaptive1d throws an exception with the default command line options

• Issue #1464555 - Early exception handling is broken

• Issue #1474556 - Sheneos doesn’t link on Linux

• Issue #1494557 - sheneos_test hangs

• Issue #1544558 - Compilation fails for r5661

4536 https://github.com/STEllAR-GROUP/hpx/issues/119
4537 https://github.com/STEllAR-GROUP/hpx/issues/121
4538 https://github.com/STEllAR-GROUP/hpx/issues/123
4539 https://github.com/STEllAR-GROUP/hpx/issues/124
4540 https://github.com/STEllAR-GROUP/hpx/issues/125
4541 https://github.com/STEllAR-GROUP/hpx/issues/126
4542 https://github.com/STEllAR-GROUP/hpx/issues/128
4543 https://github.com/STEllAR-GROUP/hpx/issues/129
4544 https://github.com/STEllAR-GROUP/hpx/issues/130
4545 https://github.com/STEllAR-GROUP/hpx/issues/131
4546 https://github.com/STEllAR-GROUP/hpx/issues/132
4547 https://github.com/STEllAR-GROUP/hpx/issues/133
4548 https://github.com/STEllAR-GROUP/hpx/issues/134
4549 https://github.com/STEllAR-GROUP/hpx/issues/135
4550 https://github.com/STEllAR-GROUP/hpx/issues/137
4551 https://github.com/STEllAR-GROUP/hpx/issues/139
4552 https://github.com/STEllAR-GROUP/hpx/issues/140
4553 https://github.com/STEllAR-GROUP/hpx/issues/141
4554 https://github.com/STEllAR-GROUP/hpx/issues/143
4555 https://github.com/STEllAR-GROUP/hpx/issues/146
4556 https://github.com/STEllAR-GROUP/hpx/issues/147
4557 https://github.com/STEllAR-GROUP/hpx/issues/149
4558 https://github.com/STEllAR-GROUP/hpx/issues/154

2.11. Releases 1433

https://github.com/STEllAR-GROUP/hpx/issues/119
https://github.com/STEllAR-GROUP/hpx/issues/121
https://github.com/STEllAR-GROUP/hpx/issues/123
https://github.com/STEllAR-GROUP/hpx/issues/124
https://github.com/STEllAR-GROUP/hpx/issues/125
https://github.com/STEllAR-GROUP/hpx/issues/126
https://github.com/STEllAR-GROUP/hpx/issues/128
https://github.com/STEllAR-GROUP/hpx/issues/129
https://github.com/STEllAR-GROUP/hpx/issues/130
https://github.com/STEllAR-GROUP/hpx/issues/131
https://github.com/STEllAR-GROUP/hpx/issues/132
https://github.com/STEllAR-GROUP/hpx/issues/133
https://github.com/STEllAR-GROUP/hpx/issues/134
https://github.com/STEllAR-GROUP/hpx/issues/135
https://github.com/STEllAR-GROUP/hpx/issues/137
https://github.com/STEllAR-GROUP/hpx/issues/139
https://github.com/STEllAR-GROUP/hpx/issues/140
https://github.com/STEllAR-GROUP/hpx/issues/141
https://github.com/STEllAR-GROUP/hpx/issues/143
https://github.com/STEllAR-GROUP/hpx/issues/146
https://github.com/STEllAR-GROUP/hpx/issues/147
https://github.com/STEllAR-GROUP/hpx/issues/149
https://github.com/STEllAR-GROUP/hpx/issues/154

HPX Documentation, 1.5.1

• Issue #1554559 - Sine performance counters example chokes on chrono headers

• Issue #1564560 - Add build type to –version

• Issue #1574561 - Extend AGAS caching to store gid ranges

• Issue #1584562 - r5691 doesn’t compile

• Issue #1604563 - Re-add AGAS function for resolving a locality to its prefix

• Issue #1684564 - Managed components should be able to access their own GID

• Issue #1694565 - Rewrite AGAS future pool

• Issue #1794566 - Complete switch to request class for AGAS server interface

• Issue #1824567 - Sine performance counter is loaded by other examples

• Issue #1854568 - Write tests for symbol namespace reference counting

• Issue #1914569 - Assignment of read-only variable in point_geometry

• Issue #2004570 - Seg faults when querying performance counters

• Issue #2044571 - –ifnames and suffix stripping needs to be more generic

• Issue #2054572 - –list-* and –print-counter-* options do not work together and produce no warning

• Issue #2074573 - Implement decrement entry merging

• Issue #2084574 - Replace the spinlocks in AGAS with hpx::lcos::local_mutexes

• Issue #2104575 - Add an –ifprefix option

• Issue #2144576 - Performance test for PX-thread creation

• Issue #2164577 - VS2010 compilation

• Issue #2224578 - r6045 context_linux_x86.hpp

• Issue #2234579 - fibonacci hangs when changing the state of an active thread

• Issue #2254580 - Active threads end up in the FEB wait queue

• Issue #2264581 - VS Build Error for Accumulator Client
4559 https://github.com/STEllAR-GROUP/hpx/issues/155
4560 https://github.com/STEllAR-GROUP/hpx/issues/156
4561 https://github.com/STEllAR-GROUP/hpx/issues/157
4562 https://github.com/STEllAR-GROUP/hpx/issues/158
4563 https://github.com/STEllAR-GROUP/hpx/issues/160
4564 https://github.com/STEllAR-GROUP/hpx/issues/168
4565 https://github.com/STEllAR-GROUP/hpx/issues/169
4566 https://github.com/STEllAR-GROUP/hpx/issues/179
4567 https://github.com/STEllAR-GROUP/hpx/issues/182
4568 https://github.com/STEllAR-GROUP/hpx/issues/185
4569 https://github.com/STEllAR-GROUP/hpx/issues/191
4570 https://github.com/STEllAR-GROUP/hpx/issues/200
4571 https://github.com/STEllAR-GROUP/hpx/issues/204
4572 https://github.com/STEllAR-GROUP/hpx/issues/205
4573 https://github.com/STEllAR-GROUP/hpx/issues/207
4574 https://github.com/STEllAR-GROUP/hpx/issues/208
4575 https://github.com/STEllAR-GROUP/hpx/issues/210
4576 https://github.com/STEllAR-GROUP/hpx/issues/214
4577 https://github.com/STEllAR-GROUP/hpx/issues/216
4578 https://github.com/STEllAR-GROUP/hpx/issues/222
4579 https://github.com/STEllAR-GROUP/hpx/issues/223
4580 https://github.com/STEllAR-GROUP/hpx/issues/225
4581 https://github.com/STEllAR-GROUP/hpx/issues/226

1434 Chapter 2. What’s so special about HPX?

https://github.com/STEllAR-GROUP/hpx/issues/155
https://github.com/STEllAR-GROUP/hpx/issues/156
https://github.com/STEllAR-GROUP/hpx/issues/157
https://github.com/STEllAR-GROUP/hpx/issues/158
https://github.com/STEllAR-GROUP/hpx/issues/160
https://github.com/STEllAR-GROUP/hpx/issues/168
https://github.com/STEllAR-GROUP/hpx/issues/169
https://github.com/STEllAR-GROUP/hpx/issues/179
https://github.com/STEllAR-GROUP/hpx/issues/182
https://github.com/STEllAR-GROUP/hpx/issues/185
https://github.com/STEllAR-GROUP/hpx/issues/191
https://github.com/STEllAR-GROUP/hpx/issues/200
https://github.com/STEllAR-GROUP/hpx/issues/204
https://github.com/STEllAR-GROUP/hpx/issues/205
https://github.com/STEllAR-GROUP/hpx/issues/207
https://github.com/STEllAR-GROUP/hpx/issues/208
https://github.com/STEllAR-GROUP/hpx/issues/210
https://github.com/STEllAR-GROUP/hpx/issues/214
https://github.com/STEllAR-GROUP/hpx/issues/216
https://github.com/STEllAR-GROUP/hpx/issues/222
https://github.com/STEllAR-GROUP/hpx/issues/223
https://github.com/STEllAR-GROUP/hpx/issues/225
https://github.com/STEllAR-GROUP/hpx/issues/226

HPX Documentation, 1.5.1

• Issue #2284582 - Move all traits into namespace hpx::traits

• Issue #2294583 - Invalid initialization of reference in thread_init_data

• Issue #2354584 - Invalid GID in iostreams

• Issue #2384585 - Demangle type names for the default implementation of get_action_name

• Issue #2414586 - C++11 support breaks GCC 4.5

• Issue #2474587 - Reference to temporary with GCC 4.4

• Issue #2484588 - Seg fault at shutdown with GCC 4.4

• Issue #2534589 - Default component action registration kills compiler

• Issue #2724590 - G++ unrecognized command line option

• Issue #2734591 - quicksort example doesn’t compile

• Issue #2774592 - Invalid CMake logic for Windows

2.12 Citing HPX

Please cite HPX whenever you use it for publications. Use our paper in The Journal of Open Source Software as the
main citation for HPX: 4593. Use the Zenodo entry for referring to the latest version of HPX: 4594. Entries for citing
specific versions of HPX can also be found at 4595.

2.13 About HPX

2.13.1 History

The development of High Performance ParalleX (HPX) began in 2007. At that time, Hartmut Kaiser became interested
in the work done by the ParalleX group at the Center for Computation and Technology (CCT)4596, a multi-disciplinary
research institute at Louisiana State University (LSU)4597. The ParalleX group was working to develop a new and
experimental execution model for future high performance computing architectures. This model was christened Par-
alleX. The first implementations of ParalleX were crude, and many of those designs had to be discarded entirely.
However, over time the team learned quite a bit about how to design a parallel, distributed runtime system which
implements the concepts of ParalleX.

4582 https://github.com/STEllAR-GROUP/hpx/issues/228
4583 https://github.com/STEllAR-GROUP/hpx/issues/229
4584 https://github.com/STEllAR-GROUP/hpx/issues/235
4585 https://github.com/STEllAR-GROUP/hpx/issues/238
4586 https://github.com/STEllAR-GROUP/hpx/issues/241
4587 https://github.com/STEllAR-GROUP/hpx/issues/247
4588 https://github.com/STEllAR-GROUP/hpx/issues/248
4589 https://github.com/STEllAR-GROUP/hpx/issues/253
4590 https://github.com/STEllAR-GROUP/hpx/issues/272
4591 https://github.com/STEllAR-GROUP/hpx/issues/273
4592 https://github.com/STEllAR-GROUP/hpx/issues/277
4593 https://joss.theoj.org/papers/022e5917b95517dff20cd3742ab95eca
4594 https://doi.org/10.5281/zenodo.598202
4595 https://doi.org/10.5281/zenodo.598202
4596 https://www.cct.lsu.edu
4597 https://www.lsu.edu

2.12. Citing HPX 1435

https://github.com/STEllAR-GROUP/hpx/issues/228
https://github.com/STEllAR-GROUP/hpx/issues/229
https://github.com/STEllAR-GROUP/hpx/issues/235
https://github.com/STEllAR-GROUP/hpx/issues/238
https://github.com/STEllAR-GROUP/hpx/issues/241
https://github.com/STEllAR-GROUP/hpx/issues/247
https://github.com/STEllAR-GROUP/hpx/issues/248
https://github.com/STEllAR-GROUP/hpx/issues/253
https://github.com/STEllAR-GROUP/hpx/issues/272
https://github.com/STEllAR-GROUP/hpx/issues/273
https://github.com/STEllAR-GROUP/hpx/issues/277
https://joss.theoj.org/papers/022e5917b95517dff20cd3742ab95eca
https://doi.org/10.5281/zenodo.598202
https://doi.org/10.5281/zenodo.598202
https://www.cct.lsu.edu
https://www.lsu.edu

HPX Documentation, 1.5.1

From the very beginning, this endeavour has been a group effort. In addition to a handful of interested researchers,
there have always been graduate and undergraduate students participating in the discussions, design, and implemen-
tation of HPX. In 2011 we decided to formalize our collective research efforts by creating the STE||AR4598 group
(Systems Technology, Emergent Parallelism, and Algorithm Research). Over time, the team grew to include re-
searchers around the country and the world. In 2014, the STE||AR4599 Group was reorganized to become the interna-
tional community it is today. This consortium of researchers aims to develop stable, sustainable, and scalable tools
which will enable application developers to exploit the parallelism latent in the machines of today and tomorrow. Our
goal of the HPX project is to create a high quality, freely available, open source implementation of ParalleX con-
cepts for conventional and future systems by building a modular and standards conforming runtime system for SMP
and distributed application environments. The API exposed by HPX is conformant to the interfaces defined by the
C++11/14 ISO standard and adheres to the programming guidelines used by the Boost4600 collection of C++ libraries.
We steer the development of HPX with real world applications and aim to provide a smooth migration path for domain
scientists.

To learn more about STE||AR4601 and ParalleX, see People and Why HPX?.

2.13.2 People

The STE||AR4602 Group (pronounced as stellar) stands for “Systems Technology, Emergent Parallelism, and
Algorithm Research”. We are an international group of faculty, researchers, and students working at various insti-
tutions around the world. The goal of the STE||AR4603 Group is to promote the development of scalable parallel
applications by providing a community for ideas, a framework for collaboration, and a platform for communicating
these concepts to the broader community.

Our work is focused on building technologies for scalable parallel applications. HPX, our general purpose C++ runtime
system for parallel and distributed applications, is no exception. We use HPX for a broad range of scientific applica-
tions, helping scientists and developers to write code which scales better and shows better performance compared to
more conventional programming models such as MPI.

HPX is based on ParalleX which is a new (and still experimental) parallel execution model aiming to overcome the
limitations imposed by the current hardware and the techniques we use to write applications today. Our group focuses
on two types of applications - those requiring excellent strong scaling, allowing for a dramatic reduction of execution
time for fixed workloads and those needing highest level of sustained performance through massive parallelism. These
applications are presently unable (through conventional practices) to effectively exploit a relatively small number of
cores in a multi-core system. By extension, these application will not be able to exploit high-end exascale computing
systems which are likely to employ hundreds of millions of such cores by the end of this decade.

Critical bottlenecks to the effective use of new generation high performance computing (HPC) systems include:

• Starvation: due to lack of usable application parallelism and means of managing it,

• Overhead: reduction to permit strong scalability, improve efficiency, and enable dynamic resource management,

• Latency: from remote access across system or to local memories,

• Contention: due to multicore chip I/O pins, memory banks, and system interconnects.

The ParalleX model has been devised to address these challenges by enabling a new computing dynamic through the
application of message-driven computation in a global address space context with lightweight synchronization. The
work on HPX is centered around implementing the concepts as defined by the ParalleX model. HPX is currently
targeted at conventional machines, such as classical Linux based Beowulf clusters and SMP nodes.

4598 https://stellar-group.org
4599 https://stellar-group.org
4600 https://www.boost.org/
4601 https://stellar-group.org
4602 https://stellar-group.org
4603 https://stellar-group.org

1436 Chapter 2. What’s so special about HPX?

https://stellar-group.org
https://stellar-group.org
https://www.boost.org/
https://stellar-group.org
https://stellar-group.org
https://stellar-group.org

HPX Documentation, 1.5.1

We fully understand that the success of HPX (and ParalleX) is very much the result of the work of many people. To
see a list of who is contributing see our tables below.

HPX contributors

Table 2.39: Contributors
Name Institution Email

Hartmut
Kaiser

Center for Computation and Technology (CCT)4604, Louisiana State
University (LSU)4605

Thomas
Heller

Department of Computer Science 3 - Computer Architecture4606,
Friedrich-Alexander University Erlangen-Nuremberg (FAU)4607

Agustin
Berge

Center for Computation and Technology (CCT)4608, Louisiana State
University (LSU)4609

Mikael Sim-
berg

Swiss National Supercomputing Centre4610

John Biddis-
combe

Swiss National Supercomputing Centre4611

Anton Biki-
neev

Center for Computation and Technology (CCT)4612, Louisiana State
University (LSU)4613

Martin
Stumpf

Department of Computer Science 3 - Computer Architecture4614,
Friedrich-Alexander University Erlangen-Nuremberg (FAU)4615

Bryce Adel-
stein Lelbach

NVIDIA4616

Shuangyang
Yang

Center for Computation and Technology (CCT)4617, Louisiana State
University (LSU)4618

Jeroen
Habraken

Technische Universiteit Eindhoven4619

Steven
Brandt

Center for Computation and Technology (CCT)4620, Louisiana State
University (LSU)4621

Antoine Tran
Tan

Center for Computation and Technology (CCT)4622, Louisiana State
University (LSU)4623

Adrian Serio Center for Computation and Technology (CCT)4624, Louisiana State
University (LSU)4625

Maciej
Brodowicz

Center for Research in Extreme Scale Technologies (CREST)4626, In-
diana University (IU)4627

2.13. About HPX 1437

https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www3.cs.fau.de
https://www.fau.de
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.cscs.ch
https://www.cscs.ch
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www3.cs.fau.de
https://www.fau.de
https://nvidia.com/
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.tui.nl
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://pti.iu.edu
https://www.iu.edu
https://www.iu.edu

HPX Documentation, 1.5.1

Contributors to this document

Table 2.40: Documentation authors
Name Institution Email

Hartmut
Kaiser

Center for Computation and Technology (CCT)4628, Louisiana State
University (LSU)4629

Thomas
Heller

Department of Computer Science 3 - Computer Architecture4630,
Friedrich-Alexander University Erlangen-Nuremberg (FAU)4631

Bryce Adel-
stein Lelbach

NVIDIA4632

Vinay C Am-
atya

Center for Computation and Technology (CCT)4633, Louisiana State
University (LSU)4634

Steven
Brandt

Center for Computation and Technology (CCT)4635, Louisiana State
University (LSU)4636

Maciej
Brodowicz

Center for Research in Extreme Scale Technologies (CREST)4637, Indi-
ana University (IU)4638

Adrian Serio Center for Computation and Technology (CCT)4639, Louisiana State
University (LSU)4640

4604 https://www.cct.lsu.edu
4605 https://www.lsu.edu
4606 https://www3.cs.fau.de
4607 https://www.fau.de
4608 https://www.cct.lsu.edu
4609 https://www.lsu.edu
4610 https://www.cscs.ch
4611 https://www.cscs.ch
4612 https://www.cct.lsu.edu
4613 https://www.lsu.edu
4614 https://www3.cs.fau.de
4615 https://www.fau.de
4616 https://nvidia.com/
4617 https://www.cct.lsu.edu
4618 https://www.lsu.edu
4619 https://www.tui.nl
4620 https://www.cct.lsu.edu
4621 https://www.lsu.edu
4622 https://www.cct.lsu.edu
4623 https://www.lsu.edu
4624 https://www.cct.lsu.edu
4625 https://www.lsu.edu
4626 https://pti.iu.edu
4627 https://www.iu.edu
4628 https://www.cct.lsu.edu
4629 https://www.lsu.edu
4630 https://www3.cs.fau.de
4631 https://www.fau.de
4632 https://nvidia.com/
4633 https://www.cct.lsu.edu
4634 https://www.lsu.edu
4635 https://www.cct.lsu.edu
4636 https://www.lsu.edu
4637 https://pti.iu.edu
4638 https://www.iu.edu
4639 https://www.cct.lsu.edu
4640 https://www.lsu.edu

1438 Chapter 2. What’s so special about HPX?

https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www3.cs.fau.de
https://www.fau.de
https://nvidia.com/
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://pti.iu.edu
https://www.iu.edu
https://www.iu.edu
https://www.cct.lsu.edu
https://www.lsu.edu
https://www.lsu.edu

HPX Documentation, 1.5.1

Acknowledgements

Thanks also to the following people who contributed directly or indirectly to the project through discussions, pull
requests, documentation patches, etc.

• Giannis Gonidelis, for his work on the ranges adaptation during the Google Summer of Code 2020.

• Auriane Reverdell (Swiss National Supercomputing Centre4641), for her tireless work on refactoring our CMake
setup and modularizing HPX.

• Christopher Hinz, for his work on refactoring our CMake setup.

• Weile Wei, for fixing HPX builds with CUDA on Summit.

• Severin Strobl, for fixing our CMake setup related to linking and adding new entry points to the HPX runtime.

• Rebecca Stobaugh, for her major documentation review and contributions during and after the 2019 Google
Season of Documentation.

• Jan Melech, for adding automatic serialization of simple structs.

• Austin McCartney, for adding concept emulation of the Ranges TS bidirectional and random access iterator
concepts.

• Marco Diers, reporting and fixing issues related PMIx.

• Maximilian Bremer, for reporting multiple issues and extending the component migration tests.

• Piotr Mikolajczyk, for his improvements and fixes to the set and count algorithms.

• Grant Rostig, for reporting several deficiencies on our web pages.

• Jakub Golinowski, for implementing an HPX backend for OpenCV and in the process improving documentation
and reporting issues.

• Mikael Simberg (Swiss National Supercomputing Centre4642), for his tireless help cleaning up and maintaining
HPX.

• Tianyi Zhang, for his work on HPXMP.

• Shahrzad Shirzad, for her contributions related to Phylanx.

• Christopher Ogle, for his contributions to the parallel algorithms.

• Surya Priy, for his work with statistic performance counters.

• Anushi Maheshwari, for her work on random number generation.

• Bruno Pitrus, for his work with parallel algorithms.

• Nikunj Gupta, for rewriting the implementation of hpx_main.hpp and for his fixes for tests.

• Christopher Taylor, for his interest in HPX and the fixes he provided.

• Shoshana Jakobovits, for her work on the resource partitioner.

• Denis Blank, who re-wrote our unwrapped function to accept plain values arbitrary containers, and properly
deal with nested futures.

• Ajai V. George, who implemented several of the parallel algorithms.

• Taeguk Kwon, who worked on implementing parallel algorithms as well as adapting the parallel algorithms to
the Ranges TS.

4641 https://www.cscs.ch
4642 https://www.cscs.ch

2.13. About HPX 1439

https://www.cscs.ch
https://www.cscs.ch

HPX Documentation, 1.5.1

• Zach Byerly (Louisiana State University (LSU)4643), who in his work developing applications on top of HPX
opened tickets and contributed to the HPX examples.

• Daniel Estermann, for his work porting HPX to the Raspberry Pi.

• Alireza Kheirkhahan (Louisiana State University (LSU)4644), who built and administered our local cluster as
well as his work in distributed IO.

• Abhimanyu Rawat, who worked on stack overflow detection.

• David Pfander, who improved signal handling in HPX, provided his optimization expertise, and worked on
incorporating the Vc vectorization into HPX.

• Denis Demidov, who contributed his insights with VexCL.

• Khalid Hasanov, who contributed changes which allowed to run HPX on 64Bit power-pc architectures.

• Zahra Khatami (Louisiana State University (LSU)4645), who contributed the prefetching iterators and the persis-
tent auto chunking executor parameters implementation.

• Marcin Copik, who worked on implementing GPU support for C++AMP and HCC. He also worked on imple-
menting a HCC backend for HPX.Compute.

• Minh-Khanh Do, who contributed the implementation of several segmented algorithms.

• Bibek Wagle (Louisiana State University (LSU)4646), who worked on fixing and analyzing the performance of
the parcel coalescing plugin in HPX.

• Lukas Troska, who reported several problems and contributed various test cases allowing to reproduce the
corresponding issues.

• Andreas Schaefer, who worked on integrating his library (LibGeoDecomp4647) with HPX. He reported various
problems and submitted several patches to fix issues allowing for a better integration with LibGeoDecomp4648.

• Satyaki Upadhyay, who contributed several examples to HPX.

• Brandon Cordes, who contributed several improvements to the inspect tool.

• Harris Brakmic, who contributed an extensive build system description for building HPX with Visual Studio.

• Parsa Amini (Louisiana State University (LSU)4649), who refactored and simplified the implementation of AGAS
in HPX and who works on its implementation and optimization.

• Luis Martinez de Bartolome who implemented a build system extension for HPX integrating it with the Co-
nan4650 C/C++ package manager.

• Vinay C Amatya (Louisiana State University (LSU)4651), who contributed to the documentation and provided
some of the HPX examples.

• Kevin Huck and Nick Chaimov (University of Oregon4652), who contributed the integration of APEX (Auto-
nomic Performance Environment for eXascale) with HPX.

• Francisco Jose Tapia, who helped with implementing the parallel sort algorithm for HPX.

4643 https://www.lsu.edu
4644 https://www.lsu.edu
4645 https://www.lsu.edu
4646 https://www.lsu.edu
4647 https://www.libgeodecomp.org/
4648 https://www.libgeodecomp.org/
4649 https://www.lsu.edu
4650 https://www.conan.io/
4651 https://www.lsu.edu
4652 https://uoregon.edu/

1440 Chapter 2. What’s so special about HPX?

https://www.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.lsu.edu
https://www.libgeodecomp.org/
https://www.libgeodecomp.org/
https://www.lsu.edu
https://www.conan.io/
https://www.conan.io/
https://www.lsu.edu
https://uoregon.edu/

HPX Documentation, 1.5.1

• Patrick Diehl, who worked on implementing CUDA support for our companion library targeting GPGPUs
(HPXCL4653).

• Eric Lemanissier contributed fixes to allow compilation using the MingW toolchain.

• Nidhi Makhijani who helped cleaning up some enum consistencies in HPX and contributed to the resource
manager used in the thread scheduling subsystem. She also worked on HPX in the context of the Google
Summer of Code 2015.

• Larry Xiao, Devang Bacharwar, Marcin Copik, and Konstantin Kronfeldner who worked on HPX in the context
of the Google Summer of Code program 2015.

• Daniel Bourgeois (Center for Computation and Technology (CCT)4654) who contributed to HPX the implemen-
tation of several parallel algorithms (as proposed by N43134655).

• Anuj Sharma and Christopher Bross (Department of Computer Science 3 - Computer Architecture4656), who
worked on HPX in the context of the Google Summer of Code4657 program 2014.

• Martin Stumpf (Department of Computer Science 3 - Computer Architecture4658), who rebuilt our contiguous
testing infrastructure (see the HPX Buildbot Website4659). Martin is also working on HPXCL4660 (mainly all
work related to OpenCL4661) and implementing an HPX backend for POCL4662, a portable computing language
solution based on OpenCL4663.

• Grant Mercer (University of Nevada, Las Vegas4664), who helped creating many of the parallel algorithms (as
proposed by N43134665).

• Damond Howard (Louisiana State University (LSU)4666), who works on HPXCL4667 (mainly all work related to
CUDA4668).

• Christoph Junghans (Los Alamos National Lab), who helped making our buildsystem more portable.

• Antoine Tran Tan (Laboratoire de Recherche en Informatique, Paris), who worked on integrating HPX as a
backend for NT24669. He also contributed an implementation of an API similar to Fortran co-arrays on top of
HPX.

• John Biddiscombe (Swiss National Supercomputing Centre4670), who helped with the BlueGene/Q port of HPX,
implemented the parallel sort algorithm, and made several other contributions.

• Erik Schnetter (Perimeter Institute for Theoretical Physics), who greatly helped to make HPX more robust by
submitting a large amount of problem reports, feature requests, and made several direct contributions.

• Mathias Gaunard (Metascale), who contributed several patches to reduce compile time warnings generated while
compiling HPX.

• Andreas Buhr, who helped with improving our documentation, especially by suggesting some fixes for incon-
sistencies.

4653 https://github.com/STEllAR-GROUP/hpxcl/
4654 https://www.cct.lsu.edu
4655 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
4656 https://www3.cs.fau.de
4657 https://developers.google.com/open-source/soc/
4658 https://www3.cs.fau.de
4659 http://rostam.cct.lsu.edu/
4660 https://github.com/STEllAR-GROUP/hpxcl/
4661 https://www.khronos.org/opencl/
4662 https://portablecl.org/
4663 https://www.khronos.org/opencl/
4664 https://www.unlv.edu
4665 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
4666 https://www.lsu.edu
4667 https://github.com/STEllAR-GROUP/hpxcl/
4668 https://www.nvidia.com/object/cuda_home_new.html
4669 https://www.numscale.com/nt2/
4670 https://www.cscs.ch

2.13. About HPX 1441

https://github.com/STEllAR-GROUP/hpxcl/
https://www.cct.lsu.edu
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
https://www3.cs.fau.de
https://developers.google.com/open-source/soc/
https://www3.cs.fau.de
http://rostam.cct.lsu.edu/
https://github.com/STEllAR-GROUP/hpxcl/
https://www.khronos.org/opencl/
https://portablecl.org/
https://www.khronos.org/opencl/
https://www.unlv.edu
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4313.html
https://www.lsu.edu
https://github.com/STEllAR-GROUP/hpxcl/
https://www.nvidia.com/object/cuda_home_new.html
https://www.numscale.com/nt2/
https://www.cscs.ch

HPX Documentation, 1.5.1

• Patricia Grubel (New Mexico State University4671), who contributed the description of the different HPX thread
scheduler policies and is working on the performance analysis of our thread scheduling subsystem.

• Lars Viklund, whose wit, passion for testing, and love of odd architectures has been an amazing contribution to
our team. He has also contributed platform specific patches for FreeBSD and MSVC12.

• Agustin Berge, who contributed patches fixing some very nasty hidden template meta-programming issues. He
rewrote large parts of the API elements ensuring strict conformance with C++11/14.

• Anton Bikineev for contributing changes to make using boost::lexical_cast safer, he also contributed
a thread safety fix to the iostreams module. He also contributed a complete rewrite of the serialization infras-
tructure replacing Boost.Serialization inside HPX.

• Pyry Jahkola, who contributed the Mac OS build system and build documentation on how to build HPX using
Clang and libc++.

• Mario Mulansky, who created an HPX backend for his Boost.Odeint library, and who submitted several test
cases allowing us to reproduce and fix problems in HPX.

• Rekha Raj, who contributed changes to the description of the Windows build instructions.

• Jeremy Kemp how worked on an HPX OpenMP backend and added regression tests.

• Alex Nagelberg for his work on implementing a C wrapper API for HPX.

• Chen Guo, helvihartmann, Nicholas Pezolano, and John West who added and improved examples in HPX.

• Joseph Kleinhenz, Markus Elfring, Kirill Kropivyansky, Alexander Neundorf, Bryant Lam, and Alex Hirsch
who improved our CMake.

• Tapasweni Pathak, Praveen Velliengiri, Jean-Loup Tastet, Michael Levine, Aalekh Nigam, HadrienG2, Prayag
Verma, lslada, Alex Myczko, and Avyav Kumar who improved the documentation.

• Jayesh Badwaik, J. F. Bastien, Christoph Garth, Christopher Hinz, Brandon Kohn, Mario Lang, Maikel Nadol-
ski, pierrele, hendrx, Dekken, woodmeister123, xaguilar, Andrew Kemp, Dylan Stark, Matthew Anderson,
Jeremy Wilke, Jiazheng Yuan, CyberDrudge, david8dixon, Maxwell Reeser, Raffaele Solca, Marco Ippolito,
Jules Penuchot, Weile Wei, Severin Strobl, Kor de Jong, albestro, Jeff Trull, Yuri Victorovich, and Gregor Daiß
who contributed to the general improvement of HPX.

In addition to the people who worked directly with HPX development we would like to acknowledge the NSF, DoE,
DARPA, Center for Computation and Technology (CCT)4672, Department of Computer Science 3 - Computer Archi-
tecture4673, and Swiss National Supercomputing Centre4674 who fund and support our work. We would also like to
thank the following organizations for granting us allocations of their compute resources: LSU HPC, LONI, XSEDE,
NERSC, and the Gauss Center for Supercomputing.

HPX is currently funded by the following grants:

• The National Science Foundation through awards 1240655 (STAR), 1339782 (STORM), and 1737785 (Phy-
lanx). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

• The Department of Energy (DoE) through the awards DE-AC52-06NA25396 (FLeCSI) and DE-NA0003525
(Resilience). Neither the United States Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and opinions

4671 https://www.nmsu.edu
4672 https://www.cct.lsu.edu
4673 https://www3.cs.fau.de
4674 https://www.cscs.ch

1442 Chapter 2. What’s so special about HPX?

https://www.nmsu.edu
https://www.cct.lsu.edu
https://www3.cs.fau.de
https://www3.cs.fau.de
https://www.cscs.ch

HPX Documentation, 1.5.1

of authors expressed herein do not necessarily state or reflect those of the United States Government or any
agency thereof.

• The Defense Technical Information Center (DTIC) under contract FA8075-14-D-0002/0007. Neither the United
States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

• The Bavarian Research Foundation (Bayerische Forschungsstfitung) through the grant AZ-987-11.

• The European Commission’s Horizon 2020 programme through the grant H2020-EU.1.2.2. 671603 (AllScale).

2.13. About HPX 1443

HPX Documentation, 1.5.1

1444 Chapter 2. What’s so special about HPX?

CHAPTER

THREE

INDEX

• genindex

1445

